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Abstract

Atmospheric turbulence reduces the achievable resolution of ground based optical

telescopes. Adaptive optics systems attempt to mitigate the impact of this turbulence

and are required to update their corrections quickly and deterministically (i.e. in real-

time). The technological challenges faced by the future extremely large telescopes

(ELTs) and their associated instruments are considerable. A simple extrapolation of

current systems to the ELT scale is not sufficient.

My thesis work consisted in the identification and examination of new many-core

technologies for accelerating the adaptive optics real-time control loop. I investigated

the Mellanox TILE-Gx36 and the Intel Xeon Phi (5110p). The TILE-Gx36 with

4x10 GbE ports and 36 processing cores is a good candidate for fast computation of

the wavefront sensor images. The Intel Xeon Phi with 60 processing cores and high

memory bandwidth is particularly well suited for the acceleration of the wavefront

reconstruction.

Through extensive testing I have shown that the TILE-Gx can provide the perfor-

mance required for the wavefront processing units of the ELT first light instruments.

The Intel Xeon Phi (Knights Corner) while providing good overall performance does

not have the required determinism. We believe that the next generation of Xeon Phi

(Knights Landing) will provide the necessary determinism and increased performance.

In this thesis, we show that by using currently available novel many-core processors

it is possible to reach the performance required for ELT instruments.

ii



Acknowledgements

First, I would like to thank Dr Noah Schwartz, my primary supervisor and main

supporter of this research. We have gone through endless revisions and quick turn

arounds. Without that this thesis might never of been finished. I would also like to

thank my secondary supervisor Dr Robert Thomson based at Heriot Watt.

I would also like to thank the UK Astronomy Technology Centre, who have hosted

me during my research over the last four years. Who have supported my work and

funded many trips to promote this research at many conferences and workshops

around the world. In particular I would like to thank Dr Hermine Schnetler and

Andy Vick who were always available and have provide invaluable advice though this

research.

This work is part funded by the Science and Technology Facilities Council (STFC),

grant ST/K003569/1 and the Centre For Instrumentation. I also gratefully acknowl-

edge support for this research from the UK Engineering and Physical Sciences Re-

search Council, under Grant number EP/L01596X/1. A large portion of this work

was carried out in collaboration with the Centre for Advanced Instrumentation at

Durham University and in particular I would like to thank Dr Alastair Basden and

Dr Nigel Dipper who supported my research.

Lastly I would like to thank my many proof readers who have given valuable advice

and comments throughout the writing of this thesis as well as all publications that

have come from this research. In no particular order, Dr John Barr, Eve Barr and Dr

Stewart Williams.

iii



Please note this form should bound into the submitted thesis.  
 
Updated February 2008, November 2008, February 2009, January 2011 

ACADEMIC REGISTRY 

Research Thesis Submission 
 
 

 

Name:  

School/PGI:  

Version:  (i.e. First, 

Resubmission, Final) 
 Degree Sought 

(Award and 
Subject area) 

 

 

 

Declaration  
 
In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 
 

1) the thesis embodies the results of my own work and has been composed by myself 
2) where appropriate, I have made acknowledgement of the work of others and have made reference to 

work carried out in collaboration with other persons 
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic 

versions submitted*.   
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made 

available for loan or photocopying and be available via the Institutional Repository, subject to such 
conditions as the Librarian may require 

5) I understand that as a student of the University I am required to abide by the Regulations of the 
University and to conform to its discipline. 

 
* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis 

is submitted. 
 

Signature of 
Candidate: 

 Date:  

 

 

Submission  
 

Submitted By (name in capitals):  

 

Signature of Individual Submitting:  

 

Date Submitted: 

 

 

 

For Completion in the Student Service Centre (SSC) 
 

Received in the SSC by (name in 

capitals): 
 

Method of Submission  

(Handed in to SSC; posted through 
internal/external mail): 

 

 

E-thesis Submitted (mandatory for 

final theses) 
 

Signature: 

 

 Date:  

 



Contents

Abstract ii

Acknowledgements iii

Declaration iii

Contents v

List of Tables x

List of Figures xii

Acronyms xv

Publications xvii

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Layout and scope of thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Optical effect of atmospheric turbulence 8

2.1 Atmospheric turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Observing through the atmosphere in popular culture . . . . . 9

2.1.2 Description of turbulence . . . . . . . . . . . . . . . . . . . . . 11

2.2 Statistical characterisation of atmospheric turbulence . . . . . . . . . 12

2.2.1 Index of refraction fluctuations . . . . . . . . . . . . . . . . . 12

2.2.2 Impact of seeing: the Fried parameter . . . . . . . . . . . . . . 14

2.2.3 Temporal properties of turbulence . . . . . . . . . . . . . . . . 15

2.3 Imaging through turbulence . . . . . . . . . . . . . . . . . . . . . . . 16

v



2.3.1 Performance of optical systems . . . . . . . . . . . . . . . . . 16

2.3.2 Zernike poylnomials . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Mitigating the impact of atmospheric turbulence . . . . . . . . . . . . 20

2.4.1 Speckle imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Lucky imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Speckle interferometry . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Deconvolution by wavefront analysis . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Adaptive Optics 26

3.1 Historical aspects of adaptive optics . . . . . . . . . . . . . . . . . . . 27

3.2 Principle of AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Wavefront sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Shack-Hartmann Wavefront Sensors . . . . . . . . . . . . . . . 31

3.3.2 Pyramid Wavefront Sensors . . . . . . . . . . . . . . . . . . . 33

3.3.3 Guide Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Wavefront correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Deformable mirror . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Fitting Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Real-time control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Temporal error . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Intrinsic errors of an AO system . . . . . . . . . . . . . . . . . . . . . 42

3.7 Adaptive optics concepts . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.1 Closed-loop and open-loop AO . . . . . . . . . . . . . . . . . . 43

3.7.2 Single conjugate adaptive optics and eXtreme adaptive optics 45

3.7.3 Widefield adaptive optics . . . . . . . . . . . . . . . . . . . . . 46

3.8 Future telescopes - ELTs . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Real-time computing 56

4.1 Classification of real-time computing . . . . . . . . . . . . . . . . . . 57

4.1.1 Hard real-time . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Firm real-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



4.1.3 Soft real-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Computing power and parallel computing . . . . . . . . . . . . . . . . 59

4.2.1 Moore’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Parallel computing and Amdahl’s law . . . . . . . . . . . . . . 61

4.2.3 Measures of performance and complexity . . . . . . . . . . . . 64

4.3 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Parallel API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Real-time performance and the operating system . . . . . . . 75

4.3.3 Operating systems and the scheduler . . . . . . . . . . . . . . 76

4.4 Computational Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 GPU (with GPU Direct) . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Digital Signal Processors . . . . . . . . . . . . . . . . . . . . . 82

4.4.5 Internal Interconnects . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Real-time computing in adaptive optics 90

5.1 General structure of AO real-time control systems . . . . . . . . . . . 92

5.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.2 Temporal considerations, chronogram . . . . . . . . . . . . . . 94

5.2 Wavefront processing unit . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Shack-Hartman wavefront processing unit . . . . . . . . . . . 97

5.2.2 Wavefront sensor data reduction - pixel calibration . . . . . . 98

5.2.3 Shack-Hartmann slope calculation methods . . . . . . . . . . . 100

5.2.4 Implications on hardware . . . . . . . . . . . . . . . . . . . . . 103

5.3 Wavefront reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Wavefront reconstruction algorithms . . . . . . . . . . . . . . 107

5.3.2 Temporal control . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Example of AO RTC systems . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 NAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 SPARTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.3 DARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



5.5 Example of planned AO RTC systems . . . . . . . . . . . . . . . . . 117

5.5.1 NFIRAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.2 Green FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Complexity of E-ELT RTC systems . . . . . . . . . . . . . . . . . . . 120

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Wavefront processing unit: an I/O problem 131

6.1 TILE-Gx36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.1 Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.2 Zero Overhead Linux . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.3 TILE-Gx I/O: MPIPE . . . . . . . . . . . . . . . . . . . . . . 146

6.1.4 Thread affinity and priority . . . . . . . . . . . . . . . . . . . 152

6.1.5 Impact of system parameters on performance . . . . . . . . . 152

6.2 Testing facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Full-frame testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 159

6.3.2 Impact of detector size on mean execution time . . . . . . . . 163

6.3.3 Stability of the execution time . . . . . . . . . . . . . . . . . . 164

6.4 Pipeline Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.2 Mean wavefront processing time . . . . . . . . . . . . . . . . . 173

6.4.3 Sampling frequency . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.4 Stability of the execution time . . . . . . . . . . . . . . . . . . 174

6.4.5 Pure wavefront processing delay . . . . . . . . . . . . . . . . . 176

6.5 Competitors and similar products . . . . . . . . . . . . . . . . . . . . 178

6.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . 180

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Wavefront reconstruction: a memory bandwidth limited problem 185

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Intel Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2.1 Xeon Phi architecture . . . . . . . . . . . . . . . . . . . . . . 190

7.2.2 Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2.3 FLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

viii



7.2.4 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2.5 Developing on the Xeon Phi . . . . . . . . . . . . . . . . . . . 198

7.2.6 Libraries and APIs . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2.7 Operating system and real-time . . . . . . . . . . . . . . . . . 205

7.3 Benchmarking the Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.1 Testing architecture . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.2 Definition of the measured times . . . . . . . . . . . . . . . . 208

7.3.3 Multiple Xeon Phis . . . . . . . . . . . . . . . . . . . . . . . . 209

7.3.4 Influence of system size . . . . . . . . . . . . . . . . . . . . . . 212

7.3.5 Detailed analysis of temporal behaviour . . . . . . . . . . . . 220

7.4 Prospective evolution of the Xeon Phi . . . . . . . . . . . . . . . . . . 230

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8 Conclusions and perspectives 241

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A Appendix 250

A.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

A.2 Calculating the valid number of sub-apertures . . . . . . . . . . . . . 263

A.3 Units in computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

A.4 Data transfer units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

ix



List of Tables

4.1 The STREAM calculations . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 A comparison of internal interconnects transfer rates . . . . . . . . . 84

5.2 Comparison of camera read-out technologies . . . . . . . . . . . . . . 105

5.3 Wavefront reconstruction algorithm complexity . . . . . . . . . . . . 110

5.4 Summary of the main characteristics of NAOS . . . . . . . . . . . . . 112

5.5 SPARTA instruments summary . . . . . . . . . . . . . . . . . . . . . 115

5.6 Summary of CANARY and CHOUGH . . . . . . . . . . . . . . . . . 117

5.7 Summary of the main characteristics of NFIRAOS. . . . . . . . . . . 118

5.8 Summary of the main characteristics for a selection of current and

future AO systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 TILE-Gx36 specifications. . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Tile-Gx36 STREAM results. . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Comparison between non-ZOL and ZOL stability. . . . . . . . . . . . 141

6.4 Scaling non-ZOL and ZOL. . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Frames received by the TILE-Gx in different modes of operations . . 150

6.6 Frames received by the TILE-Gx in different modes of operations . . 151

6.7 Mean processing time (values extracted from figure 6.6). . . . . . . . 154

6.8 Time variation in receiving data from the FPGA pixel emulator (values

extracted from figure 6.10) . . . . . . . . . . . . . . . . . . . . . . . . 158

6.9 Mean WFS processing time in full frame testing. . . . . . . . . . . . . 164

6.10 Variation in execution time . . . . . . . . . . . . . . . . . . . . . . . 166

6.11 Latency caused by the camera read-out and wavefront processing unit. 168

6.12 Mean sampling frequency (values extracted from figure 6.20). . . . . . 174

6.13 Comparison of competitors to the TILE-Gx processors . . . . . . . . 180

7.1 Xeon Phi 5110P specifications . . . . . . . . . . . . . . . . . . . . . . 190

x



7.2 STREAM results of the Xeon E5 and the Xeon Phi. . . . . . . . . . . 194

7.3 Comparison of advertised and achievable memory bandwidth. . . . . 194

7.4 FLOPS comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.5 Specifications of the Xeon E5 host computer. . . . . . . . . . . . . . 207

7.6 Offload times corresponding to figure 7.16 . . . . . . . . . . . . . . . 222

7.7 Calculation times corresponding to figure 7.17. . . . . . . . . . . . . . 225

7.8 Transfer times corresponding to figure 7.18. . . . . . . . . . . . . . . 227

7.9 Entire AO frame processing times corresponding to figure 7.19. . . . . 229

7.10 Specifications of Knights Landing 7290F. . . . . . . . . . . . . . . . . 233

8.1 Summary of TILE-Gx and Xeon Phi results and predictions. . . . . . 245

8.2 Prediction of an AO RTC comprised a TILE-Gx and Xeon Phi. . . . 246

A.1 Four bit binary representation of numbers . . . . . . . . . . . . . . . 263

A.2 Orders of magnitudes of memory . . . . . . . . . . . . . . . . . . . . 264

xi



List of Figures

2.1 C2
n profile from Paranal (2007) . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Strehl ratio image quality example . . . . . . . . . . . . . . . . . . . 17

2.3 Representation of Zernike polynomials . . . . . . . . . . . . . . . . . 19

3.1 Simplified diagram of a closed-loop adaptive optics system. . . . . . . 30

3.2 Schematic diagram of a Shack-Hartmann wavefront sensor. . . . . . . 32

3.3 Schematic diagram of a Pyramid wavefront sensor. . . . . . . . . . . 34

3.4 Illustration of the cone effect of a laser guide star. . . . . . . . . . . . 37

3.5 Illustration of how the DM modifies the incoming wavefront. . . . . 39

3.6 Closed-loop adaptive optics system . . . . . . . . . . . . . . . . . . . 44

3.7 Open-loop adaptive optics system. . . . . . . . . . . . . . . . . . . . . 44

3.8 Ground layer adaptive optics. . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Laser tomography adaptive optics . . . . . . . . . . . . . . . . . . . . 48

3.10 Multi-Object adaptive optics . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Multi-Conjugate adaptive optics . . . . . . . . . . . . . . . . . . . . . 50

3.12 Comparison of modern ground and space optical telescopes. . . . . . 51

4.1 Performance of microprocessors over time. . . . . . . . . . . . . . . . 61

4.2 Speedup according the Amdahl’s law . . . . . . . . . . . . . . . . . . 62

4.3 Speedup according the Gustafson’s law. . . . . . . . . . . . . . . . . . 63

4.4 Increasing CPU frequency and DRAM speeds . . . . . . . . . . . . . 66

4.5 OpenMPs fork join model. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 A data flow diagram for getting data onto a GPU. . . . . . . . . . . . 81

4.7 A data flow diagram for getting data onto a GPU using GPU direct. . 82

4.8 A standard DSP flow diagram . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Simplified AO RTC block diagram. . . . . . . . . . . . . . . . . . . . 93

5.2 AO control chain time diagram. . . . . . . . . . . . . . . . . . . . . . 95

xii



5.3 SH-WFS processing chain. . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 2×2 sub-aperture SH-WFS illustration. . . . . . . . . . . . . . . . . . 101

5.5 CuRed wavefront reconstruction . . . . . . . . . . . . . . . . . . . . . 108

5.6 SPARTA architecture schematic Copyright: ESO[16] . . . . . . . . . 114

5.7 Block diagram of CANARY Phase B RTC configuration.. . . . . . . . 116

5.8 NFIRAOS architecture schematic. . . . . . . . . . . . . . . . . . . . . 118

5.9 Green Flash Architecture Schematic. . . . . . . . . . . . . . . . . . . 120

5.10 AO RTC system scales. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 TILE-Gx36 processor Block Diagram . . . . . . . . . . . . . . . . . . 134

6.2 TILE-Gx role within differing system architectures. . . . . . . . . . . 136

6.3 Comparison between non-ZOL and ZOL stability. . . . . . . . . . . . 140

6.4 Comparison between non-ZOL and ZOL modes for varying detector size.141

6.5 Comparison of standard library sockets and MPIPE. . . . . . . . . . 151

6.6 Mean processing time as a function of number of cores. . . . . . . . . 154

6.7 Mean processing time as a function of clock frequency . . . . . . . . . 155

6.8 FPGA pixel emulator with a system. . . . . . . . . . . . . . . . . . . 157

6.9 FPGA pixel emulator board connectors . . . . . . . . . . . . . . . . . 157

6.10 Variation in packets received from FPGA pixel emulator. . . . . . . . 158

6.11 A simplified timing diagram showing the full-frame testing. . . . . . . 160

6.12 A simplified sequence diagram of the full-frame testing. . . . . . . . . 162

6.13 Mean WFS processing time in full frame testing. . . . . . . . . . . . . 164

6.14 Variation in execution time. . . . . . . . . . . . . . . . . . . . . . . . 165

6.15 Mean WFS processing time. . . . . . . . . . . . . . . . . . . . . . . . 167

6.16 A simplified timing diagram showing the pipeline testing. . . . . . . . 169

6.17 A simplified timing diagram for TILE-Gx reciving data. . . . . . . . . 170

6.18 A simplified sequence diagram of the pipeline testing. . . . . . . . . . 172

6.19 Mean wavefront processing time. . . . . . . . . . . . . . . . . . . . . 173

6.20 Mean sampling frequency. . . . . . . . . . . . . . . . . . . . . . . . . 174

6.21 Variation in execution time. . . . . . . . . . . . . . . . . . . . . . . . 175

6.22 Jitter, Range and processing time as a function of detector size. . . . 176

6.23 Mean wavefront processing delay. . . . . . . . . . . . . . . . . . . . . 177

7.1 Memory bandwidth of the Xeon Phi. . . . . . . . . . . . . . . . . . . 192

7.2 MVM FLOPS Xeon Phi. . . . . . . . . . . . . . . . . . . . . . . . . . 195

xiii



7.3 Data transfer rates between host and the Xeon Phi. . . . . . . . . . . 197

7.4 Zoomed: Data transfer rates between host and the Xeon Phi. . . . . . 198

7.5 Comparison of MAGMA and MKL. . . . . . . . . . . . . . . . . . . . 205

7.6 Hardware configuration used to benchmark the Xeon Phi. . . . . . . . 207

7.7 Timings the Xeon Phi. . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.8 Sequence diagram for dual Xeon Phi setup. . . . . . . . . . . . . . . . 211

7.9 Mean offload time as a function of the number of valid sub-apertures 213

7.10 Comparison of the mean offload time using 2 Xeon Phis. . . . . . . . 213

7.11 Mean offload time as a function of the number of valid sub-apertures 215

7.12 Zoom of figure 7.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.13 Variation in offload time. . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.14 Influence of shape of the control matrix. . . . . . . . . . . . . . . . . 218

7.15 Relative performance of using two Xeon Phis. . . . . . . . . . . . . . 220

7.16 Histogram comparing the offload time. . . . . . . . . . . . . . . . . . 221

7.17 Histogram comparing the calculation time. . . . . . . . . . . . . . . . 224

7.18 Histogram comparing the transfer time. . . . . . . . . . . . . . . . . . 226

7.19 Histogram comparing the entire AO frame processing. . . . . . . . . . 229

7.20 Prediction for Knights Landing performance. . . . . . . . . . . . . . . 232

xiv



Acronyms

Acronym Expanded

AO Adaptive optics

CoG Centre of gravity

COTS Commercial off-the-shelf

CPU Central processing unit

CuRe Cumulative Reconstructor with domain Decomposition

CuReD Cumulative Reconstructor

DM Deformable mirror

DSP Digital signal processor

ECC Error checking code

EE Encircled energy

ELT Extremely Large Telescope

FPGA Field programmable gate array

FRIM FRactal Iterative Method

FTR Fourier transform reconstructor

GbE Gigabit Ethernet

GPU Graphics processing unit

IP Internet protocol address

LGS Laser guide stars

MDE Multi-core development enviroment

MPSS Manycore platform software stack

MVM Matrix vector Multiplication

NGS Natural guide stars

NIC Network Interface Card

OS Operating system

PYR Pyramid

continued . . .

xv



Acronym Expanded

PYR-WFS Pyramid wavefront sensor

RMS Root mean squared

RT Real-time

RTC Real-time controller or real-time control system

SH Shack-Hartmann

SH-WFS Shack-Hartmann wavefront sensor

SMC System management controller

SSH Secure Shell

TCP Transmission control protocol

TWoG Thresholded centre of gravity

UDP User datagram protocol

WCoG Weighted Centre of gravity

WFS Wavefront sensor

WPU Wavefront processing unit

xvi



List of publications by the

candidate

Peer reviewed

• Barr, D., Basden, A., Dipper, N., & Schwartz, N. (2015). Reduc-

ing adaptive optics latency using Xeon Phi many-core processors.

Monthly Notices of the Royal Astronomical Society, 453(3), 3222-

3233.

Non-peer reviewed

• Barr, D., Basden, A., Dipper, N., Schwartz, N., Vick, A., &

Schnetler, H. (2014, August). Evaluation of the Xeon phi pro-

cessor as a technology for the acceleration of real-time control in

high-order adaptive optics systems. In SPIE Astronomical Tele-

scopes+ Instrumentation (pp. 91484B-91484B). International So-

ciety for Optics and Photonics.

• Barr, D., Basden, A., Dipper, N., & Schwartz, N. (2015) Reducing

adaptive optics latency using many-core processors. In Adaptive

Optics for Extremely Large Telescopes 4 - Conference Proceedings,

volume 1, 2015

• Barr, D., Schwartz, N., Vick, A., Coughlan, J., Halsall, R., Bas-

den, A., & Dipper, N. (2016, July). Novel technology for reducing

xvii



wavefront image processing latency. In SPIE Astronomical Tele-

scopes+ Instrumentation (pp. 99094P-99094P). International So-

ciety for Optics and Photonics.

xviii



1



Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Layout and scope of thesis . . . . . . . . . . . . . . . . . . 6

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



1.1 Motivation

Ever since there creation astronomers have been wanting bigger tele-

scopes. Bigger telescopes give two main advantages over their smaller

counterparts: increased light gathering power and resolution. The

larger the telescope the more light can be collected, allowing fainter

objects to be imaged (the area of the light-gathering surface grows pro-

portionally to the diameter squared). In addition, the larger diameter

of the telescope the better the resolution (i.e. the ability to distinguish

nearby points into their components). The resolution of an optical sys-

tem is inversely proportional to the diameter of the aperture, in the case

of the modern reflecting telescope the diameter of the primary mirror.

However, at some point the limiting factor on observations is not

just the size of the telescope but also the medium through which the

observations take place. Astronomical observations from the ground

are heavily impacted by the Earth’s atmosphere. The turbulence in the

atmosphere results in the characteristic ’twinkling’ stars that are visible

to even the naked eye. This turbulence is produced by local index of re-

fraction variations in the atmosphere. These refractive index variations

lead to distortions to the incoming wavefront. A flat wavefront arriving

at the Earth’s atmosphere becomes distorted as it propagates through

it. By the time it reaches the ground based telescopes the wavefront will

be distorted, leading to poor image quality. The net effect is a reduction

of achievable resolution. Adaptive optics (AO) systems[1] designed to

reduce this effect are now in use on most major optical observatory.

Now, over 400 years after the invention of the telescope, the next

generation of large optical telescopes are in the design and construction

phase. These telescopes have been collectively named the Extremely
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Large Telescopes (ELT). Three ELTs are planned with primary mirror

diameters ranging from 24 to 40 metres. To counteract the effects of

the atmosphere as well as optical aberrations caused by imperfection in

the telescope and instruments design and/or manufacture, will require

a state-of-the-art AO system.

An AO system is composed of three main elements namely the wave-

front sensor (WFS), deformable mirror(DM) and the (real-time con-

troller). A WFS, enables the system to measure the incoming wave-

front. A DM, distorts its surface (i.e. creating the inverse shape of

the incoming wavefront) to correct the wavefront. Typically the WFS

is located after the DM (i.e. in close-loop), so that it only measures

the residual errors after correction. Finally, the RTC is used to regu-

larly update the shape of the deformable mirror in order to follow the

ever-changing perturbations caused by the atmosphere.

The update frequency of AO systems is typically between a few hun-

dred hertz to a few thousand kilohertz, dictated by the Greenwood

frequency (see section 2.2.3). In that short time frame, the RTC needs

to process the data coming from the WFS(s) and generate the DM

commands. The real-time aspect comes from the fact that the correc-

tions need to be applied before any significant changes in atmospheric

turbulence. The high computational load (increasing significantly with

telescope diameter) and the very short response time required make it

extremely computationally demanding.

Current AO RTC typically make use of custom hardware, using de-

vices such as digital signal processors (DSP) and field programmable

gate arrays (FPGA). These technologies are able to meet the latency

requirements required for the largest telescopes currently in operation
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(i.e 10 m class telescopes). However, the technological challenges that

the ELTs and the associated instruments bring are considerable. A sim-

ple extrapolation of current systems to the ELTs is not sufficient due

to system complexities and long development times these technologies

bring. In addition, the observational constraints are becoming increas-

ingly stringent and adaptive opticsystems need to be rethought, for

example by allowing for faster development, more scalability, upgrad-

ability and maintainability.

In this thesis we investigate a selection of commercial off-the-shelf

(COTS) computational hardware technologies that can be used for re-

ducing the latency of large AO systems. We focus on many-core tech-

nologies which offer a large number of processing cores, and large mem-

ory banks that allow the acceleration of the computationally intensive

routines that are performed in the AO control loop. In this thesis we in-

vestigate a selection of commercial off-the-shelf (COTS) computational

hardware technologies that can be used for reducing the latency of large

AO systems. We focus on many-core technologies which offer a large

number of processing cores, and large memory banks that allow the ac-

celeration of the computationally intensive routines that are performed

in the AO control loop.

These technologies are highly promising due to the potential of meet-

ing the stringent requirements of ELT AO, with large degrees of free-

dom and high update frequencies, without relying heavily on custom

designed and rapidly obsolescent hardware. This thesis focuses on two

novel hardware solutions: the Mellanox Tile-Gx and the Intel Xeon

Phi. Having not been designed specifically for AO, we investigate these

previously untested technologies in the context of AO RTC.
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1.2 Layout and scope of thesis

The aim of this thesis is to investigate the suitability of COTS compu-

tational hardware for use in AO RTC, with an emphasis on ELT-scale

telescopes. This work has lead to a peer reviewed journal paper[2] and

three conference proceedings[3, 4, 5]. A reminder of the related pub-

lications by the author will be given at the beginning of each relevant

chapter. This thesis consists of 8 chapters and has the following layout.

Chapter 2 introduces atmospheric turbulence and the associated dif-

ficulties of ground based observation. Chapter 3 continues the intro-

ductions and gives a basic overview of AO systems. In particular, this

chapter describes the function of each of the components of the system.

Chapter 4 introduces the general concepts needed for real-time com-

puting and control systems. Software and hardware issues related to

real-time systems are discussed in detail. Chapter 5 covers the specifics

of the real-time computing needed for AO. It gives an in-depth review

of current and planned AO RTC.

The bulk of the novel work undertaken during the EngD studies of

the author begins in chapter 6. Chapter 6 covers the experiments un-

dertaken to characterise the Mellanox Tile-Gx, a many-core processing

card. This card is particularly suited to processing the data streamed

out of the wavefront sensing camera. Chapter 7 contains a discus-

sion of the experiments undertaken to characterise the Intel Xeon Phi,

a many-core processing card designed primarily for high-performance

computing. This card is particularly well suited to perform the wave-

front reconstruction step of the AO control loop due to the many-cores

and large memory bandwidth. We mainly focus on large matrix-vector

multiplications algorithm. Chapter 8 concludes this thesis with a dis-
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cussion on the results presented in the previous chapters, as well as

giving an outlook of possible future research.
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Atmospheric turbulence introduces optical distortions to light as it

propagates through the atmosphere. Atmospheric turbulence is caused

by thermal fluctuations and variations which lead to fluctuations in the

density and therefore variations in the refractive index. In turn, this

leads to poor imaging quality of optical systems observing the night

sky.

In this chapter, we introduce the basic concepts necessary to the

understanding of the rest of the work presented. First, we present a

description of atmospheric turbulence in section 2.1. We move on to

present a statistical description of the atmospheric turbulence in section

2.2. In this section we introduce the major parameters derived through

statistical models of the atmosphere. In section 2.3, we discuss the

effects of atmospheric turbulence on imaging. In section 2.4, we discuss

techniques to mitigate the effect of atmospheric turbulence, and finally

we conclude the chapter in section 2.5.

2.1 Atmospheric turbulence

2.1.1 Observing through the atmosphere in popular culture

The effects of atmospheric turbulence causing optical distortions on

light coming from stars has been known for centuries. These effects

have been captured in academic texts, in popular culture and by artists.

Van Gogh’s 1889 painting ‘Starry Night’, gives a partially accurate

representation of the swirling turbulence. It also features in a childs

nursery rhyme, ‘Twinkle Twinkle Little Star’ by Jane Taylor, a 19th

century poet. The twinkling in the nursery rhyme refers to a process

called scintillation, which causes a point source, such as a distant star
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to twinkle. This effect is more pronounced near the horizon than at

the zenith (the point in the sky directly above an observer) due to the

difference in atmospheric thickness which light needs to travel through.

In the world of astronomy, Sir Isaac Newton in 1704[1] wrote about the

problem of atmospheric turbulence in Opticks.

“If the Theory of making Telescopes could be at length be

fully brought into practice, yet there would be certain Bounds

beyond which Telescopes could not preform. For the Air which

we look upon the Stars, is in perpetual Tremor.”

These optical distortions cause a problem for ground based tele-

scopes, reducing the achievable resolution of the images produced. The

best possible images are limited by diffraction, hence the term diffrac-

tion limited images. The achievable resolution can be calculated by the

Rayleigh criterion (see equation (2.7)), which suggests the larger the

telescopes primary mirror the higher the resolution.

Atmospheric turbulence introduces aberration and further degrades

the quality of the produced images. The term seeing limited is then

used when the resolution is limited by atmospheric turbulence (and

not diffraction). This means that without any correction we are un-

able to recover the ultimate resolution of the telescope. For example

in good observation conditions, seeing limited images from a 40 m tele-

scope, without adaptive optics (AO), will have the same resolution as

a 10 to 20 cm telescope. Though the large telescope will still benefit

from the much larger light gathering capabilities.
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2.1.2 Description of turbulence

The atmosphere is not a static system. Movements of the air mass in the

atmospheric volume create turbulent eddies. Slight temperature varia-

tions within the atmosphere lead to changes in densities, which in turn

cause the random mixing of air with local variations in the index of re-

fraction. The index variations along the optical path shifts rays relative

to the neighbouring rays. This leads to the gradual, time-dependent de-

formation of the wavefront. A typical method for quantifying the flow

patterns of a fluid is by using the Reynolds number[2]. The Reynolds

number (Re) is given by equation (2.1), where V is the velocity of the

fluid, L is the scale length of the eddies and v is the kinematic viscosity.

The typical scale length of the atmosphere is metres to hundreds of me-

tres, the viscosity is of the order ≈ 1.5×10−5 m2s−1 and if we assume a

velocity of a few metres per second we can estimate a Reynolds number

of Re & 106. For Reynolds numbers of this magnitude, turbulence is

almost always present.

Re = V
L

v
(2.1)

When a Reynolds number is significantly large (Re & 4000), the

turbulence will break down. The larger eddies will break down into

smaller structures. Eddies break down into smaller and smaller eddies

until energy is dissipated at scale lengths `0. This is known as the

Kolmogorov turbulence cascade. The atmosphere will show turbulence

with scales varying between `0 the inner scale and L0 the outer scale.

The inner scale length is typically of the order of a few millimetres while

the outer scale length is typically between 10 and 100 metres[3, 4, 5].
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2.2 Statistical characterisation of atmospheric tur-

bulence

2.2.1 Index of refraction fluctuations

Due to the stochastic nature of atmospheric turbulence, a statistical

approach for describing the turbulence is necessary. A convenient way

to describe the spatial structure of a random process is by using the

structure function. For a given variable x, measured at points r1 and

r2 in space where < . > is the statistical average, a structure function

can be defined. The structure function Dx(r1, r2) is given by equation

(2.2).

Dx(r1, r2) =
〈
|x(r1)− x(r2)|2

〉
(2.2)

The temperature fluctuations cause small variations in the refrac-

tive index of air. The structure function that describes temperature

and refractive index variations in the atmosphere follows the same law.

Assuming that ∆n is locally stationary, the structure function will only

depend on the distance ∆r between the points. The structure function

will follow the Obukhov law[6],

DT (∆r, h) = C2
T (h)∆r 2

3 (2.3)

Dn(∆r, h) = C2
n(h)∆r 2

3 (2.4)

Where C2
n(h) is the structure constant of the refraction index and is

expressed in m− 2
3 . It characterises statistically the turbulence strength

at altitude h. The structure function of the refractive index is shown

in equation (2.4) and shows that these variations are described by the
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Figure 2.1: Fractional C2
n profile at Paranal in 2007 collected using SCIDAR in black

compared to models[7].

C2
n profile. The C2

n values are related to the temperature T , the tem-

perature structure function C2
T and atmospheric pressure P , as seen in

equation (2.5).

C2
n = (8.0× 10−5 P

T 2 )2C2
T (2.5)

The C2
n profile gives the turbulence strength at the different altitudes.

The atmospheric turbulence is not uniform and is stratified horizontally

in layers. Figure 2.1 shows a typical C2
n profile, taken at Paranal, the

site of the Very Large Telescopes (VLT), using a SCIDAR. The X axis

represents the altitude of the turbulence layer and the Y axis shows the

fraction of the C2
n. Here we see that most of the turbulence is located

in the lower altitudes of the atmosphere.
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2.2.2 Impact of seeing: the Fried parameter

An important parameter used to characterise atmospheric turbulence

is the Fried parameter (r0)[8].

r0 = [0.423(2π
λ

)2 1
cos γ

∫ ∞
0
C2
n(h)dh]− 3

5 (2.6)

Where C2
n is the structure constant of the index of refraction, λ the

imaging wavelength, h the altitude and γ the zenith angle.

The Fried parameter gives information on the integrated turbulence

strength along the line of sight. It is defined as the maximal aperture

over which turbulence will not affect the image quality and it is possible

to obtain a diffraction limited image. Telescopes larger than r0 will be

limited by turbulence (i.e seeing limited). It can also be seen as the

size of a circular aperture over which the root mean square of the phase

distortions is approximately equal to 1 rad.

The larger the value of r0, the ‘better’ the seeing conditions. It

is generally defined for a wavelength of 500 nm and typically ranges

between 10 to 30 cm in good conditions. Since r0 is proportional to λ 6
5 ,

imaging at longer wavelengths is easier.

When imaging an object with an aberration free system, it is possible

to obtain diffraction limited images. The angular resolution θ achievable

for a telescope with a primary mirror of diameter D at wavelength λ,

can be calculated from the Rayleigh criterion given in equation (2.7).

θ ≈ 1.22 λ
D

(2.7)

In the presence of atmospheric turbulence, the maximum resolution

that can be reached is reduced. The angular resolution achievable for
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a seeing limited system is given in equation (2.8).

d ≈ 0.98 λ
r0

(2.8)

Generally, D >> r0 thus implying that the spatial resolution is lim-

ited by the seeing rather than diffraction. To get the best scientific

result from large ground based telescopes, a form of image correction

will need to be applied, typically through AO.

2.2.3 Temporal properties of turbulence

So far in this chapter we have discussed how the spatial properties of

atmospheric turbulence affect the incoming light. We have defined a

parameter r0 that characterises how the images are affected by tur-

bulence. As we have defined these terms, we have discussed that the

atmosphere is a fluid that is in constant motion.

These temporal properties are important considerations for any AO

system, as it is required to make the desired corrections before the at-

mosphere causes a change in the observed aberrations. The frequency

bandwidth of the AO control system that is required to minimise the

temporal error is referred to as the Greenwood frequency[9]. The Green-

wood frequency is derived from the atmosphere coherence time τ0.

We define the time constant τ0, characteristic of the temporal fluctu-

ations of the wavefront, over which the temporal error σ2
temporal is lower

than 1 rad2 by:

τ0 = 0.314r0

v
, (2.9)

where v is the average wind speed weighted by the C2
n(h) profile. The
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Greenwood frequency is defined as FG = 1
τ0

and is equal to:

FG = 3.185 v
r0
. (2.10)

The mean square phase error σ2
temporal associated with a pure delay

τ in which the phase is measured at time t and corrected at time t+ τ

is then equal to:

σ2
temporal = ( τ

τ0
)5/3 (2.11)

The Greenwood frequency is a chromatic parameter. It decreases

as λ−6/5, making AO easier at longer wavelengths. Typical values of

τ0 for λ = 500nm are between 1 and 10 ms. In practice, the required

frequency bandwidth also depends on the number of controlled param-

eters (low-order aberrations tend to evolve more slowly than high-order

aberrations), the desired final performance and the overall delay of the

control loop.

2.3 Imaging through turbulence

2.3.1 Performance of optical systems

For a perfect optical system, the image is limited by diffraction. For a

circular aperture without any obscuration, the image of a point source

(or point spread function (PSF)) is an Airy pattern. Several optical

performance criteria can be used (typically using the PSF), such as

encircled energy (EE) and Strehl ratio.

EE is a measure of the concentration energy in an optical image. A

typical measurement is of the radius of a PSF that contains a certain

percentage (typically 50%-80%) of the total energy. For a point source
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(e.g., a distant star) the larger this radius the more spread out the light

and the lower the image quality.

The Strehl ratio is a standard optical quality metric in astronomy

and commonly used to describe the performance of AO systems. The

Strehl ratio is described in equation (2.12), and is the ratio of the central

peak of the PSF (corrected or not by AO) to a theoretical image limited

by diffraction (i.e. the Airy pattern).

Strehl Ratio (SR) ≡ PSF (0)
Airy(0) (2.12)

For small aberrations following Maréchal, this can be expressed as

equation (2.13),

SR = e−σ
2
res (2.13)

where σ2
res is the residual phase variance expressed in rad2.

Figure 2.2 gives a visual representation of the appearance of a series

of Strehl ratios.

(a) SR = 100% (b) SR = 80% (c) SR = 50% (d) SR = 20%

Figure 2.2: Typical image quality for a selection of Strehl ratios. copyright: Noah

Schwartz

2.3.2 Zernike poylnomials

The Zernike polynomials are a series of polynomials that are orthogo-

nal on a unit circle. They give a convenient way to characterise optical

17



aberrations as the low-order modes represent the classical optical aber-

ration terms (i.e. focus, astigmatism, coma...). These polynomials can

be used to describe the strength of aberrations created by atmospheric

turbulence.

The Zernike polynomials were described by Richard Noll in his sem-

inal paper in 1976[10]. The Zernike polynomials are defined by[11],

Zevenj =
√
n+ 1Rm

n (r)
√

2 cosmθ

Zoddj =
√
n+ 1Rm

n (r)
√

2 sinmθ

 m 6= 0

Zj =
√
n+ 1R0

n(r), m = 0

(2.14)

Where Rm
n is the radial polynomial defined in equation (2.15). m

and n are positive integers, and r is the radial distance 0 ≤ r ≥ 1 as

this is defined on a unit circle aperture.

Rm
n (r) =

n−m
2∑

s=0

(−1s)(n− s)!
s![n+m

2 − s]![
n−m

2 − s]!
rn−2s (2.15)

From these equations, the Zernike polynomials can quantify any ar-

bitrary wavefront aberrations over a circular aperture. To calculate the

wavefront, we can add the contribution from an infinite series Zernike

polynomials as in equation (2.16).

ϕ(r, θ) =
∑
j

ajZj(r, θ) (2.16)

Where aj are the coefficients that define the contribution (or strength)

of that Zernike mode to the overall phase. Figure 2.3 shows a represen-

tation of the first twenty one Zernike polynomials.
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Figure 2.3: Zernike polynomials represented on a unit circle, image copyright Amir

Tahmasbi[12]

Following Noll[10], the remaining root mean square (RMS) phase

error after J Zernike modes have been perfectly corrected can be given

by:

σ2
J ≈ 0.29J−

√
3

2

(
D

r0

) 5
3

(2.17)

Correcting for tip and tilt only, enables the system to remove approx-

imately 85 % of the wavefront variance due to atmospheric turbulence[13].

Because of the large variation in contributions, the lower order Zernike
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are sometimes corrected using a dedicated tip-tilt mirror.

Zernikes are not the only phase decomposition basis that can be

used to describe the wavefront. Karhunen-Loève modes are also a good

example[14, 15], but don’t have an analytical expression for atmospheric

turbulence. Other bases such as the deformable mirror (DM) modes of

an AO system can also be used for example.

2.4 Mitigating the impact of atmospheric turbu-

lence

There are several different imaging techniques designed to compensate

for the atmospheric turbulence, and can provide better image quality

than seeing-limited imaging.

2.4.1 Speckle imaging

A first solution to overcome the problem of the turbulent atmosphere

is speckle imaging[8]. This is where the final image is created by us-

ing multiple short exposures. During a short exposure, it can be as-

sumed that the atmosphere is static and distorting effects are limited

to the high-order aberrations. The final image is built by taking lots

of short exposure images and stacking them according to the brightest

spot or centroid (i.e. shift and add method). The major advantage of

this method is to partially mitigate tip-tilt aberrations. However, this

method is still very limited in its signal-to-noise improvement in the

final image.
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2.4.2 Lucky imaging

Proposed by David Fried in 1978[16] lucky imaging is similar to speckle

imaging. It uses a series of short-exposure images that are co-added

using a ’shift-and-add’ method. Where this method differs from the

previous one is that not all images are used, and only the best images

are added together. The atmosphere is not constant from one frame

to another, and for some frames the atmosphere causes less distortions

than during others. Typically, 1 % of frame will be used in the final

images[17], depending on the atmospheric turbulence and resolutions

required.

Technology evolution (cheap video and web cameras) has allowed

many amateur astronomers to use this method to capture images at

much higher resolution than ever before and on a modest budget.

2.4.3 Speckle interferometry

Invented by Antoine Labeyrie[18], speckle interferometry is similar to

speckle imaging. In speckle interferometry, large numbers of short ex-

posure images are taken. The Fourier transform of each image is then

taken to obtain the diffraction pattern. The square modulus of all the

diffraction patterns are added together, an average of the entire diffrac-

tion pattern is taken, then an inverse Fourier transform is applied. The

recovered result is an autocorrelation of a diffraction limited image of

the object.

2.4.4 Deconvolution by wavefront analysis

Deconvolution is a post processing technique for image reconstruction

[19]. A series of short exposure images are taken and simultaneous,
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wavefront data recorded. From the measured phase, an optical transfer

function can be calculated. This optical transfer function is deconvolved

with the distorted image to try and reconstruct a non-distorted image.

2.5 Conclusion

The atmosphere is in perpetual movement. This turbulence creates

index of refraction variations that in turn introduce optical distortions

to the light traveling through the atmosphere. In this chapter, some

of the basic atmospheric turbulence properties were introduced. We

have shown how it impacts the formation of images for ground based

astronomy. We also briefly described some mitigation techniques.

None of the presented methods so far enable a real-time compensa-

tion of atmospheric turbulence. This means that they will be unable

to fully retrieve the full diffraction-limited capability of the telescope.

The final image will therefore have a limited signal-to-noise ratio. AO,

which is a real-time technique to mitigate time-varying aberrations, is

presented in the next chapter.
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In this section we describe, from a theoretical point of view, the main

elements constitutive and fundamental limitations of Adaptive Optics

(AO). The objective of this chapter is to introduce the necessary for-

malism in the case of classical AO, introduce its limitations and briefly

present some mitigation and solutions with techniques such as wide-

field AO. Our goal is not to explain the detailed operation performed

by the AO system, but to give a basic understanding of the process

at play, with a focus on the temporal and fitting errors. These error

terms and expanding the current AO systems to the extremely large

telescopes (ELTs) are the primary motivation driving the research in

this thesis.

3.1 Historical aspects of adaptive optics

AO was first proposed in 1953 by Horace Babcock to compensate for

atmospheric turbulence in real-time[1]. At the time the idea could not

be realised (or implemented) due to a lack of suitable technologies and

therefore remained a concept. AO was first developed by the American

defence industry in the 1970s to image satellites from the ground. The

Defense Advancement Research Projects Agency (DARPA) awarded

one year contracts to three companies (Itek, Perkin Elmer and Hughes

Research Centre). The competition carried on for another few years

and eventually led to the development of Rayleigh guide stars[2].

It was not until decades later in 1990, that work began on developing

the first AO system for astronomy. The first major application of AO

within astronomy was a project called COME-ON[3]. It was installed

at the European Southern Observatory 3.6 m telescope, at the time

one of the largest telescopes in the world. The results of the project
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were promising, achieving Strehl ratios of up to 0.3 at 2.2 µm under

average seeing conditions (in the order of 0.8 arcseconds)[4]. Due to the

promising nature of the results, COME-ON was upgraded COME-ON+

in 1992. It then entered its third stage called Adaptive Optics, Near

Infrared System (ADONIS).

The ADONIS AO system was composed of a 32 sub-aperture (on

a 7×7 grid) Shack-Hartmann wavefront camera (using a 64×64 pixel

CCD detector) combined with a deformable mirror (DM) with 52 actuat-

ors[5]. A dedicated real-time controller (RTC) was developed for the

project, an architecture relying on VME motherboards and dedicated

DSP C40 modules. The RTC was split into 2 modules, a wavefront

computer dedicated to the wavefront sensor data reduction (windowing,

flat-fielding and thresholding) and a command computer (determining

the wavefront slopes in x and y and computing the mirror commands).

The master computer (a Linux workstation) was interfaced to each of

the AO system elements by means of Ethernet or RS-232 links. Overall

the maximal practical DM command rate was 100 Hz.

Since the COME-ON project, AO has become an important addition

to most large ground based telescopes.

3.2 Principle of AO

The aim of astronomical AO systems is to compensate for distortions

created by atmospheric turbulence. AO is an opto-mechanical system,

heavily reliant on computations that corrects in real-time the incoming

turbulent wavefront that has been intercepted by the telescope. The

received wavefront distortions are measured using a wavefront sensor .

From these WFS measurements, a deformable mirror is used to obtain
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a flattened wavefront that enables the instrument to observe (in the

imaging path) a corrected image near the theoretical limit of the tele-

scope imposed by diffraction. In order to achieve this, the AO systems

rely on the three key elements:

• A wavefront sensor that measures the incoming wavefronts.

• A wavefront corrector (or deformable mirror, DM) that ensures

the correction by adding a deformation to the incoming wavefront

that is inverse to the one measured by the WFS.

• A real-time controller that processes the WFS measurements in

real-time in order to control the DM.

A simplified version of a closed-loop AO system is shown in figure

3.1. The distorted light enters the telescope and is reflected off the

deformable mirror (in a closed-loop configuration). The light is split,

with the majority of the light going to the science camera or instrument,

and a small amount of light going to a wavefront camera.
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Figure 3.1: Simplified diagram of a closed-loop adaptive optics system.

3.3 Wavefront sensing

To be able to correct the aberrations caused by the atmospheric tur-

bulence, the system has to be able to sense these aberrations present

in the wavefront. This is done with a device called a wavefront sensor

(WFS). Simply put, the WFS can be seen as the ‘eyes’ of an AO system:

the WFS senses the distortions of the wavefront and sends this infor-

mation to the control computer for the deformable mirror commands to

be calculated. There are many different types of WFSs. The two WFSs

that are mainly used in astronomical AO are the Shack-Hartmann and

the Pyramid. Other types of WFSs exist (such as curvature sensors),

however these will not be covered in this thesis.
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3.3.1 Shack-Hartmann Wavefront Sensors

The Shack-Hartmann Wavefront Sensor (SH-WFS) was created in the

1960s by the US military when trying to image satellites[6]. The SH-

WFS is an improvement of the Hartmann test; which was used to com-

pute the aberrations present in the incoming light and to test optical

systems. The Hartmann test did this by placing in the light path a

metal disk with a regular grid of holes. If no aberrations were present

in the system, the spots created by the Hartmann screen form a square

array (since the screen itself is a square array of holes). However, if

aberrations are present, they can be determined by measuring the spots

at a series of locations. This worked well when measuring large low-

order aberrations but performed poorly for small amplitude, high-order

aberrations. As atmospheric turbulence has both large low-order aber-

rations as well as low amplitude high-order aberrations, the Hartmann

test is not ideal for AO. To create the Shack-Hartmann WFS, the holes

on the Hartmann test were replaced with a lenslet array. This gives bet-

ter coverage, and therefore there are fewer wasted photons and more

sensitivity to higher order aberrations.

The SH-WFS is a 2D lenslet array that focuses incoming light onto

a detector, as shown in figure 3.2. Each lenslet focuses the incoming

light onto a small area of pixels called a sub-aperture. If the incoming

wavefront is flat and parallel to a lenslet, the light will be focused at

the centre of that sub-aperture. If the wavefront is not locally parallel

to the lenslet, the light will not focus at the centre of that sub-aperture.

The SH-WFS is the most common WFS used in AO systems. It has a

simple premise and is generally simple to operate.
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Figure 3.2: Schematic diagram of a Shack-Hartmann wavefront sensor. Copyright:

CTIO

From the displacement of the spot relative to the centre of that sub-

aperture, the local slope of the wavefront can be calculated in both the

X and Y direction. In practice, and in order to calibrate precisely the

focus positions of the lenslet array, we measure the actual position of

the spots on the detector using a reference source in the instrument

(see top part of figure 3.2)[7]. The recorded wavefront will then give

you references, that are called the reference slopes. They can also con-

tain an additional offset to take into account, for example, differential

errors arising between the sensing and imaging paths (i.e. non-common

path aberrations). The location of the spots are typically evaluated by

calculating the centre of gravity of the focal spot falling on the sub-

apertures.

The SH-WFS measures the mean gradient of the phase5φ(x, y) over
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each sub-aperture and can be defined as:

5φ ≡


∂
∂xφ

∂
∂yφ

 (3.1)

The local gradients displace the centre of the image at the focus of

the sub-apertures according to:

∆x
f0
≡ λ

2πΩp

∫ ∫
Ωp

∂φ(x,y)
∂x ∂x∂y

∆y
f0
≡ λ

2πΩp

∫ ∫
Ωp

∂φ(x,y)
∂y ∂x∂y

(3.2)

where f0 is the lenslet focal length and Ω is the surface area. Equa-

tion (3.1) can be written in matrix form: s = DΦ + n, where s is the

measurement vector of the local gradients, φ the phase, D the matrix

giving the relationship between the gradients of a sub-aperture as a

function of the phase, and n is the measurement noise.

One of the important limitations of the SH-WFS is that it measures

the local slope of the incoming wavefront and is therefore unable to

measure piston1. If the incoming light has residual piston, the spots

will remain in the same location. For this reason, waffle mode2, where

the incoming wavefront is composed of a checkerboard pattern matching

the lenslet geometry, cannot be measured by the Shack-Hartmann WFS.

3.3.2 Pyramid Wavefront Sensors

Roberto Ragazzoni first suggested in 1995, the pyramid wavefront sen-

sor (PYR-WFS) as an alternative to the SH-WFS[8]. The PYR-WFS

is a modified version of the Foucault knife-edge test[9], which is still

used by many amateur telescope makers. The incoming light is focused
1piston refers to the first Zernike mode, which is a flat wavefront but moved in phase.
2Waffle is a form of wavefront where each lenslet sees a flat wavefront, although each are out of

phase with one another.
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on the apex of a square based pyramid, thus creating 4 pupil images

onto a detector. A schematic diagram of a PYR-WFS is presented in

figure 3.3. The phase derivative in x and y are related to the intensity

difference on each of the 4 quadrants according to equation (3.3). A

small modulation of the PSF position hitting the apex of the pyramid

can be added, generally introduced by a fast tip-tilt mirror, in order to

increase the linearity range of the measurement.

This type of WFS will not be studied in detail in this thesis. How-

ever, algorithmic complexity for the PYR-WFS and SH-WFS are very

similar and results obtained with a SH-WFS can be generalised to the

PYR-WFS.

Figure 3.3: Schematic diagram of a Pyramid wavefront sensor. Copyright: Véniraud

et al 2004[10]
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Dx = I1(x,y)−I2(x,y)−I3(x,y)+I4(x,y)
I1(x,y)+I2(x,y)+I3(x,y)+I4(x,y)

Dy = I1(x,y)+I2(x,y)−I3(x,y)−I4(x,y)
I1(x,y)+I2(x,y)+I3(x,y)+I4(x,y)

(3.3)

The PYR-WFS have shown higher sensitivity than SH-WFS in closed-

loop systems[11]. This allows for dimmer guide stars to be used than

by the SH-WFS. Many first light instruments of the ELTs are planning

to use the pyramid WFS as the baseline[12].

3.3.3 Guide Stars

In order to measure the incoming wavefront, a small amount of light is

picked off and directed into the WFS; the rest of the light goes to the

science camera or instrument (if sufficiently bright, the science object

itself can be used). The reference used to measure the wavefront is

called a guide star. This is a star in close proximity to the object

of interest, and is sufficiently bright for its wavefront to be measured

with a high enough signal-to-noise ratio. There are two types of guide

stars used, the Natural Guide Stars (NGS) and artificially created Laser

Guide Stars (LGS).

NGS have to be close enough to the science target being observed

so that the light traveling can be assumed to have been affected by the

same atmospheric turbulence (anisplanatism effect). Unfortunately, the

number of bright stars in the sky is quite low (typically in the area of

1% of the sky).

3.3.3.1 Laser Guide Stars

Artificial laser guide stars can be used to increase the sky coverage.

There are two types of LGS: Rayleigh LGS and Sodium LGS.

Rayleigh scattering LGSs are the simplest to understand and cheaper
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to produce. These guide stars are created by the scattering of light from

particles smaller than the wavelength of the laser. When the density

of particles drops below a certain level, Rayleigh scattering guide stars

become too faint to be used. This altitude is typically around 8-12km

for certain wavelengths, but can go up to 30km[13].

On the other hand Sodium LGS can go up to 90 km[14] and use a

laser at a wavelength of 589.2 nm. The sodium lasers are used to excite

sodium atoms within the sodium layer. The sodium atoms absorb this

energy and then re-emit light as the atom falls back to its original energy

state[15].

The sodium laser guide star is much higher in the atmosphere than

the Rayleigh laser guide star. This higher altitude means that the

returning light is effected by more atmospheric turbulence, and that

the WFS can measure more of the turbulence volume. Sodium LGSs

are the baseline for all planned ELT AO systems.

3.3.3.2 Limitations of Laser Guide Stars

LGS are becoming common place on most telescopes. They are used

to increase the sky coverage but come with a number of limitations,

namely:

• Tip-tilt uncertainty,

• Cone effect,

• Sodium layer fluctuations,

• Spot elongation.

The light of the LGS goes through the atmosphere twice. Once on

its way up to the sodium layer and once on its way back. Because
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of this double path problem, any tip-tilt error will not be measurable

(i.e. tip-tilt uncertainty). Typically, an NGS is used to measure low-

order modes and in particular tip-tilt. This can be done using few

sub-apertures and therefore on dimer NGSs[16].

The second major limitation of the laser guide star is the cone ef-

fect. The star laser has a finite altitude (90 km), and the wave that

is received from the laser source is a spherical wave. Therefore, the

phase perturbations are expanded from the initial perturbations (this

is especially true for the high altitude turbulence). By measuring these

expanded aberrations, we add an additional error. The larger the tele-

scope diameter, the larger the cone effect. In addition, the cone of light

coming from the LGS will only probe a cone, not the entire column of

turbulence that is seen by the science target[17]. This is especially true

for the higher altitudes and is shown in figure 3.4.

Figure 3.4: Illustration of the cone effect of a laser guide star.

Finally, the third additional error when using lasers results from the

3 dimensional structure of the source. The sodium layer is not static,

like the rest of the atmosphere it is constantly changing. Fluctuations in

the altitude and structure of the sodium layer can introduce focus errors

(but other errors as well) in the AO system. The thickness (approxi-
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mately 10 km) of the Sodium layer leads to the LGS being an extended

source (i.e. spot elongation). Both these factors contribute to larger

wavefront errors degrading the performance of the AO system[18].

3.4 Wavefront correction

To correct the wavefront in the AO system, a corrective element called

a deformable mirror is used. In many AO systems the DM (or DMs)

can be used in conjunction with a number of steerable mirrors. The

lowest order optical modes (i.e. tip and tilt, see section 2.3.2) require

more stroke than DMs typically provide. For this reason, a separate fast

steerable tip/tilt mirror can be used to remove these low order modes,

making it necessary to separate the correction onto multiple distinct

devices. Simply put, the DM(s) can be seen as the ‘hands’ of the AO

system.

3.4.1 Deformable mirror

The DM, by changing the shape of its surface, corrects the wavefront

aberrations by creating phase changes in the incoming wavefront (i.e.

by allowing different parts of the wavefront to travel different distances).

A simplified version of how the DM modifies the incoming wavefront is

shown in figure 3.5.

It is composed of a reflective surface that is controlled by actuators

(or motors) located at the back of this surface. There is a wide range

of different technologies suitable for the construction of the DMs. A

detailed description of these competing technologies can be found in[19].

The DM, regardless of the manufacturing technology, is characterised

by its spatial and temporal properties.
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Neglecting temporal dynamics (i.e. infinitely small response time

of the DM), we then define a linear relationship between the applied

voltage u to the mirror and its deformation by: φcor = Nu, where N is a

matrix containing the DM influence functions and is called the influence

matrix, and φcor is the deformation of the correction phase generated

by the DM.

Figure 3.5: Illustration of how the DM modifies the incoming wavefront.

3.4.2 Fitting Error

Due to the technological challenges in developing DMs, the DMs are not

perfect and cause some error in the system, called the fitting error. The

fitting error is the error caused by the inability of the DM to perfectly

replicate the incoming wavefront. One of the important considerations

for the fitting error is the number of actuators, generally the higher the

number of actuators the smaller the fitting error. This allows the DM to

better match the wavefront and especially higher frequency aberrations.
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The DM fitting error can be written as:

σ2
fitting = aF

(
ds
r0

) 5
3

(3.4)

Where, ds is the inter-actuator distance, r0 the Fried parameter and

aF the fitting error coefficient. This coefficient, in particular, depends

on the actuator geometry and whether the DM mirror surface is a con-

tinuous face-sheet or made of separate segments. For example, aF is

equal to 0.232 for a square geometry and 0.200 for a hexagonal geometry

for continuous face-sheets[20].

Another important consideration when selecting the DM is the stroke

and inter-stroke of the actuators. The stroke refers to the range of

motion each actuator has. Larger strokes allow larger amplitudes to be

corrected. The inter-stroke refers to the maximal distance achievable

between two neighbouring actuators (i.e. one pulling, one pushing).

It is also important to consider the coupling factor between actuators

which shows how much the movement of one actuator will displace its

neighbors (i.e. cross-coupling).

3.5 Real-time control

The RTC must collect the measurements (pixel data) from various NGS

or LGS WFS(s) and drive the DM(s). Simply put, the RTC can be seen

as the ‘brain’ of the AO system.

In simplified terms, the RTC hard real-time pipeline can be expressed

in two main steps. The first of these steps is the wavefront processing

stage, where the wavefront slope vector is extracted from the incoming

pixel stream coming from the WFS(s). The second step is referred

to as the wavefront reconstruction or control calculation, where the
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DM commands are calculated using the slope vector. Finally, the DM

commands are sent to the DM control electronics to be applied.

A selection of algorithms that can be used to perform either the

wavefront processing and wavefront reconstruction can be found in sec-

tion 5.2 and 5.3 respectively.

The control of an AO system is realised in a dynamic way. It must

be realised quickly enough to correct atmospheric turbulence in real-

time, but it also depends on the temporal characteristics of each of

its components. All AO systems can therefore be characterised by its

timing diagram (or chronogram). These can prove to be quite complex

depending on the architecture of the system and its components. More

details on the AO chronogram are presented in section 5.1.2.

Apart from the hard real-time operations, the RTC needs to do a

number of additional tasks. These tasks typically include, but are not

limited to, supervising operations such as atmospheric turbulence mon-

itoring and sodium layer profiles, handling configurations, calibrations,

loop optimisations required by the AO system, and recording of teleme-

try and diagnostic data. The particularly challenging aspects in the era

of the ELTs are the hard real-time functions, and will therefore be the

main focus of this work.

3.5.1 Temporal error

The AO control loop introduces a delay in the correction that is added to

the delay already introduced by the WFS measurement. The temporal

error will increase as the latency of the AO system increases.

Minimising the temporal error drives the systems update frequency:

the faster the update frequency, the lower the temporal error. The
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mean square phase error σ2
temporal associated with a pure delay τ (phase

is measured at time t and correction applied at time t+ τ) is given by

equation (3.5). τ0 is the Greenwood time delay and 〈v〉 is the mean

transverse turbulence velocity (weighted by the strength of the turbu-

lence layer). The required control frequency of the system is called the

Greenwood frequency. Technologies for minimising the time taken to

perform the required calculations, and therefore minimising the tem-

poral error term, is the focus of the research presented in this thesis.

σ2
temporal(τ) =

(
τ

τ0

) 5
3

=
 τ

0.314r0
v

 5
3

(3.5)

3.6 Intrinsic errors of an AO system

When designing systems such as AO systems, the aim is to reduce the

errors in the flattened wavefront. Even so, errors will still be present

due to imperfection in manufacturing, technological limitations or cost.

There are many areas in the AO systems that can introduce errors, here

we highlight below four of the main sources of these errors:

• Errors related to the measurement: σ2
noise and σ2

aliasing. The WFS

realises a spatially sampled measurement of the phase (defined by

the number of lenslets). The high spatial frequencies of the turbu-

lence are poorly sampled and will be aliased: the high frequencies

fold onto the lower frequencies. By the nature of the measurement

itself, detector and photon noise will be present.

• Errors related to the correction: the fitting error, σ2
fitting (see sec-

tion 3.4.2).

• Errors related to the control loop: the temporal error, σ2
temporal (see
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section 3.5.1).

• Errors related to calibrations: σ2
calib. This take into account the

error linked to the measurement of the interaction matrix, of the

reference slopes and the use of models in the control law.

This is not an exhaustive list as we have only emphasised some of

the main error terms. While we present each error term as being in-

dependent, in a real AO system many may be in fact correlated. In

addition, many other errors can play a non-negligible role on the final

performance depending on the system characteristics and may need to

be considered during a comprehensive AO study. For a more complete

list of error terms see for example[21].

The temporal error σ2
temporal and the fitting error σ2

fitting have been

introduced in detail in sections 3.5.1 and 3.4.2. Turbulence induced

aberrations are also importance and include scintillation and anisopla-

natism. The total residual error is the quadratic sum of these errors:

σ2
residual = σ2

noise + σ2
fitting + σ2

temporal + ... (3.6)

Reducing these errors will increase the optical performance and raise

the Strehl Ratio achievable with the AO system.

3.7 Adaptive optics concepts

3.7.1 Closed-loop and open-loop AO

A closed-loop architecture is the preferred layout for many AO instru-

ments. As shown in the block diagram (Figure 3.6), the wavefront is

measured after the corrections have been applied. The WFS measures
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a residual wavefront (φres), after correction by the mirror, according to:

φres = φturb − φcorr.

This architecture has the advantage of simplifying WFS (wavefronts

are only measured with small amplitudes) and enabling the WFS to

‘see’ the DM.

Figure 3.6: Closed-loop adaptive optics system

An alternative architecture to a closed-loop systems is a open-loop

configuration. Open-loop refers to systems where the WFS is located

before the DM and see the full uncorrected atmospheric wavefront. This

is shown in figure 3.7. This configuration can be limited by the dynamic

range of the WFS (measuring φturb directly instead of φres).

Figure 3.7: Open-loop adaptive optics system.

In open-loop systems, the driven DM shape needs to be accurately
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known. In closed loop the WFS images wavefront after the DM and

is trying to correct the residual error. In open loop the WFS image

uncorrected wavefront and drive the DM into position. If the DM shape

that is applied is different from what the AO system is attempted to be

apply there will be errors in the system. This can be problematic with

certain types of DMs such as one using piezoelectric actuators due to

hysteresis[22].

3.7.2 Single conjugate adaptive optics and eXtreme adaptive

optics

The performance of single conjugate AO systems (SCAO) is limited by

a number of factors including the fitting, temporal and anisoplanatic

errors. The latter means that a good correction quality (using a single

WFS and a single DM) is limited to a small field-of-view around the

guide star (the anisplanatic angle). For this reason, SCAO systems can

only be narrow-field.

Extreme Adaptive Optics (XAO) is similar to SCAO but its goal is to

achieve extremely good on-axis correction. Typical applications are, for

example, direct imaging of exoplanets (combined with a coronagraph).

XAO systems not only need to compensate for aberrations inherent to

atmospheric turbulence, but also compensate for aberrations created

by the instrument itself. Better performance is achieve by reducing

the errors of the system, with careful calibration and correction of the

instrument related aberrations. It can also be improved by reducing

the temporal error (σ2
temporal) by increasing the loop update frequency

and by reducing the fitting error (σ2
fitting) by increasing the density

of actuators on the DM. Instruments like SPHERE[23], which has an
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update frequency of 1.2 kHz and uses a DM with 41×41 actuators to

achieve Strehl ratio of up to 95%.

3.7.3 Widefield adaptive optics

The goal of widefield AO systems is to increase both the corrected field

(limited by anisoplanatism) and sky coverage (limited in SCAO by the

NGS magnitude) in order to observe several objects in the field of view

simultaneously. There are several different possible configurations for

widefield AO: Ground Layer AO, Laser Tomography AO, Multi-Object

AO and Multi-Conjugate AO.

3.7.3.1 Ground layer adaptive optics

As stated in section 2.2, the ground layer, being the strongest layer,

contributes the most to wavefront distortions. Ground layer adaptive

optics (GLAO) is a technique that is designed to only correct for distor-

tions created by the turbulent layer which is the closest to the ground.

The DM is generally optically conjugated to the pupil of the telescope,

or at a relatively low altitude above it. An illustration of GLAO is pre-

sented in figure 3.8. In this particular case, the turbulence is analysed

in 3 field directions and uses 1 DM conjugated in the pupil.

Its objective is to ensure a partial (i.e. far from the theoretical max-

imal resolution of the telescope) but uniform correction in a relatively

large field, typically of the order of 2’ to 5’. The guide stars can either

be natural guide stars, artificial laser guide stars or a combination of

both.
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Figure 3.8: Ground layer adaptive optics. Image copyright ESO

3.7.3.2 Laser tomography adaptive optics

Contrary to Multi-Conjugate AO or GLAO, Laser Tomography AO

(LTAO) realises its correction in a small field of view, similar in size

to that of an SCAO system. A multi-directional WFS analysis is per-

formed to achieve a tomographic reconstruction of the turbulence cylin-

der in the direction of interest. The correction is then applied using a

single DM, generally conjugated to the pupil of the telescope and in a

specific direction field. An illustration of LTAO is shown in figure 3.9.
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Figure 3.9: Laser Tomography used to obtain on-axis performance using WFS mea-

surements from LGSs located at a distance from the science target. Image copyright

ESO

In the case presented here, the turbulence is analysed in 2 directions

of the field using laser guide stars. A single DM conjugated to the

ground enables the correction in a specific field direction (here on-axis)

that is different from the WFS analysis directions.

3.7.3.3 Multi-Object adaptive optics

In astronomy, it is sometimes required to have high levels of correction

across very wide fields of view but only for specific locations within

that field. Typical objectives of Multi-Object AO (MOAO) is to ob-

serve multiple galaxies simultaneously. These galaxies are generally not

bright enough to perform wavefront sensing. MOAO is similar to how

LTAO performs a tomographic reconstruction of the atmospheric tur-

bulence. Separate DMs are then used to ensure the correction for each

of the directions of interest. One of the difficulties of such a system is

that the DMs need to operate in open-loop: the WFSs do not see the

applied correction. A diagram of its principles is shown in figure 3.10.
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Figure 3.10: Principle of MOAO using 2 WFSs observing NGS, and 1 on-axis DM

conjugate to the pupil plane. Image copyright ESO

3.7.3.4 Multi-Conjugate adaptive optics

In Multi-Conjugate AO (MCAO), multiple DMs are used that are con-

jugated at different altitudes, each compensating for a different turbu-

lent layer (see anisoplanatism). Multiple WFSs are used, combining

multiple natural guide stars and laser guide stars in order to have a

knowledge of the turbulent volume and its distribution (tomographic

reconstruction). The objective of MCAO is to obtain a correction qual-

ity close to the diffraction limit for a field of the order of 1’ to 2’. The

principle of MCAO is presented in figure 3.11.
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Figure 3.11: Principle of MCAO using 2 DMs (each optically conjugate to a turbulence

layer) and 3 WFSs. Image copyright ESO

3.8 Future telescopes - ELTs

One of the current largest optical ground based telescope is the Gran

Telescopio Canarias located on the Canary Islands. It has a primary

mirror measuring 10.4 m in diameter. This is one of the many 8 to

10 metre telescopes that are in operation. The majority of these tele-

scopes came into operation in the late 1990s or early 2000s. The next

series of planned ground based telescopes are referred to as the ELTs.

Currently three major observatories are proposed: the Thirty Meter

Telescope (TMT), the Giant Magellan Telescope (GMT) and the Eu-

ropean Extremely Large Telescope (E-ELT). All these telescopes will

have a primary mirror comprising of between 24 and 40 m in diameter.

A selection of the current and planned optical ground based tele-

scopes are shown in figure 3.12. The extreme increase in telescope

size with the planned ELTs gives an idea of how these observatories are

pushing technology developments both for construction and operations.
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Figure 3.12: Comparison of modern ground and space optical telescopes. Blue shows

the current telescopes, green the planned and red space telescopes.

Moving from the current telescope sizes to the ELTs poses numerous

challenges regarding the implementation of AO systems. The wavefront

reconstruction and the control of systems with large degrees of freedom

are some of the most important challenges. This is increasingly relevant

as the control frequencies have increased from approximately 100 Hz for

the first systems to typically 500-1000 Hz (and even up to a few thou-

sand hertz). Furthermore, new concepts that build on the traditional

narrow field single conjugate AO, to create large corrected fields of view

are even more complex to implement.

3.9 Conclusion

The aim of an AO system is to reduce the effect of the atmospheric

turbulence in real-time on images captured by ground based telescopes.

We have introduced the major concepts of an AO system and briefly
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mentioned its limitations. We have focused on the temporal and fitting

errors, two of many sources of error in AO systems. As telescopes get

bigger these two errors are the driving force behind the complexity of

AO systems. To reduce the fitting error more actuators are used, which

increases the complexity in the AO RTC. The faster you can apply the

correction the more the temporal error can be minimised. Combining

these effects, future systems will have more actuators and higher loop

frequencies, and will require more computing power than ever before.

The focus of the research presented in this thesis is the real-time

control for AO (an effort to minimise the temporal error). In this chap-

ter, we have briefly introduced the concept of AO real-time control.

In the next chapter (chapter 4), we expand into the area of real-time

computing. This will then lead onto an in-depth investigation into the

AO RTC in chapter 5.
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Real-time computing

Contents
4.1 Classification of real-time computing . . . . . . . . . . . . 57

4.1.1 Hard real-time . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Firm real-time . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Soft real-time . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Computing power and parallel computing . . . . . . . . . 59

4.2.1 Moore’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Parallel computing and Amdahl’s law . . . . . . . . . . . . 61

4.2.3 Measures of performance and complexity . . . . . . . . . . 64

4.3 Programming languages . . . . . . . . . . . . . . . . . . . 67

4.3.1 Parallel API . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Real-time performance and the operating system . . . . . . 75

4.3.3 Operating systems and the scheduler . . . . . . . . . . . . . 76

4.4 Computational Hardware . . . . . . . . . . . . . . . . . . . 78

4.4.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 GPU (with GPU Direct) . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Digital Signal Processors . . . . . . . . . . . . . . . . . . . . 82

4.4.5 Internal Interconnects . . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

56



In this chapter we introduce the main concepts of real-time comput-

ing. Real-time computing is a term used to describe systems that are

guaranteed to provide a response within a specified time. The actual

time constraints will depend on the nature of the system it is trying to

control. For adaptive optics (AO), the atmospheric turbulence imposes

timescales typically of the order of the millisecond or less. Real-time

processing will typically require both parallel computing and fast re-

sponses in a time critical manner. In this chapter, we first describe

some important aspects of real-time and parallel computing (4.1 and

4.2), and in particular on programming languages (4.3) and hardware

(4.4).

4.1 Classification of real-time computing

Real-time systems have to guarantee a response within a specific (gen-

erally tight) time frame. It is commonly assumed that this means that

it has to be a high performance system as well. Although real-time

systems tend to be high performance, this is not always the case. Real-

time systems have to work in a very predictable way, and deliver within

a specified time frame.

As a very simple example, let us consider a chess program. If given

unlimited time, it could calculate all possible moves and choose the best

one1. If the same computer entered a chess tournament, it would simply

be disqualified for running out of time. This means that the program

actually needs to calculate the best move within a specific time. This

type of system can be described as a hard real-time system, as if the
1This actually would be impossible, as the number of possible move combinations in a game of

chess is larger than the number of electrons in the observable universe.
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computer fails to output its move in the specified time limit, it will

be disqualified. While a non tournament chess program only has to

provide its move to the user in short (but non specific) amount of time

and can be thought of as a soft real-time system. There are three main

types of real-time computing on a sliding scale of requirements: hard,

firm and soft.

4.1.1 Hard real-time

Hard real-time refers to tasks or systems that are essential to the control

loop with a very strict latency requirement. Missing a deadline is a

total system failure. An example of a hard real-time system could be

the flight management system on a fighter jet called ‘fly-by-wire’. To

make a fighter jet as agile as possible, they are unstable in one or

two axes[14]. A control computer needs to update the controls within

a certain time frame to keep the jet in the sky. If this system fails, it

could result in the jet crashing. In AO, they are typically separated into

two categories: fast and slow hard real-time tasks. A typical example

of fast hard real-time is the update frequency of the deformable mirror

command vector.

4.1.2 Firm real-time

Firm real-time refers to functions with precise latency requirements

where infrequent deadline misses are tolerable but will degrade perfor-

mance. If too many deadlines are missed, the system will fail.
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4.1.3 Soft real-time

Soft real-time is related to tasks with relaxed latency requirements,

where missing a deadline will degrade performance in a non-critical

way. They are typically background functions running during real-time

operations in order, for example, to monitor the observing conditions

and to update the control parameters. For example, updating the Fried

parameter (r0) or the average wind speed 〈vw〉 .

Real-time systems used in AO generally comprise of a combination of

soft, firm and hard real-time tasks. Whereas the main AO control loops

(i.e. computing the DM commands) are hard real-time task, others are

auxiliary and run in parallel. These high-level functions usually require

the processing of significant amounts of telemetry data from the real-

time control system (RTC) control loops at a time scale much larger

than the AO update frequency. Typical examples are the optimisation

of loop parameters, the estimation of the system parameters or the

computation of offloads.

4.2 Computing power and parallel computing

4.2.1 Moore’s law

The advancements in technology have been staggering. Since the in-

vention of the transistor computer in the 1950s, computers chips clock

frequencies have gone from 50 MHz up to 5 GHz. In 1965, the co-

founder of Intel, Gordon Moore released a paper entitled ‘Cramming

more components onto integrated circuits’[20]. In this paper, he com-

mented on the future of integrated circuit boards.

The complexity for minimum component cost has increased
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at a rate of roughly a factor of two per year. Certainly over

the short term this rate can be expected to continue, if not

increase. Over the longer term, the rate of increase is a bit

more uncertain, although there is no reason to believe it will

not remain nearly constant for at least 10 years. Gordon E.

Moore

This notion of the number of components on an integrated circuit

board doubling every two years has been labelled Moore’s Law. The

accuracy of this idea was surprising[17]. Moore’s Law, first proposed

in 1965 over half a century ago, suggested this exponential growth of

components would only continue for ten years. Fifty years after its

suggestion, Moore’s law is still valid. However, there has been sugges-

tions this is likely to change in the near future. Figure 4.1 presents the

technological advancements in microprocessors over the past 40 years.

The data (not just figure 4.1.) shows the steady increase of transistor

counts (following Moore’s law) and the slight increase in single-thread

performance. It also shows the clock frequency and typical power usage

have started to plateau. Finally, it gives an idea of the steady increase

of the number of cores since 2005, following a power law[17].
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Figure 4.1: Performance of microprocessors over time. Copyright: National Academic

Press[4].

4.2.2 Parallel computing and Amdahl’s law

Moore’s law only focuses on the increased performance of a single chip.

Modern computer processors are implementing the parallel computing

on a single chip. The majority of computers on the market no longer

have a single processing core; they generally have two, four, eight and

in some cases even more.

If the task at hand is able to be parallelised, then the processing

time can be dramatically decreased. Amdahl’s law, first put forward

by Gene Amdahl in 1967, states that the maximum speedup that can

be achieved from applying more processors and can be calculated by

equation (4.1)[1], s is the amount of time spent performing serial tasks,

p is the amount of time spent performing parallel tasks (total time
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T = s+ p) and N is the number of processors.

speedup = 1
s+ p

N

(4.1)

If we allow the number of processors (N) to go to infinity,

speedupmax = lim
N→∞

1
s+ p

N

= 1
s

(4.2)

This gives a very pessimistic view of the possible speedup from using

large parallel computers. If we have a system with 5% of serial code,

then the maximum speedup achievable from a system with an infinite

number of processors is ×20. Figure 4.2 shows Amdahl’s law for various

values of serial code. We see from this that the system approaches an

asymptote.

Figure 4.2: Speedup as a function of the number of processors according to Amdahl’s

law. The different curves represent different percentage of serial code relative to the

overall code.

Amdahl’s law has been shown to be correct, thought it does address

a simple case. It makes the assumption that with the increase in com-

puting resources, the problem size remains constant, which is generally
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not the case. As computing resources are added, this generally allows

the problem size to scale similarly. When the problem size is increased,

the portion of parallel code is also increased (i.e. it increases faster than

the serial code sections). This is known as Gustafson’s law.

If we let β = s
s+p , then Gustafson’s law can be expressed as equation

(4.3)[10].

speedup = N(1− β)− β (4.3)

This view of parallel computing is much more optimistic than Am-

dahl’s law predicts. The speedup forecast by Gustafson’s law is a linear

equation (y = mx + c), where the gradient m = 1 − β = 1 − s
s+p .

Contrary to Amdahl’s law, it has no upper limit for the speedup, and

adding computing resources such as more computer processors becomes

much more appealing. This is shown in figure 4.3.

Figure 4.3: Speedup as a function of the number of processors, according to

Gustafson’s law. The different curves represent different percentages of serial code,

relative to the overall code.
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4.2.3 Measures of performance and complexity

4.2.3.1 Instruction based performance and complexity metrics

FLOP

To measure and compare the complexity of a given algorithm, the

number of floating point operations (FLOP) are used. This can be use-

ful when comparing the complexity of different algorithms performing

the same tasks. A floating point operation is a arithmetic operation

such as addition, subtraction and multiplication performed on floating

point variables. Integer and floating point operations are performed

differently in the CPU. Other operations such as division, powers (i.e.

xn) and roots (i.e. n
√
x) all are more complicated in the computer, and

require more than one FLOP to be computed. For example, divisions

calculated by computers typically are assigned the value of 4 FLOPs,

and powers (i.e. xn) require n FLOPs.

FLOPs are a good metric to compare the idealised complexity of

different algorithms. When comparing the performance of these on a

real processor, or comparing the same algorithm running on two dif-

ferent processors, FLOPs per second are used (FLOPS). A theoretical

value for the maximum achievable FLOPS for a given hardware can be

calculated using equation 4.4. FLOPs
cycle is the number of floating point

operations achievable by a single processing core in a single clock cycle.

FLOPS = FLOPs
cycle

× clock frequency× # cores
socket

×# sockets (4.4)

The achievable FLOPS can then either be used to compare the per-

formance of a processor with another, or to compare the actual perfor-

mance of an algorithm with its theoretical maximum.
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MACS

An alternative to FLOPs and FLOPS is the Multiply-accumulate (MAC)

per second (MACS). This can be used in the same way FLOPS can, for

measuring complexity or performance. The MAC unlike a FLOP is a

specific operation. This operation is a multiple and an accumulate, as

shown in equation (4.5).

a = b+ c× d (4.5)

. This can be a useful metric, as in a modern processor this type of

operation can be performed in a single clock cycle.

Operational Intensity

Operational Intensity (I) is another useful metric and is defined in

equation (4.6).

I = W

M
(4.6)

It is the ration of work (W ) to memory traffic (M). Work is defined

as the number of numerical operations performed per second. This

can include integer operation and floating point operation. Though in

many cases it is defined as the number of FLOPS. M is the amount of

memory that is required for the calculation.

This metric is useful as it conveys the notion of memory bandwidth.

In section 4.2.3.2 we discuss how computational power is increasing

faster than memory bandwidth. This suggests the limiting factor of

some calculations maybe the ability to transfer data from memory to

the CPU rather than the raw computing power. This metric is able to

hold information about both the computing power required as well as
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the memory bandwidth required.

4.2.3.2 Memory bandwidth

The maximum theoretical stated FLOPS value for a processor is rarely

achievable. This is due to the stated value only assuming the maximum

number of instructions that can be performed. Many algorithms are

limited, not just by the number of calculations achievable, but also by

the ability of the computer system to be able to transfer the required

memory values to the processor in time. If the processor has to wait for

memory to be retrieved during calculation, then we refer to the system

as being memory bandwidth limited.

Over time, both the CPU frequency and DRAM speeds have in-

creased. The majority of the increase has been in the CPU frequency

rather than in the DRAM. This has led to more systems becoming

memory bandwidth limited. Figure 4.4 shows how the CPU frequency

has increased faster than the increase in DRAM speeds.

Figure 4.4: A comparison of the increase in CPU frequency and DRAM speed. Copy-

right: John McCalpin (University of Virginia)

STREAM
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The STREAM Benchmark is a simple benchmarking program to

calculate the sustainable memory bandwidth and corresponding per-

formance of simple vector calculations[16]. It uses four different calcu-

lations, and measures the processing times to infer the memory band-

width of the processing unit. The four calculations being used are shown

in table 4.1.

Table 4.1: The STREAM calculations

name Kernel bytes/iter FLOPS/iter

COPY ai = bi 16 0

SCALE ai = q ∗ bi 16 1

SUM ai = bi + ci 24 1

TRIAD ai = bi + q ∗ ci 24 2

The STREAM benchmark measures the memory bandwidth from

the main memory and not cache memory. To measure the main memory

bandwidth, the array size used must be at least four times that of the

total cache memory of the chip.

The STREAM test can only give bandwidth for code that is not

specifically tuned for specific hardware architectures. This enables code

to be compared on many different processing chip types. Optimising

the code for specific hardware can obviously lead to higher memory

bandwidths. STREAM can also be used on single, multi and many-

core processing architectures with the use of the OpenMP (see section

4.3.1.2).

4.3 Programming languages

Many people regard Ada Lovelace as the first computer programmer.

In 1843 Lovelace published a document describing the design of Charles
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Babbage’s Analytical Engine. Within her notes, was what is known as

the first computer program[13], a series of commands for the Analytical

Engine to compute the series known as Bernoulli numbers. Unfortu-

nately, the Analytical Engine was never built during her life time due

to Babbage being unable to raise the required funds.

A computer language is a method to communicate instructions to a

computer. These instructions are typically converted from the format in

which the developer writes them, to a form understood by the computer

called machine language. Machine language is the lowest level instruc-

tion used by the computers central processing unit (CPU), and this is

in the form of binary or hexadecimal instructions. Each instruction in

machine code refers to some very simple and specific tasks. These tasks

vary from loading memory, to branching sequences or for the arithmetic

logic unit (ALU)2 to perform a calculation. Typically, computer pro-

grammers do not work in machine language as this is too low level and

development time is long and difficult. Computers can typically carry

out billions of instructions per second, and require many commands to

perform even the most trivial tasks. By trivial we mean in the reference

to the developer. For example, at a high level taking a drink from a

cup is trivial, when broken down to all the individual instructions it

becomes a much more complex task requiring many separate individual

components. This level of abstraction, making common tasks simple is

typically why higher level computer languages are used.

By higher level computer languages, we refer to computer languages

that abstract the developer away from these lowest level of instructions

and allow them to focus on solving the bigger problems. Computer
2A computers CPU is made up for two main units. The ALU, which performs arithmetic calcu-

lation and, a control unit which fetches the instructions from memory and carries them out.
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programming languages give an intermediate step where the developer

writes their program, which is then ‘compiled’ into machine code. This

compiling step takes the computer code written by the developer, and

translates it into the lower level machine code that is executed by the

computers CPU.

Computer programming languages have advantages and disadvan-

tages, as they have been developed for specific usages. C/C++ is a

high level procedural language, but gives the programmer access to

lower level features such as memory handling. C was developed in the

1970s at Bell labs[22] and C++ was developed to give a C like language

with use of Object Orientation design3.

Unlike Java, C/C++ is compiled down to machine code by the devel-

oper before it is run. Languages such as C/C++ are typically preferred

for time critical tasks over those such as Java. This is due to not having

‘Just-In-Time’ compilation, as well as not using Java’s automatic mem-

ory handling, and uses a garbage collector to clean up memory no longer

being used. This garbage collector decides when it needs to clean up

the memory, and can cause unpredictability in the performance. This

means that the C/C++ developer has much more control over critical

parts of the code.

4.3.1 Parallel API

Historically, computing hardware has only had a single CPU or process-

ing core. This has meant that computer programming languages were

developed and designed to work with only a single processing thread.

It was not until the early 2000s that the first multi-core processors4

3C++ is a superset of C. This means that any valid C program is also a valid C++ program.
4processor with multiple CPUs on the single chip.
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were beginning to become available, although other forms of parallel

computing existed previously. In 2001, IBM released the power 4[23].

It was not until 2005, when AMD released the Athlon 64 X2 and In-

tel release the Pentium D[8], that multiple processing cores started to

became common place.

With the introduction of multiple cores, computer programs are now

able to simultaneously perform more than a single task. To make this

available to older languages, many extensions and APIs have been de-

veloped.

• pthreads

• OpenMP

• OpenCL

• OpenACC

• Vectorisation

4.3.1.1 pthreads

Pthreads is a standard threading library for UNIX systems in the C lan-

guage, for shared memory multiprocessor CPU architecture. Pthreads

(POSIX threads) is compliant with IEEE POSIX 1003.1C standard. It

allows multithreaded applications to be build within standard C, and

offers the tools to create, synchronise and destroy threads.

Pthreads have access to the shared memory of the system, and point-

ers to memory can be passed between threads. As opposed to OpenMP

(section 4.3.1.2), which operates a fork-join model, Pthreads offers the

ability to create and destroy threads, detach them and synchronise

them. This gives the developer complete control over how the thread
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architecture is developed. With this large degree of control, longer de-

velopment times in comparison to OpenMP are likely. The performance

gains make it more appropriate for use in time critical scenarios.

Although Pthreads is specified in an IEEE standard, the implemen-

tations on different systems can vary and may operate differently on

different hardware. This can lead to slightly different behaviour, or in

extreme cases may fail or produce incorrect results. This can be as sim-

ple as a limit on the maximum number of threads allowed on a system,

which is less than the number of threads specified in the code, causing

the program to fail. In C++ (C++11 onwards) the library ‘Threads’

offer similar functionality as the Pthreads library.

4.3.1.2 OpenMP

Open Multi-Processing (OpenMP) is a cross-platform API for devel-

oping shared memory multiprocessing applications. OpenMP adds a

selection of keywords accessed through ‘pragmas’ that enable the devel-

oper to quickly develop applications that take advantage of the multiple

cores available on modern CPUs. Listing 4.1 shows a very simple par-

allel for loop that will be split between the number of CPUs available

on the computer.

Listing 4.1: OpenMP code example.

i n t a [ 1 0 0 0 0 0 ] ;

#pragma omp p a r a l l e l f o r

f o r ( i n t i = 0 ; i < 100000; i++) {

a [ i ] = 2 ∗ i ;

}

This programming is a fork-join model, which means that for these
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sections, new threads are created to do the specified work, then they

are destroyed at the end of each section. In this model the processing

forks and rejoins multiple times through the code. An example of this

can be seen in figure 4.5[5].

Figure 4.5: An example of fork-join processing produced by OpenMP.

As well as OpenMP or Pthreads, there are other similar libraries

provided by companies such as Intel. For example, Intel Threading

Building Block (Intel TBB) gives similar functionality to OpenMP, with

‘parallel_for’ or ‘parallel_reduce’. This is implemented as a library

rather than a language extension. This fork-join model is also used in

Intel’s Cilk Plus parallel API.

4.3.1.3 OpenCL

Open Computing Language (OpenCL) a cross-platform framework that

allows the execution on many different computational hardware such

as CPUs, GPUs, Xeon Phis, DSPs and FPGAs. It is aimed at allow-

ing hardware independent development. The developed code can then

be compiled and executed on any hardware available, with minimum

tweaking. It is also aimed at allowing parallel processing so is able

to target many- and multi-core architectures as well has more exotic

hardware of GPUs and FPGAs.
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Many people have studied the efficiency of OpenCL against perform-

ing the same function using other tools such as CUDA. In a study by

Karimi[12], it was found that performing the same code was faster for

both transfer of data and processing of data on a GPU using CUDA over

OpenCL. It concluded that for high performance or time critical tasks

CUDA, is the better choice. For non high performance or time-critical

applications the performance difference is not enough to force users to

use CUDA and the choice should be made based on the developer’s

knowledge and familiarity with both tools.

4.3.1.4 OpenACC

Open accelerators (OpenACC) is an API that is designed to simplify the

development of parallel programming on heterogeneous hardware. This

is similar to how OpenMP works as well as the compiler assisted offload

mode of the Xeon Phi. The developer uses keywords to mark regions to

be offloaded to hardware accelerators to allow that region of code to be

performed by the high performance parallel hardware. While OpenMP

only supports parallelisation across a single architecture, OpenACC

supports the use of hardware accelerators and heterogeneous computing

platforms.

OpenACC provides a very interesting new tool to help develop par-

allel code, and will simplify the development of these hardware accel-

erators. This current generation of Xeon Phis (Knights Corner)5 is in

direct competition with GPUs. GPUs require development in NVIDIA

CUDA. A tool such as OpenACC is invaluable for testing the perfor-

mance of both these technologies, while only developing code once and

interchanging the hardware.
5At time of writing, though Knights Landing is now released
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AO RTCs typically have the problem that they run on outdated

hardware. This is because of the long development time and long work-

ing life time of the instruments. The computational hardware is chosen

early in the development cycle, so by the time the instrument is on-sky

the hardware is out dated. Spares of all computational hardware are

bought in case of hardware failure. OpenACC may be beneficial to

systems being developed on one hardware but if the hardware breaks

new COTS hardware can be purchased and will work even if not iden-

tical to the original. The performance however would still need to be

reevaluated.

4.3.1.5 Vectorisation

Vectorisation is a case of parallelisation where a single command can

be propagated to multiple sets of data. This can be automatic in the

case of Intel compilers and processors, or it can be explicit in the case

of AltiVec on powerPCs.

With vectorisation, a single command such as addition, subtraction

or multiplication can be performed on an entire data set. For example,

in listing 4.2, an addition between vector1 and vector2 is performed and

automatically translated to make use of the vector units on the Intel

based processor. Auto vectorisation allows the code to be performed

by the SIMD registers. These registers are 128 bits wide or four single

precision floating point variables. This can lead to a four time speedup

over that of the same computations being computed sequentially.

Listing 4.2: Auto vectorisation using the SIMD registers.

f o r ( i =0; i<n ; i ++){

r e s u l t V e c t o r [ i ] = vector1 [ i ] + vector2 [ i ] ;
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}

When using explicit vectorisation, the user has to specify that the

command be performed on the vector registers. For AltiVec power-

PCs, listing 4.3 shows an example of a function designed to perform

vectorised addition on a powerPC. This leads to more work for the

programmer, but ensures that section of code that are specified for

vectorisation are actually performed on the vector registers.

Listing 4.3: Example of explicit vectorisation on AltiVec powerPCs.

r e s u l t V e c t o r = vec add ( vector1 , vec tor2 ) .

4.3.2 Real-time performance and the operating system

The biggest difference between real-time computing and high perfor-

mance computing is the need for predictability. Frequently, real-time

also refers to high performance, as the result may need to be calculated

as quickly as possible to meet the required deadlines. High performance

does not always mean real-time, as the goal can be to process as much

as possible, as quickly as possible and the deterministic response time

may not be important.

There are many factors that come into play when developing real-

time applications, not just in the code being developed but also on the

platform it is being deployed on. The operating system (OS) is likely to

be the biggest factor in the deterministic nature of how the application

performs.
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4.3.3 Operating systems and the scheduler

The operating system in a computer can be seen as the ‘brain’, and it

performs the background functions that are not specified by the devel-

oper. The operating system performs the basic tasks such as scheduling

and controlling peripherals.

One of the main jobs of the operating system, is to schedule tasks

and decide where these tasks need to be executed. Some of these tasks

are specified by developers such as running code, others are background

tasks that are needed to keep the computer running. These tasks are

held in a job queue. This means there are generally more tasks than

there are cores. To get around this limitation, the OS uses a scheduler

to decide which of the tasks in the job queue to perform next and where

(e.g. which core).

This can lead to the interleaving execution and interruption of tasks

on a core. This interruption of a task to begin the execution of a new

job is called context switching. When this occurs the current state of

the task being run is put in memory and the next task’s ‘context’ is

loaded from memory and can begin. Context switching generally does

not cause much of a problem as lots of small tasks are being loaded in

and out of memory.

To decide what to run next, there are many different schemes the

scheduler can use. Here is a list of the most common scheduling schemes:

• First come first serve

• Shortest job next

• Priority scheduling

• Shortest time remaining
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• Round robin scheduling

First come first serve First come first serve scheduling is the simplest

form of scheduling. Jobs are executed in the order they arrive, which

generally gives poor performance and causes high wait times for jobs.

A long low priority job may block shorter but more important jobs.

Shortest job next Shortest job next produces good results when all

CPU processing times are known for each job. However, in interactive

systems where job CPU time is variable (or unknown) this method is

impossible to implement.

Priority scheduling Priority scheduling uses the jobs assigned priority

to decide which job to run next. Each job is assigned a priority. This

can be determined through various means such as CPU time, memory

or other requirements. The job with the highest priority is executed

next. If two jobs have the same priority, then they are executed in a

first come first served scheme. Priority can be assigned dynamically or

be static. In static priority systems, once a job has a priority assigned to

it, it remains constant. Dynamic refers to priority of processes changing

after they have been assigned.

Shortest time remaining Shortest time remaining is a preemptive ver-

sion of the shortest job next. In this mode, if a long process is being

performed and a process with a shorter time to completion arrives, then

this new process with the shorter time to completion can interrupt the

current process. As with the shortest job next, Shortest time remaining

cannot be performed on interactive jobs where CPU time is unknown.
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Round robin Round robin scheduling all processes are provided with

a fixed time for them to process. After this fixed time, if another job is

waiting, the original job is interrupted and another process is executed.

The states of each process are saved with context switching.

The scheduler is also in charge of deciding which cores each of the

jobs are to be executed on. The developer can influence this by assigning

the affinity of the desired process.

4.3.3.1 Real-time operating systems

The goal of a real-time operating system is to run tasks for real-time

applications. They can either be a hard real-time system (i.e. deliver-

ing results in a deterministic manner) or a soft real-time system (i.e.

generally delivering results in the allocated time). Typically, the non-

real-time OS schedule to optimise the overall throughput. For real-time

systems, the aim is to optimise for predictability.

For real-time systems a version of priority scheduling is used. This

is done to force time-critical processes to preempt and interrupt other

processes[15]. This will allow the most important tasks to be preformed

when they are available, and non-critical tasks are delayed or inter-

rupted.

4.4 Computational Hardware

4.4.1 FPGA

FPGAs are integrated circuits with the capability of being programmed

after manufacturing to complete a given task. FPGAs were originally

programmed in low level Hardware Description Languages (HDLs) such

as Verilog or VHDL. This tends to be difficult as they are programmed
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with only a small amount of hardware abstraction. New alternatives,

such as OpenCL (see section 4.3.1.3), are now available which add a

level of abstraction from the hardware. OpenCL allows programmers

to develop portable code in C, and to take advantage of both the per-

formance and power efficiency of FPGAs and of CPUs.

FPGAs have much lower clock frequencies than other computational

hardware, such as CPUs or GPUs. FPGAs sit in the range of 250-300

MHz while GPUs tend to be 1200-1400 MHz and CPUs can be 3000-

5000 MHz. Even though the GPUs clock rate is higher, the performance

of the FPGAs maybe closer to 4.18 faster when preforming certain

tasks[7].

FPGAs have the potential to use less power than conventional pro-

cessors, and thus produce less heat. Due to the structure, some tasks

are more easily implemented into FPGAs than others. It has, however,

been shown that FPGAs can increase speed by a factor of twenty or

more[25]. FPGAs excel at tasks that require a small amount of process-

ing to a large amount of data with strict time constraints, while CPUs

are better at performing large amounts of processing on small amounts

of data. FPGAs are commonly used in video processing applications,

such as TV for adding overlays or for HDMI drivers.

FPGAs have been used in AO RTC systems to perform tasks such as

front-end wavefront processing[9] and communication infrastructure[6].

Although very efficient and reliable, the FPGA design doesn’t allow the

hardware platform to be easily scalable to accommodate the needs of

the different projects. In addition, they are difficult to maintain and up-

grade to follow technological evolution. Despite the recent availability

of programming languages such as OpenCL, the FPGA development
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environment makes the development of an efficient and reliable final

product relatively difficult to a non-specialist.

4.4.2 CPU

CPUs offer a platform for general purpose computing. They are able

to be easily programmed and customised for the desired task. The

CPU is the heart of the computer and has to control all background

tasks as well as the user defined tasks. This CPU time sharing leads to

interruptions in the processing and higher latency than in other forms

of processing.

CPUs have previously only been a single high-frequency core, but

multi-core processors are becoming common place. The multi-core as-

pect allows the programs to split jobs into multiple parts to be run on

separate tasks from the same memory.

While CPUs tend to have higher performance variability than tech-

nologies such as FPGAs or DSPs, they do allow faster development

times. Many modern AO RTC systems are using CPUs as they offer

fast development times and high performance[3]. Some, on the other

hand only use them for the non time-critical tasks, performing time-

critical tasks on more deterministic hardware[6].

4.4.3 GPU (with GPU Direct)

Graphical Processing Units (GPUs) entered the commercial world in

1999 with the NVidia GeForce 256, and are dedicated processing units

to render graphical interfaces. Since the introduction of GPUs, they

have grown from a single chip to cards with over a thousand cores in

just over ten years[11].
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When GPUs were released some researchers had the idea of using

these platforms to perform non graphical computing. This was done by

trying to map their models to the operation of the GPU[26]. The success

of this lead to the release of the Compute Unified Device Architecture

(CUDA). CUDA is a development platform in C/C++ to allow the

programming of GPUs, similar to programming on CPU but with access

to a highly parallel architecture[18]. This allows high level programming

with a large amount of abstraction from the hardware.

A major obstacle with using technologies such as GPUs is data trans-

fer. Unlike CPUs, FPGAs or DSPs, GPUs are not standalone computer.

By this we mean GPUs are typically connected to a CPU via the PCIe

bus. For the other technologies, data can arrive directly on the proces-

sor to be processed. For GPUs, data arrives first on the CPU, which

then copies the data across into the GPU memory. Figure 4.6 shows

the flow of data required in order to reach the GPU. This shows that

the data first arrives into the CPU memory, then is taken out of the

memory and sent to the GPU. Once a result has been calculated and is

being transferred away from the computer, this processed is performed

again in reverse.

Figure 4.6: A data flow diagram for getting data onto a GPU.

81



There is a technique that can help mitigate this issue called GPU

direct. GPU direct gives the developer the ability to directly access the

memory of the GPU under certain circumstances, therefore bypassing

the CPU. The flow of data is shown in figure 4.7. Using GPU direct,

data can arrive on the GPU much more quickly and reliably in time it

is going through the CPU.

Figure 4.7: A data flow diagram for getting data onto a GPU using GPU direct.

In an AO RTC this is being investigated to see if it mitigates some

of the problems associated with the transfer of data into the memory

of GPUs. Groups have collaborated with camera manufactures, using

data transfer methods such as Camera Link to be compatible with GPU

direct[24]. Other groups have developed custom FPGAs cards to allow

for GPU direct use[19].

4.4.4 Digital Signal Processors

Digital Signal Processors (DSP) are microprocessors with specialised

architectures designed to process digital signals. When processing dig-

ital signals, a large number of mathematical operations are preformed

quickly on a set of data samples.

82



Traditionally, DSPs have been used for audio[21, 2] or video pro-

cessing, where a signal needs low latency processing. The signal arrives

on the DSP and is converted from an analog signal to digital signal,

using an analog to digital converter (ADC). It can then be processed

by the DSP. Once the signal has been processed, it will convert back

to analog signal using a digital to analog converter (DAC). This data

flow is illustrated in figure 4.8. DSPs are designed to perform tasks in

a real-time environment and run a bare minimum OS.

Figure 4.8: A standard DSP flow diagram

DSPs have been used in AO RTC system to performs fast memory

intensive tasks[6] such as the matrix-vector multiplication. DSPs have

a faster development cycle than FPGAs, but are still slower than CPUs.

4.4.5 Internal Interconnects

All the hardware in section 4.4 have different strengths and weaknesses.

In this regard, modern systems tend to be heterogeneous with many

different kinds of computational hardware. These computers tend to

have hardware acceleration technology that can be used for specific

tasks that require more computational power than a traditional CPU

can supply. Modern real-time control systems tend to use combinations

of GPUs, FPGAs and DSPs to achieve the required performance.

The increase in heterogeneous and distributed computing brings the

question of how the data is being transferred around the computing

system. Table 4.2 is a comparison of some of the most common in-

ternal interconnects found in heterogeneous and distributed computers
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systems.

Table 4.2: A comparison of internal interconnects transfer rates

interconnect transfer rate (MB s−1)

PCIe 2.0 (x1, x4, x8, x16) 500, 2000, 4000, 8000

PCIe 3.0 (x1, x4, x8, x16) 984.6, 3938, 7877, 15754

1 GbE 125

10 GbE 1250

InfiniBand (x1,x4) 3125, 12500

Omni-Path 12500

NVIDIA link 20000

Peripheral Component Interconnect Express (PCIe) is the most com-

mon interconnect found inside almost all desktop computers. This is

the standard type of connection used on co-processors such as GPUs

and Xeon Phis. This interconnect has a specific number of lanes that

can be used for transferring data, and the more lanes that are used the

higher the transfer rate. Typically GPUs and other co-processing cards

have x16 lanes to allow for maximum transfer. These typically are short

cable lengths in the internals of the computer and provide high data

transfer rates.

Omni-Path and InfiniBand fill very similar roles with connecting

servers and computers over local networks. This is a role that Ethernet

cables can fill as well. Though even the 10 GbE data transfer rate

version is much slower than either Omni-Path or InfiniBand. Each of

these technologies offer network switches as well as the interconnects to

allow large systems.

Two different options are available to GPUs to enable fast intercon-

nects. The first is the use of GPU direct, which has been covered in

section 4.4.3. This is a relatively complex solution and requires large
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amounts of development time. The second solution is the new NVLink,

a point-to-point communication protocol between a GPU and a CPU.

This interconnect can be used to transfer data between GPUs, between

the CPU and GPUs or any combination. NVLink is a promising new

technology advertising a data transfer rate of 20 GB s−1(of 40 GB s−1for

bi-directional links). This is a proprietary technology designed to work

with Nvidia GPUs and may not be a solution to transfer data between

servers.

4.5 Conclusion

In this chapter, we have introduced the topic of real-time computing

and discussed some of the major building blocks and important topics

in real-time computing. Real-time system focus is on temporal deter-

minism as well as the functional behaviour. We have introduced both

software and hardware technologies that are being used in modern sys-

tems. In the next chapter, we take what has been covered in this chapter

and chapter 3 and cover the basics of real-time computing for AO.
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Real-time computing in adaptive
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In this chapter, we present specific aspects of real-time computing

in the context of adaptive optics (AO). We first give a general overview

of the real-time controller (RTC) architecture (section 5.1), splitting it

into two main modules. The first module is the wavefront processing

unit (WPU) (section 5.2), which covers the wavefront sensor (WFS)

data reduction and determining the wavefront slopes. The second is

the wavefront reconstruction module (section 5.3) which computes the

deformable mirror (DM) commands from the wavefront slopes. We give

examples of RTC architectures both for systems that are currently in

use (section 5.4), and for planned systems for the ELTs (section 5.5).

Finally, we compare the increasing AO RTC complexities of modern

systems (section 5.6).

5.1 General structure of AO real-time control sys-

tems

5.1.1 Architecture

The AO RTC has many tasks to perform, each may have different

update frequencies. Its main hard real-time task is to receive a stream

of pixel data from the WFS(s) and convert them into deformable mirror

(DM) commands. There are two main steps to the processing. The first

one is the wavefront processing, which generally involves extracting the

wavefront slopes from the wavefront camera pixels. The next process,

is to use this slope data to calculate the new positions for the actuators

of the DM.

Figure 5.1 shows a simplified block diagram of an AO RTC loop

processing chain. The hard real-time (time critical) tasks are inside the
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bold dashed box. Other tasks which generally are auxiliary and run in

parallel to the main AO loop are represented inside the dashed boxes.

The items in the top dashed box represent soft real-time inputs to the

RTC system such as the telescope telemetry. The items in the bottom

dashed box represent soft real-time outputs such as real-time display,

the optimisation of loop parameters, or the computation of offloads.

These soft real-time processes are still time sensitive but are not as

time critical as the hard real time tasks.

Figure 5.1: Simplified block diagram of an AO RTC loop processing chain and the

association in the AO RTC.

The aim of this thesis is to identify and test many-core Commercial

Off-The-Shelf (COTS) hardware that have the potential to reduce the
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latency of the AO hard real-time loop. The hard real-time pipeline

is not the only part of the AO RTC that requires powerful hardware.

Many of the soft real-time tasks such as calibration and atmospheric

estimations are also very computationally expensive.

The COTS technologies, which have been investigated for the hard

real-time pipeline, may also be a good candidate to be used in the soft

real-time computing. The Xeon Phi that is investigated in section 7

is a strong candidate for use in this way. However, this has not been

investigated and is outside the scope of this thesis which focuses on the

hard real-time pipeline.

5.1.2 Temporal considerations, chronogram

For a two-frame delay1 AO system (typical of most AO instruments),

the commands have to be sent to the DM before the next image from

the camera has finished integrating. Figure 5.2 shows a simplistic tim-

ing diagram for the AO RTC control loop, using a frame-transfer CCD

WFS. The processing stages (i.e. wavefront processing and DM control

computation) are allowed to overlap. The processing of the wavefront

images can start as soon as enough pixels have arrived at the wave-

front processing unit (typically a row of sub-apertures), while more

data is still being received. When the first few sub-apertures have been

processed, the control calculation can begin using these sub-apertures.

This overlap will help reduce the overall latency of the system.
1the two frame delay refers to the integration time of the camera and the calculation of the DM

during the second frame.
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Figure 5.2: Overall AO control chain time diagram for a typical system, showing the

overlapping processing steps.

Term Symbol Definition

WFS integration

time

tint Time interval during which the WFS

detector is exposed to light and ac-

cumulates (in other words integrates)

signal to produce a sample of the

wavefront error.

WFS read-out

time

tro Time elapsed between the instant at

which the first pixel (or region) of the

WFS detector is read-out and trans-

mitted by the camera controller, and

the instant at which the last pixel (or

region) is read-out and transmitted

by the camera controller.

continued . . .
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Term Symbol Definition

wavefront process-

ing time

twp Time elapsed between the first WFS

camera pixel received at the RTC (or

the WPU) and the last slope trans-

mitted to the rest of the AO chain.

This generally includes a calibration

step and a center of gravity calcula-

tion.

wavefront process-

ing delay

twd Time elapsed between the last WFS

camera pixel received at the RTC (or

the wavefront processing unit) and

the last slope transmitted to the rest

of the AO chain.

Control calcula-

tion time

tcc Time elapsed between the first slope

received at the RTC (or DM control

unit), and the last DM command be-

ing transmitted by the RTC.

RTC computation

time

trtc Time elapsed between the first WFS

camera pixel received at the RTC,

and the last DM command being

transmitted by the RTC. This ac-

counts for both wavefront process-

ing, and DM command computation

time, which may or may not overlap

in time.

continued . . .
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Term Symbol Definition

RTC latency tlat Time elapsed between the last WFS

camera pixel received at the RTC (or

wavefront processing unit) and the

last DM command data sent out by

the RTC.

The AO chronogram presented above can be affected by the type

of detector (see section 5.2.4.1) and the type of WFS (see section 5.2)

used. For example, with a SH-WFS, computations can start as soon

as a sufficient number of pixels have been read-out (typically a row of

sub-apertures). For pyramid WFSs PYR-WFS, and depending on how

the detector is read, one may have to wait until most or all of the pixels

of the detector has been read-out.

5.2 Wavefront processing unit

Simply put, the function of the AO RTC loop is to take pixel data

streamed from the wavefront camera, and convert it into DM com-

mands. The wavefront sensor processing unit (WPU) is used to reduce

the WFS frames to gradient vectors (slopes), which are then processed

further to compute the DM commands via the wavefront reconstruction,

typically a matrix-vector multiplication.

5.2.1 Shack-Hartman wavefront processing unit

Figure 5.3 shows a typical wavefront camera processing chain for a

Shack-Hartmann WFS (SH-WFS), and is composed of two main pro-

cesses: a calibration step (see section 5.2.2) and a processing step (see
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section 5.2.3). Once the raw pixels have been read, they are calibrated

with the dark map subtraction, flat fielding and background map sub-

traction.

In the second step, the process is somewhat different in the case of

the SH-WFS and the PYR-WFS. But there are similarities in terms of

complexity and computational load. This allows for WPU performance

estimates to be applicable to both WFS types. For the SH-WFS, the

processing involves a centre of gravity (CoG) calculation and the sub-

traction of the reference slopes. For the PYR-WFS and for each equiv-

alent slope, the algorithm involves two additions, one subtraction, a

division, and finally the subtraction of the reference slopes.

Figure 5.3: A typical processing chain for a Shack-Hartmann wavefront sensor. The

calibration steps are shown in the upper dotted area and processing steps in the lower

dotted area.

5.2.2 Wavefront sensor data reduction - pixel calibration

Data received from a camera will have residual artifacts caused by

pixel-to-pixel sensitivity variations of the detector (i.e. flat fielding and

background map). These calibrations techniques are generally common

and are used on all detector types. They are used on systems from

the largest telescopes to smart phone cameras that are carried in your

pocket. Although the technique is common, each detector will require

its own individual calibration created using these methods.
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5.2.2.1 Flat field and dark map correction

Flat fielding and dark map subtraction are used to remove any variation

in sensitivity between pixels.

The dark map subtraction attempts to remove any effects of dark

current on the detector. Dark current is the residual current which

may be flowing in a camera sensor when it is not illuminated due to

thermal noise. An exposure is taken where the shutter is opened, but

no light is allowed to hit the detector. The images are taken with the

same exposure time and temperature as would be expected in normal

operation. Since this is performed in darkness, only the energy from

the CCD itself (i.e. the dark current) is present in the resultant image.

This dark map (IDark) is subtracted from any images produced from

the detector.

The second stage is the flat field map (IFlat), which measures the

response of each pixel in the CCD array to a uniform illumination. The

resultant corrected image ICorrected can be calculated according to:

ICorrected = (IRaw − IDark)/IFlat (5.1)

This pixel calibration involves a division which is very computation-

ally demanding, much more so than a multiplication. For this reason,

the fixed term G = 1
IF lat

is often pre-calculated leading to the following

equation instead:

ICorrected = (IRaw − IDark) ∗G (5.2)
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5.2.2.2 Background map subtraction

An additional calibration step can be added, whereby a background

map (IBACK) is subtracted from the corrected image Icorrected. This

section of the calibration enables the process to take into account any

stray light that may impact the resultant image. The final image cor-

rected from the dark map, the flat field and the background is calculated

by:

ICorrected = (IRaw − IDark) ∗G− IBack (5.3)

5.2.3 Shack-Hartmann slope calculation methods

Once the image has been calibrated, it can be processed to extract

the wavefront slopes. The calibration step is generally not WFS type

specific, and is performed for most detector types. The wavefront pro-

cessing however, is specific to the WFS type. The two main WFS that

are currently being used are the PYR-WFS and the SH-WFS.

A sub-aperture of a SH-WFS using four pixels per sub-aperture is

shown in figure 5.4 (typically more than 4 pixels per sub-apertures are

used). The measurement of the displacement of the spot relative to

the reference is used to calculate the local wavefront slope. Each sub-

aperture will have a slope in X and in Y. This will give a slope vector

that is twice the length of the number of sub-apertures.
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Figure 5.4: Illustration of the 2×2 sub-aperture. The yellow spot represents the light

spot created by the associated lenslet. The red cross represents the current location

of the CoG of the spot, and the red circle represents the position of the spot for no

aberrations.

The calculation of the wavefront slopes from a SH-WFS image re-

quires the estimation of sub-aperture spot displacements from detector

pixel intensities. Position estimation is generally done by computing

the spot’s COG. It is the most widely used algorithm and is simplest

to implement on a real-time computer. In order to reduce the impact

of photon and detector noises other algorithms may be used. In this

section, we will focus on the following algorithms:

• Centre of Gravity (COG)

• Weighted Centre of Gravity (WCOG)

• Matched Filter

5.2.3.1 Centre of Gravity

The CoG is the most widely used method of extracting the wavefront

slopes from a SH-WFS image. This calculates the position of a spot by
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applying the equation (5.4),

x̂COG =
∑
i,j xi,jIi,j∑
i,j Ii,j

(5.4)

where Ii,j is the pixel value at position (i, j) and xi,j the position

coordinates of the CCD pixel (i, j). A similar equation can be obtained

for the slopes in Y by simply replacing xi,j with yi,j. The noise value

of this method depends on the spot structure. In low flux, reducing

the number of pixels per sub-aperture is necessary to minimise noise.

At high-flux however, reducing the number of pixels per sub-apertures

is not optimal, and other methods have therefore been developed. An

alternative method adds a threshold to the pixels, putting any pixel

value below this threshold to zero before the CoG calculation. This

method is referred to as the thresholded centre of gravity (TCoG).

5.2.3.2 Weighted Centre of Gravity

The Weighted Centre of Gravity (WCoG) is similar to the CoG but

adds weightings to each pixel in the sub-aperture depending on the

flux[1]. The weighting function Wi,j allows the attenuation of noisy low

flux pixels. The slope location is calculated with equation (5.5).

There are two main implementations of the WCoG. A static version

where the Wi,j is set for each sub-aperture, and a dynamically WCoG

where the Wi,j is re-centred on the spot each frame[2].

x̂WCoG =
∑
xi,jWi,jI(i, j)∑
Wi,jI(i, j) (5.5)

In section 6.3 we present the results of these algorithms performed

on the TILE-GX, where we focus on the static version of the WCoG.
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5.2.3.3 Matched Filter

The matched filter algorithm for computing the wavefront local gradient

is particularly suited for laser guide stars (LGS) wavefront sensing. It

does this using equation (5.6),

θ = R(I − I0) (5.6)

where R is the matched filter[3], I is the image pixel intensity and θ

is the wavefront local gradient slopes (θx, θy). A full explanation of the

algorithm can be found in (Gilles et al, 2006)[4].

5.2.4 Implications on hardware

5.2.4.1 Influence of detector type

The timing diagram of the AO control loop chain is mainly dictated

by the WFS timing. This in turn depends on the individual detector

type used. We can basically identify three main categories of detectors:

CCD, CMOS and IR detectors.

For frame-transfer CCD devices, the integration and the read-out

take place at different phases in time. First, all pixels are exposed

during the same time tint. They are then transferred with the shutter

closed in a very short time. Finally, the pixels are read-out at a lower

speed while a new integration takes place. It can be assumed that

the detector pixels can be read-out in parallel, and that therefore the

wavefront processing (or RTC computation) can start as soon as the

first pixel (or in the case of a SH-WFS, the first row of sub-apertures)

is read-out.

For CMOS detectors with a rolling shutter, the integration and read-

out phases take place at the same time. Detector regions are read-out
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in sequence and each region integrates during a time (tint) which is

equal to the time elapsed between two read-outs. It can be assumed

that the pixels are read-out in parallel, and that therefore the wavefront

processing can start as soon as the first region is read-out.

Finally, for IR detectors with Fowler sampling, it is assumed that

the detector controller can only output pixels after some internal cal-

culations. For Fowler sampling, the detector is reset in a short time.

Non-destructive samples are taken immediately afterwards and towards

the end of the integration time. The final pixel values are calculated

based on these N measurements. This method is used to reduce read

noise, and is reduced approximately by
√
N [5]. Therefore, the RTC

computation cannot start before all pixels have been read-out.

5.2.4.2 Data transfer protocols

To move the pixel data from the WFS camera to the RTC many tech-

nologies can be used, each having different advantages and disadvan-

tages. A summary of some of the main performance parameters is

shown in table 5.2. The two main technologies used at the moment are

Camera Link and GigE Vision.

Camera Link offers relatively high data rates with very low CPU

usage and short cable lengths. This low CPU usage is obtained by

allowing direct memory access (DMA) that puts camera data directly

into memory, bypassing the CPU. The short cable lengths might cause

problems for AO RTC s. This is due to the location of the computa-

tional hardware in relation to the instrument. The camera is located in

the instrument on the telescope and usually the computational hard-

ware is located away from the from the telescope in another room. This
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means that long cable lengths (> 10 m) are required.

GigE Vision cameras use standard Ethernet cables to transfer the

pixel data, traditionally 1 GbE but 10 GbE cameras are becoming

available. These typically, offer lower data rates, but allows long ca-

ble lengths to be used. 10 GbE allow for higher data rates, while

keeping the possibility of using long cables. However, the major down-

side to the this technology is the high amount of CPU time needed,

though this can be mitigated with FPGA front ends or smart intercon-

nects which are currently being developed. An advantage of the GigE

Vision cameras is that they have the ability to multicast the data to

multiple devices. This means that one device can focus on processing

the incoming data while a second computer can record the data and/or

control the camera, meaning that a single processing device does not

have to handle multiple tasks. We have researched a technology that

can efficiently use GigE Vision and 10 GbE in chapter 6.

Table 5.2: a comparison of the main camera bus read-out technologies.

Connect Throughput (MBs−1) Cable Length (m) CPU usage

USB 3.0 640 15 high

Camera-Link 850 10 low

GigE Vision (1 GbE) 125 100 high

GigE Vision (10 GbE) 1250 100+ high

5.2.4.3 Impact of the WPU on the RTC

This wavefront processing step is very important in the RTC chain

because it can reduce the amount of data the RTC needs to transfer

and/or process by at least an order of magnitude. The hardware used

in the wavefront processing unit needs to have two characteristics: high

I/O to get the pixel data from the camera to the processors, and high
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computational power to process the pixels. The chosen WPU hardware

also needs to be able to function with the WFS camera format (e.g.

Camera Link or GigE Vision).

I/O is an important consideration, since large amounts of data arrive

onto the WPU at a very fast rate. In this regard, FPGAs and DSPs

are good candidates due to the high performing I/O. CPUs can also be

used as they generally support a large range of different interconnection

technologies. GPUs on the other hand, without the use of GPU direct

technology, do not have good I/O connectivity.

The other important consideration is the computing power that

should be high enough to be able to compute the slopes in the required

time. Although many technologies can provide the processing power

necessary, problems with jitter, and/or variation is execution time are

prevalent. The problem of variation in particular requires further inves-

tigation and testing as general purpose computational hardware does

not tend to be real-time.

For SH-WFS, each sub-aperture can be processed independently of

every other sub-aperture. This means that parallel (multi-core) hard-

ware are a very efficient way of processing the data. Multi-core CPUs

(such as the Xeon Phi) or GPUs (with the associated difficulty of up-

loading and downloading data into its memory, see paragraph 4.4.3) are

good potential candidates for such applications.

5.3 Wavefront reconstruction

The next stage in the AO RTC loop is the wavefront reconstruction,

sometimes called the control algorithm. This is where the wavefront

slope vector is converted into DM commands.
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5.3.1 Wavefront reconstruction algorithms

5.3.1.1 Matrix Vector Multiplication

The matrix-vector multiplication (MVM) is a simple control algorithm,

that is the most commonly used in astronomy AO RTC systems. The

MVM uses the slope vector s that has been calculated from the wave-

front processing unit, which contains all the valid x and y slopes for

each of the WFS sub-apertures. The slope vector is equal to:

s = Dφ (5.7)

φ is the incoming wavefront and D is the interaction matrix. The

interaction matrix, sometimes known as the poke matrix, is a matrix

that converts DM commands into WFS measurements and is measured

during the system calibration. A simple way of creating it is by pok-

ing each actuator in turn, and recording the measured slopes on the

WFS(s).

To estimate the phase φ̂ from the slope measurements we need to

calculate the inverse of D, D+. Since D is generally rectangular and

not square, this cannot be inverted through classical techniques. To

invert non-square matrices, a pseudo-inversion is performed. There are

many techniques to do this such as a singular value decomposition. An

estimate of the incoming phase can be calculated using the measured

slopes by:

φ̂ = D+s (5.8)

This method has been used extensively from the earliest AO RTC

systems (it was, for example, used on COME-ON[6]), and is the most
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widely used control algorithm today. This approach provides good re-

sults and is conceptually the simplest control algorithm. The compu-

tational requirements of MVM increases with a factor of n2, where n is

the number of actuators of the DM, so for large systems this method

will have very large computational loads.

5.3.1.2 Alternative reconstruction algorithms

CuReD

To reduce the complexity load of the MVM for large systems, other

algorithms have been developed. One of the least computationally in-

tense algorithms is called a Cumulative Reconstructor with domain De-

composition (CuReD). This algorithm is conceptually quite simple and

based on the Cumalative Reconstructor (CuRe).

CuRe is an algorithm to reconstruct the wavefront by summing up

the slopes from a SH-WFS to create the wavefront surface. This as-

sumes a continuous wavefront that has no discontinuities. Each sub-

aperture slope will connect to the slope on either side. An illustration

of this can be shown in figure 5.5. Since there can be no discontinu-

ities, the third section has to be moved up to connect with the previous

sub-aperture. This technique is then used across the whole wavefront

in both axes. This wavefront can then be applied to the DM using a

MVM to calculate the voltages, though it has been shown that you can

apply this shape straight to the DM if the system is very well aligned[7].

(a) (b)

Figure 5.5: Illustration of reconstructing a continuous wavefront surface from 3 inde-

pendent slope measurement.
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CuRe has been shown to have high levels of noise propagation, when

used with systems with a high number of sub-apertures. To solve this

issue, CuRe has been adapted to use domain decomposition to create

CuReD. This splits the wavefront into domains where CuRe can be ap-

plied, which reduces propagated noise across the whole sub-aperture[8].

This method increases in complexity with O(n), and has a computa-

tional load of 20 n and is able to be parallelisable.

Fourier transform reconstructor

The Fourier transform reconstructor (FTR) was proposed in 1986[9].

This technique uses the Fourier basis set to reconstruct the wavefront

(for more information see in particular[10]).

This technique is more complex to understand than the MVM model,

though it provides a more computationally efficient method. Compu-

tationally this model increase complexity with a factor of O(n log n),

which for large systems with high number of degrees of freedom, allows

it to be more computationally efficient, and requires four and a half

times less computation when compared to MVM[11]. In addition, this

method takes advantage of Fourier basis sets. These are well established

signal processing techniques and hardware which can be used, such as

DSPs.

Fractal Iterative Method

Unlike the other methods presented above, the FRactal Iterative Method

(FRIM) is iterative[12]. It uses the knowledge that the atmospheric tur-

bulence has a power law relation within the range of the inner and outer

scale (l0 < x < L0). FRIM has a computational complexity of O(n)[13].
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5.3.1.3 Algorithm comparison

Table 5.3 gives a summary of a selection of algorithms and the as-

sociated computational complexity; this is not an exhaustive list and

other algorithms do exist. The current direction is for computational

hardware to have more and more cores. Algorithms that are easily

parallelised, such as the MVM, can therefore take full advantage of

the evolution of modern hardware. Other algorithms such as FRIM,

which require iterative processes will make optimisation (i.e. taking

full adavantage of the multi-core nature of modern processors) much

more difficult (if at all possible).

Table 5.3: Comparison of various wavefront reconstruction algorithms and their com-

plexity.

Method Complexity Operations

MVM O(n2)

CuRed O(n) 20 N

FTR O(n log n)

FRIM O(n) 350 N

We have chosen to investigate MVM in particular for a number of

reasons. It is the standard on the majority of AO systems and is the cur-

rent baseline the vast majority of AO systems to be installed on ELTs.

It is a simple algorithm to understand and allows for simple numerical

testing to compare results (and intermediate calculation steps) between

the intended mathematical control and the actual implementation on

the RTC. The aim of this investigation is not to demonstrate new algo-

rithms but to accelerate the current baseline with new technology. For

these reasons we have made the decision to target the MVM algorithm

only and have specifically chosen hardware that can take advantage of
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the parallelisable nature of the algorithm.

5.3.2 Temporal control

Once the control vector is calculated, and mainly for reasons of stability,

the actual control vector sent to the DM needs to be regularised. In

classical AO systems, a proportional integrator (PI) is typically used.

The control of a PI, in the discrete case can be expressed as:

ut = Kp ∗ et +Ki

k∑
n=1

en (5.9)

Where ut is the control vector sent to the DM at discrete time t and

et is the resultant vector from the wavefront reconstruction (MVM)

which is multiplied by the gain (Kp). This is the proportional term

in the PI controller. The next term (Ki
∑k
n=1 en) is referred to as the

integrator, as it integrates over the previous k inputs, Ki is the integral

gain. This is why this type of control is know as a PI controller. This

is more commonly shown in the velocity form:

ut = ut−1 +Kp(et − et−1) +Ki(et) (5.10)

The advantage of this is that we no longer need to keep track of the

summation from (5.9). This also adds little complexity to the overall

RTC system in comparison to the wavefront reconstruction using an

MVM. In this regard, we are not considering this in the testing of the

hardware in the later chapters of this thesis.

5.4 Example of AO RTC systems

This section briefly covers some of the AO RTC that have been used in

the recent past, or are currently in operation in large observatories.
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5.4.1 NAOS

Nasmyth Adaptive Optics System (NAOS) was the first AO system

on the VLT 8 m telescope, beginning development in 1999. It has

two SH-WFS. The first operates at visible wavelengths and the second

operates in the infrared. Each WFS has two lenslets arrays, which can

be switched. The first lenslet array is a 14×14 (144 valid sub-aperture2),

and the second 7×7 (36 valid sub-apertures). This configuration is used

to allow the WFSs to operate over a large magnitude range. The larger

lenslet array is designed to sample bright natural guide stars while the

smaller one is designed for use with faint natural guide stars[14]. The

wavefront correction is provided by a tip-tilt beam steering mirror, and

an 185 actuator continuous faceplate DM.

The system is controlled by the RTC, which is based on four modular

boards using a modified C40 processor from Texas Instruments. The

C40 is a DSP that can operate at 60 MFLOPs.

It uses a classical MVM reconstruction algorithm. This system can

be updated at a maximum frequency of 600 Hz[15]. Table 5.4 shows a

summary of the NAOS instrument. This can also be seen in Table 5.8

with a comparison to other AO instruments.

Table 5.4: Summary of the main characteristics of NAOS. WPU and WFR, give the

hardware the wavefront processing and reconstruction respectively.

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
WPU WFR

NAOS SCAO 14×14 185 600 DSP DSP

2By valid, we refer to only the sub-aperture illuminated by the telescope, (see appendix A.2).
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5.4.2 SPARTA

Standard Platform for Adaptive Optics Real-time applications (SPARTA),

created by the European Southern Observatory is a AO RTC toolbox to

speed the development of AO RTCs for the VLT. The aim of SPARTA

is to provide a standard platform to build and test AO RTCs[16].

The SPARTA RTC consists of a real-time box and a co-processing

cluster. The real-time box contains the hard real-time pipeline, wave-

front processing, reconstruction and control, and offloads all non crit-

ical real-time tasks to the co-processing cluster. The real-time path

of SPARTA is performed by a hybrid system of FPGAs and DSPs to

produce the lowest latency response possible. The co-processing clus-

ter is a set of multi-CPU, multi-core Linux servers interconnected on a

private real-time Ethernet network.

Figure 5.6 shows the architectural schematic for SPARTA. The RTC

pipeline is provided by FPGAs, DSPs and powerPCs, while all non-

real-time tasks are performed on the co-processor servers. The pixels

from the wavefront cameras are fed into VPF1 boards, which contain

two virtex-II pro FPGAs being controlled by power PCs. A single

VPF1 board can provide the WPU for two CCD240 SH-WFS (two

boards are needed for AOF systems). The slopes are then transferred

to BittWare T2v6 boards. These boards have 8 DSPs which provide

the wavefront reconstruction processes. One T2v6 board is needed per

WFS to provide the required processing power. SPHERE uses two

to allow for the interaction matrix to be updated without impacting

the performance. The wavefront reconstruction results are then sent

to a final VPF1 board which implements the integrator with optimised

modal gain controller, checks for any saturation of commands as well as
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provides the anti-vibration control. The real-time pipeline data transfer

is provided by a VXS backplane running at 2.5 Gbit s−1 via a zero-

latency VXS switch, using the sFPDP protocol. The real-time box

connects to the co-processing servers using Gigabit Ethernet.

Figure 5.6: SPARTA architecture schematic Copyright: ESO[16]

Table 5.5 gives a brief overview of two of the main systems that use

SPARTA as the RTC. We present SPHERE, which is the current planet-

finding instrument on the VLT[17] with an extreme AO system[18].

SPARTA is also in use with VLT AOF[19] instruments GRAAL[20]

and GALACSI[21], and is planned for use with ERIS[22].
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Table 5.5: AO instruments that use SPARTA as the RTC. WPU and WFR, give the

hardware the wavefront processing and reconstruction respectively.

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
WPU WFR

SPHERE XAO 40×40 1377 1500 FPGA DSP

AOF LTAO 4×40×40 1170 1000 FPGA DSP

As we move from the VLT to the era of the ELTs, the current iter-

ation of SPARTA will not be able to cope with the increase in compu-

tational complexity:

the E-ELT with its instruments poses new challenges in

terms of cost and computational complexity. Simply scaling

the current SPARTA implementation to the size of E-ELT

AO system would be unnecessary expensive and in some cases

not even feasible.[23]

5.4.3 DARC

Durham Adaptive Optics Real-time Control (DARC) is a RTC designed

to be a highly customisable generic AO RTC software. It was originally

designed to run and make use of multi-core CPU architectures, but it

is now able to be used with more complex heterogeneous computing

architectures[24]. A large amount of development has been put into

the use of hardware accelerators such as FPGA and GPUs[25]. DARC

also supports many different system architectures, as well as support-

ing many modes of AO such as MOAO and GLAO. It has also been

developed to be able to perform many different wavefront reconstruc-

tion algorithm, such as MVM, learn-and-apply, and CuReD. These have
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also been tested on sky[7, 26]. DARC also supports many different WFS

designs such as SH-WFS and PYR-WFS.

DARC has been used as the RTC for CANARY, a MOAO demon-

strator for EAGLE3, and has being tested on the 4.3 m William Herschel

Telescope in the Canary Islands[27]. CANARY (shown in figure 5.4.3)

has four 7×7 SH-WFS, and each sub-aperture has 16×16 pixels and

is imaged on a 128×128 detector. The correction is made on a 8×8

piezostack DM conjugated to the pupil plane. The RTC runs at a fre-

quency of 250 Hz with a 800 µs latency. The real-time pipeline uses

hardware based FPGA WPUs similar to those used in SPARTA[28].

The slopes are then sent via a Serial-FPDP interface, to the wave-

front reconstruction of DARC is processed on multi-core CPU based

hardware[29].

Figure 5.7: Block diagram of CANARY Phase B RTC configuration[30].

A new project called the Canary-Hosted Upgrade for High-Order

Adaptive Optics is, as the name suggests, a high-order upgrade to
3EAGLE has since been merged with EVE to create MOSAIC
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Canary[31]. This system will be using a 31×31 MEMS DM in addi-

tion to the smaller DM already hosted in Canary[32]. CHOUGH will

use the same RTC as Canary but it will be upgraded to take advan-

tage of high performance hardware accelerators such as Xeon Phis or

GPUs[33].

We have used DARC intensively, in particular for testing the perfor-

mance of the Xeon Phi (see chapter 7).

Table 5.6: Summary of CANARY and CHOUGH. WPU and WFR, give the hardware

the wavefront processing and reconstruction respectively.

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
WPU WFR

CANARY LTAO 4×(7×7) 52 250 FPGA CPU

CHOUGH LTAO 30×30 950 1000 FPGA TBC (CPU/GPU)

5.5 Example of planned AO RTC systems

In this section, we intend to discuss a few examples of the planned RTC

systems being developed for the ELTs. This section is not exhaustive,

but intends to give the reader a sense of the on-going projects in the

field.

5.5.1 NFIRAOS

The Near Field InfraRed Adaptive Optics System (NFIRAOS) is planned

to be the AO facility for the Thirty Meter Telescope. It is planned to

offer the required AO correction needed for three science instruments

on the TMT. NFIRAOS is an MCAO system using six laser guide stars,

five in a pentagon pattern and one on axis, as well as a single natural

guide star.
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The baseline for the NFIRAOS control system is to use Xeon E5

CPUs, although GPUs[34] and Xeon Phis[35] have also been inves-

tigated. With the recent release of Xeon Phi Knights Landing (the

second generation of commercial Xeon Phis), this might be subject to

change as the advertised specifications will allow the calculations to

run on cheaper hardware, using less power and taking up less server

rack space. In terms of complexity, the tomographic reconstruction is

performed by a 35k×8k classical MVM at 800 Hz.

Table 5.7: Summary of the main characteristics of NFIRAOS.

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
Hardware

NFIRAOS MOAO 6×(60×60) 7673 800 CPU/Xeon Phi

An architectural overview of NFIRAOS is presented in figure 5.8.

Each WFS has its own high-order processing (HOP) server to process

the incoming wavefront slopes, and a wavefront corrector control server

to calculate the DM commands.

Figure 5.8: NFIRAOS architecture schematic. copyright: TMT

(TMT.AOS.PRE.16.024.REL01)
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5.5.2 Green FLASH

The aim of the Green FLASH project is to design and build an AO RTC

prototype which is capable of providing the required processing for E-

ELT first light instruments[36]. Green FLASH is trying to bridge the

gap between VLT scale and E-ELT scale AO RTCs. This project’s pri-

mary objective is to produce a prototype cluster which is able to reach

a sustained performance of 1.5 TMAC s−1 of computing power, whilst

processing 250 Gbit s−1 of streaming data with a maximum jitter of

100 µs over 1 s of operation, using COTS accelerators such as GPUs as

compute engines. It shall be compatible with high performance switch

solutions, based on standard serial protocols (TCP/UDP through 10 G

Ethernet and 40 G Infiniband).

The performance of the prototype cluster will be assessed by mea-

suring the performance of the Cholesky factorisation4, the upload of

the control matrix and matrix-vector computation. These calculations

should be performed with minimal introduced latency and jitter in the

control process.

An example block diagram for Green FLASH project is presented in

figure 5.9
4This is a technique to calculate the pseudo-inverse of a non-square matrix. The result of which

is needed when computing a new control matrix.
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Figure 5.9: Green Flash Architecture Schematic. copyright: Gratadour[37].

Green FLASH is still in the beginning stages of the project and is

not mature enough to have a complete design, but aims at designing

the building blocks for a system that can be developed for the E-ELTs

first light instrument, such as MAORY[38].

5.6 Complexity of E-ELT RTC systems

We have presented a selection of current and future AO systems5. Fig-

ure 5.10 illustrates the increase in computational complexity of these

systems over time. The MACS values of each of these systems have been

estimated assuming these systems are using SH-WFS, the WCoG al-

gorithms and the wavefront reconstruction is performed using a MVM.

As no additional calculations have been assumed, the actual complexity

value is likely to be higher. A blue shaded section has been added to

indicate the period of time over which the work presented in this thesis

was performed.
5The data in this section is taken from these systems.

120



Figure 5.10: The increasing complexity of AO systems over time. The shaded blue

section refers to the years the work within this thesis has taken place.

Table 5.8 gives a more detailed breakdown of the major systems

presented in figure 5.10. All these current RTCs are using some non-

CPU hardware in the hard RTC pipelines. These systems are making

use of the deterministic nature of FPGAs and the power of DSPs. Plans

for the future AO RTCs, indicate that higher numbers of RTCs are using

more generic hardware such as CPUs (NFIRAOS) and GPUs.
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Table 5.8: Summary of the main characteristics of current and future AO systems.

WPU and WFR, give the hardware the wavefront processing and reconstruction re-

spectively.

Current

telescopes

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
WPU WFR

NAOS SCAO 14×14 185 600 DSP DSP

CANARY LTAO 4×(7×7) 52 250 FPGA CPU

SPHERE XAO 40×40 1377 1500 FPGA DSP

AOF LTAO 4×(40×40) 1170 1000 FPGA DSP

CHOUGH SCAO 30×30 950 1000 FPGA CPU/GPU

Future ELTs

AO
WFS

(lenslets)

DM

(actuators)

Freq

(Hz)
Hardware

E-ELT IFS LTAO 6×(74×74) 5316 500 TBC

NFIRAOS MOAO 6×(60×60) 7673 800 CPU/Xeon Phi

E-ELT MOS MOAO 10×(74×74) 5316 250 TBC

The systems presented for the ELTs are all mainly first generation

AO systems, and the baseline for the ELTs. In the future these AO

systems are only going to be more complex and require more powerful

RTCs. As has been stated earlier, the aim of this thesis to investigate

novel many-core technologies that may be suitable for these instru-

ments. As there are differences in all these instruments we are taking a

general approach to our testing. Our intent being that the result pre-

sented in later chapters can useful for building any AO RTC. Although

the aim is to remain general, we are still focusing our testing on these

ELT baseline instruments.
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5.7 Conclusion

In this chapter, we have discussed real-time computing and its roles in

AO instruments. We have presented the main modules that constitute

the most important building blocks of an AO RTC: the wavefront pro-

cessing unit and the wavefront reconstruction unit. Both modules are

crucial elements to ensure that the overall latency, and therefore the

temporal error, are minimised. We have presented current and future

RTC systems and the associated complexity.
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dron, Nigel A Dipper, Aglaé Kellerer, Stephen J Goodsell, Gérard

Rousset, Eddy Younger, Michel Marteaud, et al. Canary: the on-

sky ngs/lgs moao demonstrator for eagle. In SPIE Astronomical

Telescopes+ Instrumentation, pages 70150E–70150E. International

Society for Optics and Photonics, 2008.

[31] Daniel Hölck, Nazim Ali Bharmal, Cornelis M Dubbeldam, and

Richard M Myers. Chough: spatially filtered shack-hartmann

wave-front sensor for hoao. In SPIE Astronomical Telescopes+

Instrumentation, pages 990930–990930. International Society for

Optics and Photonics, 2016.

[32] Nazim A Bharmal, Alastair G Basden, Cyril J Bourgenot, Mar-

tin Black, Cornelis M Dubbledam, David M Henry, Daniel Hölck-

Santibanez, Timothy J Morris, David J Robertson, Jürgen Schmoll,

et al. Chough: implementation and performance of a high-order

4m ao demonstrator. In SPIE Astronomical Telescopes+ Instru-

mentation, pages 990948–990948. International Society for Optics

and Photonics, 2016.

[33] Bharmal Nazim, Daniel Holck, Richard Myers, Timothy Morris,

Marc Dubbledam, Alastair Basden, and Edward Younger. Progress

with the 4m high-order ao demonstrator, chough. In Adaptive Op-

tics for Extremely Large Telescopes 4–Conference Proceedings, vol-

ume 1, 2015.

129



[34] Lianqi Wang. Design and testing of gpu based rtc for tmt nfiraos.

In Third AO4ELT Conference. AO4ELT3, volume 13172, 2013.

[35] Malcolm Smith, Dan Kerley, Glen Herriot, and Jean-Pierre Véran.
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Chapter 6

Wavefront processing unit: an I/O

problem
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sall, Alastair Basden, and Nigel Dipper. ”Novel technology for

reducing wavefront image processing latency.” SPIE Astronomical
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In an adaptive optics (AO) system, the role of the wavefront sensor

processing unit (WPU) can be briefly summarised as to enable the

reduction of the wavefront sensor (WFS) data to gradient vectors (i.e.

slopes data that is then passed further to the wavefront reconstruction

unit). We will be focusing in this chapter on the processing required for

the Shack-Hartmann WFS (SH-WFS). The image is split into regions

called sub-apertures, which can be processed independently from each

other. A detailed explanation of the role of the WPU and the algorithms

used have been presented in section 5.2.

In this chapter, we assess the performance of a specific hardware

that we have identified as a potential suitable candidate: the TILE-Gx.

This hardware is benchmarked relative to a wide range of expected

ELT instruments requirements and exhibits very good performance.

We begin this chapter by discussing the specific characteristics of the

TILE-Gx (6.1). We then present the test facility used (6.2) and detail

the experimental results in 6.3 and 6.4.

6.1 TILE-Gx36

The TILE-Gx is a multi/many-core processor family produced by Mel-

lanox. It consists of a mesh architecture of cores ranging from 9 up to

72 CPU cores. An illustration of the processor block diagram is given

figure 6.1. These devices have been designed primarily for applica-

tions such as networking, video encoding or cloud computing. They are

therefore designed mainly to provide many powerful CPUs and good

power efficiency. This allows the Tile-Gx series to offer a flexibility

of usage, especially when compared against special-purpose processors

such as DSPs or FPGAs. One of the main features of the TILE-Gx

133



family cards is that they offer multiple 10 GbE I/O ports. Data can

be rapidly and very efficient delivered to the cores for processing. In

this chapter, we investigate the TILE-Gx36 which as with all COTS

hardware is not designed specifically for use in a AO RTC. The TILE-

Gx36 is a many-core processing card with 36 cores and four 10 GbE

Ethernet ports. The TILE-Gx36 is part of the TILE-Gx range which

offers multiple options for clock frequencies and other technologies such

MiCA Accelerator for encryption. The specifications of the model we

are testing are shown in table 6.1.

Figure 6.1: TILE-Gx36 Processor Block Diagram[1].
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Table 6.1: TILE-Gx36 specifications.

Processor Tile-Gx36

Device ID TLR4-03680CG-12C-A3b

Number of Cores 36

Clock Frequency 1.2 GHz

cache

Total 12 MB

L2 256 Kb per core

L3 9 MB Coherent

PCIe 2.0

Memory DDR3

The TILE-Gx comes with a limited set of specific libraries and a

development environment called the ‘Tilera Multi-core Development

Environment’ (MDE). The MDE offers compilers, an IDE and libraries

for the TILE processors. This environment supports development in

languages such as C/C++ as well as Java. The Tile-Gx processors

run a micro-Linux kernel. Since the Linux mainline release of 2.6.36 in

October 2010, there has been official support of the TILE architecture

in the Linux mainline. Developing software for the TILE architecture is

therefore very similar to developing conventional software for standard

x86 instruction set CPUs.

The TILE-Gx series can fill many computation roles. Figure 6.2

shows two block diagrams of the TILE-Gx36 filling the role of a front

end processor controlling I/O for a host computer. It also shows how

the TILE-Gx can be used as a node in a dataflow pipeline. Using

the TILE-Gx as a WPU, and depending on the actual architecture

of the AO RTC system, either of these methods could be used. This

chapter, while investigating the performance of the TILE-Gx hardware,

is independent of the actual AO RTC system architecture choice.
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(a) (b)

Figure 6.2: Block diagrams showing how the TILE-Gx36 could be used in (a) High

I/O front end application and (b) In line as part of a dataflow pipeline.

The TILE-Gx family has mainly been designed to be used in data

centres and to perform networking tasks such as packet filtering, band-

width management, SSL/IPsec security protocol processing and high

density video transcoding. While it is not designed to be the WPU for

an AO RTC system, the TILE-Gx theoretically offer the computational

power (i.e. with the many-core environment needed for ELT scale sys-

tems) as well as the high I/O capacity capable of coping with the high

data throughput delivered by WFS.

Many other technologies can naturally be used for the WPU. In

particular, the type of processing required is particularly well adapted

to FPGAs. Many modern systems currently use FPGAs for this task;

they are for example used in SPARTA on SPHERE. This is due to

FPGAs being suitable to perform small amounts of processing on large

amounts of data. The major downside is typically the development time

associated with programming in low level languages such as VHDL or

Verilog and the high initial implementation costs.

Modern tools are however helping bridge this gap. Tools such as

OpenCL allows FPGAs programmed from C/C++ (see section 4.3.1.3).

OpenCL is also available for co-processing cards such as GPUs and Xeon

Phi and could offer a good alternative for platform independent devel-
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opment. Several platforms exist to accelerate development time for

non-FPGA experts. For example, Quickplay is software-centric design

platform for FPGA developed by Accelize for non-FPGA experts, a spin

out from PLDA. It offers a modeling tool allowing the user to connect

a series of functional blocks. These blocks can either be developed in

C/C++ by the user or for common functionality (i.e. encryption/com-

pression) can be purchased from an in-built store. When development

is complete it can then be deployed on any supported FPGA board.

These tools can potentially allow the reduction of development time

and costs. However, they are also at the beginning of their life cycle

and are subject to changes which may impact many developments, es-

pecially performance or upgradability. We have decided to use COTS

hardware (Tile-Gx) which allows the development to be much closer to

the standard x86 development done in C/C++. It allows greater flexi-

bility for future upgrades and enables us to stay hardware independent

for as long as possible to reduce future maintenance and development

costs.

6.1.1 Memory Bandwidth

An important indicator of the achievable performance of computer pro-

cessing cards, alongside the number of available cores and the clock fre-

quency, is the memory bandwidth which can be extremely important

for certain classes of computational tasks. The memory bandwidth is

the rate at which data can be read or stored from memory by the pro-

cessor. It can have a large impact on performance: if a core cannot

access data in memory, calculations cannot be performed in time which

leads to long latencies. Furthermore, when developing an application,
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it is important to understand memory access issues in order to optimise

for the available cache size and reduce the number of calls needed to

slower memory.

In the WPU, large amounts of data are received from wavefront

cameras, processed, and then output. If the memory bandwidth is too

low, there will be a bottleneck in the data processing, leading to long

delays and increased latencies.

To measure the memory bandwidth of the TILE-Gx, the STREAM

memory benchmark[2] was used. STREAM is a benchmarking tool

developed to assess the memory bandwidth of hardware using data

sets many times larger than the cache of the chip. More information

can be found in section 4.2.3.2, in particular about the different tests

and outputs of the STREAM benchmark (i.e. Copy, Scale, Sum and

Triad). This tool has been used by many groups and has produced a

wide survey of the achievable memory bandwidths of a wide variety of

computational hardware.

The STREAM memory benchmark performs four different routines

to measure the memory bandwidth. The tests we are most interested

in are the TRIAD, and to a lesser extent, the SUM. In the WPU the

Centre of Gravity (CoG) algorithm (see section 5.2.3.1) for each pixel in

a sub-aperture, there will be two TRIADs and a SUM performed. The

attainable memory bandwidth will sit somewhere between the SUM and

TRIAD results.

Table 6.2 shows the results of the STREAM memory benchmark.

The results show that the TILE-Gx has a memory bandwidth of ap-

proximately 12 GB s−1, this is low compared to other commercial off-

the-shelf (COTS) technologies. For comparison a mid-range proces-
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sor used in standard desktop computers (Xeon i5-4690) has a memory

bandwidth of 25 GB s−1[3] and the computer this thesis was written on

(AMD Fx 6300) has a memory bandwidth of up to 29 GB s−1.

Table 6.2: Tile-Gx36 STREAM results.

Function Rate (MBs−1) RMS time (s) Min time (s) Max time (s)

COPY 10985.1 0.097962 0.097745 0.101567

SCALE 12536.7 0.085992 0.085648 0.094419

SUM 12381.5 0.130223 0.130082 0.133454

TRIAD 12425.6 0.129882 0.129621 0.134147

6.1.2 Zero Overhead Linux

6.1.2.1 ZOL Mode

In normal operation, the TILE-Gx runs a non real-time micro Linux

kernel, each core will be affected by standard Linux interrupts. One

of the more interesting and useful modes of operation of the TILE-

Gx is the Zero Overhead Linux (ZOL) mode. In the ZOL mode, the

TILE-Gx offers the possibility for the user to specify a subset of tiles

(i.e. cores), each of which will run a single, user-space task, without

incurring any Linux system overheads[4]. The specified cores are free of

all Linux system overheads and interrupts. The ZOL mode allows for

near real-time performance and is capable of removing major variations

in execution time. This is an important aspect for the WPU, to perform

fast and stable pixel processing and is naturally the mode that has been

chosen to test the TILE-Gx.
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6.1.2.2 Comparison of non-ZOL and ZOL performance

Figure 6.3 presents histograms for the execution time of the TILE-

Gx performing an image calibration followed by CoG calculations (see

section 5.2.3.1)) using a 500×500 WFS detector. These calculations

are repeated 106 times. The calculation is performed both using ZOL

as well as in normal operation (i.e. non-ZOL). In normal operation

the pthreads implementation is used while in ZOL mode threading is

performed using the TILE-Gx specific libraries.

Not only do we see that the ZOL mode has a lower mean (298 µs vs

900 µs), but also that it reduces the variation in execution time referred

to as jitter (calculated as the standard deviation).

(a) (b)

Figure 6.3: Comparison between non-ZOL and ZOL modes of operation and its effect

on the wavefront processing time and stability. (a) Non-ZOL and (b) ZOL

Table 6.3 summarises the main results obtained in figure 6.3 and

further illustrates how performance can be increased by using the ZOL

mode. We can observe a strong reduction in mean execution time (a

factor 3) and a reduction in standard deviation by a factor of almost

100.
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Table 6.3: Summary of the main quantities obtained in figure 6.3 comparing calcula-

tion times using ZOL and non-ZOL modes. Values are given in µs.

Mode mean σ min max range

Non ZOL 893.66 98.00 645.34 1430.21 784.86

ZOL 298.72 1.33 292.72 304.252 12.151

For this test we used a detector of size 500×500 pixels, not all WFS

detectors for future AO systems will be this size and it is important

to understand how ZOL and non-ZOL modes evolve with detector size.

Figure 6.4 shows the image calibration and CoG calculations performed

by the WPU for both ZOL (blue) and non-ZOL (red) modes. Each

time measurement is repeated 106 times per detector size. For each

data point, the plot also shows the standard deviation (black) and the

total measured range (green).

Figure 6.4: Comparison between non-ZOL and ZOL modes of operation for the scaling

of the detector size (the full detector size being N×N). Red is non-ZOL results and

blue is ZOL results. The vertical bars represent the standard deviation (black lines)

and the total measured range (green lines).

Table 6.4 summarises the main results obtained in figure 6.4 and
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further illustrates how performance can be increased by using the ZOL

mode across multiple problem sizes. We can observe a strong reduction

in mean execution time and a reduction in standard deviation, which is

more pronounced for large system sizes. The variation in execution time

for the ZOL mode are very stable, staying at the level of 1.3µs regard-

less of the detector size. The ZOL mode very convincingly offers both

increased mean performance and increased stability (determinism).

Table 6.4: Summary of the main quantities obtained in figure 6.4 comparing calcula-

tion times using ZOL and non-ZOL modes. Values are given in µs.

size

(N×N)

ZOL non-ZOL

mean std range mean std range

100 41.163 1.312 22.685 519.61 68.338 576.048

200 74.152 1.335 13.9 645.551 70.769 645.809

300 131.252 1.323 11.743 703.694 70.465 597.897

400 204.158 1.268 12.008 785.256 84.533 620.083

500 298.007 1.329 12.151 893.657 98.006 784.862

The significant reduction of the mean and jitter in ZOL mode can

come from multiple sources. Using the ZOL mode, we reduce the op-

erating system (OS) overheads and stop the OS from interrupting cal-

culations. We believe the major improvements in performance actually

come from using the hardware specific libraries and not only from using

the ZOL mode. We make this assumption due to the fact that the ef-

fect of moving from the standard libraries to the ZOL and proprietary

libraries shifts of the entire distribution. If this was an effect of only re-

moving the OS activity and interrupts, we would likely see a reduction

in the outliers but not the entire distribution.

It is unlikely that the impact of the OS would be seen at every it-

eration, in other words the impact of the OS is periodic and not a
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constant. A more likely scenario is that the OS impacts only a subset

of iterations and therefore creates outliers. As we see a shift in the

entire distribution and not only the outliers, we believe that the im-

proved performance is due to a better optimised algorithm provide by

a different implementation of the desired calculation.

The hardware specific libraries are optimised specifically for the

TILE-Gx and provide the main performance improvements. Since it

is not possible to use standard C/C++ libraries in the ZOL mode, pro-

prietary libraries must be used. This could potentially increase devel-

opment time but ensures that we achieve the very best possible perfor-

mance. For the rest of the chapter we will use both the vendor-supplied

hardware specific libraries and the ZOL mode, unless otherwise men-

tioned.

6.1.2.3 ZOL mode limitations

When using ZOL mode, the TILE-Gx does not allow certain functions

to be used. These functions typically are system level functions such

as printing to screen (printf and cout) or debugging methods. This

can lead to some difficulty debugging code. For this reason the TILE-

Gx comes with the MDE to help the development and reduce time to

market of products.

Shared memory

The TILE-Gx libraries include a proprietary implementation of a multi-

threading library. It has been developed to optimise the TILE-Gx

available resources and it is recommended over the standard C/C++ li-

braries. This library uses very similar interfaces to pthreads and allows

for simple portability of code as shown in listing 6.1. This is a exam-
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ple of the Tile-Gx specific code when compared against pthreads the

standard multi-thread library available in C. This shows the similarities

between the libraries interfaces and how code can be developed to be

portable without making any major changes to the code structure.

Listing 6.1: Code example in C illustrating the portability of software specifically

written for the TILE-Gx to another platform using standard multi-threading libraries.

#i f d e f TILEGX

pthreads mutex lock ( pthread mutex t mutex ) ;

#e l s e

tmc sp in mutex sp in lock ( tmc spin mutex t mutex ) ;

#e n d i f

Another important aspect of the ZOL mode is that each thread is

a single user space task with no access to the global memory. For

example, using malloc to allocate memory will work within a single

thread, but this memory cannot be accessed by other threads. To allow

threads to access and share memory, the memory has to be allocated

using the TILE-Gx libraries and has to be flagged as shared memory;

this is shown in listing 6.2.

Listing 6.2: Example of C code to allocate memory that can be accessed and shared

by all threads.

t m c a l l o c t a l l o c ;

t m c a l l o c s e t s h a r e d (& a l l o c ) ;

i n t ∗ data = tmc al loc map(& a l l o c ,

l ength ∗ s i z e o f ( i n t ) ) ;

//do something

// f r e e memory
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tmc alloc unmap ( data , l ength ∗ s i z e o f ( i n t ) ) ;

Debuggers

The profiler, for example, gives information on bottlenecks or ineffi-

ciencies in the synchronization between threads and helps the developer

to optimise complex multi-threaded code. Both of theses tools typically

interact with the OS and for this reason cannot be used in ZOL mode.

This can add complexity during code development since other standard

debugging techniques (such as print variable to screen) are also not

available. The standard debugger was used during code development

but was not included during the actual TILE-Gx performance tests.

Timings

It is crucial in our application to be able to measure the execution

time of sections of code accurately. In standard C/C++, the profiler is

typically used to measure times. However, it adds unwanted overheads

that influence the overall timing accuracy. Another possibility is to

use the Linux clock. In that case, we measure the difference between

the time before and after the section of code of interest. This method

has been shown to be accurate but unfortunately doesn’t work in ZOL

mode because of the need to access system levels functions. The MDE

also offers multiple tools to measure performance in ZOL mode. There

are multiple techniques offered though they all stem from clock cycles

between two points in the code.

Because of the above limitations, we have decided to measure per-

formance using the simplest instance of counting clock cycles. This
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method is illustrated in code listing 6.3. This method requires the spec-

ified clock frequency to be accurately known to give an absolute time

measurement. We believe that this limitation is in reality negligible,

especially when comparing relative performance. We have compared

this method to using the Linux clock in non-ZOL mode and have found

them to give identical results.

Listing 6.3: Code example to calculate execution time of a section of code based on

the CPU clock frequency.

s t a r t c o u n t = g e t c y c l e c o u n t ( ) ;

// Do s t u f f

some funct ion ( )

end count = g e t c y c l e c o u n t ;

c l o c k f r e q u e n c y = tmc pe r f g e t cpu speed ( ) ;

time = ( end count − s t a r t c o u n t )/ ( c l o c k f r e q u e n c y ) ;

6.1.3 TILE-Gx I/O: MPIPE

One of the main functions of the WPU is to receive wavefront camera

images at a high frame rate. The TILE-Gx Ethernet ports are required

to receive large amounts of data at high speed without losing any pack-

ets. Sockets are the standard technique to send data over Ethernet

when working with Linux in C/C++. The standard socket libraries

offer a standardised way of processing I/O Ethernet data and involve

high levels of interaction with the OS.

standard library sockets are not just implementations in the pro-

gramming language (i.e. C/C++), they are constructs in Linux and

allow an interface for applications to interact with the hardware. There

are many different levels of interactions that the developer typically
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does not need to have access to. These can be broken down into:

• Application level

• Transport layer (UDP/TCP)

• Internet layer (IP)

• Network interface card, (NIC) (Ethernet, WIFI, etc.)

The only layer the developer interacts with is typically the applica-

tion layer, the rest is handled by the OS. This leads to difficulties when

optimising systems as the typical received packet by a socket is handled

as follows,

• Packet received at hardware NIC.

– An interrupt is generated.

• OS interrupt handler moves data from hardware buffer into a main

memory

– Packet is placed in a queue1

• The OS processes the packet in the protocol stack for IP UD-

P/TCP processing.

– Data is sent to the corresponding socket (e.g. IP address and

port number).

• Packet is queued in socket queue.

– Checks if any application needs packet. If needed, the packet

is copied from queue to user defined buffer.
1In Linux only a single receive queue exists for all network interfaces
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The queues are typically ring buffers, which are an allocation in

memory where data can be stored. Once the buffer has been filled, it

will start overwriting the previously stored data at the beginning of

the ring. Ring buffers gives a small memory allocation for an infinite

amount of incoming data. They are particularly useful in scenarios with

data streams or when data in temporally stored while being processed.

Due to the limited storage capability, ring buffers are problematic if

data is required to be permanently stored in memory.

Unfortunately the standard library sockets are unusable in ZOL

mode as they make system level calls from the hardware interrupts sup-

plied by the Network Interface Card (NIC) and interact with the OS.

The TILE-Gx comes with its own libraries to handle I/O called Multi-

core Programmable Intelligent Packet Engine (MPIPE). MPIPE offers

low level API to control the data communication. This allows complete

control over the queue buffers and registers to control the packet clas-

sification, load balancing, and buffer management. This requires much

more developer involved initialisation than standard sockets, but once

the MPIPE engine has been initialised its use is not too dissimilar to

that of sockets. In addition, and as shown in section 6.1.2, the standard

libraries do not appear to perform as well as the hardware specific li-

braries that are supplied by Mellanox. Although using MPIPE libraries

increases development time and reduces code portability, they offer far

greater performance.

Since the OS cannot be accessed by cores in ZOL mode, the NIC

has to be handled directly by the application rather than the OS. The

application will need to initialise the NIC, allocate memory for the ring

buffers and NIC registers, and decided the rules in which incoming data
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will be handled.

To understand how the TILE-Gx handles the I/O of data using both

sockets and MPIPE we have streamed images to the TILE-Gx over

10 GbE. Table 6.5 shows the number of Ethernet packets that the TILE-

Gx has received by the TILE-Gx card after sending 106 image frames.

Each frame contains 640×640 pixels with 8 bit pixel depth, giving each

frame ≈ 0.4 MB of data or 285 standard size (1500 Bytes) Ethernet

packets. It was not possible to use jumbo frames (9000 Bytes) since the

Linux kernel version used on the TILE-Gx did not support them at the

time of the tests2.

Data is streamed at the fastest rate the FPGA Pixel Emulator (see

section 6.2) is able to; which for this example is 7.5 Gbit s−1. If we

assume a first light E-ELT instrument with a single 800×800 WFS and

a frame rate of 1 kHz the WPU would need to be receiving data at a

rate of ≈ 5 Gbit s−1[5]. Here we are testing rates slightly higher than

may be used in a first light instrument but will give a good indication

of the TILE-Gx performance at high data rates.

The TILE-Gx is tested under three different modes of operations; the

first being standard library sockets. The second two use the MPIPE

API with and without using ZOL. From table 6.5 it is obvious that the

same problems we saw in section 6.1.2 are also present here. There are

no missed packets when using MPIPE in both modes, while the socket

implementation only managed to receive ≈ 25% of the data packets.

Considering the poor performance of the standard C/C++ libraries

relative to the hardware specific libraries (see section 6.1.2), it is not

surprising to see that the MPIPE implementation can easily handle the

ingress of data whereas the socket implementation struggles.
2A new kernel version has been since released that supports jumbo frames on the TILE-Gx.
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Table 6.5: Frames received by the TILE-Gx in different modes of operations

Method packets received packets missed percentage received

Sockets 69554011 215445989 24.4%

MPIPE 285000000 0 100%

MPIPE ZOL 285000000 0 100%

Figure 6.5 shows the histograms of the ingress of data onto the TILE-

Gx for each image frame. Table 6.6 summarises the main values from

the distributions shown in figure 6.5. The socket implementation shows

much worse performance compared to either the MPIPE or MPIPE

ZOL implementation and does not have an acceptable level of perfor-

mance for real-time system applications.

For the MPIPE we see similar results from the ZOL and non-ZOL im-

plementations. The difference in distribution is minor with a slight re-

duction in overall range. From this alone either implementation should

suffice. A maximum of two cores were under load during these tests,

leaving 34 idle cores where the OS background tasks are able to be

run and not impact the results. As the load on the TILE-Gx increases

it is increasingly likely that the non-ZOL variance would be increased

as scheduling issues and system overhead increase. This could lead to

some OS tasks being performed on cores running WPU computations.

Since the ZOL mode removes these issues from specified cores the ZOL

distribution would remain unaffected, unless the system was running at

the memory bandwidth limit.
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(a) (b)

(c)

Figure 6.5: Comparison between standard library sockets (a) and the MPIPE in ZOL

(b) and non-ZOL modes (c) of operation and the effect this has on the receiving

Ethernet packets.

Table 6.6: Frames received by the TILE-Gx in different modes of operations

Method mean (µs) std (µs) range (µs)

Standard library sockets 4760.27 4523.33 52690.60

MPIPE 438.70 0.897 5.48

MPIPE ZOL 438.70 0.897 5.43

From these data sets it is clear that when handling the I/O of data

on the TILE-Gx, the MPIPE API is needed. This allows the TILE-Gx

to achieve the best I/O performance, when high data rates are used.

Throughout the rest of this chapter, where I/O of data is performed

with the TILE-Gx the MPIPE will be used.
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6.1.4 Thread affinity and priority

When building multi-threaded applications on many-core processors it

is important for the developer to specify the core that the processes will

run on to make sure that any real-time processes are run on a single

core. Running on a single core allows the maximum performance and

avoids context switching.

The TILE-Gx offers tools for setting the affinity of threads, though

in a different way to how this is typically done on Linux. Specifying the

tiles for the process to run on is especially important for ZOL mode as

this interferes with the standard Linux scheduler.

It is important for time critical applications running on an OS to

have raised priorities. The scheduler in the OS decides what process to

run when and where based on that priority. It can make this decision

using different metrics and also depends on the scheduler mode, more

information on schedulers in section 4.3.3. One of the main factors in

this is the priority of the process. Processes with higher priority are

typically performed before those with lower priority.

When the TILE-Gx is in ZOL mode the OS is not interrupting on

specified tiles, as long as only a single thread is allowed on each tile so

no context switching can takes place, priority being raised will make no

difference.

6.1.5 Impact of system parameters on performance

6.1.5.1 Impact of number of cores on performance

The next generation of TILE-Gx, the TILE-Mx series was announced

to be released in 2016[6]. After the acquisition of EZChip by Mellanox,

there have been no subsequent announcements of the new chips. It is
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expected that the new TILE-Mx will use ARM processors and expand

the number cores up to 100. The chips are also expected to use DDR4

RAM (instead of DDR3 currently) giving the TILE-Mx access to higher

memory bandwidths.

With such a wide range of possible number of cores, it is important

to understand how this number impacts performance. We chose to

perform the full-frame wavefront processing (see section 6.3 for more

information on full-frame) where we wait for a complete WFS image

frame to be received before proceeding the data.

Figure 6.6 shows how the mean performance of the TILE-Gx36 scales

with the number of cores being used for processing. Table 6.7 enumer-

ates a selection of cores corresponding to current and announced TILE-

Gx series. From the measured data, we are able to fit a 1
number of cores to

extrapolate beyond 36 cores. This fit function is described Amdahl’s

law (see section 4.2.2) to characterise the performance increase when

using multiple cores for a parallelisable and fixed problem size.

The wavefront processing calculations performed on the TILE-Gx

are shown to scale predictably with number of cores being used. For

example, we would be able to decrease the mean processing time by

nearly a factor of 2 (i.e. 1.97) by simply increasing the number of cores

from 36 to 72. And by increasing from 16 to 64 cores (×4 cores) we see

a decrease in the mean processing time by a factor of 3.9.
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Figure 6.6: Mean processing time twp as a function of num-

ber of cores used. A 1
number of cores fit has been added to en-

able a performance prediction for larger systems. Dashed

vertical lines represent current and expected number of

cores.

Table 6.7: Mean pro-

cessing time (values ex-

tracted from figure 6.6).

Cores time (µs)

9 2546.4

16 1433.1

36 643.4

64 366.8

72 327.3

100 238.7

6.1.5.2 Impact of number of clock frequency on performance

Clock frequencies for computational hardware has been increasing and

continuing to increase. To estimate the performance of how this increase

in clock frequency will impact the performance of the TILE-Gx we have

calculated the performance with a scaling clock frequency in figure 6.7.

We have calculated this under the assumption that doubling the clock

frequency will half the computation time. This is likely to hold true as

long as the memory bandwidth is not limiting the calculation.
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Figure 6.7: Mean processing time twp as a function of clock frequency.

6.1.5.3 Impact of memory bandwidth on performance

In section 6.1.1, we investigated the memory bandwidth of the TILE-Gx

and found it to be relativly low at ≈ 12 GB s−1. While the computation

being performed is not inherently memory bandwidth limited like some

BLAS functions, the low memory bandwidth may limit the calculation

time if the number of cores or clock frequency are increased in the fu-

ture. The impact of increasing the memory bandwidth on the TILE-Gx

is hard to quantify as the calculations are not memory bandwidth lim-

ited. In addition, if the number of cores or clock frequency is increased,

the memory bandwidth would also need a increase to make the most

out of the increased resources. Increasing the memory bandwidth is

unlikely to increase the performance for applications using MPIPE li-

braries. For standard library tasks it could make a difference.
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6.2 Testing facility

To fully test the capabilities of the TILE-Gx, the ability to stream data

over 10 GbE is essential. We worked with the Rutherford Appleton Lab-

oratories to develop an FPGA card with the ability to stream data over

10 GbE at chosen rates. This lead to the development, by the Ruther-

ford Appleton Laboratories, of what we are calling the Pixel Emulator,

which is based on a pixel emulator developed for the European X-ray

free electron laser[7]. We can upload a series of images to the FPGA

board memory of chosen size, that can then be sent over 10 GbE Eth-

ernet at a chosen data rate. We are able to specify the number of bits

per pixel, in this chapter we will be using 8 bits per pixel. A picture of

the Pixel Emulator is presented figure 6.9 and the overall architecture

used for testing the TILE-Gx36 is shown figure 6.8.
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Figure 6.8: Shows the FPGA pixel Emu-

lator and how it is connected to the PC

and TILE-Gx36. (a) a 1 Gbps Ethernet

link that allows for controlling the FPGA

Pixel Emulator. (b) 10 Gbps Ethernet

link that is used to stream the pixels from

the FPGA Pixel Emulator and allows up-

loading images to the FPGA Pixel Emu-

lator. (c) the PCIe bus link that connects

the TILE-Gx to the computer.

Figure 6.9: Shows the FPGA pixel Em-

ulator board and connectors. (A) Power

supply. (B) a 1 Gbps Ethernet link that

allows for controlling the FPGA Pixel Em-

ulator. (D) 10 Gbps Ethernet link that is

used to stream the pixels from the FPGA

Pixel Emulator and allows uploading im-

ages to the FPGA Pixel Emulator. (E)

10 Gbps Ethernet link that is used to up-

load data (images) to the FPGA Pixel

Emulator.

Using the FPGA Pixel Emulator, we are able to stream known wave-

front images at known data rates to a WPU, in our case this is the

TILE-Gx. The pixel emulator gives us great flexibility over using an

actual camera to stream pixels. It can stream any image size, at any

given data rate and with different numbers of bits per pixel, making

it extremely using to rapidly test a wide range of potential WPU sys-

tems. To demonstrate the ability of the FPGA Pixel Emulator we have

streamed 106 frames of size 640×640 (0.41 MB) pixels to the TILE-GX

where no processing is taking place. The results of this are presented

in Figure 6.10 and Table 6.8.
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Figure 6.10: Variation in receiving data from FPGA

Pixel Emulator for a 640×640 detector. Distribu-

tion calculated for a 106 frames. The black vertical

line represents the mean and the dashed vertical

lines the standard deviation.

Table 6.8: Time variation in

receiving data from the FPGA

pixel emulator (values extracted

from figure 6.10)

Detector 640×640 pixels

Mean 428.01 µs

Standard Deviation 0.74 µs

Range 6.11 µs

In this example, the TILE-Gx did not perform any processing on the

received data packets. The FPGA can output at rates of 7.5 Gbit s−1,

close to the expected rate from 10 Gbps Ethernet.[8]. The FPGA is

actually designed to stream larger frames: if we increase the frame size

from 0.41 MB to closer to the 16 MB buffer limit we would likely be

able to get closer to 10 Gbit s−1.

We see that both the FPGA and the TILE-Gx are able to maintain

these data rates over long periods of time. No data packets have been

dropped for the 1 million image frames sent, which equates to over

quarter billion data packets sent. The histogram shows a small range

and a sub-microsecond standard deviation. It clearly demonstrates the

capacity of the both the FPGA and the TILE-Gx to cope with large

amounts of data at high data-rates without introducing noticeable jitter

or latency relative to the overall AO real-time operation. In the rest of

the chapter, we will therefore neglect any effects (i.e. jitter) caused by

data transfer between the FPGA and the WPU.
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In the future we hope to develop an external trigger. The 2nd RJ45

connector has 3 LVDS inputs which could be used for trigger signals.

This would allow the FPGA Pixel Emulator to properly emulate a real

wavefront camera and would allow the FPGA pixel Emulator to be inte-

grated more easily into AO RTCs during development and testing. This

could potentially be used during the commissioning of new instruments,

replacing during this phase the actual wavefront sensing cameras.

6.3 Full-frame testing

6.3.1 Experimental set-up

We begin our investigation with full-frame testing where the TILE-

Gx waits for a whole frame to arrive before processing the data. A

timing diagram of this method is shown in figure 6.11. In order to

disentangle the different sources of time delay and actual limitations

of a real camera, we have decided to store a known wavefront image

directly into memory, so no data transfer into the TILE-Gx occurs. This

mode allows quick testing of many different size detectors, algorithms

and the ability to accurately measure performance. In some particular

cases, the RTC computation is actually delayed until the WFS read-out

is complete. This method of operation could for example be used to

WPU used for PYR-WFS sensors as well as infrared detectors subject

to Fowler sampling read-out. In fact, in the case of a pyramid WFS,

wavefront reconstruction cannot start until at least one pixel of the four

sub-pupils have been read (specific detector read-out technologies can

add additional constrains). While pyramid sensors benefit from being

able to use smaller detectors, the WPU has to wait for longer before
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being able to start processing the data. For WFSs with Fowler sampling

read-out embedded in the camera, no data is provided to the RTC until

correlation takes place and the final, pre-processed WFS data frame is

output. No realistic parallelisation could take place here.

Figure 6.11: A simplified timing diagram showing the full-frame testing.

The sequence diagram of the code can be seen in figure 6.12. This

diagram shows how full-frame tests are simulated, with no data being

transmitted to the TILE-Gx. The main thread is the only thread not

running in ZOL mode. The TILE-Gx in fact, only needs at least one

core (tile) to run the OS in order to operate. The control thread does

no processing but supervises the worker threads of which there are 343.

Only a single worker thread is represented in figure 6.12, as all worker

threads are identical and representing 34 would make the diagram overly

complex.

A timing is taken on the control thread when a broadcast message

is sent to all worker threads saying there is work to be done. Each

worker thread has an assigned list of sub-apertures that it will process;

once it has processed them it will signal the control thread. The actual

operation of each worker thread is discussed in section 5.2 and shown in

figure 5.3. For each worker thread, the process is split in two separate

steps, a calibration step (section 5.2.2) and a processing step (section

5.2.3). The calibration step is typically background subtraction, flat
334 workers, 1 control and 1 running the OS totaling 36 threads for 36 tiles.
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fielding and dark map subtraction. The processing step calculates the

local wavefront slope of the sub-aperture under consideration.

Once all worker threads have signaled the control thread, another

timing is taken. This workflow is then repeated. The worker threads

will then wait until they receive another signal telling them to process

data again. This process in repeated until a sufficient number of frames

(typically 106) has been processed.

Timings are saved in memory while the program is running. It is only

when the entire test is finished that timings are written to disk. This is

done to minimise unnecessary processes running during the operations

and to be able to measure timings accurately. This is also done due to

ZOL mode making interactions with storage files more complex as it

typically needs to interact with the OS.
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Figure 6.12: A simplified sequence diagram of the full-frame testing.
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6.3.2 Impact of detector size on mean execution time

Figure 6.13 shows the mean calculation time (i.e. time from the last

pixel arriving in the WPU to the last CoG being calculated) as a func-

tion of the linear detector size N (the full detector size being N×N).

Three algorithms are tested and have been presented in section 5.2,

namely CoG, weighted Centre of gravity (WCoG) and matched filter.

The CoG (blue) is the simplest method of extracting the spot location

from the wavefront image and performs the best out of each of the

tested algorithms. The matched filter (green) and WCoG (red) take

longer to complete than the CoG due to the added complexity of the

calculation.

It is important to note however, that the mean computation time is

very similar for all 3 algorithms and that they follow the same scaling

law (i.e. N 2) as a function of the detector size. This gives us the con-

fidence that implementing similar algorithms would not dramatically

change performance. It also shows that presenting results in terms of

one of the studied algorithms only will not restrict the conclusions one

can draw from the experimental data.

We tested these algorithms for many different WFS detector sizes.

The number of sub-apertures and number of pixels per sub-aperture

have been varied, each data point (dots) representing a different com-

bination of number of sub-apertures and number of pixels per sub-

apertures. The execution time is clearly independent of how the de-

tector is divided up in terms of total number of sub-apertures and size

of the sub-apertures and is only dependent on the overall size of the

detector.

Using this data, one can extract (and extrapolate) the wavefront
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Table 6.9: Summary of the main quantities obtained in figure 6.13. Comparison of

different WFS algorithms. Values given in µs.

Size CoG WCoG MF

240 74.15 96.65 92.86

800 791.90 907.58 833.58

1200 1682.03 1922.07 1787.68

1600 2977.21 3322.69 3118.19

processing time of any given detector size. Table 6.9 gives a summary

of the main considered WFS detector size for future E-ELT instruments.

Figure 6.13: Mean WFS processing time as a function of linear detector size N for

different algorithms (the full detector size being N×N). Dots: blue is CoG, red is

WCoG and green is a matched filter. Each dot represent a different combination of

number of sub-apertures and number of pixels per sub-apertures. The dotted curves

is a N2 fit. The series of dotted dash lines represent the percentage relative to the

CoG calculation time.

6.3.3 Stability of the execution time

The mean performance is not the only important factor for an RTC. The

variation of this execution time (or jitter) is also important. We show

the overall distribution of execution times for a selection of detector
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sizes in figure 6.14. We have tested these detector sizes for a million

(106) frames. Three different detector sizes are shown, 200 × 200 (figure

6.14a), 500 × 500 (figure 6.14b) and 800 × 800 (figure 6.14c). The

important values from the distribution are given in table 6.10. For each

of these detector sizes we see that the system is very stable, with a

distribution close to that of a Gaussian for the smaller detector sizes.

To illustrate this a Gaussian has been plotted in green, using the mean

and standard deviation from the measured data.

For the 800 × 800 (figure 6.14c) detector we see a double peak dis-

tribution that isn’t seen in the smaller detectors. For this size the range

is still low (< 20µs) and the standard deviation has slightly increased

to σ = 2.66 µs.

(a) (b)

(c)

Figure 6.14: Variation in execution time for a selection of detector sizes using the CoG

algorithm in full-frame mode. Distribution calculated for a 106 frames. The black

vertical line represents the mean and the dashed vertical lines the standard deviation.

Figure 6.14a 200 × 200, figure 6.14b 500 × 500, figure 6.14c 800 × 800
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Table 6.10: Values extracted from figure 6.14

Detector size mean (µs) standard deviation (µs) range (µs)

200 × 200 74.15 1.28 13.90

500 × 500 293 1.32 20.06

800 × 800 791.90 2.76 18.99

To better understand how the variation is affected by detector size,

on figure 6.15, which shows the CoG from figure 6.13, we have over-

ploted error bars to each data point to represent the standard devi-

ation (black) and range (green). This plot clearly demonstrates that

jitter (i.e. standard deviation) and range are extremely small compared

to the mean value (they are barely visible on figure 6.15).

Due to these error bars to being too small to read we have replotted

this data as a percentage of the mean the standard deviation (black)

and range (green). Here we can see that for small systems the range

is a large percentage of the overall time (> 20 %). This falls quickly

as the range does not increase much in comparison to the mean time

(< 5 %). Similarly, the standard deviation (σ) increases slower than

the mean, falling from 1.7 % (200×200) of the overall processing time

to 0.44 % (500×500) and 0.35 % (800×800).
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Figure 6.15: Mean WFS processing time as a function of linear detector size N for

different algorithms (the full detector size being N×N). The dotted blue curve is a N2

fit. The error bars shown to illustrate the standard deviation (black) and the range

(green). The green and black curves represent the range and standard deviation

respectively, as percentage of the mean.

If we know the data rate of a given wavefront camera we can estimate

the time for a single frame to be read out from the camera to the WPU.

Table 6.11 shows the values for the predicted camera read-out as well

as the measure wavefront processing latency, if we assume the read-

out rate for a camera to be 6 Gbps, which is slightly faster than the

requirement for an E-ELT first light instrument[5]. For each of the

shown detector sizes the wavefront processing time is comparable with

the detector read-out time. The read-out time is typically less or equal

to the integration time of the wavefront camera to minimise the latency

of the AO RTC system.
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Table 6.11: Latency caused by the camera read-out and wavefront processing unit for

varying detector sizes.

Detector size (N) read-out (µs) wavefront processing (µs) total (µs)

200 53.33 74.15 127.49

500 338.698 298.01 636.70

800 853.33 791.90 1645.23

6.4 Pipeline Testing

6.4.1 Experimental set-up

6.4.1.1 Timing definitions

The full-frame mode, where the system needs to wait for all pixels to

be received before any processing is started, is far from optimal for

SH-WFS (but might be the method of choice for pyramid WFSs or

when using some infrared detectors). A more efficient configuration, as

depicted in figure 6.16, can be obtain by starting the process as soon

as a sufficient number of pixels has been received (generally a full row

of sub-apertures), this mode of testing is referred to as pipeline.

Here we define the Wavefront Processing time (twp) as the time taken

by the image pre-processing (i.e. calibration) and CoG calculation. The

Wavefront processing Delay (twd ) is the time between the last pixel

read-out to the last slope calculated (i.e. wavefront processing pure

delay).
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Figure 6.16: A simplified timing diagram showing the pipeline testing. twp Wavefront

Processing time: time taken by the image pre-processing (i.e. calibration) and CoG

calculation. twd Wavefront processing Delay: time between last pixel read-out and

last slope calculated (i.e. wavefront processing pure delay).

In an actual AO RTC system the wavefront camera will be streaming

pixels into the WPU, in our case the TILE-Gx. Unlike the full-frame

testing where the communication delay between camera and WPU was

neglected, here we stream data from the FPGA pixel emulator. Our

test set-up is shown in figure 6.8.

Wavefront images generally are too big to be sent over Ethernet in

a single packet. Each frame will need to be split into many Ether-

net packets. Each image frame is sent over Ethernet as quickly as the

FPGA Pixel Emulator allows, but a frame delay (tfd) is inserted be-

tween frames to ensure the TILE-Gx has finished processing each frame

before receiving the next. This method can be seen in figure 6.17. All

other timings are defined in section 5.1.2.

Here we define the Read-out time (tro) as CCD read-out time (i.e.

time it takes to read-out all detector pixels). Frame Delay (tfd) as the

time between last pixel of one frame and first pixel of the next being

sent and Wavefront processing Delay (twd) as time between last pixel

read-out at last slope calculated (i.e. wavefront processing pure delay).
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Figure 6.17: A simplified timing diagram showing the data being received on the

TILE-Gx. tro is the Read-out time: CCD read-out time (i.e. time it takes to read-out

all detector pixels). tfd is the Frame Delay: time between last pixel of one frame and

first pixel of the next being sent. twd Wavefront processing Delay: time between last

pixel read-out at last slope calculated (i.e. wavefront processing pure delay).

6.4.1.2 Sequence diagram

The sequence diagram of the code for the pipeline tests is presented in

figure 6.12. The code is very similar to the one used for the full-frame

testing (section 6.3), with the distinction that data is being transmitted

to the TILE-Gx from the pixel emulator. As with the full-frame testing

the main thread is the only thread not running in ZOL mode. The

TILE-Gx requires as least one tile to be in non-ZOL mode in order

to run the OS. The control thread does not do any processing but

supervises the worker threads of which there are 34 (reserving a core

for OS activities). Only a single worker thread is represented in figure

6.12.

Each image frame is split across multiple Ethernet packets. As each

packet is received, it is checked to make sure that it is the expected

packet and that no packets have been missed. A timing is taken when

the first packet and last packet of each image frame arrives. Another

timing is taken when the whole frame has been processed. With these
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three timings we can measure the pixel read-out time (tro) as well as

the pure wavefront processing delay (twd).

When a packet arrives on the control thread a broadcast message is

sent to all worker threads saying there is work to be done. Each worker

thread has an assigned list of sub-apertures that it is possible to process

when a data packet arrived, once it has processed them it will signal

the control thread. Once all worker threads have signaled the control

thread the processing has been completed.

Again, as with the full-frame testing the timings are saved in mem-

ory while the program is running. It is only once the entire testing

procedure is finished that timings are written to disk. This is done to

ensure that measurements are not affected by the overheads sustained

by writing to disk.
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Figure 6.18: A simplified sequence diagram of the pipeline testing.
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6.4.1.3 CoG algorithm

In this section, we are only testing the CoG algorithm. The processing

remains the same as the one performed with the full-frame processing.

In section 6.1.5.1, we have demonstrated that the difference in execution

time between the different algorithms tested is minimal. The results

obtain here can therefore be extended to other algorithms (such as

WCoG and matched filter). A shared library has been created and

shared between programs to reduce development and maintenance time.

6.4.2 Mean wavefront processing time

Figure 6.19 shows the mean wavefront processing time twp (time taken

by the image pre-processing (i.e. calibration) and centre of gravity

calculation) as a function of the linear detector size N. We can see a

similar result to the full-frame testing (see figure 6.13).

Figure 6.19: Mean wavefront processing time twp as a function of linear detector size

N (the full detector size being N×N). The blue dots represent different combinations

of number of sub-apertures and number of pixels per sub-aperture.
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6.4.3 Sampling frequency

To put the timings into perspective, results have been plotted as sam-

pling frequency in figure 6.20. The sampling frequency is the inverse

of the mean wavefront processing time ( 1
twp

). This allows us to esti-

mate the maximum theoretical sampling frequency the TILE-Gx can

function for a given size of detector. For example, a first light E-ELT

instrument such as MAORY[5] may require a WFS with 800×800 pixels

running at a sampling frequency of up to 1 kHz. Figure 6.20 and table

6.12, shows that the TILE-Gx is able to perform above the required

frequency. In addition, and as shown in section 6.1.5.1, adding more

cores to the TILE-Gx can very easily be used as a mean to increase

performance beyond those observed here.

Figure 6.20: Mean sampling frequency ( 1
twd

) as a

function of linear detector size N (the full detector

size being N×N). The blue dots represent different

combinations of number of sub-apertures and num-

ber of pixels per sub-aperture.

Table 6.12: Mean sampling fre-

quency (values extracted from

figure 6.20).

Detector frequency (Hz)

280 × 280 12020

400 × 400 5850

640 × 640 2068

800 × 800 1200

1000 × 1000 728

6.4.4 Stability of the execution time

As we showed in the full-frame testing (section 6.3), taking advantage

of the ZOL mode of operation on the TILE-GX allows us to achieve

near real-time performance. Figure 6.21a, 6.21b and 6.21c shows a
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typical histogram of the wavefront processing time (twp), for systems

with detector sizes of 100 × 100, 640 × 640 and 800 × 800 respectively.

We see that with the increase in system size comes with an increase in

variation in the wavefront processing time (twp). This can be seen in

both the increase in standard deviation and range, but also the loss of

the near Gaussian shape that is present in the 100 × 100 case.

(a) (b)

(c)

Figure 6.21: Variation in execution time for a selection of detector sizes using the CoG

algorithm. Distribution calculated for 106 frames. The black vertical line represents

the mean and the dashed vertical lines the standard deviation. Figure 6.21a 100 ×

100, figure 6.21b 640 × 640, figure 6.21c 800 × 800

In figure 6.22a and figure 6.22b the variation in the overall wavefront

processing time (twp) is presented. We present both the standard devi-

ation as well as the range4 for a series of detector sizes. An increase in

both standard deviation is seen as the overall detector size is increased.

This variation is larger than the variation seen in the full-frame testing
4Range = max - min
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(see figure 6.14) though still small.

(a) (b)

Figure 6.22: (a) Standard deviation and (b) range (Max - Min) of the wavefront

processing time (twp) as a function of linear detector size N (the full detector size

being N×N).

6.4.5 Pure wavefront processing delay

The wavefront processing delay (twd) is the time from the last pixel

arriving at the TILE-Gx to the final slope calculated for a given frame

(figure 6.16). To calculate this we use equation (6.1) where twp is the

wavefront processing time and tro is the read-out time for the wavefront

camera.

twd = twp − tro (6.1)

The wavefront processing delay (twd) is important as it should not

depend on the read-out time (tro)5. In these tests the data is being sent

as fast as possible. A real wavefront camera is likely to have a lower

data rate as it is tied to the capabilities of the detector electronics.

Figure 6.23 shows how the mean wavefront processing delay (twd)

increases with the size of detector. For small sizes with a small number

of pixels per sub-aperture, each packet may contain a entire row of

sub-apertures so the processing is distributed through the whole read-
5This requires that tro is larger than the processing time for the same detector in full-frame mode.
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out time (tro). As we move into the large detector domain each set of

sub-apertures will be split across multiple packets so there is a delay

in the processing until the last packet arrives allowing the last row of

sub-apertures to be processed. This can be observed in figure 6.23 by

the steep increase in mean wavefront processing delay for detector sizes

500 × 500 and larger.

Figure 6.23: The mean wavefront processing delay (twd) as a function of linear detector

size N (the full detector size being N×N).

Unlike the full-frame testing where the detector size was the only

factor contributing to performance, in pipeline testing detector size but

also the the distribution of sub-apertures and number of pixels per

sub-aperture are likely to affect performance. This is due to how the

sub-apertures are distributed throughout the data packets being sent.

If the last packet of a frame completes a large number of sub-apertures,

each with a large number of pixels per sub-apertures, the wavefront

processing delay (twd) is going to be long. If the final packet of data

completes a small number of sub-aperture or sub-apertures with low

number of pixels, the wavefront processing delay (twd) is going to be
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small. For each of these cases if the detector size is the same, the read-

out time (tro) is going to be the identical. The only difference is the

wavefront processing delay (twd).

When the system size is small (N < 500), the TILE-Gx processing

time is similar to that of the camera read-out (tro), this causes only

small delays. As the system size increase past this threshold (N > 500)

the processing takes longer than the camera read-out and we see the

wavefront processing delay increasing. This is likely to affect not just

the mean but the variance as well. Figure 6.22a and 6.22b we see a

sharp increase in both standard deviation (jitter) and range. With

the TILE-Gx pushed to its limits, no longer able to keep up with the

camera, the variance in processing time increases.

6.5 Competitors and similar products

Mellanox are not the only company that is producing processors that

fill the niche of many-core processor with high I/O capabilities. For ex-

ample, KalRay, a small French company, have started to manufacturing

similar chips. Table 6.13 compares a selection of Mellanox’s competi-

tion with the TILE-Gx. All these processors are recent addition to the

market and fill the same or similar roles to the TILE-Gx.

High performance computers typically have large power requirements.

The highest single cost of running data centres around the world is

electricity[9]. To combat this, lower power chips, such as ARM pro-

cessors, are being developed to bring these costs down. Some of the

processors shown use ARM processors or similar technologies to try

and reduce the power consumption of the cards and reduce running

costs for their customers.
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All these processors support 10 GbE interfaces, while some such as

the MPPA-256 and ThunderX support 40 GbE. The type of interface

required will be determined when the final WFS designs are made avail-

able. It is likely that it will be either 10 or 40 GbE. Alternatively, one

could use converters (such as a Camera Link to GigE converter) to

support different interfaces with the camera.

The X-gene 3 from Applied Micro has 64 cores all at the high clock

frequency of 3 GHz. This card was compared to the Xeon E5 and

Xeon D 1540 by the Linley group and they showed that it had a

higher memory bandwidth than the Xeon E5[10], rivalling that of the

Xeon Phi 5110p[11]. With 64 cores high memory bandwidth and high

clock frequency this card may be useful as the front-end of an AO RTC

system, as the WPU. The X-gene may also be a promising candidate

to perform the Matrix-Vector Multiplication (MVM) in the wavefront

reconstruction unit.

Many of these cards were not available when the TILE-Gx was re-

leased and are illustrative of how quickly the computer industry is mov-

ing.

179



Table 6.13: A comparison of competitors to the TILE-Gx processors[1, 12, 13, 14, 15]

Manufacturer

processor
Release Cores GHz I/O Power(Watts)

Mellanox

TILE-Gx36
2013 36 1.2 4 x 10 GbE 28

Kalray

MPPA2 R©-256-N
2014 256 0.6 2 x 40 GbE or 8 x 10GbE

Cavium

ThunderX
2016 48 2.5 10 and 40 GbE

Applied

Micro X-Gene 3
64 3 4 10 GbE 160

Intel

Xeon-D 1540
Q1 2015 8 2.6 2 x 10 GbE 45 W

6.6 Conclusions and perspectives

In an effort to down-select suitable computational technologies for the

E-ELT AO modules, in this chapter we have investigated a novel hard-

ware that has the potential of being used as a WPU in AO. We presented

real-time performance results for the Mellanox TILE-Gx, a technology

offering a high number of cores and multiple 10 Gbps Ethernet ports.

Using the TILE-Gx ZOL operating mode, the card reduces interrupts,

minimizing both calculation time and jitter and supporting near real-

time performance.

Using COTS hardware has a major advantage over ad-hoc hardware,

such as the FPGA system designed for SPARTA[16]. Although it re-

quires linking AO hardware solutions to a specify manufacturer and

in particular to its development road map, we believe that COTS of-

fers a quicker development time at a lesser cost, while keeping good
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maintainability and scalability.

We tested two different modes of operations. The first (i.e. full-

frame) waits for all pixels of an entire frame to arrive before processing

the data. This is particularly relevant for pyramid WFSing or when

using some type of detectors (e.g. IR devices subject to Fowler sam-

pling). The second (i.e. pipeline) starts processing data as soon as a

sufficient number of pixels has been received. This mode is particularly

relevant for SH-WFSs. In addition, we investigated different CoG algo-

rithms and demonstrated that performance is very comparable in terms

of calculation time for all of them.

The results show a very encouraging mean calculation time and very

little overall jitter, both for the full-frame and pipeline cases. As an

example, performing the wavefront processing calculations using a 240

×240 detector, the TILE-Gx36 only adds 86 µs (resp. 7 µs) after the

last pixel has been read in full-frame mode (resp. pipeline mode). When

using a 800 × 800 detector these values increase to 764 µs (and resp.

150 µs). In this paper we have defined jitter as the standard deviation.

For these two detector sizes, jitter is respectively 1.27 µs (resp. 2.76 µs

for pipeline mode) for a 240 × 240 detector and 0.84 µs (resp. 5.92 µs

for pipeline mode) for a 800 × 800 detector. In addition, we have

demonstrated the very good scalability of the mean execution time:

multiplying the number of cores by 2 basically reduces the calculation

time by a factor 2.

For small systems (N < 500) the TILE-Gx36 is able to process the

wavefront data at similar rates to the read-out of detector data. This

leads to low (< 20µs) pure wavefront delays. In these cases the TILE-

Gx36 can be used in the front end of AO RTC and add only a small
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latency while performing the require computation. As the read-out time

becomes larger (N > 500) the TILE-GX is no longer able to process

the data in the same time and the pure wavefront delay become much

larger and the jitter is increased. The use of a TILE-Gx with more

cores (i.e. 64 or 72) would allow the WPU to keep up with the read-out

for larger detector sizes.

The current baseline for the E-ELT is to use a combination of SH-

WFS and PYR-WFS. While the the PYR-WFS are less able to take

advantage of the pipeline method described (see section 6.4) (processing

cannot begin until over half of the pixels have arrived) the advantage

of the PYR-WFS allows less pixels to be used. As we have shown

the processing time is proportional to the detector size, a PYR-WFS

requiring less pixels would also reduce the computational load.

The overall performance of the current generation of TILE-Gx pro-

cessors makes it a strong contender for WFS pixel processing unit for

most first-light ELT instruments. The next generation are likely to offer

increased performance making it a potential contender for all E-ELT

scale AO instruments.

References

[1] Mellanox. The tile-gx36 processor product brief. Brochure, 2016.

[2] John D. McCalpin. Memory bandwidth and machine balance

in current high performance computers. IEEE Computer Society

Technical Committee on Computer Architecture (TCCA) Newslet-

ter, pages 19–25, December 1995.

182



[3] Intel. Intel core i5-4690k processor. Product Brief, 2016, (Accessed:

2016-06-17).

[4] TILERA. Multicore development environment optimization guide.

User Guide, 2011.

[5] Emiliano Diolaiti, A Baruffolo, M Bellazzini, V Biliotti, G Bregoli,

C Butler, P Ciliegi, JM Conan, G Cosentino, S D’Odorico, et al.

Maory: a multi-conjugate adaptive optics relay for the e-elt. The

Messenger, 140:28–29, 2010.

[6] EZChip. Tile-mx multicore processor. Brochure, 2015.

[7] John Coughlan, Sam Cook, Chris Day, Rob Halsall, and Saeed

Taghavi. The data acquisition card for the large pixel detector

at the european-xfel. Journal of Instrumentation, 6(12):C12057,

2011.

[8] Ripduman Sohan, Andrew C Rice, Andrew W Moore, and Kieran

Mansley. Characterizing 10 gbps network interface energy con-

sumption. In LCN, pages 268–271, 2010.

[9] APC. Determining total cost of ownership for data center and

network room infrastructure. Technical report, APC, 2003.

[10] Linley Gwennap. ”x-gene 3 challenges xeon e5”. Technical report,

The Linley Group, ”2016, (Accessed: 2016-06-17)”.

[11] Intel. Intel xeon phi coprocessor 5110p, November 2012.

[12] kalray. Mppa2Âő-256-n bostan networking. Brochure, 2016, (Ac-

cessed: 2016-06-17).

183



[13] Cavium. Thunderx family of workload optimized processors. Prod-

uct Brief, 2016, (Accessed: 2016-06-17).

[14] Applied Micro. X-gene world’s first armv8 64-bit server on a chip

solution. Product Brief, 2016, (Accessed: 2016-06-17).

[15] Intel. Intel xeon processor d-1540. Product Brief, 2016, (Accessed:

2016-06-17).

[16] SJ Goodsell, E Fedrigo, NA Dipper, R Donaldson, D Geng,

RM Myers, CD Saunter, and C Soenke. Fpga developments for

the sparta project. In Optics & Photonics 2005, pages 59030G–

59030G. International Society for Optics and Photonics, 2005.

184



Chapter 7

Wavefront reconstruction: a

memory bandwidth limited

problem

Parts of this work have been published in SPIE astronomical tele-

scopes and instrumentation 2015, Monthly Notices of the Royal Astro-

nomical Society and presented at Adaptive optics for ELTs 4.

• David Barr, Alastair Basden, Nigel Dipper, Noah Schwartz, Andy

Vick, and Hermine Schnetler. ”Evaluation of the Xeon Phi proces-

sor as a technology for the acceleration of real-time control in high-

order adaptive optics systems.” In SPIE Astronomical Telescopes+

Instrumentation, pp. 91484B-91484B. International Society for

Optics and Photonics, 2014.

• David Barr, Alastair Basden, Nigel Dipper, and Noah Schwartz.

”Reducing adaptive optics latency using Xeon Phi many-core pro-

cessors.” Monthly Notices of the Royal Astronomical Society 453,

no. 3 (2015): 3222-3233.

• David Barr, Alastair Basden, Nigel Dipper, and Noah Schwartz.

185



Reducing adaptive optics latency using many-core processors. Proc.

AO4ELT4, 1, 2015.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Intel Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2.1 Xeon Phi architecture . . . . . . . . . . . . . . . . . . . . . 190

7.2.2 Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . 191

7.2.3 FLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.4 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2.5 Developing on the Xeon Phi . . . . . . . . . . . . . . . . . . 198

7.2.6 Libraries and APIs . . . . . . . . . . . . . . . . . . . . . . . 202

7.2.7 Operating system and real-time . . . . . . . . . . . . . . . . 205

7.3 Benchmarking the Xeon Phi . . . . . . . . . . . . . . . . . 206

7.3.1 Testing architecture . . . . . . . . . . . . . . . . . . . . . . 206

7.3.2 Definition of the measured times . . . . . . . . . . . . . . . 208

7.3.3 Multiple Xeon Phis . . . . . . . . . . . . . . . . . . . . . . . 209

7.3.4 Influence of system size . . . . . . . . . . . . . . . . . . . . 212

7.3.5 Detailed analysis of temporal behaviour . . . . . . . . . . . 220

7.4 Prospective evolution of the Xeon Phi . . . . . . . . . . . 230

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

186



Wavefront reconstruction, translating measured wavefront slopes into

new deformable mirror (DM) commands, is by far the most computa-

tionally intensive algorithm that an ELT-scale real-time control (RTC)

system is required to perform. The most common wavefront recon-

struction algorithm used is the Matrix-Vector Multiplication (MVM).

The DM commands d are related to the slopes s through a linear equa-

tion d = G−1s, where G−1 is the control matrix. The computational

complexity for an MVM grows as O(M 2), where M is the number of

degrees of freedom of the AO system. A simple extrapolation of cur-

rent hardware to the ELTs is not sufficient and new solutions need to

be investigated.

In this chapter, we investigate the performance of the Intel Xeon

Phi for wavefront reconstruction using the MVM algorithm. We first

start with a brief reminder of wavefront reconstruction related hardware

issues. We then describe specific details of the Xeon Phi itself. We

focus on its architecture and intrinsic performance. Finally, we detail

benchmarking results, concentrating on accurate time measurements in

a wide range of parameter space.

7.1 Introduction

In recent years, several novel computationally efficient wavefront recon-

struction algorithms have been developed[1, 2, 3]. These alternative

wavefront reconstruction approaches are typically iterative and gen-

erally unable to efficiently take advantage of modern multi-core and

many-core hardware architectures. Although the MVM typically has

the largest requirements in terms of number of operations and memory

usage compared to these other methods, it is highly parallelisable mak-
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ing efficient use of modern multi-core architectures and widely used by

the AO community. For small AO systems, CPU based systems can

typically be used. As we move towards ELT-scale systems, calculations

become more and more difficult to handle with CPU alone, limited both

by available memory bandwidth, and raw processing power.

To achieve the required computational power, many groups have fo-

cused on GPUs ([4, 5, 6, 7, 8, 9]) since they offer a potential suitable

parallel environment to reduce the latency associated with the MVM

calculation. FPGAs have also been used, although typically for smaller

systems[10], for only a section on the AO control loop[11], or limited

to the pixel processing as part of heterogeneous RTC hardware[12].

These hardware accelerators generally suffer from the same disadvan-

tages: limited data transfer into and out of the accelerator. They lead to

complex heterogeneous computing environments which give rise to com-

plex memory structures and the movement of large quantities of data

between different computational components. Accelerator architectures

traditionally evolve quickly as new hardware is released, which may not

be compatible with older systems, leading to lifetime and portability

issues. This can cause long development times and difficulty in main-

taining and upgrading systems.

The algorithm we have decided to investigate with the Xeon Phi

is the MVM due to the widespread use and ease of parallelisation. An

overview of the MVM as well as other algorithms can be found in section

5.3. The complexity of the MVM is not in the difficulty of implementa-

tion but in the high number of calculations needing be performed, which

is why hardware accelerators need to be investigated (see 5.3.1.1).

The Xeon Phi uses x86 instruction set microprocessors (same as
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conventional CPUs), which may help in lowering the barriers to entry

compared with GPUs or FPGAs, i.e. no specialised code base or API is

required. The implemented code can easily be modified and upgraded

should a more performant hardware be released. The Xeon Phi also

offers high memory bandwidth to accelerate memory-bound parallel

algorithms. It is however, designed for high-performance computing

where the requirements are more focused on the mean execution time

rather than on the determinism of execution time. A detailed analysis

of performance in a realistic AO environment is therefore essential.

Previous investigations were limited to non-real-time (non-RT) Linux

systems[13] or focused on a very specific AO system[14] making the

generalisation to other systems difficult. Our approach here, is not to

concentrate on a particular AO design, but rather to investigate a wide

range of parameter space. In addition, a detailed analysis of the tim-

ings is crucial to fully understand the limitations of the hardware and

extrapolate to future hardware developments. Different science cases

will have different tolerances on the acceptable jitter (variation in exe-

cution time) or outliers (results significantly apart from the mean) for

example, which may or may not impact science results significantly.

7.2 Intel Xeon Phi

The Xeon Phi is a many-core accelerator co-processor card connected

to a processor via a PCIe bus offering a high level of programmability

(standard C/C++ with compiler assisted offload), high throughput,

high performance per watt and low cost. The main disadvantage, as

with most accelerators, is that data communication between the host

computer and the Xeon Phi will add unwanted delays (and jitter) to
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the AO loop. This leads to a heterogeneous computing environment

which may cause issues with complex memory management and makes

optimisation difficult. The Xeon Phi is similar in that sense to general

purpose GPUs used in high-performance computing environments. The

Xeon Phi differs however from GPUs by offering x86 instruction set

cores, allowing programmers to use the same design techniques as they

would with CPUs. This has the potential to speed up development time

and does not require specialist knowledge of programming paradigms

and toolkits such as CUDA or OpenCL.

7.2.1 Xeon Phi architecture

The Xeon Phi model under investigation is the 5110P, which offers

60 cores, a clock frequency of 1 GHz, 8 GB of GDDR5 memory and has

a maximum theoretical memory bandwidth of 320 GB s−1. The specifi-

cations of the Xeon Phi 5110P are summarised in table 7.5. The Xeon

Phi 5110P clock frequency is slower than that of modern CPUs which

can typically reach 3-4 GHz. This suggests that the Xeon Phi would

be unable to compete for performance on sequential code. Given the

number of cores and the high memory bandwidth, it has the potential

to outperform current CPUs on parallel codes such as the MVM.

Table 7.1: The specifications of the Xeon Phi 5110P[15]

Processor Number 5110P

Number of Cores 60

Clock Speed 1.053 GHz

Cache 30 MB

Max Memory 8 GB

Max Memory Bandwidth 320 GB s−1
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7.2.1.1 Memory Hierarchy

The Xeon Phi 5110p has two levels of cache (L1 and L2), and it also

has 8 GB of GDDR5 memory. L1 cache has a 32 KB instruction cache

and 32 KB data cache. This cache has an access time of 1 clock cycle.

This means that once data is in this cache, the data can be used by the

processor on the next clock cycle.

The L2 cache is globally shared, with each core contributing 512 KB,

this means the processor has ≈30 MB of L2 cache. This cache has an

access time of 11 clock cycles and supports hardware prefetching and

ECC correction.

7.2.2 Memory Bandwidth

When performing the wavefront reconstruction in an AO RTC using

a matrix-vector multiplication algorithm, the input vector is updated

at every iteration (typically from hundreds to thousands of times per

second), while the control matrix will remain constant for periods of

time between tens of seconds to several hours. However, for large AO

systems the matrix is too large to be stored in the L2 cache alone.

The matrix must be read from the slower GDDR5 memory. Therefore,

memory bandwidth from this slower GDDR5 memory becomes a perfor-

mance limiting factor. CPU-based systems typically have large banks

of DDR3 memory which are relatively slow. The Xeon Phi has access

to faster GDDR5 and has advertised a maximum theoretical memory

bandwidth of 320 GB s−1. In practice the Xeon Phi appears to have a

read memory bandwidth of 164 GB s−1and a write memory bandwidth

of 76 GB s−1[16].

Here, we have measured the MVM computation time, and use this
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information to calculate the achieved memory bandwidth. Figure 7.1

shows memory bandwidth as a function of AO size (and the control

matrix size stored in memory) for a single Xeon Phi calculated from

the total offload time. This offload time includes the data transfer and

calculation time, so the memory bandwidth of the Xeon Phi processor

alone (i.e. without data transfer) will be slightly higher. For large

AO systems, the calculation time is limited by the memory bandwidth,

which peaks at about 160 GB s−1, in agreement with[16]. We note

that for smaller systems, where the control matrix and both wavefront

slope input vector and DM command output vector can fit into cache

memory, memory bandwidth is not the performance limiting factor.

However, these systems are typically smaller than planned E-ELT AO

systems.

Figure 7.1: Memory bandwidth for a single Xeon Phi performing an MVM as a

function of number of valid sub-apertures (bottom) and the size of the control matrix

in memory (top). This includes the data transfer time across the PCIe bus. The

dashed vertical lines represent approximate AO system sizes (including only the valid

sub-apertures due to the shape of the E-ELT primary mirror M1)

When the control matrix is larger than the Xeon Phi L2 cache
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(30 MB), we see a drop in memory bandwidth due to the processor hav-

ing to transfer all or part of the control matrix from the slower GDDR5

memory. As we increase the size of the control matrix the processors

have to make more and more calls to the slower GDDR5 memory. This

continues until the control matrix reaches around 800 MB where the

memory bandwidth levels around 160 GB s−1. At this point, the con-

trol matrix is significantly larger than the L2 cache and most memory

access is with the GDDR5 memory. The MVM like other BLAS-11 or

BLAS-22 routines is memory bandwidth limited.

To confirm the achievable memory bandwidth, we used the industry

standard STREAM memory benchmarking[17] (see section 4.2.3.2) on

both the Xeon E5 (the host computer) and the Xeon Phi. We compared

the memory bandwidths using a TRIAD3 test which is the STREAM

benchmarking scheme most closely resembling a MVM operation. The

Xeon E5 achieved a peak memory bandwidth of 63.7 GB s−1and the

Xeon Phi of 166.5 GB s−1. Other groups have published similar results[16].

The results of the STREAM tests are presented in table 7.2.

The multiplication of a matrix by a scalar (i.e. scale test) and addi-

tion of two matrices (i.e. add test) are consistent with the Triad test.

It is only for the copy that the memory bandwidth of the Xeon Phi is

slightly lower (approximately 140 GB/s). The copy test involves a sin-

gle read and a single write, whereas the other tests include some form

of calculation. The lower write memory bandwidth has therefore more

impact for this type of test.
1Vector-Vector operations
2Matrix-Vector operations
3The Triad test involves the addition of two vectors (b & c) one vector multiplied by a scaling

factor (q) ai = bi + q × ci
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Table 7.2: STREAM results of the Xeon E5 and the Xeon Phi.

Tests
Bandwidth (MB s−1)

Xeon E5 Xeon Phi

Scale 62530.5 161386.1

Copy 62720.4 140675.6

Add 63591.5 166016.9

Triad 63739.9 166016.9

Table 7.3 compares the advertised (theoretical), achieved memory

bandwidths using STREAM as well as the percentage of the advertised

that was attained. The results are shown for the Dual Xeon E5-2650,

the Xeon Phi 5110p as well as the NVidia K40 GPU[18] (a GPU re-

leased at around the same time as the Xeon Phi, which enables a direct

comparison between hardware of the same generation). It can be seen

that although the Xeon Phi has a higher theoretical maximum, the

GPU can achieve a higher percentage of the advertised bandwidth than

either the Xeon E5 or the Xeon Phi.

Table 7.3: A comparison of advertised and achieved memory bandwidths for Dual

Xeon E5-2650, NVidia K40 GPU and Xeon Phi 5110p.

Dual Xeon E5-2650 NVidia K40 Xeon Phi

Advertised Max. GBs−1 2x51.20 288 320

STREAM GBs−1 63.7 229 166.5

Percentage 62.2 % 79.5 % 52.03 %

7.2.3 FLOPS

As detailed in section 4.2.3.1, the FLOPS are the number of Floating

point operations per second a processor can achieve. The Xeon Phi is

advertised to be able to reach 1.011 TFLOPS. The equation does not

take into account the memory bandwidth of a system. This value is far
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larger than we could expect to reach with the MVM or any other BLAS-

1 or BLAS-2 operations due to the memory bandwidth limitations of

these operations.

Figure 7.2 shows the number of FLOPS that the Xeon E5-2650, Xeon

Phi and 2 Xeon Phis used in parallel have achieved when performing the

MVM algorithm as function of AO system size. A peak in performance

is seen for the Xeon E5-2650 below 2000 sub-apertures, which is when

the matrix no longer fits in cache memory of the CPU. Curves for the

single and dual Xeon Phi follow similar curves as seen with the memory

bandwidth, this is to be expected with a memory bandwidth limited

problem.

Figure 7.2: Number of FLOPS achieved during MVM for a dual Xeon E5-2650, one

Xeon Phi and two Xeon Phis.

Table 7.4 shows the number of FLOPS that the Xeon E5-2650, Xeon

Phi and 2 Xeon Phis have achieved when performing the MVM algo-

rithm for a selection of AO system sizes. The AO system sizes take into

account the primary mirror mask, removing approximately 25 % of the

total sub-apertures (e.g. an 80×80 systems has a total of 4700 valid

195



sub-apertures) (see appendix A.2). It can be seen that the performance

of the Xeon Phi is much lower than the advertised FLOPS. We see that

using a second Xeon Phi almost doubles the achievable FLOPS for a

large system, in line with expectations.

Table 7.4: Comparison of FLOPS for dual Xeon E5-2650, single Xeon Phi and a dual

Xeon Phi system. Max is the maximum GFLOPS achieved across entire tested range,

0-14000 total valid sub-apertures.

GFLOPS 40x40 80x80 120x120 Max

Xeon E5-2650 V2 58.7 17.3 17.3 58.7

1 Xeon Phi 25.2 62.7 76.9 79.4

2 Xeon Phis 29.0 100.3 136.9 141.5

7.2.4 Data transfer

A large disadvantage of using hardware accelerators such as the Xeon

Phis or GPUs is the data transfer between the host and the coprocessor.

Data arrives on the host computer, then is transferred to the coprocessor

(e.g. Xeon Phi or GPU), processed on the coprocessor and finally the

results are transferred back to the host. This adds an additional stage

to the data path which increases the latency of the system.

The Xeon Phi is connected to the host computer via a 16 lane PCIe

bus version 2.0. Each lane of the PCIe 2.0 has a data transfer rate of

500 MB s−1; the 16 lanes will have a maximum data transfer rate of

8 GB s−1. As with the memory bandwidth, the maximum rate stated

may not be achievable in reality. The overall size of the data per frame

to be transferred (slopes and DM commands) adds up to approximately

38 KB for this case.

Figure 7.3 shows the data transfer rate that can be achieved to and

from the Xeon Phi. Measurements are obtained by simply timing the
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transfer of a square matrix to and out from the Xeon Phi. The Xeon

Phi data rates are low for small sizes (< 10 MB); this is likely due to the

high amount of overhead that are included with the transfer of data.

As the matrices increase in size, the data rate quickly plateaus at close

to 1.7 GBs−1. This is much lower than the possible 8 GB s−1from a 16

lane 2.0 PCIe bus.

Figure 7.3: Data transfer rates between host and the Xeon Phi as a function of the

size of the data being transfered.

For the MVM we are only uploading a wavefront slope vector to

the Xeon Phi and downloading a DM command vector. For a SCAO

system with a single deformable mirror, we can assume the wavefront

slope vector (containing both X and Y slopes) to be twice the size of the

DM command vector. For example, an 80×80 system will have 12800

slopes in X and Y, and for an E-ELT aperture and only accounting for

the valid sub-aperture, may have approximately 9440 valid slopes.

This is much lower than the values shown in figure 7.3 which are

more applicable to the upload of the control matrix.
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Figure 7.4: Data transfer rates between host and the Xeon Phi as a function of the

size of the data being transferred. Zoomed to show size of vectors being used in AO

RTC.

Data transfer rates for data sizes closer to what would be typi-

cally seen for transferring slope and DM command vectors into the AO

RTC is presented figure 7.4. It can be seen that the values measured

are much lower than the 1.6 GB s−1shown in figure 7.3. For sizes of

38 KB suggested for an 80 × 80 sub-aperture system the data transfer

is 0.4 GB s−1. This much lower data transfer rate is likely to be caused

by the overheads. These overheads are likely to be constant or slightly

increasing as the data size being transferred is increased. This overhead

causes the small sizes to be influenced by the overhead much more than

the larger sizes.

7.2.5 Developing on the Xeon Phi

There are two modes of using the Xeon Phi: the native mode and the

offload mode. The native mode refers to the use of the Xeon Phi as a

standalone computer. This is the simplest method of using the Xeon

Phi where it can be accessed remotely by using SSH. This is not however
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a mode that will be used here.

The offload mode uses the Xeon Phi as an extension to the computer

similar to how GPUs work. This means that large numerical compu-

tations can run on the many cores of the Xeon Phi while the host is

performing other tasks.

7.2.5.1 Offload modes

There are three modes of offload and are listed below.

• Automatic offload

• Compiler assisted

– Implicit

– Explicit

The automatic offload mode allows for certain function to be auto-

matically offloaded to the Xeon Phi. This will only work on certain

functions such as those in the Intel Math Kernel Libraries (MKL). A

flag is set for the compiler to decide, based on what is expected of

the size of computation, whether these functions should be offloaded.

This is the quickest method of development to use the computing power

of the Xeon Phi, but not necessarily the most efficient. The program

will upload all the required data to and from the Xeon Phi for these

functions. This means that a large amount of data is being transferred.

In the compiler assisted modes the decision on what parts of the code

are offloaded is left to the developer. In the implicit mode, the developer

marks certain memory as ’shared’ and at runtime the program will

automatically synchronise the data between the host computer and the

Xeon Phi. The shared data must be set as global using Intel Cilk Plus
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API available only for C/C++. Cilk Plus is an extension to C/C++

to assist in developing task for multi-core or vector processing. The

shared data will be synchronised at runtime and supports complex data

structures. Functions can also be offloaded to the Xeon Phi by marking

them as shared. This method does not allow blocks of code to run on

the Xeon Phi, only functions. At run time, the computer decides what

data is needed and when functions can be offloaded; this is not directly

controlled by the developer. The method for using this is shown in

listing 7.1.

Listing 7.1: Implicit memory offload example using Cilk Plus.

// Dec lar ing shared v a r i a b l e

i n t C i l k s h a r e d sharedInt ;

// Dec lar ing shared f u n c t i o n

i n t C i l k s h a r e d MySharedFunction (

C i l k s h a r e d i n t &n)

. . .

// O f f l o a d f u n c t i o n to the Xeon Phi

mySharedInt = C i l k o f f l o a d mySharedFunction (

mySharedInt ) ;

The last offload mode is called explicit where the developer has ex-

plicit control over all data transfers between the Xeon Phi and host,

as well as code execution. The keyword #pragma is used to indicate

regions of code that will be offloaded to the Xeon Phi. An example is

shown in listing 7.2. In this example a, b and c are all arrays of length

N. Arrays b and c are transferred to the Xeon Phi asynchronously; this

does not block the host thread. Array a is transferred to the Xeon Phi

and a simple calculation is performed. Array c is transferred back to
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the host and all memory is freed on the Xeon Phi. This section does

block the host thread, though can be identified as non-blocking and

performed asynchronously.

Listing 7.2: Explicit memory offload example.

#define ALLOC a l l o c i f ( 1 ) f r e e i f ( 0 )

#define FREE a l l o c i f ( 0 ) f r e e i f ( 1 )

i n t ∗ a = mal loc (N∗ s i z e o f ( i n t ) ) ;

i n t ∗ b = mal loc (N∗ s i z e o f ( i n t ) ) ;

i n t ∗ c = mal loc (N∗ s i z e o f ( i n t ) ) ;

// Transfer some data to Xeon Phi

#pragma o f f l o a d t r a n s f e r ( mic : n ) /

in (b) in ( c : l ength (N) ALLOC)

// Transfer some data to Xeon Phi

// and perform some c a l c u l a t i o n

// output c back to hos t

#pragma o f f l o a d t a r g e t ( mic : n ) /

in ( a : l ength (N) a l l o c i f ( 1 ) f r e e i f ( 1 ) ) /

nocopy (b : l ength (N) FREE) /

out ( c : l ength (N) FREE) in (N)

{

f o r ( i n t i =0; i < N; i++)

{

c [ i ] = a [ i ]+b [ i ] ;

}
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}

As can be seen in listing 7.2 the explicit offload is much more con-

trollable then the implicit mode. This works to our advantage, as we

can control exactly which and when data needs to be updated on the

Xeon Phi. In AO RTC the control matrix is updated at a much lower

frequency than the wavefront slope vector. In this case, we can trans-

fer the control matrix to the Xeon Phi and save it. During each loop,

we only upload the wavefront slope vector and download the DM com-

mands. For this reason we are going to be using the explicit mode as it

give us greater control over the data transfers and code being executed

on the Xeon Phi.

7.2.6 Libraries and APIs

There are many libraries and APIs available for developing applications

on the Xeon Phi. For example, Open Multi-Processing (OpenMP), (see

section 4.3.1.2) a cross-platform API for developing shared memory

multiprocessing applications. OpenMP adds a selection of keywords

accessed through pragmas that enable the developer to quickly develop

applications that take advantage of the multiple cores available on mod-

ern CPUs.

Another example is Open Computing Language (OpenCL) (see sec-

tion 4.3.1.3), a cross-platform framework that allows the execution on

many different computational hardware such as CPUs, GPUs, Xeon

Phis, DSPs and FPGAs. It is intended for hardware independent de-

velopment that can be then compiled and executed on any hardware

available. It is also aimed at parallel processing so is able to target

many and multi-core processors.
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In a study by Karimi[19] it was found that CUDA outperformed

OpenCL on a GPU, both for the data transfer and data processing.

It concluded that for high performance or time critical tasks CUDA

is the better choice. While OpenCL offers the ability for code to be

recompiled for many different hardware architectures large amounts of

hardware dependant optimisation as still required. Even with these

optimisation OpenCL still has not offered the same performance as

native implementations. For all these reasons we have decided for our

investigation we are going to focus on the provided development tools.

Open accelerators (OpenACC), (see section 4.3.1.4) is an API de-

signed to simplify the development of parallel programming on hetero-

geneous hardware. The developer uses keywords to mark regions of

code to be offloaded to hardware accelerators. While OpenMP only

supports parallelisation across the hardware the code is running on,

OpenACC supports the use of hardware accelerators. At the time this

work was being carried out on the Xeon Phi a OpenACC compiler was

not available, for this reason OpenACC has not been investigated.

7.2.6.1 MKL and MAGMA

Intel’s Math Kernel Library (MKL) is a library offering a wide range

of optimised maths routines for many applications such as science and

engineering. The core of MKL revolves around the standard set of math

functions including Basic Linear Algebra SubPrograms (BLAS), Linear

Algebra Package (LAPACK), Scalable LAPACK (ScaLAPACK) and

Fourier transforms.

Matrix Algebra for GPU and Multicore Architecture (MAGMA) is a

project that aims at creating a new generation of linear algebra libraries
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with specific design and optimisation for hardware accelerators such as

GPUs and Xeon Phis[20].

MKL and MAGMA are standard maths libraries and provide a MVM

function optimised for the Xeon Phi. In figure 7.5 we show the compar-

ison of MAGMA and MKL, both performing a matrix-vector multipli-

cation, as a function the matrix size. These results were obtained with

a non-RT kernel. Moving to a RT system should not change the mean

offload time significantly but should reduce the variations in execution

time. MKL outperforms MAGMA for all cases. MAGMA offers much

more abstraction from the Xeon Phi architecture, which allows quick

development but at the cost of reduced performance.

In-house code using OpenMP was developed and optimised for cer-

tain matrix sizes and was able to outperform MKL on some specific

cases. In general, MKL gave a high baseline performance for all cases.

It was decided to use MKL and focus on general performance of the

Xeon Phi rather than focus on specific cases where in-house code can

be tuned and optimised to obtain the best performance. Using MKL

has the double advantage of reaching very good performance overall

but also ensuring that simple software design techniques can be used

without requiring in-depth knowledge of the Xeon Phi architecture.
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Figure 7.5: Comparison of MAGMA and MKL mean offload time 〈TOF F L〉 as a func-

tion of the number M of valid sub-apertures using 104 samples. Red: MAGMA;

Blue: MKL. Results obtained using a non RT Linux kernel. Crosses represent actual

measured performance and the dashed lines a polynomial fit.

7.2.7 Operating system and real-time

Modern computers are generally not RT processors and operating sys-

tems will always have background processes running which affect the

determinism of the system. AO systems need a high level of determin-

ism which non-RT operating systems are generally unable to provide.

RT Linux on the other hand, gives us greater control on the order (pri-

ority) in which processes are carried out by the operating system (see

section 4.3.3). These processes with raised priority are able to pre-empt

the lower priority tasks to give greater control and predictability in ex-

ecution time. For the host computer, both a non-RT and a RT Linux

kernel will be investigated. A RT pre-empt 3.10 Kernel was installed

on the host computer which is running Red Hat 6.4. The RT Linux

kernel was not edited nor modified. The Xeon Phi itself is running a

non-RT micro-operating system based on a Linux kernel.
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7.3 Benchmarking the Xeon Phi

The aim of this section is to investigate, characterise and benchmark the

Xeon Phi in the context of a low latency and low jitter AO control loop.

The role of the wavefront reconstruction is to take the wavefront slope

vector delivered by the wavefront processing unit and calculate the new

deformable mirror commands. We do not include here additional tasks

(often characterised as soft RT tasks) and do not relate our findings

to any specific instrument design, preferring to adopt a more general

approach.

7.3.1 Testing architecture

The hardware configuration used in this investigation is shown in figure

7.6. We will be using the Xeon Phi to accelerate MVM calculations and

the rest of the AO processing tasks (such as image calibration, slope

calculation and DM control laws) are performed by the host computer.

We will be investigating a single Xeon Phi as well as a dual Xeon Phi

configuration. The host computer, composed of a dual Xeon E5-2650,

receives wavefront camera(s) pixels (typically a Shack-Hartmann sen-

sor) and calculates the slopes. The Xeon Phi specifications are shown

in table 7.1 and the host specifications are shown in table 7.5.

In the studied configuration, the wavefront camera data is emulated

and not physically connected to any hardware, ensuring that the system

is not limited by the camera’s frame rate. The Xeon Phi then receives

the slopes from the host computer through a PCIe bus and computes

the command vector that would be sent to the DM(s). Equally, no DM

is physically connected to the host PC. The control matrix is stored

before calculations in the Xeon Phi’s memory, while wavefront slopes
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and DM commands vectors are transferred at each AO frame.

Figure 7.6: Hardware configuration used to benchmark the Xeon Phi. Two Xeon Phis

are connected to the host computer (Xeon E5-2650) via PCIe bus. The dashed boxes

represent details of the four different times that are investigated.

Table 7.5: Specifications of the Xeon E5 host computer.

Xeon

Processor E5-2650

Release Year 2012

#Cores 32

Clock speed 2.0 GHz

L2 Cache 20 MB

Memory type DDR3

Memory Bandwidth 51.2 GBs−1
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7.3.2 Definition of the measured times

The Xeon Phi and the Xeon E5 have a separate clock, making it difficult

to accurately time data transfer and MVM calculations using the same

clock. In order to produce accurate timings, we measure the difference

between times on the CPU and times on the Xeon Phi, removing issues

of asynchronous clocks. Throughout this chapter, we will investigate 4

different timings to fully benchmark the performance of the Xeon Phi.

Data is taken according the diagram presented figure 7.7.

Figure 7.7: Diagram showing a simplified version of the implemented process and the

four different timings measured to benchmark the Xeon Phi. t1 and t4 are taken on

the Xeon E5; t2 and t3 are taken on the Xeon Phi. Due to the Xeon Phi and the

Xeon E5 having separate unsynchronised clocks, only the total data transfer time is

accessible and is calculated from TOF F L − TCALC .

• TOFFL is the offload time: this represents the time from the first

data sent from the host computer to the Xeon Phi(s) to the last

data received back on the host computer. This includes data trans-

fer (i.e. slope and DM command vectors) and MVM calculation

on the Xeon Phi(s). TOFFL = t4 − t1 (see Fig 7.7).

• TCALC is the calculation time: this refers to the time taken for the
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MVM to be calculated on the Xeon Phi (or Xeon Phis) excluding

any transfer times. TCALC = t3 − t2 (see Fig 7.7 ).

• TTRANS is the combined transfer time: this represents the time

taken for the data to be transferred in and out of the Xeon Phi.

This encapsulated both the transfer of the slope vector and DM

commands. TTRANS = TOFFL − TCALC (see Fig 7.7).

• TRTCS is the real-time control time: this represents the time taken

for an entire AO frame to execute. This includes the WFS pixel

processing, slope computation, the MVM calculation on the Xeon

Phi(s) as well as any additional background tasks of the RTC.

At the start of the process, we initialise and pre-load the control

matrix G−1 into the Xeon Phi memory. The slope vector is then trans-

ferred to the Xeon Phi (marked as time t1) and the MVM calculation

starts (time t2). At the end of the calculation (time t3) we transfer the

result back to the host computer (time t4) and loop back to the slope

transfer. After a statistically significant number of timings (typically

106), we free the memory and end the process. Timings t1 and t4 are

taken on the host computer whereas t2 and t3 are taken on the Xeon Phi.

This timing scheme allows us to time the overall offload time TOFFL and

MVM calculation time TCALC separately. From measuring TOFFL and

TCALC the combined transfer time TTRANS can be derived. Separating

between transfer and calculation times offers us the capability to locate

where additional time delays are being generated.

7.3.3 Multiple Xeon Phis

We have developed C code using pthreads to control multiple Xeon Phis

simultaneously. This allows us to distribute and control multiple Xeon
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Phis separately. In this study, we have tested the use of two identical

Xeon Phis. We set the affinity of each thread so that they can run on

each CPU as well as on separate cores on the same CPU. We found that

it made no difference in performance. The main effect on performance

was due to raising the priority of these threads so that they pre-empt

the RT-OS.

Figure 7.8 shows the sequence diagram used for testing of the two

Xeon Phis. The region in blue represents the host CPU. All the data

is created on the main thread then distributed to the worker threads.

Memory for the control matrix, wavefront slope vector and DM com-

mand vector are allocated on the Xeon Phis and the control matrix is

uploaded in full to both cards. Once the memory has been allocated

and uploaded to the Xeon Phis, the worker threads signal the main

thread they are ready for the main loop.

The main loop starts on the main thread where the first timing (t1) is

taken. The main thread broadcasts to all threads that the slope vector

has arrived. Once the threads receive the command, they upload the

entire wavefront vector to both Xeon Phis. Each of the Xeon Phis,

once the vector has been uploaded, begin their section of the MVM.

One Xeon Phi performs the first half and the other performs the second

half. This method has the benefit of not needing a vector addition on

the host after the computation. Alternatively, it is possible to upload

the first half of the wavefront vector to the first Xeon Phi, and begin

calculations while data is still being transferred to the host. Both of

these methods were tested but for our purpose the chosen method was

quicker.

Once the MVM calculation is finished, the first half of the DM com-
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mand vector is downloaded from the first Xeon Phi and the second half

from the second Xeon Phi. Once each half of the vector is received by

its controlling thread, the thread signals the main thread. Once the

main thread has received both signals it takes a second timing (i.e. t4).

Figure 7.8: Sequence diagram for dual Xeon Phi setup.
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7.3.4 Influence of system size

In order to stay as general as possible, and not tie this study to any

specific instrument design, the AO system size (M) will be defined as the

total number of wavefront measurement points (typically the number of

valid sub-apertures of a SH-WFS). We will investigate the performance

of the Xeon Phi for a range of input AO sizes. The slope vector size

is 2M as it contains the slopes in X and Y directions for each valid

sub-aperture. In a typical single conjugate AO (SCAO) system, the

number of valid sub-apertures is approximately equal to the number of

DM actuators and so the DM command vector will be approximately

half the size of the slope vector. The control matrix (G−1) will therefore

be of dimension M×2M unless explicitly stated otherwise.

7.3.4.1 Optimisation of the problem size to the architecture

Figure 7.9 shows a periodic pattern of the mean offload time that is

observed as we increase the problem size. This suggests that the Xeon

Phi performs best when the problem size can fit its architecture. The

Xeon Phi 5110p has 60 cores, with one core reserved for input/output

routines. Each core can support up to four threads giving a total of

236 supported threads (4×59). When the problem size is divisible by

236 optimal performance is obtained. This difference in performance is

likely due to the architecture and also how the MKL library handles the

parallel sections of code. When the problem size fits the architecture,

the library is able to split the problem evenly between all cores. When

this is not the case, the library has to perform some dynamic resource

handling that brings in more overhead, degrading performance. When

the problem size is not divisible by 236, the control matrix is therefore
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padded with zeros to fit the architecture and reach the best achievable

performance.

Figure 7.9: Comparison of the mean offload time 〈TOF F L〉 as a function of the number

M of valid sub-apertures. Measurements are averaged over 104 samples.

When using two Xeon Phis, we have twice the number of cores and

threads. This means the MVM is split across 118 cores (2×59) and

472 threads (118×4). Figure 7.10 shows that when the wavefront slope

vector is a multiple of 436 we get the best performance. Due to this

effect, for a dual Xeon Phi configuration we are padding the matrix

similarly to the single Xeon Phi to a multiple of 472.

Figure 7.10: Comparison of the mean offload time 〈TOF F L〉 using 2 Xeon Phis, as a

function of the number M of valid sub-apertures. Measurements are averaged over

104 samples.
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7.3.4.2 Offload time as a function of AO system size

In figures 7.11 and 7.12 (a zoom of 7.11 for smaller systems sizes) we

present a comparison of mean offload time 〈TOFFL〉 (i.e. including MVM

calculation and data transfer) for the dual Xeon E5 CPU (red), a single

Xeon Phi (blue) and 2 Xeon Phis (green) used as accelerators as a

function of AO size.

For the smaller AO systems where the number of valid sub-apertures

is less than approximately M < 1500 (such as for a 40×40 SCAO

system) the Xeon E5 clearly outperforms the Xeon Phi(s). This is due

to the need to transfer data (i.e. slope and DM command vectors) over

the PCIe bus. Once the number of valid sub-apertures becomes larger,

the Xeon Phis provide lower mean latencies.

As expected, for large numbers of valid sub-apertures 〈TOFFL〉 grows

as O(M 2) for all devices, dominated by computation time. When two

Xeon Phi(s) are used, 〈TOFFL〉 can be further reduced; the difference is

more clearly visible for large AO systems. For example, this allows us

to perform the MVM for an 80×80 system in 1.2 ms using 2 Xeon Phis

(resp. 1.8 ms for 1 Xeon Phi and 6 ms with the Xeon E5).
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Figure 7.11: Comparison of the mean offload time 〈TOF F L〉 as a function of the

number M of valid sub-apertures using 104 samples. Red: Xeon E5; Blue: single

Xeon Phi; Green: two Xeon Phis. Results obtained using a RT Linux kernel. The

dashed vertical lines represent the approximate size of an AO system in total number

of sub-apertures.

Figure 7.12: Comparison of the mean offload time 〈TOF F L〉 as a function of the number

M of valid sub-apertures using 104 samples. This figure is a zoom of figure 7.11 for

better readability.

As stated previously, the mean execution time is insufficient to fully

characterise the performance of AO RTC system or sub-systems. Fig-
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ure 7.13 shows the distribution of offload times TOFFL as a function of

AO system size, using a RT-Linux kernel, and measuring TOFFL over

106 iterations for each system size. Only matrix size multiples of 236

are shown because mean and variation in execution time are both in-

creased for non-multiples. It can be seen that not only all system sizes

have a similar bimodal distribution but the mean, the position of peaks

and the different percentiles calculated (percentile of offload times that

are completed by the given time; e.g. 99% of the calculation will take

less than P99% to execute) all follow a similar trend. Only the max-

imum offload time is shown to be somewhat irregular; we believe this

is because of the limited number of samples used (i.e. 106) to calculate

the distribution. For example, an 80×80 system will finish the MVM

calculations 99.99% of the time before approximately 3 ms.

From figure 7.13, we can legitimately say that studying a specific AO

system size in detail will not remove the generality of the analysis as

results can be scaled to match the desired system size. Results obtained

with 2 Xeon Phis (data not shown here) show the same scalability.
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Figure 7.13: Variation in offload time TOF F L using a single Xeon Phi with the host

running a RT Linux Kernel. Only multiples of 236 are shown as they provide best

performance. A logarithmic colour lookup table is use to visualise both peaks and

tails of the distributions. The red line represents the mean, purple represents P99%,

yellow represents P99.99% and the white line represents the maximum time measured.

7.3.4.3 Influence of shape of the control matrix

So far we have discussed the performance of the Xeon Phi in the context

of SCAO systems, where the number of DM actuators is approximately

equal to the number of sub-apertures and where we have assumed that

the control matrix shape is M × 2M . In this section, we investigate

how the shape of the control matrix affects the general performance of

the MVM calculation.
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Figure 7.14: Increase of offload time TOF F L as the number of elements of the control

matrix is increased from M × 2M to a square with 2M × 2M elements (the control

matrix has (M + n) × (2M) elements, where 0 ≤ n ≤ M and 2M = 9440). Data

calculated using 106 samples. A logarithmic colour lookup table is use to visualise

both peaks and tails of the distributions.

Figure 7.14 shows the additional offload time TOFFL taken as we

increase the control matrix size from M×2M to a square with 2M×2M

elements (i.e. the control matrix has (M + n)× (2M) elements, where

0 ≤ n ≤M). The baseline system (i.e. where n = 0) is equivalent to an

80× 80 AO system with 2M = 9440. As we have stated previously, all

dimensions of the matrix are a multiple of 236 to maximise performance

(explaining the steps in performance for every increase of n by 236).

We see that the time increase is linear (i.e. increases linearly with the

number of additional control matrix elements) and the overall shape of

the distribution remains identical for all system sizes (double peak with

a tail). It is important to stress at this point that using figure 7.13 in

conjunction with figure 7.14 enables us to estimate the performance of

a single Xeon Phi for most AO system sizes, regardless of the size or

shape of its control matrix.
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7.3.4.4 Multiple Xeon Phi speedup

An MVM operation is highly parallelisable, and therefore easy to split

between multiple Xeon Phi accelerators. Adding a second Xeon Phi

doubles the available compute power and memory bandwidth. However,

synchronisation between the two processes makes achieving a speedup

of ×2 difficult.

Figure 7.15 shows the offload time speedup that can be achieved by

using 2 Xeon Phis instead of one. For small systems using 2 Xeon Phis

is actually slower than just relying on one, due to overheads introduced.

As the control matrix size increases, the speedup gradually rises to reach

a plateau (starting from about a 120×120 AO system) of approximately

1.8. Using a second Xeon Phi to complete the MVM allows us to have

twice the cache memory (60 MB). This explains the first performance

peak on figure 7.15 while a single Xeon Phi would have to access the

slower GDDR5 memory, the two Xeon Phis are able to fit the control

matrix within the available combined cache memory. A single computer

can contain up to 8 Xeon Phis, as long as it has a sufficient number of

PCIe bus lanes.
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Figure 7.15: Relative performance of using two Xeon Phis instead of one:

〈TOF F L〉2P his / 〈TOF F L〉1P hi as a function of system size. The dashed vertical lines

represent the approximate size of an AO system in total number of sub-apertures.

7.3.5 Detailed analysis of temporal behaviour

As we have seen in the previous section, mean offload time does not

enable us to fully characterise where the different latencies are coming

from and how they affect the calculation speed. Access to the full

distribution of computation times is therefore necessary. In addition,

we have checked that studying a specific AO system size will not remove

the generality of the analysis as results can be scaled to match the

desired system size. In this section, we analyse detailed results for

a typical E-ELT first-light AO instrument with 80×80 sub-apertures

(using a 9440× 5428 element control matrix, or 205 MB).

7.3.5.1 Variability in offload time: TOF F L

Figure 7.16 shows the distribution of TOFFL for three tested configu-

rations (i.e. 1 Xeon Phi used with a non-RT Linux host, and 1 and

2 Xeon Phi used with a RT Linux host). For each configuration, 106
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measurements were taken. Table 7.6 shows more details on the offload

time, analysing the distributions in terms of minimum and maximum

values, jitter, mean and percentiles. The percentiles PXX% are defined

as the time by which XX% of the samples are completed. In other

words P99.99% represents a 1 in 10,000 event. Also shown in table 7.6

are the results of the Xeon E5 completing the same MVM calculation

on a RT Linux system.

Figure 7.16: Histogram comparing the offload time TOF F L for a 80×80 sub-aperture

system calculated using 106 samples. TOF F L encapsulates both calculation time and

transfer time. Blue: Single Xeon Phi on a RT Linux host; Red: single Xeon Phi on

non-RT Linux; Green: Two Xeon Phi on RT Linux kernel. Inset shows data from

2.5 ms to 15 ms with the number of frames ranging from 0-12 (showing outliers more

clearly).

All three distributions are double peaked with a long tail due to

outliers;[14] have published a similar distribution. The shape of these

distributions causes the mean not to sit at P50% (the median value)

but at P56% for non-RT Linux and at P73% for RT. Using a RT Linux

does not appear to greatly decrease the mean latency when compared

to the non-RT Linux. It seems however to reduce the majority of the
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extreme outliers and significantly lower the jitter (which is defined as

the deviation σ) from 0.066 ms to 0.039 ms. As expected, two Xeon

Phis on a RT Linux system produces the lowest latency; 〈TOFFL〉 is

about 1.6 times less than on a single Xeon Phi. However, jitter is

increased. This is not entirely surprising as to complete the MVM both

Xeon Phis need to have finished their calculation. This means that for

a given frame, jitter is introduced by the worst-performing Xeon Phi.

The outliers occur so infrequently that 〈TOFFL〉 is unaffected.

Table 7.6: Offload times TOF F L corresponding to figure 7.16. PN% is the N th percentile

of offload times that are completed by the given time. All times given in milliseconds.

TOF F L 1 Xeon Phi 1 Xeon Phi 2 Xeon Phis Xeon E5

(ms) non-RT RT RT RT

Jitter (σ) 0.066 0.039 0.0426 0.057

Min 1.514 1.525 0.918 3.480

Mean 1.631 1.587 0.978 3.622

(PXX%) (P56%) (P73%) (P71%) (P60%)

P99% 1.863 1.704 1.097 3.661

P99.9% 2.009 1.765 1.320 3.865

P99.99% 2.099 2.198 1.678 4.035

P99.999% 4.295 2.663 2.118 15.394

Max 14.861 3.085 3.119 32.170

Even by using two Xeon Phis, the number of outliers measured may

still be a concern for certain AO configurations. With 1 outlier every

10000 frames (i.e. P99.99%) for a system running at 500 Hz will occur 180

times over the course of an hour of observation. To identify where these

outliers are arising from and see if they can be reduced, we investigate

in the following sections the split of TOFFL into its component TCALC
and TTRANS.
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7.3.5.2 Variability in calculation time: TCALC

Since the MVM is only calculated on the Xeon Phi, it does not directly

interact with the operating system running on the host computer. We

do not expect to see any changes in the distribution of the MVM calcu-

lation time TCALC on RT or non-RT systems4. However compiling the

Xeon Phi drivers to be compatible with a RT Linux meant upgrading

the Manycore Platform Software Stack (MPSS) to the latest version at

the time of writing5. This update brought updated versions of Flash

and System Management Controller (SMC). MPSS and the updates

are only partially open source. This suggests that issues arising from

updates may be solvable by editing these sections of the source code

without the manufacture’s support. However, some sections are closed-

source which may make user modifications more difficult.

Figure 7.17 shows the results for pre-updated Flash/SMC and after

the update was applied. It seems to suggest that the update caused

a reduction in performance and larger variations in timings. The vari-

ation in calculation time TCALC is probably due to the fact that the

Xeon Phi is running a non-RT micro-Linux which results in some large

outliers[3]. In table 7.7 we see that the update slightly reduces both

mean calculation times and jitter. It is not until P99.99% that we see

that the outliers become worse after the update. This is a problem for

the performance of the system, it also highlights a larger problem of

using hardware accelerators such as the Xeon Phi or GPUs. Neither

of these technologies are designed for RTC, and any AO RTC system

based on hardware accelerators is tied to the development and direction
4This was shown to be true by going back to a non-RT system after update.
5MPSS 3.4 (Flash 390-2; SMC: 1.16) from Linux Gold Update 3 (Build: 2.1.6720-13; Flash:386-2;

SMC:1.14))
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the company developing them decides on. An upgrade that is beneficial

to HPC or gaming community may degrade AO RTC performance. As

a result, and since mean and jitter cannot fully characterise hardware

for AO applications, it is necessary to analyse the full distribution of

frame computation times when comparing or upgrading hardware.

Figure 7.17: Histogram comparing the calculation time TCALC for a 80×80 sub-

aperture system calculated using 106 samples. TCALC excludes the transfer time.

Blue: single Xeon Phi post firmware update; Red: single Xeon Phi pre firmware up-

date. Inset shows data from 1.8 ms to 2.5 ms with the number of frames ranging from

0-12 (showing outliers more clearly).
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Table 7.7: Calculation times TCALC corresponding to figure 7.17. PN% is the N th

percentile of MVM calculation times that are completed by the given time. All times

given in milliseconds.

TCALC 1 Xeon Phi 1 Xeon Phi

(ms) Pre-update Post-update

Jitter (σ) 0.045 0.037

Min 1.297 1.301

Mean 1.349 (P81%) 1.348 (P77%)

P99% 1.560 1.463

P99.9% 1.701 1.522

P99.99% 1.749 1.957

P99.999% 1.765 2.306

Max 1.813 2.505

7.3.5.3 Variability in data transfer: TT RANS

The larger outliers seen in TOFFL were not seen in TCALC , suggesting

that the main cause lies in transfer time TTRANS. Figure 7.18 shows the

distribution of data transfer timings for a host computer running both

a non-RT and a RT Linux system. Table 7.8 shows the detailed results

for the data transfer. It demonstrates that the large outliers seen in the

non-RT TOFFL are indeed caused by the transfer of data between the

host computer and the accelerator. We see that moving to a RT Linux

has reduced the outliers bringing the maximum values from 13.507 ms

down to 1.747 ms, a large reduction. It has also suppressed most of the

outliers, but not all, and reduced jitter from 0.048 ms to 0.014 ms. On

average, the system spends 15% of the total offload time transferring

data in and out of the Xeon Phi. When adding a second Xeon Phi (data

not shown here), the transfer time TTRANS is not reduced by much,

even though only half the data needs to be transferred to each Xeon
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Phi. This transfer happens simultaneously but due to the overheads

involved, TTRANS cannot be reduced by a significant amount.

In order to increase robustness, a method for reducing transfer (and

calculation) time variability could be devised by using two Xeon Phis

performing identical calculations. When the fastest Xeon Phi has fin-

ished its calculations, the other is interrupted to be ready to receive

slopes from the next frame. There is no simple functionality to inter-

rupt a call to the MKL library running on the Xeon Phi once it has

started or to stop the data transfer. This issue has not been investigated

here, and it is believed that the next Xeon Phi generation (standalone

CPU with no data transfer, see section 7.4) will be able to run a RT

Linux system therefore removing almost entirely these very high latency

events.

Figure 7.18: Histogram comparing the transfer time TT RANS for a 80×80 sub-aperture

system calculated using 106 samples. TT RANS is the combined time for transferring

data in and out of the Xeon Phi. Blue: Single Xeon Phi on a RT Linux kernel; Red:

single Xeon Phi on non-RT Linux. Inset shows data from 1 ms to 13 ms with the

number of frames ranging from 0-6 (showing outliers more clearly).
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Table 7.8: Transfer times TT RANS corresponding to figure 7.18. PN% is the N th

percentile of transfer times that are completed by the given time. All times given in

milliseconds.

TT RANS 1 Xeon Phi 1 Xeon Phi

(ms) Non-RT RT

Jitter (σ) 0.048 0.014

Min 0.196 0.204

Mean 0.283 (P81%) 0.239 (P77%)

P99% 0.359 0.313

P99.9% 0.592 0.344

P99.99% 0.752 0.399

P99.999% 2.957 0.647

Max 13.507 1.747

7.3.5.4 Integration of Xeon Phi into an AO RTC software: TRT CS

We have shown that the Xeon Phi is able to reduce MVM calculation

time for large systems over that of modern CPUs, such as the Xeon

E5. In this section, we integrate the Xeon Phi into a complete AO

RT control software. We chose to integrate the Xeon Phi into Durham

Adaptive optics Real-time Controller (DARC)[21], which is currently

being used on the William Herschel Telescope for the CANARY AO

demonstrator. In this section, we run an end-to-end simulation of an

AO RTC system using simulated WFS data. The measured time TRTCS
includes WFS pixel processing, slope calculation, the MVM calculation

on the Xeon Phi as well as additional background tasks of the RTC

system.

Only a single thread is able to transfer data to the Xeon Phi at one

time. The transfer step has a larger amount of overhead when compared

the data transfer size. This overhead means that if we pipeline the AO
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control loop and transfer groups of slopes to the Xeon Phi and split the

MVM into multiple smaller MVMs, the overall TRTCS is increased. Al-

though pipelining the MVM is possible, it was decided here to perform

a single MVM per frame, when all slopes have been calculated. For

the next generation of the Xeon Phi, where there is no transfer step,

pipelining will be more appropriate.

Figure 7.19 shows the comparison between TRTCS running both non-

RT and RT Linux using a Xeon Phi to accelerate the MVM. Table 7.19

shows more detailed results of the RTC processing time, analysing the

distributions in terms of minimum and maximum values, jitter, mean

and percentiles. It also shows the results for the RTCS running on the

Xeon E5 only, without Xeon Phi acceleration. Offloading the MVM

to the Xeon Phi and running on a RT Linux system brings the jitter

down (i.e. narrower distribution) and reduces the number of outliers,

although they are not completely eliminated. The jitter of the whole

RTC is reduced from 0.193 ms for a non-RT Linux down to 0.061 ms

for a RT Linux, a sizable reduction. The outliers appear to be far worse

than for the standalone tests; this is likely to be due to the fact that the

CPU is now stressed with other tasks such as WFS data processing and

thread synchronisation. As expected, moving to a RT kernel has made

the maximum value drop, from 103 ms to 11.8 ms. The minimum and

mean values have however increased slightly on the RT system; this is

likely due to how the internals of the RT kernel work allowing a process

with raised priority to pre-empt other processes. RT Linux systems do

not optimise for overall performance, they optimise for reliability and

predictability.
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Figure 7.19: Histogram comparing the entire AO frame processing TRT CS for a 80×80

sub-aperture system calculated using 106 samples. TRT CS encapsulates MVM calcu-

lation time, transfer time, pixel processing, slope computation and any overhead of

running the RTC system. Blue: single Xeon Phi on RT Linux kernel; Red: single

Xeon Phi on a non-RT Linux. Inset shows data from 4 ms to 103 ms with number of

frames ranging from 0-14 (showing outliers more clearly).

Table 7.9: Entire AO frame processing times TRT CS corresponding to figure 7.19. PN%

is the N th percentile of entire AO frame processing times that are completed by the

given time. All times given in milliseconds.

TRT CS 1 Xeon Phi 1 Xeon Phi Xeon E5 Xeon E5

(ms) non-RT RT non-RT RT

Jitter (σ) 0.193 0.061 1.5924 0.570

Min 1.920 2.154 6.120 6.717

Mean 2.260 2.320 8.550 8.366

(PXX%) (P56%) (P67%) (P54%) (P53%)

P99% 2.642 2.545 11.058 10.065

P99.9% 2.848 2.921 11.455 10.816

P99.99% 3.179 3.267 16.345 11.362

P99.999% 22.504 3.570 20.727 11.773

Max 103.249 11.759 128.028 12.077
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Although this performance would not be sufficient for typical first-

light E-ELT instruments (e.g. mean frame time of 2.3 ms), we have

demonstrated in this section that incorporating the Xeon Phi into an

existing AO RT control software can be done efficiently without invest-

ing a significant amount of time and effort and has the potential to

improve the RTC performance.

7.4 Prospective evolution of the Xeon Phi

The Xeon Phi tested in this chapter is the Xeon Phi 5110p and was

released as a coprocessor for use as a hardware accelerator. The next

generation of the Xeon Phi, codenamed ‘Knights Landing’[22], has been

released in the middle of 2016. The specifications for the top-end chip

can be found in table 7.10. This chip is no longer a coprocessor but a

CPU that is directly plugged into the motherboard.

The next generation Xeon Phi cores are based on Intel Atom CPUs

which have a 512 kB of cache of each and a total number of cores

upwards of 60, depending on the model. The clock frequency has been

increased to≈ 1.5 GHz, which is still slower than modern CPUs, making

it suffer the same performance problem when running serial code. Each

core has 512 KB of L2 cache so the Knights Landing will have around

35 MB of L2 cache, the exact value depending on the model.

The size of control matrix for ELT first light instruments is however

considerably larger than this (at least 205 MB) and we can safely assume

that the MVM will still be memory bandwidth limited. The Knights

Landing has removed the GDDR5 memory and is now using DDR4

memory which is much slower, though the use of this standard memory

type allows for expansion of the memory. The 7290F supports up to
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384 GB of memory with a memory bandwidth of 115.2 GB s−1[22].

This is much slower than the previous generation and will cause is-

sues with the MVM. This is why Intel has added a mid point memory

between DDR4 and the L2 cache: the MCDRAM which is 4 times faster

than DDR4. The Knights Landing has up to 16 GB of this memory

integrated into the chip. This MCDRAM allows it to approach an effec-

tive memory bandwidth close to 500 GB s−1(according the STREAM

tests performed by Intel).

From these specifications we can use the average performance (see

figure 7.20) of the current Xeon Phi and predict the performance of

the next generation as well as NVIDIA competing cards the K80 and

P100[23],[24]. This shows us how the performance might scale as a

function of system size. The mean performance of the Knights Landing

rivals that of two Xeon Phis of current generation.

The large increase in performance is mainly due to the removal of

the data transfer step and to higher memory bandwidth. Jitter and

outliers are harder to predict. It is reasonable however, to assume that

the distribution curve for TCALC will be similar to that of the current

generation and that running a RT-Linux kernel on the Xeon Phi will

further reduce both jitter and the number of outliers. The next Xeon

Phi generation, being a standalone CPU, has the potential to offer the

performance benefits of the current hardware accelerators (e.g. Xeon

Phi, GPUs) while removing the main disadvantages of this technology:

the transfer of data.

From our models we predict that the Knights Landing outperforms

even the P100. The P100 has a higher memory bandwidth but still

requires data to be offloaded.
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Figure 7.20: Comparison of mean MVM execution time between the current Xeon

Phi (5110P) (blue), the predicted next generation (red), NVIDIA K40 (green) and

NIVIDA P100 (black). These are predictions based on the data sheets available for

each of these chips[23, 24].

In this investigation we have only considered the use of a unique

control matrix throughout the operation of the AO system. In reality,

the control matrix will need to be updated as the observation condition

changes; for the E-ELT this is likely to be of the order of minutes. The

Xeon Phi offers asynchronous transfer of data which should allow for

the matrix to be updated during calculations. Since the MVM is a

memory bandwidth limit problem, and that data transfers will require

access to memory, this is likely to reduce performance.

The next generation of Xeon Phi (standalone CPU) should allow

control matrix swapping without transferring data over the PCIe bus,

therefore mitigating its impact. Transferring an updated control ma-

trix into memory will still reduce the memory bandwidth for the MVM

calculation and reduce performance. To lessen the impact on perfor-

mance, the updated matrix could be uploaded over several iterations,

updating small sections at a time.
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Table 7.10: Specifications of Knights Landing 7290F, one of the next generation Xeon

Phi which are now being released.

Processor Number 7290F

Cores / Threads 72/288

Clock frequency 1.5 GHz

L2 cache 36 MB

MCDRAM 16 GB

DDR4 RAM up to 384 GB

While the Xeon Phi targets MCDRAM to improves the memory

bandwidth, many competing hardware technologies are moving towards

3D stacked memory sometimes referred to as High Bandwidth Memory.

This new type of memory allows for a wider memory bus (1024 bits

wide), higher memory bandwidths and lower operating powers. Nvidia

are now releasing GPUs with either GDDR5 or HBM[25]. At the current

time the difference in performance between MCDRAM and HBM is

minor, in the future this may grow. HBM offers an interesting prospect

for future systems and will need further investigation.

7.5 Conclusions

In this chapter, we have presented a detailed study of the Xeon Phi,

a many-core processor, used as hardware accelerator for AO real-time

applications. We investigated performance for the most compute in-

tense part of the RTC: the wavefront reconstruction. Our examination

focused on the MVM algorithm, the most commonly used and the most

parallelisable of wavefront reconstruction algorithms. This enables us

to take full advantage of the high number of cores of the Xeon Phi.

We described how AO system size and the number of Xeon Phis im-
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pact performance and investigated the main contributors to the time

delay splitting between data transfer time and MVM calculation. Fi-

nally, we discussed the implementation ease and overall performance of

integrating the Xeon Phi into a complete RTC software.

We demonstrated that performance changes gradually over the whole

range of control matrix sizes studied, and that performance for a spe-

cific AO system can easily be assessed by scaling. We believe that the

results obtained here can serve as a guideline for estimating MVM per-

formance for any AO system size using a single or multiple Xeon Phis.

A more detailed analysis also showed that mean execution time is rarely

sufficient to fully qualify novel hardware (or when updating firmware)

in RT applications and that the actual distribution of execution times

needs to be analysed in detail. To make the comparison between po-

tential RTC hardware more tractable, we decided to present results in

terms of minimum, maximum, mean, deviation (jitter) and percentile

of execution time.

Using the Xeon Phi enables a clear improvement in MVM mean cal-

culation time, whether tested as a standalone system or fully integrated

into the RTC software. We have shown that moving the host from a

non-RT to a RT Linux system can naturally reduce the number and

extent of outliers, as well as reduce mean offload times. For a typical

80×80 E-ELT first-light SCAO system, mean offload time 〈TOFFL〉 ≈

1.587 ms and 99.999% of the offloads are finished within ≈2.663 ms.

However, a number of outliers are still present (most likely due to the

fact that the Xeon Phi is running a non-RT micro-Linux) probably

making the current generation of this technology only suitable (TBC)

for some AO RT applications (e.g. GLAO, MOAO) but unsuitable for
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others (e.g. XAO).

Sharing calculations between two Xeon Phis allows us to further

reduce mean offload time 〈TOFFL〉. The maximum speedup between

1 and 2 Xeon Phis plateaus at around 1.8 for large systems, and the

speedup for a typical 80×80 E-ELT first-light SCAO system reaches 1.6.

In this configuration, the mean offload time 〈TOFFL〉 ≈ 0.978 ms and

99.999% of the offloads are finished within ≈2.118 ms. This shows the

scalability of a system using multiple Xeon Phis, and it is reasonable to

assume that adding more Xeon Phis would further reduce the latency

in a similar way.

The Xeon Phi is designed to be used within supercomputers, Tianhe-

2 powered by the Xeon Phi has spent 3 years at the top of the top500

list, only being beaten in the June 2016 list. The HPC community is

generally more focused on data throughput rather than on time-critical

processes. We have found that the variability in execution time (in-

creased jitter and outliers) can increase after firmware updates. Using

the Xeon Phi as an offload card turns a homogeneous CPU system

into a heterogeneous computing environment, which is more complex

to programme and to balance work loads efficiently. On the other hand,

the theoretical memory bandwidth of the Xeon Phi is very high, which

is essential for a bandwidth limited problem such as the MVM. We

have shown that about 50% of the theoretical memory bandwidth is

achievable, in line with other findings [16]. In addition, we have shown

that the achievable memory bandwidth can offer a good estimate for

the mean performance of the Xeon Phi calculating the MVM, and that

most of the outliers come from transferring data in and out of the Xeon

Phi. The expected next Xeon Phi generation has great potential in
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being suitable for AO, being an integrated CPU, eliminating the need

to transfer data over the PCIe bus, and also offering higher compute

power. Both mean RTC performance, jitter and outliers have the po-

tential to be greatly reduced in forthcoming hardware.

Due to the performance of the current Xeon Phi and the predicted

performance of Knights Landing, future AO RTCs are already being

designed around the Xeon Phi chip. A first light instrument on the

Thirty Meter Telescope, the Narrow Field Infra-Red AO System (NFI-

RAOS), is now planning on using the Knights Landing at the centre of

the RTC[26].
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Herriot, and Maxime Dumas. A high-performance fpga platform

for adaptive optics real-time control. In Proc. SPIE, volume 8447,

page 84472E, 2012.

[12] Enrico Fedrigo, Robert Donaldson, Christian Soenke, Richard My-

ers, Stephen Goodsell, Deli Geng, Chris Saunter, and Nigel Dipper.

Sparta: the eso standard platform for adaptive optics real time ap-

plications. In Proc. SPIE, volume 6272, page 627210, 2006.

[13] David Barr, Alastair Basden, Nigel Dipper, Noah Schwartz, Andy

Vick, and Hermine Schnetler. Evaluation of the xeon phi processor

as a technology for the acceleration of real-time control in high-

order adaptive optics systems. In Proc. SPIE, volume 9148, page

91484B, 2014.

238



[14] Malcolm Smith, Dan Kerley, Glen Herriot, and Jean-Pierre Véran.
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8.1 Conclusion

In this thesis, we have tested two novel computational hardware that

have the potential to be used for adaptive optics (AO) systems in the

next generation of ground-based astronomy telescopes. We have fo-

cused our efforts on identifying hardware solutions for the most compu-

tationally intensive routines that are performed in the AO control loop,

namely the wavefront processing unit (WPU) and the wavefront recon-

struction. The hardware we selected were the Mellanox TILE-Gx36

(see chapter 6) and the Intel Xeon Phi, specifically the Knights Corner

5110p (see chapter 7). At a glance these technologies do not seem too

different from each other, both being many-core co-processors. A de-

tailed analysis of the characteristic shows obvious differences allowing

them to fill different roles in the AO RTC.

The Mellanox TILE-Gx36 is a many-core co-processing card with

four 10 GbE ports, designed for the quick processing of incoming data

and designed for use within data centres. This makes it a great candi-

date for the WPU at the front-end of AO RTCs, which process large

amounts of pixel data from the WFS(s). Its low memory bandwidth

means it is not suitable for the wavefront reconstruction.

In chapter 6, we extensively tested the TILE-Gx36 for its suitability

as a WPU in an AO RTC. We focused on the Shack-Hartmann (SH)

wavefront sensor (WFS) although the results obtained can easily be ap-

plied to a pyramid WFS. We found that using the Zero Overhead Linux

(ZOL) mode of operation, which removes the interaction of the OS with

the running code, provides a real-time environment that has very little

variation in the computation time. For example, when performing the

calculations necessary in the WPU and using a 240×240 detector, the
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jitter (i.e. standard deviation) can be as low as 1.27 µs giving a very

deterministic calculation time.

From this detailed analysis we have shown that the TILE-Gx offers

the necessary processing power as well as the very low jitter, required

for a typical wavefront processing units of most first-light instrument

on the E-ELT. We believe that the current version of the TILE-Gx and

subsequent releases (with more cores and higher memory bandwidth)

make this technology a very strong contender for most of the AO RTC

systems planned for the ELTs.

In contrast the Intel Xeon Phi (Knights Corner) is much closer to a

GPU with a high memory bandwidth and many-cores connected via a

PCIe bus. The PCIe connection makes it harder to get large quantities

of data into the card at high data transfer rates and in a reliable manner

(meaning it is not suitable for a WPU). The high memory bandwidth

and many-cores makes it a good candidate for the wavefront reconstruc-

tion stage.

The Xeon Phi from Intel has been tested in chapter 7 for its ability

to offer the required computational power for the wavefront reconstruc-

tion, specifically the matrix-vector multiplication (MVM). The Xeon

Phi is a co-processor similar to GPUs though it uses x86 instruction set

cores, therefore simplifying code development. It offers a high memory

bandwidth of 160 GB s−1 and 59 processing cores that can each run four

threads allowing the accelerating of parallel code such as the MVM.

We demonstrated that while the Xeon Phi offers high performance

and that the performance scales well with the number of Xeon Phis

used, it has a high level of jitter. The mean execution time may be

improved upon as we only tested a configuration where we wait for all
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the slopes to be ready before starting. Better results could be obtained

by pipelining the data and starting calculations as soon as a sufficient

number of slopes are ready. We identified the main source of the jitter

as being the data transfer in and out of the Xeon Phi. This level of jitter

makes the current iteration of the Xeon Phi unusable in the hard real-

time pipeline of an AO RTC. The next version of Xeon Phi (Knights

Landing) offers increased memory bandwidths and more cores. It is no

longer a co-processor but rather a CPU directly seated on the mother-

board of a computer. This hopefully offers an increased computational

power while at the same time reducing the jitter. In addition, this will

make the implementation of a real-time OS on the Xeon Phi possible,

further reducing the jitter. This Knights Landing has been released

July 2016 and is undergoing testing by Durham University and NFI-

RAOS teams. Initial results show very a promising behaviour, in-line

with the predicted performance presented in this thesis.

Table 8.1 shows a summary of the results both the for TILE-Gx and

for the Xeon Phi (including predictions for the Knights Landing). Re-

sults are presented for various detector sizes and various numbers of sub-

apertures, the key parameters driving the complexity of calculations.

We start with sizes that are consistent with current high-order AO sys-

tems in operation such as SPHERE and AOF (both using SPARTA as

the RTC). To a first approximation, they can be compared to systems

using a WFS detector with 200x200 pixels and 40×40 sub-apertures.

We also show current ELT first-light instruments to highlight the fact

that these technologies are capable of delivering the necessary perfor-

mance.
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Table 8.1: Summary of the main TILE-Gx and Xeon Phi performance results and

predictions for the Knights Landing. All times are in µs. twp is the mean wavefront

processing time. tro is the mean wavefront read-out time. twd is the mean wavefront

delay (see section 5.1.2). nSubs is the number of sub-apertures on the WFS.

Wavefront processing (Tile-GX) Wavefront reconstruction (Xeon Phi)

Detector

size
twp tro twd nSubs Knights Corner Knights Landing

200×200 44 40 4 40×40 210 27

400×400 172 166 6 60×60 689 127

640×640 475 428 48 80×80 1587 405

800×800 822 670 153 100×100 2755 997

Taken separately, these figures show the ability of the hardware to

match specific problems. Table 8.2 illustrates the overall performance

of a theoretical RTC system comprised of a single TILE-Gx and a single

Xeon Phi. We have assumed that the TILE-Gx can be used in pipeline

mode and that there is no data communication delay (e.g. additional

time needed to transfer data between the WFU and the wavefront re-

construction hardware) or any other forms of temporal delays. Results

are presented both for the Xeon Phi tested (i.e. Knights Corner) and the

current released version at the time of writing (i.e. Knights Landing).

These figures are not meant to give an absolute accurate representa-

tion of the system performance but to give a general indication of the

performance these hardware would be able to achieve.

We see that the Knight Landing will be able to provide sub-millisecond

latency for all ELT baseline systems (SCAO configuration) (see section

5.6). In AO configurations requiring more than one WFS or more than

one DM, multiple sets of hardware could be used in parallel. The TILE-

Gx would not interfere with other ones as the WPU units operate in-
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dependently of one another. For the wavefront reconstruction step this

can be distributed across multiple Xeon Phis with little penalty as has

been shown in section 7.3.3.

To the best of our knowledge, we were the first groups to identify

the potential TILE-Gx for AO RTC applications[1, 2]. The results pre-

sented show that this technology not only provides the performance

required for WPUs but also provides it in a deterministic manner. We

were also among the first groups to publish on the Intel Xeon Phi[3, 4, 1].

The Xeon Phi 5110p shows good overall performance but poor stabil-

ity (i.e. jitter). The Knights Landing, the lastest Xeon Phi version at

the time of writing, is showing very promising early results in improv-

ing both mean performance and jitter. For these reasons, we believe

that both technologies deserve serious consideration for future AO RTC

systems.

Table 8.2: Prediction of the mean overall execution time of AO RTC comprised a

TILE-Gx for the wavefront processing and a Xeon Phi for the wavefront reconstruc-

tion. All times are in µs. Values are presented assuming the pipeline results from the

TILE-Gx (see section 6.4).

Detector

Size
nSubs

TILE-Gx +

Knights Corner

TILE-Gx +

Knights Landing

200×200 40×40 215 31

400×400 60×60 693 131

640×640 80×80 1591 409

800×800 100×100 2759 1001

8.2 Future work

The ELTs are fast approaching and shall be ready within the next

decade. The development of the first light instruments is well underway.
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The results presented in this thesis are presented as more of a guide or

an indication of the performance of the hardware, not as the definitive

performance of a full-fledged RTC. The effort of this thesis has been

more focused on trying to isolate and identify the hardware with high

potential. In a fully developed AO RTC there would be a more complex

real-time pipeline with interactions between different processing stages,

as well as interactions with the soft real-time cluster, that may not

have been present in this investigation. In the work carried out here,

we have tried to stay as generic as possible and therefore as far away as

possible to a specific instrument or implementation. Only in taking into

account instrument specific environments would we be able to provide

an accurate estimate of the complete RTC chain.

While the results of the TILE-Gx presented in this thesis are ex-

tremely promising there is more work required to assess its ability as

an AO RTC WPU. In the tests presented in chapter 6 an FPGA was

used to emulate a camera. This allowed us to send known data in a

deterministic manner to the TILE-Gx. These tests should be repeated

with a real camera to determine if it could handle a real-camera load.

In the tests we have not passed the resultant slope data out of TILE-

Gx into another computer; this could be done either via the 10 GbE

connection or the PCIe bus depending on requirements. This would

need to be done to assess the true latency from the last pixel out of the

camera read-out electronics to last slope out of the WPU.

The Xeon Phi tested in chapter 7 provided good overall performance

as compared to its same generation competitors. Since then memory

bandwidths of newer chips have increased with GPUs such as the P100

or Xeon Phis such as the Knights Landing. The major problem with the
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Xeon Phi (Knights Corner) was the variations in latency. The Knights

Landing on the other hand has both higher memory bandwidth and

the potential of reducing variations in latency (i.e. jitter) since it is no

longer a co-processor and is closer to a CPU.

With the next generation having been released with a much high

memory bandwidth and as a CPU rather than a co-processor the Xeon

Phi looks like a promising candidate. While we have predicted the

potential performance of the Knights Landing results have not yet been

published. Initial results presented at workshops from groups such as

Durham University and the NFIRAOS consortium are very promising.
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ABSTRACT
The next generation of Extremely Large Telescopes (ELTs) for astronomy will rely heavily
on the performance of their adaptive optics (AO) systems. Real-time control is at the heart
of the critical technologies that will enable telescopes to deliver the best possible science and
will require a very significant extrapolation from current AO hardware existing for 4–10 m
telescopes. Investigating novel real-time computing architectures and testing their eligibility
against anticipated challenges is one of the main priorities of technology development for
the ELTs. This paper investigates the suitability of the Intel Xeon Phi, which is a commer-
cial off-the-shelf hardware accelerator. We focus on wavefront reconstruction performance,
implementing a straightforward matrix–vector multiplication (MVM) algorithm. We present
benchmarking results of the Xeon Phi on a real-time Linux platform, both as a standalone
processor and integrated into an existing real-time controller (RTC). Performance of single
and multiple Xeon Phis are investigated. We show that this technology has the potential of
greatly reducing the mean latency and variations in execution time (jitter) of large AO systems.
We present both a detailed performance analysis of the Xeon Phi for a typical E-ELT first-light
instrument along with a more general approach that enables us to extend to any AO system
size. We show that systematic and detailed performance analysis is an essential part of testing
novel real-time control hardware to guarantee optimal science results.

Key words: instrumentation: adaptive optics.

1 IN T RO D U C T I O N

Adaptive optics (AO; Babcock 1953) is a technique used to mit-
igate atmospheric turbulence and partially restore the diffraction
limit of optical and near-infrared ground-based astronomical tele-
scopes, improving effective resolution to beyond the seeing limit. It
is a critical technology for the next generation of Extremely Large
Telescopes (ELTs) such as the European ELT (E-ELT) and essen-
tial to achieve high-angular resolution. The main science goals of
the ELTs, such as high-redshift galaxies (Puech et al. 2010), stellar
formation (Evans et al. 2011) or direct exoplanet imaging, pro-
vide challenging requirements that current AO systems are unable
to meet. To achieve these requirements new hardware needs to be
investigated and characterized in the context of ELT-scale AO sys-
tems.

AO systems use a corrective element, typically the surface of a
deformable mirror (DM), to compensate for the phase retardation
introduced by atmospheric turbulence. The required compensation
is measured using one or more wavefront sensors, and must be

� E-mail: David.Barr@stfc.ac.uk

applied within a short time-scale before the atmosphere has further
evolved (i.e. a fraction of the coherence time) and is typically of
the order of one millisecond. Because of the significant increase
in the primary mirror size of ground-based telescopes, from the
4–10 m class telescopes of today; to the planned 30–40 m, the
simple extrapolation of current real-time (RT) technology is not
possible. Research and development of suitable AO technologies
is required. The number of degrees of freedom of an AO system
is proportional to the square of the primary mirror size and the
next generation of ELTs will make computation, scaling with the
fourth power of telescope diameter, extremely demanding. Real-
time controllers (RTC) translating wavefront measurements into
DM commands are at the heart of the AO system and therefore
naturally one of the main areas of investigation. Table 1 shows the
requirements for a selection of current and planned AO systems and
stresses the high number of degrees of freedom (i.e. AO systems
size) and the high update frequencies.

Wavefront reconstruction, translating measured wavefront into
new DM commands, is by far the most computationally intensive
algorithm that an ELT-scale RTC is required to perform. The most
common wavefront reconstruction algorithm used is the matrix–
vector multiplication (MVM). The DM commands d are related to

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Table 1. Selection of current and proposed AO systems with demanding
computational requirements for RT control systems. SPHERE (Sauvage
et al. 2010), GRAAL (Paufique et al. 2012), PALM3000 (Bouchez et al.
2009), GPI (Pazder et al. 2012), NFIRAOS (Boyer et al. 2014), HARMONI
(Fusco et al. 2010), EAGLE (Basden et al. 2012), EPICS (Vérinaud et al.
2010).

System AO type Frequency WFS # DM actuators

SPHERE XAO 1.2 kHz 40 × 40 41 × 41
(VLT)

GRAAL GLAO 1 kHz 4 × (40 × 40) 1170
(VLT)

PALM3000 XAO 2 kHz 63 × 63 (16 × 16) +
(Hale) (66 × 66)

GPI XAO 1.2 kHz 64 × 64 64 × 64
(Gemini)

NFIRAOS MCAO 0.8 kHz 7 × (60 × 60) (63 × 63) +
(TMT) (76 × 76)

EAGLE MOAO 0.25 kHz 11 × (84 × 84) 20 × (85 × 85)
(E-ELT)

HARMONI SCAO 0.5 kHz 84 × 84 85 × 85
(E-ELT)

EPICS XAO 2–3 kHz 210 × 210 211 × 211
(E-ELT)

the slopes s through a linear equation d = G−1s, where G−1 is the
control matrix. The computational complexity for an MVM grows
as O(M2), where M is the number of degrees of freedom of the AO
system.

In recent years, several novel computationally efficient wavefront
reconstruction algorithms have been developed (Poyneer, Gavel &
Brase 2002; Rosensteiner 2012; Véran et al. 2014). These alter-
native wavefront reconstruction approaches are typically iterative
and generally unable to efficiently take advantage of modern mul-
ticore and many-core hardware architectures. Although the MVM
typically has the largest requirements in terms of number of op-
erations and memory usage compared to these other methods, it
is highly parallelizable making efficient use of modern multicore
architectures and widely used by the AO community. For small AO
systems, CPU-based systems can typically be used. As we move
towards ELT-scale systems, calculations become more and more
difficult to handle with CPU alone, limited both by available mem-
ory bandwidth, and raw processing power.

To achieve the required computational power, many groups have
focused on GPUs (Bouchez et al. 2008; Basden & Myers 2012;
Gratadour et al. 2012; Wang & Ellerbroek 2012; Wang 2013; Sevin
et al. 2014) since they offer a potential suitable parallel environment
to reduce the latency associated with the MVM calculation. Field
programmable gate arrays (FPGAs) have also been used, although
typically for smaller systems (Mauch et al. 2014), or for only a
section on the AO control loop (Zhang et al. 2012) or limited to the
pixel processing as part of heterogeneous RTC hardware (Fedrigo
et al. 2006). These hardware accelerators generally suffer from the
same disadvantages: limited data transfer into and out of the acceler-
ator. They lead to complex heterogeneous computing environments
which give rise to complex memory structures and the movement
of large quantities of data between different computational com-
ponents. Accelerator architectures traditionally evolve quickly as
new hardware is released, which may not be compatible with older
systems, leading to lifetime and portability issues. This can cause

long development times and difficulty in maintaining and upgrading
systems.

In this paper, we investigate the performance of the Intel Xeon Phi
for wavefront reconstruction using the MVM algorithm. The Xeon
Phi uses x86 instruction set microprocessors (same as conventional
CPUs), which may help in lowering the barriers to entry compared
with GPUs or FPGAs, i.e. no specialized code base or applica-
tion programming interface (API) is required. The implemented
code can easily be modified and upgraded, should a more perfor-
mant hardware be released. The Xeon Phi also offers high-memory
bandwidth to accelerate memory-bound parallel algorithms. It is
however, designed for high-performance computing where the re-
quirements are more focused on the mean execution time rather than
on the determinism of execution time. A detailed analysis of perfor-
mance in a realistic AO environment is therefore essential. Previous
investigations were limited and focused on non-real-time (non-RT)
Linux systems (Barr et al. 2014) or on a very specific AO system
(Smith et al. 2014) making the generalization to other systems diffi-
cult. In addition, a detailed analysis of the timings is crucial to fully
understand the limitations of the hardware and extrapolate to future
hardware developments. Different science cases will have differ-
ent tolerances on the acceptable jitter (variation in execution time)
or outliers (results significantly apart from the mean) for example,
which may or may not impact science results significantly.

The rest of the paper is organized as follows. In Section 2, we give
an overview of the RTC architecture including the different timings
and performance metrics used for the investigation. In Section 3, we
discuss the actual performance of the Xeon Phi and present detailed
results of timings for a standalone system as well as integrated into
an RTC system. Results are presented for a typical first-light E-ELT
instrument and also for a more general approach, in order to extrap-
olate to any AO system size. In Section 4, we look at the expected
Xeon Phi developments and anticipate potential performance. Fi-
nally, in Section 5 we draw our conclusions.

2 X E O N PH I BA S E D RT C O N T RO L

2.1 RTC architecture

The Xeon Phi is a many-core accelerator co-processor card con-
nected to a processor via a PCIe bus offering a high level of pro-
grammability (standard C/C++ with compiler assisted offload), high
throughput, high performance per watt and low cost. The main dis-
advantage, as with most accelerators, is that data communication
between the host computer and the Xeon Phi will add unwanted de-
lays (and jitter) to the AO loop. This leads to a heterogeneous com-
puting environment which may cause issues with complex memory
management and makes optimization difficult. The Xeon Phi is sim-
ilar in that sense to general purpose GPUs used in high-performance
computing environments. The Xeon Phi differs however from GPUs
by offering x86 instruction set cores, allowing programmers to use
the same design techniques as they would with CPUs. This has the
potential to speed up development time and does not require spe-
cialist knowledge of programming paradigms and toolkits such as
CUDA or OPENCL.

The Xeon Phi model under investigation here is the 5110P, which
offers 60 cores, a clock speed of 1 GHz, 8 GB of GDDR5 memory
and has a maximum theoretical memory bandwidth of 320 GB s−1.
For detailed specifications of the Xeon Phi and host computer used
in this paper see Table A1 in Appendix A. The Xeon Phi 5110P
clock speed is slower than that of modern CPUs which can typically
reach 3–4 GHz. This suggests that the Xeon Phi would be unable
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Figure 1. Hardware configuration used to benchmark the Xeon Phi. Two
Xeon Phis are connected to the host computer (Xeon E5-2650) via PCIe bus.
The Xeon Phi is used to accelerate the MVM. The control matrix is stored
before calculations in the Xeon Phi’s memory, while wavefront slopes and
DM commands vectors are transferred at each AO frame. The dashed boxes
represent details of the four different times that are investigated.

to compete for performance on sequential code. Given the number
of cores and the high-memory bandwidth, it has the potential to
outperform current CPUs on parallel codes such as the MVM.

The aim of this investigation is to characterize and benchmark the
Xeon Phi in the context of a low latency and low jitter AO control
loop. We focus our study on the main task of the RTC which is
to control the core AO system. We do not include additional tasks
(often characterized as soft RT tasks) and do not relate our findings
to a specific instrument design, preferring to adopt a more general
approach. The Xeon Phi is used to accelerate MVM calculations
and the rest of the AO processing tasks (such as image calibration,
slope calculation and DM control laws) are performed by the host
computer. The hardware configuration is shown in Fig. 1. The host
computer, composed of a Dual Xeon E5-2650, receives wavefront
camera(s) pixels (typically a Shack–Hartmann sensor) and calcu-
lates the slopes. In the studied configuration, the wavefront camera
data is emulated and not physically connected to any hardware, en-
suring that the system is not limited by the camera’s frame rate. The
Xeon Phi then receives the slopes from the host computer through

Figure 2. Diagram showing a simplified version of the implemented pro-
cess and the four different timings measured to benchmark the Xeon Phi.
t1 and t4 are taken on the Xeon E5; t2 and t3 are taken on the Xeon Phi.
Due to the Xeon Phi and the Xeon E5 having separate unsynchronized
clocks, only the total data transfer time is accessible and is calculated from
TOFFL − TCALC.

a PCIe bus and computes the command vector that is finally sent to
the DM(s). Equally, no DM is physically connected to the host PC.

The Xeon Phi and the Xeon E5 have a separate clock, making
it difficult to accurately time data transfer and MVM calculations
using the same clock. In order to produce accurate timings, we
measure the difference between times on the CPU and times on the
Xeon Phi, removing issues of asynchronous clocks. Throughout this
paper, we will investigate four different timings to fully benchmark
the performance of the Xeon Phi.

(i) TOFFL is the offload time: this represents the time from the
first data sent from the host computer to the Xeon Phi(s) to the last
data received back on the host computer. This includes data transfer
(i.e. slope and DM command vectors) and MVM calculation on the
Xeon Phi(s). TOFFL = t4 − t1 (see Fig. 2).

(ii) TCALC is the calculation time: this refers to the time taken for
the MVM to be calculated on the Xeon Phi (or Xeon Phis) excluding
any transfer times. TCALC = t3 − t2 (see Fig. 2).

(iii) TTRANS is the combined transfer time: this represents the
time taken for the data to be transferred in and out of the Xeon
Phi. This encapsulated both the transfer of the slope vector and DM
commands. TTRANS = TOFFL − TCALC (see Fig. 2).

(iv) TRTCS is the RT control time: this represents the time taken for
an entire AO frame to execute. This includes the wavefront sensor
(WFS) pixel processing, slope computation, the MVM calculation
on the Xeon Phi(s) as well as any additional background tasks of
the RT control system.

Data are taken according to the scheme presented in Fig. 2. At
the start of the process, we initialize and pre-load the control matrix
G−1 into the Xeon Phi memory. The slope vector is then transferred
to the Xeon Phi (marked as time t1) and the MVM calculation starts
(time t2). At the end of the calculation (time t3), we transfer the
result back to the host computer (time t4) and loop back to the slope
transfer. After a statistically significant number of timings (typically
106), we free the memory and end the process. Timings t1 and t4 are
taken on the host computer whereas t2 and t3 are taken on the Xeon
Phi. This timing scheme allows us to time the overall offload time
TOFFL and MVM calculation time TCALC separately. From measur-
ing TOFFL and TCALC, the combined transfer time TTRANS can be
derived. Separating between transfer and calculation times offers
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Reducing AO latency with the Xeon Phi 3225

us the capability to locate where additional time delays are being
generated.

2.2 RT Linux and Xeon Phi optimization

Modern computers are generally not RT processors and operating
systems have background processes running which affect determin-
ism. AO systems need a high level of determinism which non-RT
operating systems are generally unable to provide. RT Linux on the
other hand, gives us greater control on the order (priority) in which
processes are carried out by the operating system. These processes
with raised priority are able to pre-empt the lower priority tasks to
give greater control and predictability in execution time. For the
host computer, both a non-RT and an RT Linux kernel will be in-
vestigated. An RT pre-empt 3.10 Kernel was installed on the host
computer which is running RED HAT 6.4. The RT Linux kernel was
not edited nor modified. The Xeon Phi itself is running a non-RT
micro-operating system based on a Linux kernel.

To perform the MVM calculation, we investigated the perfor-
mance of the Intel MATH KERNEL LIBRARY (MKL), the MAGMA library
(Bosma, Cannon & Playoust 1997) and an MVM code developed in-
house which uses OPENMP for parallelization. MAGMA offered much
more abstraction from the Xeon Phi architecture than the other two,
which allows quick development but at the cost of reduced perfor-
mance. The in-house code was optimized for certain matrix sizes
and was able to outperform MKL on some specific cases. In general,
MKL gave a high baseline performance for all cases. It was decided
to use MKL and focus on general performance of the Xeon Phi rather
than focus on specific cases where in-house code can be tuned and
optimized to obtain the best performance. Using MKL has the double
advantage of reaching very good performance overall but also en-
suring that simple software design techniques can be used without
requiring in-depth knowledge of the Xeon Phi architecture.

From a previous study (Barr et al. 2014), we have shown that
the Xeon Phi performs best when the problem size can fit its archi-
tecture. The Xeon Phi 5110p has 60 cores, with one core reserved
for input/output routines. Each core can support up to four threads,
which means that when the problem size is divisible by 236 (i.e.
4 × 59), optimal performance is obtained. This difference in perfor-
mance is likely due to the architecture and also how the MKL library
handles the parallel sections of code. When the problem size fits the
architecture, the library is able to split the problem evenly between
all cores. When this is not the case, the library has to perform some
dynamic resource handling that brings in more overhead, degrading
performance. When the problem size is not divisible by 236, the
control matrix is therefore padded with zeros to fit the architecture
and reach the best achievable performance.

3 B E N C H M A R K I N G TH E X E O N P H I

In this section, we present a detailed analysis of the performance
of the Xeon Phi. It is important here to note that different science
cases will put different constraints on AO system requirements.
Some (e.g. direct exoplanet imaging) will require very high image
contrasts. Achieving these contrast levels will require very low and
stable AO loop latencies. Other science drivers (e.g. high-redshift
galaxies, stellar formation) will have somewhat lower requirements,
in particular on stability. The variation in latency (i.e. stability of
the system), often called jitter, will be evaluated in this paper as the

Figure 3. Comparison of the mean offload time 〈TOFFL〉 as a function of the
number M of valid sub-apertures using 104 samples. Red: Xeon E5; Blue:
single Xeon Phi; Green: two Xeon Phis. Results obtained using an RT Linux
kernel. The dashed vertical lines represent the approximate size of an AO
system in total number of sub-apertures.

standard deviation1 of the measured times t. Outliers (i.e. frames
taking significantly longer to complete than the mean execution
time) are also crucially important. In order to refine the analysis,
the full distribution of the measured timings will be given, along
with mean, jitter, minimum, maximum and percentiles of timings
completed before a given time.

In order to stay as general as possible, and not tie this study to any
specific instrument design, the AO system size (M) will be defined
as the total number of wavefront measurement points (typically
the number of valid sub-apertures of a Shack–Hartmann wavefront
sensor). The slope vector size is 2M as it contains the slopes in
X and Y directions for each valid sub-aperture. In a typical single
conjugate AO (SCAO) system, the number of valid sub-apertures is
approximately equal to the number of DM actuators and so the DM
command vector will be approximately half the size of the slope
vector. The control matrix (G−1) will therefore be of dimension
M × 2M unless explicitly stated otherwise.

After testing the Xeon Phi as a function of AO system size M,
we focus our attention on a typical first-light SCAO E-ELT instru-
ment with approximately 80 × 80 sub-apertures. For such a system,
the control matrix contains 9440 rows and 5428 columns (taking
into account an aperture with central obscuration), which in turns
corresponds to a memory size of ≈205 MB, using 4 byte (32 bit)
single-precision floating-point numbers. Typically slope data are
only accurate to 16 bits, allowing 4-byte floats to provide sufficient
accuracy for non-high-contrast AO systems (Basden, Myers & But-
terley 2010a). Tests are run both on a non-RT Linux kernel and an
RT Linux kernel system using one and two Xeon Phis, allowing
us to investigate scaling with number of co-processors. Finally, we
will show that the generality of our conclusions will not be lost by
exploring a specific system size.

3.1 Influence of AO system size

3.1.1 Offload time as a function of AO system size

Fig. 3 shows the comparison of mean offload time 〈TOFFL〉 (i.e.
including MVM calculation and data transfer) for the Xeon E5

1 σ =
√

1
N

∑N
i=1(ti − μ)2, where the mean μ = 1

N

∑N
i=1 ti The mea-

sured distributions are not normal distributions and classical interpretation
of the standard deviation is not possible.
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3226 D. Barr et al.

Figure 4. Comparison of the mean offload time 〈TOFFL〉 as a function of the
number M of valid sub-apertures using 104 samples. This figure is a zoom
of data found in Fig. 3 for better readability.

Figure 5. Variation in offload time TOFFL using a single Xeon Phi with
the host running an RT Linux Kernel. Only multiples of 236 are shown as
they provide best performance. A logarithmic colour lookup table is use to
visualize both peaks and tails of the distributions. The red line represents
the mean, purple represents P99 per cent, yellow represents P99.99 per cent and
the white line represents the maximum time measured.

alone, a single Xeon Phi and two Xeon Phis used as accelerators as
a function of AO size. For the smaller AO systems where the number
of valid sub-apertures is less than approximately M < 1500 (such
as for a 40 × 40 SCAO system) the Xeon E5 clearly outperforms
the Xeon Phi(s). This is due to the need to transfer data (i.e. slope
and DM command vectors) over the PCIe bus. Once the number
of valid sub-apertures becomes larger, the Xeon Phis provide lower
mean latencies (this clearly visible in Fig. 4, a zoomed version of
Fig. 3 for the range 0–6000 sub-apertures).

As expected, for large numbers of valid sub-apertures 〈TOFFL〉
grows as O(M2) for all devices, dominated by computation time.
When two Xeon Phis are used, 〈TOFFL〉 can be further reduced; the
difference is more clearly visible for large AO systems.

As stated previously, the mean execution time is insufficient to
fully characterize the AO RTC. Fig. 5 shows the distribution of
offload times TOFFL as a function of AO system size, using an RT
Linux kernel, and measuring TOFFL over 106 iterations for each
system size. Only matrix size multiples of 236 are shown because
mean and variation in execution time are both increased for non-
multiples. It can be seen that not only all system sizes have a
similar bimodal distribution but the mean, the position of peaks and

Figure 6. Increase of offload time TOFFL as the number of elements of
the control matrix is increased from M × 2M to a square with 2M × 2M
elements (the control matrix has (M + n) × (2M) elements, where 0 ≤ n ≤ M
and 2M = 9440). Data calculated using 106 samples. A logarithmic colour
lookup table is use to visualize both peaks and tails of the distributions.

the different percentiles calculated (percentile of offload times that
are completed by the given time) all follow a similar trend. Only
the maximum offload time is shown to be somewhat irregular; we
believe this is because of the limited number of samples used (i.e.
106) to calculate the distribution. From Fig. 5, we can legitimately
say that studying a specific AO system size in detail will not remove
the generality of the analysis as results can be scaled to match the
desired system size. Results obtained with two Xeon Phis (data not
shown here) show the same scalability.

3.1.2 Influence of shape of the control matrix

So far we have discussed the performance of the Xeon Phi in the
context of SCAO systems, where the number of DM actuators is
approximately equal to the number of sub-apertures and where
we have assumed that the control matrix shape is M × 2M. In
this section, we investigate how the shape of the control matrix
affects the general performance of the MVM calculation. Fig. 6
shows the additional offload time TOFFL taken as we increase the
control matrix size from M × 2M to a square with 2M × 2M ele-
ments (i.e. the control matrix has (M + n) × (2M) elements, where
0 ≤ n ≤ M). The baseline system (i.e. where n = 0) is equivalent
to an 80 × 80 AO system with 2M = 9440. As we have stated
previously, all dimensions of the matrix are a multiple of 236 to
maximize performance (explaining the steps in performance for ev-
ery increase of n by 236). We see that the time increase is linear
(i.e. increases linearly with the number of additional control matrix
elements) and the overall shape of the distribution remains identical
for all system sizes (double peak with a tail). It is important to stress
at this point that using Fig. 5 in conjunction with Fig. 6 enables us to
estimate the performance of a single Xeon Phi for most AO system
sizes, regardless of the size or shape of its control matrix.

3.1.3 Memory bandwidth

When performing the wavefront reconstruction in an AO RTC using
an MVM algorithm, the input vector is updated at every iteration
(typically from hundreds to thousands of times per second), while
the control matrix will remain constant for periods of time between
tens of seconds to several hours. However, for large AO systems the
matrix is too large to be stored in cache, and so must be read from
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Reducing AO latency with the Xeon Phi 3227

Figure 7. Memory bandwidth for a single Xeon Phi performing an MVM as
a function of number of valid sub-apertures. This includes the data transfer
time across the PCIe bus. The calculation only memory bandwidth will be
slightly higher.

memory at each iteration. Therefore, memory bandwidth becomes
a performance limiting factor. CPU-based systems typically have
large banks of DDR3 memory which are relatively slow. The Xeon
Phi has access to faster GDDR5 and has a maximum theoretical
memory bandwidth of 320 GB s−1. In practice, the Xeon Phi appears
to have a read memory bandwidth of 164 GB s−1 and a write memory
bandwidth of 76 GB s−1 (Fang et al. 2014).

Here, we have measured computation time for the MVM oper-
ation, and use this information to calculate the achieved memory
bandwidth. Fig. 7 shows memory bandwidth as a function of AO
size (and the control matrix size stored in memory) for a single Xeon
Phi calculated from the offload time 〈TOFFL〉. 〈TOFFL〉 includes the
〈TCALC〉 and 〈TTRANS〉 so the memory bandwidth of just the Xeon
Phi processor will be slightly higher. For large AO systems, the
calculation time is limited by the memory bandwidth, which peaks
at about 160 GB s−1, in agreement with Fang et al. (2014). We note
that for smaller systems, memory bandwidth is not the performance
limiting factor; however, these systems are not of interest here since
we are concentrating on larger systems.

When the control matrix is larger than the Xeon Phi L2 cache
(30 MB), we see a drop in memory bandwidth due to the processor
having to transfer all or part of the control matrix from the slower
GDDR5 memory. As we increase the size of the control matrix, the
processors have to make more and more calls to the slower GDDR5
memory. This continues until the control matrix reaches around 800
MB where the memory bandwidth levels around 160 GB s−1. At this
point, the control matrix is significantly larger than the L2 cache and
most memory access is with the GDDR5 memory. The MVM like
other BLAS-12 or BLAS-23 routines is memory bandwidth limited.

To confirm the achievable memory bandwidth, we used the
industry standard STREAM memory benchmarking (McCalpin
1991-2007) on both the Xeon E5 and the Xeon Phi. We compared
the memory bandwidth to a TRIAD4 test which is the STREAM
benchmarking scheme most closely resembling an MVM operation.
The Xeon E5 achieved a peak memory bandwidth of 63.7 GB s−1

and the Xeon Phi of 166.5 GB s−1. Other groups have published
similar results (Fang et al. 2014).

2 Vector–vector operations.
3 Matrix–vector operations.
4 The Triad test involves the addition of two vectors (b and c) one vector
multiplied by a scaling factor (q) ai = bi + q × ci.

Table 2. A comparison of advertized and achieved memory bandwidths for
Dual Xeon E5-2650, NVidia K40 GPU and Xeon Phi 5110p.

Dual Xeon E5-2650 NVidia K40 Xeon Phi

Advertized Max. GB s−1 2 × 51.20 288 320
STREAM GB s−1 63.7 229 166.5
Percentage 62.2 per cent 79.5 per cent 52.03

Figure 8. Number of FLOPS achieved during MVM for a dual Xeon E5-
2650, one Xeon Phi and two Xeon Phis.

Table 2 compares the advertized (theoretical), achieved memory
bandwidths using STREAM as well as the percentage of the adver-
tized that was attained. The results are shown for the Dual Xeon
E5-2650, the Xeon Phi 5110p as well as the NVidia K40 GPU
(Reguly et al. 2014, a GPU released at around the same time as the
Xeon Phi, which enables a direct comparison between hardware of
the same generation). It can be seen that although the Xeon Phi
has a higher theoretical maximum, the GPU can achieve a higher
percentage of the advertized bandwidth than either the Xeon E5 or
the Xeon Phi.

3.1.4 Floating-point operations per seconds

Floating-point operations per seconds (FLOPS) is a common met-
ric that is frequently used to assess and compare performance
of computing hardware. It can be calculated theoretically from
equation (1),

FLOPS

cycle
× cores

socket
× #sockets × clock. (1)

The Xeon Phi is advertized to be able to reach 1.011 TFLOPS. This
value is far larger than we could expect to reach with the MVM
or any other BLAS-1 or BLAS-2 operations due to the memory
bandwidth limitations.

Fig. 8 shows the number of FLOPS that the Xeon E5-2650, Xeon
Phi and two Xeon Phis have achieved when performing the MVM
algorithm as function of AO system size. A peak in performance
is seen for the Xeon E5-2650 below 2000 sub-apertures, which
is when the matrix no longer fits in cache memory of the CPU.
Curves for the single and dual Xeon Phi follow that of the memory
bandwidth.

Table 3 shows the number of FLOPS that the Xeon E5-2650,
Xeon Phi and two Xeon Phis have achieved when performing the
MVM algorithm for a selection of AO system sizes. It can be seen
that the performance of the Xeon Phi is much lower than the adver-
tized FLOPS. This is what is expected due to the memory bandwidth
attainable on the Xeon Phi. We see that using a second Xeon Phi
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3228 D. Barr et al.

Table 3. Comparison of FLOPS for Dual Xeon E5-2650, single Xeon Phi
and a Dual Xeon Phi system. Max is the maximum GFLOPS achieved across
entire tested range, 0–14 000 sub-apertures.

GFLOPS of 40 × 40 80 × 80 120 × 120 Max

Xeon E5-2650 58.7 17.3 17.3 58.7
One Xeon Phi 25.2 62.7 76.9 79.4
Two Xeon Phis 29.0 100.3 136.9 141.5

Figure 9. Relative performance of using two Xeon Phis instead of one:
〈TOFFL〉2Phis/〈TOFFL〉1Phi as a function of system size. The dashed vertical
lines represent the approximate size of an AO system in total number of
sub-apertures.

allows for a doubling in the number of FLOPS for large system,
which is what would be expected.

3.1.5 Multiple Xeon Phi speedup

An MVM operation is highly parallelizable, and therefore easy to
split between multiple Xeon Phi accelerators. Using a second Xeon
Phi to complete the MVM doubles the available compute power
and memory bandwidth. However, synchronization between the
two processes makes achieving a speedup of ×2 difficult. Fig. 9
shows the offload time speedup that can be achieved by using two
Xeon Phis instead of one. For small systems, using two Xeon Phis
is actually slower than just relying on one, due to overheads. As
the control matrix size increases, the speedup gradually rises to
reach a plateau (starting from about a 120 × 120 AO system) of
approximately 1.8. Using a second Xeon Phi to complete the MVM
allows us to have twice the cache memory (60 MB). This explains
the first performance peak on Fig. 9 while a single Xeon Phi would
have to access the slower GDDR5 memory, the two Xeon Phis are
able to fit the control matrix within the available combined cache
memory. A single computer can contain up to eight Xeon Phis, as
long as it has a sufficient number of PCIe bus lanes. Data can be
transferred simultaneously to multiple Xeon Phis as long as there
are unused lanes available.

3.2 Detailed analysis of temporal behaviour

As we have seen in the previous section, mean offload time does
not enable us to fully characterize where the different latencies
in using the Xeon Phi are coming from and how they affect the
calculation speed. Access to the full distribution of computation
times is therefore necessary. In addition, we have checked that
studying a specific AO system size will not remove the generality

Figure 10. Histogram comparing the offload time TOFFL for a 80 × 80
sub-aperture system calculated using 106 samples. TOFFL encapsulates both
calculation time and transfer time. Blue: single Xeon Phi on a RT Linux
host; Red: single Xeon Phi on non-RT Linux; Green: two Xeon Phi on RT
Linux kernel. Inset shows data from 2.5 to 15 ms with the number of frames
ranging from 0–12 (showing outliers more clearly).

Table 4. Offload times TOFFL corresponding to Fig. 10. PN per cent is the Nth
percentile of offload times that are completed by the given time. All times
given in milliseconds.

TOFFL One Xeon Phi One Xeon Phi Two Xeon Phis Xeon E5
(ms) non-RT RT RT RT

Jitter (σ ) 0.066 0.039 0.0426 0.057

Min 1.514 1.525 0.918 3.480

Mean 1.631 1.587 0.978 3.622
(PXX per cent) (P56 per cent) (P73 per cent) (P71 per cent) (P60 per cent)

P99 per cent 1.863 1.704 1.097 3.661

P99.9 per cent 2.009 1.765 1.320 3.865

P99.99 per cent 2.099 2.198 1.678 4.035

P99.999 per cent 4.295 2.663 2.118 15.394

Max 14.861 3.085 3.119 32.170

of the analysis as results can be scaled to match the desired system
size. In this section, we analyse detailed results for a typical E-
ELT first-light AO instrument with 80 × 80 sub-apertures (using a
9440 × 5428 element control matrix, or 205 MB).

3.2.1 Variability in offload time: TOFFL

Fig. 10 shows TOFFL for three tested configurations (i.e. one Xeon
Phi used with a non-RT Linux host, and one and two Xeon Phi
used with an RT Linux host). For each configuration, 106 measure-
ments were taken. Table 4 shows more details on the offload time,
analysing the distributions in terms of minimum and maximum
values, jitter, mean and percentiles. The percentiles PXX per cent are
defined as the time by which XX per cent of the samples are com-
pleted. In other words P99.99 per cent represents a 1 in 10 000 event.
Also shown in Table 4 are the results of the Xeon E5 completing
the same MVM calculation on an RT Linux system.

Fig. 10 distribution is double peaked with a long tail due to out-
liers; Smith et al. (2014) have published a similar distribution. The
shape of this distribution causes the mean not to sit at P50 per cent (the
median value) but at P56 per cent for non-RT Linux and at P73 per cent

for RT. Using an RT Linux does not appear to greatly decrease the
mean latency when compared to the non-RT Linux. It seems how-
ever to reduce the majority of the extreme outliers and significantly
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Reducing AO latency with the Xeon Phi 3229

Figure 11. Histogram comparing the calculation time TCALC for a 80 × 80
sub-aperture system calculated using 106 samples. TCALC excludes the trans-
fer time. Blue: single Xeon Phi post-firmware update; Red: single Xeon Phi
pre-firmware update. Inset shows data from 1.8 to 2.5 ms with the number
of frames ranging from 0–12 (showing outliers more clearly).

lower the jitter (which is defined as the deviation σ ) from 0.066
to 0.039 ms. As expected, two Xeon Phis on an RT Linux system
produces the lowest latency; 〈TOFFL〉 is about 1.6 times less than on
a single Xeon Phi. However, jitter is increased. This is not entirely
surprising as to complete the MVM, both Xeon Phis need to have
finished their calculation. This means that for a given frame, jitter
is introduced by the worst-performing Xeon Phi. The outliers occur
so infrequently that 〈TOFFL〉 is unaffected.

Even by using two Xeon Phis, the number of outliers measured
may still be a concern for certain AO configurations. With 1 outlier
every 10 000 frames (i.e. P99.99 per cent) for a system running at 500 Hz
this will occur 180 times over the course of an hour observation.
To identify where these outliers are arising and see if they can be
reduced, we investigate in the following sections the split of TOFFL

into its component TCALC and TTRANS.

3.2.2 Variability in calculation time: TCALC

Since the MVM is only calculated on the Xeon Phi, it does not
directly interact with the operating system running on the host com-
puter. We do not expect to see any changes in the distribution of the
MVM calculation time TCALC on RT or non-RT systems.5 However
compiling the Xeon Phi drivers to be compatible with an RT Linux
meant upgrading the Manycore Platform Software Stack (MPSS)
to the latest version at the time of writing.6 This update brought up-
dated versions of Flash and System Management Controller (SMC).
MPSS and the updates are only partially open source. This suggests
that issues arising from updates may be solvable by editing these
sections of the source code without the manufacturer’s support.
However, some sections are closed source which may make user
modifications more difficult.

Fig. 11 shows the results for pre-updated Flash/SMC and after
the update was applied. It seems to suggest that the update caused
a reduction in performance and larger variations in timings. The
variation in calculation time TCALC is probably due to the fact that
the Xeon Phi is running a non-RT micro-Linux which results in
some large outliers (Véran et al. 2014). In Table 5, we see that the
update slightly reduces both mean calculation times and jitter. It is

5 This was shown to be true by going back to a non-RT system after update.
6 MPSS 3.4 (Flash 390-2; SMC: 1.16) from Linux Gold Update 3 (Build:
2.1.6720-13; Flash:386-2; SMC:1.14)).

Table 5. Calculation times TCALC corresponding to Fig. 11.
PN per cent is the Nth percentile of MVM calculation times
that are completed by the given time. All times given in
milliseconds.

TCALC One Xeon Phi One Xeon Phi
(ms) Pre-update Post-update

Jitter (σ ) 0.045 0.037
Min 1.297 1.301
Mean 1.349 (P81 per cent) 1.348 (P77 per cent)
P99 per cent 1.560 1.463
P99.9 per cent 1.701 1.522
P99.99 per cent 1.749 1.957
P99.999 per cent 1.765 2.306
Max 1.813 2.505

Figure 12. Histogram comparing the transfer time TTRANS for a 80 × 80
sub-aperture system calculated using 106 samples. TTRANS is the combined
time for transferring data in and out of the Xeon Phi. Blue: single Xeon Phi
on an RT Linux kernel; Red: single Xeon Phi on non-RT Linux. Inset shows
data from 1 to 13 ms with the number of frames ranging from 0–6 (showing
outliers more clearly).

not until P99.99 per cent that we see that the outliers become worse after
the update. This is a problem for the performance of the system,
it also highlights a larger problem of using hardware accelerators
such as the Xeon Phi or GPUs. Neither of these technologies are
designed for RT control systems, and any AO RTC system based on
hardware accelerators is tied to the development and direction the
company developing them decides on. An upgrade that is beneficial
to high performance computing (HPC) or gaming community may
degrade AO RTC performance. As a result, and since mean and
jitter cannot fully characterize hardware for AO applications, it is
necessary to analyse the full distribution of frame computation times
when comparing or upgrading hardware.

3.2.3 Variability in data transfer: TTRANS

The larger outliers seen in TOFFL were not seen in TCALC, suggesting
that the main cause lies in transfer time TTRANS. Fig. 12 shows
the distribution of data transfer timings for both a host computer
running non-RT and RT Linux system. Table 6 shows the detailed
results for the data transfer. It demonstrates that the large outliers
seen in the non-RT TOFFL are indeed caused by the transfer of data
between the host computer and the accelerator. We see that moving
to a RT Linux has reduced the outliers bringing the maximum values
from 13.507 ms down to 1.747 ms, a large reduction. It has also
suppressed most of the outliers, but not all, and reduced jitter from
0.048 to 0.014 ms. On average, the system spends 15 per cent of
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Table 6. Transfer times TTRANS corresponding to Fig. 12.
PN per cent is the Nth percentile of transfer times that are com-
pleted by the given time. All times given in milliseconds.

TTRANS One Xeon Phi One Xeon Phi
(ms) Non-RT RT

Jitter (σ ) 0.048 0.014
Min 0.196 0.204
Mean 0.283 (P81 per cent) 0.239 (P77 per cent)
P99 per cent 0.359 0.313
P99.9 per cent 0.592 0.344
P99.99 per cent 0.752 0.399
P99.999 per cent 2.957 0.647
Max 13.507 1.747

Table 7. Entire AO frame processing times TRTCS corresponding to Fig. 13.
PN per cent is the Nth percentile of entire AO frame processing times that are
completed by the given time. All times given in milliseconds.

TRTCS One Xeon Phi One Xeon Phi Xeon E5 Xeon E5
(ms) non-RT RT non-RT RT

Jitter (σ ) 0.193 0.061 1.5924 0.570

Min 1.920 2.154 6.120 6.717

Mean 2.260 2.320 8.550 8.366
(PXX per cent) (P56 per cent) (P67 per cent) (P54 per cent) (P53 per cent)

P99 per cent 2.642 2.545 11.058 10.065

P99.9 per cent 2.848 2.921 11.455 10.816

P99.99 per cent 3.179 3.267 16.345 11.362

P99.999 per cent 22.504 3.570 20.727 11.773

Max 103.249 11.759 128.028 12.077

the total offload time transferring data in and out of the Xeon Phi.
When adding a second Xeon Phi (data not shown here), the transfer
time TTRANS is not reduced by much, even though only half the data
needs to be transferred to each Xeon Phi. This transfer happens
simultaneously but due to the overheads involved, TTRANS cannot
be reduced by a significant amount.

In order to increase robustness, a method for reducing transfer
(and calculation) time variability could be devised by using two
Xeon Phis performing identical calculations. When the fastest Xeon
Phi has finished its calculations, the other is interrupted to be ready to
receive slopes from the next frame. There is no simple functionality
to interrupt a call to the MKL library running on the Xeon Phi once
it has started or to stop the data transfer. This issue has not been
investigated in this paper, and it is believed that the next Xeon Phi
generation (standalone CPU with no data transfer, see Section 4)
will be able to run an RT Linux system therefore removing almost
entirely these very high latency events.

3.2.4 Integration of Xeon Phi into an AO RTC software: TRTCS

We have shown that the Xeon Phi is able to reduce MVM calculation
time for large systems over that of modern CPUs, such as the Xeon
E5. In this section, we integrate the Xeon Phi into a complete AO RT
control software. We chose to integrate the Xeon Phi into Durham
Adaptive optics Real-time Controller (Basden et al. 2010b), which
is currently being used on the William Herschel Telescope for the
CANARY AO demonstrator. In this section, we run an end-to-end
simulation of an AO RTC system using simulated wavefront sensor
data. The measured time TRTCS includes WFS pixel processing,

Figure 13. Histogram comparing the entire AO frame processing TRTCS

for a 80 × 80 sub-aperture system calculated using 106 samples. TRTCS

encapsulates MVM calculation time, transfer time, pixel processing, slope
computation and any overhead of running the RTC system. Blue: single
Xeon Phi on RT Linux kernel. Red: single Xeon Phi on a non-RT Linux.
Inset shows data from 4 to 103 ms with number of frames ranging from
0–14 (showing outliers more clearly).

slope calculation, the MVM calculation on the Xeon Phi as well as
additional background tasks of the RTC system.

Only a single thread is able to transfer data to the Xeon Phi
at one time. The transfer step has a larger amount of overhead
when compared the data transfer size. This overhead means that
if we pipeline the AO control loop and transfer groups of slopes
to the Xeon Phi and split the MVM into multiple smaller MVMs
the overall TRTCS is increased. Although pipelining the MVM is
possible, it was decided here to perform a single MVM per frame,
when all slopes have been calculated. For the next generation of the
Xeon Phi, where there is no transfer step, pipelining will be more
appropriate.

Fig. 13 shows the comparison between TRTCS running both non-
RT and RT Linux using a Xeon Phi to accelerate the MVM. Table 7
shows more detailed results of the RTC processing time, analysing
the distributions in terms of minimum and maximum values, jitter,
mean and percentiles. It also shows the results for the RTCS running
on the Xeon E5 only, without Xeon Phi acceleration. Offloading
the MVM to the Xeon Phi and running on an RT Linux system
brings the jitter down (i.e. narrower distribution) and reduces the
number of outliers, although they are not completely eliminated.
The jitter of the whole RTC is reduced from 0.193 ms for a non-RT
Linux down to 0.061 ms for an RT Linux, a sizeable reduction. The
outliers appear to be far worse than for the standalone tests; this is
likely to be due to the fact that the CPU is now stressed with other
tasks such as WFS data processing and thread synchronization. As
expected, moving to an RT kernel has made the maximum value
drop, from 103 to 11.8 ms. The minimum and mean values have
however increased slightly on the RT system; this is likely due to
how the internals of the RT kernel work allowing a process with
raised priority to pre-empt other processes. RT Linux systems do
not optimize for overall performance, they optimize for reliability
and predictability.

Although this performance would not be sufficient for typical
first-light E-ELT instruments (e.g. mean frame time of 2.3 ms), we
have demonstrated in this section that incorporating the Xeon Phi
into an existing AO RT control software can be done efficiently
without investing a significant amount of time and effort and has
the potential to improve the RTC performance.
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Figure 14. Comparison of mean MVM execution time between the current
Xeon Phi (5110P) and the predicted next generation. These projections
are based on the specifications found in Table A1 in the appendix. Green:
current version; Red: current version based on predictive model; Blue: next
generation estimation based on same model.

4 PRO S P E C T I V E E VO L U T I O N O F T H E
X E O N P H I

The next generation of Xeon Phi has been announced and will likely
come in two variations. The first version is the same as the current
version: an accelerator card connecting to a host computer over the
PCIe bus. The second variation will be available as a standalone
CPU and is the variation that seems to offer the most potential for
AO applications. As a standalone CPU it will remove the need to
transfer data to the host and back, which causes the large outliers and
introduces additional latency. It is expected to support the standard
operating systems, including an RT Linux kernel, further removing
the amount of calculation jitter.

Some specifications have been disclosed by Intel on the next gen-
eration of Xeon Phis, codenamed ‘Knights Landing’ (Intel 2014),
and can be found in Table A1. The next Xeon Phi cores will be based
on the Intel Atom CPUs which have a cache of 512 kB each and the
total number of cores will be 60+. The clock speed is expected to be
≈1–1.5 GHz which is slower than modern CPUs, making the Xeon
Phi likely to suffer the same performance problem when running
serial code. The type of CPU used suggests that the L2 cache of
the entire system will be 30–35 MB. The size of control matrix
for ELT first light instruments is however considerably larger than
this (at least 205 MB) and we can safely assume that the MVM
will still be memory bandwidth limited. The specifications suggest
a memory bandwidth of over 500 GB s−1. In our tests, we found
that the actual achievable memory bandwidth was close to half the
stated theoretical maximum; we are likely to be able to achieve a
memory bandwidth of ≈250 GB s−1.

From these specifications, we can estimate the average perfor-
mance (see Fig. 14) of the current Xeon Phi and how the next gen-
eration might scale as a function of system size. The mean perfor-
mance of the next generation rivals that of two Xeon Phis of current
generation. For an 80 × 80 system 〈TOFFL〉 = 〈TCALC〉 = 0.86 ms
(1.587 ms for the current generation), which is compatible with
the 500 Hz frame rate of first-light E-ELT instruments. The large
increase in performance is mainly due to the removal of the data
transfer step and to higher memory bandwidth. Jitter and outliers
are harder to predict. It is reasonable however, to assume that the
distribution curve for TCALC will be similar to that of the current
generation and that running an RT Linux kernel on the Xeon Phi

will further reduce both jitter and the number of outliers. The next
Xeon Phi generation, being a standalone CPU, has the potential to
offer the performance benefits of the current hardware accelerators
(e.g. Xeon Phi, GPUs) while removing the main disadvantages of
this technology: the transfer of data.

In this paper, we have only considered the use of a unique con-
trol matrix throughout the operation of the AO system. In reality,
the control matrix will need to be updated as the observation con-
dition changes; for the E-ELT this is likely to be of the order of
minutes. The Xeon Phi offers asynchronous transfer of data which
should allow for the matrix to be updated during calculations. It
is likely however to interfere with performance. The next genera-
tion of Xeon Phi (standalone CPU) should mitigate the impact of
control matrix swapping by allowing a new matrix to be uploaded
without transferring it over the PCIe bus. Although maybe small,
the impact of having the MVM coefficients not in L3 cache needs to
be investigated. Transferring a updated control matrix into memory
will reduce the memory bandwidth for the MVM calculation. To
lessen the impact of this on performance, the updated matrix can be
uploaded over several iterations.

5 C O N C L U S I O N S

In this paper, we have presented a detailed study of the Xeon Phi,
a many-core processor, used as compute accelerator for AO RT
applications. We investigated performance for the most compute
intense part of the RTC: the wavefront reconstruction. Our exam-
ination focused on the MVM algorithm, the most commonly used
and the most parallelizable of wavefront reconstruction algorithms.
This enables us to take full advantage of the high number of cores
of the Xeon Phi. We described how AO system size and the number
of Xeon Phis impact performance and investigated the main con-
tributors to the time delay splitting between data transfer time and
MVM calculation. Finally, we discussed the implementation ease
and overall performance of integrating the Xeon Phi into a complete
RTC software.

We demonstrated that performance changes gradually over the
whole range of control matrix sizes studied, and that performance
for a specific AO system can easily be assessed by scaling. We be-
lieve that this paper can serve as a guideline for estimating MVM
performance for any AO system size using a single or multiple
Xeon Phis. A more detailed analysis also showed that mean exe-
cution time is rarely sufficient to fully qualify novel hardware (or
when updating firmware) in RT applications and that the actual dis-
tribution of execution times needs to be analysed in detail. To make
the comparison between potential RTC hardware more tractable, we
decided to present results in terms of minimum, maximum, mean,
deviation (jitter) and percentile of execution time.

Using the Xeon Phi enables a clear improvement in MVM mean
calculation time, whether tested as a standalone system or fully
integrated into the RTC software. We have shown that moving the
host from a non-RT to an RT Linux system can naturally reduce
the number and extent of outliers, as well as reduce mean offload
times. For a typical 80 × 80 E-ELT first-light SCAO system, mean
offload time 〈TOFFL〉 ≈ 1.587 ms and 99.999 per cent of the offloads
are finished within ≈2.663 ms. However, a number of outliers are
still present (most likely due to the fact that the Xeon Phi is running
a non-RT micro-Linux) probably making the current generation of
this technology only suitable for some AO RT applications [e.g.
ground layer adaptive optics (GLAO), multi object adaptive optics
(MOAO)] but unsuitable for others [e.g. eXtreme adaptive optics
(XAO)].
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Sharing calculations between two Xeon Phis allows us to fur-
ther reduce mean offload time 〈TOFFL〉. The maximum speedup
between one and two Xeon Phis plateaus at around 1.8 for large
systems, and the speedup for a typical 80 × 80 E-ELT first-light
SCAO system reaches 1.6. In this configuration, the mean offload
time 〈TOFFL〉 ≈ 0.978 ms and 99.999 per cent of the offloads are
finished within ≈2.118 ms. This shows the scalability of a sys-
tem using multiple Xeon Phis, and it is reasonable to assume
that adding more Xeon Phis would further reduce the latency in a
similar way.

The Xeon Phi is designed to be used within supercomputers, and
the HPC community is generally more focused on data throughput
rather than on time-critical processes. We have found that the vari-
ability in execution time (increased jitter and outliers) can increase
after firmware updates. Using the Xeon Phi as an offload card turns
a homogeneous CPU system into a heterogeneous computing en-
vironment, which is more complex to programme and to balance
work loads efficiently. On the other hand, the theoretical memory
bandwidth of the Xeon Phi is very high, which is essential for a
bandwidth limited problem such as the MVM. We have shown that
about 50 per cent of the theoretical memory bandwidth is achiev-
able, in line with other findings (Fang et al. 2014). In addition, we
have shown that the achievable memory bandwidth can offer a good
estimate for the mean performance of the Xeon Phi calculating the
MVM, and that most of the outliers come from transferring data in
and out of the Xeon Phi. The expected next Xeon Phi generation has
great potential in being suitable for AO, being an integrated CPU,
eliminating the need to transfer data over the PCIe bus, and also
offering higher compute power. Both mean RTC performance, jitter
and outliers have the potential to be greatly reduced in forthcoming
hardware.
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in Marchetti E., Close L. M., Véran J.-P., eds, Proc. SPIE Conf. Ser.
Vol. 9148, Adaptive Optics Systems IV. SPIE, Bellingham, p. 91484B

Basden A., Myers R., 2012, MNRAS, 424, 1483
Basden A., Myers R., Butterley T., 2010a, Appl. Opt., 49, G1
Basden A., Gang D., Myers R., Younger E., 2010b, Appl. Opt., 49,

6354
Basden A., Dipper N., Myers R., Younger E., 2012, in Ellerbroek B. L.,
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Véran J.-P. et al., 2014, in Marchetti E., Close L. M., Véran J.-P., eds,
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A P P E N D I X A : H A R DWA R E S P E C I F I C AT I O N S

Table A1. Specifications of hardware being used as well as announced next
generation Xeon Phi, two versions are planned one offload via PCIe and one
as a standalone CPU.

Xeon Xeon Phi Xeon Phi

Processor E5-2650 5110p Knights landing
Release year 2012 2012 2015–2016
#Cores 32 60 60–72
Clock speed 1.20 GHz 1.053 GHz –
L2 Cache 20 MB 30 MB –
Memory type DDR3 GDDR5 DDR4
Memory bandwidth 51.2 GB s−1 320 GB s−1 500+ GB s−1

PCIe (# lanes) N/A 2.0 (×16) N/A/ 3.0 (×36)a

Note. aKnights landing can be purchases as either a co-processing card or
standalone CPU.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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A.2 Calculating the valid number of sub-apertures

Due to the shape of the telescope pupil (and in particular the pres-

ence of spider and of a central obscuration), not all sub-apertures are

fully illuminated. Different telescopes have different central obstruc-

tions meaning a slightly different number of valid sub-apertures for a

given AO system size.

In the tests run in this thesis we are considering the European-

Extremely Large Telescope, while ignoring the presence of spiders. For

example, a system that has 74 × 74 sub-aperture SH-WFS will have a

total of 5476 sub-apertures while approximately 4000 valid sub-apertures.

A similar scaling between total number of sub-apertures and valid num-

ber of sub-apertures is used throughout this document.

A.3 Units in computing

In computers, information is stored as 1s and 0s. A single 1 or 0 is

a single bit, the smallest memory unit in a computer. To represent

more complex numbers, 1s and 0s are put together to create the binary

representation of numbers. Table A.1 shows the list of numbers that

can be represented with four bits. Four bits are able to represent 0-15

(24 − 1).

Table A.1: A subset of the numbers representable with four bits

0 1 2 3 4 5 ... 15

0000 0001 0010 0011 0100 0101 ... 1111

Typically in computing, the smallest block of memory (8 bits) is

called a Byte, and is used to represent the values of 0-255 (28 − 1).
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Integers and Floating point numbers are typically represented by four

Bytes (32 bits).

To simplify large values in many areas, the prefixs or k, M, G are

used to represent values of 103, 106 and 109. In computing this is no

different. Due to the base 2 of the memory structure, two separate

systems are used: ki, Mi, Gi refers to multiples of 1024 (210), and the

standard k, M, G for multiples of 1000 (103). Table A.2 shows the values

these prefixes represent. In this thesis, we will typically use multiples

of 1000.

Table A.2: Orders of magnitudes of memory

- Bytes - Bytes

1 kB 1000 1 kiB 1024

1 MB 1,000,000 1 MiB 1,048,576

1 GB 1,000,000,000 1 GiB 1,073,741,824

A.4 Data transfer units

The units used for the transfer of data (i.e moving a file from one

computer to another) is typically bits per second (bits−1) rather than

Bytes per second (Bs−1).

In this thesis, we discuss the transfer rate of 1 Gigabit Ethernet and

10 Gigabit Ethernet. To distinguish between the standard of Gigabit

Ethernet and actual measured rates, we use the abbreviation GbE for

the standard and Gbit s−1 for the measured transfer rates.
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