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Abstract

A new implicit time-stepping scheme which uses Runge-Kutta time-stepping
and Krylov methods as a smoother inside FAS-cycle multigrid acceleration is
proposed to stabilise the flow solver and its discrete adjoint counterpart. The
algorithm can fully converge the discrete adjoint solver in a wide range of cases
where conventional point-implicit methods fail due to either physical or numer-
ical instability. This enables the discrete adjoint to be applied to a much wider
range of flow regimes. In addition, the new algorithm offers improved efficiency
when applied to stable cases for which the conventional Block-Jacobi solver can
fully converge. Both stable and unstable cases are presented to demonstrate
the improved robustness and performance of the new scheme. Eigen-analysis is
presented to outline the mechanism of the adjoint stabilisation effect.

Keywords: Reynolds-Averaged Navier-Stokes, Discrete Adjoint, Implicit,
GMRES, multigrid, FAS-cycle

1. Introduction

The adjoint method is an essential ingredient of gradient-based steady-state
CFD shape optimisation as it allows the computation of the gradient of an
objective function with respect to a large number of design variables at near
constant computational cost comparable to that of the flow solution. Two ap-
proaches are most prominently used to develop adjoint codes, the continuous
and the discrete adjoint approach [1, 2, 3, 4]. The continuous adjoint approach
re-discretises the adjoint PDE, which offers the possibility to optimise and/or
stabilise the adjoint solver by tuning the discretisation. The steady-state dis-
crete adjoint starts from the discretised equations which are then linearised
around the converged steady state flow field and transposed. This ensures that
the computed gradients are the exact gradients of the discrete model, which is a
very desirable property: the discrete gradient is then exactly zero where the flow
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solution has an unconstrained minimum. This also means that the properties of
the flow discretisation, including any preconditioners, are inherited by the ad-
joint and govern its spectral behaviour. This ensures that if the primal solution
(flow) converges (i.e. the system Jacobian is contractive with the magnitude of
all eigenvalues |λ|≤1), so will the discrete adjoint as the exact transposition of
the system Jacobian preserves the eigenvalues [5].

However, in many industrial cases the flow does not converge in this sense,
but enters limit cycle oscillations (LCO). This can be caused for example by
the mesh being fine enough in some area to resolve certain localised flow un-
steadiness due to vortex shedding, or for example by separation bubbles in the
flow which have only very loose physical coupling with the bulk flow. This is
typically not perceived as a problem for the analysis of the flow field as the value
of the objective function is often steady enough and considered accurate enough
to be used. On the other hand, applying the ‘steady-state’ discrete approach in
this situation often fails, as a Jacobian taken from a snapshot during the LCO
is likely to be not contractive but to exhibit a number of eigenvalues with mag-
nitude larger than one, and hence the iterative scheme for the adjoint will fail
once the error modes associated with those eigenvalues have grown sufficiently
[6].

To stabilise the linear solver, the Recursive Projection Method (RPM) and
the Generalized Minimal Residual Method (GMRES) have been proposed [7, 8].
GMRES[9] is an iterative method that is guaranteed not to diverge even in the
presence of eigenvalue outliers. Therefore the existing linear fixed-point iter-
ation (FPI) can be used as a preconditioner for the GMRES solver, and the
adjoint GMRES solver, provided with enough Krylov vectors, can converge.
This approach can be implemented with minimal amount of change to the ex-
isting code and should be capable of stabilising the adjoint. The main drawback
is that for large industrial cases, a large number of Krylov vectors needs to be
used in order to prevent convergence from stalling, e.g., 100 Krylov vectors with
no restarts were used in [10].

RPM stabilises the adjoint with a different mechanism. Before RPM is
switched on, the unstable FPI algorithm is performed for many iterations to
allow the dominant error mode to grow and to be identified. Then a direct
solver is applied to that particular mode and the existing FPI is applied to the
remaining modes. If the remaining modes still contain unstable modes, then
the unstable FPI will identify again the most unstable mode and the procedure
above is repeated until all the unstable modes are picked out and the FPI is
stable for all the remaining modes. The RPM method needs to run the FPI
adjoint solver for k iterations in order to identify the dominant unstable modes,
and a typical value can be k = 100−10000, or even larger for practical problems.
Unfortunately, k cannot be determined a priori [7].

An additional problem with both RPM and GMRES is that the linearisation
is then based on an unstable saddle-point of the flow solution which is arbitrarily
picked from the LCO, hence the adjoint sensitivity may not be inconsistent
with the average of the primal over the LCO [11]. Although stabilised and fully
converged, the adjoint solution and hence the sensitivities will depend on which
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solution snapshot is chosen for the linearisation.
The objective function the designer is interested in is actually the sensitivity

of the averaged flow solution, rather than the one of an arbitrary snapshot.
To approximate this average, one could take the average of the flow field in
the time interval and base the Jacobian on this averaged state. Irrespective
of the question whether the objective function is linear enough with respect
to the state to justify this approximation, in general the Jacobian will fail to
be contractive as this averaged solution does not satisfy the steady state flow
equations. Still, this approach has shown to be practicable for some limited
cases of industrial relevance when used with continuous adjoint methods, where
the re-discretisation of the adjoint equation can provide additional stabilisation
terms [12]. For a rigorous application of this approach, regularisation in time
would be required that gives rise to stabilising contributions to the Jacobian,
but the knowledge in the field on this is in its early stages [13].

An approach guaranteed to work would be to treat the limit cycles as an un-
steady flow and trace the adjoint characteristics backward in time [14]. Storing
checkpoints and recomputing intermediate solutions would result in a significant
increase in runtime and memory requirements, which would only be warranted
if the time-averaged objective function is non-linearly affected by the instability.

So far we have not distinguished whether the instability of the iterative
method is due to the flow physics, such as vortex shedding and separation
bubbles decoupled from the mean flow, or whether it is due to the discretisation.
There cannot be a clear distinction between the two as for example vortex
shedding behind rounded trailing edges of turbine blades can be suppressed
with coarse meshing and large time steps. Putting numerical stability into focus
suggests another approach to achieve convergence of the adjoint solver, namely
to improve the stability of the flow discretisation such that the flow can be
converged to a level that the Jacobian is contractive. Clearly, such an approach
may fail for flows with strong physical unsteadiness or will be inaccurate where
the unsteady phenomena have a significant effect on the average of the objective
function. But for many cases such an approach will be stable and sufficiently
accurate, as well as being significantly less expensive than the computation
of the unsteady flow and adjoint. In the authors’ view, apart from [11], the
approach of obtaining stable discrete adjoints through focusing on the primal
stability has not been explored adequately in the literature.

Before presenting the proposed iterative scheme, a brief overview of the
various techniques for accelerating convergence of nonlinear flow solvers, with
particular focus on RANS, is given in the next section.

1.1. Convergence acceleration techniques for nonlinear flow solvers

A fixed-point iteration can generally be represented as

PδUn = −R(Un) (1)

where the right hand side represents the residual of the discretisation which
determines the accuracy of the converged solution, while the left hand side
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matrix P is a non-singular preconditioning matrix that controls the transient
behaviour of the intermediate solution Un over the iterations. At each iteration,
the flow update is computed by inverting P directly or approximately.

A hierarchy of time-marching methods can be derived by using for the pre-
conditioning matrix P different approximations of the flow Jacobian matrix
∂R/∂U [15], as illustrated in Fig. 1. Scalar time stepping, with either a uniform

uniform dt spatially varying dt block-Jacobi 1st-O Jacobian 2nd-O Jacobian

Figure 1: A spectrum of various time-stepping methods based on different approximations of
the Jacobian.

or a spatially varying time step, is too inefficient for practical steady RANS
cases due to the highly stretched mesh in the boundary layer regions and the
numerical decoupling between the equations. The physical coupling can be in-
cluded by retaining the diagonal blocks of the Jacobian in the preconditioning
matrix, thus termed a point-implicit or Block-Jacobi (B-J) solver. A B-J solver
accelerated with multigrid [16] is in general efficient enough to compute viscous
flows when combined with semi-coarsened geometric multigrid [17]. In addition,
the B-J solver is easy to implement, to parallelise and has very low memory re-
quirements. The drawback is that the convergence tends to degenerate for large
industrial cases, especially for cases where viscous effects dominate. Further-
more, as stated in the introduction, for large industrial cases with complex
geometries, the B-J flow solver may converge only to LCO after an initial resid-
ual drop, corresponding to pseudo-unsteadiness of either numerical or physical
origins.

A better approximation of the Jacobian can be constructed by including the
off-diagonal blocks in the Jacobian matrix, coupling the neighbouring nodes.
This leads to an implicit solver with faster convergence by damping the transient
modes more effectively. The highest level of approximation is obviously the exact
second-order Jacobian, i.e., the exact linearisation of the residual with respect to
the flow variables, which could for example be used with Newton’s method. Such
a Newton solver is applied to a 2-D viscous RAE2822 case in [18]. In addition
to a start-up difficulty, which requires such stringent control of the step-width
that it renders the Newton solver practically useless for this application, it is
reported that the resulting linear system at each nonlinear iteration is very stiff
and the GMRES(50) solver needs to be preconditioned by ILU(4) in order to
prevent stalling. The combined memory requirements of the exact Jacobian and
ILU(4) combined are reported to be roughly 15 times that of B-J in 2-D. The
memory requirements will be even more substantial in 3-D due to the increased
number of neighbouring nodes.

Jacobian-Free Newton-Krylov (JFNK) methods [19] can avoid storing the
Jacobian but instead work out the Jacobian-vector product needed in the Krylov
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solvers on the fly, typically using finite differences,

∂R

∂U
· δU =

R(U + εδU)−R(U − εδU)

2ε
. (2)

However, for the Krylov solver to converge, effective preconditioners are needed,
with ILU factorisation being recognised as one of the most effective. In order
to limit memory overhead, the Jacobian that is ILU-factorised could be ap-
proximated [19], but practical preconditioners require storage equivalent to the
Jacobian.

Major storage savings arise from dropping second-order neighbours and com-
puting the Jacobian on nearest-neighbour contributions only. For a standard
MUSCL scheme [20] this would correspond to frozen spatial gradients. In our
implementation we use a zero spatial gradient for the MUSCL scheme when
computing the inviscid flux and a non-zero but frozen gradient for computing
the viscous flux. The resulting memory savings of course are paid for with an
impaired convergence rate. While an exact second-order Jacobian typically does
not lead to a robust scheme [18], requiring at the least a sophisticated solver
steering strategy [21], a heuristic blend of first and second-order Jacobians can
provide very good results [22], but again at the cost of very large memory use.

Multigrid (MG) is a very effective preconditioner, especially in its full ap-
proximation storage form (FAS) [23] which includes non-linear effects on the
coarser grids. On each grid level FAS-MG needs to solve the non-linear equa-
tions using an h-elliptic discretisation [23] that has good high-frequency smooth-
ing. Unfortunately Krylov solvers such as GMRES on their own do not provide
adequate high-frequency damping to be used as a smoother within MG, but it
is possible to use MG as a preconditioner for JNFK [19], which however then re-
duces to the linear Correction Scheme (CS) MG which is much less effective [24].

Algebraic Multigrid (AMG) does not require to build a coarse grid, but the
coarsening is applied to the system matrix of the linear problem, rather than
the grid [25]. It is hence a linear CS MG scheme, which avoids re-discretisation
on the coarse grid, but hence loses the convergence advantage of the non-linear
coarse-grid re-discretisation. This may be compensated by efficient directional
coarsening in all areas of the flowfield, not just the viscous layer.

Swanson et al. [26] showed that an implicit discretisation with symmet-
ric Gauss-Seidel (SGS), preconditioned with the first-order Jacobian is a good
smoother for multigrid [27] if the linear system is wrapped inside a standard
Runge-Kutta (RK) multistage scheme, with RK providing the desired damping
for the high-frequency error modes. Furthermore, the RK coefficients could be
fine-tuned for better robustness and performance [28]. This approach of solving
the first-order linear system using SGS at each RK stage, accelerated by MG
at the outer iteration, has proven to be robust and is now generally accepted as
the benchmark for solver performance. SGS is susceptible to a lack of diagonal
dominance, and thus when SGS is used to solve the linear system, the CFL
number is lowered not for the nonlinear instability of the outer iteration, but
for the linear instability of the inner SGS iteration, reducing the convergence
rate of the scheme.
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The performance of the MG method does strongly depend on the method
that is used to generate the coarse grids and how the problem is discretised on
them. Agglomeration MG fuses fine grid cells into coarse grid cells which then
are no longer convex [29]. The scheme can be implemented as an efficient non-
linear FAS scheme if the equations are re-discretised on the coarser meshes, how-
ever an accurate discretisation of the viscous operator is not straightforward on
the non-convex cells. Directional agglomeration with additional line-relaxation
is needed for high-Reynolds number flows [24].

Geometric coarsening through edge-collapsing is very effective for simplex
grids, but much more difficult to achieve for hybrid grids. The element-collapsing
method [17, 16] collapses sets of edges to remove elements and produces coarse
grids with the standard element types, possibly with degenerate edges. Semi-
coarsened grids for high-Reynolds flows can be produced. However the mesh
quality and coarsening ratio degenerate with repeated application on the coarser
levels.

The authors acknowledge that the performance of a particular smoother
is very closely linked to the way the coarse grids are generated, the results
presented here use the geometric element-collapsing scheme of Müller [17]. As-
sessing the performance of the proposed iterative method in the context of for
example agglomeration multigrid or AMG will be reported in future work.

1.2. Proposed new algorithm

The survey of the existing approaches in Sec. 1.1 shows that a robust RANS
method should make use of a) non-linear FAS multigrid which offers improved
convergence, b) robust GMRES linear solvers which allow large CFL numbers,
and c) strong preconditioners.

At the time of writing, to the authors’ knowledge there was no published
algorithm using multigrid as a RANS solver (‘outside’) and GMRES as part
of the smoother (‘inside’), due to the poor smoothing properties of the Krylov
solvers. Developing a solution to this problem and successful application of
such an algorithm is the main objective of this paper. To achieve adequate high-
frequency damping of the GMRES linear solver, in the proposed scheme GMRES
is embedded in a Runge-Kutta multistage time-stepping scheme, preconditioned
by an ILU(0)-factorisation of the first-order Jacobian. The proposed method
is hence referred to as the Jacobian-Trained Krylov-Implicit-Runge-Kutta or
JT-KIRK algorithm.

Since our original work, an independently developed approach by Langer
et al. [30] has been presented which also uses GMRES inside Runge-Kutta
timestepping. Their work focuses on accelerating convergence of the flow solver
rather than robust convergence as required for discrete adjoints. A further dif-
ference is that their work uses a matrix-free approach, while our work computes
a Jacobian which in turn permits to build strong preconditioners.

Our paper first explains in Sec. 2 the mathematical background of the non-
linear flow solver and the development of the JT-KIRK algorithm with emphasis
on the temporal rather than spatial discretisation. Sec. 3 describes the discrete
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adjoint equation and how its time-marching relates to the one of the flow solver.
Sec. 4 compares the ILU preconditioned GMRES and SGS solution strategies
for the linear system arising from the implicit scheme and presents parameter
studies on how to optimise the solver efficiency. Sec. 5 shows the results for
four test cases, two stable cases which the B-J solver can fully converge, and
two unstable cases that cannot be converged by the B-J solver, resulting in
divergence of the discrete B-J adjoint. Eigenvalue analysis is shown for the sec-
ond unstable testcase, Case 4, to highlight the eigenvalue clustering using the
implicit algorithm. Conclusions are presented in Sec. 6.

2. Flow solver

2.1. Typical temporal discretisation for RANS flow solvers

The flow solver used here is an industrial compressible RANS flow solver
using a vertex-centred finite volume method on unstructured grids. A multi-
stage Runge-Kutta time integration scheme is used to time-march the solution
to steady state, and geometric multigrid with semi-coarsening as well as B-J
preconditioning are used to accelerate the convergence [31, 32, 16]. The steady
state solution is reached when the residual of each control volume reaches zero,
i.e.,

R(U) = 0,

where the flow variables U and residual R are both column vectors of dimension
5×N for 3-D Euler and laminar Navier-Stokes and 6×N when a one-equation
turbulence model is used, on a mesh with N nodes.

A generic semi-discrete time-marching scheme for a conservation equation
can be written as

Un+1 − Un

σ∆t
V + (1− β)R(Un) + βR(Un+1) = 0 (3)

where ∆t is the time-step, σ denotes the CFL number for the linear solver of
the implicit scheme and V is the size of the control volume. The coefficient
β provides a blending between explicit and implicit residuals. The residual at
time level n+1 can be linearised using the Jacobian at time level n to be

R(Un+1) ≈ R(Un) +
∂R

∂U

∣∣∣∣
U=Un

(Un+1 − Un)

and Eq. (3) becomes(
V

σβ∆t
+
∂R

∂U

∣∣∣∣
U=Un

)
∆Un =

−1

β
R(Un). (4)

For an implicit scheme with β > 0, the CFL number usually can be very
large which is important for fast convergence to the steady state solution. Note
that although β is usually chosen between 0 and 1, it is possible to allow β to
be greater than 1, equivalent to under-relaxation.
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2.2. Block-Jacobi solver

To simplify solving the linear system at each time step and to reduce the
memory overhead, the Jacobian matrix ∂R

∂U on the left hand side of Eq. 4 can
be approximated by the Block-Jacobian for node i independently [32]. All off-
diagonal terms are then neglected, and hence the diagonal-enhancing term can
be set to zero with σ =∞. The higher-order accurate residual operator R(Un)
is used on the right hand side to maintain the second order spatial accuracy of
the converged steady state solution. The B-J matrix can be computed using
hand differentiation [32] or using AD tools such as Tapenade [33]. The resulting
B-J or point-implicit scheme is(

β
∂R

(I)
i

∂Ui

∣∣∣∣∣
U=Un

)
∆Un

i = −R(II)
i (Un), (5)

where the Roman superscript for the residual denotes that the spatial operator
is of either first-order (I) or second-order (II) accuracy, and the subscript i
denotes the i-th node.

To generalise the notation, the left hand side matrix of Eq. 5 can be denoted
by a generic preconditioning matrix P, with the i-th block on the diagonal
defined as

Pi = β
∂R

(I)
i

∂Ui

and the discrete governing equation can be simplified as

P∆Un = −R(II)(Un). (6)

The B-J time-stepping is combined with RK to provide additional damping for
high-frequency error modes which makes the smoother suitable for MG [34].

Including the derivatives of the one-equation Spalart-Allmaras turbulence
model variable [35] in the Block-Jacobian increases the computational cost, but
in our experience does not improve convergence rate and in some cases adversely
affects the robustness. The turbulence model is hence treated as a passive scalar
The resulting structure of each block in the block-Jacobian in 3-D is hence a full
5×5 block for the conservative variables and a unit diagonal entry in the (6,6)
position for the Spalart-Allmaras variable. To keep the implementation simple
we retain the zeros in the 6th row and column in the Block-Jacobian. The non-
zero elements in the B-J matrices can be formed on the fly during the update
step as they depend only on node i. Alternatively, the associated memory cost
for storing the B-J matrices for all control volumes in the case of a one-equation
turbulence model is 6 times the storage of the flow solution, which is typically
deemed affordable.
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The solution is updated using a m-stage RK scheme,

U (0) = Un,

U (1) = U (0) − α1P
−1R(II)(U (0)),

...

U (m) = U (0) − αmP−1R(II)(U (m−1)),

Un+1 = U (m).

At each RK stage the preconditioner P−1 is computed by directly inverting
each of the diagonal block matrices to update the flow solution. The B-J solver
combined with MG can produce grid-independent convergence for inviscid flows
and works reasonably well for viscous cases if semi-coarsening is used [16]. Grid-
independent convergence is usually no longer observed for general 3-D RANS
simulations.

2.3. Implicit solver with first-order Jacobian

To obtain a stronger coupling between neighbouring nodes and to further
accelerate convergence, the first-order Jacobian can be used instead of the B-J
matrix. The preconditioner P based on the first-order Jacobian can be written
as

Pi,j =
Vi
σ∆ti

δij + β
∂R

(I)
i

∂Uj
,

where nodes i and j either are immediate neighbours of each other or i = j.
Each node i and each edge ij then give rise to a 6×6 block (in the case of the
Spalart one equ. model) with the same structure as discussed for B-J in Sec. 2.2.
To save on storage, the full 5×5 blocks for the Navier-Stokes variables are stored
in a block-wise compressed sparse row format (BCSR) separately from the SA-
variable which is stored in point-wise compressed sparse row (CSR) format.
Both matrices have the same sparsity pattern which allows to share row and
column index vectors. This approximation to the Jacobian implies coupling
between first-order neighbours of the Navier-Stokes variables, and an implicit
treatment of a passive scalar similar to B-J for the turbulence variable.

In this case each Pi,j block has the same 6×6 structure as for the B-J matrix,
but is located at (i, j) of the matrix P. It can be computed by differentiating the
residual subroutine either by hand or by using Automatic Differentiation. For
the presented results it was computed in vector-forward mode with the AD-tool
Tapenade [33].

The restriction to first-order neighbour contributions in the Jacobian pre-
cludes a differentiation of the gradients. As typical in literature, the inviscid flux
contributions are evaluated with zero gradients (first-order accuracy), which will
impair convergence rate, but increase robustness. The viscous terms are evalu-
ated here using a correction for the normal component of the Green-Gauss face
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gradient ∇U ij [32] to improve high frequency damping formulated as

∇Uij = ∇U ij −
(
∇U ijδsij −

Ui − Uj

|xi − xj |

)
δsij

where

δsij =
xi − xj
|xi − xj |

with the nodal coordinates xi for node i. The Jacobian of the viscous flux then
differentiates the viscous flux with respect to the term Ui − Uj but considers
∇U ij fixed.

The cost of computing the approximate Jacobian with AD is equivalent
to evaluating the nonlinear residual 5 times (or 6 times for SA turbulence),
but is not substantially increased compared to evaluating the B-J matrix using
AD. The cost of computing the approximate Jacobian can be further reduced
by optimising the implementation of the nonlinear flux subroutine [36] and by
selectively eliminating parts of the flux calculation from the AD tool using
scripts or pragmas. This is currently under investigation and will be reported
in our future work.

Strategies for efficiently solving the linear system for both the nonlinear flow
and the corresponding adjoint solver are explained in detail in Sec. 4.

3. Adjoint solver

To develop a discrete adjoint solver using an existing flow solver, one could
explicitly compute and store the exact Jacobian corresponding to the second-
order accurate discretisation and solve the resulting linear system. However,
for practical cases, both the memory and runtime for this approach could be
prohibitively expensive [18]. Moreover, efficient preconditioners would need to
be implemented. Alternatively, one can solve the adjoint equations using the
same time-marching scheme as the nonlinear flow solver [37, 38, 5, 39]. The
discrete adjoint equation [1] uses the transposed exact Jacobian matrix of the
nonlinear flow equation

LT v = g

with

L =
∂R

∂U

T

and g =
∂J

∂U

T

,

where v is the adjoint variable and J is the objective function, which is a function
of both the mesh and the flow field. The residual of the adjoint equations

Rv(v) = LT v − g

can computed by application of AD tools [33, 39] and then be used to update
the adjoint solution,

PT δvn = −Rv(vn), (7)
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where the preconditioner PT is the transpose of the preconditioner for the flow
solver. Assume ṽ is the exact solution of the adjoint equation, then for an error
en+1 = vn+1 − ṽ at the n+1-th iteration, we have

en+1 = (I−P−TLT )en.

The asymptotic convergence rate of the flow and the adjoint are guaranteed to
be the same [40] since

ρ(I−P−1L) = ρ(I−P−TLT ),

where the operator ρ(·) means the spectral radius of a matrix, which determines
the asymptotic convergence rate of a FPI. The conclusion on the identity of the
asymptotic convergence rates of flow and adjoint can be straightforwardly ex-
tended to include Runge-Kutta multistage integration as well as multigrid. If all
operators contributing to P are exactly transposed for PT in (7), not only is full
convergence of the adjoint solver guaranteed as long as the nonlinear flow solver
asymptotically converges, but also the transient of the sensitivity is exactly the
same when comparing tangent-linear and adjoint approaches [40], which is a
very powerful validation tool. This is the approach taken for the results pre-
sented in this paper. However to achieve stability typically this condition can
be relaxed, with only transposing non-symmetric parts of P such as low-Mach
preconditioners and not reversing the sequence of the operators [39].

4. Solving the linear system

For both the flow and adjoint equations, a linear system needs to be solved at
each RK stage on each level of MG. Two approaches to solve this linear equation
are considered here, Symmetric Gauss-Seidel (SGS) and ILU(0)-preconditioned
GMRES.

4.1. SGS as linear solver

A Symmetric Gauss-Seidel (SGS) iteration is a forward sweep followed by a
backward sweep of Gauss-Seidel (GS). The system matrix A is decomposed as
A = D+L+U, where D, L and U are the block-wise diagonal, lower and upper
triangular matrices. The forward and backward SGS sweeps then compute:

(D + L)x∗ = −Uxn −R
(D + U)xn+1 = −Lx∗ −R.

Since D+L and D+U are both block-wise triangular matrices, both equations
can be solved with block-wise backward/forward substitutions. In order for
the SGS to converge, diagonal dominance is required which can be achieved by
decreasing the CFL number σ from infinity to a smaller finite value.

It is not necessary to fully converge the linear system at each RK stage as the
system matrix is only a first-order accurate approximation. In practice, 3 sweeps
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of SGS are used for each linear system solve, hence the label SGS(3). Using more
than 3 iterations of SGS will increase the overall runtime which is proportional
to the number of SGS sweeps, but does not further improve convergence rate
or stability as reported by Swanson et al. [41] and also independently verified
in our numerical experiment.

The presented results with SGS use the standard implementation as de-
scribed here. Other implementation choices may produce slightly different fig-
ures, however the presented SGS results by Swanson et al. [41], as well as Langer
et al. [15, 30] all demonstrate a similar CFL number limitation as observed with
our implementation.

4.2. ILU-preconditioned GMRES as linear solver

The proposed JT-KIRK scheme uses GMRES [9] to solve the linear system
for its proven robustness for non-symmetric systems. GMRES stores m Krylov
vectors and hence requires additional memory equivalent to that of m nonlinear
flow solutions. The memory requirement becomes prohibitive for large m, hence
in practice, a limited m is used. To then avoid stalling convergence one uses
restarted GMRES: whenever the number of basis vectors reaches m, they are
discarded and GMRES is restarted using the partly converged solution. For
all the cases used in this paper, the stopping criterion for the GMRES solver is
either using three GMRES vectors with zero restart or a one order of magnitude
drop of the relative residual of the linear system, whichever criteria is met first,
denoted by GMRES(1,3,0.1).

GMRES still needs an appropriate preconditioner for good convergence,
most widely used are Jacobi, Lower-Upper-Symmetric Gauss-Seidel (LU-SGS)
and Incomplete LU factorisation (ILU) of the approximate Jacobian [9]. The
first two are easy to calculate but our results show that ILU(0), i.e. ILU with
0 level of fill-in, is more robust and efficient. ILU(0) is thus used for all the
results in this paper and for simplicity will be denoted as ILU hereafter. The
preconditioned linear system (1) then becomes

U−1L−1P∆Un = −U−1L−1R, (8)

where the matrices U and L are from the ILU factorisation.

P ≈ L ·U. (9)

GMRES uses the linear combination of orthogonal basis vectors of the Krylov
subspace to approximate the exact solution. The Krylov subspace is constructed
for the system matrix A of a linear system Ax=b as follows,

Km(A, b) = span{b,Ab,A2b,A3b, ...,Am−1b}, (10)

where A = U−1L−1P and b = −U−1L−1R. In (8), both the RHS and LHS
are computed via several sweeps of matrix-vector multiplication and no matrix-
matrix multiplication is done even though all the matrices are stored.
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In the JT-KIRK scheme, the first-order approximate Jacobian and its ILU
factorisation are computed only at the first RK stage at each nonlinear iteration
of the flow solver. In the adjoint JT-KIRK solver, the approximate Jacobian
and its ILU are constant, and hence only computed once at the first iteration for
all grid levels. In the parallel implementation, ILU is performed for each sub-
domain, and due to this decoupled implementation, the convergence deteriorates
with increased number of partitions, as explained in Sec. 5.1.4.

5. Results

In this section, the proposed JT-KIRK flow solver and its discrete adjoint
are applied to four different test cases with different flow features to assess both
the solver efficiency and robustness improvement. The four test cases from
turbomachinery applications are first briefly explained in terms their geometries,
meshes and the flow characteristics, followed by a detailed analysis of the solver
performance on each case.

The Block-Jacobi (B-J) discretisation manages to converge cases 1 and 2
fully, hence labelled as ‘stable cases’. These cases demonstrate the solver ef-
ficiency improvement of the JT-KIRK algorithm. Cases 3 and 4 can only be
converged by B-J to LCO with the adjoint diverging, hence these are labelled
as ‘unstable cases’. Case 3 exhibits a mild instability with insignificant effect on
the objective function, an example of a case where a steady-state stabilisation
is entirely justified. Case 4 is an artificially created case with severe instabil-
ity where objective functions obtained by steady-state simulation will markedly
deviate from the full unsteady ones. The unstable cases demonstrate the stabil-
isation of the adjoint solver when JT-KIRK is used to converge fully both the
flow and adjoint solutions.

5.1. Case 1, nozzle guide vane (NGV)

Case 1 is a nozzle guide vane (NGV) with subsonic inlet and outlet. The do-
main is meshed with 0.5 million hexahedral elements. The B-J solver converges
fully with the residual dropping by 12 orders of magnitude. The NGV geometry
and various contour plots (Mach number, static pressure and SA variable) are
shown in Fig. 2 for the surface at midspan. The flow is fully attached to the
blade surface.

As typical for this type of RANS computation, the mesh around the trailing
edge shown in Fig. 3 is chosen coarse enough not to resolve the vortex shedding,
but fine enough to limit the truncation error. The maximum cell aspect ratio
for the boundary layer cells is 170 and y+ for the first node off the viscous wall
is around unity.

Geometric multigrid is used to accelerate the convergence. The hierarchy
of multigrid meshes has been generated using an element-collapsing algorithm
with semi-coarsening [16], with a maximum allowable isotropic coarsening fac-
tor of 2 per dimension and an element aspect-ratio threshold of 3 for applying
semi-coarsening. This set of parameters has been optimised to provide the best
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Figure 2: Case 1, Nozzle Guide Vane (NGV). Upper left: NGV geometry; upper right:
Mach number contours at midspan; lower left: static pressure contours at midspan; lower
right: Spalart-Allmaras turbulence variable contours at midspan. All legends are non-
dimensionalised using their corresponding minimum and maximum values.
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Figure 3: Case 1, NGV. Left: mesh for the whole domain, right: close-up view at the trailing
edge. The quasi-2-D mesh is taken at midspan.

Table 1: multigrid mesh statistics for Case 1

level # of nodes node ratio # of edges edge ratio

1 499150 1471161
2 276565 1.80 894771 1.64
3 162065 1.71 565082 1.58
4 126743 1.28 451674 1.25
5 115514 1.10 414550 1.09

convergence rate with the B-J scheme, which has inferior smoothing charac-
teristics compared to the implicit schemes. The sizes of the mesh levels and
their effective coarsening ratios are listed in Tab. 1. It can be seen that the
overall coarsening ratio remains below 2 and gradually deteriorates with coarser
meshes.

5.1.1. Parameter study

Both the original B-J solver and the implicit SGS and JT-KIRK solvers are
applied to Case 1 to explore the effect of the parameter choices on the stability
and efficiency. The three solvers are labelled B-J, SGS and JT-KIRK in the
following, their adjoint variants use exactly the same time-stepping algorithm
as the flow solver. The nomenclature used for all the solvers is explained in
Table 2.
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Table 2: Summary of different solvers

solver preconditioner linear equation solve

B-J Block-Jacobian block-wise direct inversion
SGS first-order Jacobian SGS(3)

JT-KIRK first-order Jacobian ILU(0)+GMRES(1,3,0.1)

5.1.2. Number of RK stages

Numerical experiments were performed for the B-J and JT-KIRK schemes
to find the optimal number of Runge-Kutta (RK) stages. The coefficients for
each stage are used as optimised for viscous flow [42] and also proposed for B-
J [32], both authors advocating the use of RK5. The linear solver settings for
both B-J and JT-KIRK are based on the optimal parameters found in Sec. 5.1.3.
Convergence results for a drop in residual of 12 Orders of magnitude are shown
in Fig. 4.

Figure 4: Effect of RK stage number on iteration number (left) and runtime (right) for full
convergence of case1.

In all our numerical experiments RK5 outperforms RK with fewer stages in
terms of iterations. B-J shows an optimum in runtime for RK4, with a slight but
insignificant increase for RK5. The optimum between RK4 and RK5 for B-J is
as expected, since the coefficients used have been optimised to achieve optimal
high-frequency damping. For JT-KIRK, smoothing also improves as shown
by the decrease in number of iterations needed. In this case runtime further
decreases with the number of RK stages since the most expensive part of the
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non-linear step is the computation of the Jacobian and its ILU decomposition,
which is only performed once for all RK stages.

A further improvement might be achieved for the JT-KIRK scheme by
adding more RK stages, but as Fig. 4 suggests, this gain will be slight. A
more significant effect may be the optimisation of the stage coefficients, which
however is difficult to analyse due to the nonlinear nature of the GMRES solver.
As a base for comparison all results in the paper are produced using a 5-stage
Runge-Kutta multi-stage scheme with standard coefficients.

5.1.3. Number of multigrid levels, β, and σ

The two parameters in Eq. 4, β and σ, are important for stability and
efficiency. To determine best values we perform a parameter study for all three
solvers on Case 1.

Tab. 3 varies β from 0 to 1 for each scheme. All the data corresponds to
converging Case 1 fully with a residual drop of 12 orders of magnitude, cases
are run on a HPC cluster with 24 cores. For each tested value of β, initially
using 5 levels of MG, σ is varied as 10 ≤ σ ≤ ∞. Tab. 3 lists the σ for
each β that achieves the lowest runtime. For the best-performing 5-level MG
version of each of the three schemes, we then decrease the levels of MG (data
highlighted in grey) to determine the optimal number of levels. Best overall
performance is reported in bold font. The values β and σ have then been varied
for these optimal combinations (results not reported here) to confirm that the
combination of all three parameters is indeed optimal.

Table 3: Case 1: parameter study for β, σ and multigrid level
B-J SGS JT-KIRK

1/β σ MG # of time 1/β σ MG # of time 1/β σ MG # of time
level iter. (min) level iter. (min) level iter. (min)

1.00 ∞ 5 1927 158 1.00 1k 5 212 94 1.00 ∞ 5 183 98
1.11 ∞ 5 1789 142 1.11 ∞ 5 197 88 1.11 ∞ 5 170 91
1.25 ∞ 5 1648 135 1.25 1k 5 182 79 1.25 1k 5 167 89
1.43 ∞ 5 1503 122 1.25 1k 4 182 65 1.43 ∞ 5 143 76
1.67 ∞ 5 1369 109 1.25 1k 3 184 50 1.67 ∞ 5 129 69
1.67 ∞ 4 1362 109 1.25 1k 2 228 38 1.67 ∞ 4 192 57
1.67 ∞ 1-3 >10k >1k 1.25 1k 1 735 46 1.67 ∞ 3 129 44
2.00 ∞ 5 1580 128 1.43 10 5 2262 977 1.67 ∞ 2 147 30

1.67 ∞ 1 443 34
2.00 1k 5 144 79
2.50 30 5 1132 584

In summary, we find that

• For B-J, the best run-time performance is achieved with β = 0.6, and 4
or 5 levels of MG. Reducing the MG levels below 4 prevents convergence.

• For SGS, β=0.8 with σ=1000 and 2 levels of MG is most efficient.

• For JT-KIRK, β=0.6 with σ=∞ and 2 levels of MG is most efficient.
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• For both SGS and JT-KIRK, the smallest acceptable β is around 0.4−0.7,
below which the scheme quickly becomes either too slow or unstable. A
similar conclusion has been reported in [26] and [43].

• Overall, the best runtime is achieved with the JT-KIRK solver, which is
20% more efficient than SGS and 70% more efficient than B-J.

Both implicit smoothers are shown to work best in a 2-level multigrid when
using the B-J-optimised coarsening parameters (cf. Tab 1). The implicit solvers
offer much better smoothing than the point-implicit B-J, which should allow
more aggressive coarsening. In particular the ILU preconditioner, although
very effective, is expensive to compute. This cost does not reduce adequately
on the coarser levels which are quite dense due to the need for semi-coarsening
and the requirement of adequate mesh quality.

The B-J scheme requires semi-coarsened grids. An alternative method to
alleviate the stiffness that arises from the boundary layer mesh is to construct
linelets and apply a line-implicit smoother to couple the nodes in the direction
normal to the wall [44]. The implicit scheme using a first-order Jacobian, either
SGS or JT-KIRK, may provide sufficient coupling in the boundary layer to either
allow the threshold for semi-coarsening to be raised significantly, or to even allow
isotropic coarsening, which will increase the coarsening ration significantly. As
a basis for comparison, the B-J coarsening parameters are used in all cases.

In the steady-state discrete adjoint approach the computation of the ap-
proximate Jacobian matrix needs to be performed only once for each MG level
throughout the entire adjoint run. Thus the ratio of runtime of both SGS and
JT-KIRK compared to B-J will be even lower for the adjoint solver than for the
flow solver. We use the optimal flow solver parameters of Table 3 also for each
adjoint solver. The runtime of the flow and adjoint are shown in Table 4, run-
times are presented for a residual convergence of 12 orders of magnitude using
24 cores, same as for the flow calculation. For B-J, the adjoint solver requires
around 3 times the runtime of the flow solver, which is typical for a discrete
adjoint solver using source-transformation AD. As expected, the SGS and JT-
KIRK adjoint solvers require less runtime than their respective flow solver. For
JT-KIRK, the adjoint needs only 10% of the runtime compared to B-J.

Table 4: Case 1: runtime of different adjoint solvers, 12 cores

solver
parameter setting runtime (min)

MG lvl β CFL flow norm. adjoint norm.
B-J 5 0.6 1.67 109 1.00 355 1.00
SGS 2 0.8 1000 38 0.35 31 0.09

JT-KIRK 2 0.6 ∞ 30 0.28 22 0.06

5.1.4. Parallelism

The baseline Block-Jacobi solver is straightforward to parallelise as com-
munication is only needed for the residual calculation of the nodes shared by
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multiple partitions. For implicit solvers, the communication due to solving the
resulting linear system using SGS or GMRES is also not substantial as both SGS
and GMRES only need the matrix-vector products which can be computed for
each sub-domain and assembled in a reduction step. To avoid this reduction
step, we choose to compute the Jacobian and perform the SGS or GMRES for
each partition. For JT-KIRK, the ILU preconditioner is also computed for each
partition separately.

Fig. 5 shows how this simplification affects the convergence rate on Case 1
with 500k nodes. The results are produced with the optimal settings for each
solver, i.e. 5 MG levels for B-J, 2-level MG for JT-KIRK. The number of itera-
tions is barely affected by the partition size for JT-KIRK using up to 12 cores,
or around 40k nodes per partition, but convergence does degenerate beyond 12
cores, While a global ILU factorisation would be prohibitively expensive to com-
pute, using a global GMRES solve is possible and is likely to reduce the minimal
partition size needed for effective convergence. Nevertheless, strong scaling in
iteration numbers down to a partition size of 40k nodes will be acceptable for
typical industrial applications.

Figure 5: Scalability of Block-Jacobi (B-J) and JT-KIRK solvers on test Case 1 (left) and the
iteration number with respect to the number of processors for JT-KIRK solver showing the
degeneration of ILU+GMRES per subdomain (right).

5.2. Case 2: NGV/rotor cavity

Case 2 is a cavity between the Nozzle Guide Vane (NGV) and the rotor
disks. The geometry with labelling for the various boundaries is shown in the
leftmost panel of Fig. 6. The ‘stator’ boundary is attached to the NGV and thus
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stationary while the ‘rotor’ boundary is attached to the shaft and in spinning
with the same speed as the rotor. A subsonic outflow boundary condition is
applied to both ‘seal’ and ‘bore’ boundaries while a subsonic inflow boundary
condition is applied to the inlet. The mesh has approximately 1 million hexa-
hedral cells and is refined near the viscous wall with the maximum cell aspect
ratio around 90 and a y+ of the first interior node around unity.

Different from Case 1 where the main flow is driven by the axial flow, the
flow in this case is dominated by swirling flow resulting from the wall rotation.
In addition, the majority of the flow field is low speed, a further challenge to
convergence.

The baseline B-J solver, although converging very slowly, does fully converge
to steady state, as shown in Fig. 6. The streamline plot superimposed on the
Mach number contour plot illustrates the complex flow pattern due to the strong
shearing.

rotor

bore

inlet

stator

seal

Mach p SA

Figure 6: Case 2, cavity. From left to right: (1) cavity geometry, (2) Mach contours with 2-D
streamline, (3) static pressure contours and (4) SA variable contours. Contour plots are taken
at the medium azimuthal angle. All legends are non-dimensionalised using their corresponding
minimum and maximum values.

5.2.1. Convergence speedup

The purpose of presenting Case 2 is to assess the performance improvement
of the proposed JT-KIRK algorithm for cases where viscous dissipation domi-
nates and a stronger coupling is expected to have a significant impact on the
convergence.
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Using the same parameters as optimised for Case 1, JT-KIRK flow and
adjoint solvers are run for Case 2, except that the CFL number has to be
lowered to 2000 for this case for startup. To permit a fair comparison, possible
improvements with more advanced initialisation or ramping techniques are not
investigated here and the results for a constant CFL number for the entire run
are reported in Tab. 5. Same as for Case 1, the residual is reduced by 12 orders
of magnitude. All the computations for Case 2 are run on 12 processors.

Table 5: Case 2: runtime of different adjoint solvers, 12 cores

solver
parameter setting runtime (min)

MG levels β CFL flow normalised adjoint normalised
B-J 5 0.6 1.67 49512 1.00 163389 1.00

JT-KIRK 2 0.6 2000 22330 0.45 19933 0.12

The runtime for Case 2 is significantly longer than Case 1, which is due
to the shearing-dominating nature of this type of flows. The JT-KIRK solvers
speed up the flow computation by 50% and the adjoint by 88%.

5.3. Case 3: turbine stage with rotor tip gap

Having demonstrated the efficiency gains of the JT-KIRK scheme for stable
flows, Case 3 presents a mild instability that has only small influence on the
objective function.

Case 3 is a one-stage turbine, the rotor has a tip gap of constant clearance
along the axial direction. The geometry of the stage is shown in the upper left
of Fig. 7, periodic boundaries and the casing surfaces for both the NGV and the
rotor are not shown for better illustration. Total pressure and temperature are
prescribed at the NGV inlet and subsonic outflow is applied at the rotor exit with
prescribed static pressure. A mixing plane is used to model the NGV and rotor
interaction for steady state flow. The case is meshed with 2.4 million hexahedral
cells with a maximum cell aspect ratio of 230. The tip gap is discretised by 25
layers of cells with a growth ratio around 1.3.

The B-J flow solver is run first with a typical setting of β = 1 and σ = +∞
and then with alternative settings with reduced σ and increased β, but the B-J
solver is not able to fully converge with any setting, at best it converges to LCO,
at worst diverges. Shown in Fig. 8 is the convergence history for both the flow
and adjoint with the typical setting β = 1 and σ = +∞.

Using any snapshot of the LCO-converged flow solution will lead to diver-
gence of the discrete B-J adjoint solver shown on the right of Fig. 8.

To investigate the flow physics, Fig. 7 shows various contour plots at midspan
for an arbitrary snapshot within the LCO. The streamline plot in Fig. 9 shows
the flow to be mainly attached, except near the tip where the flow around the
rotor reveals the complex vortex structure due to the tip gap. Although not
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Figure 7: Case 3, NGV + rotor with tip gap. Upper left: NGV and rotor geometry; upper
right: SA variable contour; lower left: Mach contour with 2-D streamline; lower right: static
pressure contour. The contour plots are taken at midspan. All legends are non-dimensionalised
using their corresponding minima and maxima.
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Figure 8: Case 3: convergence history of both Block-Jacobi flow and adjoint solvers.

Figure 9: Case 3, flow visualisation around the rotor. Left: entropy contour plot at various
axial locations; right: streamline illustrating the tip vortex and the two passage vortices.
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shown here, it is confirmed that the LCO convergence corresponds to a small-
scale oscillation of the stagnation zone near the rotor tip on the suction side
towards the trailing edge (highlighted with the ellipse in Fig. 9).

5.3.1. Stabilisation with the JT-KIRK scheme

Using JT-KIRK the flow solver fully converges to steady state with a residual
reduction of 10 orders of magnitude. with β = 1 and σ = 1000 on 12 processors.
The fully converged flow solution is then linearised for the adjoint which also
fully converges using the JT-KIRK scheme with the same parameters. The
convergence history of both the flow and adjoint are shown in Fig. 10

Figure 10: Case 3: convergence history of flow and adjoint solvers using JT-KIRK algorithm.

In the presence of physical unsteadiness both the B-J and JT-KIRK results
may be questioned. While B-J does demonstrate some unsteady behaviour, it
is not a time-accurate scheme and the LCO are likely to be governed by the
numerical scheme rather than the flow physics. On the other hand, JT-KIRK
adds a large artificial viscosity first-order in time to stabilise the discretisation.
If the flow does contain unstable modes that have a nonlinear effect, this may
result in a seemingly steady solution that is not an accurate reflection of the
time-averaged solution [11].

To assess the accuracy of both the B-J and JT-KIRK results, an unsteady
analysis is performed for this case using dual time-stepping with a 2-step back-
ward differentiation formula (BDF2). The Block-Jacobi solver is used for fully
converging the inner system at each physical time step. Convergence studies
on both the convergence level of the inner system and and time step size of
the outer system have been performed to ensure that the unsteady flow simu-
lation has converged for this particular mesh. For this comparison the focus is
on resolving the unsteadiness of the blade flow and comparing that to a fully
steady treatment. The mixing-plane treatment between rotor and stator has
hence been maintained as in the steady case.

Tab. 6 shows the errors of the objective functions for the flow solutions using
the B-J and JT-KIRK solvers relative to the time-averaged objective functions of
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Table 6: Case 3: relative flow output deviation between fully and LCO-converged flow solution.

Quantity JT-KIRK error % B-J error %

Efficiency +0.00246 -0.01208
Capacity +0.00352 +0.00092
Reaction -0.00385 -0.03651

the unsteady flow simulation. The following objective functions are considered:

Efficiency: η =
(ṁ1hT,1 − ṁ3hT,3)

(ṁ1hT,1 − ṁ3hisen,T,3)
,

Capacity: φ =
ṁ1

√
TT,1

pT,1
,

Reaction: χ =
h2 − h3

hT,1 − hT,3
,

with mass flow rate ṁ, entropy h, temperature T and pressure p. The subscripts
refer as 1 to the NGV inlet, 2 to the rotor inlet, 3 to the rotor outlet, T to the
total quantity, ‘isen’ to the isentropic state.

The relative deviations for all the three objective functions are very small
(all below 0.05%), justifying in this case the use of the JT-KIRK solver to
suppress the instability and converge the flow to steady state. However, the
deviations in sensitivities may be more significant than for the values of the
objective functions.

5.3.2. Effect of flow convergence level on adjoint stability

In the stabilisation results shown in the previous subsection the JT-KIRK
adjoint solver was applied to the fully converged solution while the B-J adjoint
solver was applied to the LCO-converged flow The stabilisation could be due to
the more contractive Jacobian of JT-KIRK or the better convergence level of the
flow that the Jacobian is based on. To decouple the effect of flow convergence
level and adjoint time-stepping algorithm, two additional runs are performed:
(i) application of the JT-KIRK adjoint solver to LCO-converged flow and (ii)
application of the B-J adjoint solver to fully-converged flow. The results are
summarised in Tab. 7.

The B-J adjoint based on the fully converged flow diverges, while on the
other hand, for this flow JT-KIRK is able to converge the adjoint solution
based on the LCO-converged flow solution. The latter is not guaranteed as the
preconditioned Jacobian A := I−P−T (U)LT (U) depends on the nonlinear flow
solution U about which the adjoint is linearised. The fact that the JT-KIRK
adjoint is also stable for the LCO-converged flow in this case can probably be
attributed to the fact the flow deviation is small, implied by the small deviation
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of the objective functions shown in Table 6. It will be shown in Sec. 5.4 that
this is not hold for cases with stronger unsteadiness.

Table 7: Case 3: effect of flow convergence level and adjoint scheme on the adjoint convergence.
The solver setting for all the JT-KIRK flow and adjoint runs are the same.

Set Flow solver Flow convergence Adj. solver Adj. convergence

A JT-KIRK Full convergence JT-KIRK Full convergence
B JT-KIRK Full convergence B-J Divergence
C B-J LCO JT-KIRK Full convergence
D B-J LCO B-J Divergence

5.4. Case 4: turbine stage with skewed rotor

Case 4 is a one-stage turbine with a NGV and a rotor. Different from
Case 3, the rotor does not have a tip gap (geometry shown in Fig. 11 upper
left). Instead, in order to investigate the effect of large unsteadiness on the
convergence of both the flow and adjoint solver, the angle of attack of the rotor
blade has been deliberately changed significantly away from the design condition
to create a massive flow separation on the rotor suction side. The case consists
of 0.6 million hexahedral cells with maximal cell aspect ratio of 75.

Similar to Case 3, the baseline B-J solver only converges to LCO, stalling
after an initial drop of the residual of 2 orders of magnitude. The convergence
curve in Fig. 12 is presented for β = 0.6 and σ = ∞. The discrete adjoint
based on the flow solution at the 400-th iteration diverges after around 100
adjoint iterations. Using a different snapshot of the flow solution, a smaller σ
and/or different β does not achieve convergence, the lack of convergence is due
to outlying eigenvalues as demonstrated by the eigen-analysis in Sec. 5.4.2.

An arbitrary snapshot of the flow solution taken during the LCO is shown
in Fig. 11. The 2-D streamlines around the rotor at midspan clearly show the
separation zone with a separation point close to the leading edge (marked with
arrow in lower left of Fig. 11).

5.4.1. Stabilisation using JT-KIRK solvers

Case 4 has a much stronger instability, hence for this case we assess the
robustness of the stabilisation effect of the JT-KIRK scheme. Differently from
Case 3, the strong instability may result in significant differences of objective
functions between an unsteady simulation and the steady-state B-J or JT-KIRK
approaches.

When applying JT-KIRK to Case 1, fastest convergence was obtained with
β = 0.6. This choice is actually not stable for Case 4 when initialising with
freestream flow and keeping σ and β constant for all iterations. A more accurate
solve of the linear system using more Krylov vectors or a lower convergence
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Figure 11: Case 4, NGV and skewed rotor. Upper left: NGV and rotor geometry; upper
right: static pressure contour; lower left: Mach contour with 2-D streamline for the rotor
only; lower right: SA variable contour. The contour plots are taken at midspan. All legends
are non-dimensionalised using their corresponding minima and maxima.
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Figure 12: Case 4, LCO convergence of the flow solver and the divergence of the adjoint solver.

threshold do not help to achieve full convergence, however increasing the under-
relaxation to β=2.0 does, while the CFL number can remain at σ=∞. Optimal
runtime for this combination is achieved with 2 levels of MG, solver settings and
convergence results are shown in Tab. 8.

Table 8: Case 4: Convergence of B-J and JT-KIRK with various solver settings, (DNC=Did
Not Converge). The B-J solver result highlighted in bold is shown in Fig. 11. Highlighted B-J
and JT-KIRK results are compared with the unsteady results in table 9.

solver β CFL MG level iteration runtime(min)

flow (B-J) 0.6 1.67 4 DNC DNC
adjoint (B-J) 0.6 +∞ 4 DNC DNC

flow (JT-KIRK) 0.6 +∞ 4 DNC DNC
flow (JT-KIRK) 1.0 +∞ 4 DNC DNC
flow (JT-KIRK) 1.5 +∞ 4 DNC DNC
flow (JT-KIRK) 2.0 +∞ 4 1042 1750

flow (JT-KIRK) 2.0 +∞ 2 1058 801
adjoint (JT-KIRK) 2.0 +∞ 2 1096 507

Similar to Case 3, a time-accurate unsteady simulation is performed to assess
the accuracy of the values of the objective functions of the LCO-converged
flow solution from B-J and the fully converged flow solution from JT-KIRK.
Convergence studies have been performed for the unsteady solver to ensure that
the prescribed level of convergence for solving the inner system is low enough
and that the time step is chosen small enough. The errors of the objective
functions from LCO-converged B-J and fully-converged JT-KIRK relative to the
unsteady simulation are summarised in Tab. 9. The deviations of both efficiency
and capacity of the steady-state approaches are small (below 0.1%), but the
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reaction ratios of both the B-J and the JT-KIRK solutions differ significantly
from the unsteady average, with the deviation having comparable magnitude
for both schemes at around 20%, but with opposite signs.

On one hand, the stabilisation effect of the JT-KIRK solver is very strong
thus managing to fully converge a case with such strong unsteadiness. Such
strong flow separations or other severe instabilities may occur for initial or
intermediate designs, and it is important that the sequence of design iterations
is not broken by a diverging adjoint. Reduced accuracy of objective functions
and sensitivities may be perfectly acceptable in this phase.

On the other hand, it implies that extra care needs to be taken when such
a strong stabilisation is used. The user needs to carefully assess when objective
functions obtained from steady approaches are acceptable, and when unsteady
simulations are required. Providing guidance on this goes beyond the scope of
this paper, however two observations can be made. The comparison of cases
3 and 4 suggests that if the JT-KIRK adjoint is able to converge based on
the flow solution converged to LCO by the B-J flow solver, this may indicate
small unsteady deviations resulting in negligible changes in objective function.
However, this is a rather arbitrary threshold and the second observation is that
the deviation of the objective function is strongly linked to its non-linearity:
two of the objectives in Case 4 only show small errors, while reaction ratio does
strongly deviate.
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Figure 13: Case 4: convergence history of both JT-KIRK flow and adjoint solvers.

5.4.2. Eigen-analysis of the stabilisation mechanism

To better understand the effect of the JT-KIRK scheme on the convergence
of both the flow and the adjoint solvers, eigen-analysis is performed on the
Jacobian of both the B-J and JT-KIRK adjoint solvers. For the B-J solver, we
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Table 9: Case 4: relative flow output deviation between fully and LCO-converged flow solution.

Quantity JT-KIRK error % B-J error %

Efficiency -0.03124 +0.10064
Capacity +0.00052 -0.00035
Reaction -17.24848 +23.12120

take as before the limit-cycle flow solution at the 400-th iteration of the B-J
solver. For JT-KIRK, we take the fully converged flow solution.

To calculate the dominant eigenvalues we use Arnoldi iterations as described
by Campobasso et al. [6]. Strictly speaking, the Arnoldi iteration can only be
applied to a linear operator, such as linear multigrid smoothers. The smoother
used in the JT-KIRK algorithm has a GMRES solver wrapped inside a RK
multi-stage scheme. Due to the nonlinear nature of the GMRES solver, the
overall smoother is not a linear operator, and thus the Arnoldi iterations may
fail to correctly compute the eigen-spectrum. However, the specific novelty of
the JT-KIRK scheme is to wrap the GMRES into a RK multi-stage scheme
to achieve high-frequency damping, it is this attribute that makes the solver
suitable to be used as a smoother within multigrid. Similarly, this diminishes
the non-linear character of GMRES sufficiently that the effects of the linear RK
multi-stage scheme and the linear multigrid scheme dominate. As a confirma-
tion, the magnitude of the largest eigenvalue is found to be in excellent agree-
ment with the asymptotic convergence/divergence rate of the adjoint solver,
demonstrating the validity of the eigen-analysis.

150 dominant eigenvalues are computed for both the B-J and JT-KIRK
solvers, as shown in Fig. 14. The eigenvalues for B-J include two outliers which
are responsible for the lack of full convergence, while the JT-KIRK solver shows
all eigenvalues well within the linear stability boundary and thus the JT-KIRK
adjoint can converge fully.

Similar to the experiment with Case 3, it is also attempted to converge the
adjoint using another two time-stepping combinations for the adjoint: (i) JT-
KIRK for the adjoint based on the LCO-converged flow solution using B-J and
(ii) B-J adjoint solver on the fully converged JT-KIRK flow solution, results are
summarised in Table 10.

Different from Case 3, the JT-KIRK adjoint solver using the same setting
does not manage to stabilise the adjoint for LCO-converged flow for Case 4.
Eigen-analysis is performed for all the four combinations in Table 10 and spectra
are shown in Fig. 15. The magnitude of the largest eigenvalue in every plot
is confirmed to be in agreement with the convergence/divergence rate of the
respective adjoint solves. The spectra of the two JT-KIRK adjoint solutions
(A and C in Fig. 15) are very similar, both showing significant clustering of the
eigenvalues compared with their counterparts using the B-J adjoint solver on the
right. However, the spectrum of the adjoint solver for LCO-converged flow (C in
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using Arnoldi iterations. The zoomed region on the top right show the unstable mode.

Table 10: Case 4: effect of flow convergence level and adjoint scheme on the adjoint conver-
gence. The solver setting for all the JT-KIRK flow and adjoint runs are the same.

Set Flow solver Flow Convergence Adjoint solver Adjoint Convergence

A JT-KIRK Full convergence JT-KIRK Full convergence
B JT-KIRK Full convergence B-J Divergence
C B-J LCO JT-KIRK Divergence
D B-J LCO B-J Divergence
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Fig. 15) has multiple outliers that cause the adjoint to diverge. This is different
from the results for Case 3, where the JT-KIRK adjoint solver is stable for both
the fully converged and the LCO-converged flows. As stated in the discussion
of Case 3, there is no guarantee for discrete adjoint convergence based on a non-
contractive Jacobian even when using a stronger solver for the adjoint. In Case
4 the instability of the flow is large enough to prevent convergence of discrete
adjoints based on the LCO state, even with JT-KIRK. Some fine tuning of the
JT-KIRK adjoint solver parameters might make the adjoint solver stable also
for the B-J LCO linearisation, but using JT-KIRK for both flow and adjoint is
guaranteed to converge since JT-KIRK does converge the flow.
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Figure 15: The eigenvalues for the solver combinations of Tab. 10. Outlying eigenvalues with
|λ| > 1 are highlighted in boxes.

6. Conclusions

A robust implicit time-stepping scheme for the steady flow and adjoint RANS
equations has been presented to address the lack of robustness of the typical
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Block-Jacobi (point-implicit) multigrid solvers when calculating steady state
discrete adjoint solutions for cases with mild physical or numerical instabilities.

The JT-KIRK algorithm has two main features. First, as opposed to Newton-
Krylov methods that use exact Jacobian-vector products, a first-order approx-
imate Jacobian is formed, stored and approximately inverted using ILU factori-
sation. In our implementation, the Jacobian is computed using the Automatic
Differentiation tool Tapenade [33] in vector-forward mode. Secondly, the algo-
rithm uses GMRES as a smoother within a FAS-cycle multigrid method. This
is achieved by embedding the linear solver inside a Runge-Kutta multi-stage
time-stepping scheme, which provides high-frequency damping similar to ex-
plicit smoothers.

For a typical explicit or point-implicit compressible RANS solver using Runge-
Kutta time-stepping and multigrid, only moderate change to the iterative scheme
is needed to upgrade existing flow and adjoint solvers to JT-KIRK. The memory
required by the implicit solver to store the approximate Jacobian and its ILU
decomposition is approximately 7 times larger than the total memory required
by the the reference Block-Jacobi solver. The use of GMRES inside multigrid
needs minimal runtime using only three Krylov vectors which does not affect
the overall memory requirement significantly.

The implicit solver is applied to four representative test cases from turbo-
machinery applications. For cases 1 and 2 where the baseline Block-Jacobi
solver can fully converge, the JT-KIRK solver is much more efficient than the
Block-Jacobi solver with 28% of the runtime for the flow solver, and slightly
more efficient than the implicit solver using Symmetric Gauss-Seidel (SGS) with
79% of the runtime. The performance advantage is much more significant for
the adjoint, since the expensive preconditioners have to be built only once.
The adjoint JT-KIRK uses only 6% of the runtime of the adjoint Block-Jacobi,
and 70% of that of SGS. Further improvements in runtime can be expected
by adapting the multigrid coarsening strategy inherited from the Block-Jacobi
scheme to the improved smoothing of the implicit solver, and by selectively
applying Automatic Differentiation to the fluxes omitting costly but less relevant
elements of the approximate Jacobian.

For the unstable test cases the Block-Jacobi flow solver converges only to
limit cycle oscillations and consequently the discrete adjoint solver diverges due
to a non-contractive system Jacobian. The JT-KIRK algorithm fully converges
flow and adjoint, even if the unsteadiness is severe. The improvement in robust-
ness is analysed by examining the eigenvalues of the JT-KIRK and Block-Jacobi
schemes. The spectral analysis conducted for a strongly unstable case confirms
that the stabilisation is brought about by JT-KIRK moving the outliers of the
Block-Jacobi time-stepping inside the stability boundary.

Numerical experiments were conducted with different solver combinations
for flow and adjoint to determine whether the instability is transient, and a
strong and expensive solver is only needed for the primal, or whether it is still
present in the fully converged solution. It is found that, as the theory suggests,
the instability is persistent, i.e. if the flow requires a strong solver to converge,
convergence of its discrete adjoint is only guaranteed if the same solver is used for
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the adjoint. However, the results also show that in the case of mild unsteadiness
a stronger adjoint solver may be able to converge the adjoint based on a flow
converged only to limit cycle oscillations.

For the unstable cases the choice of iterative solver does affect the values
of typical objective functions for turbo-machinery applications. In the case of
mild unsteadiness, even though the Block-Jacobi solver does not converge and
its discrete adjoint diverges, both steady-state approaches can provide objec-
tive functions with good accuracy compared to an objective function evaluated
by time-averaging fully unsteady calculations. For cases with pronounced in-
stability, the objective functions of both the Block-Jacobi and the JT-KIRK
steady-state approaches can deviate strongly from the unsteady average. While
stable with JT-KIRK, the use of the steady-state approach in such cases may
not provide an accurate objective function value, moreover the gradient sensi-
tivity may vary much more dramatically. Designs with destabilising separations
are not untypical at intermediate steps in a design optimisation loop. Maintain-
ing convergence of the adjoint solver also in these situations is important to not
break the optimisation loop.

The JT-KIRK algorithm therefore extends the applicability of the steady-
state discrete adjoint approach to marginally stable flows without compromising
the efficiency for stable cases.
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