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 2 

Abstract 3 

Purpose: Although obesity is linked to heart failure on a population level, not all obese subjects develop 4 

cardiac failure.  As a result, identifying obese subjects with subclinical changes in myocardial velocities 5 

may enable earlier detection of those susceptible to developing overt heart failure. As echocardiography 6 

is limited in obesity due to limited acoustic window, we used phase contrast magnetic resonance 7 

imaging to assess myocardial velocities in obese and normal weight subjects.  8 

Methods: Normal weight (BMI 23±3; n=40) and obese subjects (BMI 37±7; n=59) without identifiable 9 

cardiovascular risk factors underwent MRI (1.5 Tesla) to determine left ventricular myocardial 10 

velocities using phase contrast tissue phase mapping.  11 

Results: Systolic function was not different between normal and obese subjects (LVEF 67±5 vs 68±4, 12 

p=0.22). However, obesity was associated with significantly impaired peak radial and longitudinal 13 

diastolic myocardial velocity (by 13% and 19% respectively, both p <0.001). In addition time-to-peak 14 

longitudinal diastolic velocity was delayed in obesity (by 39ms, p <0.001). In addition, peak 15 

longitudinal diastolic strain was 20% lower in obesity (p =0.015) and time-to-peak longitudinal diastolic 16 

strain rate significantly delayed in obesity (by 92ms, p <0.001).Although peak radial systolic velocity 17 

was similar between obese and normal weight subjects (p = 0.14) peak longitudinal systolic velocity 18 

was 7% lower in the obese cohort (p = 0.02).  19 

Conclusion: In obesity without co-morbidities, tissue phase mapping has shown subclinical changes in 20 

systolic and diastolic function. Given the link between obesity and heart failure, early detection of 21 

changes may become clinically important to prevent disease progression. 22 

 23 



Introduction  1 

Obesity is associated with an increased cardiovascular mortality rate, and even greater risk is associated 2 

when the BMI exceeds 35 kg/m2. [1] In addition, there is a spectrum of functional cardiac changes that 3 

occur in obesity ranging from subclinical diastolic dysfunction to overt systolic failure. [2,3]Although 4 

there is a clear relationship between obesity and heart failure on a population level, [4] the majority of 5 

smaller cohort studies report that obesity itself has little or no effect on global measures of systolic 6 

function such as LV ejection fraction [5]. This suggests that, although some individuals are susceptible 7 

to developing obesity cardiomyopathy and heart failure, it is not a universal phenomenon. Whilst 8 

obesity related subclinical impairment of LV systolic and diastolic function [6] may precede the 9 

development of overt systolic failure, there are no long term prospective studies to demonstrate this. 10 

However, it is now generally accepted that a longer duration of obesity is likely to be linked to the 11 

development of manifest LV systolic dysfunction. [7] As a result, detecting early changes in systolic 12 

function is likely to be important in identifying those at risk of developing heart failure. 13 

In addition to changes in systole, obesity, both with and without additional co-morbidities, has also been 14 

linked to diastolic dysfunction using a wide range of non-invasive imaging modalities. [8-10] As even 15 

asymptomatic diastolic dysfunction has now been proved to be associated with the development of heart 16 

failure[11,12],  detecting this is again clinically important, and potentially identifies those at risk of 17 

developing clinically manifest heart failure and allowing early intervention in the form of weight loss 18 

therapies. 19 

Despite this, current imaging techniques to detect early, subclinical myocardial dysfunction  in obesity 20 

rely almost exclusively on echocardiography, which is severely limited in obesity due to acoustic 21 

window constraints imposed by excess chest wall fat. In addition, 2D echocardiography measures of 22 

systolic and diastolic dysfunction lack sensitivity and there is now emerging evidence that regional 23 

measures of both longitudinal and radial function have additional value. [13] Cardiovascular magnetic 24 

resonance imaging (CMR) derived Tissue Phase Mapping (TPM) overcomes these limitations by not 25 



only being able to provide accurate, regional, 3-dimensional measures of systolic and diastolic function 1 

but also being able to do so irrespective of the amount of chest wall fat. [14-17] As a result, we aimed to 2 

use TPM to quantify regional 3D cardiac tissue motion in 59 obese subjects with no cardiovascular risk 3 

factors and compared them to 40 normal weight controls. [18] 4 

 5 

Methods 6 

Ethics and Study Cohort 7 

This study was a prospective study of ninety-nine healthy subjects (59 obese, 22 male, BMI > 30kg/m2 8 

and 40 normal weight controls, 18 male, BMI 18.5-24.9 kg/m2,Table 1). The study was approved by the 9 

local ethics committee and therefore has been performed in accordance with the ethical standards laid 10 

down in the 1964 Declaration of Helsinki and its later amendments. Informed written consent was 11 

obtained from each subject.  12 

All subjects were screened for identifiable cardiac risk factors and obesity-related co-morbidities. 13 

Subjects were excluded if they had a history of; any cardiovascular disease, chest pain, tobacco 14 

smoking, hypertension, peripheral vascular disease, contraindications to MR imaging, diabetes (fasting 15 

glucose level 7.1 mmol), a fasting total cholesterol level ≥ 6.5 mmol/l, use of any prescription 16 

medications or a history compatible with obstructive sleep apnoea. All subjects had a normal 12 lead 17 

electrocardiogram, normal cardiovascular examination, normal global and regional resting cardiac 18 

function on MR imaging, and did not perform more than three sessions (defined as 30 minutes) of 19 

sweat-producing exercise per week. 20 

Blood tests 21 

Fasting blood tests for glucose and cholesterol were taken on the day of the scanning and analysed as 22 

described [10].   23 



Bio-Impedance analysis 1 

Bio-electrical impedance was used to determine total body fat mass, and lean body mass using Bodystat 2 

©1500 analyser. The use of bioimpedance analysis has become routine in clinical research investigating 3 

body composition analysis. Although not the gold standard for analysis of body composition, it has been 4 

shown to have close correlation with DEXA assessments in multiple studies [19]. 5 

 6 

Magnetic Resonance Imaging of the Left Ventricle  7 

All imaging was prospectively cardiac gated with a precordial three lead ECG and acquired during end 8 

expiration breathold. Images were acquired using a steady state free precession (SSFP) sequence with an 9 

echo time (TE) of 1.5ms, a repetition time (TR) of 3.0ms, temporal resolution 47.84ms and a flip angle 10 

of 60◦ as previously described .[20] SSFP cine sequences were used to acquire localisation images 11 

followed by a SSFP right and left ventricular short axis stack of contiguous images (slice thickness 12 

7mm, interslice gap 3mm).  13 

 14 

Tissue Phase Mapping 15 

All TPM imaging was performed at 1.5-T (Sonata; Siemens Medical Solutions, Erlangen, Germany). 16 

Steady-state free precession cine images (repetition time ms/echo time ms, 3.0/1.5; flip angle, 60°; 17 

section thickness, 7 mm; intersection gap, 3 mm; temporal resolution, 45 ms) were acquired in 18 

horizontal and vertical long-axis views, and short-axis. These were followed by three single breath hold 19 

phase-contrast (TPM) images at the base, mid-ventricle and apex of the LV. TPM was performed using 20 

a prospectively triggered black blood segmented k-space gradient-echo sequence (6.2/4.5; flip angle, 21 

15°) with first-order flow compensation in all dimensions to minimize artefacts from flow or motion as 22 

previously described [21] (field of view 255 × 340-mm, slice thickness 8mm, temporal resolution 37–87 23 

ms, 17–29 heartbeats (adjustable to breath-holding capability).  24 



For segmental analysis the LV was divided according to the AHA 16-segment model (6 basal, 6 1 

midventricular, and 4 apical regions, Figure 1 & 2). For each segment, peak and time-to-peak radial and 2 

long-axis velocities in systole and diastole were calculated and averaged for each group. Results are 3 

presented as bulls eye plots permitting a direct comparison between obese and normal weight controls. 4 

Global average velocities combined across all segments were calculated, in addition, epicardial and 5 

endocardial values were calculated (separated by the outer and inner 50% of the myocardium 6 

respectively).  7 

 8 

Data Analysis 9 

Left Ventricular Morphology 10 

Image analysis for ventricular volumes and mass was performed using cmr42 © imaging analysis 11 

software (Circle Cardiovascular Imaging Inc, Calgary, Canada). The short axis stack was analysed 12 

manually, contouring the endocardial borders from base to apex at end-diastole and end-systole. The 13 

epicardial border was contoured at end-diastole to yield myocardial mass. Ventricular mass (g) was 14 

calculated as the epicardial volume minus the endocardial volume multiplied by 1.05 (specific gravity of 15 

myocardium).  16 

 17 

Tissue Phase Mapping 18 

TPM data was analysed using in house software in Matlab Version 2012a (Mathworks, Natick, 19 

Massachusetts, USA) as previously described.[21] In brief, manual endocardial and epicardial contour 20 

segmentation was performed. Radial and circumferential velocity values were then calculated from in-21 

plane velocities for each pixel on the basis of an internal polar coordinate system positioned at the centre 22 

of the left ventricle (Figure 1). The longitudinal velocity values were encoded in the acquisition and 23 

were used without correction. The mean velocity was computed for pixels within the epicardial (inner 24 

half of the wall thickness), endocardial (outer half of the wall thickness), and transmural regions. 25 



 1 

Statistical Analysis 2 

All statistics were analysed using commercial software packages (SPSS 20; SPSS, Chicago, Ill, STATA, 3 

StataCorp, Texas). All data were subjected to Kolmogorov–Smirnov tests to establish normal 4 

distribution of the data. All normally distributed results are presented as the mean ± standard deviation; 5 

Normally distributed data was analysed using independent t-test or ANOVA analysis where appropriate, 6 

with Bonferroni correction. Values of p < 0.05 were considered as statistically significant.  7 

  8 

Results 9 

Anthropomorphic Data  10 

As expected, weight and body mass index were higher in the obese cohort. Both groups were well 11 

matched for age, systolic blood pressure, diastolic blood pressure, fasting cholesterol and fasting 12 

glucose concentration, with no statistically significant difference in mean values between the two groups 13 

(Table 1).  14 

 15 

Left Ventricular Characteristics 16 

As expected, obesity was associated with significantly elevated LV mass (by 20%, p<0.01, Table 1) and 17 

higher strove volume (by 12%, p =0.03). Of note LV end-diastolic volume, and LVEF were similar 18 

between normal weight and obese subjects (Table 1). 19 

 20 

Tissue Phase Mapping  21 

Systolic Velocity 22 

Radial Systolic Velocity When comparing transmural measurements, there was no significant difference 23 

in either peak radial systolic velocity (obese 2.9 ± 1.3 vs normal 3.1 ± 1.1 cm/s, p = 0.14) or time-to-24 



peak radial systolic velocity (obese 178 ± 84 vs normal 175 ± 82 ms, p =0.51) when comparing obese 1 

and normal weight cohorts (Figure 2). Peak endocardial and epicardial radial systolic velocities and 2 

time-to-peak endocardial radial systolic velocities were also similar between obese and normal weight 3 

groups (all p>0.25, Figure 3) 4 

Longitudinal Systolic Velocity In contrast to the radial systolic velocities, peak longitudinal systolic 5 

velocity was 7% lower in the obese cohort (obese 4.4 ± 3.0 vs normal 4.7 ± 3.0 cm/s, p = 0.02, Figure 6 

2). However, time-to-peak longitudinal systolic velocity was similar between cohorts (obese 195 ± 145 7 

vs normal 204 ± 165 ms, p = 0.28). Interestingly, although epicardial velocities followed the same 8 

pattern with a 11% reduced peak longitudinal systolic velocity (p<0.001) and a similar time-to-peak 9 

longitudinal systolic velocity (p>0.30) endocardial time-to-peak longitudinal systolic velocity was 10 

delayed in obesity (by 10ms, p<0.001, Figure 3). 11 

Overall this suggests that obesity, without risk factors, does not impair radial systolic function but is 12 

associated with reduced longitudinal systolic function.    13 

Diastolic Velocity 14 

Radial Diastolic Velocity When comparing all segments, peak radial diastolic velocity was 13% lower 15 

in the obese cohort (obese 3.5 ± 1.5 vs normal 4.0 ± 1.6 cm/s, p <0.001, Figure 2)). However, time-to-16 

peak radial diastolic velocity was similar between cohorts (obese 496 ± 89 vs normal 496 ± 67 ms, p = 17 

0.90). This pattern was repeated with both endocardial and epicardial peak radial diastolic velocities 18 

(epicardial; 7% lower, endocardial; 13% lower in obesity, both p<0.001) and time-to-peak radial 19 

diastolic velocities (similar between obese and normal weight groups all p >0.28, Figure 3).  20 

Longitudinal Diastolic Velocity  In agreement with the radial diastolic velocities, transmural peak 21 

longitudinal diastolic velocity was 19% lower in the obese cohort (obese 6.1 ± 3.4 vs normal 7.5 ± 3.5 22 

cm/s, p <0.001, Figure 2). Furthermore, time-to-peak longitudinal diastolic velocity was 39ms delayed 23 



(obese 507 ± 84 vs normal 468 ± 11 ms, p < 0.001). This pattern was repeated with endocardial and 1 

epicardial analysis, both peak longitudinal diastolic velocities were reduced (both p<0.001) and time-to-2 

peak longitudinal diastolic velocities delayed (both by 38ms, p<0.001, Figure 3). 3 

As both radial and longitudinal diastolic velocities are impaired in obesity (where only longitudinal 4 

systolic function was affected by obesity) this suggests that diastolic function is more susceptible to the 5 

effects of obesity than systolic function.  6 

Rotational Velocities  7 

Basal Rotational Velocities There was no significant difference in peak basal systolic clockwise 8 

rotational velocity (twist) between the obese and normal weight cohorts (obese 2.3 ± 1.2 vs normal 2.2 ± 9 

0.8 cm/s, p =0.08). In contrast, peak diastolic counter-clockwise rotation (untwist) was significantly 10 

lower in the obese cohort (by 17%, obese 2.1 ± 1.3 vs normal 2.5 ± 1.2 cm/s, p < 0.001). In addition, 11 

time-to-peak diastolic untwisting velocity was significantly delayed in obesity (by 53%, obese 307 ± 12 

205 vs normal 200 ± 214 ms, p < 0.001). 13 

Apical Rotational Velocities In contrast to the basal rotational velocities, obesity was associated with a 14 

significantly higher peak apical systolic counter-clockwise rotational velocity (obese 2.6 ± 1.3 vs normal 15 

2.3 ± 1.4 cm/s, p =0.03). In agreement with other velocity measures, peak diastolic counter-clockwise 16 

rotation (untwist) was significantly lower in the obese cohort (obese 1.8 ± 1.0 vs normal 2.2 ± 0.9 cm/s, 17 

p =0.03). In addition, time-to-peak diastolic untwisting velocity was significantly delayed in obesity (by 18 

53%, obese 307 ± 205 vs normal 200 ± 214 ms, p < 0.001). 19 

Left Ventricular Torsion and Strain Rate 20 

When comparing the obese and normal weight cohorts, there was no significant difference in either peak 21 

systolic torsion rate (obese 18.0 ± 6.4 vs normal 16.3 ± 4.9 deg.s-1
.cm-1 p =0.10) or time-to-peak systolic 22 

radial strain rate (obese 46 ± 12 vs normal 52 ± 19 ms, p =0.07). In contrast, although peak diastolic 23 



torsion rate was similar between cohorts (obese -15.1 ± 6.4 vs normal -14.8 ± 4.9 deg.s-1
.cm-1 p =0.77), 1 

time-to-peak diastolic radial torsion was significantly delayed in obesity (obese 103 ± 45 vs normal 48 ± 2 

53 ms, p <0.001). 3 

In comparison to this, although both peak longitudinal systolic strain rate (obese -1.1 ± 0.5 vs normal -4 

1.1 ± 0.3 s-1, p =0.78) and time-to-peak longitudinal systolic strain rate (obese 58 ± 22 vs normal 50 ± 5 

21 ms, p =0.07) were similar between cohorts, peak longitudinal diastolic strain was significantly lower 6 

in obesity (obese -1.2 ± 0.5 vs normal -1.5 ± 0.6 s-1, p =0.015) and time-to-peak longitudinal diastolic 7 

strain rate significantly longer in obesity (obese 136 ± 44 vs normal 64 ± 56 ms, p <0.001).  8 

Overall this would suggest that obesity is associated with impaired diastole with longer time to peak 9 

torsion rate and both lower longitudinal diastolic strain rate and longer time-to-peak longitudinal 10 

diastolic strain rates. 11 

 12 

Discussion 13 

 14 
Subclinical changes in systolic and diastolic function have both been widely reported in obesity. 15 

However, many studies have used global echocardiography measures of function which are limited in 16 

obesity, mainly due to acoustic window constraints. This study has utilized the inherent advantages of 17 

CMR to record regional, 3 dimensional tissue velocities using tissue phase mapping imaging. We have 18 

shown that obesity, even in the absence of cardiovascular risk factors, is associated with both reduced 19 

peak longitudinal systolic velocities and reduced peak radial and longitudinal diastolic velocities. In 20 

addition we have also shown that longitudinal diastolic strain is impaired in obesity.  21 

Systolic Function in Obesity 22 

Although there is a clear relationship between obesity and heart failure on a population level, [4] the 23 

majority of smaller cohort studies report that obesity has little or no effect on global measures of systolic 24 

function such as LV ejection fraction [5]. We have showed this again in this study with left ventricular 25 



ejection fraction being similar between the obese and normal weight groups. This study has shown 1 

however that whilst global left ventricular ejection fraction remains unchanged, obesity is associated 2 

with reduced longitudinal systolic velocities, highlighting that subclinical changes in systole are present 3 

in this obese group. Identifying this is of great importance as these subtle changes in systole may 4 

precede the development of overt systolic failure and help identify those who are at risk of further 5 

deterioration in systolic function, and development of heart failure. 6 

 7 

Diastolic Function in Obesity 8 

Obesity, both with and without additional co-morbidities, has also been linked to diastolic dysfunction 9 

using a wide range of non-invasive imaging modalities. [8-10,22] Although traditionally ignored, this is 10 

becoming clinically important as there is now emerging evidence that even asymptomatic diastolic 11 

dysfunction is associated with the development of heart failure. [11,12] This study has not only shown 12 

that peak diastolic myocardial velocities are reduced in both the radial and longitudinal direction but 13 

also that peak longitudinal diastolic strain and time-to-peak longitudinal diastolic strain are impaired in 14 

obesity. This highlights again that obesity without comorbidities is linked to diastolic dysfunction but, in 15 

addition, that obesity affects both radial and longitudinal diastolic function. By studying regional, 3 16 

dimensional imaging in both the radial and longitudinal direction, a more comprehensive assessment of 17 

diastolic movement can be achieved, potentially allowing more subjects with subclinical dysfunction to 18 

be identified.  19 

 20 

Pattern of Change Compared to Other Myocardial Disease Processes 21 

2D strain imaging has shown that evaluating deformation in the longitudinal, radial, and circumferential 22 

directions is important to gain an understanding of the 3-dimensional geometry and myofibrillar 23 

architecture of the LV, and is needed to accurately document LV systolic function. [23] As a result of 24 

these studies, it has been shown that assessment of contraction of both the longitudinal and radial fibers 25 



is important in determining LV systolic function .[24] Longitudinal LV diastolic and systolic function 1 

were impaired before radial function in asymptomatic patients with cardiovascular risk factors and 2 

preserved LV pump function [25] This pattern of early change in longitudinal function has also been 3 

shown in diabetes [26]. It therefore appears that radial contractility compensates for reduced 4 

longitudinal contractility in subclinical LV dysfunction, occurring in the absence of ischaemia or LV 5 

hypertrophy, to maintain overall left ventricular ejection fraction. This pattern is again seen in this study 6 

in the setting of obesity, without overt diabetes or cardiovascular risk factors. This suggests that in this 7 

group it is an obesity specific factor that is driving these subclinical changes.  8 

 9 

Potential Mechanisms Behind Functional Changes in Obesity  10 

The mechanisms behind subclinical diastolic and systolic dysfunction in obesity are only partially 11 

understood. [27] Myocardial contraction and relaxation are both determined by a combination of active 12 

processes (including calcium homeostasis and myocardial energetics) [28] and passive processes related 13 

to the physical properties of the left ventricle (intrinsic mechanical stiffness as determined by wall 14 

thickness and chamber geometry). [29] It is likely that systolic and diastolic dysfunction in obesity is a 15 

result of both passive and active mechanisms including LV hypertrophy and impairment in myocardial 16 

energetics. [17,30-32] Using TPM, patients with left ventricular hypertrophy due to hypertensive heart 17 

disease have previously been shown to have reduced systolic and diastolic velocities in both radial and 18 

longitudinal directions, as well as reduced circumferential basal rotation. [33] It is therefore likely that 19 

the reduction in myocardial velocities seen in this study is, at least in part, due to the elevated LV mass 20 

that accompanies obesity.  In addition, the association between reduced myocardial energetics and 21 

diastolic dysfunction has been shown in multiple studies. [34,28] This is consistent with the concept that 22 

an impairment in high-energy phosphate metabolism initially affects the ability of the sarcoplasmic 23 



reticular Ca2+ ATPase (SERCA), the energetically most demanding of all enzymes involved in 1 

contractile function, [35] to lower cytosolic Ca2+ and thus impairs diastolic function. 2 

Comparison to Other CMR Sequences 3 

Although the measurement of velocities in all three spatial directions is usually performed by phase-4 

contrast tissue phase mapping (as in this study), the main disadvantage of velocity encoding is the long 5 

measurement time and sensitivity to background phase errors. In addition to TPM, there are now many 6 

newer CMR sequences that can evaluate myocardial velocities including tagging and myocardial feature 7 

tracking. The tagging technique enables measurement of displacement over time by mapping lines or a 8 

grid on to the myocardium, performed either by spatial modulation techniques or by use of a delay 9 

alternating with nutations for tailored excitation (DANTE) pulse train which is simultaneously applied 10 

with a frequency encoding gradient.[36] The main disadvantages of tagging is the need of post-11 

processing to obtain the displacement of each point and the low spatial resolution resulting from the tag 12 

spacing.[36] Although feature tracking enables the measurement of myocardial velocities from standard 13 

SSFP cine images, larger measurement variability has brought recently made its application into the 14 

clinical realm questionable. [37] Although this is the only study to date to use CMR to investigate 15 

myocardial velocities in obesity, preliminary applications to patients with wall motion abnormalities 16 

have promised considerable clinical potential for all of the CMR techniques.  17 

 18 

 19 

Conclusion 20 

Even in the absence of cardiovascular risk factors, obesity is associated with significant subclinical 21 

changes in both systolic and diastolic function.  Obesity per se is associated with reduced longitudinal 22 

systolic function without change in radial systolic function.  Obesity is also associated with multiple 23 



markers of diastolic dysfunction including; impaired radial and longitudinal diastolic velocities, longer 1 

time to peak torsion rate, lower longitudinal diastolic strain rate and longer time-to-peak longitudinal 2 

diastolic strain rates. When compared to the single observed difference in longitudinal systolic velocity, 3 

this larger number of differences in diastolic function would suggest that diastolic function is more 4 

susceptible to the effects of obesity than systolic function. As magnetic resonance derived tissue phase 5 

mapping is able to identify these changes in both the radial and longitudinal directions, irrespective of 6 

body habitus, it has major advantages over ultrasound techniques. Given the link between obesity and 7 

heart failure, early detection of changes in LV function using TPM is clinically important and may 8 

prevent disease progression.9 



Figure Legend 

Figure 1. (A) Example slice positions relative to Horizontal Long Axis view, (B) TPM phase and 

magnitude images at the base, mid-ventricular and apical level, (C) Example of epicardial and 

endocardial contours on a basal slice and (D) An example of the generated radial, circumferential and 

longitudinal velocity graphs.  

Figure 2. Transmural Systolic and Diastolic Velocities in Obesity and Normal Weight Plotted 

According to the 16 Segment AHA model. Colour scales represent myocardial velocity (cm/s). Darker 

areas denote myocardial lower velocities. 

Figure 3. The Effect of Obesity on Global Myocardial Velocities in the (A) Radial Direction and (B) 

Longitudinal Direction  
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Table 1. Basic Anthropometric and LV characteristics for the study cohort 

  Obese 

Normal 

Weight p value  

  N = 59 N = 40 

Age (yrs) 47 ± 11 45 ± 11 0.42 

Weight (kg) 105 ± 19 69 ± 13 <0.001 

Height (m) 1.7 ± 0.1 1.7 ± 0.1 0.65 

Body Mass Index (kg/m²) 36.9 ± 6.6 22.9 ± 3.9 <0.001 

Total Fat Mass (kg) 44.7 ± 15.4 17.0 ± 3.9 <0.001 

Glucose (mmol) 5.1 ± 0.7 5.3 ± 0.9 0.31 

Total Cholesterol (mmol) 5.2 ± 0.7 5.2 ± 0.9 0.44 

Systolic BP (mmHg) 124 ± 11 121 ± 10 0.10 

Diastolic BP (mmHg) 77 ± 9 76 ± 8 0.71 

Left Ventricular End Diastolic Volume (ml) 141 ± 22 136 ± 29 0.52 

Left Ventricular Stroke Volume (ml) 96 ± 14 86 ± 23 0.03 

Left Ventricular Ejection Fraction (%) 68 ± 5 68 ± 5 0.91 

Left Ventricular Mass (g) 127 ± 27 106 ± 31 0.003 

Sessions of Exercise Per Week (30mins) 1.6 ± 1.5 2.1 ± 1.1 0.42 

 

 



 

 

 

Figure 1. (A) Example slice positions relative to Horizontal Long Axis view, (B) TPM phase 

and magnitude images at the base, mid-ventricular and apical level, (C) Example of 

epicardial and endocardial contours on a basal slice and (D) An example of the generated 

radial, circumferential and longitudinal velocity graphs.  

 



 



 

 

Figure 3. The Effect of Obesity on Global Myocardial Velocities in the (A) Radial Direction 

and (B) Longitudinal Direction  

 


