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Abstract—Molecular communication is set to play an impor-
tant role in the design of complex biological and chemical systems.
An important class of molecular communication systems is based
on the timing channel, where information is encoded in the
delay of the transmitted molecule—a synchronous approach.
At present, a widely used modeling assumption is the perfect
synchronization between the transmitter and the receiver.Un-
fortunately, this assumption is unlikely to hold in most practical
molecular systems. To remedy this, we introduce a clock into
the model—leading to the molecular timing channel with syn-
chronization error. To quantify the behavior of this new system,
we derive upper and lower bounds on the variance-constrained
capacity, which we view as the step between the mean-delay and
the peak-delay constrained capacity. By numerically evaluating
our bounds, we obtain a key practical insight: the drift velocity
of the clock links does not need to be significantly larger than
the drift velocity of the information link, in order to achie ve the
variance-constrained capacity with perfect synchronization.

I. I NTRODUCTION

With the rise of synthetic biology and chemistry, new
applications are abundant: vaccines for malaria; biofuels; and
even manipulation of bacteria colony populations [1]. Despite
early successes, an improved understanding of the underlying
mechanisms of complex biological networks is required to go
further. Communication is a fundamental feature of many of
these mechanisms: biological networks rely heavily on com-
munication between different components. In contrast with
traditional cellular wireless systems, communication is often
between nano-scale devices with unreliable energy sources.
This means that information is carried by molecules with
messages encoded in concentration levels or transmission
delays.

An important class of molecular communication systems are
those based on diffusion, where molecules carrying informa-
tion propagate via the random motion induced by the collisions
with the fluid molecules. A key example is in pheromonal
communication [2]. Recently, a variety of diffusion-based
communication mechanisms have been proposed (see e.g., [3,
4]). Within these mechanisms, the molecular timing channel
has the potential to offer the highest transmission rates, assum-
ing that the channel is sufficiently reliable. This is achieved
by encoding information in the delay between the time the
molecule is transmitted and the beginning of the time slot [4,
5]. An important model for the molecule timing channel is
the additive inverse Gaussian noise (AIGN) channel, which
has been evaluated via capacity bounds with constraints on
the both the average delay [6] and the peak-delay [7].

A key assumption in molecular timing channel models is
that the transmitter and receiver agree on when the information
molecule is sent; i.e., communication is synchronous. Unfor-
tunately, this assumption does not hold in general. In contrast
with other communication networks—such as wireless cellular
networks—it is not easy to share global clock information
throughout the molecular network.

In this paper, we introduce the molecular timing channel
model with synchronization error. The basis of our new
model is a global clock that sends molecules to synchronize
the system, which is added to the standard timing channel.
Our model consists of three molecular links: the transmitter-
receiver timing channel; the clock-transmitter link; and the
clock-receiver link. The transmitter and receiver are informed
when a time slot begins based on the arrival of the clock
molecule. Importantly, the clock molecule will typically not
arrive at the same time, which leads to synchronization error.

In contrast to the standard AIGN timing channel model in
[6, 7], the timing channel with synchronization error must ac-
commodate the information molecule arriving before the start
of the receiver’s time slot. As such, standard bounds on the
capacity are not directly applicable. To overcome this problem,
we evaluate the molecular timing channel with synchronization
error in terms of the variance-constrained capacity; i.e.,the
capacity when the distribution of the delay (corresponding
to messages) has both mean and variance constraints. This
is achieved via new upper and lower variance-constrained
capacity bounds. Importantly, our approach is closely related
to the peak-delay constrained capacity, and as such can be
used to guide system design.

Numerical evaluation of our bounds suggests that the
variance-constrained capacity can be highly dependent on the
information (transmitter to receiver) link as well as the clock-
transmitter link and the clock-receiver link. Fortunately, our
numerical results also suggest that in order to achieve the
capacity upper bound with perfect synchronization, the drift
velocities of the clock links do not need to be significantly
larger than the drift velocity of the information link.

II. SYSTEM MODEL

A. Network Topology and Synchronization

Consider the molecular timing channel illustrated in Fig. 1,
consisting of a global clock, a transmitter, and a receiver.
In each time slot, the transmitter sends a single information
molecule to the receiver. The message is encoded in the time
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between the onset of the current time slot and when the
information molecule is emitted. The information molecule
then diffuses through the fluid medium, eventually arrivingat
the receiver.

Transmitter Receiver

Information molecule

Clock

Clock molecules

d

dT dR

Fig. 1. The synchronous molecular timing channel consisting of a global
clock, a transmitter, and a receiver.

Typically, molecular communication systems have severe
complexity constraints. The lack of processing capability
means that the molecular transmitter and receiver cannot
independently determine the beginning of the time slot. As
such, the beginning of a time slot is signaled by the global
clock via the emission of synchronization molecules, whichdo
not interact with the information molecule and can be detected
by the transmitter and receiver.

Our model is based on the following assumptions.

1) The physical network consisting of the transmitter, the
receiver, and the global clock is two-dimensional. We
denote the distance between the transmitter and the
receiver asd, the distance between the clock and the
transmitter asdT , and the distance between the clock
and the receiver asdR.

2) The transmitter and the receiver forms parallel lines,
which partitionR2.

3) Any information molecule or synchronization molecule
that hits the receiver boundary is permanently absorbed.

4) There is zero friction in the fluid media.
5) The synchronization molecules are emitted from the

global clock at timet = 0; i.e., the synchronization
clock is reset at the onset of a time slot.

6) The transmitter can perfectly control the release time of
each information molecule.

7) The receiver can perfectly distinguish between the in-
formation and clock molecules.

8) There is no interference from the molecules transmitted
in previous time slots.

The assumption that the receiver is partitioned by a line
implies that the time taken for the molecule to diffuse from

the transmitter to the receiver is only dependent on how fastthe
molecule travels along the line perpendicular to the receiver.
As such, the position process that determines the hitting time
is one-dimensional.

Our assumption of no interference from molecules trans-
mitted in previous time slots is practical in many molecular
channels. This is due to the fact that power constraints (aris-
ing from unreliable energy-harvesting mechanisms) can only
support sparse transmissions. A similar situation also occurs
in wireless nano-sensor networks [8].

In light of the zero friction assumption, a good model for the
position of the information and clock molecules is the Wiener
process,W (x) [6]. In particular,W (x) is the continuous-time
process with position incrementsRi = W (xi−1) − W (xi),
where 0 ≤ x1 < x2 < · · · < xk is a sequence of
time instants arranged in increasing order. Moreover,Ri ∼
N(v(xi−xi−1), σ

2(xi−xi−1)), wherev is the drift1 velocity
of the fluid medium and the varianceσ2 = D/2 is governed
by the diffusion coefficient2 D.

An important consequence of modeling the diffusion of the
synchronization molecules as random processes is that there
will be a delay between emission and reception. As such, the
transmitter and receiver will not agree on the precise starting
time of the current time slot, which introducessynchronization
error.

B. Channel Model, Encoding and Decoding

At the beginning of the time slot (from the perspective of
the global clock), clock molecule is transmitted throughout the
molecular network. We assume that the channels between the
clock and both the transmitter and the receiver are governed
by the Wiener process. As such, there will be a random
delay of ET and ER, before the clock molecule arrives at
the transmitter and receiver, respectively. In particular, ET

andER are distributed according to the inverse Gaussian (IG)
distribution3, with probability density functions (pdfs)

fET
(x) =

{ √

λT

2πx3 exp
(

−λT (x−µT )2

2µ2

T
x

)

x > 0;

0 x < 0,
(1)

and

fER
(x) =

{ √

λR

2πx3 exp
(

−λR(x−µR)2

2µ2

R
x

)

x > 0;

0 x < 0,
(2)

whereµT = dT

vC
andλT =

d2

T

σ2 are parameters of the pdf of
ET , andµR = dR

vC
andλR = dR

σ2 are parameters of the pdf of
ER.

Once the transmitter receives a clock molecule, the trans-
mitter’s time slot begins and a new message is transmitted.
Let {1, 2, . . . ,M} be the finite set of possible messages. To
encode a messagem ∈ {1, 2, . . . ,M}, the transmitter maps

1Drift is typically caused by a difference in concentration between the
transmitter and the receiver.

2D typically lies between1− 10µm2 [9].
3The inverse Gaussian distribution corresponds to the distribution of the

first hitting time of the Wiener process [6].



the message to a delayX . The time that the transmitter emits
the information molecule (according to the global clock) is
thenX + ET .

Next, the information molecule diffuses through the channel
between the transmitter and the receiver (the information
link), and travels for a random timeN , which is distributed
according to the IG distribution; similar to the clock molecule
channels. The pdf ofN is then

fN (x) =

{ √

λN

2πx3 exp
(

−λN (x−µN )2

2µ2

N
x

)

x > 0;

0 x < 0,
(3)

whereµN = d
vI

andλN = d2

σ2 .
After traversing the channel, the information molecule is

absorbed by the receiver. From the perspective of the global
clock, the absorption occurs at timeX + ET +N . However,
the receiver observes delayY = X + ET + N − ER as
the receiver’s time slot only begins at timeER (according
to the global clock). Observe thatY ∈ (−∞,∞); that is, the
information molecule can potentially arrive before the receiver
identifies that a new time slot has begun. To cope with the
situation where the information molecule arrives before the
clock molecule, the receiver decodes

Z = max{X + ET +N − ER, 0}, (4)

which ensures that the received signal lies in[0,∞).

III. VARIANCE-CONSTRAINED CAPACITY

In this section, we derive new bounds on the capacity
with mean and variance constraints of the molecular timing
channel with synchronization error. In particular, we obtain
both upper and lower bounds. Our lower bound is based on the
data processing inequality, for which we provide an intuitive
interpretation in terms of the signal processing capabilities of
the receiver.

The variance-constrained capacity is defined as

C = max
pX (x):E[X]=m, m2≤E[X2]≤a

I(X ;Z), (5)

wherepX(x) is a pdf andZ = max{X +ET +N −ER, 0}.
We note that the variance constrained capacity is in fact related
to the peak constrained capacity. To see this, observe that

E[X2]

E[X ]
≤ Xpeak, (6)

which follows from Hölder’s inequality (a generalizationof
the Cauchy-Schwarz inequality) [10]. As such, it is possible
to view the variance-constrained capacity as the step between
the mean-delay constrained capacity and the peak-delay con-
strained capacity. This is important since capacity boundswith
the peak-delay constrained input are difficult to obtain andare
more complicated than the capacity bounds with the mean or
variance constraints on the delay.

Although bounds are already well-established for the stan-
dard molecular timing channel, the synchronization error in-
troduces new difficulties. In particular, as the receiver decodes
based onZ = max{X+ET +N−ER, 0} (instead ofX+N

as in [6, 7]), the standard bounds cannot be directly applied.
We solve this problem next.

A. Capacity Upper Bound

Our first key result is a new upper bound on the variance-
constrained capacity (see (5)). The statistics ofN,ET andER

play key roles, as well as the mean and variance constraints
m anda, respectively.

Theorem 1 (Capacity upper bound). An upper bound on the
variance-constrained capacity (in nats) of the timing channel
with synchronization error is given by

CUB = log((m+ µN + µET
)) + 1−min(g(c∗), 0)

− h(N + ET )
m2

a

∫ m

0

fER
(u)

(

1−
u

m

)2

du, (7)

where

g(c∗) = min

(

h(N)1h(N)<0,−

∫ ∞

c∗
fN (u) log fN(u)du

)

(8)

, with

c∗ =

{

0, if fN (u) < 1, ∀u;
inf{u : fN (u) = 1}, else.

(9)

Proof: See Appendix A.
Although the expression in Theorem 1 is complicated, we

can easily observe that both mean and variance constraints play
an important role in the capacity upper bound. In particular,
we observe that the upper bound increases with increasing the
variance constraint. On the other hand, the mean constraint
plays a more complicated role, which is examined via numer-
ical evaluation in Section IV.

The numerical evaluation of Theorem 1 is simplified in the
case thatλN

µ2

N

= λT

µ2

T

. This is due to the additivity property of
the IG distribution in [11], which guarantees thatN + ET

is IG distributed. The entropy ofN + ET can then be easily
computed via the following lemma [7]. In general, the entropy
h(N + ET ) can be computed numerically.

Lemma 1 (Entropy of inverse Gaussian distribution). The
entropy of an inverse Gaussian distributed random variable
with parametersµ andλ is given by

hIG(µ,λ) =
1

2
log

2πµ3
U

λ
+

3

2
exp

(

2λ

µ

)

Ei

(

−
2λ

µ

)

+
1

2
,

(10)

where

Ei(−x) = −

∫ ∞

x

e−t

t
dt. (11)

Further discussion of the behavior of our upper bound is
provided in Section IV.



B. Capacity Lower Bound

We now turn our attention to the lower bound on the
variance-constrained capacity. In general, a lower bound can
be found simply by choosing a distributionpX(x) such that the
mean and the variance constraints are satisfied. Unfortunately,
accounting for synchronization error complicates concrete
calculations by introducing a multi-dimensional integral. At
present, the integral can only be evaluated numerically, even
with pX(x) chosen to be exponentially or IG distributed.
Although this numerical approach can provide important in-
sights, it is highly desirable to obtain simpler bounds to obtain
physical insights into the behavior of the system.

A key approach to obtaining tractable lower bounds on the
capacity is via the data processing inequality. In essence,the
receiver decodes a processed version of the observed delay
Z = max{X + ET +N − ER, 0}.

An important special case of the data processing approach
is when the receiver observes the random variableB satisfying

B =

{

0, if Z = 0
1, if Z > 0.

(12)

Intuitively, this scenario corresponds to a receiver that decodes
based on whether or not a molecule is absorbed within the
time slot. In molecular communication systems with low
computational capabilities or strict power constraints (due to
unreliable energy harvesting), this is a practical solution.

To derive an expression for the variance-constrained capac-
ity when the receiver decodes according toB. Observe that
X ↔ Z ↔ B forms a Markov chain. As such, the data
processing inequality can be applied to yield

I(X ;Z) ≥ I(X ;B). (13)

The lower bound on the variance-constrained capacity can then
be obtained viaI(X ;B) = h(B)− h(B|X), where

h(B) = −FY (0) logFY (0)− (1 − FY (0)) log(1− FY (0)),

h(B|X) = −

∫ ∞

0

pX(x)
[

FY |X=x(0) logFY |X=x(0)

+(1− FY |X=x(0)) log(1 − FY |X=x(0))
]

dx,
(14)

whereY = X + N + ET − ER. The behavior of the bound
is discussed in the next section.

IV. N UMERICAL RESULTS

In this section, we demonstrate the behavior of the molec-
ular timing channel with synchronization error via numerical
results. We show that the design of the clock has a significant
effect on the performance of the system.

Fig. 2 plots the variance-constrained capacity upper bound
versus the drift velocity of the information linkvI for different
velocities of the clock linksvC (where the source is the
clock), and d = dT = dR = 1 with σ2 = 1. Observe
that there are diminishing gains asvC increases. Moreover,
most of the capacity gains are made for relatively low clock-
link drift velocities compared with the drift velocity of the
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Fig. 2. Plot of variance-constrained capacity upper bound versus the drift
velocity of the information link,vI , (between the transmitter and receiver).
The three curves correspond to different drift velocities for the clock links
(where the source is the clock). The mean constraint ism = 3 and the
variance constraint isa = 18.

information link. This is important as it means that the capacity
with perfect synchronization can be achieved by relativelylow
clock link drift velocities.

Fig. 2 also shows that the capacity bound is large at near-
zero drift velocities for the information link. As such, theupper
bound is not tight at low velocities of the information link.This
is also consistent with the bounds obtained in [6, 7], suggesting
that an alternative approach is required to gain insights atlow
velocities.
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Fig. 3. Plot of variance-constrained capacity upper bound versus the average
delay constraintE[X] = m and variance constraintE[X2] ≤ 2m2, with
vC = 4.

Fig. 3 plots the variance-constrained capacity upper bound
in (7) as the average delay constraintE[X ] = m varies. We



consider symmetric network withd = dT = dR = 1, σ2 = 1,
varying drift velocity vI of the information link, and a drift
velocity vC = 4 for the clock links. Observe that significant
gains can be achieved by increasing the drift velocity of the
information link fromvI = 1 to vI = 3. This suggests that the
delay constraint needs to be carefully matched with the drift
velocity in order to ensure efficient operation of the network.
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Fig. 4. Plot of variance-constrained capacity upper bound versus the distance
between the clock and the receiverdR.

Fig 4 plots the capacity upper bound in (7) as the dis-
tance between the clock and the receiver varies. The clock-
transmitter distancedT = 0.1, the transmitter-receiver distance
d = 0.1, σ2 = 1, and a = 2m2. Observe that for the
strictest constraint (m = 0.5) the capacity decreases rapidly
as the distancedR increases, while for largerm the capacity
decreases slowly. This suggests that asymmetries in the net-
work topology need to be carefully considered for small delay
constraints.

Fig. 5 plots the capacity lower bound in (14) as the drift
velocity varies. We assume that the drift velocity is the
same for each link and that the input distributionpX(x) is
exponentially distributed with meanm. Observe that the lower
bound is maximized for the drift velocityv ≈ 5. At this
velocity, approximately1 bit (0.3 nats) is achievable, which
is the maximum possible as the encoding is binary. This
explains why the capacity lower bound is significantly less
than the capacity upper bound, which is not restricted to binary
encoding. As such, there is a high cost that comes with low
processing capabilities (potentially due to energy constraints).

V. CONCLUSION

Synchronization error is an important and previously ne-
glected aspect of the molecular timing channel. We introduced
a new model of the timing channel, which includes synchro-
nization error induced via the random delay of molecules
sent from a global clock. We then evaluated the model
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Fig. 5. Plot of variance-constrained capacity lower bound with varying drift
velocity (common for all links). We setpX(x) to be exponentially distributed
with E[X] = m, d = dR = dT = 1, andσ2 = 1.

by deriving new upper and lower bounds on the variance-
constrained capacity. We obtained important practical insights
via numerical evaluation of our bounds. In particular, our
results suggest that in order to achieve the capacity with perfect
synchronization, the drift velocity of the clock links doesnot
need to be significantly larger than the drift velocity of the
information link. We also observed that the upper bound is not
tight at low velocity, as in [6, 7]. Motivated by this observation,
we are currently developing accurate low velocity capacity
approximations.

APPENDIX A
PROOF OFTHEOREM 1

Proof: Let Z = max{X +N + ET − ER, 0} andZ ′ =
X +ET +N . Clearly,E[Z] ≤ E[Z ′]. Now denote,R andR′

as exponentially distributed random variables with meanE[Z]
andE[Z ′], respectively. Then

I(X ;Z) = h(Z)− h(Z|X)

(a)

≤ h(R)− h(Z|X)

(b)

≤ h(R′)− h(Z|X)

(c)

≤ h(R′)− h(Z|X,ER), (15)

where(a) follows from the fact that the exponential distribu-
tion maximizes entropy over all random variables with positive
support and meanE[Z] [12], and (b) follows from the fact
that E[Z ′] ≥ E[Z], the entropy of exponentially distributed
random variables increases with the mean.(c) follows since
conditioning reduces entropy.



Now observe that

h(Z|X,ER)
(d)

≥

∫ ∞

0

∫ x

0

pX(x)fER
(eR)

× h(Z|X = x,ER = eR)deRdx

+

∫ ∞

0

∫ ∞

0

∫ ∞

x

pX(x)fET
(eT )fER

(eR)

× h(Z|X = x,ER = eR, ET = eT )deRdeTdx

(16)

where(d) follows since conditioning reduces entropy.
We then have

h(Z|X,ER)
(e)

≥ h(N + ET )

∫ ∞

0

∫ x

0

fX(x)fER
(eR)deRdx

+ g(c∗)

(f)
= h(N + ET )

∫ ∞

0

fER
(x)Pr(X > x)dx

+ g(c∗), (17)

where(e) is obtained using Lemma 2 and(f) follows from
integration by parts.

Lemma 2.

V =

∫ ∞

0

∫ ∞

0

∫ ∞

x

h(Z|X = x,ER = eR, ET = eT )pX(x)

× fER
(eR)fET

(eT )deRdxdeT

≥ −

∫ ∞

c∗
fN (u) log fN(u)du, (18)

wherec∗ is given by (9).

Proof: See Appendix B
Next, we need the Paley-Zygmund inequality, which is

Pr(X ≥ θE[X ]) ≥ (1 − θ)2
(E[X ])2

E[X2]
, (19)

where0 < θ < 1 andE[X ] = m. Continuing our argument,
we have

h(Z|X,ET ) ≥ h(N + ET )

∫ m

0

fER
(x)Pr(X > x)dx + g(c∗)

(g)

≥ h(N + ET )

∫ 1

0

fER
(θm)(1 − θ)2

×
m2

E[X2]
mdθ + g(c∗)

= h(N + ET )
m2

E[X2]

∫ m

0

fER
(u)

×
(

1−
u

m

)2

du+ g(c∗), (20)

where (g) follows from the Paley-Zygmund inequality. Ob-
serve that the integral is bounded, with an upper limit of
the integral ofm. This is to ensure that the Paley-Zygmund
inequality can be applied.

Finally, using the variance constraintE[X2] ≤ a, we obtain
the bound.

APPENDIX B
PROOF OFLEMMA 2

Proof: The conditional pdf ofZ is given by

fZ|X,ER,ET
(z) =







0, if z < 0
Pr(N < −x− eT + eR), if z = 0
fN(z − x− eT + eR), if z > 0.

(21)

We then have

h(Z|X = x,ER = eR, ET = eT )

= − [Pr(N < −x− eT + eR) log Pr(N < −x− eT + eR)

+

∫ ∞

0

fN (z + eR − x− eT ) log fN(z + eR − x− eT )dz

]

.

(22)

There are two cases:c = eR−x−eT < 0, for whichh(Z|X =
x,ER = eR, ET = eT ) ≥ h(N)1h(N)<0; and c > 0. In the
latter case, we can observe that

−

∫ ∞

c

fN (u) log fN(u)du ≥ −

∫ ∞

c∗
fN (u) log fN (u)du,

(23)

where c∗ is given by (9). This follows since the inverse
Gaussian pdf has a single maximum. Putting the two cases
together yields the result.
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