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Abstract—Molecular communication is set to play an impor- A key assumption in molecular timing channel models is
tant role in the design of complex biological and chemical systems. that the transmitter and receiver agree on when the inféomat
An important class of molecular communication systems is bsed molecule is sent; i.e., communication is synchronous. ©Unfo
on the timing channel, where information is encoded in the . T, . )
delay of the transmitted molecule—a synchronous approach. tu.nately, this assumptlpn does not hold in gene_ral. In esntr
At present, a widely used modeling assumption is the perfect With other communication networks—such as wireless caillul
synchronization between the transmitter and the receiver.Un- networks—it is not easy to share global clock information
fortunately, this assumption is unlikely to hold in most practical  throughout the molecular network.
molecular systems. To remedy this, we introduce a clock into |4 this paper, we introduce the molecular timing channel
the model—leading to the molecular timing channel with syn- . ’ . .
chronization error. To quantify the behavior of this new sydem, model _W'th synchronization error. The basis of our neyv
we derive upper and lower bounds on the variance-constraie  Model is a global clock that sends molecules to synchronize
capacity, which we view as the step between the mean-delaydin the system, which is added to the standard timing channel.
the peak-delay constrained capacity. By numerically evalating Our model consists of three molecular links: the transmitte
our bounds, we obtain a key practical insight: the drift velacity  aceiver timing channel; the clock-transmitter link; arfe t

of the clock links does not need to be significantly larger tha lock . link. The t itt d . infed
the drift velocity of the information link, in order to achie ve the clock-receiver fink. € transmitter and receiver are fime

variance-constrained capacity with perfect synchronizabn. when a time slot begins based on the arriyal Of the clock
molecule. Importantly, the clock molecule will typicallyon
l. INTRODUCTION arrive at the same time, which leads to synchronizationrerro

With the rise of synthetic biology and chemistry, new In contrast to the standard AIGN timing channel model in
applications are abundant: vaccines for malaria; biofusig [6, 7], the timing channel with synchronization error must a
even manipulation of bacteria colony populations [1]. Desp commodate the information molecule arriving before thet sta
early successes, an improved understanding of the underlyof the receiver's time slot. As such, standard bounds on the
mechanisms of complex biological networks is required to gmpacity are not directly applicable. To overcome this fewh
further. Communication is a fundamental feature of many efe evaluate the molecular timing channel with synchroiorat
these mechanisms: biological networks rely heavily on corefror in terms of the variance-constrained capacity; tlee,
munication between different components. In contrast wittapacity when the distribution of the delay (corresponding
traditional cellular wireless systems, communication fie to messages) has both mean and variance constraints. This
between nano-scale devices with unreliable energy sourdssachieved via new upper and lower variance-constrained
This means that information is carried by molecules witbapacity bounds. Importantly, our approach is closelyteela
messages encoded in concentration levels or transmissiorthe peak-delay constrained capacity, and as such can be
delays. used to guide system design.

An important class of molecular communication systems areNumerical evaluation of our bounds suggests that the
those based on diffusion, where molecules carrying infermeariance-constrained capacity can be highly dependert®n t
tion propagate via the random motion induced by the collisio information (transmitter to receiver) link as well as theak-
with the fluid molecules. A key example is in pheromondtansmitter link and the clock-receiver link. Fortunatedyr
communication [2]. Recently, a variety of diffusion-basedumerical results also suggest that in order to achieve the
communication mechanisms have been proposed (see e.g.c§acity upper bound with perfect synchronization, thét dri
4]). Within these mechanisms, the molecular timing channetlocities of the clock links do not need to be significantly
has the potential to offer the highest transmission ratssjra- larger than the drift velocity of the information link.
ing that the channel is sufficiently reliable. This is acleigv
by encoding information in the delay between the time the -
molecule is transmitted and the beginning of the time slpt [4- Network Topology and Synchronization
5]. An important model for the molecule timing channel is Consider the molecular timing channel illustrated in Fig. 1
the additive inverse Gaussian noise (AIGN) channel, whidwonsisting of a global clock, a transmitter, and a receiver.
has been evaluated via capacity bounds with constraints loneach time slot, the transmitter sends a single informatio
the both the average delay [6] and the peak-delay [7]. molecule to the receiver. The message is encoded in the time

Il. SYSTEM MODEL
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between the onset of the current time slot and when thige transmitter to the receiver is only dependent on howttfest
information molecule is emitted. The information moleculenolecule travels along the line perpendicular to the reseiv
then diffuses through the fluid medium, eventually arrivatg As such, the position process that determines the hitting ti
the receiver. is one-dimensional.
. . Our assumption of no interference from molecules trans-
Transmitter Receiver mitted in previous time slots is practical in many molecular
. channels. This is due to the fact that power constraints-(ari
Information molecule . . . .
e ing from unreliable engrgy—harvest!ng mec_:han_|sms) cang onl
support sparse transmissions. A similar situation alsaiscc
[ ) in wireless nano-sensor networks [8].
Clock molecules [ ) In light of the zero friction assumption, a good model for the
[ o position of the information and clock molecules is the Wiene
[ ) o [ processW (z) [6]. In particular,W(z) is the continuous-time
process with position increments; = W(x;—1) — W(x;),
dr dr where0 < z1 < x2 < -+ < x IS a sequence of
Q time instants arranged in increasing order. Moreovgr,~
o () Clock (N N(v(z; — 1), 0%(x; —xi_1)), Wherev is the drift velocity
® o ® o of the fluid medium and the variane€ = D/2 is governed
by the diffusion coefficiertD.
d An important consequence of modeling the diffusion of the
synchronization molecules as random processes is tha ther
Fig. 1. The synchronous molecular timing channel congstih a global Will be a delay between emission and reception. As such, the
clock, a transmitter, and a receiver. transmitter and receiver will not agree on the preciseintart
time of the current time slot, which introducggnchronization

Typically, molecular communication systems have sevefd©"
complexity constraints. The lack of processing capabilify, Channel Model, Encoding and Decoding
means that the molecular transmitter and receiver canno

At the beginning of the time slot (from th tive of
independently determine the beginning of the time slot. qﬁi e beginning of the time slot (from the perspective o
b

e global clock), clock molecule is transmitted througtibe
olecular network. We assume that the channels between the
clock and both the transmitter and the receiver are governed
by the Wiener process. As such, there will be a random
delay of £ and Eg, before the clock molecule arrives at
the transmitter and receiver, respectively. In particuigs

1) The physical network consisting of the transmitter, thgng £, are distributed according to the inverse Gaussian (IG)

receiver, and the global clock is two-dimensional. Wejstriputior?, with probability density functions (pdfs)
denote the distance between the transmitter and the

such, the beginning of a time slot is signaled by the glo
clock via the emission of synchronization molecules, widoh
not interact with the information molecule and can be detéct
by the transmitter and receiver.

Our model is based on the following assumptions.

receiver asd, the distance between the clock and the Fon () = \/ 52L; exp (—%’2‘3)2) x> 0; 1)
transmitter asi;, and the distance between the clock “£7 a i r<0
and the receiver agdg.
2) The transmitter and the receiver forms parallel Iine§‘,nd
which partitionR?. Ar ( AR(w—uR)z) :
L exp | - z > 0;
3) Any information molecule or synchronization molecule f£x(%) = { 2na™ P 215 o (2)
X )

that hits the receiver boundary is permanently absorbed.

4) There is zero fnct!on in the fluid media. . where i = 92 and A — % are parameters of the pdf of
5) The synchronization molecules are emitted from thﬁ and %n and ) _%dn are parameters of the pdf of
global clock at timet = 0; i.e., the synchronization 27" ¢ " HE = e R o2 P P

[ea
clock is reset at the onset of a time slot. Er.

6) The transmitter can perfectly control the release time Of_On(,:e Fhe transmltte_zr receives a clock molecgle, the tr_ans-
each information molecule. mitter’s time slot begins and a new message is transmitted.

Let {1,2,..., M} be the finite set of possible messages. To

") ;?;;Egil\;r dcggcpkerrrjilcélglufzztlngulsh between the "Encode a message € {1,2,..., M}, the transmitter maps

8) There is no interference from the molecules transmittecipyi; is typically caused by a difference in concentratiostbeen the

in previous time slots. transmitter and the receiver.

. . . " - 2D typically lies betweenl — 10um? [9].
The assumption that the receiver is partltloned by a IIne3The inverse Gaussian distribution corresponds to theildigion of the

implies that the time taken for the molecule to diffuse frors; nitting time of the Wiener process [6].



the message to a deldy. The time that the transmitter emitsas in [6, 7]), the standard bounds cannot be directly applied
the information molecule (according to the global clock) i8Ve solve this problem next.
then X + Er. .

Next, the information molecule diffuses through the channé' Capacity Upper Bound
between the transmitter and the receiver (the informationOur first key result is a new upper bound on the variance-
link), and travels for a random tima/, which is distributed constrained capacity (see (5)). The statisticéofor and Er
according to the IG distribution; similar to the clock male Play key roles, as well as the mean and variance constraints

channels. The pdf of is then m anda, respectively.
[ Ax _An(z—pn)? ) Theorem 1 (Capacity upper bound)An upper bound on the
In(z) = { 2ma® P ( 2y ) z>0 (3) variance-constrained capacity (in nats) of the timing chain
0 z <0, with synchronization error is given by
whereyuy = - andy = &. Cup = log((m + pix + ) + 1 = min(g(c”), 0)
After traversing the channel, the information molecule is m2 [m wn 2
absorbed by the receiver. From the perspective of the global — h(N + ET)T/ fER(u) (1 — E) du, (7)
0

clock, the absorption occurs at tiné + Er + N. However,
the receiver observes deldy = X + Er + N — Er as Where

the receiver's time slot only begins at timér (according . ) &0

to the global clock). Observe that € (—oo, 00); that is, the 9(c") = min (h(N)lh(NKOv - / fn(u)log fN(“)du)
information molecule can potentially arrive before thesiger ¢ (8)
identifies that a new time slot has begun. To cope with the .

situation where the information molecule arrives before th with
clock molecule, the receiver decodes « ] 0 if fnv(u) <1, Vu;
ct =3 . )
inf{u: fy(u) =1}, else.
Z =max{X + Er + N — Eg,0}, (4)

) . ] o Proof: See Appendix A. [ ]

which ensures that the received signal lieg(ino). Although the expression in Theorem 1 is complicated, we
1. VARIANCE-CONSTRAINED CAPACITY can easily observe that both mean and variance constraayts p

. . : .an important role in the capacity upper bound. In particular
In this section, we derive new bounds on the capa(_:@e observe that the upper bound increases with increasing th

n\rc(ljlriance constraint. On the other hand, the mean constraint

channel with synchronization error. In particular, we dfta ; C . .
) &Iays a more complicated role, which is examined via numer-
both upper and lower bounds. Our lower bound is based on the T .

ical evaluation in Section IV.

idnetf: F;(re?;gsrs\”i]r? tg}?ﬁ:ilf't{r’];o; Vﬁgfhrgsezg?:'dgaaw“ The numerical evaluation of Theorem 1 is simplified in the
b gnaip g cap case thaty = 2Z. This is due to the additivity property of

the receiver. BN BT
: . Lo . the 1G distribution in [11], which guarantees that + Ep
The variance-constrained capacity is defined as is IG distributed. The entropy oV + Ep can then be easily
C= max 1(X;2), (5) computed via the following lemma [7]. In general, the enyrop
px (@):E[X]=m, m?<E[X?]<a h(N + Er) can be computed numerically.
wherepx (z) is a pdf andZ = max{X + Er + N — Eg, 0}.
We note that the variance constrained capacity is in faatedl
to the peak constrained capacity. To see this, observe that

E[X?]
el U ‘N 6 1. 2mud 3 2A\ ../ 22\ 1
E[X] — “reek (©) hic = 5108 TRU | 2 exp <_M>EZ (——)4-57

Lemma 1 (Entropy of inverse Gaussian distributionjhe
entropy of an inverse Gaussian distributed random variable
with parameters: and X is given by

A 2 1
which follows from Holder’s inequality (a generalizatiari

the Cauchy-Schwarz inequality) [10]. As such, it is possibl
to view the variance-constrained capacity as the step etwe’ here
the mean-delay constrained capacity and the peak-delay con Bi(—z) = — /OO e—_tdt. (11)
strained capacity. This is important since capacity bouwvitts z t
the peak-delay constrained input are difficult to obtainar&l  Fyrther discussion of the behavior of our upper bound is
more complicated than the capacity bounds with the mean g4yided in Section IV.
variance constraints on the delay.
Although bounds are already well-established for the stan-
dard molecular timing channel, the synchronization ermor i
troduces new difficulties. In particular, as the receiveraties
based orZ = max{X + Er+ N — Eg, 0} (instead ofX + N



B. Capacity Lower Bound

We now turn our attention to the lower bound on th
variance-constrained capacity. In general, a lower boward ¢
be found simply by choosing a distributigr (=) such that the
mean and the variance constraints are satisfied. Unfodlynat
accounting for synchronization error complicates corecre
calculations by introducing a multi-dimensional integrat
present, the integral can only be evaluated numericallgnev
with px(xz) chosen to be exponentially or IG distributed
Although this numerical approach can provide important ir
sights, it is highly desirable to obtain simpler bounds ttaob
physical insights into the behavior of the system.

A key approach to obtaining tractable lower bounds on tt
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capacity is via the data processing inequality. In essethee,
receiver decodes a processed version of the observed d¢ a5 5 7 5 s 0
Z =max{X + Er + N — Eg,0}. Drift Velocity of Information Link

An important special case of the data processing approach

is when the receiver observes the random varidb#matisfying Fig. 2.  Plot of variance-constrained capacity upper bousigus the drift
. velocity of the information link,v;, (between the transmitter and receiver).

B = 0, if Z=0 (12) The three curves correspond to different drift velocities the clock links

1, if Z>0. (where the source is the clock). The mean constraininis= 3 and the

. ] . ) variance constraint ia = 18.
Intuitively, this scenario corresponds to a receiver treiodies
based on whether or not a molecule is absorbed within the

time slot. In molecular communication systems with low . o . _
computational capabilities or strict power constraintsg(do information link. This is important as it means that the aaya

unreliable energy harvesting), this is a practical sofutio with perfect synchronization can be achieved by relatively

To derive an expression for the variance-constrained ea glé)Ck link drift velocities.
b P Fig. 2 also shows that the capacity bound is large at near-

ity when the receiver decodes according2o Observe that . " . e
X zero drift velocities for the information link. As such, thpper
X < Z < B forms a Markov chain. As such, the dateb ; : . . M
rocessing inequality can be applied to yield ! ound is not_ tight at_low velocities of the_z mfo_rmatlon I|nT<_h|s
P is also consistent with the bounds obtained in [6, 7], sutijugs
I(X;Z) > I(X;B). (13) that an alternative approach is required to gain insightsvat

The lower bound on the variance-constrained capacity cam tﬁ/elocmes.
be obtained vid (X; B) = h(B) — h(B|X), where

h(B) = —Fy(0) log Fy(0) — (1 — Fy(0)) log(1 — Fy(0)),
h(BIX) = - /0 px (2) [Fy 1x -2 (0) Iog Fy |x o (0)

+(1 = Fy|x=2(0)) log(1 — FY|X:z(O))] dx,
(14)

whereY = X + N + Er — Eg. The behavior of the bound
is discussed in the next section.
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IV. NUMERICAL RESULTS

Capacity Upper Bound (nats)

T

In this section, we demonstrate the behavior of the molec-
ular timing channel with synchronization error via numatic
results. We show that the design of the clock has a significant o, s 10 s
effect on the performance of the system. Average Delay Constraint E[X] = m

Fig. 2 plots the variance-constrained capacity upper bound
versus the drift velocity of the information link; for different Fig. 3. Plot of variance-constrained capacity upper bowgrdus the average

S . . delay constrainfE[X] = m and variance constraifE[X?2] < 2m?2, with
velocities of the clock linksuc (where the source is the, "~ ,
clock), andd = dr = dr = 1 with 02 = 1. Observe
that there are diminishing gains ag increases. Moreover,
most of the capacity gains are made for relatively low clock- Fig. 3 plots the variance-constrained capacity upper bound
link drift velocities compared with the drift velocity of ¢h in (7) as the average delay constraii[tX] = m varies. We




0.26

consider symmetric network with = dy = dgr = 1, 0% =1,
varying drift velocity v; of the information link, and a drift 0.24f
velocity v = 4 for the clock links. Observe that significant 0.02)
gains can be achieved by increasing the drift velocity of the
information link fromv; = 1 to v; = 3. This suggests that the

delay constraint needs to be carefully matched with the drif
velocity in order to ensure efficient operation of the networ

0.2

0.12f

Capacity Lower Bound (nats)
o
>

0.1

\ Drift Velocity

Fig. 5. Plot of variance-constrained capacity lower bouriith warying drift
3F 1 velocity (common for all links). We seix (x) to be exponentially distributed
with E[X] =m, d =dr =dr =1, ando? = 1.

N

Capacity Upper Bound (nats)

—m=5
—m=2 - .
'l —m=z05 1 by deriving new upper and lower bounds on the variance-
constrained capacity. We obtained important practicagirs
% > " p 5 o Via numerical evaluation of our bounds. In particular, our
Clock-Receiver Distance d, results suggest that in order to achieve the capacity wittepie

synchronization, the drift velocity of the clock links doest
Fig. 4. Plot of variance-constrained capacity upper bowrdus the distance need to be significantly larger than the drift velocity of the
between the clock and the receivés. information link. We also observed that the upper bound ts no
tight at low velocity, as in [6, 7]. Motivated by this obsetiee,

Fig 4 plots the capacity upper bound in (7) as the digve are currently developing accurate low velocity capacity
tance between the clock and the receiver varies. The clogpproximations.
transmitter distancér = 0.1, the transmitter-receiver distance
d = 0.1, 0> = 1, anda = 2m?. Observe that for the
strictest constraintrg = 0.5) the capacity decreases rapidly
as the distancdy, increases, while for largen. the capacity Proof: Let Z = max{X + N + Er — Eg,0} and 2’ =
decreases slowly. This suggests that asymmetries in the rétt £ + V. Clearly, E[Z] < E[Z’]. Now denote,z and R’
work topology need to be carefully considered for small geldS exponentially distributed random variables with mEa)|

APPENDIXA
PROOF OFTHEOREM 1

constraints. andE[Z’], respectively. Then
F|g_. 5 plo_ts the capacity lower bound in (14) as th_e drift I(X;Z) = h(Z) — W(Z|X)
velocity varies. We assume that the drift velocity is the (@)
same for each link and that the input distributipg (x) is < h(R) — h(Z|X)
exponentially distributed with mean. Observe that the lower ®)
bound is maximized for the drift velocity ~ 5. At this < h(R) - h(Z]|X)
velocity, approximatelyl bit (0.3 nats) is achievable, which )
is the maximum possible as the encoding is binary. This < WMR') - h(Z|X, ER), (15)

e;(plalrr]ls why the capa%lty '%Werhb‘;]“_”d IS S|gn_|f|czéntly leSFhere (a) follows from the fact that the exponential distribu-
than the capacity upper bound, which is not restricted tamin 4o, 1aximizes entropy over all random variables with fosit

encoding. As such_, .there is a_high cost that comes_with I%pport and meatt[Z] [12], and (b) follows from the fact
processing capabilities (potentially due to energy casts). that E[Z'] > E[Z], the entropy of exponentially distributed

V. CONCLUSION random variables increases with the meé). follows since

Synchronization error is an important and previously ng_ondmonlng reduces entropy.
glected aspect of the molecular timing channel. We intreduc
a new model of the timing channel, which includes synchro-
nization error induced via the random delay of molecules
sent from a global clock. We then evaluated the model



Now observe that
hZ|X, Er) / / px (%) fEr(er)
X h(Z|X = x,FEr = er)derdzx

///pX ) fer(er)fEs(eR)

X h Z|X =, ER = eR,ET = eT)deRder:c
(16)

where(d) follows since conditioning reduces entropy.
We then have

© o ro
W(Z|X,Er) > h(N + Er) / / fx (@) fin (er)dends
+g(c")
D (N + Br) / Fen(@)Pr(X > z)dx
0

+g(c"),

where (¢) is obtained using Lemma 2 ar(d) follows from
integration by parts.

(17)

Lemma 2.

/ / / WMZ|X =x,Er = er, Er = er)px ()

X fER eR)fET (eT)deRdCCdeT

— [ it os s, (18)
wherec* is given by (9).
Proof: See Appendix B [ ]

Next, we need the Paley-Zygmund inequality, which is
(E[X])?

Pr(X > 0E[X]) > Wv

(1-0)* (19)

where0 < 6 < 1 andE[X] = m. Continuing our argument,

we have

MZ|X,Er) > h(N + Er) /Om fen(@)Pr(X > x)dx + g(c*)

g 1
(z) h(N + Er) /0 fER(0m)(1 - 60)*

m2

e
m2 m
= h(N + Er) gl / fa ()

X (1 — %)2 du + g(c*),

———=mdf + g(c*)

(20)

where (g) follows from the Paley-Zygmund inequality. Ob-
serve that the integral is bounded, with an upper limit d#2]
the integral ofm. This is to ensure that the Paley-Zygmund

inequality can be applied.
Finally, using the variance constraifi{X?] < a, we obtain
the bound. [ |

APPENDIXB
PROOF OFLEMMA 2

Proof: The conditional pdf ofZ is given by

f21x,Bn,Br(2) = ¢ Pr(N < -z —er+egr), if2=0
fn(z—x —er+er), if 2> 0.
(21)

We then have

h(Z|X =z, ER = er, Er = er)
—[Pr(N < —z —er +er)logPr(N < —z —er + egr)

—|—/OO In(z+er—x—ep)log fn(z+er —x—eT)dz]
0 22

There are two cases:= eg—x—er < 0, forwhichh(Z|X =
z,Fr = eg, Er = eT) > h(N)]-h(N)<O; andc > 0. In the
latter case, we can observe that

~ [ s ntdu =~ [ petatog i
c C (23)

where ¢* is given by (9). This follows since the inverse
Gaussian pdf has a single maximum. Putting the two cases
together yields the result. [ ]
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