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Abstract: A wave glider comprises a surface boat, which harvests energy from wave and solar 

power, a submerged glider containing six pairs of tandem hydrofoils and a tether connecting them 

in between. This paper presents a numerical simulation to predict the wave glider dynamic 

performance in head seas with the aid of computational fluid dynamic (CFD) method. The 

simulation involves two commercial CFD software packages, FINE/Marine and STAR-CCM+.  

Firstly, unsteady Reynolds Averaged Navier-Stokes (URANS) simulation was built in FINE/Marine 

with volume of fluid (VOF) model to simulate the flow around the surface boat and the tandem 

hydrofoils as a system, followed by the high-fidelity simulation of the passive eccentric rotation of 

the underwater tandem hydrofoils in STAR-CCM+ using overset mesh. By taking the advantages of 

both softwares, manual iteration was conducted to achieve a converged result. Consequently, by 

analyzing these results, the surge force acting on the surface boat and the passive eccentric 

rotation law of the hydrofoils have been achieved which are proved to be the main factors 

affecting the propulsion efficiency of the wave glider. 

Keywords: wave glider, passive eccentric rotation, surge force  
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Nomenclature 

    𝜉       is the displacement of the wave glider in the x direction. 

    𝛾       is the displacement of the wave glider in the y direction. 

    𝜁       is the displacement of the wave glider in the y direction. 

    𝜓       is the yaw angle of the wave glider. 

    𝜃       is the pitch angle of the wave glider. 

𝜙       is the roll angle of the wave glider. 

    𝜉𝑏       is the displacement of the surface boat in the x direction. 

    𝛾𝑏       is the displacement of the surface boat in the y direction. 

    𝜁𝑏       is the displacement of the surface boat in the y direction. 

    𝜓𝑏       is the yaw angle of the surface boat. 

    𝜃𝑏       is the pitch angle of the surface boat. 

𝜙𝑏       is the roll angle of the surface boat. 

    𝜉𝑔       is the displacement of the glider in the x direction. 

    𝛾𝑔       is the displacement of the glider in the y direction. 

    𝜁𝑔       is the displacement of the glider in the y direction. 

    𝜓𝑔       is the yaw angle of the glider. 

    𝜃𝑔       is the pitch angle of the glider. 

    𝜙𝑔       is the roll angle of the glider. 

    𝐻       is the wave height. 

    𝑇        is the wave period. 

   fS        is the waterplane area of the surface boat. 

   W GiP       is the wave energy absorption power of the wave glider. 

   
W GmP      is the mechanical conversion power of the wave glider. 

   )(tXWG     is the time-varying forces of the surface boat in the x direction. 

   )(tZWG
    is the time-varying forces of the surface boat in the z direction. 

   
W GF       is the time-averaged value of )(tXWG . 
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   W GPiC      is the wave energy absorption power coefficient. 

   W GPmC     is the mechanical conversion power coefficient of the wave glider. 

   
WGTC      is the thrust coefficient of the wave glider. 

   W G       is the propulsive efficiency of the wave glider. 

   TLF       is the force of the tether. 

   
TK       is the stiffness of the tether. 

   SL      is the variation of the tether length. 

   
initialT     is the initial tension of the tether. 

   hyI       is the inertia moment of hydrofoil. 

   )(tQ      is the resultant torque on the hydrofoil leading edge. 

   ST       is the linear spring force. 

   k        is the linear spring stiffness. 

   Sr        is the spring compression. 

  hymP       is the wave energy absorption power of the hydrofoil. 

 )(tX hy      is the time-varying forces of the hydrofoil in the x direction. 

 )(tZhy
     is the time-varying forces of the hydrofoil in the z direction. 

  hyF       is the time-averaged value of )(tX hy . 

  
hyPmC     is the mechanical conversion power coefficient of the hydrofoil. 

  
hyTC      is the thrust coefficient of the hydrofoil. 

  hy       is the propulsive efficiency of the hydrofoil. 
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1. Introduction 

Design and development of devices for oceanic research and atmospheric monitoring have drawn great 

attentions nowadays, especially for those meeting the requirement of lower-cost replacement and real-time 

communication worldwide. The first wave glider, developed by Liquid Robotics Corporation (Smith et al. 

(2011)), relies on the wave motion to propel the system to conduct surface as well as underwater missions. 

Therefore, it is crucial to understand the system’s motion dynamics in the waves so that to achieve a better 

performance in the real seas. 

The methodologies to predict the motion dynamics of the wave glider in the real seas can be either based 

on model-scale lab tests or numerical simulations. Model-scale lab tests are deemed to be the most 

effective way as well as the most expensive way due to the demand of highly specialized hydrodynamic 

testing facilities. With the benefit of conducting systematic investigations at a minimum cost, the later has 

often been the preferable option (Elhadad et al. (2014), Tian et al. (2014), Jia et al. (2014), Tian et al. (2015), 

Liu et al. (2016)). With the enhancement of the modern computational technology, numerical simulation 

using the unsteady Reynolds Averaged Navier-Stokes (URANS) is acknowledged to be an ideal solution to 

investigate the performance of the wave glider (Jia et al. (2014), Liu et al. (2016). Before this current study, 

the steady state CFD simulation based on RANS has been successfully applied to assess the velocity based 

thrust and drag coefficients of the wave glider. Jia et al. (2014) have made a comparison of the 

hydrodynamic results of NACA series’ airfoil with plate wing under different flow velocities and various 

spacing by using CFD software ANSYS-Fluent. Elhadad et al. (2014) employed the Wigley model as the 

surface boat of Wave Glider and calculated the resistance characteristics at a range of Froude numbers, 0.1-

0.4. Zheng et al. (2015) compared different factors influencing the drag force converted by the usage of 

NACA63-412 asymmetric airfoil and optimized them by making a comparison of the simulation results with 

the calculation results. However, the previous numerical simulation is often based on the steady simulation 

without considering the unsteady phenomenon nor the passive rotation of the wings; the multi-body 

dynamics of the wings was estimated via semi-empirical or empirical formulas. Ngo et al. (2013) applied the 

linear regression and Gauss regression model to discuss the environmental parameters that influence the 

movement of the wave glider and to predict the forward speed of the wave glider by inputting the wave 

parameters such as wave height, wave period, wind speed and current. Kraus (2012) established the six-

degree-of-freedom nonlinear dynamic equation to determine the key hydrodynamic parameters according 
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to the Newton’s law of momentum theorem and momentum moment theorem with the consideration of 

the influence of wind, flow and added mass. Baoqiang et al. (2014) concentrated on the movement 

efficiency of the wave glider. The model of movement efficiency was established from the perspective of 

energy conversion, and then this formula was further confirmed through direct comparison of the 

numerical results based on linear wave theory with experimental results. Furthermore, Tian et al. (2015) 

applied the D-H approach and the Lagrange mechanics to the simulation of the dynamic motion of the wave 

glider. From these simulations mentioned above, only the thrust and drag coefficients of the wave glider can 

be determined. In addition, there is lack of numerical simulation of the passive hydrodynamic rotation of 

the hydrofoils, which is essential to simulate the coupled motion of the surface boat and the glider. 

The aim of the present study is to explore the feasibility of developing a high fidelity numerical simulation 

method to fully evaluate the motion characteristics of the wave glider in the waves. The simulations of only 

surface boat, the wave glider in head seas and the passive eccentric rotation of the hydrofoils are conducted 

using the URANS solver, all of which act to investigate the parameters that affect the motion of the wave 

glider.  
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2. Description of the wave glider 

The wave glider model used in this paper was developed by China National Marine Technology Center, 

originally manufactured by Liquid Robotics Corporation. As shown in Fig.1, there are three major 

components consisted in the wave glider: a surface boat housing sensors, a submerged glider containing six 

hinged flat hydrofoils which are arranged in tandem on both sides and a tether that connects the surface 

boat and the glider. The wave glider is symmetrical to its transversal midsection and the surface boat is also 

symmetrical to the longitudinal section in the center plane. A spring is introduced and mounted beneath 

each hydrofoil and the diagram is shown in Fig.2. The distance between adjacent row of tandem hydrofoils 

is 90mm. The chord of the hydrofoil is 160mm and the rotational axis of the hydrofoil is placed 50mm after 

the leading edge. The spring is wrapped in a sleeve and the neutral length is 120mm. One end of the spring 

sleeve is installed at a distance of 40mm from the rotation axis; the other end is installed 17mm below the 

baseline of the hydrofoil to form an angle between the baseline of the hydrofoil and the spring, 7.9 degrees. 

Therefore, when the hydrofoil rotates, the spring will slow down and limit the rotation of the hydrofoil to 

provide suitable angle of attack to produce the thrust. The oscillation angle of each hydrofoil is limited to -

45o to 60o. The general parameters for a full-scale sized wave glider is shown in Table 1. 

As shown in Fig.3, when the surface boat rides over a wave, it pulls the glider up through the tether, which 

induces an angle of attack for the hydrofoils to generate a thrust to propel the system forward. Similarly, as 

the glider descends, the hydrofoils flap and produce another thrust force to propel the system. When the 

wave glider speed through water is lower than the surface boat, the hydrofoil remains horizontally neutral, 

no longer providing any thrust. 

The six degree of freedom motion of the wave glider is normally described using three coordinate systems. 

The first coordinate system is an inertial reference frame fixed with respect to mean position of the surface 

boat which is defined for the hydrodynamic problem, X=(x, y, z), with z in the vertical direction, x along the 

longitudinal direction of the surface boat and pointing to the bow, and y perpendicular to the x and pointing 

to in the port direction. The origin is in the plane of the undisturbed free surface. The other coordinate 

systems, body-fixed coordinate system, are the surface boat and the glider coordinate systems. The body-

fixed coordinate systems are parallel to the inertial coordinate system. The origins are in the longitudinal 

profile on their center of gravity, 1.363m from the origin of inertial reference frame and 0.017m above the 
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waterplane for the surface boat while 1.361m from the origin of the inertial reference frame and 3.444m 

below the waterplane for the glider. In the body-fixed coordinate system, the position of the wave glider’s 

coordinate system is then express in ξ, γ, ζ coordinates. The rotation of the body-fixed coordinate system is 

described by Euler angles ψ (yaw), θ (pitch) and ϕ (roll) in Fig.4. 

Considering the surface boat advancing in waves and oscillating as an unrestrained rigid body, the 

oscillatory motions consist of three translations and three rotations. Although theory is valid for arbitrary 

headings, the present work is restricted to only head seas. Hence the oscillatory motions to be studied are 

surge and heave motions. It is assumed that the pitch amplitude is small enough to be neglected. The rigid 

body motions are solved with respect to the inertial coordinate system that moves with the surface boat 

and the glider, respectively. 

In order to make a comparison between the numerical simulation and the tank test, the hydrodynamic tank 

tests were performed in China National Marine Technology Center in their towing tank facility, 

length×width×depth = 130m×7m×5m. As shown in Fig.5, the free sailing test was conducted to test the 

sailing velocity of the wave glider in head waves. With 0.17m high and 2s long wave, the wave glider 

advanced 19m in 76s resulted in an average speed 0.25m/s.   
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3. Methodology of numerical simulation 

3.1 Simulation process 

The numerical simulation for the wave glider is mainly based on the CFD software FINE/Marine, in which 

the simulation of the surface boat in head waves coupling with the motion of the glider has been 

conducted. In addition, FINE/Marine has a hybrid meshing tool and can capture large displacement 

changes in free surface with economic computational resources. However, due to the lack of capability to 

perform the simulation for the passive eccentric rotation of the hydrofoils via FINE/Marine, STAR-CCM+ is 

introduced to conduct this type of simulation. Therefore, in this paper, FINE/Marine is used to simulate the 

system response of the wave glider; and then FINE/Marine outputs its motion response to STAR-CCM+ as an 

input for the computation of the passive eccentric rotation of the hydrofoils; STAR-CCM+ exports the 

rotational motion of the hydrofoils back to FINE/Marine to simulate the system motions to perform this 

manual iteration until the difference in the motion response of the wave glider is less than 10-3, as shown in 

Fig.6. 

3.2 Governing equations 

The flow around the wave glider is modeled under isothermal conditions using the incompressible, mass 

and momentum equations: 

∂

∂t
∫ 𝜌𝑑𝑉

𝑉
+ ∫ 𝜌(𝑈 − 𝑈𝑑) ∙ 𝑛 𝑑𝑆 = 0

𝑆
                      (1) 

∂

∂t
∫ 𝜌𝑈𝑖𝑑𝑉

𝑉
+ ∫ 𝜌𝑈𝑖(𝑈 − 𝑈𝑑) ∙ 𝑛 𝑑𝑆 = ∫ (𝜏𝑖𝑗𝐼𝑗 − 𝑝𝐼𝑖) ∙ 𝑛 𝑑𝑆 + ∫ 𝜌𝑔𝑖𝑑𝑉

𝑉𝑆𝑆
      (2) 

Where t is the time; 𝜌 is the fluid density, 𝑉 is the domain of interest, 𝑈𝑖  is the time averaged velocity 

components in Cartesian coordinates (i = 1,2,3), 𝑆 is the closed surface, 𝑈𝑑 is the velocity with a unit 

normal vector n directed outward. 𝑈 and 𝑝 represent, respectively, the velocity and pressure fields. 𝜏𝑖𝑗  

and 𝑔𝑖 are the components of the viscous stress tensor and the gravity vector, where 𝐼𝑗 is a vector which 

is equal to unity. 𝑐𝑖 is the volume fraction. 

The finite volume method is employed to discretize the governing equations with the AVLSMART scheme 

Qiong et al. (2014). The realizable k − ω (SST-Wilcox) model is chosen. The two transport model equations 
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for the turbulent kinetic energy, 𝐾 and the specific dissipation rate of turbulence frequency,𝜔, as: 

∂ρK ∂t⁄ + 𝜕(𝜌𝑈𝑗𝐾 − (𝜇 + 𝜎∗𝜇𝑡) ∂K ∂𝑥𝑗⁄ ) 𝜕𝑥𝑗⁄ = 𝜏𝑡𝑖𝑗
𝑆𝑖𝑗 − 𝛽∗𝜌𝜔𝐾              (3) 

∂ρω ∂t⁄ + 𝜕(𝜌𝑈𝑗𝜔 − (𝜇 + 𝜎∗𝜇𝑡) ∂𝜔 ∂𝑥𝑗⁄ ) 𝜕𝑥𝑗⁄ = 𝛼 𝜔 𝐾⁄ 𝜏𝑡𝑖𝑗
𝑆𝑖𝑗 − 𝛽𝜌𝜔2            (4) 

Here 𝜇 is the viscous coefficient. 𝛼, 𝛽, 𝛽∗, 𝜎, 𝜎∗ are the turbulence model constants.  

3.3 Parameter definition 

The power of the wave glider is divided into the wave power absorption and mechanical conversion power 

(Liu et al. (2016), defined as： 

P𝑊𝐺𝑖 = 𝜌𝑔𝐻2𝑆𝑓 8T⁄                                    (5) 

    P𝑊𝐺𝑚 = (∫ 𝑍𝑊𝐺(𝑡)
𝑇

0
𝑑ζ(𝑡) 𝑑𝑡⁄ 𝑑𝑡)/𝑇                           (6) 

𝐹𝑊𝐺 = ∫ 𝑋𝑊𝐺(𝑡)
𝑇

0
𝑑𝑡/𝑇                               (7) 

Here 𝑃𝑊𝐺𝑖 and 𝑃𝑊𝐺𝑚 is the wave energy absorption power and the mechanical conversion power. H is 

the wave height. 𝑇 is the wave period. 𝑆𝑓 is waterplane area of the surface boat. 𝑋𝑊𝐺(𝑡), 𝑍𝑊𝐺(𝑡) is the 

surface boat time-varying forces in the horizontal and vertical directions, respectively. ζ(𝑡) represents the 

heave motion. 𝐹𝑊𝐺 is the time-averaged value of 𝑋𝑊𝐺(𝑡). 

The wave absorption power coefficient ( 𝐶𝑊𝐺𝑃𝑖), the mechanical conversion power coefficient ( 𝐶𝑊𝐺𝑃𝑚) of 

the wave glider and the thrust coefficient (𝐶𝑊𝐺𝑇) of the wave glider have been defined as 

35.0/  
fhyWGiWGPi SCPC                                 (8) 

35.0/  
fhyWGmWGPm SCPC                                 (9) 

 
25.0/  

fhyWGWGT SCFC                                (10) 

Where hyC and 𝑆ℎ𝑦 are the chord and span of the hydrofoil, respectively. The propulsive efficiency of the 
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wave glider, W G , is defined to the ratio of useful power over input power, as 

WGPmWGTWGmWGWG CCPF //                          (11) 

The tether that connects the surface boat and the glider is seen as a spring, the force of the tether 𝐹𝑇𝐿 

defined as: 

initialSTTL TLKF                               (12) 

Where 𝐾𝑇 stands for the stiffness, ∆𝐿𝑆 is the variation of the length ( 0 SL )and initialT
 

is the initial 

tension of the tether.  

Passive induced pitching motion of the hydrofoil is governed by a linear spring acting beneath each 

hydrofoil according Hooke’s law (see Fig.2): 

)())(sin(/)( 22 tQdtTdttdI SShy                         (13) 

Where hyI is the inertia moment of hydrofoil,  β and 𝑑𝑆 is constant at 7.9o and 0.04m, 𝑄(𝑡) is the 

resultant torque on the hydrofoil leading edge. 𝑇𝑆 is the linear spring force, as defined: 

𝑇𝑆 = 𝑘𝑟𝑆                                     (14) 

Where k is the linear spring stiffness, 𝑟𝑆 is spring compression. 

Pℎ𝑦𝑚 =
1

𝑇
(∫ 𝑍ℎ𝑦(𝑡)

𝑇

0
𝑑ζ(𝑡) 𝑑𝑡⁄ 𝑑𝑡 + ∫ 𝑄(𝑡) 𝑑𝜃(𝑡) 𝑑𝑡⁄

𝑇

0
𝑑𝑡)               (15) 

𝐹ℎ𝑦 = ∫ 𝑋ℎ𝑦(𝑡)
𝑇

0
𝑑𝑡/𝑇                            (16) 

Where Pℎ𝑦𝑚 is the hydrofoil mechanical conversion power, 𝑋ℎ𝑦(𝑡), 𝑍ℎ𝑦(𝑡) is the hydrofoil time-varying 

forces in the horizontal and vertical directions, respectively. )(t represents the angular (pitch) response of 

the hydrofoil. hyF is the average value of 𝑋ℎ𝑦(𝑡). 

The mechanical conversion power coefficient ( 𝐶ℎ𝑦𝑃𝑚) and the thrust coefficient (𝐶ℎ𝑦𝑇) of the hydrofoil 
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have been also defined as: 

35.0/  
fhyhymhyPm SCPC                                 (17) 

25.0/  
fhyhyhyT SCFC                                  (18) 

Similarly, the propulsive efficiency of the hydrofoil hy , is defined based on the ratio of the thrust power 

over the mechanical power, as   

hyPmhyThymhyhy CCPF //                                  (19) 

3.4 Setup in FINE/Marine 

 Boundary condition 

The inlet boundary is positioned 25 m upstream, with a pressure-outlet defined at 25m downstream. The 

hydrostatic pressure boundary is applied to both the top and the bottom boundary conditions. The water 

depth is 25 m and the distance between the top surface and the free surface is 15 m. The symmetry plane is 

applied to the transversal mid plane. And the far field boundary condition is defined to side plane 15 m 

away from the symmetry plane. Fig.7 shows the domain size and boundary conditions of the numerical 

simulations. A time-step size of 0.01s is applied. The tether in FINE/Marine is modelled numerically as a 

linear spring but only with tension force and no compression force will be provided when the tether gets 

slack. The tether stiffness is constant, 50kN/m. 

 Mesh generation 

The grid generation of the wave glider is conducted by use of the meshing software HEXPRESS within  

FINE/Marine. The meshing software HEXPRESS with the unstructured cut-cell mesh is used to generate the 

wave glider grid with additional refinement added adjacent to the free surface. The free surface is refined 

using BRICS discretization scheme which could reduce the numerical diffusion of functions adjacent to the 

free surface. Sliding mesh is applied to the hydrofoil rotation. Fig.8 shows the surface grid of the half surface 

boat (a) and the half glider (b), respectively. The first mesh layer thickness is set to 0.0001m. The resulting 

fluid mesh of the wave glider consist of approximately 7 × 106cells and 7.46 × 106 vertices. 
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3.5 Setup in STAR-CCM+ 

 Boundary condition  

On the other hand, the simulation of the passive eccentric rotation of the hydrofoil was conducted with the 

boundary conditions defined in Fig.9. Uniform static pressure is applied to the outlet condition at 2m 

downstream. The time-varying velocity vector is applied to inlet, top and bottom condition. No-slip 

boundary conditions are applied to the six tandem hydrofoils. The one-DOF rotating motion option within 

the Dynamic Fluid Body Interaction (DFBI) module is employed to simulate the eccentric passive rotation of 

the hydrofoils in response to the incoming flow. In addition, a linear spring (non-torsional) coupling system 

as shown in Fig.2 is introduced between the hydrofoil and the glider. The linear spring is operated in STAR-

CCM+ in external forces and moments and the spring constant is 2900N/m. 

 Mesh generation 

The automatic meshing tool is used to generate mesh for six tandem hydrofoils simulation. As shown in 

Fig.10, overset mesh, around the hydrofoil, is applied to simulate the passive eccentric rotation. The first 

mesh layer thickness is set to 0.0001m resulting in 𝑦+ < 1. The total mesh number of six tandem hydrofoils 

approximately 3.93× 106 cells and 4.28 × 106 vertices.  
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4. Validation of numerical method 

To build the confidence in the employed simulation methodology, two validation studies have been 

conducted against some published results. The first validation case is the steady simulation of the airfoil. A 

NACA 0012 airfoil has been studied to verify the simulation software packages used in this paper, 

FINE/Marine and STAR-CCM+, respectively. The experimental and numerical data of the two-dimensional 

foils have been compared, respectively.  

The numerical simulation of the NACA 0012 airfoil has been done in the same conditions of Yousefi and 

Saleh (2015) simulation where the uniform inflow velocity in air is set to be 7.3 m/s and the chord length (c) 

is 1m, which makes Reynolds number 5 × 105. To check the grid independence of the results, three grids In 

FINE/Marine and STAR-CCM+ with an increased number of cells namely Grid 1, Grid 2 and Grid 3 are used; 

the results of angle of attack of 10o and 16o are listed in Table 2. According to Table 2(a), the differences 

between Grid 1 and 2 and between Grid 2 and 3 were less than 1%. Regarding the validation in STAR-CCM+, 

Table 2(b) also list three grids with an increased quantity of cells namely Grid 1, Grid 2 and Grid 3. There is 

rarely any change in results for increasing total number of cells from 81,885 to 145,308. To maintain grid-

resolution consistency for different cases and also to balance the accuracy and the computational cost, the 

moderate grid of Grid 2 in FINE/Marine and STAR-CCM+ is adopted for the following computation, 

respectively. 

As shown in Fig.11, the computation results of FINE/Marine and STAR-CCM+ agreed well with the numerical 

simulation values. The lift and drag coefficient are consistent with the experimental data and linearly 

numerical results before 12 degrees. However, the stall in the numerical simulations occurred at an angle of 

attack of 14o, whereas the experimental measurements indicated that NACA0012 airfoil stalls at an angle of 

attack of 12o. The error between numerical simulation and experimental tests especially in the prediction of 

the stall angle is highly attributed to the imperfectly represented experimental conditions, like the Reynolds 

number, the incoming turbulence and the natural boundary layer caused by the wind tunnel environment, 

the surface roughness on the tested foil, and etc., which would all contribute to the shift of the stall angle. It 

can be observed in the experiments for the NACA0012 airfoil conducted by Critzos et al. at Reynolds 

number 
6108.1   with respectively rough and smooth surface treatments on the foil surface.  
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Further the validation study with steady foil performance evaluation, since the present study is focusing on 

the passive rotation of the tandem hydrofoil in STAR-CCM+, two more validation studies were added to fully 

understand the performance in the evaluation of oscillating hydrofoils.  

The hydrodynamic performance of the oscillating foil predicted from the URANS simulations were 

systematically compared with experiental data from the field tests. By using the test conditions stated in 

Kinsey and Dumas (2012), a two-dimensional single oscillating foil and a three-dimensional tandem 

oscillating foils case with configured in line are carried out. The chord based Reynolds numbers is 500,000. A 

rigid foil with NACA0015 cross-section shape and the chord length is 0.24m. The reduced frequency is equal 

to 0.14. The aspect ratio of the three-dimensional foil is 7. The heave amplitude and the pitch amplitude are 

equal to the chord length and 75o respectively. The distance between the upstream foil and downstream foil 

is 1.296m. The oscillating phase difference in tandem case between the two foils is 180o. According to the 

mesh criteria of Kinsey and Dumas (2012) , the nodes on foil profile is 500 and inter-foil resolution is 0.024m 

is applied for validation.  

The time histories of an oscillating foil’s thrust coefficient for both present and published results are shown 

in Fig.12 (a). There is a good agreement between the results of an oscillating foil and the published results 

of Kinsey and Dumas (2012). From the result, it is clear that the loss of thrust approximately 12% for the 

three-dimensional hydrofoil compared to the two-dimensional hydrofoil. However, the two tandem 

hydrofoil thrust has been improved. The average thrust coefficient of the tandem oscillating foils over one 

period also compare well with the published results of Kinsey and Dumas (2012) in Table 3, and the 

difference between present simulations and the published results is less than 3%. Furthermore, the 

difference is thrust between two-dimensional and three-dimensional hydrofoil is less than 10%. It implies 

that the hydrofoils configuration in tandem can reduce the loss of thrust due to three-dimensional effects.  
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5. Results and discussion 

5.1 The wave glider under the regular wave in FINE/Marine 

The numerical simulation of the wave glider consists of eight and a half wave periods where the motion 

tends to stabilize after two wave periods. Velocity residuals in heave and surge mode reach full 

convergence, meeting the requirements of the program iteration, as shown in Fig.13. 

There is no significant difference in heave response between the surface boat and the wave glider in Fig.14 

(a). The surface boat heave velocity is consistent with that of the glider in Fig.14 (b). It is equally obvious to 

be observed from Fig.15 that the wave glider gradually reaches a steady state after two wave periods and 

move forward periodically in the fourth wave period. Additionally, the horizontal speed of the surface boat 

and the glider rises alternately, which means that the glider constantly tugs the surface boat and moves in a 

pulse form. For the surface boat horizontal velocity, it continues to accelerate from crest to trough and then 

drop until it reaches the crest again which is attributed to the surge force on the surface boat. According to 

Fig.15, via averaging the surface boat’s horizontal velocity over the experienced time, the average velocity 

of the wave glider is 0.259m/s. Compared with the tank experiments, the average horizontal velocity error 

of the wave glider is 3.6%. It can be seen that the horizontal force of the surface boat changes periodically 

after the second wave period in Fig.16. The wave energy absorption power of the wave glider is 9.869W and 

the average thrust force of the surface boat is 4.403N based on Eq. (5) and Eq. (7), respectively. Therefore, 

the thrust efficiency of the wave glider is 11.556%. 

The tether in FINE/Marine is modelled numerically. The tether of the wave glider also moves in a pulse form 

in Fig.17 (a). It reveals that the tether is always in tension and the vertical force tends to be stabilizing 

earlier than the horizontal one. Moreover, the maximum oscillating angle is less than 2o. 

5.2 The propulsion efficiency of the passive eccentric rotation of the hydrofoils in STAR-CCM+ 

In the simulation of the passive eccentric rotation, there are six tandem hydrofoils, namely hydrofoil-1, 

hydrofoil-2, hydrofoil-3, hydrofoil-4, hydrofoil-5, hydrofoil-6 from stem to stern. The distance between 

adjacent hydrofoils is 0.09m. The distance between the passive eccentric rotation axis of each hydrofoil to 

its leading edge is 0.05m. 
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Among the hydrofoils, except for the hydrofoil-2, the average thrust force of remaining hydrofoils is positive 

as shown in Table 4. Moreover, hydrofoil-4 has the maximum value while hydrofoil-3 and hydrofoil-5 thrust 

forces are similar. For the average mechanical conversion power, hydrofoil-5 acquires the largest mechanical 

conversion power, followed by hydrofoil-4. There is no significance change between hydrofoil-4 and 

hydrofoil-3. However, hydrofoil-1 and hydrofoil-2 offer lower conversion. This may be due to the difference 

in torque of each hydrofoil, since the hydrofoils are fixed to the glider and they have the same movement 

according to the Eq. (15). 

Fig.18 summarizes the thrust efficiency of the hydrofoils computed from Table 4. Although the thrust force 

of hydrofoil-1 is not the largest, but it requires the least mechanical conversion power. Thus the thrust 

efficiency of hydrofoil-1 is the most effective. Hydrofoil-4, hydrofoil-5 and hydrodfoil-3 are sequentially 

reduced. The thrust efficiency of hydrofoil-2 is negative since the average thrust force is negative. 

Based on the previous discussion, the last wave period and cross-section (parallel to the root of the 

hydrofoil with an offset of 0.15m) are selected for calculating propulsion efficiency of the passive eccentric 

rotation of the hydrofoils and investigating the wake interaction between the hydrofoils. The average thrust 

coefficient as displayed in Fig.19 reveals that the curve tends to be relatively flat although the average 

thrust coefficient magnitudes differ. Hydrofoil-4 and hydrofoil-5 have a thrust enhancement compared to a 

single hydrofoil (hydrofoil-1). The average thrust coefficient of hydrofoil-3 is slightly lower than or close to 

that of hydrofoil-1. Hydrofoil-6, situated at the end of tandem hydrofoils, is the least contributor among the 

hydrofoils; while hydrofoil-2 has a negative value and plays a resistance role. Apart from the average thrust 

coefficient magnitude, the rear hydrofoils (from hydrofoil-2 to hydrofoil-6) have the same temporal trend. 

C̅T Keeps growing until T=0.3, and then it reduces at the end of the downstroke. Moreover, C̅T continues 

to decrease between T=0.5 and 0.6 and increase slowly until the end of the upstroke. 

Fig.20 shows the passive rotation of six tandem hydrofoils. The range of rotation angle as observed is 

ranging from -30o to 30o, indicating that the hydrofoils do not exceed the allowable flapping angle. In 

addition, six tandem hydrofoils rotate in clockwise when the glider rises and rotate in anti-clockwise when 

the glider falls. Moreover, the clockwise rotation angle is larger than the anti-clockwise rotation angle when 

the glider is in the trough of wave. 
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5.3 Detailed flow analysis for the hydrofoils in the passive eccentric rotation 

To find out the reason of the above performance differences, the flow structure is examined. Fig.21 displays 

a time series of snapshots of the vorticity contour for the six tandem hydrofoils in 8 different time stamps 

within one cycle (T=0, 0.175, 0.3, 0.4, 0.5, 0.66, 0.8, 1.0 is marked in Fig. 19 and Fig. 20).  

Fig.21 (a-e) shows the vortex structure during downstroke. As shown in the figures, as a global observation, 

the vortex structure around the front hydrofoil is more stable compared to the ones around the after 

hydrofoils which is largely affected by the shed vortex from the previous hydrofoils.  

From Fig.21 (b) to Fig.21 (c) the vortices on the lower surface move towards the trailing edge, disperse away 

and encounter its adjacent hydrofoil, followed by a new set of leading-edge vortices (LEV) formed on the 

upper surface of the hydrofoils; and then they move on passing the rotation axis toward to the trailing edge, 

which affect the hydrofoil rotation. For example, the LEV from the hydrofoil-3 (vortex A) and the hydrofoil-6 

(vortex B) begin to detach from the hydrofoils and gradually get weakened in the wake, by which the 

rotation angles of hydrofoil-3 and hydrofoil-6 will be increased.  

As the hydrofoil-2 continues to rotate anticlockwise to its maximum rotational angle, the LEV (vortex c) 

decomposes and becomes weaker on the hydrofoil trailing edge as shown in Fig.21 (d) and Fig.21 (e); while 

comparing the Fig.20, the residing LEVs on leading edge of the hydrofoil-1(vortex D) and the hydrofoil-4 

(vortex E) provides an enhancement for them to rotate reversely. Through the comparison of the rotation 

angles of the hydrofoil-2 and the hydorofoil-4 (or hydrofoil-1), there is significance difference phase 

between the pitching motion and heave motion of the hydrofoil-2, which may be the reason why the thrust 

of the hydrofoil-2 is negative. 

The hydrofoils will then continue to rotate clockwise and restore to the original position thanks to the 

contribution of the spring force (seen from Fig.21 (f) to Fig.21 (h)). The above findings suggest that the 

interaction of the vortices with the hydrofoils is crucial to the force generation on the hydrofoils. In 

addition, the application of the springs in the current design only control the hydrofoils to rotate 

synchronously without contributing to the increase of the thrust of the hydrofoils. In the future study the 

spring will be further optimized to maximize the thrust of the hydrofoils.   
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6. Conclusion 

In the previous studies, the research efforts have focused on the model experiments and lack of systematic 

numerical simulation of the wave glider, especially the addition of the passive eccentric rotation of the 

hydrofoil. Therefore, a method for the unsteady RANS simulation for the motion of the wave glider is 

proposed. The method can successfully be utilized to compute the flow around the wave glider and the 

force and moment characteristics. The surge force of the surface boat and the passive eccentric rotation of 

the hydrofoil are the factors that affect the propulsion efficiency of the wave glider, especially the 

interaction of the front hydrofoil and the rear hydrofoil. Furthermore, the results of the tank experiment 

and numerical simulation are found to be in excellent agreement. However, more studies are required for 

optimum design and simulation of propulsion efficiency of the hydrofoil in different sea conditions. 
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Fig.1. The wave glider developed by China National Marine Technology Center 

 

Fig.2. The spring installation diagram 
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Fig.3. Operational mechanism of wave glider 
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Fig.4. Coordinate system of wave glider 
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Fig.5. Free sailing test of the wave glider in waves 
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Fig.6. Schematic diagram of CFD simulation 
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Fig.7. Domain size and boundary conditions for numerical simulations of the wave glider in 

FINE/Marine 

 

Fig.8 (a). Surface grid of the half surface boat 
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Fig.8 (b). Surface grid of the half glider 

 

 

Fig.9. Domain size and boundary condition for the passive eccentric rotation of the hydrofoils 
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Fig.10. The close-up view of six tandem hydrofoils grid  

 

Fig.11 (a). Comparison in FINE/Marine among the current computational results, the numerical work results 

of Yousefi and Saleh (2015) and the experimental results of Jacobs and Sherman (1937) and Critzos et al. 

(1955) 
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Fig.11 (b). Comparison among the current computational results, the numerical work results of Yousefi and 

Saleh (2015) and the experimental results of Jacobs and Sherman (1937) and Critzos et al. (1955) 

 

Fig.12. Validation results on thrust coefficient for an oscillating foil in STAR-CCM+ which compared with 

Kinsey and Dumas (2012)  
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Fig.13. The convergence heave and horizontal velocity residuals of the wave glider 

 

Fig.14 (a). The wave glider heave response 
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Fig.14 (b). The wave glider heave velocity 

 

 

Fig.15. The wave glider horizontal velocity 

 

Fig.16. The horizontal force of the surface boat 
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Fig.17 (a). The oscillating angle of the tether 

 

Fig.17 (b). The tugging force of the tether 
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Fig.18. The thrust efficiency of the hydrofoils; the number in the column represents the hydrofoil's number 

 

Fig.19. The average thrust coefficients of the hydrofoils. Location in the cycle is indicated by black vertical 

lines; it is represented eight times (T=0, 0.175, 0.3, 0.4, 0.5, 0.66, 0.8, 1.0) 
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Fig.20. The rotation of the hydrofoils. Location in the cycle is indicated by black vertical lines; it is 

represented eight times (T=0, 0.175, 0.3, 0.4, 0.5, 0.66, 0.8, 1.0)  
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(a)  

 

(b) 

  

(c) 
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(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

Fig.21. Time series of the vorticity magnitude development in one cycle of the hydrofoil (a) T=0; (b) T=0.175; 

(c) T=0.3; (d) T=0.4; (e) T=0.5; (f) T=0.66; (g) T=0.8; (h) T=1.0; 
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Table 1. The wave glider general parameters 

Parameter Full scale 

The length of the surface boat, LB/m 2 

The waterline length of the surface boat, LBWL/m 1.859 

The beam of the surface boat, B/m 0.6 

The draft of the surface boat, dB/m 0.115 

The freeboard of the surface boat, dfB/m 0.105 

The displacement of the surface boat, △B/kg 50 

The length of the glider, LG/m 1.866 

The width of the glider, BG/m 0.02 

The height of the glider, HG/m 0.46 

The displacement of glider, △G/kg 40 

The length of the cable, LC/m 3 

The chord of the hydrofoil, C/m 0.16 

The span of the hydrofoil, 𝑆ℎ𝑦/m 0.6 

The thickness of the hydrofoil, 𝑡ℎ𝑦/m 0.004 

Table 2(a). Grid independence study for NACA0012 airfoil at Re=5 × 105 and angles of attack of 10o 

and 16o in FINE/Marine 

Number of cells Angle of attack 10 Angle of attack 16 

Lift 

Coefficient 

Drag 

 Coefficient 

Lift 

Coefficient 

Drag 

 Coefficient 

Grid 1:  68,812 0.88184 0.05316 1.09374  0.08653  

Grid 2:  178,686 0.88963 0.04501 1.11291 0.08273 

Grid 3:  296,750 0.88655 0.04211 1.09572 0.09686 

Table 2(b). Grid independence study for NACA0012 airfoil at Re=5 × 105 and angles of attack of 10o 

and 16o in STAR-CCM+ 

Number of cells Angle of attack 10 Angle of attack 16 

Lift 

Coefficient 

Drag  

Coefficient 

Lift 

Coefficient 

Drag  

Coefficient 

Grid 1:  53,972 0.89820 0.03884 1.12643 0.08252 

Grid 2:  106,938 0.89683 0.03893 1.12665 0.08251 

Grid 3:  145,308 0.89493 0.03815 1.13059 0.07947 
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Table 3. The average thrust coefficient of the tandem hydrofoils in two-dimension and three-dimension 

 Average thrust Coefficient 

Upstream foil 

(Present study) 

Downstream foil 

(Present study) 

Upstream foil 

(Kinsey and Dumas 

(2012)) 

Downstream foil 

(Kinsey and Dumas 

(2012)) 

Two-dimensional 1.707 1.174 1.671 1.169 

Three-dimensional 

(AR=7) 

1.588 1.156 1.542 1.179 

Table 4. The average thrust force and average mechanical conversion power of the hydrofoils 

Hydrofoil Average thrust force(N) Average mechanical conversion power(W) 

Hydrofoil-1 0.8038 1.3726 

Hydrofoil-2 -0.2188 1.7372 

Hydrofoil-3 0.7043 2.2687 

Hydrofoil-4 1.1740 2.3359 

Hydrofoil-5 0.9711 2.3878 

Hydrofoil-6 0.5485 2.1995 
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