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Abstract 

Floating offshore wind turbines (FOWTs) are subjected to large amplitude motions that induce greater 

loads on components and reduce aerodynamic performance. One approach to counteract this has been to 

use passive damping systems for FOWTs to dissipate the wave-induced energy and therefore reduce the 

global platform motions. This paper proposes that rather than discard this energy, a wave energy 

converter (WEC) is utilized on the floating platform to absorb it. A study is carried out on a floating 

vertical axis wind turbine (VAWT) combined with WEC moving in heave. A range of damping and 

stiffness coefficients are applied between the FOWT and WEC to establish strategies for two cases: 

maximum motion reduction and maximum energy extraction. The results and conclusions obtained are 

presented in terms of modifying the WEC natural frequency, damping and stiffness values. 

© 2013 Published by Elsevier Ltd. Selection and peer-review under responsibility of SINTEF Energi AS 

 
Keywords: VAWT; wave energy converter; floating wind turbine; offshore; motion suppression 

1. Introduction 

As floating offshore wind turbines (FOWTs) become the economically viable option in waters deeper 

than 50m [1], there is a need to thoroughly understand and model the environment in which they will be 

operating. In the majority of operational sea states, the FOWTs are subject to significant motions that 

reduce the aerodynamic performance of the turbine, as well as induce structural loading not encountered 

with fixed foundations. 

One approach to counteract this has been to use passive damping systems for FOWTs to dissipate the 

wave-induced energy and therefore reduce the global platform motions [2]. This paper proposes that 

rather than discard this energy, a wave energy converter (WEC) is utilized on the floating platform to 

absorb it. This would increase the energy yield of the system and actively reduce the global platform 

motions. Another advantage is that these two energy converters have common infrastructure: a possible 
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Table 1 � Support structure, turbine and JONSWAP 

spectrum characteristics 

combination of the wind and wave energy Power Take-Off (PTO) systems; shared electrical grid 

connections and shared mooring systems. The progress in identifying optimal damping and stiffness 

parameters for two cases (maximum energy extraction and motion reduction) is presented in this paper, 

which is as follows: Section 2 describes the system and sea state under investigation; Sections 3 and 4 

describe the methodology and choice of WEC parameters; and Sections 6 and 7 outline the simulations 

carried out and discuss the results. Finally conclusions about the current work are presented in Section 8. 

2. System Description 

The floating platform shall be based on the Trifloater semi-submersible presented by Lefebvre and Collu 

[3], and subsequently fitted with a straight-bladed H-type VAWT presented by Borg et al. [4]. The rotor 

reaches the rated capacity of 5MW at 15 m/s in a wind profile with vertical power law exponent of 0.11. 

Table 1 gives the characteristics of the support structure and turbine. The operational site chosen is the 

Dogger Bank area in the North Sea, which is representative of the environmental conditions present for 

many offshore wind farms currently being developed. Table 1 also presents the representative JONSWAP 

wave spectrum parameters [5] that shall be implemented in the time-domain simulations. A water depth 

of 40 metres shall be assumed.  

3. Methodology 

 

In this paper the FOWT investigated is a vertical axis 

wind turbine (VAWT) mounted on the TriFloater semi-

submersible floating platform combined with a 

hypothetical WEC. This hypothetical WEC was 

represented by an additional degree of freedom (DOF) in 

heave. Although one may represent a simple point 

absorber with damping and stiffness coefficients rather 

than an extra DOF, this does not seem valid for the 

problem investigated here. A single-body point absorber 

needs a reference point which is usually the seabed. In 

the case of FOWTs, water depth is substantial which 

would result in unfeasible connections between the PTO 

and seabed. Another issue is that for a single-body point 

absorber, efficient energy extraction is obtained when the 

motion amplitude of the device is large [6], counter to 

what is trying to be achieved in this study. The FOWT 

cannot be assumed to be a point absorber and therefore 

the WEC is being modeled as extra DOFs to be 

independent of water depth. 

Rather than modeling a specific WEC design, trying 

to optimize it within its dynamic characteristic 

constraints, here the optimum damping and stiffness 

coefficients were found that would represent the �ideal� damping device for a given target solution. These 

optimal coefficients were identified for two cases: maximum motion reduction of the FOWT; and 

maximum energy extraction by the system. A range of WEC damping values were applied in the 

numerical model (see Section 4) to understand the effects of the WEC on the motion of the FOWT. In this 

SUPPORT STRUCTURE  

Column radius (m) 5.0 

Column height (m) 22.5 

Tower-to-column centrelines (m) 30.0 

Draught (m) 13.5 

Displacement weight (tonne) 3,700.0 

Heave natural frequency (rad/s) 0.7345 

TURBINE  

Capacity (MW) 5 

Rotational speed (rpm) 12 

Rated wind speed (m/s) 15 

Hub height (m) 72 

Radius (m) 37 

Blade length (m) 78.75 

Blade chord 3.5 

Aerofoil section NACA0018 

JONSWAP PARAMETERs  

Significant wave height, Hs (m) 4.928 

 0.008074 

 3.3 

Mean zero-crossing period, Tz (s) 10 
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work the WEC is considered to have one degree of freedom (DOF), connected to the FOWT heave DOF 

through a spring-damper coupling.  

The motion in heave of semi-submersibles sized for multi-megawatt wind turbines is significant and  

increases loading on various system components. Therefore it would be beneficial to reduce the platform 

heave motions to allow for reduced structural loading and hence cheaper capital and operational costs. In 

fact heave bottom plates have been employed on the WindFloat large-scale prototype installed off 

Portugal to reduce the platform heave motions [7].  

As mentioned before, this is an initial investigation into the effect of a hypothetical WEC on a floating 

wind turbine. In this study no specific geometrical design of the WEC was set, and hence since the 

hydrodynamic characteristics are largely dependent on the geometrical shape, they were not considered in 

the analysis. Whilst the inclusion of the frequency-dependent added mass and damping terms would 

affect the final results, the above methodology applied here would still be valid once a geometrical WEC 

design is specified. 

4. WEC Parameters 

4.1. WEC Inertia 

In recent studies of combined wind-wave energy platforms by Peiffer et al. [8] and Muliawan et al. [9], 

the ratio between the inertia of the WEC and that of the FOWT was found to be close to five percent. For 

this study three cases shall be investigated. In each case the ratio between the inertia of the WEC and that 

of the FOWT shall be 2.5 percent (Case 1), 5 percent (Case 2) and 10 percent (Case 3), respectively as 

shown in Table 2. 

Table 2 - WEC parameter values for simulation cases 

Case  1 2 3  4 

 Mass (kg) 9.25 x 104 18.5 x 104 37 x 104 Mass (kg) 18.5 x 104 

 KPTO (N/m) 4.99 x 104 9.98 x 104 19.95 x 104 BPTO (Ns/m) 4.64 x 104 

  BPTO (Ns/m)  BPTO (Ns/m) BPTO (Ns/m)  % of n KPTO (N/m) 

A 0.17 2.32 x 104 4.64 x 104 9.28 x 104 25 6.24 x 103 

B 0.51 6.96 x 104 13.92 x 104 27.84 x 104 50 24.95 x 103 

C 0.85 11.60 x 104 23.20 x 104 46.40 x 104 75 56.14 x 103 

D 2.56 34.80 x 104 69.60 x 104 139.20 x 104 150 224.55 x 103 

E 7.69 104.40 x 104 208.80 x 104 417.60 x 104 200 399.20 x 103 

 

4.2. WEC Power Take-Off System 

The WEC Power Take-Off (PTO) system shall be represented by a linear spring-damper system that is 

connected to the FOWT in the heave DOF. 

4.3. WEC Natural Frequency and Stiffness 

Since in this study the only excitation force is being imparted on the WEC by the FOWT, the stiffness 

of the PTO system shall be set such that the natural frequency of the WEC matches that of the FOWT for 

Cases 1, 2 and 3 (cf. Table 2). As discussed by literature (e.g. [10]), by matching the natural frequency of 

the excited body to that of the excitation force, the induced motion shall be greatest. The PTO stiffness, 

KPTO for each case is given in Table 2. 
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To investigate the effect of varying the PTO stiffness Case 2A was replicated in Case 4, but in this

case the PTO damping was kept constant whilst the PTO stiffness was modified as a percentage of the

original WEC natural frequency.

4.4. WEC Power Take-Off Damping

The damping of the PTO system shall be varied for Cases 1, 2 and 3. The values for the PTO damping,

BPTO, were chosen to cover a range of damping ratios, . The values for and BPTO for each case are given

in Table 2.

5. Numerical Model

5.1. Model Basis

To investigate the dynamics of this system a time-domain model of dynamics was constructed in the 

MATLAB/Simulink environment using the Marine Systems Simulator Toolbox [11] and an in-house

aerodynamic codeyy based on the Double Multiple Streamtube (DMST) model [12] with modifications 

[13]. The hydrodynamic model is based upon the equation proposed by Cummins [14]:

)()()()()( ttdtt xCxKxAM

Where MRB is the rigid-body inertia matrix, A is the infinite-frequency added mass matrix, x (t) is the 

body�s acceleration, K is the retardation function matrix, x (t) is the body�s velocity, is the hydrostatic

restoring stiffness matrix, x (t) is the body�s displacement, and exc (t) is the wave excitation force and any 

other external loads, including viscous damping as a fraction of the critical damping.

The coefficients relating to the hydrodynamic added mass, damping and hydrostatic stiffness are

obtained from a frequency-domain analysis of the floating platform�s geometry. The wave excitation

forces as a function of incident wave frequency are also computed in this manner.  One issue with Eqn.1

is that the convolution integral representing the radiation forces of the body is computationally inefficient.

One approach to solve this is to approximate the convolution integral with a state space model which is

inherently computationally efficient as discussed by Taghipour et al. [15] and Borg et al. [16]. The 

equations of motion now become:

)()()()(rad

Here z (t) and z (t) are internal state vectors and the A`, B`, C` and D` are constant matrices. The

validation of the separate aerodynamic and hydrodynamic models is presented by Collu et al. [17].

Blusseau and Patel [18] found that the gyroscopic forces induced by the coupling between a rotating 

VAWT and moving platform affect the overall system motions. The gyroscopic forces shall be

represented by damping coefficients in pitch and roll. The gyroscopic moments in roll and pitch are given 

by Equations 3 and 4, respectively:

Where IzzII is the moment of inertia of the rotor about its rotational axis, is the rotational speed of the 

rotor which is assumed constant, is the angular velocity of the vessel in roll and is the angular 

)()()()( tttt excradRB xCxxAM
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velocity of the vessel in pitch. The DOF of the WEC is included within the equations of motion, resulting 

in a 7 DOF system. The dynamics model is currently �semi-coupled�, as discussed by Collu et al. [17]. At 

this point, only the translational and rotational displacements of the floating platform are passed on to the 

aerodynamic model.  In the near future the platform velocities shall be considered within the aerodynamic 

module. Additionally, the absorbed power of the WEC is calculated using Eq. 5: 

6. Numerical Simulations & Results 

A total of 20 time-domain simulations were carried out to analyse the case matrix given in Table 2, 

each with a length of 90 minutes. A total of 1000 harmonic wave components [19] were used to 

adequately represent the sea spectrum specified in Section 2.   

Figs. 1 and 2 present the Response Amplitude Operators (RAOs) for the heave motion of the FOWT 

and WEC for Case 1, 2 and 3, respectively. A sample time history of the power absorbed by the WEC is 

shown in Fig. 3, highlighting the variability of power production. Table A.1 in the Appendix presents 

some statistical data concerning the power absorbed by the WEC, and  the heave response of the FOWT 

and WEC in the operational sea state. 

7. Discussion 

7.1. WEC Dynamic Response 

As expected the peak response of the WEC RAO significantly reduces with increasing damping, as can 

be seen in Fig. 2. Although the natural frequency of the WEC (assuming a fixed base) was set to 0.7345 

rad/s, it can be seen that it has been shifted to lower frequencies due to the interactions with the FOWT. 

This shift in the peak response of the RAO is greater as the mass of the WEC is increased. On the other 

hand as the damping is increased, this shift is reduced with more pronounced effects with larger WEC 

masses. Observing the magnitude of the WEC RAO for Cases 1A, 2A and 3A reveals that at the 

maximum amplitude, the RAO can be as high as five metres per unit wave height. This is significant and 

may be impractical in a realistic design, resulting in the use of end-stops to limit the motion of the WEC 

device. In Case 4, where the PTO stiffness was varied, the peak response of the WEC RAO was 

significantly reduced when compared to the previous cases. The largest reduction is seen when the PTO 

stiffness is at its smallest value (Case 4A). This is because lowering the PTO stiffness reduces the 

transmissibility of the force imparted by the FOWT. This resulted in significantly lower mean WEC 

amplitudes when the WEC natural frequency was lower than that of the FOWT. This would have positive 

implications in the detailed design of the WEC, as it can occupy less volume and may undergo lower 

cyclic loading. In this study any wave forces on the WEC were not considered since they are highly 

dependent on the geometrical shape of the WEC. The addition of added mass and hydrostatic 

characteristics would alter the WEC natural frequency. Furthermore the introduction of excitation forces 

at the incident wave frequency rather than FOWT motion frequency would affect WEC dynamics and so 

should be considered during future design phases.  

7.2. FOWT Dynamic Response 



228   Michael Borg et al.  /  Energy Procedia   35  ( 2013 )  223 – 233 

 Figure 2 � WEC Heave RAO for (a) Case 1; 

(b) Case 2; (c) Case 3; and (d) Case  4 

Figure 1 � FOWT Heave RAO for (a) Case 1; 

(b) Case 2; (c) Case 3; and (d) Case  4 
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For damping cases A, B and C the peak response of the FOWT heave RAO is reduced, whilst for cases 

D and E it is increased. This may be due to the fact that for cases A, B and C the damping ratio is below 

1, that is, the WEC is an under-damped system. On the contrary for cases D and E the damping ratio is 

greater that one (over-damped) which would result in a large phase change in the motion of the WEC 

with respect to the FOWT. This in turn adversely affects the effectiveness of the WEC, such that it is 

negative.  

Whilst there have been positive results regarding modifying the FOWT heave RAO, the operation in 

the specified sea state has mixed results in Cases 1, 2 and 3. Since the WEC shifted the FOWT heave 

natural frequency closer to the spectrum peak frequency, the FOWT experiences larger heave motions. 

Due to the inherent nature of the current connection between the FOWT and the WEC, the natural 

frequency cannot be shifted to a higher frequency away from the spectrum peak frequency. Only in Cases 

1A, 1B and 1C there was a reduction of mean heave amplitude of a few centimeters (cf. Table A.1), 

which is almost insignificant. Likewise for the other cases, the increase in mean heave amplitude is also 

almost insignificant. 

In Case 4, there is a significantly larger reduction in FOWT heave RAO peak response compared to 

the previous cases. The greatest reduction was seen when the PTO stiffness was such that the WEC 

natural frequency was 75 percent of the FOWT natural frequency. When the natural frequency of the 

WEC was larger than that of the FOWT (Cases 4D, 4E), the WEC had a detrimental effect of the FOWT 

heave RAO. When operating in the specified sea state, the WEC in Case 4 provided larger reductions in 

the mean FOWT heave amplitude, although still not greater than 15 percent in Case 4C due to the same 

reason explained above. 

 

 

 

This effect is very specific to the floating support structure and operational sea state, but it must be 

noted that the positive effect of the WEC is greatest at the system natural frequency. Through the use of 

active control systems and more detailed PTO models it may be possible to extend the range of 

effectiveness of the WEC. 

7.3. Power Production 

Due to the dependence of the WEC absorbed power on the relative velocity (see Eq. 5), the variation in 

absorbed power is high. Fig. 3 shows that the absorbed power can vary from zero watts up to almost two 

megawatts. The variation of the standard deviation of the absorbed power is illustrated in Fig. 4a and Fig. 

4b shows the mean absorbed power as a function of WEC mass and damping ratio. It can be seen that 

while the mean absorbed power is largest at lower damping ratios, the standard deviation is lowest at high 

damping ratios. This has practical implications on the PTO system: for higher mean absorbed power, the 

variation in supply is larger, required more robust equipment.  

Figure 3 � Sample time history of WEC absorbed power 



230   Michael Borg et al.  /  Energy Procedia   35  ( 2013 )  223 – 233 

The mean absorbed power also increases as the mass of the WEC is increased, which is to be expected.  

As before, the increase in WEC mass also results in higher variations of absorbed power. Both the mean 

absorbed power and standard deviation appear to decay exponentially with damping ratio, although the 

current data is limited and so this behavior might be localized. Observing Fig. 4b and Table A.1, it can be 

seen that the highest absorbed power of almost 138kW is achieved in Case 3A, where the WEC mass is 

10 percent of the FOWT mass and the damping ratio is 0.17. Whilst this is approximately 3 percent of the 

rated capacity of the VAWT, the actual percentage may increase in different met-ocean conditions. In 

Case 4, the variation of PTO stiffness led to differences in the mean absorbed power and the standard 

deviation, with increases for both when the WEC natural frequency approached the FOWT natural 

frequency. 

There are number of approaches that may be adopted to increase the absorbed power. Implementing 

control strategies such as phase control, latching and un-clutching may significantly increase power 

output and reduce the variability of the absorbed power.  

 

 

7.4. Applicability of Results 

Through the above simulations it was found that maximum energy extraction for the specified sea state 

was obtained in Case 3A, where the WEC mass is 10 percent of the FOWT mass and the damping ratio is 

0.17. Case 4 investigated the modification of the PTO stiffness to further reduce the FOWT motion 

response. It can be seen that there is an inverse relation between mean absorbed power and supply 

consistency, which will eventually result in a trade-off between these parameters in later stages of design.  

Maximum motion reduction was achieved in Case 4C where a reduction of 15 percent of FOWT mean 

heave amplitude was observed during operation in the specified sea state. The FOWT heave RAO was 

also reduced by 29 percent. 

As can be seen, to achieve the greatest energy extraction, the WEC natural frequency must match the 

FOWT natural frequency to ensure the greatest induced relative motion between the two bodies. Also the 

PTO damping should not achieve a damping ratio greater than 1 to allow the WEC to oscillate and 

produce significant relative motion relative to the FOWT. In this study it was found that the lowest PTO 

damping produced the most absorbed power. This is most probably due to the relation of power with PTO 

damping and relative velocity (cf. Eq. 5), as the absorbed power has a squared relation with relative 

velocity.  The low PTO damping required for maximum energy extraction might also lead to reduced 

systems costs. 

On the other hand to achieve maximum FOWT motion reduction, the WEC natural frequency must be 

shifted to a lower frequency than the FOWT natural frequency. This shift must not be too large, as seen in 

Figure 4 � (a) WEC absorbed power standard deviation as a function of damping ratio; (b) WEC mean absorbed power as a 

function of damping ratio 
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Cases 4A and 4B (cf. Table A.1). A shift of 50 percent or more had a smaller effect in motion reduction 

than a shift of 25 percent (Case 4C). The detriment of shifting the WEC natural frequency is that there is a 

loss of absorbed power by the WEC, which is more pronounced with larger shifts.  

The above characteristics will eventually lead to a trade-off between motion reduction and absorbed 

power in later stages of design, but it is envisaged that with the appropriate control strategies both of these 

characteristics may be maximized further. It is important to note that the above results may be localized, 

that is, since only a range of conditions were investigated it cannot be ensured that these results are the 

global characteristics. 

The results of this study may also be applied to a device that is not a WEC. An internal damping 

device within the FOWT could be based upon the above PTO system such that excess wave-induced 

energy is still harvested whilst the device is not subject to the harsh marine environment.  

8. Conclusions 

This paper introduced the concept of rather than using damping devices to dissipate wave-induced 

energy from a FOWT, a WEC is implemented to capture this additional energy to increase the system 

energy yield and make the system more cost effective. An initial numerical study was performed to gain a 

first insight into the characteristics required of such a WEC, with the following qualitative conclusions: 

 

 Maximum energy extraction from the WEC is achieved by matching the WEC natural frequency 

to the FOWT natural frequency and using low damping ratios. 

 Maximum motion reduction of the FOWT is achieved by shifting the WEC to a lower frequency 

than the FOWT natural frequency, although this shift must not be too large. 

 

The high variability of the absorbed power at higher values of mean absorbed power is also an issue 

that may possibly be dealt with through novel control systems and PTO systems. A trade-off between the 

above two outcomes would be required to ensure the final system is cost-effective. 

As noted in Section 3, in this analysis the frequency-dependent added mass and damping of the WEC 

were not considered. Once the geometrical shape of the WEC is specified, these characteristics will be 

included in future analyses. It is acknowledged that this inclusion would change the results somewhat, but 

the methodologies employed and insights gained from this study will still be valid. 

This paper has presented the potential of combining wind and wave energy devices to reduce system 

costs through shared infrastructure, fatigue load reduction and increase the system energy yield. The latter 

is becoming increasingly important, as the myriad of restrictions of possible ocean energy offshore sites 

start to limit the available space for arrays of such devices. 
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Appendix A. 
 
Table A.1 - Simulations statistical data 

   A B C D E 
M

ea
n

 A
m

p
li

td
u

e 

FOWT 

Heave 

(metres) 

Case 1 0.9031 0.9233 0.9361 0.9535 0.9605 

Case 2 0.8951 0.9247 0.9494 0.9587 0.9623 

Case 3 0.8763 0.9218 0.9688 0.9614 1.0043 

Case 4 0.8875 0.8526 0.7845 1.0306 1.0243 

No WEC 0.9209 0.9209 0.9209 0.9209 0.9209 

WEC 

Heave 

(metres) 

Case 1 2.3740 1.3269 1.1115 0.9756 0.9628 

Case 2 2.3030 1.3295 1.1280 0.9642 0.9628 

Case 3 2.1762 1.3260 1.1525 0.9626 1.0048 

Case 4 0.3661 0.6092 1.4976 1.5381 1.2615 

WEC 

Power 

(kW) 

Case 1 50.929 26.847 17.496 6.6258 2.1323 

Case 2 87.947 51.745 35.028 3.1826 1.0708 

Case 3 137.93 95.918 69.49 1.6030 2.3031 

Case 4 24.415 37.329 79.496 9.1410 1.9439 

   A B C D E 

S
ta

n
d

ar
d
 D

ev
ia

ti
o
n
 

FOWT 

Heave 

(metres) 

Case 1 1.1519 1.1785 1.1951 1.2177 1.2267 

Case 2 1.1399 1.1786 1.2103 1.2244 1.2291 

Case 3 1.1162 1.1731 1.2332 1.2279 1.2808 

Case 4 1.1347 1.0903 1.0025 1.3128 1.3045 

No WEC 1.1783 1.1783 1.1783 1.1783 1.1783 

WEC 

Heave 

(metres) 

Case 1 3.0445 1.6934 1.4182 1.2458 1.2297 

Case 2 2.9484 1.6947 1.4373 1.2313 1.2296 

Case 3 2.7813 1.6880 1.4664 1.2294 1.2813 

Case 4 0.4655 0.7715 1.8984 1.9669 1.6108 

WEC 

Power 

(kW) 

Case 1 79.222 41.620 27.047 9.6547 3.2823 

Case 2 137.82 80.313 54.060 4.9003 1.6480 

Case 3 218.88 150.22 107.83 2.4673 3.5215 

Case 4 37.716 57.600 125.31 14.014 2.9841 

   A B C D E 

M
ax

. WEC 

Power 

(kW) 

Case 1 766.65 385.25 246.33 86.578 29.271 

Case 2 1291.4 740.05 493.28 43.774 14.681 

Case 3 2000.8 1345.6 952.13 21.984 31.720 

Case 4 324.97 496.24 1114.0 131.15 28.869 

 
 


