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Abstract—This paper introduces a two-step methodology for 

online identification of the participation of generators in power 

system oscillatory modes, based on measured responses. The 

dominant modes in generator measured responses are initially 

identified using a mode identification technique and then 

introduced, in the next step, as input into a clustering algorithm. 

Critical groups of generators that exhibit poorly or negatively 

damped oscillations are identified, in order to enable corrective 

control actions and stabilize the system. The uncertainties 

associated with the operation of modern power systems with 

Renewable Energy Sources (RES) are investigated as well as the 

impact of the dynamic behavior of power electronic interfaced 

RES. 

 
Index Terms—clustering, online dynamic security assessment, 

renewable generation, uncertainties, unsupervised machine 

learning. 

 

I. INTRODUCTION 

URING the past years there has been a substantial increase 

in the installation of Renewable Energy Sources (RES), 

mainly driven by climate change and various social, economic 

and technical reasons. RES are intermittent in nature which is 

one of the main reasons for the change in power system 

operating conditions, power flows and topology. This coupled 

with the fact that they exhibit different dynamic behaviour 

than conventional generators leads to both spatial and 

temporal variation in power system dynamics and 

consequently operation under high uncertainty. Apart from the 
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direct impact caused by RES, the displacement of synchronous 

generation and consequent inertia reduction is also affecting 

significantly the power system dynamic behaviour. These 

changes might lead to system operation closer to the stability 

limit and hence more prone to instability and ultimately black-

outs.  

In this context, close to real-time identification of the 

dynamic behavior of power systems and impeding instability 

that enables the application of corrective control actions 

becomes increasingly attractive. Moreover, the wide 

availability of measured data from Phasor Measurement Units 

(PMUs) coupled with the advances in data analytics and 

machine learning provide an array of tools that can be 

effectively used for such purposes. 

Various data mining techniques, Decision Trees (DTs) [1]-

[3], Ensemble Decision Trees (EDTs) [4], [5], Support Vector 

Machine (SVM) [6] and Artificial Neural Networks (ANNs) 

[7] have been used in online dynamic security assessment. 

Most commonly, the prediction focuses on binary 

classification, i.e. whether the system will remain transiently 

stable or not. There have been also some approaches [5], [8] 

for grouping of unstable generators after the fault is cleared. 

While this information is valuable for assisting corrective 

control actions, such as controlled islanding, these approaches 

focus mainly on aperiodic (first swing) instability. They do not 

provide any information regarding the   oscillatory behavior of 

generators in case they are first swing stable (including 

potential oscillatory instability), which is within the scope of 

the proposed method in this paper. 

The concept of slow coherency is about identifying 

generator groups that tend to swing together and can therefore 

represent oscillatory behavior of generators [9]. Measurement-

based methods have also been developed to identify generator 

coherent groups [10], [11]. However, information from this 

type of methods focus on identifying coherent groups of 

generators that tend to swing together but do not directly 

provide information on the damping of oscillations after a 

specific disturbance, which is very important when further 

corrective control action needs to be taken. In [12], 

classification trees are used to predict well or poorly damped 

oscillations using power flow data, however, these trees need 

to be trained before their application in an online manner. In 

[13], a method for the online clustering of the oscillatory 
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behaviour based on features extracted from Recurrence 

Quantification Analysis (RQA) is presented. The extracted 

features from RQA do not provide a direct physical meaning 

on the oscillatory behaviour of the generators though, 

especially when distinguishing between poorly and negatively 

damped oscillations. Furthermore, different methods based on 

the identification of parameters of oscillatory modes directly 

from time domain (TD) responses have been used in the past. 

They include Prony method [14], the Eigenvalue Realization 

Algorithm (ERA) [15] and the Matrix Pencil (MP) method 

[16]. Alternatively, there are also methods that derive the 

dominant modes using frequency domain (FD) responses [17] 

or a combination of the above as in the recently proposed 

hybrid FD/TD approach [18]. Such methods extract the 

dominant modes of measured responses with relatively high 

accuracy but do not provide any information on the 

participation of individual generators in these oscillatory 

modes.  

This paper proposes, an integrated online method based on 

PMU measurements for the identification of generator   

oscillatory behavior in case of first swing stable response of 

the system. The proposed method enables the application of 

more effective corrective control by providing additional 

actionable information for system operators considering the 

participation of individual generators in poorly or negatively 

damped oscillatory modes following a disturbance. 

Additionally, it deals with practical application aspects when 

applied to a large number of cases for varying operating 

conditions imposed by RES intermittent behaviour. The 

distinct contributions of the proposed method are: 1) Mode 

identification is applied to TD responses of individual 

generators to identify both stable and unstable modes contrary 

to a single point of measurement usually used in the literature 

[14]-[18]. 2) Two post-processing techniques are incorporated, 

i.e. surplus mode filtering and sliding window, to deal with 

challenges introduced by using a fixed model order and slowly 

growing oscillatory modes, respectively. 3) The generators are 

clustered into groups in the second step of the method, based 

on the participation of individual generators in poorly or 

negatively damped oscillatory modes which is an additional 

feature compared to existing mode identification methods 

[14]-[18]. 4) Un-supervised machine learning is used to derive 

the generator groups without the need of generating simulated 

scenarios for training. 5) Monte Carlo (MC) simulations can 

be performed offline to investigate the probabilistic oscillatory 

behaviour of individual generators taking into consideration 

uncertainties of modern power systems (including RES).  

II. PROPOSED METHODOLOGY 

Once a contingency is identified as first swing stable, the 

proposed two-step method is applied to identify possible 

groups of generators that exhibit poorly or negatively damped 

oscillations, as shown in Fig. 1. Therefore, the proposed 

method can be seen as complementary to the method 

presented in [5] as it first addresses aperiodic instability and 

then the proposed method in this paper, oscillatory instability. 

The first step of the proposed methodology involves the 

application of MP on the rotor angle responses of each 

generator obtained from available measuring infrastructure or 

PMU measurements. This is in order to identify the dominant 

modes contained in the oscillatory responses of each generator 

[19]. It should be noted that in this paper, simulations are used 

as a substitute for measurements to investigate the 

performance of the proposed method under a very large 

number of cases. Additionally, a surplus mode filtering 

approach is applied as part of the first step, to ensure 

consistency during the clustering procedure in the second step 

as well as to automate the procedure when dealing with a large 

number of case studies under different operating conditions. 

The second step involves the application of a clustering 

method, namely the k-medoids algorithm [20], to cluster 

generators in relevant groups, i.e., exhibiting well or 

poorly/negatively damped modes using the least damped 

extracted modes identified in the previous step as clustering 

features. Therefore, the participation of individual generators 

in poorly or negatively damped modes can be derived in this 

manner. This is an added feature to measurement-based mode 

identification techniques and thus detailed information can be 

provided to system operators when designing and activating 

corrective control actions. 

In addition, a sliding window approach can be applied, if 

needed, to capture slowly growing oscillations that might 

appear at a later time (outside of the selected initial time 

window).  

Finally, by applying the proposed procedure to MC 

dynamic simulations performed offline, the probabilistic 

oscillatory behaviour of individual generators is investigated. 

The proposed method offers a systematic approach 

regarding online identification of poorly/negatively damped 

oscillatory modes and the participation of individual 

generators in them as well as with practical aspects that arise 

from the application of mode identification techniques on a 

very large number of diverse cases for different operating 

conditions. It should also be noted that the different dynamic 

behaviour of power electronic interfaced units, including the 

effect of their uncertain behaviour causing a wider variation in 

operating conditions, as well as the consequent inertia 

reduction, are part of the motivation for the development of 

the proposed method. The aforementioned RES behaviour 

justifies the need for such online methods and is therefore 

considered in this paper as explained in the following 

Sections. The method is generalized in the sense that any 

mode identification and clustering method can be used as part 

of the proposed two-step procedure. The rest of this section 

describes each step in detail. 

A. Mode Identification 

The power system ringdown response y(t) following a 

perturbation can be approximated by a sum of N  damped 

sinusoids (modes) [21]. 

 1

ˆ( ) cos( )
s ω ϕ

=

=+∑ i

N
t

i i i

i

y t Ae t

 (1) 

where Ȝi = ı±jȦ are the system eigenvalues and Ȧi = 2ヾfi, ıi, 
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Ai, ĳi are the angular frequency, damping, amplitude and phase 

angle of the i-th mode, respectively. The discrete-time 

representation of (1) can be written as (2), given that the 

record consists of Nw equally 〉t-spaced samples. 

 

 
Fig. 1.  Schematic of the application of the proposed method. 
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where: 

 λ ∆= i t

i
z e  (3) 

Thus, the signal is described by a finite summation of p 

mode pairs (Bi, zi), where Bi is the residue of the 

corresponding discrete-time pole zi. The problem is to 

minimize the error between the real y[n] and the estimated

[ ]ŷ n  responses, by calculating accordingly the mode pairs of 

(2) as shown in (4). 
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For this purpose, the MP method is adopted, which uses 

singular value decomposition (SVD) [16] to estimate the 

system modes, by filtering out noise or any additional 

components. The MP algorithm is summarized as follows 

[16]: 
  1) Build Hankel matrices H0 and H1 with entries the 

samples of the ringdown response y[n] of the system. 

  2) Perform SVD of H0, defined in (5), and estimate the 

system order by retaining the largest singular values. 

 
0 = T

H PSQ  (5) 

  3) Build vectors V1 and V2 by deleting the last and the 

first row of the unitary vector VN, respectively, whose 

elements correspond to most significant values of S. Calculate 

matrices Y1 and Y2 by: 

 
1 1 1= T

Y V V  (6a) 

 
2 2 1= T

Y V V  (6b) 

  4) Poles zi are the generalized eigenvalues resulting from: 

 1

1 2 λ− −Y Y I = 0  (7) 

Since the system modes are identified by means of (3) using 

the calculated zi, (8) can be solved in the least squares sense to 

estimate the associated residues Bi. 
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To evaluate the accuracy of the identified modes the R
2 

coefficient, defined in (9), is adopted, where yത is the mean of 

y[n]. This R
2
 examines the quality of the reconstructed signal 

to the original response fit. 
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B. Surplus Mode Filtering Based on Energy 

The application of the MP to measured responses will result 

in the identification of the dominant modes contained in the 

ringdown as well as into a number of artificial surplus modes, 

due to noise, etc. These modes are typically characterized by 

low energy and might sometimes exhibit low or even negative 

damping [22]. Since the least damped mode of each generator 

is selected as an input parameter to the clustering algorithm, it 

is very important to exclude/separate the surplus modes from 

the dominant ones to reduce the number of possible false 

alarms. For this purpose, the normalized energy of each mode 

(Ei,n) is calculated according to (10) and (11). Modes with less 

than 1% normalized energy (empirically chosen in this case) 

are considered artificial and discarded from the procedure. 
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It should be noted that more advanced mode identification 

techniques automatically determining the required order could 

systematically solve this issue, thus additional filtering might 

not be essential. However, such methods could increase 

significantly the computational burden by introducing 

additional computations, e.g. by iterative loops [18]. 

C. Unsupervised Machine Learning   

Since the dominant modes of the response of each generator 

are obtained following the proposed mode identification 

2nd step: Clustering

Matrix Pencil

Surplus Mode Filtering

K-medoids

Sliding Window

Poorly/negatively 

damped
Damped

Further corrective 

actions

1st step: Mode Identification

PMU measurements
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procedure, the least damped mode (including negatively 

damped modes) is selected as the input feature for the 

clustering algorithm. The clustering algorithm is applied for 

the least damped mode obtained for the initial time window Tw 

as well as for any consecutive sliding windows as explained 

above. 

K-medoids is used for two main reasons. First, the target of 

the proposed algorithm is to distinguish between generators 

exhibiting poorly/negatively damped and well damped 

oscillatory behavior. The number of clusters is therefore 

constant (k = 2), thus k-means and k-medoids with predefined 

number of clusters can be considered as a good choice. A 

larger number of clusters (e.g., 3, 4 etc.), however, could be 

defined by a system operator, as a part of the proposed 

methodology, if more detailed information on the generator 

groupings was desirable. Additionally, the k-medoids 

algorithm offers the advantage over k-means that the cluster 

centroid is not the mean value of the cluster objects but one of 

the actual objects of the cluster. This means that the cluster 

centroid corresponds to the actual least damped mode 

associated with one of the generators belonging to each cluster 

and therefore has a physical meaning. 

The k-medoids algorithm is very similar to k-means and 

aims at clustering the objects of a dataset (generators in this 

case) into k groups based on a number of features (the 

frequency and damping ratio of the least damped mode in the 

examined problem). Therefore, a number of G observations 

corresponding to the total number of generators in the system 

occur, each characterized by two features. Therefore, a 2xG 

matrix with information obtained from the mode identification 

step is used as input to the clustering algorithm. 

K-medoids is a partitioning technique that uses one 

representative object in each cluster as a reference point to the 

entire cluster. The Partitioning Around Medoids (PAM) 

algorithm is used in this paper, which is one of the most 

popular realizations of the k-medoids clustering [20]. The 

overall goal is to minimize an absolute error criterion 

presented in (12), where e is the sum of absolute error for all 

objects p of the data set, oi is the representative object of the 

cluster Ci and dist is the selected distance measure which in 

this case is the Euclidean distance. Initially, a representative 

object for each cluster is chosen either arbitrarily or as in this 

paper following the k-means++ algorithm to speed up the 

process [23]. An iterative approach is followed in a greedy 

manner by changing the representative object of a cluster and 

calculating whether the absolute error is reduced or not. At 

each iteration the representative object is modified to the new 

one if the error is reduced, otherwise the same representative 

object is used. 

 ( )
1

dist ,
= ∈

= ∑ ∑
i

k

i

i p C

e p o  (12) 

D. Sliding Window Method 

The initial selected signal time window Tw is assumed long 

enough to contain most of the signal energy associated with 

the system oscillatory modes [18]. However, by applying the 

above procedure only to Tw, it may lead to the elimination of 

important low/negatively damped oscillatory modes, 

characterized by low energy during this period. To overcome 

this issue, the MP and surplus mode filtering procedures can 

be additionally applied to consecutive sliding signal windows 

of length Tw. As the energy of these modes increases with 

time, their identification can be eventually successful at a later 

time step and the updated “list” of poorly damped modes 

provided to the clustering algorithm. 

E. Probabilistic Oscillatory Behaviour 

In order to account for the increasing uncertainty in modern 

power system operation, a probabilistic approach is followed 

to investigate the probabilistic oscillatory behaviour of the 

system as well as of individual generators. The uncertainty of 

the intermittent behaviour of RES and system loading is taken 

into consideration to produce a number of TD dynamic MC 

simulations for different operating conditions. The number of 

simulations required is defined according to the required error 

of the sample mean shown in (13), where ĭ-1
 is the inverse 

Gaussian cumulative distribution function (CDF) with a mean 

value of zero and standard deviation one, ı2
 is the variance of 

the sampled random variable XN, į is the confidence level (i.e. 

0.01 for this study) and NMC the number of MC samples [5]. 

 

( )2

1 1
2

sδΦ −  − 
 

=
N

N
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X

N

X

N
e

X
 (13) 

III. TEST SYSTEM, UNCERTAINTIES AND SIMULATIONS 

A. System Under Study 

Dynamic simulations are used to substitute measurement 

data. The test network used is a modified version of the IEEE 

68 bus, 16 machine reduced order equivalent model of the 

New England Test System and the New York Power System 

(NETS – NYPS). The conventional part of the test network is 

adopted from [9] and RES are added at the buses shown in 

Fig. 2. Two types of RES units are connected on each bus: 

Doubly Fed Induction Generators (DFIGs), representing wind 

generators (WGs) and Full Converter Connected (FCC) units, 

representing both WGs and photovoltaic (PV) units. The 

dynamic performance of the system is analyzed by means of 

RMS simulations using DIgSILENT – PowerFactory software 

[26]. 

Standard 6
th

 order models are used for all synchronous 

generators including either slow IEEE DC1A dc exciters or 

fast acting static exciters type IEEE ST1A and generic 

governors, representing gas, steam and hydro turbines. 

Generator G9 is also equipped with a Power System Stabilizer 

(PSS). 

A generic type 3 model, suitable for large scale stability 

studies, is used in this paper to represent DFIGs and a type 4 

WG model is used to represent all FCC units (both WGs and 

PVs). The models have a structure similar to the one proposed 

by WECC [24] and IEC [25], and are available in 

DIgSILENT – PowerFactory [26], whereas all RES units are 
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considered with Fault Ride Through (FRT) capabilities.  

The number of the connected RES corresponds to 20% of 

the total installed generating capacity of the system, 66.67% of 

which are type 3 DFIGs and 33.33% FCC units. FCCs are 

further considered to be 30% WGs and 70% PV units. 

B. Modelling of Uncertainties 

The time frame for the considered uncertainties in this study 

is one day. Therefore, daily loading and PV curves are initially 

used and the hour of the day is sampled randomly following a 

uniform distribution to determine the pu values for all the 

loads and PV units. For every hour within the day, the 

corresponding uncertainties are also modeled using a normal 

distribution for the system load and a beta distribution for PV 

generation. Therefore, an extra uncertainty scaling factor for 

loads and PVs is introduced, which is eventually multiplied 

with the corresponding value from the daily loading or PV 

curve, respectively. The normal distribution for the system 

loading uncertainty has mean value 1 pu and standard 

deviation 3.33% and the beta distribution a and b parameters 

are 13.7 and 1.3, respectively. The uncertainty of the wind 

speed is modelled using a Weibull distribution with 

parameters ĳ = 11.1 and k = 2.2 [13]. 

 

 
Fig. 2.  Modified IEEE 68 bus test network. 

C. Simulation Procedure 

After considering the uncertainties, Optimal Power Flow 

(OPF) is solved to determine the conventional generators 

dispatch. The nominal capacity of each generator is then 

adjusted to take into consideration the disconnection of 

conventional generation due to both load variations and RES 

penetration. A constant amount of 15% spare capacity is 

considered for each simulated case as in [27]. Since the 

generators are considered as aggregated units, reducing the 

nominal power is equivalent to a reduction in the moment of 

inertia of the power plant and an increase in the generator 

reactance. 

Three phase self-clearing faults are considered as 

disturbances in this study. However, the simulation database 

could be extended to include any other disturbances as well. A 

uniform distribution is used to model the fault location which 

means that the fault may happen with equal probability at any 

line of the test network and at any point along the line. A 

normal distribution with mean value of 14 cycles and standard 

deviation 6.67% is used to model the fault duration. 

TD dynamic RMS simulations are performed afterwards for 

the operating conditions resulting from OPF and the selected 

contingencies explained above, in DIgSILENT – 

PowerFactory [26]. For the examined system the number of 

required MC simulations (NMC) is 6000 to limit the error of the 

sample mean described in (13) to 5% [5].  

IV. CASE STUDIES   

The selected time window (after the fault is cleared) in 

studies carried out to illustrate the proposed methodology is 

approximately 18 seconds, i.e. 1077 samples with a sampling 

time of 1 cycle (in 60 Hz). The order for the adopted MP 

method is 10, resulting in the identification of 5 oscillatory 

modes. This model order is selected to ensure that the median 

of the R
2
 values for all generators and for all simulated cases is 

higher than 95%. The frequencies of interest in this study are 

those > 0.1 Hz to focus on electromechanical modes. 

A. Application to Representative Cases 

Two representative Test Cases (TCs) of generator 

oscillatory behaviour obtained from MC simulations are 

shown in Fig. 3. In the first case, i.e. TC1, all generators 

exhibit well damped oscillatory behaviour, while in TC2 some 

generators exhibit negatively damped oscillations with slowly 

growing amplitudes. The least damped modes of each 

generator are initially identified and afterwards used as inputs 

for the k-medoids algorithm.  

 
Fig. 3.  Representative responses for a) well damped (TC1) and b) negatively 

damped (TC2) response. 

 

The identified least damped modes for TC1 are presented in 

Fig. 4a. The clusters obtained by applying the k-medoids 

algorithm are also marked in Fig. 4a along with the 

representative object of each cluster. For TC1, the least 

damped modes for all generators have positive damping ratio 

and therefore both resulting groups exhibit stable oscillatory 

behaviour. Each group is related to a representative generator 

(defined as the representative object of the cluster following 

the k-medoids clustering algorithm), which describes the 

oscillatory behaviour of the generators that belong to each 

group, i.e. G15 (damping ratio 3.87% and frequency 0.86 Hz, 

representing the group of G8) and G1 (damping ratio 4.3% 

and frequency 0.57Hz, representing the group of G2-G7 and 

G9-G14) in this case, respectively. The physical meaning of 
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this grouping is that the generators can be split in two groups 

based on the frequency and damping ratio of their least 

damped mode due to more pronounced separation in 

frequency of the critical modes. Since in TC1 all generators 

exhibit stable oscillatory behaviour no further control action 

would be required. In TC2 however, one of the groups, 

namely, the critical group, exhibits growing oscillations. This 

critical group is represented by generator G6 (damping ratio -

1.6% and frequency 1.57 Hz) and includes G1, G4, G7, G8 

and G9. The rest of the generators exhibit stable oscillatory 

responses within this time window and belong to the group 

represented by G10 (corresponding to damping ratio 4.27% 

and frequency 0.53 Hz). 

B. Filtering of Artificial Surplus Mode  

Fig. 5, shows an example of a representative response of 

G1, where artificial low energy modes appear (as explained in 

Section II.B), whereas Table I summarizes the extracted 

modes from the application of the MP method, without 

considering surplus filtering. In Fig. 5a, the original and 

reconstructed signals using the MP method are compared. In 

Fig. 5b, the damped sinusoidal responses of each of the 5 

identified modes are analyzed individually. Although the fit 

between the two signals (R
2
 value of 98.4%) is very good, two 

of the extracted modes, i.e. mode #1 and #5, are characterized 

by very low energy (as shown in the zoomed version of the 

plot) as well as by very low or negative damping as described 

in Section II.B. The normalized energy of mode #1 and mode 

#5 is 1.9e
-2

 and 1.39e
-5

, respectively and thus they will be 

filtered out when calculating the least damped mode, 

following the proposed procedure. If these trivial modes 

characterized by very low energy (as can also be seen in Fig. 

5b) were not filtered out, the least damped mode would end up 

being mode #1. Therefore, the proposed surplus mode filtering 

procedure acts as an additional measure to ensure that only the 

important modes are included in the second step of the 

algorithm, while the trivial ones are filtered out. 

 
Fig. 4.  Generator groups obtained from k-medoids clustering for a) TC1 and 

b) TC2. 

 

TABLE I 

G1 EXTRACTED MODES (WITHOUT SURPLUS MODE FILTERING) 

Mode Frequency (Hz) Damping Ratio (%) Normalized Energy 

1 1.53 -1.74e-3 1.9e-3 

2 1.37 2.07 3.69e-2 

3 0.78 4.7 0.895 

4 0.51 11.42 6.6e-2 

5 0.27 2.03 1.39e-5 

 

 
Fig. 5.  G1 response and obtained modes from MP method.   

 

 

C. Application of Sliding Window 

In some cases, certain generators might start exhibiting 

oscillatory behaviour after the selected time window used in 

the system identification procedure. For this purpose (as 

explained in Section II.C), a sliding window is applied. To 

highlight the importance of the sliding window technique the 

following case is investigated. Let us assume that the window 

is of fixed length and moves by 1 sample as each new 

measurement point is received. To illustrate this, the response 

of G2 for TC2 presented before is shown in Fig. 6a for an 

overall duration of 1107 samples (100 additional samples 

compared to Fig. 3). The sliding window, denoted with the red 

box, has a duration of 1077 samples and as time proceeds 

moves to the right 100 times for this specific case shown in 

Fig. 6. The method is therefore applied 100 times as the 

window slides. As time goes by, generator G2 is exhibiting 

growing oscillations which were not included in the initial 

time window (and therefore have not been identified by the 

MP method). 

Fig. 6b presents the least damped mode identified by 

applying consecutively the mode identification method as the 

window slides. As mentioned above the method is applied 100 

times as each new sample is obtained from the measurements. 

These generated 100 points in Fig. 6b start from the left for the 

initial window and move to the right, as the window slides. It 

can be seen that only after 46 samples (also denoted in Fig. 

6b), the unstable mode corresponding to the growing 

oscillations is successfully identified, jumping from a positive 

damping value close to 4% to a negative damping value close 

to -1.9%. It should be noted that the least damped mode 

identified using the initial window is also of different 

frequency, i.e. approximately 0.5 Hz, while the unstable mode 

is close to 1.5 Hz, which is the same frequency with the group 

of unstable generators already identified before. Therefore, as 
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the window is moving, generator G2 will eventually move to 

the unstable cluster. 

 
Fig. 6.  a) G2 response and sliding window and b) least damped mode as 

window slides. 

V. ANALYSIS OF PROBABILISTIC OSCILLATORY BEHAVIOUR 

OF THE SYSTEM AND INDIVIDUAL GENERATORS  

The application of the proposed methodology to the results 

of MC simulations carried out to account for the uncertain 

power system behavior is illustrated below. A boxplot of the 

R
2
 values for all the simulated cases and all generators is 

shown in Fig. 7 to highlight the performance of the mode 

identification method. The median of the R
2
 is > 95% for all 

generators, ranging from 99.9% for G5 and 93.7% for G8. The 

R
2 

in most cases remains > 80% though in few cases the 

outliers with low R
2
 values appear, especially for generators 

G1 and G8. The R
2
 though is < 50% only in 0.04% for G16 

and 0.9% for G8 of the total number of simulated cases. This 

is mainly caused by the fixed identification model order of the 

MP method used during the mode identification step. In some 

cases though, a higher identification model order might be 

necessary to achieve higher R
2
 value. 

A. Probabilistic Assessment of Generator Groups 

The proposed methodology is also applied to all first-swing 

stable cases, i.e. 5345 out of 6000 performed simulations. The 

resulting representative objects of the two clusters for each 

case are summarized in Fig. 8 (focusing on the range with 

damping between ±10%). Blue circles correspond to the 

representative object of the group with lower damping, while 

the green squares are the representative objects corresponding 

to the well damped group. It should be noted that there are 

some cases where both groups might exhibit stable or unstable 

oscillatory behaviour. Observing the location of the 

representative objects (i.e. the damping ratio and frequency) is 

therefore important to draw conclusions regarding the 

oscillatory behaviour of the generators belonging to each 

cluster. Additionally, it helps in identifying the modes that 

might cause unstable behaviour of the system under 

uncertainties considered (intermittent nature of wind 

generation, PVs and system loading in this particular case). It 

can be seen, for example, that some modes located in the 

region around 0.5 Hz can exhibit low (but positive) damping 

and only in very few cases might become unstable. On the 

other hand, some modes in the frequency region close to 

1.1 Hz tend to exhibit unstable behaviour in several cases, 

followed by modes with frequencies ranging from 1.2 Hz to 

1.6 Hz. 

In order to get a more detailed overview of the dynamic 

behaviour of the system, some representative generator 

grouping patterns (possible cluster formations within the 

simulated cases) are presented in Table II, along with the 

number of occurrences of each pattern. The total number of 

the observed grouping patterns is 796 for the 5345 first-swing 

stable cases of the examined dataset with a large number of 

them occurring less than 10 times. However, as noted before, 

the exact location of the representative cluster object 

(representative generator) should be observed to get a more 

accurate description of the cluster (whether it exhibits well or 

poorly damped oscillations). This means, for example, that in 

some of the grouping patterns presented in Table II, both 

groups might be well damped (with one group being less 

damped than the other). In this way, the information on the 

expected grouping patterns as well as on the frequency of their 

appearance for a given system is provided. 

 

 
Fig. 7.  R2 for all cases for each generator. 

 

 
Fig. 8.  Representative cluster objects. 
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In Fig. 9, the representative objects of the two clusters for 

pattern #5 of Table II are presented in a similar manner to 

Fig. 8. For this specific pattern, the entire NETS area and one 

generator in NYPS area (G1-G10) exhibit unstable oscillatory 

behavior with frequency around 1.1 Hz while the rest of the 

generators (G11-G16) oscillate with positively damped 

oscillations with frequencies that vary from 0.5 Hz to 0.9 Hz. 

B. Probabilistic Dynamic Behaviour of Individual 

Generators 

By observing the extracted least damped mode for a specific 

generator for all cases, the individual generator oscillatory 

behaviour can be investigated. Results for G4 are presented in 

Fig. 10a. For this specific generator, the mode around 1.1 Hz 

might cause unstable or poorly damped (damping ratio less 

than 2%) oscillatory behaviour. Additionally, it is less likely 

for two modes with frequency 1.4 Hz and 1.6 Hz to exhibit 

unstable oscillations. Similarly, results for G15 are presented 

in Fig. 10b revealing that this generator exhibits unstable 

modes very rarely, and if so, mostly with a frequency around 

1.1 Hz. Most of the times, G15 oscillates with frequencies 

around 0.5 Hz and 0.8 Hz. Of the two, the 0.8 Hz mode is less 

damped and occasionally, though very rarely, might exhibit 

poor damping (less than 1% damping ratio). 

 
 TABLE II 

REPRESENTATIVE GROUPING PATTERNS 

Pattern 

No. 

Grouping Pattern Number of 

occurrences Less damped 

group 

Better damped 

group 

1 (G1-G12) (G14-G16) 1311 

2 (G1, G8, G9) (G2-G7, G10-G16) 449 

3 (G1, G8, G9, 

G12) 

(G2-G7, G10, G11, 

G14-G16) 

276 

4 (G9) (G1-G8, G10-G16) 131 

5 (G1-G10) (G11-G16) 70 

 

 
Fig. 9.  Representative objects corresponding to a specific grouping pattern. 

 

C. Effect of RES on Individual Generator Oscillatory 

Behaviour 

An additional case study is performed, considering 

specifically the effect of RES units on individual generator 

oscillatory behaviour. In this case, the system loading is taken 

into account as the only uncertainty considering the operating 

conditions of the network (fault location and duration 

uncertainties remain as described before), since all RES units 

are disconnected. In Fig. 11, the Cumulative Distribution 

Functions (CDF) of the damping ratio of the least damped 

mode for three representative generators (G1, G4 and G15) are 

compared for the cases with and without RES. In general, 

there is higher probability that these three generators will 

exhibit negatively damped oscillations after the disturbance. 

More specifically, G4 for which the deterioration is more 

evident, has approximately 34% probability to exhibit 

negatively damped oscillations when RES are connected while 

the same probability is approximately 28% without RES. This 

denotes a possible increase in the probability of oscillatory 

instability following connection of RES of the specific 

generator (and the system in general) for a set of considered 

operating conditions. 

 
Fig. 10.  Least damped identified modes for a) G4 and b) G15. 

 

 
Fig. 11.  CDFs of the damping ratio of the least damped mode for G1, G4 and 

G15 with and without RES. 

D. Computational Burden Considerations 

All computations have been performed using an Intel Core 

i7 3.4 GHz with 16 GB of RAM. Both MP mode identification 

and k-medoids clustering algorithms are implemented in 

Matlab. For the 1
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proposed algorithm approximately 550ms in total are required 

for the extraction of the modes for all generators, after the 

measurements for the chosen time window are obtained. The 

2
nd

 step (i.e. the clustering algorithm) requires approximately 

25 ms. Therefore, for a single time window calculation of the 

generator clusters, less than 600 ms are required, showing that 

the method is suitable for close to real-time applications. 

VI. CONCLUSIONS 

In this paper, a two-step, measurement based method is 

proposed for the online identification and analysis of power 

system oscillatory behaviour. The proposed method is applied 

in a close to real-time manner (less than 600 ms), to provide 

additional actionable information to system operators 

regarding the participation of individual generators in poorly 

or negatively damped oscillatory modes. First, the MP method 

is applied to TD responses to extract the dominant modes 

contained in both stable and unstable oscillatory responses of 

each generator in the system. Next, the least damped mode of 

each generator is used to cluster the generators in groups 

based on their oscillatory behaviour, using the k-medoids 

algorithm. A sliding window is used to capture possible 

growing oscillations that could have been missed using the 

initial fixed time window as well as a surplus mode filtering 

approach to ensure consistency and automate the procedure 

when applying the method on a large number of responses for 

diverse operating conditions (motivated by the intermittent 

behaviour of RES). 

From the analysis performed, it can be concluded that the 

MP method can successfully and with high confidence 

identify both, stable and unstable, oscillatory modes of each 

generator. Moreover, the clustering analysis showed that 

generators can be successfully split into two distinct groups, 

each represented by a generator highlighting the oscillatory 

behaviour of the group. 

Additionally, the application of the method has been 

demonstrated for the analysis of system dynamic behavior 

considering various uncertainties including the intermittent 

behaviour of RES. By applying the method on a large number 

of MC simulations, the oscillatory modes and generators that 

may cause instability of a system can be identified. 

Comparative study with and without RES showed that, for the 

specific system under study and for the operating conditions 

investigated, the probability of the appearance of negatively 

damped oscillations for certain generators might increase 

when RES are connected. 
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