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A B S T R A C T

Enhanced fabric performance is fundamental to reduce the energy consumption in buildings. Research has

shown that the thermal mass of the fabric can be used as a passive design strategy to reduce energy use for space

conditioning. Concrete is a high density material, therefore said to have high thermal mass. Insulating concrete

formwork (ICF) consists of cast in-situ concrete poured between two layers of insulation. ICF is generally per-

ceived as a thermally lightweight construction, although previous field studies indicated that ICF shows evidence

of heat storage effects.

There is a need for accurate performance prediction when designing new buildings. This is challenging in

particular when using advanced or new methods (such as ICF), that are not yet well researched. Building

Performance Simulation (BPS) is often used to predict the thermal performance of buildings. Large discrepancies

can occur in the simulation predictions provided by different BPS tools. In many cases assumptions embedded

within the tools are outside of the modeller's control. At other times, users are required to make decisions on

whether to rely on the default settings or to specify the input values and algorithms to be used in the simulation.

This paper investigates the “modelling gap”, the impact of default settings and the implications of the various

calculation algorithms on the results divergence in thermal mass simulation using different tools. ICF is com-

pared with low and high thermal mass constructions. The results indicated that the modelling uncertainties

accounted for up to 26% of the variation in the simulation predictions.

1. Introduction

In an attempt to combat the impact of climate change, governments

have set targets to reduce energy consumption and CO2 emissions. In

Europe, 40% of the total energy consumption and 36% of the total CO2

emissions derive directly from the built environment [1]. As a con-

sequence, energy efficient buildings steer a new era of development,

including new materials, innovative envelope technologies and ad-

vanced design ideas [2–4]. Improvements in building energy efficiency

are mainly focused on reduction of fabric heat losses (reduced in-

filtration, better insulation etc.) and the optimal use of solar gains [5].

To quantify the potential of new materials and technologies in energy

consumption savings and CO2 emission reductions, the use of reliable

dynamic Building Performance Simulation (BPS) is essential.

1.1. Simulation-based support for innovative building envelope technologies

Building Performance Simulation (BPS) was first introduced in the

1960s [6] and it has developed significantly ever since. Over the past

decades, computer-aided simulation of buildings has become widely

available; hence these days, it is used both in research and in industry

[7]. Loonen et al. [8], analysed the factors that affect the success and

failure of innovations in construction industry and demonstrated the

potential of using whole-building performance simulation in the do-

main of research and development. They concluded that the lack of

effective communication about performance aspects was one of the

most significant barriers to innovative building technologies and com-

ponents. The conventional product development process, usually fo-

cusses on performance metrics at a component level. However, to make

well-informed decisions, a more thorough approach, considering a

number of different building performance issues is needed. BPS takes

into account the complex correlations among the possible heat flow

paths in a building model. It incorporates the dynamic interactions

between building design, climatic context, HVAC operation and user

behaviour; hence it is considered a valuable source of information re-

garding the thermal performance of new building products. Roberz

et al. [9], performed a simulation-based assessment of the impact of

ultra-lightweight concrete (ULWC) on energy performance and indoor
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comfort in commercial and residential buildings. ULWC is an in-

novative wall construction material. The authors compared its thermal

performance to conventional lightweight and heavyweight structures

using EnergyPlus software. They concluded that for the case study

under investigation, ULWC behaves closer to the heavyweight building

in long-term heating periods and shows a relatively fast heating-up

response, comparable to the lightweight building envelope in short-

term analysis [9]. Another novel approach to wall construction was

investigated by Hoes and Hensen [10]. Possible adaptation mechanisms

and hybrid-adaptive thermal storage concepts (HATS) were analysed

with regards to their energy demand reduction potentials in new

lightweight residential buildings in the Netherlands. A computational

building performance simulation analysis was performed using ESP-r

software [11]. The authors concluded that the HATS approach was able

to reduce space heating demand and enhance indoor thermal comfort

[10].

The present study focusses on the simulation of three different wall

construction methods, insulating concrete formwork (ICF), low thermal

mass (timber-frame) and high thermal mass (concrete wall) buildings.

The latter two conventional wall construction types have been analysed

and compared with each other thoroughly in previous research

[12–17]. However, the amount of research associated with ICF is lim-

ited and there is currently a scarcity of data concerning its actual

thermal performance in BPS.

1.2. Thermal mass and ICF

The thermal mass of the fabric can be used as a passive design

strategy to reduce energy use for space conditioning [18–23]. The term

thermal mass defines the ability of a material to store sensible thermal

energy by changing its temperature. The amount of thermal energy

storage is proportional to the difference between the material's final and

initial temperatures, its density mass, and its heat capacity [24]. The

fundamental benefit of fabric's thermal mass is its ability to capture the

internal, casual and solar heat gains, helping to moderate internal

temperature swings and shifting the time that the peak load occurs

[12,17,19,25,26]. Previous studies have also shown that the thermal

mass of the fabric can be used to prevent buildings from overheating

[23,27,28].

ICF is classed among the site-based Modern Methods of Construction

(MMC) [29]. Although it dates back in Europe since the late 1960's, it is

often characterised as an innovative wall technology because it has only

recently become more popular for use in residential and commercial

construction [30]. The ICF wall component consists of modular pre-

fabricated Expanded Polystyrene Insulation (EPS) hollow blocks and

cast in situ concrete (Fig. 1). The blocks are assembled on site and the

concrete is poured into the void. Once the concrete has cured, the in-

sulating formwork stays in place permanently. The resulting construc-

tion structurally resembles a conventional reinforced concrete wall.

The ICF wall system has several advantages; apart from its increased

speed of construction and its strength and durability, ICF can provide

complete external and internal wall insulation, minimising the ex-

istence of thermal bridging, providing very low U-values and high

levels of air-tightness if installed correctly [29,31]. ICF is generally

perceived as merely an insulated panel, acting thermally as a light-

weight structure. There is the general perception that the internal layer

of insulation isolates the thermal mass of the concrete from the internal

space and interferes with their thermal interaction. Nonetheless, pre-

vious computational, numerical and field studies, indicate that the

thermal capacity of its concrete core shows evidence of heat storage

effects, which in specific climatic and building cases, could result ulti-

mately in reduced energy consumption when compared to a lightweight

conventional timber-framed wall with equal levels of insulation

[25,30,32–38].

Fig. 1 contrasts a typical cross section, as used in the representation

of ICF in numerical simulations against the reality of prefabricated

blocks of EPS. The insulation layers are connected with plastic ties,

creating the void, where the concrete will then be poured. The figure

illustrates one example of possible simplifications when a construction

is represented in a model and how it differs from reality and increases

the level of modelling uncertainties.

1.3. Building modelling, simulation and uncertainty

It is common to see the words “simulation” and “modelling” used

interchangeably. However, they are not synonyms. Becker and Parker

[39] defined simulation as the process that implements and instantiates

a model. Instead, modelling is the representation of a system that

contains objects that interact with each other. A model is often math-

ematical and describes the system that is to be simulated at a certain

level of abstraction. Within a BPS program descriptions of the con-

struction, occupancy patterns and HVAC systems are given and a

mathematical model is constructed to represent the possible energy

flow-path and their interactions [7,11]. Many assumptions, approx-

imations and compromises are inevitably made on the mathematical

formulations describing the physical laws within the model [40].

Consequently an exact replication of reality should not be expected.

There is often a discrepancy between expected energy performance

during design stage and real energy performance after project com-

pletion [41]. Moreover, there are often inconsistencies in the simulation

results when modelling an identical building using different BPS tools,

referred to as modelling uncertainties [42]. These can lead to a lack of

confidence in building simulation.

Previous research on the uncertainty of simulation predictions

concluded that the reliability of simulation outcomes depends on the

accuracy and precision of input data, simulation models and the skills

of the energy modeller [43–46]. An estimation of the uncertainty in-

troduced by each of the aforementioned factors can help to increase the

awareness of the results reliability. Quality assurance procedures and

consideration of the inherent uncertainties in the inputs and modelling

assumptions are two areas that require attention in BPS.

There are a vast number of previous studies analysing the various

sources of uncertainty in BPS results. De Wit classified the sources of

uncertainty as follows [47]:

• Specification uncertainties, associated to incomplete or inaccurate

specification of building input parameters (i.e. geometry, material

properties etc.)

• Modelling uncertainties, defined as the simplifications and assump-

tions of complex physical processes (i.e. zoning, scheduling, algo-

rithms etc.)

• Numerical uncertainties, all the errors that are introduced in the

discretisation and the simulation model.

• Scenario uncertainties, which are in essence all the external condi-

tions imposed on the building (i.e. weather conditions, occupants

behaviour).

Macdonald and Strachan reviewed the sources of uncertainty in the

predictions from thermal simulation programmes and incorporated

Fig. 1. (a) Example of ICF geometry as used in numerical simulation versus (b) the reality

of prefabricated EPS hollow blocks of ICF, before the concrete is poured.
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uncertainty analysis into ESP-r [48]. Hopfe and Hensen investigated the

possibility of supporting design by applying uncertainty analysis in

building performance simulation [42]. Prada et al., studied the effect of

uncertain thermophysical properties on the numerical solutions of the

heat equation, analysing the difference between Conduction Transfer

Functions (CTF) and Finite Difference (FD) model predictions [46].

Mirsadeghi et al., reviewed the uncertainty introduced by the different

external convective heat transfer coefficient models in building energy

simulation programs [49]. Silva and Ghisi, examined the discrepancies

in the simulation results due to simplifications in the geometry of a

computer model [50]. Gaetani et al. [51,52], investigated the un-

certainty and sensitivity of building performance predictions to dif-

ferent aspects of occupant behaviour, by separating influential and non-

influential factors. Kokogiannakis et al. [53], compared the simplified

methods used for compliance as described in ISO 13790 standard with

two detailed modelling programs (i.e. ESP-r and EnergyPlus). The aim

was to determine the magnitude of differences due to the choice of

simulation program and whether the different methods under in-

vestigation would lead to different compliance conclusions. Irving in-

vestigated several aspects that are related to the validation of dynamic

thermal models [40]. Among others, the author highlighted the influ-

ence of users in the accuracy of BPS results. The author suggested that

even if a model is completely accurate, errors may still arise because

little guidance is usually available on how to use the model properly.

Guyon et al., also studied the role of model user in BPS results, by

comparing the results provided by 12 users for the same validation

exercise [54]. They concluded that the user's experience affected the

results variations. A good homogeneity was found among the different

categories of participants' expertise. The impact of modeller's decision

on the simulation results was also studied by Berkeley et al., [55]. The

authors found that the results provided by 12 professional energy

modellers for both the total yearly electrical and gas consumption

varied significantly.

1.4. Aim of paper

There is a wide range of scientifically validated1 BPS tools available

Fig. 2. Cross-section of the three wall construc-

tion methods (ICF; LTM; and, HTM).

Table 1

Input data used for the building model.

Building Model Details

Internal Treated Floor

Area

6m×8m=48m2

Orientation Principal axis running east west direction

Windows Two double glazed windows, 2 m×3m each, on

south façade,

U-Value= 3.00W/m2K, g-Value= 0.747

U-Values (W/m2K) Walls= 0.10

Floor= 0.10

Ceiling= 0.11

HVAC system Ideal loads

HVAC Set points 20 °C Heating/27 °C Cooling

HVAC Schedule 24 h (Continuously on)

Internal Gains 200W (other equipment)

Infiltration 0.5ACH (Constant)

Fig. 3. The three phases in the research method.

1 Tools that have been shown to pass certain validation tests (i.e. analytical tests, inter-

program comparisons and empirical validation.) are here defined as “validated”.
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on the market. Some of the tools are simple and more “user-friendly”,

others are more detailed, requiring an advanced level of expertise and

experience from the modeller. In several cases, there are assumptions

embedded in the BPS programme that are outside the modeller's con-

trol. In other cases, the modeller is required to make a decision on

whether to rely on the default settings of a tool or to specify the solution

algorithms and values that are to be used in the simulations. The ana-

lysis presented in this paper investigates the implications of the

“modelling gap”, the different modelling methods on the simulation of

three different types of thermal mass in whole BPS using two different

tools. Focussing firstly on the impact of default input parameters and

then on the effects of the various calculation algorithms on the results

divergence, the purpose is to examine the disparity of different mod-

elling assumptions. The order of magnitude of the problem faced by the

modeller during the specification of a building is shown, focussing on

the representation of thermal mass in building simulation. The focus is

particularly on the simulation of ICF; a construction method which is

not yet well-researched. To the authors' knowledge this is the first

thorough investigation of the simulation of ICF and the first study that

reflects on the effect of modelling decisions and modelling uncertainty

on thermal mass simulation.

2. Research method

The case study was a single-zone test building based on the one

specified in the BESTEST methodology [56]. The rationale was to

minimise building complexity and thus decrease the number of vari-

ables related to geometry and zoning in the input data. At the outset, all

simulation models were validated using the BESTEST case 600 for low

thermal mass and case 900 for high thermal mass. Then the construc-

tion details were changed in line with the specific study. All other input

parameters remained identical to the BESTEST methodology. Three

different construction methods: insulated concrete formwork, low

thermal mass, and high thermal mass were simulated, as shown in

Fig. 2. For ease of reference, these will be referred to as ICF, LTM and

HTM from this point forward.

The ICF option was based on real building construction details, and

was used as a reference to specify U-Values for all other construction

elements. In this way U-values were consistent for all three building

models; hence, the main difference between the three construction

methods was in the amount of thermal mass. Table A.1 (in the Ap-

pendix) describes the construction materials for all three options.

The simulation settings were identical in all three scenarios: each

building model had the same internal footprint, window size and

glazing properties, the same HVAC system, internal gains and infiltra-

tion rates, as summarised in Table 1. Energy was used for space con-

ditioning and other equipment. No domestic hot water was used. The

DRYCOLD weather file, downloaded from NREL,2 was used as a Typical

Meteorological Year (TMY), i.e. a climate with cold clear winters and

hot dry summers.

Two freeware, validated and commonly used BPS tools were se-

lected, as they showed the greatest overall consistency in setup and

default settings (seven other tools were considered and discounted)

[33]. Importantly, both tools offered significant flexibility to the user,

through changing the default settings, hence they presented the best

opportunity to achieve the overall aim of the research. These will be

referred to as tools A and B from this point onwards.

The research was undertaken in three main phases, as shown in

Fig. 3.

Phase 1 compared simulation results provided by the two BPS tools

when simulating all three construction methods (i.e. ICF, LTM, and

HTM) using the tools' default algorithms. This was done to determine

whether any discrepancies in the simulation predictions provided by

the tools were significant (i.e. surface temperatures, heating or cooling

demand), and whether this discrepancy was affected by the amount of

thermal mass. Both annual and hourly results were included in the

analysis:

1. Results for the annual energy consumption and the peak thermal

loads were plotted monthly. Divergence in the simulation predic-

tions was analysed using the Normalised Root Mean Square Error

(NRMSE) (1). The NRMSE3 is a non-dimensional form of the RMSE

and was used to calculate absolute error in simulation results.
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Where,

xi a, and xi b, are the predictions provided by tools A and B respec-

tively at each time step

xi is the mean value of xi a, and xi b, for each time step

x is the mean value of the predictions provided by both tools A and

B

n is the size of the sample

2. Hourly results for the heating and cooling demand, along with

surface temperatures of a wall element were plotted for two three-

day periods, one in the heating and one in the cooling season. The

days selected for the hourly results analysis were when the highest

and lowest dry-bulb outdoor temperatures were recorded. The

analysis focussed on the internal surface, intra-fabric and external

surface temperature of the east wall. The east wall was selected for

this step of the analysis because it would receive direct solar ra-

diation both in its external and internal surfaces. However, a rela-

tively similar divergence was observed in the results provided by the

two BPS tools for all other walls in the simulation models.

Phase 2 focussed on the model “equivalencing” process. This was

done to minimise any differences between the simulation models,

making them equivalent for comparison, by selecting identical algo-

rithms and consistent input settings (see Table A.2 in the Appendix). An

extended literature review identified the main features, capabilities and

default solution algorithms in the tools [6,57]. An overview of the

calculation and solution algorithms employed in both BPS tools is in-

cluded in Table A.3 (Appendix). The “equivalencing” process was done

on the annual simulation results, aiming to serve as a crude analysis on

the impact of the different algorithms on the results discrepancy.

Starting from a basecase scenario representing the default models, a

step-by-step process was followed to make the models equivalent by

changing to identical solution algorithms one step at a time. The impact

of each step was investigated by calculating the NRMSE, for each of the

three construction methods. The results were analysed sequentially to

understand which algorithms had the greatest impact on each dis-

crepancy, how the inconsistencies were affected based on the varying

levels of thermal mass, and whether any divergence became more ob-

vious (i.e. heating or cooling demand). Once the simulation models

were “equivalenced”, the NRMSE of the annual and hourly results were

compared against the initial NRMSE of the default models. The aim was

to quantify the reduction in the results variation.

The thermal performance of the ICF, LTM and HTM models were

2 Available at http://www.nrel.gov/publications/[Accessed on: 04/04/17].

3 The NRMSE when normalised to the mean of the observed data is also called CV

(RMSE) for the resemblance with calculating the coefficient of variance.
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compared before and after the model “equivalencing” process. The

purpose was to investigate if the results would be different pre and post-

“equivalencing”, to reflect on the impact of the “modelling gap” and to

highlight the significance of reducing uncertainties in building perfor-

mance simulation.

Following the model “equivalencing” process, several modelling

factors that were found to have a significant impact on the results were

investigated further. Therefore, the third and final phase considered the

differences in modelling methods employed by the two tools. This was

done to highlight how the simulation outcome is affected by the dif-

ferent modelling methods, even when the input values are identical (in

this instance the climate data).

3. Results and analysis

This section presents the results obtained from the three phases of

the research. Annual and hourly simulation results obtained by the two

BPS tools when the user relies on the default setting are presented first.

Then, the simulation predictions of the equivalent models are analysed,

followed by an account of the investigation of the different modelling

methods available within the two BPS tools. The purpose of the section

is to provide a detailed account of the outcomes of the analysis, in

particular to consider the differences between tools A and B.

3.1. Phase 1: impact of default settings on the BPS results

3.1.1. Annual simulation results of two tools using default settings

The following section analysed the annual simulation results for the

heating and cooling demand provided by the two tools, when the user

relies on the default settings and their variation. Fig. 4 shows the ab-

solute difference and the NRMSE in the simulation results provided by

tools A and B for each construction method, for the annual heating and

cooling energy consumption and the peak heating and cooling loads.

The divergence in the simulation results provided by the two tools for

the default models was high. In terms of absolute difference in the

annual and peak heating demand, the ICF building showed the highest

difference in the simulation predictions provided by the two tools. In

the annual and peak cooling demand, the highest absolute difference

(in kWh and W) was observed in the LTM building, followed by the

HTM building. In general the absolute differences were higher in the

annual and peak cooling demand, reaching up to 300 kWh in the annual

cooling demand of the LTM and HTM buildings and up to 700W in the

peak cooling demand of the LTM building.

Looking at the relative differences (i.e. NRMSE) in the predictions

provided by the two BPS tools, highlighted the significance of these

variations. The largest divergence was found in the annual heating

energy consumption for ICF (NRMSE=26.05%) and HTM

(NRMSE=16.20%). Furthermore, the HTM case showed a major dif-

ference in the annual cooling and peak cooling loads (NRMSE=6.96%

and NRMSE=6.50% respectively). The LTM building showed overall

good consistency in the simulation predictions for both annual energy

consumption and peak loads, with the exception of peak cooling de-

mand (NRMSE=5.06%). Finally, there was good agreement between

the two tools for the peak heating loads, regardless of the amount of

thermal mass (NRMSE < 4%).

The monthly breakdown of annual heating energy consumption for

the default models, as illustrated in Fig. 5, shows that the greatest di-

vergence was found in results for the winter months (December, Jan-

uary and February); it was most significant in the ICF and the HTM

buildings. In the monthly breakdown of the annual cooling energy

consumption (Fig. 5) the predictions for ICF showed good consistency.

The most significant discrepancy was observed in LTM and HTM be-

tween January and April, and between November and December. Good

agreement between the two BPS tools was achieved over the summer

period. For peak heating loads (Fig. 5), the divergence was negligible

during the entire simulation period, for all three constructions. For peak

cooling loads (Fig. 5), the ICF case showed an insignificant variation

between the two tools, whereas the other two construction methods

(i.e. LTM and HTM), displayed a surprisingly high divergence in peak

cooling loads during the heating period (January to May and October to

December), yet there is a good consistency over the summer months.

3.1.2. Hourly simulation results of the two BPS tools relying on the default

settings

Fig. 6 shows the discrepancy in the hourly simulation results pro-

vided by the two BPS tools for the internal surface, the intra-fabric4 and

the external surface temperatures of the east wall. The results are

plotted for three consecutive days in the heating period, when the

lowest outside dry-bulb temperature was predicted. The divergence in

the predictions of the two tools was relatively low for the internal

surface temperature in all three constructions, with a maximum of

NRMSE5=4.00% observed in the ICF building. The node temperature

in the middle of the wall element showed that there was a more pro-

nounced discrepancy in the LTM building (NRMSE=29%), much

lower compared to the other two construction methods, where the

variation was NRMSE=4.71% for the ICF and just NRMSE=1.82%

for the HTM building. With regards to the outside surface temperature,

the same variation equal to NRMSE=12% was observed in all three

constructions.

Fig. 7 shows the discrepancy in the simulation predictions provided

by the two BPS tools for the inside surface, intra-fabric and outside

surface of the east wall for three consecutive days in the cooling season.

The variation in the temperature of the internal surface was negligible

in all three constructions (below NRMSE=2%). There was an

NRMSE=5% discrepancy in the predictions of the intra-fabric tem-

perature of the LTM wall. Finally, there was an NMRSE=8.75% dis-

crepancy in the simulation of the outside surface temperature, which

was again found to be the same in all three construction methods.

It is noteworthy that although the divergence in the simulation

predictions provided by the two BPS tools was relatively low with re-

gards to hourly temperature results, looking at the absolute divergence,

there were instances that the maximum temperature difference was

high. For example looking at the internal surface of the ICF building, as

Fig. 4. Absolute Difference and NRMSE between the simulation predictions provided by

tools A and B for the three construction methods, when the user relies on the tools' default

settings.

4 Tool A calculates by default the conduction heat transfer using the Conduction

Transfer Function algorithm. CTF does not allow the calculation of temperature dis-

tribution within the element of the fabric. For the purposes of this analysis, the con-

duction heat transfer algorithm for the East wall was set to Conduction Finite Difference.
5 The hourly temperature results are expressed in degree centigrade throughout the

paper (°C). If expressed in Kelvin (K), then the RMSE values might have been different.
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Fig. 5. Monthly breakdown of annual heating and cooling energy consumption and peak heating and cooling loads. Simulation predictions provided by tool A and tool B for all three

constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the user relies on the tools' default settings.
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predicted by the two tools (Fig. 6), the maximum absolute difference

reached up to 5 °C. This finding could affect significantly the outcome of

thermal comfort assessments and the selection of BPS tools could result

in different conclusions regarding the thermal performance of the

building.

The discrepancy in the predictions of the east wall temperature

evolution was relatively low in all three construction methods (apart

from the intra-fabric temperature of the LTM wall in the heating

season). In general, the discrepancy in the results for the wall tem-

perature was found to be higher in the LTM building than the other two

Fig. 6. Hourly breakdown of the inside surface, intra-fabric and outside surface temperature of the east wall. Simulation predictions provided by tool A and B for three consecutive days in

the heating season (03–05 January) for all three constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the user relies on the tools' default settings.
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construction methods. As a result it would be expected that the varia-

tion in the heating demand predictions would also be higher in the LTM

building. Surprisingly, the hourly breakdown of the heating demand, as

indicated in Fig. 8, showed that there was an NRMSE=13.43% for the

ICF building, an NRMSE=9.20% for the HTM building and the LTM

building showed the lowest variation equal to NRMSE=5.16%.

The discrepancy in the simulation predictions for the hourly cooling

demand in the three-day cooling period as shown in Fig. 9 was

Fig. 7. Hourly breakdown of the inside surface, intra-fabric and outside surface temperature of the east wall. Simulation predictions provided by tool A and B for three consecutive days in

the cooling season (26–28 July) for all three constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the user relies on the tools' default settings.
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relatively low for all three construction methods, even when the user

relies on the default setting of the tools.

3.2. Phase 2: simulation results of equivalent models

3.2.1. “Equivalencing” the models

Prior to analysing the various calculation algorithms and their im-

pact on the results divergence, it was essential to minimise the differ-

ences in the two models, caused by other factors. As part of the

“equivalencing” process, Figs. 10–13 show the various steps used to

minimise the difference between the two tools, i.e. to make the models

equivalent for comparison. Results are shown for all three construction

methods (ICF, LTM, and HTM), for each tool, along with the NRMSE.

Fig. 10 shows the process of making the models equivalent and its

impact on the monthly breakdown of annual heating energy con-

sumption. Fig. 11 shows the “equivalencing” progression for annual

cooling energy consumption. Figs. 12 and 13 show “equivalencing” in

the peak heating and peak cooling demands, respectively.

In every case the “equivalencing” process resulted in reasonably

consistent simulation results provided by the two BPS tools for the

equivalent models (Step 4 in Figs. 10–13). The largest discrepancy was

observed in the annual heating and cooling demand of the HTM

building. A step-by-step process was followed to make the models

equivalent by changing to identical solution algorithms.

• In Step 1 the conduction heat transfer algorithm in tool A was set to

finite difference to match the conduction heat transfer calculation of

tool B. This reduced the variation in the predictions for annual

heating energy consumption in the LTM and HTM buildings, yet it

increased the NRMSE in the ICF case (compared to the default

models in Fig. 9). The NRMSE was also increased in the predictions

for the annual cooling demand for ICF and LTM, while it was re-

duced in the HTM building. Moreover, the discrepancy increased in

predictions for the peak cooling loads for all three constructions.

• In Step 2 the same view factors, used to calculate the radiant heat

exchange between surfaces, were set in both models. This reduced

the NRMSE in all cases, for all three constructions, apart from the

peak heating loads, where it was slightly increased for LTM and

HTM.

• In Step 3 the direct solar distribution falling on each surface in the

Fig. 8. Hourly breakdown of heating demand. Simulation predictions provided by tool A and B for three consecutive days in the heating season (03–05 January) for all three con-

structions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the user relies on the tools' default settings.

Fig. 9. Hourly breakdown of cooling demand. Simulation predictions provided by tool A and B for three consecutive days in the cooling season (26–28 July) for all three constructions: (a)

ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the user relies on the tools' default settings.
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Fig. 10. “Equivalencing” the models. Monthly breakdown of annual heating energy predictions provided by tool A and tool B for all three constructions: (a) ICF, (b) low thermal mass

(LTM) and (c) high thermal mass (HTM).
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Fig. 11. “Equivalencing” the models. Monthly break down of annual cooling energy predictions provided by tool A and tool B for all three constructions: (a) ICF, (b) low thermal mass

(LTM) and (c) high thermal mass (HTM).
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Fig. 12. “Equivalencing” the models. Monthly break down of peak heating loads predictions provided by tool A and tool B for all three constructions: (a) ICF, (b) low thermal mass (LTM)

and (c) high thermal mass (HTM).
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Fig. 13. “Equivalencing” the models. Monthly break down of peak cooling loads predictions provided by tool A and tool B for all three constructions: (a) ICF, (b) low thermal mass (LTM)

and (c) high thermal mass (HTM).
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zone, including floor, walls and windows was calculated in both

models by projecting the sun's rays through the exterior windows.

This step significantly affected all the results. The NRMSE in the

predictions was notably reduced in almost every case, particularly in

the annual heating energy consumption. However, the NRMSE in

the peak heating was increased in the HTM case.

• Finally, in Step 4 the convection coefficients of the internal and

external surfaces, used to calculate the convection heat transfer,

were set to the same constant user-defined values. This, surprisingly,

increased the variation for the annual cooling energy consumption

and decreased the discrepancy in the annual heating and the peak

loads for all three constructions. Furthermore, a general observation

is that, by setting the surface convection coefficients to constant, the

energy consumption predicted by both tools for the annual and the

peak heating demand for all three construction methods increased

considerably, whereas the annual and peak cooling demand re-

mained unaffected. Assuming constant values for the convection

coefficients was a limitation of this study. In reality the building is

always exposed to changes in the boundary conditions, resulting in

time-varying convective transfer coefficients [58]. However, for the

purpose of this analysis, where the aim was to minimise the differ-

ences between the two BPS tools as much as possible, constant

convection coefficients were used in order to reduce the level of

modelling uncertainty.

3.2.2. Annual simulation results of equivalent models

Following the model “equivalencing” process, the profiles of the

monthly breakdown for the annual heating demand of the equivalent

models (Step 4 in Fig. 10) show that the most pronounced discrepancy

was found again in the winter months (January to February), especially

in the ICF building. In the annual cooling energy consumption however

(Step 4 of Fig. 11), the greatest divergence in the equivalent models was

observed between July and October in all three construction methods,

and was more obvious in the ICF and HTM cases. Contrary to the de-

fault models, an overall good agreement was observed in the annual

cooling results of the two BPS tools during the winter period. In the

peak heating and peak cooling loads (Step 4 in Figs. 12 and 13) the

NRMSE was insignificant and no substantial discrepancy was evident.

The divergence in the annual simulation results for the equivalent

models was reduced compared to the default models (Fig. 14) in both

heating and cooling demand and for all construction methods. Fig. 14

shows the absolute difference and the NRMSE in the simulation pre-

dictions provided by tools A and B for annual heating and cooling en-

ergy consumption and peak heating and cooling loads for both the

default and the equivalent models. The graph illustrates how the ab-

solute difference and the NRMSE were reduced in the equivalent

models for all three construction types, in instances up to 24% (i.e.

annual heating of ICF). With regards to the absolute differences, the

highest discrepancy in the prediction of the two tools was observed in

the annual cooling demand, reaching up to 300 kWh for all three con-

struction methods. This value might be considered as high, yet when

compared to the total calculated annual cooling demand (i.e. varies

between 4000 kWh for the HTM and to 7000 kWh for the LTM build-

ings) it is of less significance. In the annual heating, peak heating and

peak cooling demand the absolute differences were minimised for all

three buildings. Looking at the relative differences in the predictions

provided by the two BPS tools, the highest divergence was observed in

the annual heating and cooling energy consumption of HTM and the

annual cooling demand of the ICF building (NRMSE=4.6% and

NRMSE=4.1%, respectively). In general, the simulation results pro-

vided by the equivalent models for all three construction methods were

very consistent. However, the discrepancy in the prediction of the an-

nual cooling demand remained high in all three constructions even after

the models were “equivalenced”. Particularly in the case of ICF, the

divergence in the calculation of the annual cooling demand increased

after the “equivalencing” process rather than decreasing.

3.2.3. Hourly simulation results of equivalent models

Fig. 15 and Fig. 16 show the discrepancy in the hourly simulation

results provided by the two BPS tools for the internal surface, the intra-

fabric and the external surface temperatures of the east wall after the

“equivalencing” process. Fig. 15 shows the results for three consecutive

days in the heating period. As can be seen from the graphs the variation

in the predictions for all three constructions was very low for the

Fig. 14. Absolute difference and NRMSE between the simulation predictions provided by tools A and B for the three construction methods, (i) ICF, (ii) low thermal mass (LTM) and (iii)

high thermal mass(HTM), when the user relies on the tools' default settings and when the models are equivalent.
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temperatures of the three nodes (i.e. inside surface, intra-fabric and

outside surface). A very good consistency was achieved in the results

provided by the two BPS tools. The highest variation was found in the

outside surface temperature, where the NRMSE=3.00%, yet it was still

relatively low.

An even better agreement between the two tools was achieved for

the prediction of the surface temperatures in the cooling period

(Fig. 16). The variation in the temperature of the nodes for all three

case, inside surface, intra-fabric and outside surface was found to be

negligible in all three constructions (below NRMSE=2%).

Fig. 15. Hourly breakdown of the inside surface, intra-fabric and outside surface temperature of the east wall. Simulation predictions provided by tool A and B for three consecutive days

in the heating season (03–05 January) for all three constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the models are equivalent.
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The absolute differences in the internal, intra-fabric and external

temperatures, as predicted by the two BPS tools, were also negligible

for both periods under investigation and for all three construction

methods.

With regards to the hourly breakdown of the heating and cooling

demand, as illustrated in Fig. 17 and Fig. 18, there was again a very

good agreement in the predictions provided by the two BPS tools. For

the heating demand (Fig. 17) the discrepancy was found to be lower

Fig. 16. Hourly breakdown of the inside surface, intra-fabric and outside surface temperature of the east wall. Simulation predictions provided by tool A and B for three consecutive days

in the cooling season (26–28 July) for all three constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the models are equivalent.
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than NRMSE=4.50% for all three construction methods. The variation

in the cooling demand (Fig. 18) was found to be even lower and around

NRMSE=2.50% for all three buildings. The general observation is the

after the model were equivalenced, there was a very good consistency

in the hourly simulation predictions both for the surface temperatures,

but also for the space heating and cooling needs.

3.2.4. Comparison of thermal performance between the three constructions

A comparison was performed on the annual thermal performance of

ICF against the thermal performance of the LTM and the HTM building,

before and after the model “equivalencing” process. The aim was to

investigate whether the “modelling gap” would affect the conclusions

on the comparative performance of ICF and to highlight the significance

of reducing uncertainties in building performance simulation. The re-

sults illustrated in Figs. 19 and 20 show the average in the simulation

predictions provided by the two BPS tools for the default and equivalent

models, respectively. Tables 2 and 3 summarise the percentage differ-

ence in energy consumption of ICF compared to LTM and HTM, as

Fig. 17. Hourly breakdown of heating demand. Simulation predictions provided by tool A and B for three consecutive days in the heating season (03–05 January) for all three

constructions: (a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the models are equivalent.

Fig. 18. Hourly breakdown of cooling demand. Simulation predictions provided by tool A and B for three consecutive days in the cooling season (26–28 July) for all three constructions:

(a) ICF, (b) low thermal mass (LTM) and (c) high thermal mass (HTM), when the models are equivalent.

Fig. 19. Comparison of ICF building energy consumption to LTM and HTM buildings,

when the user relies on the tools' default settings, average of both tools.

E. Mantesi et al. Building and Environment 131 (2018) 74–98

90



predicted by each two BPS tools (along with their average).

Fig. 19 and Table 2 show the comparison between ICF, LTM and

HTM buildings when the user relies on the default settings of the tools.

Comparing the overall annual heating demand of ICF to the other two

construction methods, the two BPS tools predicted that ICF would re-

quire on average 80.5% less annual heating energy than LTM and 60%

more than HTM. In the annual cooling energy consumption, ICF showed

33.5% less cooling demand than the LTM building and 13.5% more

than the HTM building. The peak heating loads of the ICF building were

25.5% less compared to the LTM building and 18% higher than the

HTM. Finally, in the peak cooling loads ICF showed 33.5% reduced

cooling demand than the LTM and 19% increase compared to the HTM

building.

After the models “equivalencing” process the results, as shown in

Fig. 20 and Table 3, indicate that ICF behaves closer to the HTM

building than before. For instance, in the annual heating demand, the

two BPS tools predicted that ICF would require on average 56% more

energy than the HTM building. This figure remains high, yet it is lower

than the initial estimations pre-equivalencing (Table 2). Accordingly,

post-equivalencing the ICF building showed 8% increased peak heating

demand compared to the HTM building (Table 3). Pre-equivalencing

this value was estimated to be 18% (Table 2). Similar findings apply to

the peak cooling demand. The general remark both before and after the

model “equivalencing” process is that the ICF building behaved much

more similarly to HTM, with the exception of annual heating energy

consumption. For annual heating demand, although the energy con-

sumption of ICF was significantly reduced compared to LTM (78.5%), it

still required higher amount of heating energy compared to HTM

(56%). In the annual cooling demand and the peak heating and cooling

loads ICF consumed slightly increased energy than the heavyweight

structure. In the comparison of ICF to LTM, the former consumed sig-

nificantly less energy for both annual heating and cooling.

Looking at the monthly breakdown of the annual and peak, heating

and cooling demand for the equivalent models (Step 4 of Figs. 10–13),

the thermal performance and the energy consumption of ICF was

compared to the other two options. For annual heating energy con-

sumption (Step 4 in Fig. 10), the profiles of the monthly breakdown is

similar for all three constructions, although the amount of heating de-

mand varies significantly. More specifically, LTM requires a maximum

of around 500 kWh of heating during January, while ICF and HTM

require approximately 150 kWh and 80 kWh respectively. Moreover,

the LTM results indicated no heating demand for two months, July and

August, and for ICF there was no heating demand for five months (i.e.

May to September). For HTM, the heating demand was even smaller

and the results predicted zero heating for seven months, between May

and November.

In the annual cooling energy consumption (Step 4 of Fig. 11), ICF

and HTM followed very similar profiles in the monthly breakdown and

require similar amounts of cooling. LTM indicated a different profile of

annual cooling compared to the other two cases, throughout the year.

In general, it required more cooling energy, with higher peaks, espe-

cially over the heating period (i.e. January to May, September to De-

cember).

In respect of peak heating loads (Step 4 of Fig. 12), all three con-

struction methods showed different monthly profiles. As with the an-

nual heating demand, in the peak heating loads, LTM indicated no

heating demand for two months, in July and August. The ICF building

required no heating for almost five months (May to September), while

HTM indicated no peak heating loads over a period of six months (May

to October). LTM required a maximum peak heating of around 2.50 kW

in January, while for the other two methods the maximum demand (of

around 2.00 kW) occurred in February. In general LTM showed in-

creased peak heating demand throughout the year compared to the

other two buildings. ICF and HTM required relatively similar amounts

of heating over winter and summer, with the main differences found to

be over the intermediate periods (March to May and September to

November).

For peak cooling loads (Step 4 of Fig. 13), all three constructions

showed a similar profile in the monthly breakdown, with the exception

of November and December, when there was a significant drop in the

peak cooling loads for ICF and HTM, yet for LTM the demand remained

almost constant. The amount of peak cooling in LTM was higher com-

pared to the other two cases, throughout the year.

Looking at the difference in predicted performance of ICF compared

to the other two construction methods due to the use of different tools,

before and after the model “equivalencing” process, as indicated in

Tables 2 and 3, it is obvious that a very good consistency was achieved

after the models were “equivalenced”. More specifically, in the com-

parison of ICF to HTM construction method, pre-equivalencing the

Fig. 20. Comparison of ICF building energy consumption to LTM and HTM buildings,

when the models are equivalent, average of both tools.

Table 2

Percentage difference in energy consumption of ICF compared to LTM and HTM, when

the user relies on the tools' default settings.

ICF Energy Consumption

ICF vs. LTM ICF vs. HTM

Tool A Tool B Average of

both Tools

Tool A Tool B Average of

both Tools

Annual

Heating

−83% −78% −80.5% +57% +63% +60%

Annual

Cooling

−33% −34% −33.5% +11% +16% +13.5%

Peak Heating

Loads

−27% −24% −25.5% +16% +20% +18%

Peak Cooling

Loads

−36% −31% −33.5% +15% +23% +19%

Table 3

Percentage difference in energy consumption of ICF compared to LTM and HTM, when

the models are equivalent.

ICF Energy Consumption

ICF vs. LTM ICF vs. HTM

Tool A Tool B Average of

both Tools

Tool A Tool B Average of

both Tools

Annual

Heating

−78% −79% −78.5% +55% +57% +56%

Annual

Cooling

−37% −37% −37% +14% +14% +14%

Peak Heating

Loads

−19% −19% −19% +8% +8% +8%

Peak Cooling

Loads

−34% −33% −33.5% +13% +15% +14%
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variation between the two tools was around 6% in the annual heating,

4% in the annual cooling and peak heating loads and up to 8% in the

peak cooling loads. After the models were “equivalenced” the variations

in the predicted performance provided by the two BPS tools were

minimised to less than 2%. Similar findings apply to the comparative

performance of ICF to LTM construction method. In general, the

“equivalencing” process resulted in more consistent conclusions re-

garding the energy consumption of ICF compared to the other two

construction methods.

3.3. Phase 3: investigating the impact of different modelling methods on BPS

results

During the “equivalencing” process, several observations were made

in respect of the different modelling methods employed by the two BPS

tools – this section provides an overview of some important points.

The first was the solar timing that was used in the calculation of the

solar data. In both tools the solar values in the weather file were

average values over the hour. When the simulation timestep was

greater than 1 (sub-hourly simulation), interpolated values were used.

Tool A calculated by default the average values based on the midpoint

of each hour, whereas tool B offered a user-selectable option to treat

solar irradiance included in the climate files, based on the half hour or

the top of each hour. As a consequence, the selection of the solar timing

calculation affected the simulation results provided by tool B. Fig. 21,

shows the comparison of the simulation predictions provided by tool B

when the solar timing was set to the midpoint or the top of the hour, for

annual and peak heating demand (Fig. 21a) and annual and peak

cooling demand (Fig. 21b). The hatched bars show the results when

solar timing is taken at the midpoint of the hour and the solid-coloured

bars show the results when solar timing is taken at the top of each hour.

For all three construction methods, the annual and the peak heating

demand was always reduced when the solar timing was set to the

midpoint of the hour, but the annual and peak cooling was slightly

increased. Fig. 21a shows some very clear differences in the predicted

annual heating demand due to solar timing calculations for all three

construction methods. The maximum difference, as indicated in

Table 4, was in the annual heating energy consumption of the HTM and

the ICF buildings (−7.48% and −6.23% respectively). In general there

were insignificant differences in the annual and peak cooling demand;

hence the solar timing had only a minor impact on the cooling pre-

dictions.

Another factor that was investigated as part of the “equivalencing”

process was the impact of assumptions for the calculation of the ex-

ternal surface convection coefficients; more specifically, the impact of

variations in wind speed on the simulation results provided by the two

Fig. 21. Absolute difference in the predictions provided by tool

B when solar timing is set to the midpoint or the top of the hour.

(a) Annual and peak heating demand, (b) Annual and peak

cooling demand.

Table 4

Relative difference in the predictions provided by tool B when solar timing is set to the

midpoint or the top of the hour.

Solar Timing Calculation

Relative Difference

Annual Heating Peak Heating Annual Cooling Peak Cooling

ICF −6.23% −0.32% +0.30% +0.05%

LTM −3.27% −0.41% +0.14% +0.13%

HTM −7.48% −0.62% +1.18% +1.10%
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BPS tools. When the external convection coefficient of the surfaces was

set to constant (user-defined), the variations in the wind speed (i.e.

taken from the climate file), had no impact on the simulation results, as

anticipated. In other words, assuming a constant exterior convective

coefficient, could be interpreted as setting a constant value for the wind

velocity throughout the simulation period. However, when the con-

vection coefficients were calculated based on the default algorithms,

the impact of wind speed differed between the two tools and varied

according to the construction method. The reason was that both tools

consider the wind speed in their external surface convection coefficient

calculation regime, yet they use different equations to do so. Tool A

included surface roughness within the external convection coefficient

calculation, whereas tool B relied solely on the wind speed. To in-

vestigate this issue further, the default algorithms for the calculation of

convective heat transfer coefficients were selected in both tools and the

simulations were performed twice; once when the wind speed was

taken from the climate file and once when the wind speed in the climate

file was set to 0 m/s throughout the whole year.

Fig. 22 shows the impact of the assumptions for convective heat

transfer coefficients on the results provided by tool A and tool B, for

annual and peak heating demand and annual and peak cooling demand.

The graphs illustrate the absolute difference in kWh (annual demand)

and in W (peak loads) when the wind speed is taken from the climate

file and when the wind speed is set to 0 m/s throughout the simulation

period. The solid-coloured bars show the reduction (or increase) in the

results due to the lack of wind for tool A and the hatched bars show the

reduction (or increase) for tool B. Here, annual and peak heating de-

mand was reduced in the absence of wind, whereas the annual and peak

cooling demand increased, for both tools and for all construction

methods. The assumptions for the convective heat transfer coefficients

had the most significant impact in the calculation of the annual heating

and cooling energy consumption (Table 5). Their impact was also ob-

vious in the peak heating loads, whereas, the differences in the simu-

lation of the peak cooling loads with and without wind were negligible.

In every case, with the exception of the peak cooling loads, the impact

of assumptions related with the calculation of convection coefficients

was more profound for the ICF and HTM, for both tools. For annual

heating demand, the impact of wind speed variations had a more sig-

nificant effect within tool B than tool A. In all other cases (i.e. peak

heating and annual and peak cooling), the impact was similar for both

tools.

4. Discussion

The following section includes a discussion of the academic im-

plications of this research, in respect of key literature in the area and

contribution to knowledge. ICF is mostly perceived as an insulated

panel, because of the internal layer of insulation, which is expected to

act as a thermal barrier, isolating the thermal mass of the concrete from

the internal space. Even though there is evidence from previous studies

[25,38], supporting its thermal storage capacity, when compared to a

light-weight timber-frame panel with equal levels of insulation, there is

still a gap in knowledge in quantifying its thermal mass.

There is a difference between the thermal mass of the fabric and the

effective thermal mass. The term effective thermal mass is used to de-

fine the part of the structural mass of the construction which partici-

pates in the dynamic heat transfer [21,59]. There are several simplified,

usually simple dynamic, quasi-steady state or steady state methods used

for the calculation of energy use in buildings, such as the BS EN ISO

13790: 2008 [60] and the UK Government's standard assessment pro-

cedure for energy rating of dwellings (SAP2012) [61]. In such ap-

proaches the effective thermal mass is usually accounted for with

simplified calculations, relying on the thermal capacity of the zone's

construction elements. Taking SAP as an example, in order to calculate

the thermal mass parameter of an element, one needs to calculate the

heat capacity of all its layers. However, it is specifically stated that

starting from the internal surface, the calculations should stop when

one of the following conditions occurs:

- an insulation layer (thermal conductivity≤ 0.08W/m·K) is reached;

- total thickness of 100mm is reached.

- half way through the element;

In other words, according to SAP the storage capacity of ICF con-

crete core is completely disregarded. Similarly in the ISO 13790: 2008,

the internal heat capacity of the building is calculated by summing up

the heat capacities of all the building elements for a maximum effective

thickness of 100mm. This highlights the significance of using reliable

dynamic whole building simulation in order to evaluate accurately the

thermal performance of specific buildings and non-conventional con-

struction methods.

On the other hand, it is widely accepted that large discrepancies in

simulation results can exist between different BPS tools [6,33,43]. Ka-

lema et al. [62], compared three different BPS tools with regards to

their ability in calculating the effect of thermal mass in energy demand

reduction. The authors contrasted the simulation results provided by

the three BPS tools and analysed their divergence. However, they did

Fig. 22. Absolute difference in kWh and W between results

provided by tool A and tool B, when simulations are performed

with and without wind. Annual and peak heating demand, an-

nual and peak cooling demand.

Table 5

Relative difference in the predictions provided by tool A and tool B, when simulations are

performed with and without wind.

Impact of Assumption for Convective Heat Transfer Coefficients

Relative Difference

Annual Heating Peak Heating Annual Cooling Peak Cooling

Tool A Tool B Tool A Tool B Tool A Tool B Tool A Tool B

ICF −18% −24% −7% −6% +12% +11% +3% +3%

LTM −10% −10% −4% −5% +6% +6% +3% +2%

HTM −25% −31% −9% −8% +15% +14% +4% +3%
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not reflect on the impact that the different calculation methods em-

ployed by the tools had on the results discrepancy. When creating a

simulation model, the users are asked to make several important deci-

sions; which BPS tool to use, how to specify the building, which input

values are appropriate, which modelling methods and simulation al-

gorithms to select. Several studies analysed the influence of modelling

decisions and user input data in the simulation predictions [54,55,63].

In the work conducted by Beausoleil-Morrison and Hopfe [64] a post-

simulation autopsy was performed on the results provided by nine

different model users for the BESTEST building. The analysis high-

lighted the influence of default setting and decision-making during the

specification of a simulation model. In a similar context the work pre-

sented in this paper investigated the effects of default settings, different

modelling methods and calculation algorithms on the “modelling gap”.

However to the authors' knowledge this is the first time that such an

analysis was done focussing on the representation of different types of

thermal mass in whole BPS. Furthermore, this is the first detailed

analysis on the simulation of ICF, a construction type that has not

previously been studied.

The analysis showed that there is indeed a large divergence in the

simulation results provided by the two tools for the default models in

terms of both the absolute and relative differences. It is important to

look both at the relative differences in terms of inter-modelling diver-

gence, but also to appreciate the real meaning of values. For instance,

the absolute difference in the calculation of annual and peak heating

and cooling loads (Fig. 4) showed that the maximum value was ob-

served in the peak cooling loads of the LTM building (i.e. 700W). That

might be considered as a high number, however comparing it to the

total predicted peak cooling loads for the LTM building (which was

calculated on average around 6000W by both tools), it becomes clear

that it is not such a substantial difference. In contrast, the absolute

difference in the predictions of the two tools for the annual heating

demand of the ICF was 100 kWh. Given that the average total annual

heating demand calculated by both tools was around 400 kWh, it is

clear that the discrepancy in this case is much more significant. Another

example is the calculation of internal surface temperature as illustrated

in Fig. 6. The predictions provided by the two tools for the ICF building

showed a variation of NRMSE=4%. Nevertheless, looking at the actual

numbers, it can be seen that the temperature difference was at times, as

much as 5 °C. Although there is seemingly a good consistency in the

simulation predictions provided by the two tools, an absolute tem-

perature difference of 5 °C is substantial. This practically means that

very different interpretations could be drawn regarding the thermal

comfort assessment of the ICF building based on the selection of BPS

tool.

In general, the results of the default models showed that in the ICF

and HTM buildings the variation in the annual heating demand was up

to 26% and 16%, respectively. Furthermore, the greatest inconsistency

was observed over the winter months. The discrepancy was evident in

all three construction methods, for both annual and peak, heating and

cooling demand. A better agreement was found in the simulation results

for the summer period. The results indicated that further investigation

was required to minimise the differences in the way the two BPS tools

simulate solar gains.

Prior to analysing the various calculation algorithms and their im-

pact on the results divergence, it was essential to minimise the differ-

ences in the two models, caused by other factors. A process of making

the models equivalent was followed, where identical algorithms and

input values were specified in both BPS tools. The results of the

equivalent models showed very good agreement for all three con-

struction methods (Fig. 14). The HTM case remained the one where the

greatest inconsistencies were observed, even after the models were

“equivalenced” (NRMSE=4.6% in the annual heating and cooling

demand). Moreover, the discrepancy in the prediction of the annual

cooling demand remained relatively high in terms of both absolute and

relative difference for all three constructions. More specifically, in the

case of ICF building, the “equivalencing” process increased the dis-

crepancy in the simulation results, resulting in an NRMSE=4.1%. This

finding indicates that there is a level of modelling uncertainty allied to

ICF simulation that requires further investigation through measure-

ments and empirical validation.

The “equivalencing” process showed that the two most influential

parameters in the results' divergence was the distribution of direct solar

radiation and the specification of the surface convection coefficients.

The assumption of a default insolation distribution, rather than a time-

varying calculated insolation distribution, could be considered to be a

modelling decision, rather than a modelling uncertainty. In this case,

the user may be justifiably deploying a simplified approach to save time

and computational effort, in the knowledge that there will be a loss of

accuracy. Similarly, the incorrect specification of solar timing can be

considered to be a user error, not a modelling uncertainty. In the con-

text of this paper however, we addressed the impact of default settings

under the umbrella of modelling uncertainties, in addition to para-

meters such as convection coefficients and sky temperature calcula-

tions.

Another interesting finding of the study was when the thermal

performance of ICF was compared to the other two construction

methods. This was done both before and after the model “equivalen-

cing” process. The ICF building was found to perform closer to the HTM

building, both pre- and post-equivalencing. However the predictions

regarding the comparative performance of ICF in relation to the other

two construction methods differed, based on the selection of the BPS

tool pre-equivalencing. It was noteworthy that after the model

“equivalencing” process a very good agreement was observed in that

respect by both tools. This finding highlighted the importance of

minimising the “modelling gap” and showed that relying on the default

settings of the BPS tools could potentially be misinterpreted.

Nevertheless, due to the lack of real monitoring data the accuracy of

simulation predictions cannot be empirically validated and does not

permit robust conclusions to be drawn on the actual performance of ICF

(or the other two construction methods). This and all the other lim-

itations of the study are thoroughly discussed in the following sections.

5. Research limitations

There are several constraints and limitations in the study presented

in this paper. One of the most important is the absence of an absolute

truth. In other words, it is impossible to say what is correct and what is

wrong, whether one tool performs closer to reality than the other or

even if ICF indeed performs closer to reality after the “equivalencing”

process.

To achieve a direct comparison between the two BPS tools and to

minimise the level of uncertainty in the input data several decisions

were made during the “equivalencing” process. An example is the use of

constant values for the surface convection coefficients. In fact, the

building is always exposed to changes in the boundary conditions, both

internally and externally. This practically means that the convection

coefficients of the surface would vary over time [58]. For the purpose of

this study it was decided to use constant user-specified values in order

to minimise the difference between the two BPS tools as much as pos-

sible. This decision may help to reduce the “modelling gap”, however it

introduces an understandable prediction error in the approximation of

reality.

Moreover, the case study selected for the study prevented several

important factors related to thermal mass simulation from being ana-

lysed, such as the impact of variable internal gains and air flows, the

impact of intermittent occupation, the risk of overheating and others.

The case study set up was selected in order to reduce the specification

and scenario uncertainties as much as possible. The specification un-

certainties are associated with incomplete or inaccurate specification of

building input parameters. The scenario uncertainties are all the ex-

ternal conditions imposed on the building due to weather conditions,
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occupants' behaviour and others [47]. In the study of Hopfe and Hensen

[42] the specification uncertainties associated with physical properties

of the materials contributed to 36% increase in the annual heating

demand and up to 90% increase in the annual cooling demand. Gaetani

et al. [51], found that the scenario uncertainties imposed on the

building due to occupants' behaviour could contribute up to 170% in-

crease in the simulation of annual heating energy consumption. From

that perspective, the case study selection served well the purpose of

analysing the “modelling gap”. Certainly, it was difficult to derive solid

conclusions about the actual thermal performance of either of the three

construction methods in such a simplified simulation scenario. Com-

paring the relative performance of the ICF building against the other

two construction methods showed that, in the specific case study, the

former behaves closer to the HTM building, a finding that was further

enhanced after the two models were equivalenced. However, a more

realistic case study, where the three construction methods would be

compared in a more representative environment and where real data

could be used as a reference point to the actual ICF performance, could

improve the reliability of this outcome.

The analysis was performed using the NRMSE. The RMSE is a

helpful metric used for comparisons between data sets. However, when

normalised to the mean of the observed data (i.e. NRMSE) it becomes

unitless. This may facilitate the comparison of results that are in dif-

ferent units, yet it makes it difficult to put things in context. One ex-

ample is the energy consumption of the HTM building. In general, the

HTM building showed a reduced energy demand compared to the other

two construction methods. This translates into a higher NRMSE value in

the HTM building even if the absolute difference in the predictions

provided by the two BPS tools is the same for the other two construction

methods. There might be cases where the result of this magnification

could be misinterpreted by the reader. It is considered rather important

to look at both the absolute and relative difference in order to ap-

preciate the significance of the results' variations.

Finally, the main aim of the study was to perform a crude com-

parative analysis between the two BPS tools and reflect on the impact

that the different algorithms and default settings have on the re-

presentation of thermal mass in whole building performance simula-

tion. From that point of view, the analysis was mostly focussed on

monthly and annual simulation results provided by the two BPS tools

for the heating and cooling demand. Hourly predictions on the space

heating and cooling loads and the surface temperatures were presented

for two representative periods before and after the model “equivalen-

cing” process, showing that there is indeed a level of uncertainty in the

way the charging and discharging of the mass is simulated in the two

BPS tools. However, further investigation is necessary to analyse how

the specific heat transfer mechanisms that occur in and out of the

building affect the transient performance of the thermal mass, how

these are simulated in different BPS tools and to give a better insight on

how to tackle the “modelling gap”.

6. Conclusions

To be able to support the commercial proposition of new materials

and innovative building technologies it is important to predict and

communicate their thermal behaviour and energy performance accu-

rately. Faced with a lack of empirical data, computer simulation can be

used to provide quantitative data, supporting the decision-making

process. The study presented in this paper investigated the “modelling

gap”, the implications of default input parameters and the impact of

different modelling methods on the representation of thermal mass in

BPS. Three different construction methods were analysed, considering

different levels of thermal mass in the building fabric; ICF, LTM and

HTM. This study is the first detailed analysis on the simulation of ICF

and the first study to reflect on the influence of modelling decisions on

thermal mass simulation.

Large discrepancies can occur when modelling an identical building

using different BPS tools. These inconsistencies are usually referred to

as modelling uncertainties [42] and can lead to a lack of confidence in

building simulation. In this research, modelling uncertainties account

for up to 26% of the variation in the simulation predictions. Their

impact might not be as high compared for example to uncertainties

related to occupancy (up to 170% in Ref. [51]), however it is sig-

nificant. The level of thermal mass in the fabric was found to have a

considerable impact on the inconsistencies in the results; hence the

highest variation was mostly observed in the ICF and the HTM build-

ings. Particularly in the case of ICF, of which there is currently little

research on modelling and evaluation of its performance, the selection

of BPS tool could cause ICF construction to look less desirable to de-

signers and hence impact market penetration. This practically means

that when evaluating simulation predictions for decision-making, the

impact of choosing a particular BPS tool or method should be ac-

knowledged by modellers.

There are many BPS tools currently on the market, each serving a

different purpose. To make BPS tools more “user-friendly”, software

companies often provide a default value for most of the required input

parameters. It is common for users to rely on default settings without

fully appreciating the implications on their decision and without fully

understanding the sensitivity of the model to several important para-

meters. The outcome of this study highlighted the need for BPS tools to

be transparent about their methods of calculation and for modellers to

make informed decisions about the specification of a model. Only then

can the quantification of energy savings through simulation be seen in

the correct context by designers and regulators.

The research was undertaken in three phases. In Phase 1, the di-

vergence in the simulation results provided by the tools when the model

user relies on the default input settings was found to be relatively high,

particularly in the annual heating energy consumption. The most sig-

nificant discrepancy was observed over the winter period, when the

solar angle is small. Better consistency was observed over the summer

months.

In Phase 2, after the “equivalencing” process, identical calculation

algorithms and input values were specified in both simulation models.

The results showed a very good agreement. The discrepancy in the

annual heating and cooling demand of the HTM building and the an-

nual cooling energy consumption of the ICF building remained the

highest between all three construction methods, indicating that there is

a level of modelling uncertainty in the representation of thermal mass

in BPS, which requires further investigation.

Lastly, in Phase 3 of this research, two different modelling factors

(i.e. solar timing and wind speed) were analysed to show how the

different modelling methods employed by the tools affect the results'

discrepancy, even when the input values are the same (in this case the

climate data). The analysis showed that the variation observed in the

simulation predictions was higher for the heating demand and in-

creased according to the level of the thermal mass in the fabric; hence

the most profound inconsistencies were observed once again in the si-

mulation of the ICF and HTM buildings.

The relative performance of ICF compared to the other two con-

struction methods was analysed before and after the model “equiv-

alencing” process. This research demonstrated that, for the specific case

study, ICF behaved in a broadly similar way to HTM. A finding which

was further enhanced after the models were equivalenced. This is a

potentially significant finding, indicating that ICF could be a viable

alternative for energy efficient construction. Nevertheless, validation

through further computational analysis, empirical testing, and building

monitoring will be required to validate the results and clarify future

directions for research.
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Appendix

Table A.1

Building fabric construction details

Construction Details

Element (Outside – Inside) K (W/mK) Thickness (mm) Density (kg/m3) Cp (J/kgK) U-Value (W/m2K)

insulated roof panel system Roof Decking 0.14 25 530 900

EPS Insulation 0.035 300 25 1400

Plasterboard 0.16 13 950 840

Total 0.11

ICF & High Thermal Mass Floor Hardcore 1.8020 300 2243 837

Gravel Blinding 1.73 50 2243 837

Membrane 0.19 5 1121 1674

EPS Insulation 0.035 350 25 1400

Concrete Slab 1.13 150 1400 1000

Total 0.10

Low Thermal Mass Floor Stone Bed 1.8020 300 2243 837

Wet Lean 1.73 50 2243 837

Membrane 0.19 5 1121 1674

EPS Insulation 0.035 350 25 1400

Timber Flooring 0.14 25 650 1200

Total 0.10

ICF Wall Assembly Wood Siding 0.14 9 530 900

EPS Insulation 0.035 210 25 1400

Cast Concrete 1.13 147 1400 1000

EPS Insulation 0.035 108 25 1400

Plasterboard 0.16 12 950 840

Total 0.11

Low Thermal Mass Wall Wood Siding 0.14 9 530 900

EPS Insulation 0.035 210 25 1400

EPS Insulation 0.035 108 25 1400

Plasterboard 0.16 12 950 840

Total 0.11

High Thermal Mass Wall Wood Siding 0.14 9 530 900

EPS Insulation 0.035 210 25 1400

EPS Insulation 0.035 108 25 1400

Cast Concrete 1.13 147 1400 1000

Plasterboard 0.16 12 950 840

Total 0.11

Table A.2

Algorithms and input values used in equivalent models

Simulation Solution (Loads, Plant, System Calculations): Simultaneous Calculations

Time Step: 6/h (10mins)

Warming up: 25 days

Heat Balance Solution Algorithms: Surface and Air Heat Balance Equations

Conduction Solution Method: Finite Difference Solution

Internal Convection Coefficient: Fixed, User-defined value (hi= 3.16)

External Convection Coefficient: Fixed, User-defined value (he=24.67)

Interior Surface Long-Wave Radiation Exchange: Calculated view factors (same values used in both programmes)

Exterior Surface Long-Wave Radiation Exchange: Surface, Air, Ground and Sky Temperature dependent

Direct Solar Internal Distribution: Calculated by the programme

Solar Timing for solar data calculation: Midpoint of the hour
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Table A.3

Calculation methods and default solution algorithms used in the BPS tools.

Tool A Tool B

Simulation Solution (Loads, Plant, System

Calculations):

Simultaneous calculations Simultaneous calculations

Time Step Resolution: Sub-hourly Sub-hourly

Heat Balance Solution Algorithms; Surface and air heat balance Surface and air heat balance

Conduction Solution Method; 1-dimensional 1-dimensional

Conduction Transfer Functions Finite Difference Solution

Internal Convection Coefficient Calculation: TARP Alamdari & Hammond correlations

External Convection Coefficient Calculation: DOE-2 McAdams correlations

Interior Surface Long-Wave Radiation

Exchange:

Script F(exchange coefficients between pairs of

surfaces)

Long-wave radiation exchange between all

zone surfaces

Exterior Surface Radiation Exchange: Surface, Air, Ground and Sky Temperature

Dependent

Surface, Air, Ground and Sky Temperature

Dependent

Direct Solar Radiation: Weather File Weather File

Diffuse Sky Model; Anisotropic Anisotropic

Solar Beam Distribution: Falling entirely on the floor Diffusely distributed within the zone

Time Point for solar data: Solar timing at the midpoint of each hour Solar timing at the top of each hour
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