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Abstract  

Marine propulsion plants can experience large power 

fluctuations during tight maneuvers, with increases of 

shaft torque up to and over 100% of the steady values in 

straight course and considerable asymmetry between 

internal and external shafts during turning circle. This 

phenomenon (studied in Viviani et al 2007a and 2007b), 

can be of particular interest for twin screw ships propul-

sion systems with coupled shaftlines, in which asym-

metrical loads can represent a challenge for the whole 

propulsion system (e.g. unique reduction gear, shaftli-

nes, automation). A joint research has been set up in 

order to deeply investigate the phenomenon, by means 

of large scale model testing and related numerical simu-

lations.  

In the present work, preliminary simulation results with 

different simplified automation systems and with an 

automation system more similar to the real one are re-

ported, allowing to get a better insight into this complex 

problem. 
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Introduction 

Marine propulsion plants can experience large power 

fluctuations during tight maneuvers. During these criti-

cal situations, dramatic increases of shaft torque are 

possible, up to and over 100% of the steady values in 

straight course. In the case of a twin-screw ship turning 

circle, the two shaft lines dynamics can be completely 

different in terms of required power and torque. In order 

to analyze this phenomenon, a preliminary work was 

performed in last years analyzing turning circle maneu-

vers at different speeds and rudder angles performed 

during sea trials for a series of twin screw naval ships. 

Results of this analysis allowed to underline a common 

trend for asymmetrical shaft power increase despite 

significant differences in ships considered in terms of 

dimensions, ship type and propulsion system (Viviani et 

al 2007a).  

A simplified approach to the problem by means of the 

adoption of an asymmetrical variation of wake fraction 

during maneuvers was proposed. This approach seemed 

promising, despite still presenting a certain uncertainty 

and a not completely clear trend and correlation with 

ship characteristics. With this in mind, a parallel analy-

sis by means of free running model tests was performed, 

in order to improve prediction accuracy for specific 

ships in preliminary design phases and to investigate 

possible scale effects for this phenomenon (Viviani et al 

2007b). 

On the basis of the outcomes of these preliminary analy-

ses, it was clear that this phenomenon, if not correctly 

considered, may be potentially dangerous, mainly for 

propulsion plants with two shaft lines driven by a 

unique reduction gear, which can be subject to signifi-

cant unbalances. This kind of propulsion plant,  reported 

schematically in figure 1, despite not very common, has 

been recently proposed as a solution for particular ap-

plications, such as naval ships. In these cases the ship 

automation system has to be designed  in order to pre-

vent possible problems. From another point of view, 

effect of asymmetrical shaft power increase during 

maneuvers (and of different behavior of the automation 

plant) may affect maneuvering behavior of the ship, 

with effect on macroscopic parameters such as tactical 

diameter in turning circle. 

In order to better analyze the physics related to this 

phenomenon, a new series of dedicated free running 

model tests (still under development at time of writing 

of present paper) has been planned, increasing the num-



ber of measurements with respect to usual set in this 

kind of tests and performing trials with different simpli-

fied automation behaviors (namely constant RPM, con-

stant torque and constant power), as it will be presented 

in the paper.  
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Fig. 1: Propulsion system configuration with coupled 

shaftlines  

Reason for application of different simplified automa-

tion is related to the interest in analyzing its possible 

effect on global maneuverability characteristics (mainly 

due to different propeller loading in turn and resulting 

effect on rudder force). Moreover, it will be also possi-

ble to analyze effect of different configurations on 

asymmetrical power increase. From this point of view, 

asymmetrical wake fraction variation (and eventually 

thrust deduction factor variation) will be evaluated first 

from constant RPM tests and then validated (or modi-

fied) on the basis of results of other tests. 

Results of these trials will be used for a fine tuning of 

ship propulsion system and maneuverability simulators, 

which in their turn may be used as a useful tool during 

ship propulsion system and automation design, being 

complementary to free running model tests, allowing to 

introduce elements which can hardly be represented in 

model scale (such as CPP, effective propulsion system 

functioning and automation effect, etc.). This approach  

of adopting hybrid simulators including propulsion 

system and ship maneuverability has been used at 

DINAEL for rather a long time (see Benvenuto et al 

2003 and Altosole et al 2008), and is becoming a stan-

dard in complex propulsion system (and automation) 

design. For the particular problem of asymmetrical shaft 

loading, a preliminary work was presented in Viviani et 

al 2008, with promising outcomes. 

In the present work, a brief summary of automation 

system behavior in general and of previous analyses 

regarding asymmetrical shaft power increase are re-

ported. Moreover, a description of different simulators 

developed (i.e simulators with simplified and with more 

realistic automation) and of some preliminary results 

already obtained is reported. Finally, the programmed 

experimental campaign is summarized. 

Automation system behavior 

In present paragraph, a brief review of some concepts 

related to propulsion system automation is reported.  

In a ship propulsion regulation chain two different con-

trollers are simultaneously in operation: the Engine 

Controller and the Propulsion System Controller. Gen-

erally the Propulsion System Controller is provided by 

the shipyard while the Engine Controller is responsibil-

ity of the engine manufacturer. The normal control 

philosophy is based on the set-point check of two of the 

main propulsion parameters: propeller pitch and shaft 

speed.   

The set-point control is done through the definition of 

proper rules (combinator), one for each working condi-

tion and maneuvering mode. 

The lever signal is somehow elaborated before entering 

the combinator block. This technique is used in order to 

avoid that too rapid changes of the lever position may 

overload the propulsion system. 

The engine control is based on a closed loop of the shaft 

speed, normally included into a governor block. The 

principal control is a PID (proportional, integral, deriva-

tive), usually with zero derivative action.  

The propeller pitch control is used to obtain the desired 

ship speed and, as overload protection, to limit the shaft 

torque. 

If two engines are operating on the same shaftline, the 

governor has to balance the loads on the two engines. 

The balance loop reacts to the torque difference between 

the two engines. In this kind of applications the re-

sponse time of the balance loop is an order of magnitude 

longer than the shaft speed loop.   

A similar loop may be required if it is necessary to bal-

ance the load of the two shaft lines. This latter function 

may be of particular interest when a propulsion plant 

configuration like the one reported in figure 1 is adopt-

ed, since it may avoid significant unbalances on the 

reduction gear. 

The governor normally contains ‘load control’ functions 

with the aim to prevent overloads on the propulsion 

system components. The load control functions can act 

on the propeller pitch as well as on the fuel flow. 

Previous data from sea trials and model tests 

As anticipated in the introduction paragraph, asymmet-

rical shaft power increase during turning circle maneu-

vers at different speed and rudder angle has been al-

ready considered in preliminary works, which provided 

a set of data from different naval ships (Viviani et al 

2007a).  

In the following, summary of results obtained is pre-

sented; in particular, stabilized power increases obtained 

for all ships are summarized in figures 2 and 3 for inter-

nal and external shafts respectively as a function of 

rudder angle, in correspondence to different ship speed 

(effect of ship speed proved to be rather limited).  

In these figures, experimental data are reported together 

with best-fit curves (linear in correspondence to external 

shaft, quadratic in correspondence to internal shaft), and 

a band indicating a range of plus and minus 10%. As it 

can be seen, despite data present obviously a certain 

scatter, a rather clear tendency is found. 

Stabilized power increase (recorded during stabilized 

part of the turn) at maximum rudder angle, excluding 

the most disperse data, ranges from about 85% to about 

105%, with a mean value of about 95%, and peaks up to 



120% for external shaft,, from 30% to 50%, having a 

mean value of about 40% and peaks up to 60% for in-

ternal shaft. Peak power increases, recorded in corre-

spondence to some maneuvers, resulted about 10-15% 

higher than stabilized ones, for both shafts. 
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Fig. 2: Internal shaft – Stabilized power increase 

(Viviani et al 2007) 
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Fig. 3: External shaft – Stabilized power increase 

(Viviani et al 2007) 

In past works, the approach used to analyze the shaft 

power increases was the “asymmetrical wake fraction 

variation” during turn. The process of asymmetrical 

loading is summarized in following figure 4. 

 

Fig. 4: Asymmetrical variation of advance coeffi-

cient J during manoeuvres (Viviani et al 2007) 

In particular, two effects are superimposed during ma-

neuvers, i.e.: 

- a first symmetrical variation of advance coeffi-

cient due to speed reduction in the turn 

- an asymmetrical variation of advance coeffi-

cient, which results in asymmetrical loading of 

shaftlines 

The second effect might be attributed to different caus-

es, i.e. longitudinal and/or tangential speed variation. 

After some analyses, it was found more convenient to 

consider only an equivalent longitudinal speed varia-

tion, by means of an asymmetrical wake fraction varia-

tion. This approach was applied for a ship and validated 

against different full scale trial results (including differ-

ent maneuvers such as ZigZag maneuver), allowing to 

conclude that asymmetrical wake fraction variation is 

function of drift angle rather than of rudder angles 

(Viviani et al 2008). This difference is not evident when 

analyzing turning circle maneuver, but becomes clear 

when more unsteady maneuvers are considered, such as 

ZigZag. 

It has to be remarked that trials planned in present re-

search project will provide more data (and specifically 

thrust and torque time histories), thus allowing in prin-

ciple to analyze other effects (such as possible asym-

metrical thrust deduction factor).  

Another important issue is represented by scale effects; 

in Viviani et al 2007b a comparison of results from free 

running model tests and sea trials, for a ship whose type 

and configuration are the same of the ship object of 

present study, was reported, allowing to have a first 

insight into this problem.  

In figures 5 and 6 results are reported, showing that, at 

least for the ship analyzed, power increases tend to be 

underestimated during free running model tests, with 

values lower by about 10-15% in correspondence to 

maximum rudder angle for both external and internal 

shafts. 
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Fig. 5: Sea Trials and Model Tests results compari-

son – External Shaft – Ship 6 (Viviani et al 2007) 
Internal Shaft - Stabilized power
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Fig. 6: Sea Trials and Model Tests results compari-

son– Internal Shaft – Ship 6 (Viviani et al 2007) 

Unfortunately, this result is the only one available at the 

moment, thus a more comprehensive analysis will be 

needed in future to confirm it. Experimental results in 

model scale of present research project, together with 

future sea trials of the ship, when available, will repre-

sent a first validation of this trend, and this will allow 

also to evaluate possible scale factors in both wake 



fraction and thrust deduction factor (and in drift angle 

during manoeuvre, which in its turn affects them) , 

which are likely to be the reason for differences shown 

in figures 5 and 6.  

Maneuverability and Propulsion Simulator 

Ship selected for present analysis is a twin screw naval 

ship, similar to those analyzed in previous studies. In 

following table 1, main ship characteristics are reported, 

where L is ship length, B is ship beam, T is draft, CB is 

block coefficient and AR is total longitudinal projected 

rudder area. 

L/B 7.531 

B/T 3.286 

CB 0.51 

AR/LT 3.2% 

Table 1: Main ship characteristics  

 

In the following, a brief overview of the simulator de-

veloped at DINAEL is reported. 

Brief Overview 

This simulator consists of a set of differential equations, 

algebraic equations and tables that represent the various 

elements of the propulsion system and the ship maneu-

verability behavior, namely automation, engines, pro-

pellers, shaft lines, rudders, hull forces and interactions 

between different elements.  

Solving numerically the differential equations allows to 

obtain time histories of propulsion system behavior 

(power, torque, RPM, etc.) and of maneuverability (in 

particular, the three degrees of freedom considered are 

surge, sway and yaw). The implementation of the nu-

merical code has been made in MATLAB-

SIMULINK® software environment, a wide used plat-

form for the dynamic systems simulation. 

Detailed information about the entire structure of the 

ship simulation model can be found in Benvenuto et al 

2003 and Altosole et al 2008, while in Viviani et 

al.2008 a first modification of the model in order to 

consider separated shaftlines was described. 

In the present work, two simulators have been devel-

oped, with different propulsion system characteristics, 

keeping on the contrary equal the maneuverability part.  

Fig. 7: Simulator functional scheme – free running 

model (model 1) 

In particular, the first simulator (Figure 7) represents the 

free running model which will be used for experimental 

campaign (with FPP, electrical motors and a simplified 

automation system).  

The second simulator (figure 8) includes characteristics 

of the real ship (with CPP, effective propulsion configu-

ration and an automation system more similar to real); 

in the figure, only an overall view is provided.  

  

Fig. 8: Simulator functional scheme – full scale ship 

(model 2) 

For each element illustrated in Figures 7 and 8, numeri-

cal models with different level of accuracy have been 

developed, taking into account the general objective of a 

good balance between the reliability of the simulation 

results and the code performance. 

Propulsion system part 

Propulsion plant dynamics is considered in a simplified 

way in both simulators; in particular, each shaftline 

dynamics is represented by the differential equation:  

 

( )
( ) ( )tQtQ

dt

tnd
J pep −=π2     (1) 

Jp= polar moment of inertia; 

Qe= engine torque; 

Qp= propeller torque; 

n =shaft speed; 

 

Propellers are FPP (as usual for model tests) in model 1 

and CPP in model 2; in both cases open water character-

istics are given.  

Regarding prime movers, in model 1 electric motors are 

considered only from the point of view of their possible 

different controls, i.e. constant RPM (thus following 

torque from propellers), constant torque or constant 

power.  

In order to achieve this, a PID controller is used, where 

the controlled parameter is engine torque and the error 

monitored is alternatively RPM, torque or power, de-

pending on the setup chosen. 

In model 2, electric motors are modeled considering the 

maximum torque and the different control strategies, i.e. 

constant speed or constant power.  

Gas Turbine is modeled considering the maximum 

torque and the fuel consumption map over the entire 

working range; also the Turbine Control System is 



modeled in order to allow the speed reference control 

and the different protections (i.e. overtorque, etc.). 

Gearbox is taken into account only by the reduction 

ratio and the inertia, couplings are considered in order to 

model all the possible propulsion configurations. 

Moreover, a complete automation system is also in-

cluded in the model, with ‘high level’ propulsion con-

trol and subsystems controllers. 

In order to be able to consider also configurations with 

coupled shaftlines, both models are modified, resulting 

in one unique differential equation with two driving 

torques and two propeller torques (plus frictional losses 

due to shaftlines mechanical coupling and bearings).  

Maneuverability part 

Maneuverability equations adopted in the simulator are 

the usual ones reported in the following:  

 

Surge:∑ −= )( vrumFx
�                 (2) 

Sway:∑ += )( urvmFy
�  

Yaw:∑ = rIM zzz
�  

 

u,v = ship speed in surge and sway directions; 

r =ship rotation speed ; 

m= ship mass; 

Izz = ship inertia moment about z-axis; 

Fx =forces acting on the ship in x-axis direction;  

Fy = forces acting on the ship in y-axis direction; 

Mz = moments acting on the ship about z-axis; 

 

Regarding hull forces and moments, a comprehensive 

description of them is reported in Viviani et al. 2009. In 

particular, regression formulae dedicated to twin screw 

vessels were obtained starting from Ankudinov model 

(Ankudinov 1996) and correcting it in order to consider 

appendages effect. Regarding rudder forces, model 

described in Viviani et al.  2009 is adopted, with further 

corrections on the basis of Molland and Turnock 2006.  

Asymmetrical behaviour of shaftlines 

Asymmetrical behavior of shaftlines is taken into ac-

count, as anticipated, by means of introduction of 

asymmetrical variations of wake fraction during maneu-

vers for the two shaftlines, as already introduced in 

Viviani et al. 2008. The model is also developed in 

order to consider a second asymmetry, i.e. thrust deduc-

tion factor, since model test data will allow to evaluate 

it in addition. In particular, during maneuvers, values of 

coefficients ∆w and ∆t may be computed for each shaft-

line, as functions of ship speed and ship drift angle, and 

then they may be added to values in straight motion as 

obtained from usual self propulsion tests. 

Effective J value for each shaft is given as: 

 

nD

wwu
J

)1( ∆−−
=  (3) 

 

As a consequence, J value is different for internal and 

external shaft, and thus different KT and KQ values re-

sult.  

Furthermore, a second correction of computed thrust is 

obtained by means of the asymmetrical thrust deduction 

factor. 

 

)1( ttTTeff ∆−−=   (4) 

 

Values of ∆w and ∆t may be obtained analyzing results 

of model tests with a process similar to self propulsion 

tests analysis. In present work results have been com-

puted considering only a first set of asymmetrical wake 

fraction values ∆w obtained on the basis of free running 

model tests carried out with a preliminary (and different 

scale) model, not dedicated to the analysis of asymmet-

rical shaft behavior. No asymmetrical thrust deduction 

factor is applied in this case, since it was not possible to 

compute it. 

Simulations with different automation control – 

Model 1 

In present paragraph, preliminary results obtained with 

model 1 simulator in correspondence to different pro-

pulsion system behaviors (constant RPM, constant 

torque, constant power) are reported.  

In following figures 9-11, internal and external engine 

torque, power and RPM time histories during 35° turn-

ing circle maneuvers from model speed equivalent to a 

Froude number of 0.26 are reported. It is worth men-

tioning that in this case separated shaftlines are consid-

ered, thus propeller torque is, apart short transients, 

equal to engine torque. 

As it can be seen, moving from constant RPM to con-

stant power and constant torque results in a progres-

sively reducing value of shaft revolutions during ma-

neuvers, and contemporarily in a reduction of power  

and torque increases.  

In correspondence to constant RPM control, asymmetri-

cal shaft power increases are about 60% and 30% for 

external and internal shafts respectively. These values 

are in the lower range of those obtained with sea trials 

analysis, and more similar to those obtained with previ-

ous model tests, even if with a lower asymmetry be-

tween external and internal shaft. This result seem to 

confirm the tendency of model tests (on the basis of 

which the simulator model was preliminarily calibrated) 

to underestimate shaft power increase. 

Fig. 9: Constant RPM control (Model 1) 



 

Fig. 10: Constant torque control (Model 1) 

 

Fig. 11: Constant power control (Model 1) 

From the point of view of ship maneuverability, in fol-

lowing figures 12-14 time histories of ship speed, sway 

velocity and angular velocity respectively are reported 

for all cases considered, while in figure 16 ship trajecto-

ries are compared. 

Fig. 12: Ship speed time histories (Model 1) 

As it can be seen, main difference between various 

cases considered is stabilized ship speed during maneu-

vers, which, correspondingly to shaft revolutions, tends 

to reduce moving from constant RPM control to con-

stant power and constant torque configurations. 

 

Fig. 13: Sway speed time histories (Model 1) 

 

Fig. 14: Angular speed time histories (Model 1) 

 

Fig. 15: Trajectories (Model 1) 

Correspondingly, also sway velocity and angular veloc-

ity are reduced, almost proportionally to ship speed. 

This uniform reduction, in its turn, results in very small 

variation of ship trajectory, which results in a slightly 

reduced turning circle for constant RPM setting, even if 

differences are negligible. 

Possible effect of shaft coupling has also been consid-

ered. In particular, same simulations have been carried 

out considering coupled shafts. In general, shaft cou-

pling results in an equal behavior of the two electrical 

motors and in asymmetrical behavior of propellers. This 

behavior is due to the fact that propeller torque is not 

forced anymore to be in equilibrium with the correspon-

dent engine, since the two shaftlines behave as a unique 

one with two driving motors and two propellers. 

As an example, in following figure 16 difference be-

tween coupled and separated shaftlines in terms of 

torque in correspondence to constant RPM setting is 

reported. In this case, being prime mover and propeller 

torque and power different, they are both plotted. 

 

Fig. 16: Constant RPM control:.separated vs cou-

pled shaft configurations: torques (Model 1) 

As it can be seen, motor torques (dotted blue lines) vary 

in the two cases with respect to other values (being the 



mean value when shaftlines are coupled).  

Propeller torques, on the contrary, are not modified in 

the two cases. As a consequence (see figure 17 with 

ship speed) maneuverability behavior is not modified 

significantly. Similar conclusions can be drawn also in 

correspondence to other cases. 

 

Fig. 17: Constant RPM control: separated vs cou-

pled shaft configurations: ship speed (Model 1) 

Simulations in full scale (Model 2) – Influence of 

automation system  

In present paragraph, preliminary results obtained with 

model 2 simulator are reported, showing some of the 

possible differences which can be encountered when 

moving to full scale ship. In particular, two different 

controls are considered, i.e. constant RPM control with-

out asymmetrical load compensation (as in one of the 

cases in model scale) and control with asymmetrical 

load compensation. 

The first configuration allows to show possible differ-

ences with model tests due to different functioning point 

of propellers (no compensation for higher propeller load 

is included in the model), CPP instead of FPP, different 

combinatory settings, etc. 

Second configuration, moreover, shows the possible 

differences in terms of shaft loading with different (and 

more complex) automation strategy, and how these can 

affect maneuverability parameters. 

In following figure 18, a comparison of torque in the 

two configurations considered is reported.  

Fig. 18: Constant RPM control vs load balancing: 

comparison of torque time histories (Model 2)  

As it can be seen, in the case of constant RPM control, 

behavior is very similar to the one obtained with model 

tests apart small differences; this is due to the fact that 

ship speed considered presents a certain margin with 

respect to MCR (and other limits), thus, also in full 

scale, the ship is capable of sustaining torque increases. 

On the contrary, influence of automation when load 

balancing is present is evident, with smaller (and almost 

equal on the two shafts) increase of torque during ma-

neuvers. 

This results in an asymmetrical variation of propeller 

pitches, as reported in following figure 19.  

 

Fig. 19: Constant RPM control vs load balancing: 

propeller pithces time histories (Model 2)  

Regarding trajectories, also in this case differences are 

very limited., probably because no scale effect on ma-

neuvering coefficients (and wake fraction variations, 

even if less important for global trajectories) is as-

sumed; further analyses should be carried on full scale 

trials, when available, in order to analyze this phenome-

non. Since many differences are already present in the 

model, it can be expected that system identification 

techniques may provide interesting information, without 

being affected by large model approximations. 

Finally, results in terms of ship speed in different con-

figurations are reported in following figure 20. 

Fig. 20: Constant RPM control vs load balancing: 

ship speed  

More significant differences are visible in this case, 

similarly to what already obtained with model 1 in cor-

respondence to different control strategies. In particular, 

in model scale a smaller speed reduction is computed, 

due to the higher resistance given by scale effect, which 

results in a comparatively lower added resistance in 

turn. Considering the two control setting in full scale, 

load balancing, reducing pitch on one shaft, results in a 

lower ship speed. 

Future work: experimental test matrix 

As anticipated in previous paragraphs, in present re-

search project a systematic series of free running model 

tests (under development at time of writing) has been 



scheduled, testing three different control settings (con-

stant RPM, constant torque, constant power). 

Main characteristics of the model used in present work 

are reported in the following table 2, showing consider-

able size of model adopted in the experimental cam-

paign. 

Dimensions 

L (model scale) abt 7.2 m 

∆ (model scale) abt 1100 kg 

Propulsion / control 

Propellers 2 FPP  

Electrical power 

generation  

Main drives 

1 Fischer Panda PMS 12000NE   

 

2 Mavilor BLS-143 

Rudders Twin spade rudders 

Table 2: Model characteristics  

 

Following free running model tests are planned: 

- 3 propulsion system simplified automations (cons-

tant RPM, constant torque, constant power) 

- 2 ship speeds for each configuration (namely cruis-

ing speed and high speed) 

- Maneuvers at each speed / automation: 

1. Turning circle maneuvers (±35°, ±25°, ±15° 

rudder angle) 

2. ZigZag maneuvers (10°/10° and 20°/20°) 

3. Dieudonnè spiral maneuver  

Moreover, in correspondence to previous configura-

tions, shaftlines may be totally independent or con-

nected with each other and forced to maintain same 

RPM during maneuver. 

Conclusions 

In the present work, developed in the context of a re-

search project including both simulations and model 

tests, the problem of asymmetrical shaft loading during 

maneuvers has been considered.  

In particular, simulation results in correspondence to 

different possible configurations (model scale and full 

scale, with different propulsion system characteristics 

and different automation control) have been presented, 

showing possible differences. 

From results obtained, it is clear that different configu-

rations do not result in large differences in terms of 

maneuverability macroscopic characteristics (turning 

circle trajectories), neither considering different automa-

tion controls, nor considering differences between mod-

el and full scale. Main differences obtained are related 

to ship speed, with reduces differently depending on 

control system adopted. 

These results will be verified by means of model test 

campaign under development, which will allow to con-

firm asymmetrical shaft loading model, and to improve 

it by means of the introduction of asymmetrical thrust 

deduction factor. Moreover, influence of possible dif-

ferent settings of automation on shaft overloading will 

be further analyzed, in order to confirm the “generality “ 

of asymmetrical shaft loading coefficients. 

This activity will allow to have a further improved 

model to check automation system in full scale, whose 

effect has been preliminarily tested and presented in this 

paper. In particular, load balancing mode seems to act 

properly, and to be able to avoid unwanted asymmetri-

cal loading on the reduction gear. 

Further development of this work will be obtained when 

results from sea trials will be available, allowing to 

check the possible scale factors on asymmetrical shaft 

loading, for which currently a significant lack of data 

exist. 
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