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PERSISTENT DISAGREEMENT AND POLARIZATION IN A BAYESIAN
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Abstract. For two ideally rational agents, does learning a finite amount of shared evidence
necessitate agreement? No. But does it at least guard against belief polarization, the case
in which their opinions get further apart? No. OK, but are rational agents guaranteed to
avoid polarization if they have access to an infinite, increasing stream of shared evidence?
No.
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1. Introduction

In politics, group deliberation, and interpersonal relationships, persistent disagreement and
belief polarization are often seen as a lamentable features of social life. In some cases, polar-
ization can even be dangerous. “Terrorism itself is a product, in part, of group polarization,”
as Cass Sunstein points out (2002, p. 187). In certain politicized areas of science—such as
vaccination, minimum wage policy, and climate change—disagreement is commonly attrib-
uted to the irrationality of one party to the debate.1 If only we were rational, one might
think, all disagreement would be resolved by collecting and sharing evidence. Call this the
optimistic thesis about learning (TOTAL).

TOTAL. Rational agents who learn the same evidence resolve disagreements.

Something like TOTAL, made suitably precise, seems to underwrite many of our practices
in diverse areas like activism, argumentation, inquiry, and mediation.2 It may be quite hard
to explain our actions in those areas in a non-cynical fashion without TOTAL.3 The thesis
also motivates positions in popular philosophical disputes. Conciliatory positions in the peer
disagreement debate take it that “the peer’s disagreement gives one evidence that one has
made a mistake in interpreting the original evidence, and that such evidence should diminish
one’s confidence” on the issue about which there is disagreement (Christensen, 2009, p. 757).
If TOTAL were false, why would mere disagreement diminish one’s confidence? Two agents
could disagree in the face of shared evidence without either having made a mistake.

But TOTAL is false. In fact, even certain weaker theses are untenable. For example,
versions of TOTAL that require shared evidence to guard against polarization—the case in
which the extent of disagreement increases—cannot be maintained. Here we study persistent
disagreement and belief polarization in a general Bayesian framework. Many formal studies
of social opinion dynamics focus on reaching consensus (e.g., Blackwell and Dubins, 1962;

Date: June 24, 2018.
1Not always. Sometimes disagreement is attributed to a profit motive, for example. But good faith and

rationality attributions to opponents in such debates are fairly rare.
2An anonymous referee has suggested that proponents of TOTAL be called totalitarians.
3So-called “virtue signaling” is an example of a cynical explanation in the case of activism.
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DeGroot, 1974; Lehrer and Wagner, 1981; Genest and Zidek, 1986). But persistent disagree-
ment and polarization are interesting phenomena worthy of study in their own right. While
modeling these phenomena has been addressed in the literature (e.g., Hegselmann et al.,
2002), we want to study them in a Bayesian setting. The point of adopting this framework is
that Bayesian learning represents a leading contender for an ideal standard of rational belief
revision. Even in this setting, both persistent disagreement in general and belief polarization
in particular are possible in the face of increasing, shared evidence.

We make our case against TOTAL in two parts. In Part 1, we study persistent disagree-
ment and polarization in circumstances in which agents learn some finite amount of shared
evidence. This is an important case since it resembles the contexts in which we observe ac-
tual belief polarization. Our primary focus in Part 1 is polarization, of which we distinguish
two senses. Since polarization (in either of our senses) implies persistent disagreement, cases
in which polarization is rationally permissible represent clear failures of TOTAL. The first
sense of polarization that we investigate (Section 2) is local in that it involves increases in the
extent of disagreement with respect to a particular event of interest. We provide some simple
characterizations of precisely when polarization in this sense occurs (Theorem 1). From a
Bayesian perspective, no irrationality is required. In Section 3, we discuss a close connection
between polarization with respect to an event and dilation, a well-studied phenomenon in the
theory of imprecise probabilities. In Section 4 we introduce a global notion of polarization
that does not depend on a particular event. When agents polarize globally, the overall extent
to which their probability distributions disagree increases. As with polarization with respect
to an event, global polarization is sometimes permissible for Bayesian agents.

In Part 2, we argue against an even weaker version of TOTAL by turning to the general,
idealized setting of Bayesian learning in which agents are able to learn an infinite amount of
evidence. Our main mathematical contribution there is a result that we call the Bayesian
Consensus-or-Polarization Law. That result generalizes the classic merging of opinions re-
sult due to Blackwell and Dubins (1962) by relaxing a heavy-handed assumption (absolute
continuity) in a mild way with interesting consequences. Relative to our weaker assumption,
while it is no longer the case that an agent must assign probability 1 to achieving consensus
in the limit, she must assign probability 1 to either achieving consensus or polarizing. So
not only is polarization consistent with rationality in the sorts of learning scenarios in which
it is observed (Part 1), in some cases, rationality demands assigning positive probability to
polarizing in the limit of inquiry (Part 2).

Part 1. The Finite Case

Both psychological evidence and common life experience attest to the reality of persistent
disagreement and belief polarization. In a classic study on polarization, Lord et al. report
that, when exposed to the same set of conflicting studies regarding the possible deterrent
effects of the death penalty, subjects disagreeing initially strengthened their respective views,
coming to disagree even more strongly (1979). Ross and Anderson claim that this behavior
stands “in contrast to any normative strategy imaginable for incorporating new evidence
relevant to one’s belief” (1982, p. 145).

In order to investigate the rational status of such observed behavior, we begin by looking
at learning situations that fairly closely approximate those in which the behavior occurs. In
particular, we first consider cases of learning finitely many events. We focus exclusively on
Bayesian conditionalization—according to which events are learned with certainty—rather
than Jeffrey conditioning or more general rules (Jeffrey, 2004). If Bayesian learning cannot
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guard against persistent disagreement and belief polarization, then generalizations cannot
either.4

2. Polarization

We begin with the phenomenon of belief polarization. Since, as we will show, polarization is
possible for rational agents who learn the same finite amount of shared evidence, it follows that
persistent disagreement is also possible. Polarization represents a radical failure of TOTAL.
While it may be familiar from debates about uniqueness and permissivism that standard
varieties of Bayesianism allow for persistent disagreement of some form (e.g., White, 2005),
it does not follow from that fact that Bayesianism allows for belief polarization.

Throughout the paper, let Ω be a set of elementary events or possible worlds. Let F be
a sigma-algebra on Ω, that is, a non-empty collection of subsets of Ω closed under comple-
mentation and countable unions. Elements A ∈ F are called events. To take a simple and
common example, Ω may contain six points representing the outcomes of a roll of a die, and
F might contain all of the relevant die-rolling events such as {2, 4, 6}, the event that the die
lands with an even number face up. A probability measure P on the measurable space (Ω,F)
is a countably additive set function P : F → [0, 1] such that P (Ω) = 1.5 We assume the
standard ratio definition of conditional probability. For all A,E ∈ F ,

P (A|E) :=
P (A ∩ E)

P (E)
, whenever P (E) > 0.

According to Bayesian conditionalization, when an agent learns an event E, she should revise
her probabilities by setting her new probabilities equal to her old probabilities conditional
on E. Where PE is the probability measure that the agent adopts after learning E, condi-
tionalization says that

PE(A) = P (A|E),

for all A ∈ F . We call PE the posterior and P the prior.
With those few preliminaries out of the way, consider the following simple example.

Example 1. Suppose two polling experts provide opinions about the outcome of an election
between four candidates. Let Ω = {ω1, ω2, ω2, ω4} be the set of candidates, and let F = 2Ω.
Let P1, P2, given by Table 1, be probability measures on (Ω,F) representing the opinions of
the polling experts.

Table 1. Priors

ω1 ω2 ω3 ω4

P1 1/6 1/4 1/3 1/4

P2 1/2 1/12 1/4 1/6

4One might ask, as an anonymous referee did, whether in contexts of only uncertain evidence—so that
updates by Jeffrey conditioning don’t reduce to standard conditionalization—persistent disagreement and
polarization can be avoided. In general, the answer is no. One subtle issue in this context is how to understand
shared evidence. See Huttegger (2015) for a study of conditions that secure merging of opinions for Jeffrey
conditioning. In particular, see his Theorem 6.1 for a class of cases in which disagreement persists.

5We say that P is countably additive if, for any countable collection of disjoint events {Ai}i∈I , P (
⋃

i∈I Ai) =∑∞
i=1 P (Ai). We note that our Theorem 3 makes essential use of countable additivity. For the simple examples

considered in this section, however, finite additivity is sufficient.
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Suppose that there are two political parties with ω1, ω2 in one party, and ω3, ω4 in the other. In
order to advance to the general election, a candidate must win her party’s primary. Suppose
that we are interested in the event A = {ω1, ω2} that a candidate from the first party will
win the general election. Let E = {ω1, ω3} be the event that candidates 1 and 3 win their
respective primaries. Then, P1(·|E) and P2(·|E) are given by Table 2.

Table 2. Posteriors

ω1 ω2 ω3 ω4

PE
1 1/3 0 2/3 0

PE
2 2/3 0 1/3 0

Then, P1(A|E) = 1/3 < 5/12 = P1(A) ≤ P2(A) = 7/12 < 2/3 = P2(A|E). So, updating on
E, P1 and P2 get further apart with respect to A. That is, the information that candidates
1 and 3 win their primaries pushes the two polling experts further apart with respect to their
opinions about whether a candidate from the first party will win the general election. 4

The behavior in Example 1 is eminently reasonable. Given polling expert 1’s prior, the
information E = {ω1, ω3} is tantamount to learning that the weaker candidate from the first
party will run against the stronger candidate from the second party in the general election.
Indeed, expert 1 considers candidate ω1 antecedently weaker than all other candidates. For
expert 2, however, the case is reversed. Not only is ω1 the stronger candidate in the first
party, she is the strongest candidate overall. So while E decreases expert 1’s confidence in A,
the event that a candidate from the first party wins the general election, it increases expert
2’s confidence. Nothing in this example or the next (Example 2) depends on unreasonable or
extreme (0-1 valued) prior probability assignments.

Example 1 suggests the following natural definition of polarization.

Definition 1. Let P1 and P2 be probability functions on (Ω,F), and let A,E ∈ F . We say
that evidence E polarizes P1 and P2 with respect to the event A if

P1(A|E) < P1(A) ≤ P2(A) < P2(A|E).

Polarizing evidence leads disagreeing opinions to strengthen their initial attitude with respect
to each other, resulting in even greater disagreement. Note that Definition 1 is given in
terms of a particular event with respect to which polarization occurs. We will later (Section
4) distinguish this sense of polarization from a sense that does not depend on a particular
event.

Example 1 already shows that polarization is rationally permissible from a Bayesian per-
spective. To shed more light on the situation, we would now like to provide some simple
conditions that characterize when polarization with respect to an event occurs. We begin by
introducing some auxiliary probabilistic concepts. First, when P (A ∩ E) = P (A)P (E), we
call events A and E stochastically independent (according to P ). Next, consider the function
S defined by

SP (A,E) :=
P (A ∩ E)

P (A)P (E)
.

The covariance of A and E is given by Cov(A,E) = P (A ∩ E) − P (A)P (E). S just puts
covariance in ratio form. When SP (A,E) = 1, A and E are stochastically independent. When
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SP (A,E) > 1, A and E are positively correlated. And A and E are negatively correlated
when SP (A,E) < 1. (Seidenfeld and Wasserman adopt the convention that SP (A,E) = 1
when P (A)P (E) = 0 (1993, p. 1141).) Pedersen and Wheeler point out (2014, p. 1312,
fn. 8) that S has been put to various uses in formal epistemology and philosophy of science,
including as a measure of coherence (Shogenji, 1999). Finally, the quantity P (E|A)/P (E|Ac)
is called the likelihood ratio for data E and hypotheses A and Ac. Likelihood ratios are used
throughout statistics and express the impact of the evidence in terms of how much it favors
one hypothesis to another.

Together, S and the likelihood ratio allow us to state two very simple characterizations of
polarization with respect to an event.

Theorem 1. Suppose that 0 < P1(A) ≤ P2(A) < 1. Then the following are equivalent.

(i) Evidence E polarizes P1 and P2 with respect to A;

(ii) SP1(A,E) < 1 < SP2(A,E);

(iii)
P1(E|A)

P1(E|Ac)
< 1 <

P2(E|A)

P2(E|Ac)
.

The proof of this result uses only the probability axioms and algebra. We omit it, assured
the reader can furnish it herself should she so desire.

Condition (iii) of Theorem 1 is mentioned in psychological literature directly on polariza-
tion (e.g., Jern et al., 2014). Jern et al. analyze previous empirical studies of belief polar-
ization and offer a Bayesian rationalization of some such behavior. They also note that such
likelihood ratios as included in condition (iii) determine “the direction in which [an agent’s]
beliefs will change.” Condition (ii) has been exploited in another, related literature that
we discuss below (e.g., Seidenfeld and Wasserman, 1993; Wasserman and Seidenfeld, 1994;
Pedersen and Wheeler, 2014). Theorem 1, while neither particularly deep nor surprising, is
more general than it may seem at first. That’s because conditionalizing on any finite string
of evidence, E1, ..., En, can be reduced to learning just a single event, namely, E =

⋂n
i=1Ei.

So Theorem 1 identifies necessary and sufficient conditions for any finite string of evidence
to polarize P1 and P2 with respect to A.6 If (Ω,F) is a sufficiently complex space relative
to how much the agents learn—say there is a countable infinity of events, for example, and
agents only learn a finite amount of evidence—the agents may be polarized by the event
representing their total evidence.

We offer another, more extreme example of polarization adapted from (Herron et al., 1994;
Pedersen and Wheeler, 2015).

Example 2. Consider P1 and P2 such that P1(G) = 0.1 and P2(G) = 0.9. Consider the toss
of a coin that is fair according to both P1 and P2: P1(H) = P2(H) = 1/2 = P1(Hc) = P2(Hc).
Suppose that the outcomes of the coin toss are independent of the event G according to
both P1 and P2. For example, P1(G ∩ H) = P1(G)P1(H) and P2(G ∩ H) = P2(G)P2(H).
Let A be the “matching” event that either both G and H occur or both do not. That is,
A := (G ∩ H) ∪ (Gc ∩ Hc). Notice that P1(A) = 1/2 = P2(A). Despite initial agreement
concerning A, the coin toss polarizes P1(A) and P2(A). For i = 1, 2,

6We could distinguish the case in which
⋂n

i=1 Ei polarizes P1 and P2 with respect A from the case in which
each Ei polarizes P1 and P2 with respect to A. In the former case, we are concerned with the cumulative
effect of the evidence. The latter case obtains when the characterizing conditions of Theorem 1 hold for each
piece of evidence, Ei.
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Pi(A|H) =
Pi([(G ∩H) ∪ (Gc ∩Hc)] ∩H)

Pi(H)
=
Pi(G ∩H)

Pi(H)
=
Pi(G)Pi(H)

Pi(H)
= Pi(G).

So even though both P1 and P2 assign probability 1/2 to A initially, learning that the coin
lands heads yields P1(A|H) = 0.1 and P2(A|H) = 0.9. Hence, P1(A|H) < P1(A) ≤ P2(A) <
P2(A|H). 4

Example 2 is a striking case. In a single step, learning the same evidence can transform
agreement into significant disagreement. Moreover, the example points to an interesting and
important connection between polarization, a topic in social epistemology, and dilation, a
topic in the theory of individual imprecise probabilities. We turn to this connection now.

3. Dilation

The polarization phenomenon with which we were concerned in Section 2 bears resem-
blance to the phenomenon known as dilation in the theory of imprecise probabilities (IP). In
fact, Example 2 is a borrowed example of dilation. In our opinion, there is a very fruitful
exchange of ideas between social epistemology and the theory of imprecise probabilities (see,
e.g., Levi, 1982, 1985a; Seidenfeld et al., 1989, 2010; Elkin and Wheeler, 2018; Stewart and
Ojea Quintana, 2018).

IP allows for more general representations of uncertainty than standard Bayesian probabil-
ity theory does. Several frameworks have been used to accomplish this task. We will consider
sets of probabilities, a very general IP framework. Let P denote a set of probability measures
defined on the same measurable space (Ω,F). Levi marks an important distinction between
two possible interpretations of P (1985b). On the one hand, we might retain the standard
Bayesian ideal according to which any rational state of uncertainty admits representation in
terms of a single probability function. On this account, a set P could be used to represent the
possible values that an agent’s precise probability judgments may take. Such a set might arise
from failures of introspection or partial elicitation. In short, P may represent imprecision in
measuring a precise credal state. For example, in estimating the probability of some event,
an agent may be in a position to specify no more than one or two decimal places. On the
other hand, IP can be seen as offering an alternative (laxer) normative standard. On this
account, a set P might completely describe an agent’s probability judgments in cases in which
her uncertainty is not reducible to a unique probability function. Levi calls this interpretation
indeterminate probability. Of course, both factors may operate simultaneously. There could
be partial elicitation of an indeterminate state of uncertainty.

Dilation occurs, roughly speaking, when learning increases uncertainty. There are various
formulations of dilation, depending on the choice of IP representation and whether certain
inequalities are strict or not. But to facilitate comparison with the notion of polarization
defined in the previous section, consider the following common definition.

Definition 2. Let P be a set of probabilities on (Ω,F), let B be a positive measurable
partition of Ω7, and let A ∈ F . We say that the partition B dilates A just in case, for each
E ∈ B,

inf{P (A|E) : P ∈ P} < inf{P (A) : P ∈ P} ≤ sup{P (A) : P ∈ P} < sup{P (A|E) : P ∈ P}.

7The partition B is positive and measurable if E ∈ B implies E ∈ F and P (E) > 0.
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The mathematics of dilation has been extensively studied in a series of articles (Seidenfeld and
Wasserman, 1993; Herron et al., 1994; Wasserman and Seidenfeld, 1994; Herron et al., 1997;
Pedersen and Wheeler, 2014, 2015). For results related to our Theorem 1, see in particular
Wasserman and Seidenfeld’s Result 1 (1994), and Pedersen and Wheeler’s Theorem 1 and its
corollary (2015).

Dilation is like a virulent form of polarization. In the social setting, it amounts to agents’
views getting further from consensus no matter what outcome of a partition B they observe.
In Example 2, where the partition is given by the outcomes of a toss of a fair coin (B =
{H,Hc}), P1 and P2 will move the same significant distance from agreement on A whether
the coin lands heads or tails. It is the fact that a more precise estimate for an event A is
transformed into a less precise estimate regardless of the event in the partition that is learned
that attracts interest to dilation. While dilation emerges sometimes for IP, precise credal
states are immune to dilation since inf{P (A|E)} = sup{P (A|E)} for all A and E in F .

Some see dilation as a pathological feature that calls IP into question (e.g., White, 2010).
While not central to the present study, the debate about the normative status of dilation,
we suggest, might be further illuminated by consideration of dilation in a social setting.
Similarly, another line of inquiry into polarization would be to explore whether arguments
against the rational acceptability of dilation can be extended in some way to social settings.
Does the (un)acceptability of dilation provide some defeasible consideration in favor of the
(un)acceptability of (certain kinds of) polarization or vice versa? Or is there, contrary to
the hopes of those seeking decision theories and theories of inquiry unified across individuals
and groups, some significant disanalogy?

4. Global Polarization

In the previous sections, our focus was a local sense of polarization. We were interested
in situations in which sharing evidence increases the extent of disagreement between two
Bayesian agents with respect to a fixed event. In some situations, however, there may not
be a distinguished event around which inquiry centers, or one may be interested in whether
a consensus can be reached about a whole collection of events. In such situations, a more
global perspective is appropriate. In climate science, for example, there is a complex clus-
ter of issues—from future sea levels and air temperature to the mechanisms underwriting
decadal climate variability—that exercise researchers in the area. In some cases, consensus
on appropriate measures to mitigate change or on adaptive policies may require consensus
on a large number of other issues.

In order to adopt the global perspective, we need a way of measuring the extent to which
two probabilities disagree that does not depend on a distinguished event. We will use the
total variational distance d defined for any probabilities P1 and P2 by

d(P1, P2) = sup
A∈F
|P1(A)− P2(A)|.

Note that if P1 and P2 are in complete agreement, in the sense that P1(A) = P2(A) for all
events A, then the total variational distance between them is 0. If, on the other hand, P1

and P2 disagree maximally, in the sense that there’s an event A such that P1(A) = 0 and
P2(A) = 1, then d(P1, P2) = 1. The total variational distance finds use throughout probability
theory and, as we explain in the next sections, has played a crucial role in Bayesian thought
via the Blackwell-Dubins merging of opinions theorem (1962) and related results (Schervish
and Seidenfeld, 1990; Huttegger, 2015). In the examples below, we will make use of the fact
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that in finite probability spaces the total variational distance is given by

d(P1, P2) = P1(A0)− P2(A0), (1)

where A0 is the set of points ω ∈ Ω such that P1(ω) > P2(ω).8 Using total variational distance,
we can now introduce a notion of polarization that is the global analogue of polarization with
respect to an event, as defined in Definition 1.

Definition 3. We say that evidence E polarizes P1 and P2 globally if d(P1, P2) < d(PE
1 , P

E
2 ).

Note that the notion of polarization in Definition 3 does not depend on a particular event,
but rather is concerned with the effect that learning has on the overall disagreement between
two probabilities.

Does global polarization imply irrationality? Just as with polarization with respect to an
event, the answer is no when the standard of rationality is Bayesian. This can be seen by
considering a slight variation of Example 1.

Example 3. Let (Ω,F), A = {ω1, ω2}, and E = {ω1, ω3} be defined as in Example 1, and
consider the following priors and posteriors.

Table 3

ω1 ω2 ω3 ω4

P1 1/4 1/8 1/2 1/8

P2 1/2 1/12 1/4 1/6

PE
1 1/3 0 2/3 0

PE
2 2/3 0 1/3 0

Using (1), we can see that we have global polarization because d(P1, P2) = 7/24 < 1/3 =
d(PE

1 , P
E
2 ). Note also that we still have polarization with respect to A, like in Example 1,

because P1(A | E) = 1/3 < 3/8 = P1(A) ≤ P2(A) = 7/12 < 2/3 = P2(A | E). 4

Absent reason to believe that the above probability assignments are unreasonable, Example 3
shows that TOTAL is false under a global interpretation of “disagreements.” In fact, as was
the case in Section 2, the present example falsifies a thesis that is even weaker than TOTAL
because global polarization, like polarization with respect to an event, implies persistent
disagreement.9

8Proof. Note that Ac
0 is the set of points ω ∈ Ω such that P2(ω) ≥ P1(ω). For all A ∈ F we have

P1(A)− P2(A) =
∑
ω∈A

[
P1(ω)− P2(ω)

]
=

∑
ω∈A∩A0

[P1(ω)− P2(ω)
]

+
∑

ω∈A∩Ac
0

[P1(ω)− P2(ω)
]

≤
∑

ω∈A∩A0

[P1(ω)− P2(ω)
]
≤
∑
ω∈A0

[P1(ω)− P2(ω)
]

= P1(A0)− P2(A0).

Similarly, P2(A)−P1(A) ≤ P2(Ac
0)−P1(Ac

0) for all A ∈ F . Since P1(A0)+P1(Ac
0) = 1 = P2(A0)+P2(Ac

0), we
have P1(A0)−P2(A0) = P2(Ac

0)−P1(Ac
0), and it follows from the above that |P1(A)−P2(A)| ≤ P1(A0)−P2(A0)

for all A ∈ F . The equality in (1) now follows by taking the supremum (maximum) of the left-hand side of
the last inequality. �

9If d(P1, P2) < d(PE
1 , PE

2 ), then d(PE
1 , PE

2 ) > 0. This implies that there is some event A about which PE
1

and PE
2 disagree, i.e. PE

1 (A) 6= PE
2 (A).
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Having defined two notions of polarization, it is natural to ask whether there are any
interesting logical relations between them. Example 3 shows that both kinds of polarization
can occur simultaneously. But does one notion imply the other? To begin to address this
question, we return to Example 1. In that example, although E polarizes P1 and P2 with
respect to A, it is not the case that E polarizes P1 and P2 globally. One can see this by
using (1) to calculate d(P1, P2) = 1/3 = d(PE

1 , P
E
2 ). By altering the probabilities in Example

1 a bit, one can find even more striking cases, in which there is polarization with respect
to an event even though conditionalizing decreases the total variational distance between
posteriors. For completeness, we have included such an example in the Appendix (Example
4).

So we cannot infer global polarization from polarization with respect to an event. How
about the converse implication? If evidence E polarizes two probabilities globally, does it
follow that E polarizes the two probabilities with respect to some event? Again the answer
is negative by another slight modification of the previous examples. See Example 5 in the
Appendix. We summarize the previous conclusions with the following proposition.

Proposition 1. There are cases in which E polarizes P1 and P2 both globally and with respect
to some event A. However, the following implications do not hold.

(i) If E polarizes P1 and P2 with respect to some event A, then E polarizes P1 and P2

globally.
(ii) If E polarizes P1 and P2 globally, then E polarizes P1 and P2 with respect to some

event A.

Having established that global polarization and polarization with respect to an event are
logically independent, it would be convenient to state a simple characterization of global
polarization along the lines of Theorem 1. Although there are various methods for computing
and comparing the total variational distances between posteriors and priors, we have not
discovered a method that is sufficiently simple and illuminating for the purposes of this paper.
Rather than introduce more technical material for relatively little philosophical payoff, we
prefer to leave the task of finding a simple characterization of global polarization as an open
problem. In future work, we plan to investigate global polarization in the context of imprecise
probabilities. Global polarization gives rise to a phenomenon that is similar to dilation in
some ways, but, like local and global polarization for precise probabilities, this phenomenon
is logically independent of dilation for imprecise probabilities.

The important point for our purposes is that global polarization does not imply irrational-
ity. We have now shown two senses in which TOTAL fails when the standard of rationality
is Bayesian. Bayesian agents who learn a finite amount of shared evidence can exhibit both
local polarization with respect to a distinguished event and global polarization with respect
to their entire probability distributions. Whether we interpret TOTAL as requesting local or
global resolutions of disagreement, we find that the thesis is false.

Yet, faith in the ability of rationality and evidence to avoid polarization may remain.
Sure, learning just one event (or finitely many for that matter) allows for polarization. But
doesn’t ongoing inquiry that allows for as many observations as we please avoid it? We show
in Section 6 that, in fact, it does not. Taking inquiry to the limit does not save TOTAL.10 But

10In a sense, this is already clear even in the finite case. While Example 2 does not depend on extreme
assignments, it could be adapted so that P1(G) = 0 and P2(G) = 1. In this case, evidence H maximally
“polarizes” P1 and P2 with respect to A. And since 0 and 1 probabilities are not revisable under Bayesian
conditionalization, such polarization is permanent. So there is no hope of undoing polarization or resolving
disagreements concerning A for P1 and P2. Note that A is still not an event for which either prior is extreme
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it is worth pointing out that retreating to the limit of inquiry already drastically weakens
any automatic inference from the mere fact of actual polarization to the irrationality of
some polarized agent or other. Presumably, all actual behavior occurs in the context of just
finitely many observations. In such a context, this line of response concedes that polarization
is consistent with the rationality of both parties.

Part 2. The General Case

In the general setting, we consider cases of learning infinite amounts of evidence. Why
bother looking at such artificial learning scenarios? In a way, we are pursuing TOTAL to its
last retreat. Even allowing rational agents to learn an infinite amount of evidence, agreement
cannot be ensured. Moreover, such learning scenarios are frequently considered in the context
of Bayesian foundations. It is sometimes thought that we can test the mettle of a learning
method by looking at its asymptotic behavior. Bengt Autzen gives recent voice to this idea.
“Under the ideal scenario of an infinitely large data set,” he writes, “an inference procedure
should show certain desirable features” (Autzen, 2017, p. 3). One desirable feature claimed
for Bayesian methodology is known as convergence to the truth. Convergence has long been
taken to be a metric by which to judge probabilistic inference methods (e.g., Reichenbach,
1938, §43). Our concern in this paper, though, is with consensus. Consensus is no less
pedigreed a methodological concern than convergence is. In “The Fixation of Belief,” Peirce
puts forward a picture of scientific method according to which a community of inquirers
achieve consensus eventually by updating on shared evidence. As he puts it, “the method
must be such that the ultimate conclusion of every man shall be the same” (Peirce, 1992a, p.
120).11 Here, too, many Bayesians claim success. In the next section, we explain the basis for
this claim. In short, then, we examine the general case because proponents of TOTAL may
be tempted to appeal to such idealized scenarios and because such scenarios are standardly
studied in Bayesian theory and even play foundational roles in justifications for the Bayesian
point of view.

Before we can state the relevant facts about convergence and consensus for Bayesians,
we need to bring a bit more machinery online. This machinery will help us in this second
part of our case against TOTAL. As above, let (Ω,F , P ) be a probability space. We will be
interested in situations in which agents anticipate learning an increasing amount of evidence
that eventually settles every event of interest to them. The evidence is represented as a
sequence of finite partitions, {En}n∈N, such that En+1 refines En for all n ∈ N.12 Because of
the assumption that the partitions are increasingly fine, we say that the agent’s evidence is
increasing. For example, a partition might represent the possible outcomes of an experiment
that the agent plans to perform. In the case of repeated coin tosses, E1 represents the
information about the first toss of the coin, while E2 would represent all of the information
about the first two tosses, etc. So by the time the agent observes the outcome of the second
coin toss, she knows whether the “actual” sequence is one that begins HH or not.

in this modified example. So the point is not merely that achieving consensus is frustrated for those events
with prior 0-1 assignments. In any case, disagreeing on prior 0-1 probabilities does not count as polarization
as we define it, even if it is a case of interminable disagreement for Bayesians.

11Otherwise, a method will fail to fix belief because we will encounter those who disagree with us and, due
to our “social impulse,” our confidence will be shaken. In other places, Peirce seems to identify truth and
whatever opinion the community settles on in the limit (e.g., 1992b).

12The finite partition assumption aids exposition but is not necessary. In the Appendix, we relax it and
work with general filtrations of sub-sigma-algebras.
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We will also assume that the observations eventually settle every event in F and say that
the evidence is complete. Formally, we require that the collection of all evidential events,
namely

⋃
n En, generate the sigma-algebra F on which the agent’s prior is defined. That is,

we will assume that F is the smallest sigma-algebra containing
⋃

n En.
From her prior perspective, the agent is uncertain, for all n, which event in En she will

learn. If ω ∈ Ω is the actual world, then En(ω) denotes the event in En that the agent learns
at stage n, namely, whichever member of En contains ω. In this setup, a Bayesian agent’s
posteriors are then P (· | En(ω)) for all ω ∈ Ω and n ∈ N.13 The aforementioned convergence
to the truth theorem says that a Bayesian agent assigns probability 1 to the event that her
posterior probabilities converge to the truth about every event in F . This means that for
every A ∈ F and every ω ∈ Ω in a set with P -probability 1, if A is true, so that ω ∈ A,
a Bayesian’s posteriors P (A | En(ω)) will get arbitrarily close to 1 as n increases. If A is
false, so that ω /∈ A, then P (A | En(ω)) will get arbitrarily close to 0 as n increases. See the
Appendix for a more formal summary. We return now to our primary focus, consensus or
the lack thereof.

5. Merging of Opinions

Merging of opinions is an important part of Bayesian lore. Relative to just a few assump-
tions, with probability 1, opinions get closer and closer together as they learn from a shared,
increasing stream of data. Huttegger sees merging results as evidence that Bayesianism fulfills
Peirce’s vision of a method that settles belief for a community on the basis of experimen-
tal evidence. He writes, “experience trumps any initial belief state; diverging opinions are
just a sign that not enough evidence has accumulated yet” (2015, p. 613). Savage (1954),
Blackwell and Dubins (1962), and Gaifman and Snir (1982) provide classic versions of merg-
ing of opinions theorems, which have since been generalized in various ways (Schervish and
Seidenfeld, 1990; Huttegger, 2015; Stewart and Nielsen, 2018). Such classic versions of these
results attained their prominent theoretical status due to the subjective nature of personal
probabilities. According to many Bayesians, that agents reach consensus (almost surely, rela-
tive to the assumptions in the theorems) should allay concerns that Bayesianism robs science
of any sort of objectivity. “This approximate merging of initially divergent opinions is, we
think, one reason why empirical research is called ‘objective’,” write Edwards, Lindman, and
Savage (1963, p. 197).

Let P and Q be two probability measures on (Ω,F). Above, we explained that if P antic-
ipates learning increasing and complete evidence, then P assigns probability 1 to converging
to the truth. In this section, we continue to assume that evidence is increasing and complete,
but we now also assume that it is shared with Q. We say that P shares evidence with Q if for
all n ∈ N and E ∈ En, if P (E) > 0, then Q(E) > 0. This ensures that Q can conditionalize
on any evidential event that P can—anything that P can learn, Q can learn, too.

For all ω ∈ Ω, let Pn(ω) = P (· | En(ω)) and Qn(ω) = Q(· | En(ω)) be the posteriors for P
and Q after conditionalizing on a member of the nth partition. As an informal gloss on the
merging of opinions results, we might say, if P is “sufficiently similar” to Q, then for all ω in
a set with P -probability 1 the distance between the posteriors Pn(ω) and Qn(ω) goes to 0 as
n increases. We will use the same notion of distance that we used in Section 4, namely total
variational distance. We say that P and Q merge if d(Pn(ω), Qn(ω)) gets arbitrarily close to

13Technically, we may have P (En(ω)) = 0 for some n and ω, in which case we can define P (· | En(ω))
arbitrarily and replace “for all ω ∈ Ω” with “for all ω ∈ Ω in a set with P -probability 1.”
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0 for all ω as n increases, and we say that P expects to merge with Q if this event occurs for
all ω in a set with P -probability 1.

We now need to say what we mean by sufficient similarity. Call P absolutely continuous
with respect toQ whenQ(A) = 0 implies P (A) = 0 for allA ∈ F . In other words, any extreme
probability assignment of Q’s is an extreme probability assignment of P ’s. It could still be
the case, though, that P (A) = 0 but Q(A) > 0 for some A ∈ F . If Q is absolutely continuous
with respect to P also, then we say that P and Q are mutually absolutely continuous.

Theorem 2 (Blackwell and Dubins (1962)). Suppose that P shares increasing and complete
evidence with Q. If P is absolutely continuous with respect to Q, then P expects to merge
with Q.

Given that P is absolutely continuous with respect to Q, P assigns probability 1 to approach-
ing consensus with Q when they share increasing and complete evidence. If, in addition, Q
is absolutely continuous with respect to P , then both P and Q expect to merge with each
other.

But wait. Doesn’t Theorem 2 show that polarization is essentially inconsistent with
Bayesian rationality? Some authors do indeed seem to think polarization is beyond the pale,
not just for some vague theory of rationality in general, but for Bayesianism in particular.

Ample psychological evidence suggests that people’s learning behavior is often
prone to a “myside bias” or “irrational belief persistence” in contrast to learn-
ing behavior exclusively based on objective data. In the context of Bayesian
learning such a bias may result in diverging posterior beliefs and attitude po-
larization even if agents receive identical information. Such patterns cannot
be explained by the standard model of rational Bayesian learning that implies
convergent beliefs. (Zimper and Ludwig, 2009, p. 181)

At least two points about Theorem 2 require careful consideration. First, the theorem has
preconditions. To see that they are significant, note that Theorem 2 has a partial converse,
which follows from the Bayesian Consensus-or-Polarization Law in the next part of the paper.
It turns out that if P is not absolutely continuous with respect to Q, then either P does
not expect to merge with Q or P does not share evidence with Q. So, provided P shares
evidence with Q, if P is not absolutely continuous with respect to Q, then P assigns positive
probability to the event that the posteriors Pn and Qn persist in disagreeing despite access
to an increasing and complete evidence. In section 6, we return to these issues with more
precision. But we should pause now to think about the absolute continuity assumption.

Absolute continuity is not a rationality requirement. After all, with respect to which
measure or measures ought a prior be absolutely continuous? Unless we have a principled
answer to that question, it is difficult to even make sense of a proposal according to which
absolute continuity is a normative constraint. And there is no trivial answer to the question in
general. In large measurable spaces14, there is no measure with respect to which all measures
are absolutely continuous. Of course, even if P and Q were both absolutely continuous with
respect to a third, distinguished measure, neither need be absolutely continuous with respect
to the other. It might be tempting to urge priors to avoid extreme assignments. For instance,
regular probability measures—which assign positive probability to all non-empty events—
enjoy wide-spread support among philosophical probabilists (Shimony, 1955; Lewis, 1980;

14Such spaces arise when considering random variable with continuous distributions, for example. A random
variable representing the unknown duration of a prizefight would be such a quantity.
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Skyrms, 1995). However, in large enough probability spaces, such measures are impossible
and extreme prior probability assignments unavoidable.15

Similarly, absolute continuity is of dubious descriptive value. According to Miller and
Sanchirico, the condition is even “difficult to interpret behaviorally” (1999, p. 171). But
our concern is that absolute continuity just assumes a great deal of agreement out of the
gate. When is that much initial agreement actually realized? Perhaps one could maintain
that communities of scientists often endorse statistical models sufficiently similar so as to be
absolutely continuous. As a descriptive claim, however, such a view needs empirical support.
Earman considers something even stronger.16 Mutual absolute continuity may be in some
sense constitutive of a scientific community: “it could be held that decisions on zero priors
help to define scientific communities and that an account of scientific inference must be
relativized to a community” (1992, p. 142). In a debate about the descriptive adequacy of
absolute continuity, such a response would verge on question-begging. If the very definition of
a scientific community implies absolute continuity of its members’ opinions, then no serious
debate about the descriptive status of absolute continuity in research communities remains
to be had.

Another suggestion is that an important conceptual distinction about disagreement can
be explicated in terms of absolute continuity.17 The distinction is between disagreement
and radical disagreement, with radical disagreement being modeled by failures of absolute
continuity. First, we note that radical disagreement on this explication is not symmetric,
which may be a questionable feature. One prior may be in radical disagreement with another
that is only in modest disagreement with it. Second, failures of absolute continuity can arise
even when opinions are, in one sense, intuitively “close,” just as absolutely continuous priors
can be “far apart.” If Q(A) = 0 but P (A) = 0.000001, for example, then P is not absolutely
continuous with respect to Q; while P (A) = 0.99 and Q(A) = 0.01 does not preclude absolute
continuity. Third, in order to avoid being a mere relabeling of when absolute continuity holds
or not, the distinction should draw on some well-motivated, independent account of radical
disagreement which may not be forthcoming in light of the sort of example just given.

The second issue about Theorem 2 requiring special attention appears in the consequent
rather than the antecedent. P merges with Q almost surely. The distinction between sure
and almost sure is not always kept firmly in mind when it comes to Bayesian convergence
and merging results, leading some to make remarks apparently inconsistent with our general
claim in this paper. More cynically, Earman writes, “‘almost surely’ sometimes serves as a
rug under which some unpleasant facts are swept” (Earman, 1992, p. 148).18 We may be
interested in what holds surely (for all ω ∈ Ω), and not in what is merely highly probable.19

15“Perhaps the reason that the absolute continuity assumption has gained such currency in the literature
is that it is so plausible in a finite, or even countable setting. Even the stronger assumption that both players
regard each state as at least possible [they have regularity in mind here] seems attractive, since all this rules
out is dogmatism. But it would be a mistake to carry this intuition into the necessarily uncountable setting
that is relevant here: obviously, in this case some events must receive zero measure” (Miller and Sanchirico,
1999, p. 179).

16Earman himself regards the fanfare concerning merging of opinions with a good deal of skepticism.
17Thanks to an anonymous referee for this suggestion.
18Glymour (1980) raises a similar concern about convergence to the truth, writing, “The theorem does not

tell us that in the limit any rational Bayesian will assign probability 1 to the true hypothesis and probability
0 to the rest; it only tells us that rational Bayesians are certain that he will” (p. 73). More recently, Gordon
Belot has argued that convergence to the truth results constitute a liability for Bayesians because they forbid
a “reasonable epistemological modesty” (2013, p. 502).

19See Nielsen (2018).
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Attending to the distinction between merging, on the one hand, and merging almost surely,
on the other, we see that, if the “actual world” ω is outside the support of P , for all Theorem
2 says, P and Q may not actually merge. It is just that P assigns such points 0 probability. A
number of examples have been used to motivate distinguishing certainty from 0-1 probability
assignments. An agent might regard each toss in an infinite sequence of tosses of a fair coin
as independent. Then, any infinite sequence of (outcomes of) coin tosses bears probability 0.
Yet it would be a mistake to infer that she is certain that no such sequence is the actual one.
An infinitely fine dart is thrown at the [0, 1] interval. An agent’s opinions about the outcome
of the throw may be representable by the Lebesgue measure. Then, each real number in the
unit interval bears probability 0. But the agent is not certain that, for each real number, the
dart will not hit it.

Both the assumption of absolute continuity and the almost surely hedge require us to
exercise considerable care in interpreting Blackwell and Dubins’s theorem. In the remainder
of the paper, we focus on absolute continuity. Even restricting our attention to probability
“strong laws” (results that hold with probability 1), relaxing absolute continuity even to a
very modest extent has significant ramifications.

6. The Bayesian Consensus-or-Polarization Law

The asymptotic analogue of polarization occurs when the total variational distance between
posteriors tends to the maximal value of 1. More precisely,

Definition 4. P and Q polarize in the limit if d(Pn(ω), Qn(ω)) gets arbitrarily close to 1 for
all ω as n increases.

Polarization in the limit is basically stronger than the notion of global polarization in Defi-
nition 3. To explain this relation, suppose that P and Q polarize in the limit, and let r be
the total variational distance between P and Q. It cannot be that r = 0 because then P
and Q would be identical and would not be able to polarize in the limit. On the other hand,
if r = 1, then polarization in the sense of Definition 3 can not occur. But this is a rather
trivial limiting case. In cases of interest we may therefore assume that 0 < r < 1. Since P
and Q polarize in the limit, for all ω there is some stage n such that d(Pn(ω), Qn(ω)) > r. It
follows that En(ω) polarizes P and Q globally. Hence, excluding the trivial limiting case in
which r = 1, if P and Q polarize in the limit, then for all ω there is some stage n such that
En(ω) polarizes P and Q globally. It is in this sense that polarization in the limit “basically”
implies global polarization. Even if our notion of polarization in the limit is not the unique
extension of Definition 3 to the general setting, it is a natural one in light of the relation
just explained. Another reason to focus on it is that the total variational distance plays a
prominent role in the theory of Bayesian merging, as evidenced by the common retort that
“priors wash out.”

In this section, we state and discuss a generalization of the Blackwell-Dubins merging
of opinions result that we call the Bayesian Consensus-or-Polarization Law. To do this,
we make use of a deep but easily explained result in measure theory called the Lebesgue
Decomposition Theorem. In order to explain that result, we need one more definition. Let
P and Q be any two probability measures. We say that P and Q are mutually singular if
P assigns probability 1 to an event to which Q assigns probability 0.20 When P and Q are
mutually singular, absolute continuity fails in the most radical way possible. In subjective

20Mutually singular probabilities have already made a brief appearance in our study of polarization. See
footnote 10.
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terms, P is probabilistically certain that some event A will occur while Q is certain that it
will not. It follows that when P and Q are mutually singular, the total variational distance
between them takes its maximal value of 1.

Now, for any two probability measures P and Q, the Lebesgue Decomposition Theorem
implies that for some δ ∈ [0, 1], P can be decomposed as

P = δP a + (1− δ)P s, (2)

where P a is a probability measure that is absolutely continuous with respect to Q and P s is
a probability measure that is mutually singular with Q. Furthermore, if δ is strictly between
0 and 1, then the decomposition is unique. One can check that P is absolutely continuous
with respect to Q if and only if δ = 1. And similarly, P and Q are mutually singular if and
only if δ = 0.

The decomposition given by equation (2) tells us that P can be viewed as a mixture of
two probabilities, one of which is absolutely continuous with respect to Q and one of which is
mutually singular with Q. The larger δ is the “more” absolutely continuous P is with respect
to Q. For this reason, we will call δ the degree of absolute continuity of P with respect to
Q, and we say that P is absolutely continuous with respect to Q to degree δ. In view of our
earlier remarks, P is absolutely continuous with respect to Q simpliciter just in case P is
absolutely continuous with respect to Q to degree 1.

The main result of this part of the paper demonstrates a tight connection between degree
of absolute continuity and merging of opinions and generalizes the Blackwell-Dubins theorem
that we discussed in the previous section.

Theorem 3 (Bayesian Consensus-or-Polarization Law). Let P and Q be any two probabilities
and suppose that P is absolutely continuous with respect to Q to degree δ. Let M be the event
that P and Q merge, and let L be the event that P and Q polarize in the limit. If P shares
an increasing and complete sequence of evidence with Q, then

P (M) = δ and P (L) = 1− δ.

Theorem 3 implies that an agent with probabilities given by P is certain, with probability 1,
that either he and Q will merge or they will polarize: P (M∪L) = 1. Under the assumption of
shared, increasing, and complete evidence, it is incoherent for P to assign positive probability
to the event that the distance between the posteriors Pn and Qn tends to 0.6, for example,
or that the distance oscillates forever. To see that our result generalizes the Blackwell-
Dubins theorem, suppose that P is absolutely continuous with respect to Q. Then δ = 1, so
P (M) = 1, which is the conclusion of Theorem 2.

The idea of the proof of Theorem 3 is straightforward. Think of P as being determined
by flipping a coin with bias δ. With probability δ, P is absolutely continuous with respect to
Q and equal to P a. With probability 1 − δ, P and Q are mutually singular and P is equal
to P s. If P ends up equal to P a, then the Blackwell-Dubins theorem tells us that P expects
to merge with Q. Hence, M occurs with probability δ, which is the first conclusion of our
result. If, on the other hand, P ends up equal to P s, then P (A) = 1 and Q(A) = 0 for some
event A. No amount of conditionalizing can change these extreme probability assignments,
so P and Q must polarize in the limit. Hence, L occurs with probability 1− δ. Making this
argument precise requires some careful management of probability 0 events, which is where
the assumption that evidence is shared comes into play. The complete proof can be found in
the Appendix.

Theorem 3 also implies the converse to the Blackwell-Dubins that was advertised in the
last section. Suppose that P shares an increasing and complete sequence of evidence with Q
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and that P expects to merge with Q. Then 1 = P (M) = δ by Theorem 3. So P must be
absolutely continuous with respect to Q. We see that in the presence of shared, increasing,
and complete evidence absolute continuity is necessary for merging of opinions to occur with
probability 1. We record this fact as the following corollary.

Corollary 1. If P shares an increasing and complete sequence of evidence with Q, and P
expects to merge with Q, then P is absolutely continuous with respect to Q.21

One thing that we would like to stress about Theorem 3 is that the way in which we relax
absolute continuity is quite mild because we continue to assume that absolute continuity
relation holds with respect to evidential events. Our assumption is that for any event E that
can be expressed as E = E1 ? ... ? Ek (where each Ei is an element of some partition En
and ? is some operation on sets), that is, any event that can be settled by a finite amount
of evidence, P (E) = 0 if Q(E) = 0. In other words, absolute continuity is relaxed just for
infinitary events. Relaxing absolute continuity further than we have would be to relinquish
the shared evidence assumption: there may be events that P can learn at some stage n that Q
cannot. So, our assumption is a motivated way to mildly relax absolute continuity. However,
the conclusion of our theorem is importantly different from that of Blackwell and Dubins’s.
This suggests to us that the classic merging of opinions results, by failing to be robust even to
our mild weakening of the assumptions, are something of an artifact of the under-motivated
but strong assumption of absolute continuity.

7. Discussion

About polarization, Thomas Kelly asks, “Given that You and I are responding to our
evidence in such-and-such a way, is there any chance that our doing so is anything other
than blatantly unreasonable?” (2008, p. 631). More generally, are there grounds to deny
TOTAL? Our study here provides an affirmative answer when the standard of reasonableness
is Bayesian. As we have shown, it is trivial to find instances of polarization and persistent
disagreement when agents learn just a finite amount of shared evidence. In the general
case, the guarantee of asymptotic consensus for Bayesians is an artifact of special auxiliary
assumptions, like absolute continuity, that supplement Bayesian updating. Claims that ratio-
nal learning leads to consensus require endowing the auxiliary assumptions with a normative
status. We find no plausible channel for such an endowment.

Our investigation could be taken in two different ways. On the one hand, we could hold
to the normative standard provided by Bayesian probability theory. On the other hand, we
could deny that the standard Bayesian picture of learning presents us with a sound scientific
methodology. In the former case, it seems that we must relinquish any requirement that
sound scientific methodology provides investigators with resources to resolve disagreements
through shared evidence. Again, somewhat confusingly, claims contrary to this view are
routinely made from inside the Bayesian camp. Suppes, for example, writes,

It is of fundamental importance to any deep appreciation of the Bayesian
viewpoint to realize the particular form of the prior distribution expressing
beliefs held before the experiment is conducted is not a crucial matter [...] For
the Bayesian, concerned as he is to deal with the real world of ordinary and

21We note that this result was first proved by Kalai and Lehrer (1994). In the Appendix we actually
generalize their result because their proof assumes that evidence is represented by partitions while ours does
not.
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scientific experience, the existence of a systematic method for reaching agree-
ment is important [...] The well-designed experiment is one that will swamp
divergent prior distributions with the clarity and sharpness of its results, and
thereby render insignificant the diversity of prior opinion (1966, p. 204).

Similar claims in the context of merging of opinions can be found even in the most recent
literature.22

Consider now the second way to construe our study. There is more to scientific methodol-
ogy, this reply goes, than is dreamt of in the Bayesian philosophy of coherence and condition-
alization.23 If we are to retain a probabilistic epistemology, we must constrain the class of
“rationally permissible” priors rather substantially. But in a broadly Bayesian paradigm, the
consensus requirement is tied to absolute continuity. Not only is absolute continuity a neces-
sary condition for merging (whenever evidence is shared) that lacks normative motivation; it
is a condition which we have no reason to expect to be satisfied in many cases. Furthermore,
Theorem 2 only secures merging almost surely.

Holding out hope that a case can be made for the normative status of the absolute conti-
nuity condition, one might think that perhaps there are other aspects of sound methodology
that would imply absolute continuity, and thereby secure merging. What is the nature of
these additional aspects of scientific methodology? Are they all agent-invariant, or are some
of them more subjective? By focusing solely on revising judgments of subjective probability
via conditionalization, we have made the case against TOTAL harder to make than it might
have been—at least in one sense. Adding parameters that are not invariant across rational
agents would only make achieving consensus a less likely outcome. According to Isaac Levi’s
epistemological outlook, to take an example with many subjective parameters, not only is
what an agent “learns” or comes to accept determined in part by a subjective value for in-
formation, an agent can also revise her prior independently of learning new evidence in some
circumstances (Levi, 1980).24 So eliminating disagreements via rational learning is even less
plausible on an account like Levi’s. But what about additional aspects of good methodology
that are objective? A popular objective sort of constraint on probability judgments is the
Principal Principle. But it is difficult to see how such a principle would help. In general,
the Principal Principle does not pin down a unique prior probability (if for no other reasons
than that would require, first, too much shared “knowledge of the chances” of events and,
second, that chances are reasonably attributable to all relevant events).25 Typically, only
small fragments of a distribution are determined by it. This, of course, leaves ample occasion
for the failure of absolute continuity between different priors. So much the worse for TOTAL.

22See, for example, “We follow, e.g., Peirce in requiring that sound Scientific methodology provides inves-
tigators with the resources to resolve interpersonal disagreements through shared evidence” (Cisewski et al.,
2017). But for which priors, with respect to how much evidence? And surely or only almost surely?

23We are not considering approaches that fully abandon Bayesianism or fully denounce its subjective
elements.

24In Levi’s terminology, an agent can revise her confirmational commitment, which is a function from states
of full belief to sets of probabilities, should circumstances call for it—without changing her state of full belief
(see, e.g., Levi, 2009, §2).

25An anonymous referee points out that a result due to Deutsch in the context of the many-worlds inter-
pretation of quantum mechanics can be interpreted as delivering a unique rational probability. See (Greaves,
2007, p. 115).
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Appendix

Examples from Section 4. The following two examples were referred to in Section 4. The
first is a case of polarization with respect to an event accompanied by a decrease in total
variational distance.

Example 4. Let (Ω,F), A, and E be defined as in Example 1, and consider the following
priors and posteriors

Table 4

ω1 ω2 ω3 ω4

P1 1/24 5/12 1/12 11/24

P2 1/2 1/12 1/4 1/6

PE
1 1/3 0 2/3 0

PE
2 2/3 0 1/3 0

We still have polarization with respect to A because P1(A | E) = 1/3 < 11/24 = P1(A) ≤
P2(A) = 13/24 < 2/3 = P2(A | E). And yet, d(P,Q) = 5/8 > 1/3 = d(PE

1 , P
E
2 ). 4

The next example is a case of global polarization without polarization with respect to any
event.

Example 5. Let Ω = {ω1, ω2, ω3}, F = 2Ω, and E = {ω1, ω2}. Consider the priors and
posteriors in the table below.

Table 5

ω1 ω2 ω3

P1 1/3 1/3 1/3

P2 4/15 2/5 1/3

PE
1 1/2 1/2 0

PE
2 2/5 3/5 0

We have d(P1, P2) = 1/15 < 1/10 = d(PE
1 , P

E
2 ), so E polarizes P1 and P2 globally. However,

there is no subset of Ω with respect to which E polarizes P1 and P2. This is straightforward
to verify and we omit the details. 4
Proof of Theorem 3. In the remainder of this appendix, we will provide a more formal and
general presentation of the mathematical framework of Part 2. Then we will prove Theorem
3.

Let (Ω,F , P ) be a probability space. We say that an event A ∈ F occurs almost surely
with respect to P when P (A) = 1. We also say A occurs a.s. (P ), and if Q is another
probability measure on (Ω,F) with respect to which A occurs almost surely, we say that A
occurs a.s. (P/Q). We denote the indicator function for A by 1A : Ω→ {0, 1}, defined as

1A(ω) =

{
1, if ω ∈ A;

0, otherwise
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When F and G are both sigma-algebras of subsets of Ω, we call G a sub-sigma-algebra of F
if G ⊆ F . Intuitively, sigma-algebras represent bodies of information. For example, consider
tossing a coin N times. Prior to any tossing, one is uncertain what the actual sequence of
tosses will be and has a prior distribution over all the binary sequences of length N . After
observing the first toss one now knows whether the actual sequence begins with H or T .
This information is represented by the sigma-algebra G that partitions all the possible binary
sequences into those beginning with H and those beginning with T . Formally,

G = {∅, {ω ∈ Ω : ω begins with H}, {ω ∈ Ω : ω begins with T},Ω}.
If F is a sigma-algebra, then a real-valued function X : Ω → R is called F-measurable if

{ω ∈ Ω : X(ω) ≤ x} ∈ F for every x ∈ R. Intuitively, the function X is F-measurable if
every question about the values that X takes can be answered by the information in F . To
take a simple example, if G is defined as above and A = {ω ∈ Ω : ω begins with H}, then 1A

is G-measurable.
In the main text, we assumed for simplicity that evidence is represented by a sequence of

finite partitions and that at each stage an agent learns an event in a partition. We now relax
that assumption. We now assume that evidence is represented by a filtration {Fn}n∈N on
(Ω,F), which is defined to be a collection of sub-sigma-algebras of F such that Fn ⊆ Fn+1

for all n ∈ N. To see that this generalizes the partition model used in the main text, note
that every finite partition En generates a sub-sigma-algebra, the members of which are unions
of members of En (as well as ∅). The inclusion relationship Fn ⊆ Fn+1 is the generalization
of the above requirement that later partitions refine earlier ones and captures the idea that
evidence is increasing. Let F∞ be the smallest sigma-algebra containing

⋃
n∈NFn. In the

general setting, we say that the filtration {Fn}n∈N is complete if F is generated by the sub-
sigma algebras Fn in the sense that F∞ = F . As before, the point of this assumption is that
the evidential information contained in the filtration eventually captures all events of interest
(events in F).

Since evidence is represented by a filtration, we need a notion of conditional probabil-
ity given a sub-sigma-algebra, whereas in the main text we were able to make do with the
familiar notion of conditional probability given an event. We use the definition of condi-
tional probability that is standard in modern probability theory. The conditional probability
P (A|Fn) of A given the sub-sigma-algebra Fn is an Fn-measurable function that satisfies
P (A ∩ E) =

∫
E P (A|Fn)dP for all E ∈ Fn. The existence of such a function is guaranteed

for any sub-sigma-algebra by the Radon-Nikodym Theorem and is unique up to sets of P -
measure 0. In other words, any Fn-measurable function X that satisfies the given integral
equation is almost surely equal to P (A | Fn) with respect to P , and we say that X is a
version of P (A | Fn). Note that in the simple case where each Fn is generated by a finite
partition En the conditional probabilities given Fn are given by

P (A | Fn)(ω) = P (A | En(ω))

for all ω in a set with probability 1, which corresponds with the treatment of conditional
probabilities in the main text.

The convergence-to-the-truth theorem, as stated in the main text, generalizes to

lim
n→∞

P (A|Fn) = 1A a.s.(P ).

for all A ∈ F . As in the main text, all limits are pointwise in ω ∈ Ω. Another way of stating
convergence to the truth, then, is

P ({ω ∈ Ω : lim
n→∞

P (A | Fn)(ω) = 1A(ω)}) = 1
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Following our previous notation, we write Pn(ω) = P (·|Fn)(ω) and Qn(ω) = Q(·|Fn)(ω).
In order to state the Blackwell-Dubins merging of opinions theorem in full generality, we
need to make a further assumption about Pn and Qn. For all that we have said so far, for
fixed ω ∈ Ω, either or both of Pn(ω) and Qn(ω) may fail to be probability measures on
(Ω,F). If there are versions of Pn and Qn such that Pn(ω) and Qn(ω) are probabilities for
all ω ∈ Ω, then we say that these versions are regular conditional probabilities. Under the
assumption that Fn is generated by a finite partition, regular versions of Pn and Qn exist.
We can also guarantee the existence of regular versions of Pn and Qn by making assumptions
about the space (Ω,F). For example, if Ω is a Polish space and F is its Borel sigma-algebra,
then regular versions of the conditional probabilities exist. But without further assumptions
about the probability space or filtration, regular versions may not exist, so we now add their
existence as a further assumption of the framework.26

If P is absolutely continuous with respect to Q, then we write P � Q. We say that P
shares evidence with Q if P |Fn � Q|Fn for all n, where P |Fn and Q|Fn denote the restrictions
of P and Q to the sub-sigma-algebra Fn. Note that this corresponds with the definition of
sharing evidence in the main text when Fn is generated by a finite partition. We say that P
and Q merge when

lim
n→∞

d(Pn, Qn) = 0.

The general version of Theorem 2 is

Theorem 4 (Blackwell and Dubins (1962)). Let P and Q be probability measures on (Ω,F),
and let {Fn}n∈N be a complete filtration. Suppose that Pn and Qn are regular conditional
probabilities for all n. If P � Q, then P and Q merge with P -probability 1, i.e.

P ({ω ∈ Ω : lim
n→∞

d(Pn(ω), Qn(ω)) = 0}) = 1.

The general version of Theorem 3, which we are now ready to prove, is

Theorem 5 (Bayesian Consensus-or-Polarization Law, General Version). Let P and Q be
two probability measures on (Ω,F), and let {Fn}n∈N be a complete filtration. Suppose that
Pn and Qn are regular conditional probabilities for all n, that P shares evidence with Q, and
that P is absolutely continuous with respect to Q to degree δ. Then

P ({ω ∈ Ω : lim
n→∞

d(Pn(ω), Qn(ω)) = 0}) = δ

and

P ({ω ∈ Ω : lim
n→∞

d(Pn(ω), Qn(ω)) = 1}) = 1− δ.

Proof. If δ = 1, then the result follows from Theorem 4, so assume δ < 1. Let the Lebesgue
decomposition of P with respect to Q be given by

P = δP a + (1− δ)P s,

as in equation (2) of the main text. Clearly, P a � P and P s � P .
By the triangle inequality, P a � Q, P a � P , and Theorem 4,

d(Pn, Qn) ≤ d(Pn, P
a
n ) + d(P a

n , Qn)→ 0 a.s. (P a) (3)

With M = {ω ∈ Ω : d(Pn(ω), Qn(ω))→ 0}, (3) implies

P a(M) = 1. (4)

26For more on regular conditional probabilities, see Seidenfeld (2001) and Durrett (2010, 4.1c).
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Next, let As ∈ F be such that Q(As) = 0 and P s(As) = 1. Such an event exists because P s

and Q are mutually singular. Since Q(As) = 0, we have Qn(As) = 0 a.s. (Q/Q|Fn) since Qn

is Fn-measurable. This implies Qn(As) = 0 a.s. (P |Fn/P ), which then implies Qn(As) = 0
a.s. (P s). Since P s(As) = 1, we have P s

n(As) = 1 a.s. (P s). In this way, for all n we find a
P s-probability 1 set on which Qn(As) = 0 and P s

n(As) = 1. It follows that d(P s
n, Qn) = 1 for

all n a.s. (P s). Using this fact, the triangle inequality, P s � P , and Theorem 4, we get

d(Pn, Qn) ≥ d(P s
n, Qn)− d(P s

n, Pn)→ 1 a.s. (P s) (5)

With L = {ω ∈ Ω : d(Pn(ω), Qn(ω))→ 1}, (5) implies

P s(L) = 1. (6)

Now, M ⊆ Lc and L ⊆M c, so (4) and (6) imply

P a(L) = 0 = P s(M). (7)

Using (4), (6), (7) and the Lebesgue decomposition (2) of P with respect to Q we compute

P (M) = δ and P (L) = 1− δ,
which is the desired result. �
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