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2 
 

Pyrrolocytosines RX-04A-D are designed to bind to the bacterial 50S ribosomal 30 

subunit differently from currently-used antibiotics.  The four analogs had 31 

broad anti-Gram-negative activity: RX-04A inhibited 94.7% of clinical 32 

Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa 33 

at 0.5-4 g/ml, with no MICs >8 g/ml. MICs for multi-resistant carbapenemase 34 

producers were up to two-fold higher than for control strains, with values >8 35 

g/ml for one Serratia isolate with porin and efflux lesions.  mcr-1 did not 36 

affect MICs. 37 

 38 

One approach in the search for new antibacterial agents is to model the target 39 

interactions of natural antibiotics that are unsuitable for pharmaceutical development, 40 

owing to toxicity or instability, and to use this information to design synthetic 41 

molecules that achieve similar binding without the unfavorable traits of the original 42 

compounds.   43 

Melinta Pharmaceuticals has applied this strategy to blasticidin S, a natural 44 

product of Streptomyces griseochromogenes that inhibits both eukaryotic and 45 

prokaryotic ribosomes but which has proved useful only as a fungicide, deployed to 46 

control rice blast disease in Japan [1].  Modelling of the ribosomal interactions of 47 

blasticidin [2], TAB-1057A/B [3] and amecitin [4] - which have overlapping targets 48 

that are distinct from those of clinically-used bacterial protein synthesis inhibitors - 49 

had led to several new antibacterial scaffolds, including pyrrolocytosines [5,6]. These 50 

are chemically unrelated to blasticidin, but mimic its principal interactions with the 51 

bacterial 50S subunit [6]. In-vitro antibacterial activity indicates that the 52 

pyrrolocytosines penetrate into bacterial cells, and further development has sought 53 

to optimise this penetration for Gram-negative bacteria whilst reducing vulnerability 54 
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to efflux [5].  Chemical properties of the pyrrolocytosine derivatives along with 55 

synthetic methods, are outlined in the relevant patents [7-9]. 56 

We evaluated four pyrrolocytosine derivatives, RX-04A - D (fig. 1), against a 57 

panel of 96 Gram-negative clinical isolates, biased to over-represent 58 

carbapenemase producers, Enterobacteriaceae with mcr-1 and Pseudomonas 59 

aeruginosa with up-regulated efflux. We additionally tested Escherichia coli HB10B 60 

and its transformant, carrying plasmid p594, which encodes expression of mcr-1 61 

[10]. The mcr-1 and carbapenemase genes were detected by PCR or sequencing 62 

[10,11] whilst efflux levels in P. aeruginosa isolates were inferred by interpretive 63 

reading of antibiograms data, which predicts mechanisms from phenotypes [12].  64 

MICs of the four RX-04 analogs and comparators (amikacin, cefepime, colistin, 65 

meropenem, and tigecycline) were determined by CLSI broth microdilution [13] using 66 

pre-prepared plates (Trek Diagnostic Systems, Thermofisher, Oakwood, OH). DNA 67 

from four Serratia isolates differing in susceptibility to the pyrrolocytosines was 68 

extracted using a QIAsymphony automated instrument. Sequencing libraries were 69 

prepared using the Nextera XT DNA library preparation kit and sequenced on 70 

Illumina HiSeq 2500 system using the 2 x 100-bp paired-end mode. Genomes were 71 

assembled de novo with VelvetOptimiser 2.1.9 software 72 

(http://bioinformatics.net.au/software.velvetoptimiser.shtml) and then compared with 73 

each other to seek genetic modifications that were specific to the Serratia with the 74 

highest pyrrolocytosine MICs, particularly in genes encoding porins, efflux pumps 75 

and the rRNA targets of the pyrrolocytosines. 76 

MICs by species, irrespective of resistance mechanism, are shown in Table 1, 77 

whilst Table 2 shows geometric mean MICs for major resistance types represented 78 

in the test panels. Non-susceptibility rates to comparators for the Enterobacteriaceae 79 
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isolates (n=66), at CLSI breakpoints, were: amikacin 14%, cefepime 50%, colistin 80 

33% (2 g/ml EUCAST breakpoint), meropenem 47%, and tigecycline 15% (1 g/ml 81 

EUCAST breakpoint); those for the same agents against the A. baumannii isolates 82 

(n=10) were amikacin 40%, cefepime 50%, colistin 0%, meropenem 50% and 83 

tigecycline 50%, respectively.  Non-susceptibility rates for the P. aeruginosa isolates 84 

(n=20) were amikacin 15%, cefepime 45%, colistin 25% and meropenem, 45%. 85 

Despite this heavy loading with isolates resistant to established agents, MIC 86 

distributions of RX-04A - D were all unimodal and tightly clustered. MICs were lowest 87 

for RX-04A, where 94.7% of values, for all species pooled, lay between 0.5 and 4 88 

g/ml, with no values greater than 8 g/ml. MICs were highest for analogs RX-04C 89 

and RX-04D, particularly for P. aeruginosa.  Irrespective of the analog, the general 90 

pattern was for MICs to be lowest for E. coli, slightly higher for other 91 

Enterobacteriaceae, particularly Serratia spp., and highest for P. aeruginosa.  92 

 MICs for a single S. marcescens isolate, which also had OXA-48 93 

carbapenemase, were raised markedly, at 8, 16, >16 and >16 g/ml for molecules 94 

RX-04A, B, C and D respectively, compared with 1-2, 1-4, 2-4 and 2-4 g/ml, 95 

respectively, for the remaining three Serratia isolates tested.  Comparison of the four 96 

sequenced genomes revealed the high-MIC isolate to have both (i) a premature stop 97 

codon (Tyr211) in omp2, which is an ompC/F homolog and (ii) multiple unique 98 

changes (as compared with all three low-MIC Serratia isolates) in the sdeCDE 99 

operon, encoding an RND pump system [14], specifically, Asn407Ser, Ser432Asn, 100 

Glu433Ala, Ala437Thr, Ala438Asn, Asn439Lys, Ala440Thr, Glu443Gln, ArgR448Gly 101 

in sdeC, Glu111Asp and Thr363Met in sdeD and Glu240Asp in sdeE.  None of these 102 

changes were observed in the three low-MIC Serratia genomes.   No lesions specific 103 

to the high-MIC isolate were found (i) in other recognised porin genes (omp1 and 104 
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omp3), (ii) in porin regulatory genes (ompR and envZ), (iii) in efflux pump genes 105 

(smdAB, sdeXY, smfY and ssmE), nor (iv) in genes encoding the 16S or 23S rRNA 106 

targets of the RX-04A-D molecules. Inactivation of omp2 seems likely to reduce 107 

pyrrolocytosine uptake and the sdeCDE lesions may increase efflux explaining the 108 

phenotype of the high-MIC Serratia isolate.  These uptake and efflux lesions also are 109 

congruent with an observed meropenem MIC of 32 g/ml, which is unusually high for 110 

an Enterobacteriaceae with an OXA-48 -lactamase. 111 

Geometric mean MICs of the four analogs for carbapenemase-producing 112 

Enterobacteriaceae were slightly above those for the susceptible control strains, 113 

though the differentials never exceeded one doubling dilution (Table 2).  These small 114 

rises again probably reflected widespread reductions in permeability or upregulations 115 

in efflux among the carbapenemase-producing Enterobacteriaceae.  The MIC 116 

differential for carbapenemase-producing versus non-producing A. baumannii was 117 

larger, exceeding two-fold for analogs RX-04B-D, though not for RX-04A; however, 118 

numbers were small and 3/5 OXA-23-producing isolates belonged to the same 119 

lineage (International Clone II [15]) raising the possibility that the mean was skewed 120 

by over-representation of this lineage. 121 

The effect of mcr-1 was of interest because the pyrrolocytosines are polybasic 122 

(fig. 1), raising the hypothetical concern that MCR-1-mediated substitution of 123 

lipopolysaccharides with positively-charged phosphoethanolamine [16] might impede 124 

their initial interaction with the cell surface, reducing uptake.  MICs of the RX analogs 125 

for the mcr-1-positive isolates were around one doubling dilution above those for 126 

control strains. However most (11/14) of these isolates were Salmonella enterica, 127 

being compared with E. coli controls, and the differential may reflect species rather 128 

than mechanism.  Crucially, transformation of E. coli DH10B with the mcr-1–129 
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encoding plasmid p594 had no effect on MICs of RX-04A, B, C and D, which 130 

remained at 0.25, 0.5, 0.5 and 1 g/ml respectively, whereas the MIC of colistin was 131 

raised from 0.25 to 4 g/ml. A caveat is that we do not know the extent of LPS 132 

modification achieved by p594-mediated carriage of mcr-1, nor the mode of 133 

expression, meaning that we cannot definitively exclude the possibility that induction 134 

by the pyrrolocytosines was weaker than by colistin.  This seems unlikely, though: if 135 

LPS-substitution with positively charged alcohols and sugars compromised the 136 

pyrrolocytosines, then generalized resistance would be expected in colistin-resistant 137 

genera such as Serratia, and this was not seen.    138 

In the case of P. aeruginosa, geometric mean MICs of all analogs were ca. 139 

1.5-fold higher for the isolates with ‘normal’ versus low efflux, but did not rise further 140 

for those with elevated efflux-mediated resistance to -lactams and fluoroquinolones 141 

(Table 2).     142 

In conclusion, these data indicate that the four pyrrolocytosine molecules had 143 

broad activity against Enterobacteriaceae and non-fermenters, with RX-04A the most 144 

active analog. Near-full activity was retained against isolates with resistance 145 

mechanisms of current concern, including against carbapenemase producers, those 146 

with mcr-1-mediated colistin resistance and (perhaps most surprisingly) P. 147 

aeruginosa with up-regulated efflux. A caveat is that the strain panel was small and 148 

we cannot exclude the possibility that resistance might arise from novel or 149 

unsuspected mechanisms, only detectable with a larger panel..  Notably, raised 150 

MICs were seen for one Serratia with inactivated omp2 and upregulated sdeCDE 151 

efflux suggesting that combinations of impermeability and up-regulated efflux can 152 

compromise activity, at least against this species.   153 
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Given this spectrum, the new target, and demonstrable activity in 154 

experimental infections [17], the pyrrolocytosine class warrants further evaluation 155 

with a view to possible clinical development. 156 
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Table 1. Pyrrolocytosine MIC distributions by species, irrespective of resistance mechanism 244 

Analog MIC (g/ml) 

 0.25 0.5 1 2 4 8 16 >16 

RX-04A         

E. coli 1 8 14           

S. enterica     11           

K. pneumoniae   2 14 4         

E. cloacae   1 5 2         

Serratia spp.     1 2   1     

P. aeruginosa   1 4 4 10 1     

A. baumannii     3 4 1 2     

All 1 12 52 16 11 4     

                  

RX-04B                 

E. coli 1 6 15 1         

S. enterica     10 1         

K. pneumoniae   1 14 5         

E. cloacae     5 3         

Serratia spp.     1   2   1   

P. aeruginosa   1 3 4 7 2 2 1 

A. baumannii     2 4 3 1     

All 1 8 50 18 12 3 3 1 

                  

RX-04C                 

E. coli 1   12 10         

S. enterica       11         

K. pneumoniae   1 8 6 5       

E. cloacae     1 6 1       

Serratia spp.       1 2     1 

P. aeruginosa   1   4 3 3 6 3 

A. baumannii     3 1 2 4     

All 1 2 24 39 13 7 6 4 

                  

RX-04D                 
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E. coli   1 2 18 2       

S. enterica       11         

K. pneumoniae     2 11 5 2     

E. cloacae     1   5 2     

Serratia spp.       1 2     1 

P. aeruginosa       4   6 7 3 

A. baumannii       2 1 3 4   

All  1 5 47 15 13 11 4 

 245 

 246 

247 
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 248 

Table 2.  Geometric mean MIC (g/ml) for different resistance groups 249 

 n RX-04A RX-04B RX-04C RX-04D 

E. coli, wild type 5 0.5 0.6 0.9 1.3 

E. coli, carbapenemase 15a 0.8 0.9 1.3 2.1 

E. coli/Salmonella, mcr-1 14 b 1.0 1.1 2.0 2.0 

K. pneumoniae, wild type 5 1.0 1.0 1.0 2.0 

K. pneumoniae, carbapenemase 15 a 1.1 1.2 2.0 2.8 

E. cloacae, wild type 4 1.0 1.2 1.7 3.4 

E. cloacae, carbapenemase 4 c 1.2 1.4 2.4 4.8 

Serratia spp., wild type 2  1,2 d 1,4 d 2,4 d 2,4 d 

Serratia spp., carbapenemase 2 e 2,8 d 4,16 d 4,>16 d 4,16 d 

P. aeruginosa, low efflux 5 1.5 1.7 3.5 5.3 

P. aeruginosa, normal efflux/ wild type 5 2.6 3.0 7.0 11.3 

P. aeruginosa, high efflux 5 2.6 3.0 7.0 6.1 

P. aeruginosa, carbapenemase 5 f 3.5 6.7 5.7 12.7 

A. baumannii, wild type 5 1.7 1.7 2.0 4.6 

A. baumannii, OXA-23-positive 5 3.0 3.5 5.3 12.1 

 250 

aFive isolates each with KPC, NDM and OXA-48-like enzymes 251 

b11 S. enterica, 3 E. coli 252 

cTwo isolates with KPC enzymes and single strains with OXA-48 and NDM 253 

d Single isolates with SME and OXA-48-like enzymes 254 

e Since only two isolates were tested, actual MICs are shown, not the mean 255 

f Two isolates with VIM, two with NDM carbapenemases, one with an IMP enzyme256 
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FIGURE 1. RX-04 pyrrolocytosine structures  257 

 258 
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 260 
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