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Diet studies are crucial for understanding the ecology and evolution of species, as well as for 

establishing appropriate conservation and management strategies. However, they remain 

methodologically challenging due to variation between seasons, sites, sexes or age groups 

and even variation between individuals. Due to method-specific characteristics and biases, a 

combination of existing techniques can overcome the inherent limitations of each technique 

and provide a more accurate and broad picture of species’ food preferences. Here, we 

examine diet information obtained using three different assessment methods to better 

understand the trophic ecology of the European Roller Coracias garrulus, a species targeted 

by conservation measures in Europe. First, we analysed regurgitated pellets and video 

recordings to report the diet composition of adult and nestling Rollers, respectively. 

Secondly, we used stable isotope analysis (SIA) to investigate adult sexual diet segregation as 

well as to confirm the main findings regarding adult and nestling diets obtained through 

conventional methods. Based on the analysis of pellets, the diet of adult Rollers was 

dominated by Coleoptera, while camera images revealed that the diet of nestlings was 

dominated by Orthoptera, mainly grasshoppers and bush crickets. Blood isotopic signatures 

of adult and nestling Rollers confirmed the results obtained through pellet and video 

recording techniques. Of the three methods, pellet analysis contained the most comprehensive 

trophic information regarding the detectable prey spectrum and prey species contribution, and 

also provided basic diet information to inform the SIA. Our results also highlight the 

potential of SIA for assessing intra-specific variation in diet by sampling individuals of 

known age and sex, which is often unfeasible through conventional approaches. SIA analysis 

showed no differences in δ
13

C and δ
15

N ratios of blood between males and females and a high 

degree of overlap amongst isotopic niches, suggesting no sex-specific partitioning in resource 

use. Overall, we showed that the combination of different methods could be used to gain new 

and clearer insights into avian trophic ecology that are essential for informing habitat 

management aiming to improve availability of foraging resources.  

 

 

Diet studies are crucial to understand species trophic ecology and population dynamics, 

providing key knowledge for implementation of effective species-based management 

initiatives and conservation strategies (Morrison et al. 1990, Sutherland 2004, Marti et al. 

2007, Catry et al. 2012). Nonetheless, diet assessment is difficult. The choice of the method 

depends on the questions being asked, and it needs to consider that diet varies across species, 

seasons, and between sites, sexes, or age groups and even between individuals (Sutherland 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2004). Several methods are frequently used to assess the diet of birds, each with specific 

advantages and drawbacks, which need to be considered when designing studies and 

interpreting results (Barret et al. 2007, Resano-Mayor et al. 2014, García-Salgado et al. 2015, 

Dicken et al. 2017). 

Traditionally, avian diet studies have been conducted using techniques such as direct 

observations of foraging, and analyses of individual stomach contents, faecal droppings and 

regurgitated pellets (e.g. Nazaro & Blendinger 2017, Wheelwright 1986, Donald et al. 2001, 

Catry et al. 2012). Despite its limitations (e.g. Redpath et al. 2001, Sutherland 2004, Marti et 

al. 2007), analysis of regurgitated pellets and images from video cameras are widespread 

techniques used to evaluate qualitative and quantitative composition of diets (e.g. Hounsome 

et al. 2004, Grémillet et al. 2006, Votier et al. 2007, Rodríguez et al. 2010, García-Salgado et 

al. 2015). In most cases, these conventional diet assessment methods do not permit within-

species study of diet (e.g. intra-specific patterns of food allocation between sexes or between 

parents and their offspring; Forero et al. 2002, Catry et al. 2016a).  

 

 

More recently, the use of stable isotopes, in particular of carbon (δ
13

C) and nitrogen 

(δ
15

N), allowed a relevant advance in studies of avian trophic ecology (e.g. Bearhop et al. 

2004, Alonso et al. 2012, Catry et al. 2016b). Stable isotope analysis (SIA) provides 

information on food sources that have been incorporated into an animal’s tissues over time 

(Hobson & Wassenaar 2008). The shift in isotope ratio between diet and consumer tissue is 

known as the trophic enrichment factor (TEF) and can be used in isotopic mixing models to 

quantify the relative contributions of isotopically distinct food sources to species’ diet 

(Hobson & Clark 1992, Inger et al. 2006). One of the main advantages of SIA is the 

opportunity to obtain data from particular individuals, allowing the comparison of food 

allocation, for example, between males and females or between age groups (e.g. Alonso et al. 

2012, Catry et al. 2016a). However, prior knowledge of how stable-isotope ratios in 

consumer tissues are related to those in the diet (Hobson & Clark 1992, Bond & Diamond 

2011) as well as of the isotopic signatures of prey are both required to interpret such 

differences (Hobson & Clark 1992, Resano-Mayor et al. 2014). Additionally, to accurately 

estimate the contribution of different prey to a consumer’s diet, prey must have distinct 

isotopic signatures and if all prey sources differ in only one dimension (i.e. one isotope) and 

the consumer’s signature lies within their isotopic space, then the estimate will have low 

precision. Overall, given the specific limitations and bias of each diet assessment technique, 
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several authors propose to integrate diet information obtained by several methods for 

appropriate evaluations of bird diet (Barret et al. 2007, Casper et al. 2007, Oehm et al. 2016, 

Oehm et al. 2017). 

In this study, we combine traditional diet assessment techniques and SIA to assess the 

diet of the European Roller Coracias garrulus through the breeding period, in an extensive 

agricultural landscape in the Iberian Peninsula. The European Roller (hereafter Roller) is a 

migratory summer visitor to the Palaearctic region, which breeds throughout temperate, 

steppe and Mediterranean zones from northwest Africa to the western Himalayas (Cramp & 

Simmons 1988). In Europe, the species has undergone rapid declines across its range and 

breeding populations are highly fragmented (Tucker & Heath 1994, Samwald & Štumberger 

1997). One major cause of these declines is the loss of suitable habitat due to changing 

agricultural practices and increased insecticide use (Kovacs et al. 2008). Other critical threats 

include the conversion of permanent grassland to other land use, land abandonment and 

reduced management of meadows and pastures leading to the destruction of microhabitats for 

the prey of Rollers, mainly large invertebrates (Kovacs et al. 2008).  

Whilst detailed knowledge on Roller conservation ecology is essential in developing 

effective management plans, key information on foraging habitat preferences and trophic 

ecology (e.g. diet variation between seasons, ages and sexes) is still incomplete (but see 

Avilés & Parejo 1997, 2002, Catry et al. 2017a). The main aim of this study was to 

characterize the diet of both adult and nestling Rollers by (1) performing a comprehensive 

pellet analysis to characterize the diet composition of adults, (2) monitoring chick 

provisioning with video cameras to assess the diet of nestlings, (3) using stable isotope 

analysis (SIA) to investigate sexual diet segregation, (4) comparing main prey consumption 

estimates obtained from pellet and video analysis with results from isotopic mixing models in 

order to assess the overall agreement between these techniques and (5) discussing the flaws 

and strengths of each technique and their effectiveness in determining the diet of European 

Rollers.  

 

METHODS 

Study area and data collection 

This study was carried out in the Castro Verde Special Protection Area (SPA), 37° 41’N, 

8°05’W, the main Portuguese area of cereal steppes, considered a stronghold for steppe bird 

conservation in Western Europe (BirdLife International 2004). Here, Rollers occupy cavities 
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in ruins of abandoned farmhouses or artificial nesting structures (such as nest-boxes, clay 

pots or breeding walls) scattered in a treeless steppe landscape (Catry et al. 2017a). Breeding 

birds arrive from their African wintering areas in mid-April and typically lay three to six eggs 

in May; hatching occurs after 17 to 19 days, and chicks fledge at 25 to 30 days (Del Hoyo et 

al. 2001). 

To study the diet of adult Rollers, 50 pellets were collected in 2013 and 34 in 2016 

from 18 nesting sites. Some of these nesting sites (abandoned buildings or artificial breeding 

walls with many suitable nests) can hold up to four pairs of Rollers. Searches for pellets were 

conducted through weekly visits to nesting sites between mid-April and end of June, mostly 

during the incubation period. To avoid sampling old pellets, the area was cleared of pellets at 

each visit.  All pellets collected were kept individually in plastic bags, labelled with date and 

local information, until further analysis.  Pellets from the two breeding seasons were pooled 

to increase sample size and provide a broader view on the diet of adult Rollers. In addition, 

data from the two years cover a geographic area more comparable to that used for assessing 

chick diet. 

To study the diet of nestlings, we used small video recording cameras (UNOTEC® 

SherLock Spy Camera; dimensions: 4.9 × 3 × 1cm) equipped with an external 250 mAh 

lithium battery and with an 8 GB SD card providing ca. two-hour autonomy (unit cost = 35 

€). Cameras were installed near nest entrances (< 1 metre) to allow identification of prey 

items delivered to 2-25 day old chicks.  We video recorded 19 nests between 2 June and 9 

July 2016 at different times of day (mean ± sd hours/nest = 3.9 ± 2.47, min = 1.31, max = 

7.80). Nestlings also produce pellets, but these are trampled in the nest, making individual 

pellets impossible to analyse. Moreover, nests are used for consecutive years, often by 

different species, and prey remains accumulate, thus preventing prey identification for a 

specific year or species. 

Blood sampling for SIA was carried out during the breeding season of 2016 (Table 1). 

Adults (n = 35) and nestlings > 10 days old (n = 15) were caught in their nests between 16 

May-30 June and 19 June-9 July, respectively. In order to investigate morphological sexual 

dimorphism in Rollers, adult birds were measured (wing length) and weighed and adult body 

condition (weight/wing) was estimated. Approximately 150 µl of blood was collected from 

the brachial vein (Catry et al. 2016a), and a few drops were preserved in vials with Queen’s 

Lysis Buffer (Longmire et al. 1997) for molecular sexing. The remaining blood was 

centrifuged for 10 min at 3400 rpm within 3h of collection, to separate the plasma from red 

blood cells (RBC). RBC samples were frozen before being further prepared for stable isotope 
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analysis (plasma was not analysed). Carbon and nitrogen stable isotopes have a half-life of 

approximately 15 days in RBC (based on the allometric relationship between elemental 

turnover and body size; Hobson & Wassenaar 2008), and presumably give information on 

diet composition for approximately that period before the sampling event. Accordingly, we 

sampled mainly the incubation period, although samples from adults captured within the first 

15 days after first egg laid could still represent the mate-feeding period (more likely to reveal 

segregation between sexes, Catry et al. 2016a). Indeed, males also feed their mates during 

egg laying, which takes approximately one week for a mean clutch of 4-5 eggs. Assessing 

diet composition through SIA requires prior knowledge on the diet of the target species and 

isotopic signatures of consumed prey (Resano-Mayor et al. 2014). Thus, to characterize the 

main prey of Rollers (identified in pellets and video recordings) isotopically, we collected 

several potential prey species (Coleoptera and Orthoptera) found inside or near the nests 

throughout the breeding season (Table 1). Invertebrates were frozen after collection.  

 All work was approved by the relevant Portuguese authorities (Instituto da 

Conservação da Natureza e das Florestas, permit 202/2016/CAPT).  

 

Pellet analysis 

In the laboratory, pellets were disaggregated into small fragments and observed with a 

binocular magnifying glass. Prey structures (head, pronotum, elytra, mandible, modified tibia, 

scales, bones) were used to identify prey to the lowest possible taxonomic level, using our 

own reference collection, based on field and taxonomic guides (Chinery 1988, Zahradnik 

1990) and with the help of expert entomologists and a digital database for Portugal 

(http://naturdata.com/). A conservative criterion was applied, so many prey remains were 

assigned only to family or genus level. The number of individuals of each taxon was 

estimated based on the number of unique fragments (e.g. head) or the number of different 

(only left or only right, or different sized) paired structures (e.g. elytra, mandibles). The diet 

of adult Rollers was expressed as the frequency of occurrence (FO = number of pellets in 

which one prey category occurs in relation to the total number of pellets analysed) and 

numerical frequency (NF = number of individuals of one prey category in relation to the total 

number of consumed prey) of each prey item. To compare the final contribution (in terms of 

biomass) of Coleoptera and Orthoptera to the diet of Rollers, we estimated for each prey type, 

the total mass ingested by multiplying its mean weight by the total number of individual 

items of that species (Supporting Information Table S1). Prey weights were estimated from a 

sub-sample of all invertebrates collected for SIA that were dried for 48h in an oven at 60ºC 
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and afterwards weighed with a precision balance (to 0.0001 g), as well as from published data 

(Supporting Information Table S1). For those taxa for which we had no available estimate 

nor a reference value, we assigned the mean biomass value of all weighed Coleoptera.  

 

Video analysis 

We used the software VLC media player (www.videolan.org) to analyse video recordings and 

identify prey items delivered to nestlings. In contrast to Orthoptera, Coleoptera could not be 

identified to the family level and approximately 12% of all prey could only be identified as 

“non-Orthoptera”. The diet of nestlings is expressed as the numerical frequency of each 

taxonomic group.  

 

Stable isotope analysis 

Roller RBC samples and soft tissues of invertebrate prey were dried in an oven at 60ºC for 48 

hours and then reduced to a homogenised powder. Prey samples were then processed for lipid 

extraction by immersion in a 2:1 chloroform/methanol solution with a solvent volume 3-5 

times larger than sample volume (Logan et al. 2008). Samples were then mixed for 30 s, left 

undisturbed for approximately 30 min, further centrifuged for 10 min at 3400 rpm, and the 

supernatant containing solvent and lipids was removed. This process was repeated at least 

three times (until the solvent was clear) and samples were then re-dried at 60°C for 24 h to 

remove any remaining solvent. Between 0.8 and 0.9 mg of each sample was stored in tin cups 

for stable carbon and nitrogen isotope assays. Isotopic ratios were determined by continuous-

flow isotope ratio mass spectrometry (unit cost for both δ
13

C and δ
15

N = 10 €). Results are 

presented conventionally as δ values in parts per thousand (‰) relative to the Vienna Pee Dee 

Belemnite for δ
13

C, and atmospheric nitrogen (N2) for δ
15

N. Precision of the isotope ratio 

analysis, calculated using values from 6 to 9 replicates of laboratory standard material 

(casein) interspersed among samples in every batch analysis, was 0.11 to 0.15‰ and 0.13 to 

0.20‰ for δ
13

C and δ
15

N, respectively.   

Molecular analysis 

Rollers were sexed using the molecular-based method described in Fridolfsson and Ellegren 

(1999). Briefly, we obtained genomic DNA from blood samples using an extraction kit 

(E.Z.N.A.® Tissue DNA Kit, Omega Bio-tek Inc., USA), amplified the CHD1W/Z fragments 

with primers 2550F and 2718R, standard PCR conditions and 52º annealing T, followed by 

3% agarose electrophoresis to check band sizes. 25% of the samples were re-amplified to 

confirm initial results. 
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Statistical analyses 

We ran Bayesian mixing models with the SIAR package for R (Parnell et al. 2008) to 

estimate the contribution of different potential prey items to adult and nestling diet of Rollers. 

These models may fail to give a complete picture of diet because not all prey taxa found in 

pellets were sampled for SIA (Phillips et al. 2014). Thus, SIAR was used to confirm results 

from other methods (pellets and video analysis) and to determine the relative importance of 

Coleoptera and Orthoptera (mostly Acrididae, hereafter grasshoppers, and Tettigonidae, 

hereafter bush crickets) in the diet of adults and nestlings. Within each of these insect orders, 

prey items with similar isotopic signal were pooled (Table 1) to increase the discriminatory 

power of the mixing models used (Phillips et al. 2014). Due to the lack of reported 

discrimination factors for Rollers, we used the mean (± SD) value of trophic discrimination 

factors for blood samples of other bird species reported in published studies reviewed by Caut 

et al. (2009) (0.59 ± 1.09 for δ
13

C and 2.37 ± 0.62 for δ
15

N, see also Catry et al. 2016a). 

Trophic discrimination factors are similar for RBC and whole blood (Caut et al. 2009). 

 To measure and compare the isotopic niche width of Rollers amongst distinct groups 

(male versus female and adults versus nestlings) we used SIBER package for R (Jackson et 

al. 2011). We estimated areas of standard ellipses containing c. 40% of all data (SEAC) 

because these are less sensitive to extreme values and low sample size than total area. 

Bayesian standard ellipse areas (SEAB) were used to compare niche width among groups in a 

quantitative manner (Jackson et al. 2011). We assessed niche (SEAC) overlap among groups 

as follows: for each (i) in one pair (i,j), a value of overlap (Ov[i]) was calculated as the ratio 

between the area of overlap between the two SEAC (A[i,j]) and its own SEAC (A[i]), 

expressed as a proportion (Ov[i] = A[i,j]/Ai; Catry et al., 2016b). To further evaluate the 

existence of sexual diet segregation we used one-way ANOVAs to test for sex differences on 

carbon and nitrogen isotopic signatures of adults. Moreover, differences in isotopic signatures 

between mates sampled during courtship or courtship and incubation were also assessed 

using paired t tests.  

All analyses were performed in the R statistical environment (R Development Core 

Team 2016).  
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RESULTS 

Diet composition of adults as revealed by pellet analysis 

In total, 1417 prey items were identified in the 84 pellets analysed, representing at least 43 

different taxa (Table 2). Adult Rollers preyed mostly upon insects, with less than 2% (NF = 

1.97) of all prey belonging to other animal taxa. Coleoptera were the dominant prey group, 

accounting for 82.6% of all items and occurring in 98.8% of all pellets. Despite being 

numerically less dominant, orders such as Orthoptera (NF = 2.54%; mostly grasshoppers and 

bush crickets), Hemiptera (NF = 1.27%; “true bugs”) and Hymenoptera (NF = 6.43%; mostly 

ants, bees and wasps) were present in more than 20% of all pellets analysed. Among 

Coleoptera, beetles belonging to the family Scarabeidae, Chrysomelidae and Carabidae were 

the most consumed (Table 2). The biomass estimates corroborate the relative importance (FN 

and FO) of most prey items, except for Orthoptera, which rank higher in biomass due to high 

per-individual biomass (Table 2). For some of the least frequently consumed taxa it was not 

possible to obtain biomass values. Overall, when comparing only Coleoptera and Orthoptera 

(grasshoppers and bush crickets), Coleoptera contributed 90% of the total biomass consumed 

by adults.  

 

Diet composition of nestlings as revealed by video-recording 

Analysis of camera images enabled identification of 345 prey items (20.3 ± 14.7 prey 

items/nest, n = 19 nests). In contrast to adults, nestling diet was dominated by grasshoppers 

and bush crickets (Orthoptera), which accounted for 74.2% of all prey delivered (Table 3). 

Coleoptera represented only 7.5% of all prey identified, although this value may be 

underestimated given that 12.2% of prey delivered were small and could only be identified as 

“non-Orthoptera” and were likely to include Coleoptera. Non-insect prey items accounted for 

only approximately 5% of the diet of nestlings (Table 3). 

 

Stable isotope analysis: sex- and age-related diet differences and overall agreement with 

pellet and video analysis  

There are low levels of morphological sexual dimorphism in adult Rollers. We found 

marginally significant differences in wing length of Rollers between sexes (F1, 29  = 4.287, P = 

0.047), with males showing slightly longer wings, but no differences in weight (F1, 30 = 0.275, 

P = 0.604) or body condition (F1, 29  = 0.119, P = 0.732). SIA showed no differences between 

male and female Rollers in δ
13

C and δ
15

N ratios of blood either for the whole sampling period 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(F1,33 = 0.551, P = 0.463 and F1,33 = 0.089, P = 0.768, respectively; n = 15 males and 20 

females) or when subsampling the data and comparing the sexes during the first two weeks 

after first egg laying, thus reflecting mate feeding period (F1,25 = 1.285, P = 0.268 and F1,25 = 

0.038, P = 0.847; n = 10 males and 17 females). Similar results were found when comparing 

mates (paired t-test for all sampled pairs (n = 14): t = 1.058, df = 13, P = 0.309 and t = 0.454, 

df = 13, P = 0.657; paired t-test for mate-feeding period (n = 9): t = 1.37, df = 8, P = 0.207 

and t = 1.473, df = 8, P = 0.179, for δ
13

C and δ
15

N, respectively). Females showed a slightly 

broader isotopic niche than males (as estimated by both SEAC and SEAB), with the isotopic 

niche of males being totally overlapped by that of females (Table 4 and Supporting 

Information Fig. S1), suggesting no sex-specific partitioning in resource use.  

Carbon (δ
13

C) and nitrogen (δ
15

N) isotopic signatures of Rollers and their prey 

(corrected by TEF) are presented in Figure 1. The isotopic values of the 11 potential prey 

species define a broad isotopic space: mean δ
13

C values ranged from -23.87 to -27.55 ± 0.17 

and mean δ
15

N from 2.44 ± 0.20 to 8.69 (Table 1). The δ
13

C-δ
15

N biplot (Fig. 1) shows a 

clear separation in the isotopic space of the Coleoptera and Orthoptera (grasshoppers and 

bush crickets) groups due to their non-overlapping δ
15

N signatures. In addition, it shows that 

both adult and nestling Rollers lay within the space delineated by main prey categories. SIAR 

mixing models suggest that, overall, Coleoptera had the highest median contribution (84%) to 

the diet of adult rollers during the laying and incubation period, while the consumption of 

grasshoppers and bush crickets accounted for only 8% of the whole diet (Fig. 2). Amongst 

nestlings, results from the isotope mixing model suggest that grasshoppers and bush crickets 

contribute up to 66% of the diet, while Coleoptera (all groups pooled) consumption does not 

exceed 28% (Fig. 2). Overall, the contrasting relative importance of Coleoptera and 

Orthoptera (grasshoppers and bush crickets) to the diet of adult and nestling Rollers as 

depicted by SIAR mixing models is consistent with the results revealed by the other diet 

assessment techniques (pellets and video recording, Fig. 3). The isotopic niche width of 

nestlings was narrower and did not overlap with that of laying/incubating adults (Table 4 and 

Supporting Information Fig. S1).  

 

DISCUSSION 

Previous studies of the diet of Rollers on their European breeding grounds used conventional 

techniques (e.g. Cassola & Lovari 1979, Avilés & Parejo 1997, 2002, Tidmarsh 2004) and, to 

our knowledge, no study has tested for differences in diet between the sexes or between 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

adults and nestlings in the same year. Here, we combine three different methods (pellet and 

video recording analyses and SIA) to describe the diet of adult (both females and males) and 

nestling Rollers. Results highlight the role of SIA in the study of avian trophic ecology, 

overcoming previous methodological bias and allowing the identification of intra-population 

variation in diet.  

 

Diet of adults and nestlings 

We identified 43 different taxa (of 13 different orders) consumed by adult Rollers in our 

study area, supporting the description of an extremely polyphagous species (Del Hoyo et al. 

2001). Our results suggest that adults feed mainly on hard-bodied insects, with beetles 

(Coleoptera) representing approximately 84% of all items consumed. Dung (Scarabeidae), 

leaf (Chrysomelidae) and ground (Carabidae) beetles made the greatest contribution to the 

diet of adult Rollers, likely reflecting the traditional extensive practices of cereal cultivation, 

with large areas of low-intensity grazed fallows. All are known to play an important role in 

agriculture by improving nutrient recycling and soil structure and by protecting livestock and 

cultures from pests (Kromp 1999, Parsons & Cuthbertson 2001, Brown et al. 2010). Our 

results do not corroborate the findings of Avilés and Parejo (2002) who reported an 

Orthoptera-based diet in south-west Spain during the pre-laying and laying periods. These 

authors explained the lower consumption of Coleoptera in their study (when compared for 

instance with central and northern European breeding areas) as being a consequence of the 

higher abundance of more profitable Orthoptera. Grasshoppers and bush-crickets are indeed 

large, highly energy-rich prey, also very abundant in our study area and highly consumed by 

other species (Catry et al. 2016a, Catry et al. 2017b). However, in our study area, they are not 

abundant at the beginning of the breeding season, slowly increasing throughout mid-May and 

peaking in availability in mid-June (Catry et al. 2017b). Pellet collection was biased towards 

the mate-feeding and incubation periods (only 20% of all pellets were collected in June) as 

well as adult blood sampling for SIAR (see Methods) and thus both methods might be 

slightly underestimating the importance of these prey in the diet of adult Rollers over the 

whole breeding season. Indeed, Catry et al. (2016a) showed that, in the same area, Lesser 

Kestrels Falco naumanni significantly increased their consumption of grasshoppers 

throughout the breeding season. 

Diet segregation between sexes has often been reported among bird populations 

(Forero et al. 2002, Phillips et al. 2004, Catry et al. 2016a). Several, non-exclusive factors 

can lead to this, including avoidance of intraspecific competition, niche specialization due to 
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sexual size dimorphism or the different roles, and hence energetic needs, of males and 

females during reproduction (Catry et al. 2005). Our results suggest no sex-specific diet 

segregation in Rollers, as we found no differences in δ
13

C and δ
15

N ratios of blood between 

males and females during the mate feeding and incubation periods, with females showing 

only a slightly wider isotopic niche than males. Rollers show few sex-specific morphological 

and plumage traits (field-identification of sex is difficult; this study) making niche 

specialization driven by sexual size dimorphism unlikely. After egg laying, both sexes 

incubate the eggs, brood and feed the young, even though females are thought to take a larger 

share of incubation duties (Cramp & Simmons 1988). In contrast to a sympatric species, the 

Lesser Kestrel, where females are preferentially fed with higher energetic prey (mole 

crickets) during the courtship period, resulting in sexual diet segregation (Catry et al. 2016a), 

male Rollers do not seem to feed their mates with different prey than those consumed by 

themselves. Lower availability of high quality prey (Rollers lay, on average, two weeks later 

than Lesser Kestrels when mole crickets decline significantly, and grasshoppers and bush 

crickets are scarce; Catry et al. 2012, Catry et al. 2017b) during the pre-laying period of 

Rollers could partially explain the absence of diet segregation.  

Unlike adults, nestling diet was dominated by Orthoptera, mainly grasshoppers, 

agreeing with results of previous diet studies (Avilés & Parejo 2002, Tidmarsh 2004) and 

with recent work developed in the same area (Catry et al. 2017a), which revealed a high 

preference of foraging Rollers during the chick rearing period for fallow land, where 

grasshopper abundance was highest. Parent-offspring segregation in diet composition often 

results from the different (higher) nutritional needs of rapidly growing chicks (Alonso et al. 

2012, Raya Rey et al. 2012, Beaulieu & Sockman 2014). Although the diet preferences of 

adults and nestlings could be compared using SIA methods, this would require the two age 

classes to be sampled at the same time. In this study, due to the difficulty of catching adult 

Rollers during the chick-rearing period, sampling of age groups only marginally overlapped 

in time, thus jeopardizing the accurate assessment of any difference in the trophic ecology of 

adults and nestlings. Nevertheless, blood ratios of carbon stable isotopes suggest a slight 

seasonal diet shift in adult Rollers in the opposite direction from the signature of nestlings, 

thus suggesting some degree of diet segregation between parents and offspring (Fig. 4). 

Under this scenario, we believe that, as suggested for Lesser Kestrels (Catry et al. 2016a), 

adult Rollers may feed their offspring a higher proportion of soft-bodied grasshoppers and 

bush crickets compared to prey consumed by themselves given the relatively large size, 

higher digestibility and high energetic value of these prey when compared to hard-bodied, 
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smaller and thus less profitable prey, such as Coleoptera. Moreover, during chick-rearing, 

Rollers are central place foragers and single-prey loaders and should thus maximize the rate 

of energy delivered per provisioning trip (Stephens & Krebs 1986). 

 

Strengths and drawbacks of different diet-assessment techniques  

Amongst all methods used, pellet analysis provided the highest number of identifiable prey 

taxa, with more than 1400 prey items and 43 different taxa identified. Whilst being widely 

used in the study of avian trophic ecology as an inexpensive, non-invasive and thorough 

technique, pellet analysis is very time-consuming (approximately two months to analyse 84 

pellets), often represents a snapshot of a consumer’s diet and can lead to biased results due to 

variability in the digestibility of food items (Sutherland 2004). Alternatively, isotopic ratios 

in bird tissue reflect its diet at the time of tissue synthesis in a predictable manner, but prior 

knowledge of the diet of the target species and isotopic signatures of prey is required, as well 

as of the shift in isotope ratio between diet and consumer tissue ( Hobson & Clark 1992). 

Moreover, SIAR mixing models work best when food sources are well separated (Gannes et 

al. 1997, Phillips & Gregg 2001) and because the discriminatory power of mixing models is 

negatively affected by a high number of food sources included (Phillips et al. 2014), diet 

assessment of highly polyphagous species, such as the Roller, can be compromised. 

Nonetheless, this technique enables sampling high numbers of individuals and prey items. 

Blood isotopic signatures of adult Rollers revealed a Coleoptera-dominated diet showing an 

overall agreement with the results obtained through pellet analysis. However, the detailed 

contribution of different species or families among Coleoptera could not be accurately 

assessed, either because some taxa showed similar isotopic signatures or because some others 

could not be sampled and included in the modelling. On the other hand, we highlight the 

potential of SIA for investigating intra-specific sexual variation in dietary regimes which is 

often unfeasible through conventional approaches of diet assessment (see also Catry et al. 

2016a). 

 Results from video records and SIA to assess the diet of nestling Rollers also show a 

high agreement between techniques. When compared to other conventional diet assessment 

techniques such as neck collars (which prevent chicks from swallowing the food delivered by 

their parents) or analysis of nest remains, the use of cameras is generally less invasive, can 

allow a larger sample of nests to be monitored for longer periods, and creates a visual archive 

that can be reviewed later for different research objectives. Nevertheless, this method yielded 

the largest proportion of unidentified prey (especially small items) which represents one of its 
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major limitations (García-Salgado et al. 2015). Indeed, the difference in the relative 

contribution of Coleoptera to nestling diet obtained through video recording (7.5%) and SIA 

(28.0%) is likely to be explained by the relatively high proportion of undetermined non-

Orthoptera (likely to include beetles) in the video analysis, suggesting that SIAR mixing 

models could perform better in the assessment of nestling diet. Advances in technology and 

the growing availability of affordable high-resolution cameras will enable the identification 

of a higher proportion of prey items but will be unlikely to reduce the time needed to retrieve 

all the information from the camera images. Finally, the use of stable isotopes is also likely to 

enable the accurate assessment of age-related segregation in the diet with the advantage of 

using a single method, constrained to the same bias.    

 

Conclusions 

Our results highlight the use of SIA as a useful diet assessment tool to unveil the trophic 

ecology of birds. This technique is especially relevant in allowing information on individual-

level diet that is impossible to obtain through more traditional methods with higher 

taxonomic resolution (e.g. pellet analysis). Due to each method-specific set of limitations and 

biases, the choice of the sampling techniques used in diet studies must vary according to the 

purpose of each study. Overall, and agreeing with recent studies (Casper et al. 2007, Oehm et 

al. 2016, 2017), we recommend using a combined analytical approach to maximize insights 

into the study of bird diet. 

The traditional cereal-steppe landscape of the Castro Verde SPA, encompassing large 

areas of fallows with low intensity grazing, seems to offer a high-quality foraging habitat for 

Rollers (Catry et al. 2017a). High breeding success recorded in our population (four-year 

average productivity = 3.7 ± 0.3, n = 153), when compared with other European populations 

(e.g. Samwald & Samwald 1989, Sosnowski & Chmielewski 1996, Avilés et al. 1999), and 

population increase contrasting with overall decline across the country (Catry et al. 2011) 

support this hypothesis. These results suggest that Rollers are feeding themselves and their 

offspring with high quality prey and that the implementation of effective management 

measures to maintain the current foraging habitats are crucial to the conservation of Rollers 

and other target farmland species. In the study area, grasshoppers and bush crickets are at 

highest densities in fallows (Catry et al. 2017), which were shown to be critical for chick 

provisioning and thus for ensuring high breeding success. Therefore, the maintenance of 

traditional extensive practices of cereal cultivation with large areas of low-intensity grazed 

fallows is strongly recommended (see also Catry et al. 2017) 
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FIGURES  

 

Figure Captions 

 

Figure 1. Carbon (δ13C) and nitrogen (δ15N) stable isotopes of adult (male and female) and 

nestling Rollers (red blood cells) and their potential prey (mean ± SD, corrected for trophic 

enrichment factor; see methods). Prey taxa, as considered for isotope mixing models (SIAR): 

1- Coleoptera 1 (Bubas bison), 2 - Coleoptera 2 (Chrysolina bankii), 3 - Coleoptera 3 

(Amphimallon nigrum and Pterostichus globosus), 4 – Coleoptera 4 (Silpha sp. and Protaetia 

sp.), 5 – Coleoptera 5 (Carabus rugosus and Sepidium sp.), 6 – Grasshoppers (Acrididae) and 

bush crickets (Tettigonidae), 7-Gryllotalpa sp. 

 

Figure 2. Relative contribution of prey in the diet of adult and chick Rollers as estimated by 

SIAR mixing models. Black dots represent the mode and boxes present the 50, 75 and 95% 

credible intervals. For details on composition of Coleoptera groups see Table 1. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure 3. Overall agreement between estimated contributions of the two main prey groups 

for the diet of adults (dark) and nestling (grey) Rollers revealed by pellet analysis and camera 

images (numerical frequency represented as columns), respectively, and SIAR (dots).  

 

Figure 4. Blood (a) δ
13

C and (b) δ
15

N stable isotope signatures of adult (black dots) and 

nestling (grey dots) Rollers along the breeding season in 2016, Castro Verde, Portugal. 

Sampling date follows the Julian date calendar (10 April = 100). Mean grasshopper and bush 

cricket isotopic signatures are presented as a dashed line for comparison purposes (corrected 

for trophic enrichment factor).  
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TABLES 

 

Table 1. Mean (± SD) carbon (δ
13

C) and nitrogen (δ
15

N) isotopic values of blood (red blood 

cells) of male, female and nestling Rollers and several of their key prey taxa, collected in 

Castro Verde, southern Portugal. Sample size is given for all taxa/groups and, whenever 

applicable, the total number of individuals pooled in prey samples is given in parenthesis. 

SIAR group defines a priori combination of potential food sources with similar isotopic 

signal used in mixing models (see methods).  

 

 δ13C δ15N n SIAR 

group 

ROLLER     

Adults     

     Males -24.83 ± 0.34 9.33 ± 0.58 15  

     Females -24.87± 0.37 9.14 ± 0.87 20  

     All -24.85 ± 0.36 9.22 ± 0.75 35  

Nestlings -25.53 ± 0.32 5.95 ± 0.66 15  

PREY     

Coleoptera     

     Bubas bison -27.55 ± 0.17 8.69 ± 0.12 2 (4) 1 

     Chrysolina bankii -27.11 ± 0.23 7.02 ± 0.95 3 (13) 2 

     Amphimallon nigrum -25.79 ± 0.72 7.11 ± 0.24 2 (21) 3 

     Carabus rugosus. -26.70 ± 0.79 5.85 ± 1.04 2 5 

     Sepidium sp. -26.08 ± 0.72 5.78 ± 0.34 3 5 

     Silpha sp. -24.78  7.41 1 (4) 4 

     Protaetia sp. -23.87  7.37 1 (2) 4 

     Pterostichus ebenus -25.95 ± 0.06 6.95 ± 0.23 2 (14) 3 

     

Orthoptera     

     Tettigonidae -25.83 ± 0.61 2.44 ± 0.20 3 (4) 6 

     Acrididae -26.86 ± 0.28 3.79 ± 0.96 3 (17) 6 

     Gryllotalpa sp. -27.43 ± 0.17 7.03 ± 1.01 3 (6) 7 
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Table 2. Diet composition of adult breeding European Rollers in Castro Verde, southern 

Portugal, based on pellet analysis (n=84). Frequency of occurrence (FO), numerical 

frequency (NF) and dry biomass (g) are given for each taxa. NI = non-identified. 

PHYLUM/CLASS/Order/Family/Sub-family FO (%) NF (%) Biomass (g) 

MOLLUSCA    

GASTROPODA    

Gastropoda undet.  3.57 (3) 0.42 (6) --- 

ARTHROPODA    

DIPLOPODA    

Julidae    

Julidae NI 5.95 (5) 0.35 (5) --- 

ARACHNIDA    

Solifugae    

Daesiidae    

Gluvia dorsalis 5.95 (5) 0.49 (7) 1.03 1 

Scorpiones    

Buthidae    

Buthus occitanus 1.19 (1) 0.07 (1) --- 

INSECTA    

Dermaptera    

Dermaptera NI  9.52 (8) 5.01 (71) 2.13 2 

Orthoptera    

Tettigonidae NI 8.33 (7) 0.71 (10) 9.60 1 

Acrididae NI  10.71 (9) 0.99 (14) 3.63 1 

Grasshoppers & Bush Crickets NI  7.14 (6) 0.64 (9) 4.96 1 

Gryllotalpidae    

Gryllotalpa sp. 3.57 (3) 0.21 (3) 10.50 1 

TOTAL Orthoptera 25.00 (21) 2.54 (36) 28.69 

Hemiptera (Suborder Heteroptera)    

Hemiptera NI 20.24 (17) 1.27 (18) 5.40 3 

Hymenoptera    

Formicidae NI 11.90 (10) 2.19 (31) 0.31 2 

Hymenoptera n/formicidae NI 11.90 (10) 4.23 (60) --- 

TOTAL Hymenoptera 21.43 (18) 6.42 (91) --- 

Lepidoptera    

 Lepidoptera NI 1.19 (1) 0.07 (1) --- 

Coleoptera    

Cantharidae NI  1.19 (1) 0.07 (1) --- 

Scarabaeidae    

Scarabaeinae    

Copris hispanicus 1.19 (1) 0.07 (1) 0.25 1 

Onitis ion 14.29 (12) 1.69 (24) 2.00 1 

Onitis belial 29.76 (25) 4.66 (66) 35.11 1 

Cheironitis sp. 4.76 (4) 0.28 (4) 0.66 1 

Bubas sp. 38.10 (32) 6.21 (88) 19.24 1 
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Onthophagus sp. 15.48 (13) 1.06 (15) 0.15 4 

Aphodinae    

Aphodius sp. 13.10 (11) 1.69 (24) 0.14 1 

Melolonthinae     

Amphimallon nigrum 40.48 (34) 25.44 (360) 34.20 1 

Rhizotrogus sp. 1.19 (1) 0.07 (1) 0.04 2 

Cetoniinae    

Cetoniinae NI 13.10 (11) 1.13 (16) --- 

Protaetia sp. 9.52 (8) 0.78 (11) 2.50 1 

Tropinota sp. 20.24 (17) 1.69 (24) --- 

Oxythyrea sp. 5.95 (5) 0.35 (5) --- 

Chrysomelidae    

Chrysolina bankii 39.29 (33) 9.88 (140) 8.54 1 

Geotrupidae    

Geotrupes sp. 1.19 (1) 0.07 (1) --- 

Carabidae    

Carabidae NI 35.71 (30) 8.62 (122) 9.28 1 

Chlaenius velutinus 1.19 (1) 0.07 (1) 0.20 2 

Carabus sp. 11.90 (10) 0.78 (11) 2.75 1 

Curculionidae    

Curculionidae NI 19.05 (16) 1.48 (21) 1.19 1 

Tenebrionidae    

Tenebrionidae NI 10.71 (9) 1.06 (15) 0.73 1 

Alphasida sp. 16.67 (14) 1.62 (23) --- 

Sepidium sp. 25.00 (21) 2.40 (34) 3.90 1 

Buprestidae    

Capnodis tenebricosa 5.95 (5) 0.49 (7) 0.75 1 

Silphidae    

Silpha sp. 36.90 (31) 4.02 (57) 3.81 1 

Staphylinidae    

Staphylinidae NI  3.57 (3) 0.21 (3) --- 

Ocypus olens 25.00 (21) 6.07 (86) --- 

Histeridae    

Histeridae NI  7.14 (6) 0.56 (8) --- 

TOTAL Coleoptera 98.81 (83) 82.61 (1169) --- 

Diptera    

Asilidae NI 1.19 (1) 0.21 (3) --- 

CHORDATA    

REPTILIA    

Squamata    

Squamata NI 8.33 (7) 0.49 (7) --- 

OTHER    

Bird egg shell    

Falco naumanni 2.38 (2) 0.14 (2) --- 

 

Biomass data sources: 1 - this study, 2 -  Gameiro 2015, 3 - Rodríguez et al. 2010, 4 - Orłowski and Karg 2011. 
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Table 3. Diet composition (NF=frequency of occurrence) of European Roller nestlings based 

on video recording of nest provisioning at Castro Verde, southern Portugal (n=19 nests); NI = 

non-identified.  

 

PHYLUM/CLASS/Order/Family/Subfamily NF (%) 

MOLLUSCA  

GASTROPODA  

Gastropoda NI  1.16 (4) 

ARTHROPODA  

ARACHNIDA  

Arachnidae NI  0.29 (1) 

INSECTA  

Orthoptera 74.20 (256) 

Acrididae NI 35.94 (124) 

Tettigoniidae NI 20.87 (72) 

Grasshopers & bush crickets NI  17.39 (60) 

Lepidoptera  

Lepidoptera NI 0.58 (2) 

Coleoptera  

Coleoptera NI 7.54 (26) 

Mantodea  

Mantodea NI  0.29 (1) 

CHILOPODA  

Scolopendromorpha  

Scolopendridae  

Scolopendra sp. 1.16 (4) 

CHORDATA  

REPTILIA  

Squamata  

Scincidae  

Chalcides sp. 0.58 (2) 

OTHER  

Bird egg shell 2.03 (7) 

NON-ORTHOPTERA UNIDENTIFIED 12.17 (42) 

TOTAL PREY 345 
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Table 4. Isotopic niches of adult and nestling European Rollers as measured by Bayesian 

standard ellipse areas (SEAB, with 95% credible intervals) and sample size-corrected standard 

ellipse areas (SEAC). Niche overlap, expressed as the proportion of SEAC of one group 

overlapped by its pair (males and females and vice-versa, adults and chicks and vice-versa) is 

presented for each group. Samples sizes for each group are given in parenthesis.  

 

 SEAB SEAC Niche overlap 

Males (15) 0.610 [0.372 – 1.094] 0.647 1.0 

Females (20) 0.816 [0.495 – 1.291] 1.110 0.58 

All adults (35) 0.672 [0.471 – 0.950] 0.877 0 

Chicks (15) 0.440 [0.266 – 0.765] 0.714 0 

 

 


