
Age, condition and dominance-related sexual ornament size before and 1 

during the breeding season in the black grouse Lyrurus tetrix 2 

Abstract 3 

Male ornaments function as honest cues of male quality in many species and are subject to intra- 4 

and intersexual selection. These ornaments are generally studied during peak expression, 5 

however their size outside the breeding season may determine ultimate ornament size and 6 

costliness, and as such reproductive success. We investigated whether male black grouse Lyrurus 7 

tetrix eye comb size was related to age, condition and measures of male dominance before and 8 

during the breeding season. Total combined eye comb size began to increase ~70 days before the 9 

start of the breeding season. Adult males (aged ≥ 2 years old) had consistently larger eye combs 10 

than younger males (1 year old) both before and during the breeding season. Heavier and more 11 

dominant adult males (attending the lek more frequently and successfully reproducing) had larger 12 

eye combs. For younger males, those that were heavier had larger eye combs. Additionally, males 13 

that spent more time on the lek showed increased eye comb size as the breeding season 14 

approached. Overall we find that ornament size is positively related to dominance and condition 15 

before and during the breeding season. Since dominance is accrued through year-round 16 

interactions in many species, the ability to maintain larger signals over prolonged periods, 17 

including outside of the breeding season, is likely to be beneficial for adults. For younger males, it 18 

is likely that they cannot sustain or are constrained from producing larger eye combs over long 19 

periods of time. They therefore prioritise growth of their ornaments later, and according to the 20 

amount of time they spend on the lek.  21 
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Introduction 24 

Males of many species display elaborate ornaments that function as honest indicators of individual 25 

quality if ornament production or maintenance comes at a cost to the bearer (Zahavi 1975, 26 

Andersson 1994). These ornaments may function as intersexual signals, whereby females can 27 

assess and choose potential mates (Hill 1991), intrasexual signals, whereby males can assess 28 

dominance in conspecific males (Chaine and Lyon 2008), or both (Griggio et al. 2007). The 29 

expression of sexually-selected traits during an individual’s lifespan is extremely dynamic, 30 

increasing or decreasing with age (e.g. Kervinen et al. 2015) and going through cycles of renewal 31 

as, for example, deer annually shed and regrow antlers, and birds moult and replace brightly 32 

coloured plumage (e.g. Kierdorf, Li and Price 2009, Saino et al. 2013). Thus, many ornaments are 33 

not displayed continuously, but grown expressly for the breeding season, and then moulted or 34 

contracted when no longer required (Jenni and Winkler 2011). For example, a bird’s plumage-35 

based displays reflect quality during moult thus reflecting previous condition (e.g. McGraw et al. 36 

2002, Serra et al. 2007, Harms et al. 2015). In contrast, some traits, including behaviours, may 37 

dynamically reflect current condition (e.g. vocalisations: Vannoni and McElligott 2009). Skin-based 38 

(integumentary) ornaments are one such example of this, and are widespread throughout the 39 

animal kingdom (fish: Pike et al. 2010; birds: Prum and Torres 2003, Rosenthal et al. 2012; 40 

reptiles: Langkilde and Boronow 2010). These structures have been shown to vary in colour and 41 

size and can fluctuate to reflect changes in condition rapidly; for example skin colouration in the 42 

blue-footed booby (Sula nebouxii) can change according to nutritional condition in as little as 48 43 

hours (Velando, Beamonte-Barrientos and Torres 2006; also see Doucet and Mennill 2009, Butler 44 

and McGraw 2011). This suggests integumentary traits may act as cues of current phenotypic 45 

quality (Perez-Rodriguez 2008, Hill, Hood and Huggins 2009). 46 

Integumentary ornament size is typically mediated by androgens, which can act as 47 

immunosuppressants or oxidative stressors, making the signal physiologically or energetically 48 

costly to express (Folstad and Karter 1992, von Schantz et al. 1999, Alonso-Alvarez et al. 2007, 49 

Mougeot et al. 2009 and references therein). This suggests that only high quality males are able to 50 
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mediate these costs, especially in combination with other factors influencing their current condition; 51 

for example food availability or parasite burden. The ability to cope with these costs and, as such, 52 

the resources available for investment into sexual interactions may vary further with age (Yoccoz 53 

et al. 2002, Nieminen et al. 2016). For example, in younger males, investment may be allocated 54 

instead to growth or development (Nussey et al. 2009, Kervinen et al. 2015). Due to the costs 55 

involved with expressing such traits, these ornaments are usually only largest when dominance is 56 

more important, i.e. during the breeding season (e.g. the bill knob of mute swans Cygnus olor: 57 

Horrocks, Perrins and Charmantier 2009). However, many species interact outside of the breeding 58 

season, often particularly intensively in the months or weeks leading up to the period of maximum 59 

trait expression; these interactions can lead to differences in dominance status and reproductive 60 

success (e.g. Marra and Holmes 2001, Yoshino and Goshima 2002, Pryke et al. 2002, Mougeot et 61 

al. 2005 a, c, Poisbleau et al. 2006, Reudink et al. 2009). Despite this, most investigations focus 62 

on peak expression or discrete periods before and during breeding (e.g. Forstmeier 2002, Faivre 63 

et al. 2003, Jawor et al. 2004, Miller and Brooks 2005, Mougeot, Redpath and Piertney 2006, 64 

Dobson et al. 2008, Murphy et al. 2009).  65 

Research shows that developing larger static (e.g. bone-based such as antlers) traits is 66 

costly (Walther and Clayton 2005). It therefore follows that developing such traits earlier in the 67 

lead-up to, or during, the breeding season is likely to come at a higher physiological and energetic 68 

cost (e.g. Møller 1994, Lantz and Karubian 2001, Peters, Astheimer, Cockburn 2001). The claim 69 

that costly ornaments honestly signal quality thus needs to be understood in a dynamic context, 70 

particularly for more transient signals (i.e. integumentary or skin-based), as this may only be true in 71 

some phases of growth; modelling suggests that higher quality individuals should delay growth 72 

until closer to breeding (Rands, Evans and Johnstone 2011). For example, the red grouse 73 

Lagopus lagopus scotica has two seasonal ornament growth peaks; autumn and spring. Those 74 

with the largest combs during autumn become more dominant and are able to establish a territory, 75 

whilst those failing to do this do not survive to see the breeding season (Mougeot et al. 2005a, 76 

Mougeot et al. 2003a, c). We also know that developing the largest or most elaborate ornament 77 
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may be facilitated by periods of earlier and more accelerated growth (e.g. Barnard 1995, Bartoš 78 

and Losos 1997, Dunn and Cockburn 1999, Ninni et al. 2004, Siefferman, Hill and Dobson 2005, 79 

Lee, Monaghan and Metcalfe 2012). Expression of these signals and the information conveyed by 80 

their interactions can change dramatically before the breeding season, for example due to shifts in 81 

social status (Kitaysky, Wingfield and Piatt 1999, Setchell and Dixson 2001, Oliveira 2004), and 82 

conspecifics may dynamically assess this (Torres and Velando 2003) and implement flexible 83 

patterns of reproductive effort (Nieminen et al. 2016). The period prior to the breeding season itself 84 

may even determine the ultimate size of the ornament, as well as its costliness, i.e. its condition-85 

dependence (Bartoš and Losos 1997, Rands, Evans and Johnstone 2011). Thus, taking a 86 

snapshot of ornaments, that may be partially developed, prior to breeding may be misleading 87 

(Rands, Evans and Johnstone 2011). 88 

The black grouse Lyrurus tetrix is a lekking Galliform species with strong intersexual and 89 

intrasexual selection, in which copulations are skewed towards a few superior males (Alatalo, 90 

Hӧglund and Sutherland 1992, Kokko and Lindstrӧm 1996, Kervinen et al. 2016). Males have a 91 

number of morphological and behavioural traits that are used for both intersexual and intrasexual 92 

signalling (Hovi et al. 1994, Hӧglund, Johansson and Pelabon 1997, Rintamӓki et al. 1997, 2000, 93 

2001, Siitari et al. 2007, Hӓmӓlӓinen et al. 2012, Lebigre, Alatalo and Siitari 2013). Of these, their 94 

testosterone-dependent red eye combs are the most variable in size (Rintamӓki et al. 2000, 95 

Kervinen et al. 2015), peaking during the breeding season (Fig 1). However, male dominance is 96 

acquired and maintained through multi-annual, year-round interactions (Kokko et al. 1998, 97 

Rintamӓki et al. 1999, Siitari et al. 2007), similar to the patterns shown in red grouse (Mougeot et 98 

al. 2005a, Mougeot et al. 2003a, b), suggesting that the top males should have larger eye combs 99 

at all times. The breeding season occurs over approximately 2 weeks during spring, but winter 100 

flocking and dominance-related interactions begin up to 3-5 months before this (Alatalo, Hӧglund 101 

and Lundberg 1991, Lebigre et al. 2012). During this period, physiological stress levels increase in 102 

red grouse, and likely enforce the honesty of signals (Bortolotti et al. 2009). Those in better 103 

condition or phenotypic quality are likely to cope more successfully with prolonged periods of 104 
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expressing larger eye combs. As resources available for investment and, accordingly, dominance 105 

vary across an individual’s lifetime, we also investigated the relationship between age and 106 

ornament expression. Using a longitudinal dataset of individual eye comb size across multiple 107 

years, we tested whether condition or dominance were related to eye comb sizes before and 108 

during the breeding season, and how this varied with age. 109 

 110 

Material and Methods 111 

Data collection 112 

Black grouse were studied at 5 protected lek sites in central Finland (centred around Petäjävesi: 113 

lat. 62°25′N, long. 25°18′E) from January-May, 2001-13 and 2015. Individuals were caught (during 114 

January-May) with oat-baited walk-in traps, using standard protocols (see Siitari et al. 2007, 115 

Lebigre et al. 2012). Each individual was banded, weighed (to nearest 10g) and aged as adult (≥2 116 

years old) or younger (1 year old), based on plumage differences (Helminen 1963). Eye combs 117 

were recorded on a digital video camera with a 1cm scale reference. The area of each eye comb 118 

(cm2) was calculated using ImageJ software (Rasband 2012), and then summed to get total eye 119 

comb area for each individual (cm2). Repeatability for these measurements was calculated using 120 

ICC function (Wolak et al. 2012) in R (ICC=0.986, 95%CI=0.97/0.99, n=50), with a margin of error 121 

in estimated comb size of only 1%.  122 

 123 

Behavioural data 124 

During the mating season (ca. 2 weeks in late April - early May) behaviours of ringed males were 125 

recorded daily, at regular intervals from 03:00 to 08:00 am as this is primary period of activity and 126 

when copulations occur. Behaviours (fighting, hissing, rookooing, inactive; Höglund et al. 1997) 127 

and the spatial location of each male were scan sampled at regular intervals (documented as 128 

‘activity maps’). Total number of copulations, lek attendance (proportional to the highest attending 129 
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male on the same lek that year), and the centre of each male’s territory (median coordinates of 130 

observations) were calculated for all males. Distance from lek centre was calculated as the linear 131 

distance of each male’s territory centre from the lek centre (median coordinates of all observations 132 

of all males). There is strong sexual selection on male behavioural traits of which lek attendance, 133 

distance from lek centre and number of copulations achieved accurately capture male dominance 134 

(Kervinen et al. 2016). 135 

 136 

Statistical Analysis 137 

We tested the idea that males of differing age, condition and dominance status would vary in the 138 

timing of eye comb size change. This was analysed using linear mixed-effect models (LMMs). In 139 

each model, the linear and quadratic terms of Julian date were included to account for possible 140 

non-linearity of ornament growth. A polynomial linear regression was used as it is appropriate for 141 

investigating the increasing exponential growth leading to the breeding season. Black grouse 142 

males forage in the forests surrounding the lek sites after the breeding season, meaning they 143 

cannot be captured so we lack data on the decline of eye comb size.  144 

We tested for correlations between eye comb size and the following four dominance-and 145 

condition-related measures for both age groups: (a) distance from lek centre, as dominant males 146 

hold territories closer to the lek centre (Rintamӓki et al. 1997); (b) lek attendance, as dominant 147 

males attend the lek most often (Alatalo et al. 1996); (c) copulations, as only the dominant males 148 

reproduce (Alatalo et al. 1991); (d) body mass (g), a measure of condition (e.g. Alatalo et al. 1996) 149 

as heavier males have more resources (condition-dependence) to invest both in ornament growth 150 

and dominance-related activities (Willebrand and Marcström 1989, Rintamäki et al. 2001, 151 

Nieminen et al. 2016). Lek attendance was included as a binary factor, based on high (≥80%) and 152 

low (<80%) attendance, because of a sharp increase in mating success for those with ≥80% 153 

attendance (Kervinen, Lebigre and Soulsbury 2016). All models had a Gaussian error structure 154 

and used total eye comb size (combined area of left and right eye comb) as the dependent 155 
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variable. In all models, individual identity, year and site were included as random effects to control 156 

for repeated measures, cohort and differences between sites, such as resources. 157 

 In order to test for differences in eye comb size across the time period before and during 158 

the breeding season, each variable was first tested in interaction with Julian date (linear and 159 

quadratic). The interaction terms were subsequently removed in a backward stepwise manner if 160 

non-significant. We first quantified the differences in eye combs size between adults (≥2 years old) 161 

and younger males (<1 year old), identified because the majority of morphological and behavioural 162 

trait development occurs between 1 and 2 years old in black grouse, with mating being largely 163 

unsuccessful until 2 years old (Alatalo et al. 1992, Kervinen et al. 2012). Any significant 164 

interactions between age and Julian date would indicate a difference in the eye comb growth 165 

patterns between groups. We then tested relationships with dominance- and condition-measures. 166 

For these analyses adults and younger males were analysed separately, as only a minority of 167 

younger males participate in dominance-related behaviours, and strong age-dependency in 168 

morphological and behavioural traits may over or under emphasise patterns (Kervinen et al. 2012, 169 

2015).  170 

Lastly, we tested whether changes in dominance between years led to differences in 171 

growth of eye combs. To this end, we subtracted the value of individuals’ dominance measures 172 

(lek attendance, distance from lek centre) from the previous year’s values, respectively. A negative 173 

value for distance from lek centre would therefore indicate that a male was moving closer to the lek 174 

centre and becoming more dominant. Conversely, a positive value for lek attendance indicated 175 

more time spent at the lek and greater dominance. We carried out a LMM with total eye comb size, 176 

Julian date (linear and quadratic) and the between-year differences as fixed factors. Similarly to 177 

the condition and dominance analyses; identity, age and year were included as random effects 178 

and backward stepwise removal of interactions was carried out. We used only adult males for this 179 

analyses to avoid the change in traits between younger and adults confounding results (Kervinen 180 

et al. 2015). Models were run using the lme4 function (Bates, Maechler and Bolker 2015) along 181 
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with the lmerTest function (Kuznetsova, Brockhoff and Christensen 2015). All models were run in 182 

R version 3.1.2 (R Development Core Team 2012).  183 

 184 

Results 185 

Age differences in eye comb growth 186 

In total, we measured 577 adult males a total of 830 times, with individual adults measured 187 

between 1 and 8 times across their lifetimes. Within each year, most males were sampled once 188 

(704 times), but some were measured multiple times within a year (two measures = 98 measured 189 

twice, 18 measured three times, 10 measured four times). We measured 800 younger males, with 190 

most being measured once (753) and few being measured twice or more (41 measured twice, 6 191 

measured three times).  192 

Total eye comb size was significantly related to the linear and quadratic terms of Julian 193 

date (linear: Estimate ± SE = -0.04±0.002, t = -14.30, P<0.001; quadratic: Estimate ± SE = 194 

6.57x10-4± 2.46x10-5, t=26.67, P<0.001). Adult males had larger eye combs than younger males 195 

(Estimate ± SE=1.80±0.06, t=30.49, P<0.001), and there was a significant interaction between age 196 

and quadratic Julian date (Estimate ± SE=3.78x10-5± 1.33x10-5, t=2.84, P=0.005), but not linear 197 

Julian date. Adult males always had larger eye combs and the increase in size of eye combs was 198 

faster than in younger males (Fig 1c). 199 

 200 

Adult males and dominance-related eye comb growth-scheduling 201 

For adult males, heavier males always had larger eye combs (Table 1; Fig 2a). Similarly, males 202 

that attended the lek more frequently (Fig 2b) had higher mating success (Fig 2c) and larger eye 203 

combs. There was a non-significant trend for black grouse with territories closer to the lek centre to 204 

have larger eye combs. 205 

 206 
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Younger males and dominance-related eye comb growth-scheduling 207 

Younger males that were heavier had consistently larger eye combs (Table 1; Fig 3a). In addition, 208 

those males that; attended the lek frequently (Fig 3b), had territories closer to the lek centre (Fig 209 

3c) and those that had higher mating success (Fig 3d) grew larger eye combs close to the 210 

breeding season (Table 1). However, these more dominant males did not grow larger eye combs 211 

early on, prior to the breeding season. 212 

 213 

Changing status and eye comb growth 214 

Adult males that increased their lek attendance between years significantly increased eye comb 215 

size, especially closer to the breeding season (Table 2; Fig 4), but there was no effect of moving 216 

closer to the lek centre (Table 2).  217 

 218 

Discussion 219 

Age differences in eye comb growth 220 

Younger males are typically lighter than adult males and presumably have fewer resources 221 

available for allocation to ornament expression (Kervinen et al. 2015). Accordingly, younger black 222 

grouse males have been shown to rank lower on the lek, achieving little reproductive success, with 223 

only a minority participating in dominance-related activities such as fighting and lek attendance 224 

(Brittas and Willebrand 1991, Alatalo et al. 1992, Kokko and Lindstrӧm 1996, Kervinen et al. 2012). 225 

In line with these results, we found that younger males had consistently smaller eye combs than 226 

adult males. This result is similar to those reported in in other taxa, for example in male red deer 227 

(Cervus elaphus) investment into rutting and antler growth (both required for dominance) is lower 228 

in young males than healthy adult males (Nussey et al. 2009; see Balbontín et al. 2007, Evans, 229 

Gustafsson and Sheldon 2011 for additional examples). Low younger investment is also 230 

unsurprising as younger males that significantly invest in early, prolonged ornament growth may 231 

incur costs of reduced future success in ornament expression, reproduction and survival (Stearns 232 
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1989, Hunt et al. 2004, Siitari et al. 2007, Kervinen et al. 2015, see Metcalfe and Monaghan 2001 233 

for a review). Hence, delayed ornament expression until full maturity may be beneficial to male 234 

lifetime reproductive success (Kokko 1997, Kervinen et al. 2015). 235 

 236 

Adult males and dominance-related eye comb size 237 

Heavier adult males had larger eye combs before and during the breeding season. Previous 238 

studies have demonstrated that ornament expression is condition-dependent (Holzer, Jacot and 239 

Brinkhof 2003, Cotton, Fowler and Pomiankowski 2004, Poisbleau et al. 2006, Emlen et al. 2012, 240 

but see Badyaev and Duckworth 2003). High testosterone levels allow males to express larger eye 241 

combs and be more reproductively successful but also result in trade-offs between ornament 242 

expression and immune function or oxidative defence (Alatalo et al. 1996, Rintamӓki et al. 2000, 243 

Mougeot et al. 2009, Martínez-Padilla et al. 2014). As such, similarly to the red grouse, heavier 244 

black grouse males, i.e. those in better condition, are more likely to be able to cope with pressures 245 

on condition, such as parasite burden, whilst sustaining the physiological investment required to 246 

maintain growth and expression of a larger ornament (Höglund, Alatalo and Lundberg 1992, 247 

Mougeot, Evans and Redpath 2005b, Mougeot et al. 2009, Yang et al. 2013). 248 

We also found that those males spending the most time on the lek and those achieving the 249 

most copulations expressed larger eye combs both before and during the breeding season. In 250 

many species, dominance status is accrued or maintained through extended time periods, not just 251 

during the breeding season (Andersson 1989, Hӧglund, Johansson and Pelabon 1997, McElligott 252 

et al. 1998, McGraw et al. 2001, Friedl and Klump 2005, Poisbleau et al. 2006). In black grouse, 253 

dominance-related interactions begin up to 3-5 months before breeding season, when males and 254 

female live in mixed-sex wintering flocks (Alatalo, Hӧglund and Lundberg 1991, Lebigre et al. 255 

2012). Hence, ornament expression outside the breeding season has a function in social 256 

competition and future reproductive success. For example, in red grouse, the outcome of 257 

dominance-related interactions during the autumn heavily influences breeding success the 258 
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following spring, and dominance is closely related to eye comb size in red grouse (Mougeot et al. 259 

2003a, b).  260 

Our results also show that between-year changes in dominance status are associated with 261 

larger eye combs. Males that attended the lek more frequently in the following year had larger eye 262 

combs near to the breeding season. A similar pattern but within-season has been observed in 263 

other species, such as the jungle fowl Gallus gallus in which changes in dominance led to changes 264 

in comb size (Cornwallis and Birkhead 2008). Similarly, changes in male dominance status in 265 

fallow deer (Dama dama) affects antler growth rate (Bartoš and Losos 1997, Ciuti and Apollonio 266 

2011, also see Tibbetts and Safran 2009, Lantz and Karubian 2016). This indicates that those 267 

individuals able to increase their dominance can alter the expression of ornaments accordingly, 268 

and that having larger eye combs reflects dominance both before and during the breeding season 269 

(Rintamӓki et al. 1999, Kokko et al. 1999).  270 

 271 

Younger males and dominance-related eye comb size 272 

Eye comb size was also related to dominance in younger males. The key difference between 273 

adults and younger males was that variation in eye comb size across younger males occurred later 274 

on and much closer to the breeding season. Younger males may be physiologically constrained 275 

from producing larger eye combs because they cannot produce high levels of testosterone, or may 276 

have fewer resources to allocate to ornament growth or maintenance. This may mean they should 277 

delay expressing larger ornaments until later in the season, in line with findings that younger males 278 

increase reproductive effort as adult male effort declines (Nieminen et al. 2016) or possibly not 279 

participate in dominance-related interactions until they have become an adult (Kokko 1997). 280 

Experimentally increased testosterone in younger males led to an increase in eye comb size 281 

(Siitari et al. 2007), but even then eye combs were not as large as adults, suggesting that 282 

physiological constraint may only be partly important. Since heavier younger males had large eye 283 

combs at all times, it seems that higher quality or better condition individuals are more likely to 284 
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have the resources available to invest in ornament growth. As those younger males that participate 285 

in dominance behaviours are shown to invest in larger eye combs but later than adults, i.e. only as 286 

the breeding season approaches, it may also be that resource availability is a limiting factor 287 

(Lindstrӧm et al. 2009, Kervinen et al. 2012, see Dmitriew 2011 for a review). There is also 288 

evidence for this pattern in younger males of other avian species (e.g. house finches Haemorhous 289 

mexicanus, Badyaev and Duckworth 2003, bearded reedlings Panurus biarmicus, Surmacki, 290 

Stępniewski and Stępniewska 2015), suggesting that timing of investment in younger males is 291 

critical. Hence, whilst condition-dependent ornament expression is continuous across both age 292 

groups, there are differences in eye comb growth patterns towards the breeding season. These 293 

differences may be due to resource-based or physiological constraints in younger males, limiting 294 

their ability to grow large eye combs, which may also link to evidence of young males increasing 295 

reproductive effort with decline in adult male investment (Nieminen et al. 2016).  296 

 297 

Conclusions 298 

In summary, we found clear differences in eye comb size between ages and between dominant 299 

and subordinate males. In adults, dominant males had larger eye combs both before and during 300 

the breeding season. Males that increased their dominance between years increased their eye 301 

comb sizes. Younger males had smaller eye combs than adult males, and showed similar 302 

dominance-related patterns. The main difference between younger and adult males related to 303 

timing of eye comb size increase, with variation in younger male eye comb size occurring much 304 

later than in adults. We suggest this is due to physiological or resource-based constraints. Our 305 

results suggest that, since dominance is accrued through year-round interactions in many species, 306 

the ability to maintain larger signals over prolonged periods and outside of the breeding season is 307 

likely to be beneficial, especially for adults.  308 
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Table 1: Outputs for LMM models testing the variation in relationship between eye comb area (dependent variable) and Julian date according to 4 593 

condition and dominance-related morphological and behavioural traits. 594 

595 
  Younger males Adult males 

Model Variable Estimate ±SE t P Estimate ±SE t p 
Body mass  

Younger males 
(751 males/759 
observations) 
Adults (542 males/ 
796 observations) 

Intercept -12.65 4.03 -3.14 <0.001 -46.25 6.53 -7.07 <0.001 

Julian date (linear) -0.04 0.01 -
11.33 <0.001 -0.04 0.01 -7.65 <0.001 

Julian date (quadratic) 6.11x10-4 2.82x10-5 21.68 <0.001 6.56x10-4 3.40x10-5 19.29 <0.001 
Body mass 2.12 0.57 3.72 <0.001 7.02 0.92 7.66 <0.001 

Lek attendance 
Younger males 
(209 males/225 
observations) 
Adults (302 
males/539 
observations) 

Intercept 2.22 0.24 9.93 <0.001 3.79 0.25 15.09 <0.001 
Julian date (linear) -0.04 0.01 -6.07 <0.001 -0.04 0.01 -6.58 <0.001 
Julian date (quadratic) 6.16x10-4 4.57x10-5 13.46 <0.001 6.82x10-4 4.19x10-5 16.30 <0.001 
Lek attendance -0.21 0.18 -1.38 0.230 0.38 0.11 3.35 <0.001 
Julian date (linear) * lek attendance - - - - - - - - 
Julian date (quadratic) * lek attendance 6.74x10-5 2.82x10-5 2.39 0.018 - - - - 

Distance from the 
lek centre  

Younger males 
(161 males/172 
observations) 
Adults (288 
males/505 
observations) 

Intercept 2.24 0.29 7.65 <0.001 4.25 0.26 16.48 <0.001 
Julian date (linear) -0.05 0.01 -6.79 <0.001 -0.04 0.01 -6.68 <0.001 
Julian date (quadratic) 7.80x10-4 5.20x10-5 14.99 <0.001 7.04x10-4 4.45x10-5 15.82 <0.001 
Distance from lek centre -0.01 0.00 1.18 0.240 -0.01 0.00 -1.89 0.059 
Julian date (linear) * distance from lek centre - - - - - - - - 

Julian date (quadratic) * distance from lek centre -1.57x10-6 7.23x10-7 -2.18 0.031 - - - - 

Copulations 
Younger males 
(210 males/ 224 
observations) 

Adults (290 
males/493 
observations) 

Intercept 2.18 0.22 10.12 <0.001 3.85 2.55 14.99 <0.001 
Julian date (linear) -0.03 0.01 -5.99 <0.001 -0.04 0.01 5.47 <0.001 
Julian date (quadratic) 5.96x10-4 4.29x10-2 13.88 <0.001 6.54x10-4 4.48x10-5 14.61 <0.001 
Copulations -0.08 0.06 -1.31 0.182 0.04 0.01 3.18 0.002 
Julian date (linear)*copulations - - - - - - - - 
Julian date (quadratic)*copulations 2.36x10-5 5.95x10-6 3.97 <0.001 - - - - 
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Table 2: LMM model outputs for the relationship between eye comb size and Julian date and changes in dominance-related traits in male black grouse. 596 

 597 

 598 

 599 

 600 

 601 

  602 

Model Variable Estimate SE T p 
Change in distance from lek centre 
(91 individuals/152 data points) 

Intercept 4.45 0.36 12.36 <0.001 
Julian date (linear) -0.03 0.12 -2.62 0.010 
Julian date (quadratic) 6.44 x10-4 8.54 x10-5 7.53 <0.001 
Distance from lek centre 3.41 x10-3 5.27 x10-4 0.65 0.519 

Change in lek attendance 
(93 individuals/167 data points) 

Intercept 4.07 0.33 14.14 <0.001 
Julian date (linear) -0.04 0.01 -3.74 <0.001 
Julian date (quadratic) 6.95 x10-4 7.74 x10-5 8.98 <0.001 
Lek attendance -0.04 0.04 -1.08 0.283 

 Julian date (quadratic)*Lek attendance 1.70 x10-4 6.02x10-5 2.82 0.006 
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 603 

Figure 1. Supra-orbital red eye combs of black grouse. Photographs show an adult male caught in the (a) before the breeding season (30 January) and again (b) 604 
during the breeding season (16 May). (c) Supra-orbital eye comb size for adult males (dashed line, open circles) and younger (solid line, solid points) male black 605 
grouse before and during the breeding season. Individual data points are shown. 606 

  607 
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Figure 2. The relationship between adult eye comb growth, Julian date and (a) log body mass 608 
(dashed line=heavy (1400 g) male, solid line=light (1100 g) male), (b) lek attendance (dashed 609 
line=high attender, solid line=low attender) and (c) mating success (dashed line=males mating with 610 
high success (> 5 copulations), solid line=males unsuccessful (0 copulations) in mating). 611 
Individualdata points are shown and illustrative fitted lines represent dominant and subordinate 612 
individuals. 613 

  614 
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Figure 3. The relationship between younger male eye comb growth, Julian date and (a) log body mass (dashed line=heavy (1400 g) male, solid line=light (1100 g) 615 
male), (b) lek attendance (dashed line= high attender, solid line=low attender), (c) distance from lek centre (dashed line= male close to lek centre (≤ 20 m), solid 616 
line= male far from lek centre (≥ 80 m)) and (d) mating success (dashed line=successful male (5 copulations), solid line=males unsuccessful (0 copulations) in 617 
mating). Individual data points are shown and illustrative fitted lines represent dominant and subordinate individuals. 618 
  619 
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Figure 4. Adult male eye comb area in relation to Julian date and between-year changes in lek attendance. 620 
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