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Abstract— Point cloud registration is the task of aligning 3D
scans of the same environment captured from different poses.
When semantic information is available for the points, it can be
used as a prior in the search for correspondences to improve
registration. Semantic-assisted Normal Distributions Transform
(SE-NDT) is a new registration algorithm that reduces the
complexity of the problem by using the semantic information
to partition the point cloud into a set of normal distributions,
which are then registered separately. In this paper we extend
the NDT registration pipeline by using PointNet, a deep neural
network for segmentation and classification of point clouds, to
learn and predict per-point semantic labels. We also present
the Iterative Closest Point (ICP) equivalent of the algorithm,
a special case of Multichannel Generalized ICP. We evaluate
the performance of SE-NDT against the state of the art in
point cloud registration on the publicly available classification
data set Semantic3d.net. We also test the trained classifier and
algorithms on dynamic scenes, using a sequence from the public
dataset KITTI. The experiments demonstrate the improvement
of the registration in terms of robustness, precision and speed,
across a range of initial registration errors, thanks to the
inclusion of semantic information.

I. INTRODUCTION

Point cloud registration is the alignment of 3D scans of
an environment, consisting of points, that are captured from
different locations. Common applications of scan registration
are the construction of a 3D model of an object, a map
of an environment, or the recovery of the pose transform
of the sensor for self-localization. Algorithms that address
the problem of registration approach it as an optimization
problem of minimizing a distance metric between the scans,
with respect to the 6-DOF transform. Popular techniques in-
clude Generalized Iterative Closest Point (GICP) [1] and 3D
Normal Distributions Transform (NDT) [2], [3]. These meth-
ods can perform sufficiently well for autonomous robotic
applications in enclosed spaces such as indoor environments,
but their performance degrades in open environments with
limited geometric structure.

In our previous work, we proposed the Semantic-assisted
Normal Distributions Transform (SE-NDT) [4], a registration
method that uses normal distribution transforms but also con-
siders per-point semantic information that might be available
to aid the registration process. An increasing number of
robotic systems employ semantic segmentation algorithms
for various purposes, for example, to detect traversable
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Fig. 1. An indicative point cloud from the Semantic3d.net dataset (’sg27
station 1’) as labeled by PointNet RGB.

terrain, buildings, trees, crops, etc. The output of those
systems can be used, without additional cost, to improve
localization or 3D model construction. However, we only
provided a “proof of concept” for the algorithm by testing
one continuous geometric measure of smoothness, which was
used to partition the point cloud into two categories, edge and
plane points.

In this work, we present a complete semantic registration
pipeline, using PointNet [5] as the source of semantic labels.
We train the semantic classifier on the manually labeled
data set Semantic3d.net [6]. We also present the conceptual
equivalent of our algorithm for GICP, referred to as SE-GICP.
We evaluate the extended registration methods in comparison
with GICP and NDT using the predicted semantic labels
for scenes unseen before by the classifier. As only one, but
detailed, scan is available per scene, we split each scan into
several point clouds that simulate multi-scan data according
to the specifications of a consumer Lidar sensor.

We compare SE-NDT, NDT, GICP and Fast Global Reg-
istration [7] on the resulting data set and on KITTI [8] and
demonstrate that SE-NDT outperforms the other methods in
speed, robustness and precision.

II. RELATED WORK

Iterative Closest Point (ICP) is perhaps the most widely
used scan registration method. The method was proposed in
[9], and several extensions and generations have been pre-
sented. In [10] the authors introduce probabilistic association
in ICP, where instead of matching point-to-point, they use a
t-distribution to model the distances to a set of target points
and assign a weight to each association. ICP iteratively finds
point correspondences between point clouds and minimizes
a distance cost function. A registration method that uses
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semantic information to improve ICP was presented in [11]
where the semantic categories used were floor points, ceiling
points, wall points and artifact points. The authors noted a
reduction in registration convergence time with no loss of
quality, attributed to the raised probability of picking correct
correspondences.

Fast Point Feature Histograms (FPFH) were introduced
in [12] to provide initial alignment and possible corre-
spondences to ICP. Even though the method does not use
semantic information in the strict sense, the handling of the
added information is similar. Fast Global Registration [7]
(FGR) uses FPFH to find correspondences in feature space,
that are further filtered to reduce incorrect matches. The
algorithm can cope with noisy correspondences and therefore
does not need to re-estimate them during optimization. The
registration does not use an initial estimate, and an extension
provides multi-scan registration.

The Normal Distributions Transform (NDT) is a method
for 2D registration proposed in [2] that transforms the
point clouds into sets of normal distributions, and iteratively
finds point-to-distribution correspondences and minimizes a
distance cost function. The method was extended to 3D in
[3], and in [13] to use distribution-to-distribution correspon-
dences and cost function.

Several approaches that integrate non-geometric informa-
tion into NDT registration have been presented. In [14] two
variations of NDT were presented that use colour information
to improve registration. The method penalizes matches of
non-corresponding colour with an additional error function
and models the colour as additional dimensions on the
Normal Distributions (6D). Another approach to improve
NDT by using colour was presented by [15], where the con-
tribution of every distribution-to-distribution correspondence
is dependent on the colour similarity. The use of features
instead of the full point cloud was exhibited by [16].

Semantic-assisted Normal Distributions Transform regis-
tration (SE-NDT) [4], a method we introduced in our previ-
ous work, uses semantic information to segment the point
cloud and constructs the Normal Distributions Transform
for each segment independently. Distribution-to-distribution
correspondences are then only searched among the NDTs
constructed from the same type of semantic label. Previously,
we used a continuous geometric measure of smoothness as
the source of semantic information, to segment the point
cloud into two categories edge and plane. In this work,
we introduce the use of real semantics, resulting from a
classifier, by using PointNet [5], a deep-learning framework
to learn semantic labels from data. In this paper, we examine
the registration procedure by using the manually labeled data
set Semantic3d.net [6].

III. REFERENCE REGISTRATION METHODS

A. Generalized ICP

The Generalized Iterative Closest Point (GICP) is a
method introduced in [1] that unifies the point-to-point [9]
and point-to-plane [17] iterative closest point algorithms and
introduces plane-to-plane registration.

GICP approximates the transformation that aligns two
point clouds by minimizing a distance function between
point correspondences. To register a cloud M to a cloud
F the algorithm finds for each v ∈ M the closest point
uv ∈ F . The Euclidean distance measure is used. Point
correspondences above a maximum distance threshold are
rejected. The transform T which aligns the two clouds is
then obtained by minimizing the function

f(T) =
∑
v∈M

(uv −Tv)(Cu +TCv T
T )−1(uv −Tv)T .

(1)
Cu and Cv are the covariance matrices of the assumed
surface containing the point. The assumed surface has the
minimum variance in the direction of the normal, so the
covariance can be represented in the form

Ci = Ri

 ε 0 0
0 1 0
0 0 1

RT
i (2)

with R the rotation that makes ε the magnitude of the normal
(where ε is a very small constant). The procedure is repeated
iteratively until a termination criterion is met, usually where
the error is below a threshold or the number of iterations
exceeds a limit.

B. 3D-NDT
Normal Distributions Transform (NDT) is a method for the

representation of the environment and registration of data,
proposed by Biber and Straßer [2] for 2D scan registration,
and later extended for the registration of three-dimensional
data by Magnusson et al. [3]. As opposed to other methods
which use either a full point cloud or feature points to
perform the registration, 3D-NDT assumes a local Gaussian
distribution of points and uses the probability density func-
tion as their representation. Space is segmented into voxels,
and for each voxel a Gaussian model is fitted to the data. In
the point-to-distribution (P2D) variant, the registration of a
new scan then becomes a problem of fitting its points to the
distribution, which is solved as a least-squares problem.

The distribution-to-distribution variant of NDT [13], [18]
consists of the following steps to register a point cloud M
to a point cloud F . At its first step, the algorithm discretizes
the space into voxels. Let Si be the set of points v of F
in voxel i. A Gaussian distribution of points is assumed for
every voxel, resulting in the sets of distributions GF ,GM .
The mean vector µi and the covariance matrix Ci for each
distribution are estimated according to

µi =
1

|Si|
∑
v∈Si

v, (3)

Ci =
1

|Si| − 1

∑
v∈Si

(v − µi) (v − µi)
T
. (4)

The probability density function at voxel i is then given by

pi(x) =
1√

(2π)
3 |Ci|

exp

(
− (x− µi)

TC−1i (x− µi)

2

)
.

(5)



Let T be the 6-DOF transformation matrix from M to
F , with R and t the rotation and translation components
respectively. The distance between two transforms i, j is
defined as

dist(i, j) = −d1exp
(
−d2

2
µT

ij

(
RTCiR+Cj

)−1
µij

)
(6)

and the transformation fromM to F is found by minimizing

f(T) =

|GM |,|GF |∑
i=1,j=1

dist(i, j), (7)

where µij = Rµi + t − µj and d1, d2 are regularization
factors. Newton optimization is used to obtain the transfor-
mation T with analytically computed derivatives.

The procedure is repeated iteratively until a termination
criterion is met, usually where the error is below a threshold
or the number of iterations exceeds a limit. An important
parameter is the size of the voxel, or resolution of the grid.
The registration can be performed with transitioning from
coarser to finer resolutions, and vice versa, among iterations.

IV. SEMANTIC REGISTRATION

A. Semantic-assisted NDT

Semantic-assisted Normal Distributions Transform (SE-
NDT) [4] is a registration method where the point cloud
is partitioned according to per-point semantic labels, and
sets of Normal Distributions Transforms are estimated and
registered for each partition independently. The algorithm
assumes that every point in the point cloud has one semantic
label. The preliminary version of the algorithm contained
a method for assignment of semantic labels according to a
continuous geometric measure (smoothness), similar to [11],
but here a more general formulation with an arbitrary set of
N semantic categories is considered.

To register a point cloud M to a point cloud F , the
following steps apply. First, the point clouds are segmented
into disjoint sets according to their labels,Mn being the set
of points with label n that belong toM. Then, for each point
cloud segment the following procedure is followed separately
to construct the sets of distributions GnF and GnM , where n the
semantic label. The space is discretized into voxels. Let Si be
the set of points v of F in voxel i. A Gaussian distribution
of points is assumed for each voxel. For each distribution
the mean vector µi and covariance matrix Ci are estimated
according to Equations 3, 4. The probability density function
at voxel i is then given by Equation 5.

The resulting normal distribution sets GnM and GnF can
then be used instead of the full point clouds to estimate
the transform that aligns M and F . Let T be the 6-
DOF transformation matrix from M to F , with R and t
the rotation and translation components respectively. The
distance between two transforms i, j is given by Equation 6
and the transformation fromM to F is found by minimizing

f(T) =
∑
∀n

|Gn
M |,|G

n
F |∑

i=1,j=1

dist(i, j), (8)

where dist(i, j) eq. 6. Newton optimization is used to obtain
the transformation T with analytically computed derivatives.

We highlight that Equation 8 only considers normal dis-
tribution correspondences of the same semantic type. The
procedure is repeated iteratively until a termination criterion
is met, usually when the error is below a threshold or the
number of iterations exceeds a limit. An important parameter
of SE-NDT is the size of the voxels or resolution of the grid.

B. Semantic-Assisted GICP

Following the same principle we can use semantic infor-
mation in Generalized ICP. The method differs from GICP in
the calculation of nearest neighbours, where only neighbours
of the same semantic category are considered. This also
affects the normal estimation, for which nearest neighbours
are used. To accelerate execution, one KD-tree is constructed
per semantic category.

SE-GICP has significant similarity to [11], where the
labels of the points are used to find more accurate corre-
spondences. The dissimilarity to our method is that we use
Generalized ICP (plane-to-plane) instead of ICP, taking into
consideration the local neighbourhood of the points, and we
use a deep neural network to generate the semantic labels,
as opposed to the hand-crafted classifier of floor, ceiling and
wall classes in [11], which would be out of context for an
outdoor scene.

SE-GICP can be derived from Multichannel GICP [19],
although they are not equivalent. Multichannel GICP is a
method for considering n additional sources of information
in GICP (descriptors), for example colour. One n + 3
dimensional KD-tree is used to find nearest neighbours,
weighting each dimension equally. After the estimation of the
surface normal using the covariance of the neighbours (Cn),
the point and its neighbours are flattened in the direction
of the normal. The points are assigned weights according
to a Gaussian kernel that represent the similarity of their
descriptor to that of the query point. The covariance of the
descriptor sensor (or the uncertainty of the classifier in our
case) is used as a parameter of the kernel. A new weighted
covariance (Cw) is estimated for the points. Then, instead of
using the archetypal covariance from Equation 2, the method
uses the normalized covariance:

Ci = Ri

(
ε 0

0 C
−1/2
n Cw C

−1/2
n

)
RT

i . (9)

In contrast to Multichannel GICP, in our problem the descrip-
tors are binary and mutually exclusive, if we consider every
class as a descriptor. Therefore, the weight will be one only
for points of the same class, and zero in all other cases. There
are two possible methods to integrate the change into Mul-
tichannel ICP. One is to change the kernel, then Cn would
become the covariance of the neighbourhood of the point,
regardless of class, and Cw the covariance of the neighbours
of the same class. This will result in lower covariances close
to edges between segments belonging to different classes,
with a possible benefit in registration precision. The other is
to change the measure used for the estimation of distance



between points, so that points from different classes have
infinite distance in the descriptor space. This will convert
Equation 9 to Equation 2. The later interpretation is what we
used for SE-GICP, due to its simplicity and the potentially
increased speed resulting from the use of multiple KD-trees.

C. Semantic extraction - PointNet

To provide semantic information to the investigated reg-
istration algorithms, we employ PointNet, a state-of-the-
art deep learning architecture specifically designed to seg-
ment and classify 3D point clouds [5]. PointNet is a fully
connected neural network which can be learned end-to-end
from raw 3D points to its semantic labels. The original
network consists of a set of input and transform layers
resulting in local point features, which are then aggregated
by max pooling into a global signature. The local and global
features are concatenated by a segmentation network which
outputs per point scores corresponding to a set of output
classes. We adopt the network’s original architecture for
use with sparse and structured 3D lidar scans. Firstly, we
abandon the input and feature transform layers, which are
only required for unstructured 3D input. In our case, the
input scan is discretised into voxels of side 10m, which
are then fed directly into the pooling layer together with
the relative coordinates within each cube. Secondly, we
incorporate additional input dimensions including ‘intensity’,
corresponding to the reflectance readings available in most
modern lidar sensors, and colour, which might be available
through a registered vision camera. To train the network, the
procedures introduced in [5] are followed.

In our work, we trained two types of classifiers: one using
only geometry and reflectance, referred to as PointNet, and
the other one with geometry, reflectance and colour, referred
to as PointNet RGB, corresponding to setups with an external
colour camera.

V. DATASET

A. Simulated Data

In order to test the method, a labeled point cloud data
set is needed. We use the Semantic3d.net [6], a large-scale
point cloud classification benchmark. The data set contains
30 labeled scans, from rural and urban scenes, in total of 4
billion points. The point clouds are manually labeled into 8
semantic categories:

1) man made terrain (pavements),
2) natural terrain (grass),
3) high vegetation (trees and bushes),
4) low vegetation (flowers or bushes smaller than 2m),
5) buildings,
6) remaining hardscape (fountains, banks etc.),
7) scanning artifacts,
8) cars and trucks.

As the data was captured with a static high resolution lidar
sensor, and only one scan is available for each location,
we artificially split each scene into 50 point clouds through
ray tracing to imitate data from a lidar with 64 beams
(Velodyne HDL-64E). During the splitting procedure, if a

TABLE I
Semantic3d.net DATASET DIVIDED INTO TRAINING AND TESTING SETS.

training testing

bildstein station 5 bildstein station 1
domfountain station 2 bildstein station 3
domfountain station 3 domfountain station 1
sg27 station 2 neugasse station 1
sg27 station 5 sg27 station 1
sg27 station 9 sg27 station 4
untermaederbrunnen station 3 sg28 station 4

untermaederbrunnen station 1

point can belong to a cloud it is assigned to that cloud and
not checked further, ensuring that every cloud has unique
points. The resulting point clouds have horizontal angular
resolution of 0.1o and vertical resolution of 0.42o, therefore
containing up to 230400 points each. We chose to simulate
a 64 beam lidar as a cloud with lower resolution would be
more challenging for the classifier. Preliminary tests with
a VLP-16 configuration show that the network architecture
used does not result in a classifier of comparable accuracy.

Each of the generated point clouds is centered on a
different hypothetical sensor pose, or viewpoint. The hypo-
thetical pose of the sensor is selected randomly for each
cloud, with translation in x, y uniformly distributed in a
radius of 3m, translation in z normally distributed with
variance of 0.1m2, angle with respect to the z axis uniformly
distributed in the interval (0, 2π] rad and angle with respect
to the x-axis normally distributed with variance 0.1 rad2. The
resulting point clouds are then transformed to the origin, so
that the pose vector of the viewpoint is at (0, 0, 0, 0, 0, 0),
representing (Translation X, Y, Z, Roll, Pitch, Yaw).

To train PointNet we split the set according to the scene,
so as not to use the same scene for training and testing (see
Table I). For both training and testing we use the simulated
point clouds. The testing set contains scenes from outdoor
environments, with the sg sets being of particular interest
as they have low geometric structure (i.e. large segments of
natural terrain and vegetation).

For the evaluation of the registration algorithms, we pick
pairs of point clouds with linearly increasing distance, to
cover initial translation displacement of the point clouds
from 0.15m to 3.01m. The values were selected to cover
the potential range of registration difficulty in the case of
mobile robots, with the assumption that a robot equipped
with a lidar of frequency up to 1 Hz would not travel with
speed over 10 km/h. We test the algorithms against both the
PointNet and PointNet RGB models. A limitation of testing
on the synthesized data is that the overlap between scans is
high compared to real data.

B. Real Data

After the initial training of the classifier the methods
can be tested on a real world dataset originating from
a similar sensor. We use the KITTI dataset [8] for this
purpose. The data set consists of 22 sequences of scans,
captured by a Velodyne HDL64. To capture the strengths



and limitations of each algorithm we test on sequence 01,
which is recorded on a motorway, with instances that lack
geometric structure, others where our classifier does not
provide any useful classes, and instances where no useful
geometric or semantic information is present. Furthermore,
the sequence contains instances where parallel moving traffic
is the prominent feature. Figure 6 shows the paths estimated
by different algorithms. As the data set contains no ground
truth labels and only intensity information, we use the labels
from PointNet.

VI. PARAMETERS

Both NDT and SE-NDT use the same regularization
factors d1 = 1, d2 = 0.05. The iterations are limited
to 5 per resolution for both methods. In the distribution
matching step of NDT and SE-NDT, the 8 nearest neigh-
bours are considered, instead of the whole set. The reso-
lutions chosen are (100,20,100,4,1,2,1) m for SE-NDT and
(60,30,20,10,1,6,1) m for NDT, which were determined by
the following procedure. On a small test set, all resolutions
are tested in the range of 10–100 m in 10 m increments
and in 1–9 m in 1 m increments. Iteratively, the resolution
with the lowest registration error is added to the stack of
resolutions which are applied. When there is no significant
reduction of the angular error, translation error is used as
the performance criterion. As both algorithms are sensitive
to these parameters, it is crucial to use a few clouds generated
from the particular sensor to fine-tune them. Transition from
fine to coarse resolutions have been noted to reduce the
convergence to local minima.

For GICP variants we set ε = 0.001 and the number of
iterations to 100, and the convergence criterion is when the
change in translation is less than 0.001m. The covariance of
the 20 nearest neighbours of the point is used to estimate
the normal using PCA. All points are used without down-
sampling. Correspondences with distance over 50 meters are
discarded. The search for nearest neighbours is implemented
using a KD-tree.

For FGR the 90 nearest neighbours are used for the
estimation of the normals, the normals of the 110 nearest
neighbours are used to estimate the FPFH, the distance
threshold for genuine correspondence is 0.1, the number of
iterations is 64, the tuple test threshold is 0.99, and the
maximum number of tuples is 5000. The implementation
was taken from 1.

For KITTI, the parameters of SE-NDT and FGR were
further optimized using examples from the sequences 00
and 04 of the dataset that were not used in the test. We
validated that the performance was higher than with the
original parameters. For SE-NDT the resolutions are set to
(4,0.8) m with one nearest neighbour and one iteration per
resolution. For FGR, the neighbours for normal estimation
are set to 200, the neighbours for FPFH are set to 240 and
the number of tuples is limited to 500. The parameters for
NDT are taken from our previous work [4].

1https://github.com/IntelVCL/FastGlobalRegistration
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Fig. 2. Confusion matrix of the classification models. (a) PointNet RGB,
(b) PointNet. (percent, shade indicates value)

VII. RESULTS

A. Evaluation methodology

To evaluate the results we use the same methodology as
in [20] and [4]. The cumulative distribution function (CDF)
plots are interpreted as the probability (vertical axis) that the
registration error is lower than the corresponding value on
the horizontal axis. The initial perturbations of the data set
are also included in Figures 3 and 4, showing the distribution
of initial translation error, which could also be interpreted as
the performance of a registration method that always returns
the identity matrix as the transform. The higher the method’s
precision, the closer its curve approaches the vertical axis.
The higher the method’s robustness, the larger is the area
enclosed between its curve and the initial perturbation curve.

To consider a registration successful, both the translation
and the rotation error have to be within some limits. We
define a registration as successful when the translation error
is below 0.2m, the rotation error below 0.05 rad and when
at least one of them is lower than the initial perturbation. We
define robustness as the percentage of successful registration
for the whole dataset, and precision as the average translation
error on a given percentile of the CDF of errors, so that P(N)
corresponds to the error on the N th percent.

B. Semantics

The classifier using the RGB model had overall accuracy
86.4%, while the geometry classifier had 79.3%. Examining
the confusion matrices (Figure 2) we notice that the geometry
model did not perform as well, especially for natural terrain,
hardscape and artifacts (2, 6 and 7). However, consistent mis-
classification, e.g. classification of scanning artifacts (7) as
buildings (5), should have minimal impact on the registration
result, permitting the use of a weaker classifier.

C. Simulated data comparison

The cumulative distributions of translation error for each
method are presented in Figure 3a. The top plots cover the
entire range of the distribution of the initial error, while the
plots on the bottom are zoomed-in to the range of error
that a registration is considered successful. We observe that
both SE-NDT and SE-GICP outperform their non-semantic
versions. This is evident both when classifier or ground truth
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Fig. 3. Cumulative distributions of registration errors. (a) Translation. (b)
Rotation. Top: entire range of initial error. Bottom: zoomed in detail to the
range of error considered successful.

labels are used. Fast Global Registration successfully regis-
ters all pairs, outperforming in robustness all the methods.
The cumulative distribution of orientation error (Figure 3b)
follows the same trend.

Table II presents the analytical results of robustness for
each algorithm. The first three rows (True, PointNet RGB,
PointNet) correspond to the semantic-assisted versions of the
algorithms SE-NDT and SE-GICP, while the last row refers
to the “standard” D2D-NDT and GICP. The tests show that
SE-NDT is over 2 times more robust than SE-GICP. The
same holds for SE-GICP and “standard” GICP, while the
robustness of “standard” NDT is comparable to SE-GICP.

The precision of the algorithms is compared on P(15), as
at this level all methods have successful registrations (GICP
fails at P(18)). The results, presented in Table III, indicate
that the introduction of semantics improves significantly
the precision of both the NDT and GICP versions of the
algorithm, with the precision increasing with the accuracy
of the semantic labels.

Regarding the execution speed, the reported times are
the total CPU time consumed by each method on a single
Intel R© i7-4700MQ core, although the wall time was 8
times lower due to parallelization. Table IV presents the
average execution time for each method. The values in the
table do not include the execution time of the classifier.
Our implementation classified 200.000 points per second
(0.8 second per cloud) on a Nvidia GTX-1080, therefore
adding on average 1.59 seconds per registration. It should be
noted that in real applications, and the KITTI experiments,
for each registration only one point cloud goes through the
classifier, as the previous one is already classified. In [5]
the authors report an execution time of one second for one
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Fig. 4. Translation error with different segments of the dataset. (a) Low
initial rotation error. (b) High initial rotation error. Top: entire range of initial
error. Bottom: zoomed in detail to the range of error considered successful.

million points. Since our method is a lightweight variation of
PointNet, using fewer parameters, it can be further optimized
to achieve similar performance (0.2 second per cloud). The
increased speed of semantic-assisted GICP can be attributed
to the reduced search space for correspondences, as well as
convergence before the maximum number of iterations.

We further examine the performance of the algorithms
by comparing the translation error after registration to the
initial rotation error. As translation errors above 0.2m are
beyond our concern, since they are defined as failed regis-
trations, we present this comparison in logarithmic scale in
Figure 5. The ideal registration algorithm would have all the
points concentrated on a vertical line at 0m. This figure is
informative regarding the resilience of the algorithms with
regards to the initial rotation error. As expected, Fast Global
registration is invariant to the initial error as the initial
estimate is not used in the optimization. GICP fails com-
pletely when initial rotation error is high, while SE-NDT’s
performance is the least affected among the local methods.
To further demonstrate this relation, we split the data set
into two equal sets according to the initial rotation error.
Figure 4a shows the cumulative distribution of translation
error after registration for the set with the least 50% of initial
rotation error. Figure 4b shows the cumulative distribution
of translation error after registration for the set with the
upper 50% of initial rotation error. We notice a very high
discrepancy between the plots on the SE-GICP, GICP and
NDT algorithms, while the effect on SE-NDT and FGR is
minimal. The difference in the performance of FGR can be
attributed to random variation.

Tests during the determination of the sequence of resolu-
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TABLE II
ROBUSTNESS* OF THE COMPARED METHODS.

Label source SE-NDT SE-GICP FGR

Ground Truth 91% 44%
PointNet RGB 85% 37%
PointNet 84% 34%

No semantics 32% 18% 100%

* Successful in translation and rotation.

tions for SE-NDT showed that there is a trade-off between
speed, robustness and precision. For example, if registration
speed and robustness are required, in a dataset with high
initial errors, the last three (finer) resolutions can be removed,
reducing the execution time to 0.54 s, with 71% robustness
and 6.1 cm precision for the PointNet classifier. Conversely,
if the expected initial registration error was low, the first four
resolutions could be removed.

We are led to the conclusion that when compared to
local registration methods, SE-NDT is more precise and
has high invariance to the initial rotation error, approaching
the performance of global registration with the advantage
of being an order of magnitude faster. For both NDT and
GICP, the introduction of semantics reduces the search space
for correspondences and the registration is more likely to
converge even with high initial error, in sorter time and with
higher precision. Furthermore, SE-NDT can be customized,
depending on the required application, by picking appropri-
ate resolutions.

TABLE III
PRECISION OF THE COMPARED METHODS.

Label source SE-NDT SE-GICP FGR

Ground Truth 0.29 cm 0.31 cm
PointNet RGB 0.38 cm 0.60 cm
PointNet 0.40 cm 0.62 cm

No semantics 0.74 cm 1.60 cm 0.73 cm

Precision at the 15th percentile of the translation error
CDF.

TABLE IV
AVERAGE EXECUTION TIME PER REGISTRATION.

Labels source SE-NDT SE-GICP FGR

Ground Truth 1.63 s 35.96 s
PointNet RGB +1.59 s* 2.33 s 39.52 s
PointNet +1.59 s* 2.41 s 39.77 s

No semantics 2.83 s 55.00 s 33.65 s

* Classifier execution time for two clouds.

D. Real data comparison.

We notice that Fast Global Registration exhibits very high
accuracy on the first part of the sequence, where the scans
are rich in geometric information. However, the performance
degrades rapidly when the vehicle enters the motorway, due
to the geometric nature of FPFH, and the aliasing of the
environment. Figure 7a shows an example of a point cloud
with low geometric information, where FGR starts to fail,
corresponding to Figure 6a. FGR recovers briefly before the
end of the motorway, due to points belonging to buildings.

For the semantic-based algorithms, we removed the points
belonging to dynamic classes (vehicles, scanning artifacts).
We observed that the classifier had very high false negative
rates for those classes, but low false positives, so for every
point that belongs to a dynamic class we classify the neigh-
bours within a radius of 0.5meter as dynamic. The selection
of the radius was based on the approximate scale of a vehicle,
and was not fine-tuned. This step is performed to increase the
accuracy for this particular class, as we noticed that dynamic
objects were the primary cause of registration failure.

SE-NDT was successful in registering the instances where
there was low structure, traffic moving parallel to the vehicle,
and instances with low semantic information. However, it
fails when those conditions are combined. Figure 7b shows
an example of a point cloud with low geometric and semantic
information, where SE-NDT fails, corresponding to Fig-
ure 6b. The version of SE-NDT using edge/surface classifi-
cation that we presented in [4] did not fail on those instances
as it could capture meaningful semantics on the motorway,
but had lower precision at the beginning and ending of the
sequence. The edge class was able to capture the vertical
poles of the road-side barriers, giving meaningful semantics
on those cases. Comparable robustness was noticed for SE-
GICP, with the difference that it performed better in cases
of low semantics and low geometry (Figure 7b). We can
conclude that the performance of SE-NDT is dependent on
the ability of the classifier to capture the prominent features
of the environment in the direction of geometric aliasing.

VIII. CONCLUSION

In this work we presented a complete pipeline for semantic
assisted registration of point clouds. We present two new
algorithms, SE-NDT based on the Normal Distributions
Transform, and SE-GICP, based on Multichannel General-
ized Iterative Closest Point. We used a modified version
of PointNet to learn real semantic labels from data, and
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test the registration algorithms using the predicted labels
on the Semantic3d.net and on the KITTI data set. We
demonstrate the ability of SE-NDT to recover from high
initial errors, which far exceeds the requirements of mobile
robot systems, and at the same time increases precision
compared to NDT and GICP. This makes the algorithm
applicable to environments with limited structure, where the
lack of geometric information can be compensated by the
introduction of semantics, given that the classifier captures
information relevant to the environment. In future work, we
will investigate the use of the PointNet point feature vector
before the output layer as input to the semantic registration,
instead of the final labels, and test against the probabilistic
versions of the algorithms.
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