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Abstract 

The rs1006737 (A/G) single nucleotide polymorphism within the gene encoding the Cav1.2 

subunit of the L-type voltage-dependent calcium channel (CACNA1C) has been strongly 

implicated in psychiatric disorders. In addition, calcium channels are sensitive to the effects of 

glucocorticoids and functional variation may contribute to altered stress responsivity. This 

study aimed to investigate the role of early life stress (ELS) and its interaction with CACNA1C 

rs1006737 in affecting the cortisol awakening response (CAR), an indicator of HPA-axis 

function. Salivary cortisol was measured in 103 healthy adult males (aged 21-63) on two 

consecutive days at awakening and 30 minutes later. The ELS measure investigated self-

reported adverse life events prior to age 17. The results revealed a marginally significant main 

effect of CACNA1C, a significant main effect of ELS, and a significant genotype-by-ELS 

interaction on the CAR, whereby non-risk allele carriers (GG) who had experienced early 

adversity showed higher CAR compared to the other groups. Further exploratory analyses 

showed that this interaction may have arisen from individuals who had experienced ELS before 

adolescence (prior to age 13). This study is the first to provide evidence that the effect of ELS 

on CAR may be partially moderated via CACNA1C rs1006737 genotype, whereby the 

heightened CAR in the GG-ELS group may be an indicator of mental health resilience in 

response to ELS.  

 

Keywords: CACNA1C, calcium channel, early life stress, childhood trauma, cortisol 

awakening response  
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Background 

It has been proposed that early life stress (ELS) might contribute to dysregulation in the 

development of the hypothalamic-pituitary-adrenal (HPA) axis, the body’s primary stress 

response system (McEwen, 1998), therefore rendering genetically at risk individuals 

vulnerable to trauma in later life and contributing to the development of psychiatric disorders 

(Aas et al., 2016; Holtzman et al., 2013; van Winkel, Stefanis, & Myin-Germeys, 2008). 

Indeed, recent meta-analyses indicate that rates of childhood traumatic events are markedly 

higher in schizophrenia and related disorders (Matheson, Shepherd, Pinchbeck, Laurens, & 

Carr, 2013; Varese et al., 2012), bipolar disorder (Palmier-Claus, Berry, Bucci, Mansell, & 

Varese, 2016) and depressive disorders (Mandelli, Petrelli, & Serretti, 2015) compared to 

healthy controls and numerous studies have reported HPA-axis dysfunction in these conditions 

(Belvederi Murri et al., 2016; Heim, Newport, Mletzko, Miller, & Hemeroff, 2008; Phillips et 

al., 2006).  

In an attempt to discern biological markers of HPA-axis function, the cortisol 

awakening response (CAR) has gained considerable interest.  The CAR refers to the typical 

rise in free cortisol levels during the first 30 minutes post-awakening (Clow, Thorn, Evans, & 

Hucklebridge, 2004). Although the exact function of CAR is uncertain, it might help to prepare 

the individual for the demands of the upcoming day, or indicate a response to the natural 

stressor of awakening, therefore reflecting HPA-axis responsivity (Fries, Dettenborn, & 

Kirschbaum, 2009). Increased CAR has been shown to predict the onset of depression (Adam 

et al., 2010) and anxiety disorders (Adam et al., 2014), and blunted CAR has been found in 

patients with severe depression symptomatology (Veen et al., 2011), first-episode psychosis 

and schizophrenia (Berger et al., 2016), whereas remission from depression after selective 

serotonin reuptake inhibitor (SSRI) treatment is associated with an increase in CAR, suggesting 

restoration of HPA-axis activity (Ruhe et al., 2015). However, the results for individuals at-
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risk for psychosis have been inconsistent (Cullen et al., 2014; Day et al., 2014; Labad et al., 

2015). Furthermore, studies investigating the CAR in the context of early adversity have also 

produced mixed findings reporting both blunted (Desantis, Kuzawa, & Adam, 2015; Kohrt et 

al., 2015; Mangold, Wand, Javors, & Mintz, 2010; Meinlschmidt & Heim, 2005) and increased 

CAR (Butler, Klaus, Edwards, & Pennington, 2017; Engert, Efanov, Dedovic, Dagher, & 

Pruessner, 2011; Lu et al., 2013; Mondelli et al., 2010). These diverse findings may be the 

result of factors such as the developmental timing of the ELS and the interaction between stress 

hormones and gene variants that impact on stress responsivity (Heim & Binder, 2012; Miller, 

Chen, & Zhou, 2007), with increasing evidence suggesting a role for calcium channel encoding 

genes (Landgraf, McCarthy, & Welsh, 2014). 

Calcium channels are expressed widely across the nervous system (Berger & Bartsch, 

2014; Bigos et al., 2010) with intracellular calcium implicated in an array of neuronal 

processes, including the formation and maintenance of neuronal connections during 

development, and hormone secretion, neurotransmitter release and gene transcription in 

adulthood (Heyes et al., 2015; Lidow, 2003). The gene encoding the pore-forming Cav1.2  

subunit of the L-type voltage-dependent calcium channel (CACNA1C) has gained particular 

interest in the context of psychopathology (Bhat et al., 2012; Heyes et al., 2015; Ou et al., 

2015), with a number of genome-wide association studies (GWAS) supporting its role in major 

depression, bipolar and schizophrenia spectrum disorders (Ferreira et al., 2008; Liu et al., 2011; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Sklar et al., 

2008). A recent study demonstrated an interaction between two SNPs in CACNA1C 

(rs73248708 and rs116625684) and environmental stressors in increasing depression 

symptomatology in humans, whereas heterozygous deletion of CACNA1C from the forebrain 

glutamatergic neurons increased stress-induced anxiety-like and depression-like behaviours in 

mice (Dedic et al., 2018). Within CACNA1C, the rs1006737 (A/G) single nucleotide 
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polymorphism (SNP) positioned in the third intron has been most often investigated. The risk 

allele (A) has been associated with increased CACNA1C mRNA expression in the dorsolateral 

prefrontal cortex (PFC) in human post-mortem samples (Bigos et al., 2010), reduced 

hippocampal and striatal activity and diminished hippocampal connectivity during an episodic 

memory task (Erk et al., 2010; Krug et al., 2014), but increased hippocampal activation during 

emotional memory tasks at trend level (Bigos et al., 2010). Behaviourally, the risk allele has 

been associated with schizotypal traits in healthy individuals and the increased risk of 

schizotypal personality disorder (Roussos, Giakoumaki, Georgakopoulos, Robakis, & Bitsios, 

2011; Roussos et al., 2013). Other studies have found increased anxiety, depression, 

interpersonal sensitivity and neuroticism scores, and consequently it has been proposed that 

the risk allele carriers may have heightened vulnerability to stress (Erk, Meyer-Lindenberg, 

Schmierer, et al., 2014; Erk et al., 2010).  

Although the exact biological mechanisms leading to increased stress vulnerability in 

the rs1006737 risk allele carriers remain to be elucidated, animal studies have repeatedly 

demonstrated the high responsivity of calcium channels to glucocorticoid administration, 

which has been shown to result in increased expression of calcium channel mRNA and elevated 

levels of intracellular calcium (Bali, Gupta, Singh, & Jaggi, 2013; Karst et al., 2002; Kerr, 

Campbell, Thibault, & Landfield, 1992). The Cav1.2 subunit encoded by CACNA1C is one of 

the main targets of corticosteroid hormones. Studies on animal models have shown that chronic 

stress leads to elevated calcium current amplitude and increased Cav1.2 mRNA expression in 

the rat dentate gyrus, amygdala and CA3 areas (Maigaard, Hageman, Jorgensen, Jorgensen, & 

Wortwein, 2012; Qin, Karst, & Joels, 2004; van Gemert & Joels, 2006). Others have 

demonstrated increased Cav1.2 mRNA expression in the basolateral amygdala neurons after 

treatment with glucocorticoids in vitro (Karst et al., 2002). In addition, increased Cav1.2 mRNA 

expression in the rat hippocampal CA1 area has been reported in an acute stress model (Joels, 
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Velzing, Nair, Verkuyl, & Karst, 2003) and Cav1.2 protein upregulation in the CA1 area in 

response to corticosterone exposure has also been shown (Van Gemert et al., 2009). As the 

hippocampus plays a key role in HPA-axis activity and the CAR (Clow, Hucklebridge, Stalder, 

Evans, & Thorn, 2010; Fries et al., 2009), any deviation in calcium channel activity in this 

brain region is likely to lead to changes in stress response system functioning. 

Increasing evidence, including a study from our research group have shown that 

genotype-by-ELS interactions impact on cognitive outcomes, potentially via effects on stress-

sensitive brain structures (Klaus et al., 2017) and we have further shown that ELS is related to 

an increased CAR in the same sample of healthy males (Butler et al., 2017). However, no 

studies to date have investigated the interaction between CACNA1C and ELS on the HPA-axis 

activity. The aim of the current study was to investigate whether the rs1006737 polymorphism 

of the CACNA1C may partially moderate the effects of ELS on HPA-axis function as measured 

by CAR in a sample of healthy adult males. Recent studies have suggested that a more dynamic 

CAR in response to external challenges is linked to a more resilient stress response system, 

whereas severe stressors may lead to HPA-axis exhaustion as evidenced by blunted CAR 

(Chida & Steptoe, 2009; Jakobsen et al., 2016; Ruhe et al., 2015). We therefore hypothesised 

that whereas ELS leads to higher CAR overall, the magnitude of CAR would be lower in the 

rs1006737 risk allele A carriers from the ELS group. Furthermore, as trauma before 

adolescence is thought to have more profound effects on HPA-axis programming, we expected 

a larger effect of genotype in those who had experienced ELS before the age of 13 (Butler et 

al., 2017; Maercker, Michael, Fehm, Becker, & Margraf, 2004) in comparison to those with no 

ELS.  
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Methods 

Participants 

The sample overlapped with that described in Butler et al. (2017), but the current analyses were 

restricted to Caucasian participants only. Briefly, 103 healthy adult males (mean age=34.54 

years, SD=10.8, range 21 to 63) were recruited from Lincoln, UK, and the surrounding areas 

as part of a larger ongoing programme of research. None of the participants had current 

diagnosis of a psychiatric disorder, drug or alcohol addiction problems, nor used steroid based 

medication at the time of recruitment as determined through self-report. Symptoms of 

psychopathology and current perceived stress levels were measured by the Hospital Anxiety 

and Depression Scale (HADS; Zigmond & Snaith, 1983) and the Perceived Stress Scale (PSS-

14; Cohen, Kamarck, & Mermelstein, 1983), respectively. Participants additionally completed 

custom questionnaires on their psychiatric history, demographic information and sleep history. 

All participants gave written informed consent to take part and the study was approved by the 

School of Psychology Research Ethics Committee at the University of Lincoln. 

 

Salivary cortisol collection and measurement 

The methodology for cortisol collection, measurement and characteristics of the cortisol data 

can be found in Butler et al. (2017). In brief, saliva samples were collected at home using 

Salivette sampling devices (Sarstedt Ltd., Leicester, UK) over two consecutive days, 

immediately upon awakening and 30 minutes post-awakening.  Inter and intra assay 

coefficients of variation were 17.14% and 9.67% respectively, which falls within a 20% cut-

off used in earlier research (Gassling et al., 2012; Kershaw & Hall, 2016; Sink, Lochmann, & 

Fecteau, 2008).  CAR for day 1 and day 2 was calculated by subtracting the waking cortisol 

concentration from the 30 minute post-awakening concentration. The CAR from day 1 and day 

2 did not significantly differ, t(102)=.218, p=.828, and the measures were significantly 
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correlated, r=.266, p=.007, with the re-test reliability estimates similar to those reported 

previously (Almeida, Piazza, & Stawski, 2009; Hellhammer et al., 2007). Therefore, an overall 

mean CAR was calculated for each participant. 

 

Early life stress 

ELS was assessed using the Childhood Traumatic Events Scale (CTES; Pennebaker & Susman, 

1988), which asks participants retrospectively about the occurrence of six categories of trauma: 

death of a close friend or relative, parental separation or divorce, traumatic sexual experience, 

physical violence, major illnesses or injuries, or other traumatic experiences prior to the age of 

17.  Participants recorded the age at which the event occurred, and rated the severity of the 

traumatic event and the extent that they remember confiding in others about it on a 7-point 

scale where 7 is extremely traumatic. According to the authors’ guidelines, experiences rated 

as 6 or 7 on the trauma scale were classified as having experienced ELS. 

 

CACNA1C genotyping  

DNA was extracted from saliva using Oragene prepIT L2P (DNA Genotek Inc., Ottawa, ON, 

Canada, http://www.dnagenotek.com) according to the manufacturer’s protocol. Genotyping 

for CACNA1C rs1006737 was carried out using TaqMan® Pre-Designed SNP 

Genotyping Assay containing primers and fluorescent allele-specific probes (Applied 

Biosystems, Warrington, UK). The 25 µl reaction volume contained 30 ng of genomic DNA, 

0.66 µl of 40X assay mix, 12.50 µl of TaqMan® Universal PCR Master Mix, and 11.25 µl of 

DNAse-free water (Cat #: 4502, Sigma-Aldrich, Dorset, UK). Amplification was carried out 

using ABI StepOne™Plus Real-Time PCR System with 96-well plates. The thermal profile 

was 60°C for 30 s, 95°C for 10 min, followed by 50 cycles at 92°C for 15 sec and 60°C for 90 
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sec. PCR software (StepOnePlus™ v2.0) measured SNP-specific fluorescence and genotyped 

each sample post-PCR. 

 

Data analysis 

A post hoc power analysis using G*Power version 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 

2007) suggested that the current sample of N=103 provides a power estimate of .71 to detect 

medium effect size (f=.25) in the primary analyses. For the secondary investigations into the 

developmental timing of ELS, post hoc power analysis based on the sample of N=103 

suggested a power estimate of .60 to detect medium effect size. Given the limited sample size 

in the developmental timing analyses, this was treated as an exploratory data analysis. All data 

were analysed using SPSS version 21 (IBM Corp., Armonk, NY, USA). The main effects of 

CACNA1C genotype and ELS (categorised as ELS/no ELS) and their interaction on CAR were 

investigated using a two-way analysis of covariance (ANCOVA). Assumptions for a 

parametric test were checked by inspecting the normality of the residuals visually using 

histograms and Q-Q plots and by checking skew and kurtosis (Kim, 2013). Although CAR can 

have high inter-individual variability (Adam et al., 2010), all CAR values in the current fell 

within the mean ± 4 standard deviations (as in Carnegie et al., 2014), and no outliers were 

therefore removed.  Awakening cortisol levels, waking time, sleep duration, age and current 

perceived stress score  measured by PSS-14 were included as covariates due to their proposed 

effect on CAR (Chida & Steptoe, 2009; Stalder et al., 2016). Due to strong correlations between 

HADS and PSS-14 scores (HADS anxiety: rs=0.718, p<0.001; HADS depression: rs=0.543, 

p<0.001), HADS scores were not included as covariates. The same statistical methods were 

used to investigate the effect of developmental timing of stress and CACNA1C variation on 

CAR by using a cut-off of experiencing preadolescent stress <13 years in accord with previous 

studies (e.g., Butler et al., 2017; Maercker et al., 2004). The age at which ELS occurred was 
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not recorded for one participant and so this analysis was performed on 102 participants. Post 

hoc one-way ANCOVAs were used for pairwise comparisons of CAR magnitudes. Alpha was 

set at .05 and this level was used to determine significance in the main ANCOVA analyses. 

Post hoc tests were corrected for multiple comparisons using Bonferroni correction, whereby 

significance for the primary genotype-by-ELS group comparisons was set at p<.008 and for 

the secondary developmental timing analyses the significance was set at p<.003. 

 

Results 

All participants were successfully genotyped for CACNA1C rs1006737 and the 

genotype distribution conformed to the Hardy-Weinberg Equilibrium, 2(1, N=103)=.067, 

p=.795. As the number of AA homozygotes was low (n=10), AA and AG carriers were 

combined for all analyses, therefore testing a dominant model similarly to a number of previous 

studies (Erk, Meyer-Lindenberg, Linden, et al., 2014; Erk, Meyer-Lindenberg, Schmierer, et 

al., 2014; Krug et al., 2010), including the original GWAS that implicated rs1006737 in 

psychiatric disorders (Ferreira et al., 2008). A two-way ANOVA revealed no difference in age, 

HADS anxiety and depression scores, PSS-14 scores, waking time, sleep duration or 

awakening cortisol levels between the two genotype groups, p>.05 in all cases.  HADS anxiety 

and depression scores and PSS-14 scores did differ between ELS groups (p<.05 in all cases) as 

previously reported in Butler et al. (2017), but this difference did not vary between genotype 

groups. Chi-squared test showed no significant differences in the genotype distributions 

between ELS groups, 2(1, N=103)=.007, p=.934 (see Table 1 for descriptive statistics). In the 

combined sample, the cortisol levels at 30 minutes post-awakening (M=9.18 nmol/L, SD=5.38) 

were significantly higher than awakening cortisol levels (M= 7.40 nmol/L, SD=4.31), t(102) = 

-4.22, p < 0.001.  The overall mean CAR was 1.77 nmol/L (SD=4.26; 95% CI: 0.94-2.60).  
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Effects of CACNA1C genotypic variation and ELS on CAR 

Two-way ANCOVA with CACNA1C genotype (AA/AG vs GG) and ELS group (ELS vs No 

ELS) as fixed factors and age, sleep duration, waking time, awakening cortisol levels and PSS-

14 score as covariates revealed a marginally significant main effect of genotype, F(1, 

94)=3.678, p=.058, partial 2=.038, a significant main effect of ELS, F(1, 94)=8.977, p=.003, 

partial 2=.087, and a significant genotype-ELS interaction, F(1, 94)=5.060, p=.027, partial 

2=.051 (see Figure 1). Post hoc one-way ANCOVAs showed that GG-ELS group exhibited 

significantly higher CAR than GG-No ELS group, F(1, 40)=7.634, p=.009, partial 2=.160, 

and AA/AG-No ELS group, F(1, 46)=8.658, p=.005, partial 2=.158, and also higher CAR 

than AA/AG-ELS group at the margin of significance, F(1, 32)=3.601, p=.067, partial 2=.101.  

 

 

Figure 1. Effect of CACNA1C genotype (AA/AG vs GG) and early life stress (ELS vs No ELS) 

before the age of 17 on mean cortisol awakening response (nmol/L). Trauma categories are 

based on Childhood Traumatic Events Scale (Pennebaker & Susman, 1988), where ELS= a 
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rating of 6-7 on trauma scale and No ELS= a rating of 0-5. Error bars show +/- 1 standard 

errors. **p<.01 
 

 

As the developmental timing of ELS has been found to affect HPA-axis function, in particular 

prior to adolescence (Lupien, McEwen, Gunnar, & Heim, 2009), we further investigated 

whether the observed genotype-ELS association stemmed from the individuals who had 

experienced ELS before age 13. Two-way ANCOVA with CACNA1C genotype and three ELS 

groups (No ELS, ELS <13, ELS 13-17) as fixed factors showed a significance of the main 

effect of genotype at trend level, F(1, 91)=2.599, p=.110, partial 2=.028, a significant main 

effect of ELS, F(2, 91)=4.716, p=.011, partial 2=.094, and a marginally significant genotype-

ELS interaction, F(2, 91)=2.775, p=.068, partial 2=.057 (see Figure 2).  

 

 

Figure 2. Effect of CACNA1C genotype (AA/AG vs GG) and early life stress (No ELS, ELS 

before the age of 13, ELS age 13-17) on mean cortisol awakening response (nmol/L). The 

number of participants in each group is given above the bars. Trauma categories are based on 
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Childhood Traumatic Events Scale (Pennebaker & Susman, 1988), where ELS= a rating of 6-

7 on trauma scale and No ELS= a rating 0-5. Error bars show +/- 1 standard errors. 

 

 

 

Conclusions 

This study aimed to investigate whether CACNA1C rs1006737 genotype partially moderates 

the effect of ELS on the CAR in a sample of healthy males, and further to investigate whether 

this association is driven by ELS experienced prior to adolescence. In agreement with our 

hypothesis, we found a genotype-by-ELS interaction whereby CAR profiles in the ELS group 

differed according to the CACNA1C genotype, with the schizophrenia non-risk genotype (GG) 

carriers showing significantly elevated CAR. The CAR did not differ by CACNA1C genotype 

in the no-ELS group. This builds on our previous findings in this dataset (Butler et al., 2017) 

and provides further evidence for a role of calcium channel signalling in HPA-axis functioning. 

Furthermore, secondary exploratory analyses suggested that the significant genotype-ELS 

interaction may have arisen from the ELS encountered prior to the onset of adolescence. As 

the analyses on the developmental timing included small groups and the results were only 

marginally significant, these findings should be treated with caution. However, they are in 

agreement with previous evidence of the role of calcium signalling in the establishment of 

neural circuitry and stress sensitivity of neuronal connectivity during key stages of brain 

development (Heyes et al., 2015; Molet et al., 2016).  

This research demonstrates for the first time that increased CAR in response to ELS is 

not uniform in all individuals, but may be partially moderated by the CACNA1C genotype. The 

analyses also showed a significant main effect of ELS and a marginally significant main effect 

of CACNA1C genotype, but these main effects were largely driven by the non-risk GG 

homozygotes from the ELS group. It could be argued that the elevated CAR in the GG-ELS 

group were due to current stress levels (Pruessner, Hellhammer, & Kirschbaum, 1999) or 
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indicate vulnerability to developing depressive disorders (Adam et al., 2010). Indeed, a recent 

study demonstrated an association between two CACNA1C SNPs and stressful life events on 

depressive symptomatology in healthy adults (Dedic et al., 2018). However, the results from 

our ANCOVA model on the association between ELS and CACNA1C were significant even 

when controlling for current perceived stress, and remained unchanged after further controlling 

for current anxiety and depression levels (data not presented), suggesting that the underlying 

mechanisms of glucocorticoid response may be determined during development (Lupien et al., 

2009). Indeed, the interaction between CACNA1C genotype and ELS, whereby the CAR was 

markedly higher in the GG-ELS group compared to other groups, was predominantly seen 

when the stressor was encountered prior to adolescence. Although these results are treated as 

exploratory, these findings may be expected, as voltage-gated calcium channels are essential 

for early brain development (Heyes et al., 2015), and whereas structures involved in HPA-axis 

function, such as the hippocampus, amygdala and PFC continue maturing postnatally (Gogtay 

et al., 2006; Lupien et al., 2009), both the hippocampus (Lupien et al., 2009) and the amygdala 

may be most sensitive to stress before adolescence (Pechtel, Lyons-Ruth, Anderson, & Teicher, 

2014).  

Although the exact function of the CAR is still debated, the results presented here may 

suggest that increased CAR in those GG carriers exposed to early trauma may be thought of as 

a formerly adaptive response that serves to prepare the individual for the challenges of the 

upcoming day during childhood and is carried on to adulthood (Lupien et al., 2009). A more 

dynamic CAR may therefore indicate a flexible HPA axis that responds adaptively to external 

stressors (Jakobsen et al., 2016). The adaptive nature of a dynamic CAR is further supported 

by the findings that patients remitting from depression in response to SSRI treatment 

experience an increase in CAR, suggesting restoration of HPA-axis activity (Ruhe et al., 2015). 

On the other hand, the risk allele A carriers from the ELS group showed CAR levels 
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comparable to the No ELS group. As high levels of stress, or chronic stress can lead to CAR 

levels similar to that of the non-stressed individuals (Wardenaar et al., 2011), this potentially 

suggests hypocortisolism due to increased vulnerability to stressors in the A carriers (Erk et al., 

2010) and lends evidence to the nonlinear nature of cortisol which is further moderated by 

genetic variation. 

The mechanisms by which calcium channels mediate the effects of ELS on HPA-axis 

dynamics are still to be elucidated and are likely to be complex. Several studies have shown 

that glucocorticoid exposure increases Cav1.2 mRNA and protein expression in the 

hippocampal areas (Joels et al., 2003; Maigaard et al., 2012; Van Gemert et al., 2009) and 

elevated L-type calcium channel expression potentiates additional glucocorticoid release, 

creating a positive feedback loop. Consequently, increased intracellular calcium exposure over 

an extended period of time may lead to deleterious effects associated with stress, including cell 

death and associated hippocampal damage (Bali et al., 2013; Erk et al., 2010; van Gemert & 

Joels, 2006). A more recent study showed that heterozygous CACNA1C knockout in the mouse 

forebrain leads to increased susceptibility to anxiety when subjected to environmental stressors 

during development, but this study failed to find an effect of calcium channel expression on 

basal and stress-induced corticosterone levels (Dedic et al., 2018). Studies on humans have 

shown that CACNA1C rs1006737 risk allele is associated with increased CACNA1C mRNA 

expression in the PFC (Bigos et al., 2010), but decreased expression in the cerebellum (Gershon 

et al., 2014), suggesting different regulatory mechanisms of this SNP depending on the brain 

region. Further work needs to be conducted on the effects of glucocorticoids and genetic 

variation in CACNA1C on Cav1.2 expression in brain regions involved in HPA-axis function.  

There were some limitations in the current study. Firstly, the overall sample and the 

subgroups were limited in size, particularly in the secondary analyses on the developmental 

timing. Additionally, the power calculation was based on a medium effect size and as such we 
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were not powered to detect small effect sizes. We therefore acknowledge that a larger sample 

is needed to replicate these findings with greater power and to detect small effect sizes. 

Furthermore, owing to the small number of AA homozygotes (n=10), we pooled AA 

homozygotes with AG heterozygotes for the current analyses, which might have obscured any 

effects attributable to AA homozygosity. In addition, rs1006737 is in complete linkage 

disequilibrium with several other SNPs positioned in the third intron of CACNA1C (Nyegaard 

et al., 2010) and we therefore cannot disentangle the effects specific to the SNP investigated in 

this study. We also acknowledge that other genes previously implicated in cortisol function, 

such as the fk506 binding protein encoding FKBP5 (Kohrt et al., 2015), brain derived 

neurotrophic factor encoding BDNF (Shalev et al., 2009), and serotonin transporter encoding 

5-HTT (Wust et al., 2009) may, possibly additively, also affect HPA-axis activity. Moreover, 

both glucocorticoids and calcium channel activity can affect gene transcription (Lupien et al., 

2009; West, Griffith, & Greenberg, 2002), meaning that the effects seen here could be due to 

the regulation of other genes not investigated in this study.  

It should also be noted that the mean CAR reported in this paper is rather low. As 

previously acknowledged, there are many factors which can influence the CAR (Chida & 

Steptoe, 2009; Stalder et al., 2016). Of these, we did adjust for awakening cortisol levels, 

waking time, sleep duration, age and current perceived stress levels in our analyses. Yet other 

factors might have affected CAR, such as socioeconomic status and body mass index (Stalder 

et al., 2016) which we did not have access to in our dataset. Further discussion on the factors 

influencing CAR magnitude, such as gender (Pruessner et al., 1997; Vreeburg et al., 2009; 

Wust et al., 2000), undictated waking times (Kudielka & Kirschbaum, 2003) and the sampling 

schedule have been discussed in Butler et al. (2017). However, it has also been proposed that 

negative CAR is a legitimate phenomenon (Stalder et al., 2016). Our previous study 

demonstrated that CAR magnitude may also be associated with the type of traumatic event 
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experienced and cumulative trauma exposure (Butler et al., 2017), but due to the small sample 

size investigation into these aspects of trauma was not feasible and could be addressed in future 

studies. Additionally, CAR is known to have high intra-individual variability due to both trait 

and state factors (Hellhammer et al., 2007). Although the CAR re-test reliability in the current 

study was comparable to previous reports (Almeida et al., 2009; Hellhammer et al., 2007), 

future studies could collect cortisol data over more days to increase the reliability of the CAR. 

Finally, as gender differences in HPA-axis function after ELS have been reported (DeSantis et 

al., 2011; Kudielka & Kirschbaum, 2003; Kudielka & Kirschbaum, 2005), future studies are 

needed to investigate the ELS-CACNA1C interactions on CAR in female samples.  

In sum, this is the first study to demonstrate that the effect of ELS on CAR may be 

partially moderated by CACNA1C genotype, whereby the non-risk GG homozygotes who have 

experienced ELS exhibit higher CAR, potentially supporting the idea of the adaptive nature of 

heightened CAR (Fries et al., 2009), but the risk allele A carriers subjected to ELS show a 

pattern suggestive of hypoactive CAR. We further provided some preliminary evidence that 

this effect may be more profound if the adversity has been experienced before adolescence. In 

light of the previously controversial findings in this area, the results from the current study 

emphasise the importance of considering the individual’s genetic background when 

investigating the effect of environmental stressors on HPA-axis function and provide a 

potential mechanism by which ELS may affect CAR. 
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Table 1. Age, HADS and PSS-14 scores, waking time, sleep duration, awakening and +30 

cortisol levels divided by ELS group (before age 17) and CACNA1C genotype. 

 
 

Characteristic No ELS ELS 

 
AA/AG 

(n=35) 

GG 

(n=29) 

AA/AG 

(n=21) 

GG 

(n=18) 

Age (Years) 35.23(10.84) 32.90(10.88) 35.24(10.44) 35.06(11.62) 

HADS Anxiety 5.71(3.30) 5.90(3.31) 8.00(4.01) 7.28(4.30) 

HADS Depression 2.71(2.14) 2.59(2.61) 3.67(2.82) 4.5(2.68) 

PSS-14 18.83(8.35) 20.06(7.38) 23.10(9.16) 22.78(7.57) 

Waking Time 7:29(1:11) 7:14(0:54) 7:16(0:53) 7:46(1:34) 

Sleep Duration 

(Hours) 
6.77(1.17) 6.66(1.09) 6.63(1.67) 6.63(1.43) 

Awakening Cortisol 

(nmol/L) 
7.30(4.70) 7.86(4.16) 6.15(2.10) 8.34(5.46) 

+30 Cortisol (nmol/L) 8.20(5.34) 8.67(3.45) 8.24(3.52) 12.97(8.00) 

 

Notes. Data shown are means and standard deviations for early life stress experienced before 

the age of 17. ELS = Early life stress, HADS = Hospital Anxiety and Depression Scale, PSS-

14 = Perceived Stress Scale. 
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