
1 
 

Quantifying camouflage and conspicuousness using visual salience 1 

Thomas W. Pike* 2 

School of Life Sciences, University of Lincoln, Lincoln, LN2 2UU 3 

*Correspondence to: tpike@lincoln.ac.uk 4 

 5 

1. Being able to quantify the conspicuousness of animal and plant colouration is key to 6 

understanding its evolutionary and adaptive significance. Camouflaged animals, for 7 

example, are under strong selection pressure to minimise their conspicuousness to potential 8 

predators. However, successful camouflage is not an intrinsic characteristic of an animal, 9 

but rather an interaction between that animal’s phenotype and the visual environment that 10 

it is viewed against. Moreover, the efficacy of any given camouflage strategy is determined 11 

not by the signaller’s phenotype per se, but by the perceptual and cognitive capabilities of 12 

potential predators. Any attempts to quantify camouflage must therefore take both 13 

predator perception and the visual background into account.  14 

2. Here I describe the use of species-relevant saliency maps, which combine the different 15 

visual features that contribute to selective attention (in this case the luminance, colour and 16 

orientation contrasts of features in the visual environment) into a single holistic measure of 17 

target conspicuousness. These can be tuned to the specific perceptual capabilities of the 18 

receiver, and used to derive a quantitative measure of target conspicuousness. 19 

Furthermore, I provide experimental evidence that these computed measures of 20 

conspicuousness significantly predict the performance of both captive and wild birds when 21 

searching for camouflaged artificial prey.  22 

3. By allowing the quantification of prey conspicuousness, saliency maps provide a useful 23 

tool for understanding the evolution of animal signals. However, this is not limited to 24 

inconspicuous visual signals, and the same approach could be readily used for quantifying 25 

conspicuous visual signals in a wide variety of contexts, including, for example, signals 26 

involved in mate choice and warning colouration.  27 
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Introduction 30 

Being able to attend to relevant objects in a cluttered visual scene has considerable 31 

evolutionary significance because it allows an animal to rapidly identify potential food, 32 

mates and predators. Indeed, some stimuli are intrinsically conspicuous, or salient, in a 33 

given context; for example, in humans a ripe red fruit among green leaves automatically and 34 

involuntarily attracts attention (Frey et al. 2011). Saliency is independent of the nature of 35 

the particular task, operates very rapidly, and is primarily driven in a bottom-up manner that 36 

reflexively directs visual focus based on certain low-level visual features (e.g. colour, 37 

orientation and/or brightness contrasts). If a stimulus is sufficiently salient, it will therefore 38 

‘pop out’ of a visual scene (Itti & Koch 2001). As a result, the concept of visual salience has 39 

clear implications for understanding the evolution of animal signals which, broadly speaking, 40 

either aim to maximise saliency (as in the case of animals producing conspicuous mating 41 

signals) or minimise it (as in animals that rely on camouflage to avoid detection by potential 42 

predators) (Ruxton, Sherratt & Speed 2004; Endler & Mielke 2005; Stevens & Merilaita 43 

2009). 44 

However, despite its importance, predicting an animal’s salience from its visual appearance 45 

remains a major challenge. This is in part because saliency is not an intrinsic characteristic of 46 

an animal, but rather an interaction between that animal’s phenotype and the visual 47 

environment that it is viewed against which, in nature, is likely to be heterogeneous and 48 

visually cluttered (Godfrey, Lythgoe & Rumball 1987; Merilaita 2003; Dimitrova & Merilaita 49 

2014). Because of this, an animal that is well camouflaged against one background may be 50 

highly salient against another; any useful measure of saliency must therefore take into 51 

account the relative characteristics of both the target and its background (Xiao & Cuthill 52 

2016). Moreover, conspicuousness is determined not by the signaller’s visual phenotype per 53 

se, but is a function of the perceptual and cognitive capabilities of potential receivers (Thery 54 

& Casas 2002; Stevens & Cuthill 2006; Osorio & Vorobyev 2008; Chiao et al. 2009). Different 55 

species vary in their perceptual abilities (e.g. in the spectral sensitivity of their retinal 56 

photoreceptors) and in the cognitive mechanisms underpinning how perceptual information 57 

is processed and integrated (Kesner & Olton 2014), and this will necessarily impact on how 58 

salient prey with particular phenotypic characteristics appear. Animals which appear highly 59 

salient to one receiver may completely lack salience for another, even against the same 60 
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visual background, emphasising the importance of incorporating species-relevant 61 

perceptual and cognitive information into estimates of salience wherever possible (Xiao & 62 

Cuthill 2016; Troscianko, Skelhorn & Stevens 2017).  63 

To address the challenge of quantifying an animal’s visual salience a wide variety of metrics 64 

have been suggested, some of which are inspired by known features of animals’ visual and 65 

cognitive systems. These include metrics for quantifying internal and external edges 66 

(Stevens & Cuthill 2006; Lovell et al. 2013; Webster et al. 2013; Kang et al. 2015; Troscianko, 67 

Skelhorn & Stevens 2017), the orientation of which often contrasts with those in the 68 

background or with edges intrinsic to the prey itself; those involving pattern detection or 69 

the identification of pattern contrasts (Spottiswoode & Stevens 2010; Stoddard, Kilner & 70 

Town 2014; Troscianko et al. 2016; Troscianko, Skelhorn & Stevens 2017); those which 71 

calculate chromatic (Kang et al. 2015) or luminance (i.e. perceived brightness) differences or 72 

contrasts between a prey and its background (Troscianko et al. 2016); and those that 73 

quantify the complexity of the visual scene against which the prey is viewed (Xiao & Cuthill 74 

2016). Many of these are supported by empirical evidence demonstrating their efficacy in 75 

quantifying predation risk. However, while the application of these various metrics has 76 

made significant contributions to our understanding of the visual features that influence 77 

prey conspicuousness (Troscianko, Skelhorn & Stevens 2017), they tend to be employed 78 

independently, despite the fact that the visual features they encapsulate are typically 79 

available simultaneously to any animal viewing a scene. This limits our understanding of 80 

how these different visual features may be differentially weighted by a predator’s visual 81 

system. Moreover, differences in the way these various metrics are implemented and the 82 

different assumptions they make (Troscianko, Skelhorn & Stevens 2017) means they are not 83 

easily combined into a holistic measure of signal conspicuousness, which is ultimately what 84 

choice is based on (Stevens & Merilaita 2009). One recent exception to this is the study by 85 

Xiao and Cuthill (2016), which used various measures of ‘visual clutter’ in the background 86 

against which prey were viewed to estimate detectability. Their approach allowed the 87 

relative efficacy of chromatic, achromatic and textural (i.e. orientation-based) clutter to be 88 

explored independently, but could also be combined into a composite measure that 89 

simultaneously considered clutter across all three feature types. 90 
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Here I describe an alternative approach, based on the neurophysiologically-inspired model 91 

of bottom-up visual attention described by Itti, Koch and Niebur (1998). The adaptation of 92 

this model described here allows the computation of species-relevant ‘saliency maps’, which 93 

topographically encode conspicuity over an entire visual scene and hence intrinsically 94 

incorporate the relative salience of both the target and its (heterogeneous) background. I 95 

then demonstrate that relative target salience is a good predictor of the performance of 96 

avian predators searching for camouflaged artificial prey both under constrained conditions 97 

in the lab, using Japanese quail (Coturnix japonica) searching for computer-generated 98 

targets on a computer screen, and in the field, using the predation of artificial moth-like 99 

targets by wild birds. In order to provide a comparison with other approaches that have 100 

successfully been used to characterise prey conspicuousness in comparable experiments, I 101 

also compare the performance of the saliency model described here with the best-102 

performing models identified by Troscianko, Skelhorn and Stevens (2017) in their 103 

comprehensive comparison of models available at the time, and those used previously by 104 

Xiao and Cuthill (2016). 105 

 106 

Methods 107 

Modelling visual salience 108 

In order to model the salience of features within a heterogeneous visual scene I adapt the 109 

model of bottom-up visual attention described by Itti, Koch and Niebur (1998). This model, 110 

and adaptations of it, are widely used within computer vision, neuroscience and human 111 

cognition (Itti & Koch 2001; Borji & Itti 2013), and have also been used to address questions 112 

in animal signalling (Peters 2010). Although many extensions to the model have been 113 

proposed in order to improve the fit to psychophysical data on human saliency perception 114 

(Borji & Itti 2013), the original version of the model still provides an excellent base from 115 

which to adapt the concept for non-human animals. For a full description of the underlying 116 

rationale and computation details readers are referred to Koch and Ullman (1985), Itti, Koch 117 

and Niebur (1998) and Walther and Koch (2006); here I provide an overview of the model 118 

architecture (Fig. 1), noting in particular where adaptations have been made to improve 119 
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generality and to address the specific question of target detection. Wherever possible, 120 

notation follows that used in Itti, Koch and Niebur (1998) for consistency. 121 

The original model was inspired by the neurophysiological characteristics of human (and 122 

other trichromatic primate) visual systems, and so includes some assumptions that may not 123 

be appropriate for modelling saliency in other species. In particular, most applications of the 124 

model use an RGB image as input, in which each of the three colour channels (R, G and B) is 125 

assumed to broadly correspond to the response of one of the three cone classes in the 126 

human retina (Mollon 1989), and luminance is estimated as the mean of these three colour 127 

channels (Walther & Koch 2006). However, it is unlikely that these assumptions are 128 

appropriate for the majority of animal species (Osorio & Vorobyev 2005). In order to 129 

increase the generality of the model, I therefore adapted it to accept an arbitrary number of 130 

𝑛 × 𝑚 grayscale ‘images’ 𝐼 as inputs, each of which is assumed to provide a topographical 131 

representation of the quantum catch of one of the viewing animal’s cone classes. In this 132 

paper I use birds as model predators (see below), and so the model was explicitly adapted 133 

for a tetrachromatic visual system in which four classes of single cone (long wavelength-, 134 

medium wavelength-, short wavelength- and ultraviolet/violet-sensitive, denoted L, M, S 135 

and U, respectively) are assumed to contribute to colour perception, and double cones (D) 136 

are assumed to contribute to luminance perception (Osorio, Miklosi & Gonda 1999; Jones & 137 

Osorio 2004; Osorio & Vorobyev 2005), although it would be straightforward to modify this 138 

to cope with variable numbers of cone classes (e.g. to represent dichromatic or 139 

pentachromatic visual systems) and different luminance perception mechanisms (e.g. those 140 

based on the summed input from two or more cone classes; Endler and Mielke (2005)). 141 

These input images are denoted 𝐼L, 𝐼M, 𝐼S, 𝐼U and 𝐼D, respectively. 142 

For each of these input images, a Gaussian pyramid is then constructed by iteratively low-143 

pass filtering and subsampling the image to produce a sequence of reduced-resolution 144 

images (Walther & Koch 2006). At each successive iteration, the next levels 𝜎 =  [0, . . . , 7] 145 

of the pyramid are obtained, such that the resolution of level 𝜎 is 1/2𝜎 times the original 146 

image resolution; i.e., the seventh level has a resolution of 1/128th that of the input image. 147 

Each level of the pyramid is then further decomposed into a series of ‘maps’, corresponding 148 

to the early visual features of luminance, colour and orientation. For luminance, the local 149 

map at level 𝜎, 𝑀𝐿(𝜎), is simply 150 
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𝑀𝐿(𝜎) = 𝐼D(𝜎). (1) 

The original model assumes that colour can be encoded using four broadly tuned colour 151 

channels – namely red, green, blue and yellow (i.e. a linear combination of the red and 152 

green channels) – and that local colour maps can be constructed on the basis of red–153 

green/green–red and blue–yellow/yellow–blue double opponent interactions (Livingstone & 154 

Hubel 1984; Itti & Koch 2001; Walther & Koch 2006). However, while this may be 155 

appropriate for the visual system of trichromatic primates on which the original model was 156 

based, it is unlikely that these particular opponent interactions are appropriate for the 157 

overwhelming majority of species (Kelber, Vorobyev & Osorio 2003). In this adaptation of 158 

the model, rather than assume that colour perception results from specific opponent 159 

interactions, I adopt a more general approach in which all possible pairwise colour 160 

opponent interactions between the cone classes putatively contributing to colour 161 

perception are considered (sensu Vorobyev and Osorio (1998)). Because birds are used 162 

here, I therefore considered six putative opponent interactions: LM, LS, LU, MS, MU and SU, 163 

although it would be straightforward to incorporate or restrict this to specific known or 164 

hypothesised opponent interactions, if this information was available for the species under 165 

study (e.g. Osorio, Miklosi and Gonda (1999)). Local colour maps are computed following 166 

Walther and Koch (2006): for the putative LM opponent mechanism, for example, the 167 

corresponding colour map 𝑀LM(𝜎) at level 𝜎 is calculated as 168 

𝑀LM(𝜎) =
|𝐼L(𝜎) − 𝐼M(𝜎)|

𝐼D(𝜎)
. (2) 

Maps encoding for the putative LS, LU, MS, MU and SU mechanisms are created in a similar 169 

way. 170 

In the model it is assumed that textural (i.e. orientation-based) features are detected using 171 

achromatic information (Itti & Koch 2001; Walther & Koch 2006). Local orientation maps 172 

𝑀𝜃(𝜎) are therefore computed by convolving (Russ & Neal 2016, p. 352) the levels of the 𝐼D 173 

pyramid with Gabor filters, such that 174 

𝑀𝜃(𝜎) = |𝐼D(𝜎) ∗ 𝐺0(𝜃)| + |𝐼D(𝜎) ∗ 𝐺𝜋/2(𝜃)|, (3) 
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where 𝐺 𝜓(𝜃) is a Gabor filter with a standard deviation of 7/3 pixels, a phase of 𝜓 ∈175 

{0, 𝜋/2} and an orientation of 𝜃 ∈ {0°, 45°, 90°, 135°} (following Walther and Koch (2006)), 176 

and ∗ denotes convolution. 177 

The next step is to construct a number of ‘feature maps’ that encode local luminance, colour 178 

and orientation contrasts, using a set of linear ‘centre-surround’ operations analogous to 179 

visual receptive fields (Hubel & Wiesel 1959). Typical visual neurons are most sensitive to a 180 

small region of visual space (the centre), while stimuli presented in a broader antagonistic 181 

region around the centre (the surround) inhibit the neural response. This increases 182 

sensitivity to local spatial discontinuities, and so is particularly well-suited to detecting 183 

regions of space which locally stand out from their surround (i.e. which are salient). Centre-184 

surround operations are implemented in the model as differences between a ‘centre’ fine 185 

scale 𝑐 and a ‘surround’ coarser scale 𝑠. Specifically, the centre is a pixel at scale 𝑐 ∈ {2,3,4} 186 

and the surround is the corresponding pixel at scale 𝑠 = 𝑐 + 𝛿, where 𝛿 ∈ {3,4}. Such 187 

across-scale differences, denoted ‘⊖’ below, are obtained by interpolation to the finer scale 188 

followed by point-by-point subtraction (Itti & Koch 2001). A feature map 𝐹 for a particular 189 

centre and surround is therefore calculated as 190 

𝐹𝑘(𝑐, 𝑠) = 𝑁(|𝑀𝑘(𝑐) ⊖ 𝑀𝑘(𝑠)|), (4) 

where ∀𝑘 𝐾 ∈ {𝐿} ∪ {LM, LS, LU, MS, MU, SU} ∪ {0°, 45°, 90°, 135°}, and 𝑁(·) is an 191 

iterative, nonlinear normalisation operator, simulating local competition between 192 

neighbouring salient locations (Itti & Koch, 2001). The normalisation process is fully 193 

described elsewhere (Itti, Koch & Niebur 1998; Walther & Koch 2006), but in brief each 194 

feature map is normalised to the range [0,1] and then iteratively convolved by a two-195 

dimensional difference-of-Gaussian filter. Between iterations, the original image is added to 196 

the new one and negative values set to zero. The effect of this is (i) to eliminate feature-197 

dependent differences caused by different feature extraction mechanisms, and (ii) to 198 

promote regions of the map which differ most from the average (i.e. which are likely to be 199 

the most salient), while suppressing homogenous or repetitive regions.  200 

These feature maps are then combined into three ‘conspicuity maps’, for luminance 𝐶𝐿, 201 

colour 𝐶𝐶, and orientation 𝐶𝑂 (Fig. 2), using across-scale addition (denoted ‘⊕’ below), 202 
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which consists of reduction of each map to scale 𝜎 =  4 and point-by-point addition (Itti, 203 

Koch & Niebur 1998), to give 204 

𝐶𝐿 = 𝑁 (

4

⊕
c=2

c+4

⊕
s=c+3

𝑁(𝐹𝐿(𝑐, 𝑠))), (5) 

𝐶𝐶 = 𝑁 (

4

⊕
c=2

c+4

⊕
s=c+3

∑ 𝑁 (𝐹𝜑(𝑐, 𝑠))

𝜑∈{LM,LS,LU,MS,MU,SU}

), (6) 

𝐶𝑂 = 𝑁 ( ∑ 𝑁 (

4

⊕
c=2

c+4

⊕
s=c+3

𝑁(𝐹𝜃(𝑐, 𝑠)))

𝜃∈{0°,45°,90°,135°}

). (7) 

Finally, these three conspicuity maps are linearly combined to produce a single overall 205 

saliency map 𝑆 (Fig. 2), such that 206 

𝑆 = 𝜔𝐿𝐶𝐿 + 𝜔𝐶𝐶𝐶 + 𝜔𝑂𝐶𝑂, (8) 

where 𝜔𝐿, 𝜔𝐶  and 𝜔𝑂 are weighting factors in the range [0,1], that allow the three feature 207 

types to contribute differentially to saliency. The resulting saliency map topographically 208 

encodes conspicuity over the entire visual scene, and therefore provides a continuous 209 

measure of salience at any given location.  210 

 211 

Computing target salience 212 

In order to identify the location of a relevant target (e.g. a prey item) in a visual scene, a 213 

viewing animal must be able to distinguish the region containing the target of interest from 214 

other (possibly equally) salient regions of the background (i.e. the signal must be sufficiently 215 

large relative to the prevailing noise; Navalpakkam & Itti 2006). The more salient the 216 

elements of the background (or the less salient the elements of the target) are, on average, 217 

the harder this task will be. Quantifying the relative salience of a target therefore requires 218 

calculating an appropriate measure of distance between the value of pixels within the target 219 

and the value of pixels in the background (see Fig. 3). Because these pixel values can follow 220 

any arbitrary distribution (and so metrics based on mean pixel values are not always 221 

appropriate; Navalpakkam & Itti 2006), here I used a histogram-based method which 222 

compares the empirical cumulative histograms of pixel saliency values for the target and its 223 
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background; a common technique in image analysis (Pal & Peters 2010) which is insensitive 224 

to the specific distributions of the data. Specifically, relative target salience 𝑆𝑡 is found by 225 

taking the sum of differences between the cumulative histograms of pixel salience values for 226 

the background 𝐻𝑏 and the target 𝐻𝑡 in a given saliency map as 227 

𝑆𝑡 =
1

𝑁
∑ 𝐻𝑏(𝑗) −

𝑁

𝑗=1

𝐻𝑡(𝑗), (9) 

where each cumulative histogram is divided into 𝑁 bins, where 𝑗 ∈ {1, 2, 3, . . . , 𝑁}. Here 𝑁 228 

was set to 100. If pixel values within one or more visual features of the target (e.g. in colour, 229 

luminance and/or orientation) are high compared to the background, then 𝑆𝑡 will be high 230 

(>> 0) and locating the target is predicted to be relatively easy (e.g. Fig. 3a,b); if the target 231 

and background share many visual features in common, or if the pixel values of the 232 

background are high compared to the target, then 𝑆𝑡 will be low (≈ 0) and locating the target 233 

is predicted to be hard (e.g. Fig. 3c,d). This metric therefore defines a holistic measure of 234 

‘target salience’, which takes into account the salience of both the target itself and the 235 

salience of features within the background it is viewed against. 236 

The implementation of the saliency model used here is based on a Matlab (MathWorks, 237 

Natick, MA) version of Itti, Koch and Niebur (1998)’s original model (Harel, Koch & Perona 238 

2006), adapted as described above, and available from github.com/thomaswpike/salience. 239 

 240 

Predation experiments 241 

In order to test whether the model is able to predict the behaviour of real animals searching 242 

for targets that varied in their relative salience, I conducted two experiments in which avian 243 

predators were tasked with searching for and locating camouflaged artificial prey. 244 

Experiment 1 was run under controlled conditions in the lab, using Japanese quail (Coturnix 245 

japonica) searching for computer-generated targets on a computer screen. Experiment 2 246 

was conducted in the field, employing a widely used approach (Cuthill et al. 2005) to 247 

quantify the detection of artificial targets by wild birds. In both cases, targets consisted of 248 

moth-like patterned triangles, viewed against a bark background. The visual scene in which 249 

each of the prey targets was viewed (either the computer screen, or calibrated photographs 250 

of the targets in situ in the field) was then used to construct the five quantum catch ‘images’ 251 
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needed for the computation of target salience. Full methodological details of these 252 

experiments are given in the supplementary material. 253 

 254 

Comparison with alternative metrics 255 

A large number of metrics have been developed to characterise prey conspicuousness, 256 

many of which have been very successful in predicting predator performance across a range 257 

of species and contexts. Here I provide a qualitative comparison of the performance of the 258 

saliency model described in this paper with some of these other approaches. However, 259 

rather than exhaustively test every available metric (not least because such a comparison 260 

has recently been conducted; Troscianko, Skelhorn and Stevens (2017)), here I focus 261 

specifically on the best-performing metrics identified by Troscianko, Skelhorn and Stevens 262 

(2017) that take into account both the characteristics of the target and the characteristics of 263 

its background (and so provide a meaningful comparison with the saliency model described 264 

here), along with the visual ‘clutter’ metrics used in the recent paper by Xiao and Cuthill 265 

(2016). These metrics are listed in Table 1, summarised in the supplementary material and 266 

described in detail in the original publications (Rosenholtz et al. 2005; Stevens & Cuthill 267 

2006; Stoddard, Kilner & Town 2014; Xiao & Cuthill 2016; Troscianko, Skelhorn & Stevens 268 

2017). 269 

 270 

Statistical analysis 271 

To test whether target salience predicted predator success in the two experiments, I used 272 

(generalised) linear mixed-effect models, fitted using the ‘lmer’ and ‘glmer’ functions in the 273 

‘lme4’ package (Bates et al. 2015) for R version 3.3.1. Full details are given in the 274 

supplementary material. In each case significance was determined by comparing a full 275 

model to models lacking the effect of interest using likelihood ratio tests (Crawley 2005), 276 

and assumptions validated following Zuur, Ieno and Elphick (2010).  277 

Because the relative contribution of the different feature types (luminance, colour and 278 

orientation) to the perception of overall salience is unknown for birds (Xiao & Cuthill 2016), 279 

target salience was initially calculated from saliency maps in which each conspicuity map 280 

was weighted equally (i.e. 𝜔𝐿 = 𝜔𝐶 = 𝜔𝑂 = 1 in Eq. 8). However, it is unlikely that animals 281 
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do in fact weight these different features equally (Rosenholtz et al. 2005), and so it is useful 282 

to explore which set of feature weights provides the best predictive power. To do this, I 283 

systematically varied the values of 𝜔𝐿, 𝜔𝐶  and 𝜔𝑂 in the computation of the final saliency 284 

map, and then reran the analyses for each combination of weights. In each case, the quality 285 

of the model fit was quantified using its AIC score, with the ‘optimal’ combination of weights 286 

defined as those which resulted in the lowest AIC (Burnham & Anderson 2002). For ease of 287 

comparison, AIC scores are presented as differences from this smallest AIC (i.e. in terms of 288 

their ΔAIC; Burnham & Anderson 2002). 289 

In order to compare the relative performance of the saliency model described here with the 290 

various alternative metrics, each of the analyses was rerun, but substituting ‘target salience’ 291 

for each of the alternative metrics in turn. The quality of the model fit in each case was 292 

quantified using its ΔAIC score, as above, allowing qualitative comparison between the 293 

metrics. Models were considered equally well-fitting if ΔAIC < 2 (Burnham & Anderson 294 

2002). 295 

 296 

Results 297 

Experiment 1 298 

For quail predating virtual moths the time taken to catch camouflaged prey was significantly 299 

predicted by the salience of the target (χ2(1) = 19.77, p < 0.001), with time taken decreasing 300 

as the target became increasingly salient (Fig. 4a). There was no evidence of predator 301 

learning over successive trials (χ2(1) = 0.17, p = 0.680), or any evidence that prey nearer the 302 

centre of the screen were quicker to catch (χ2(1) = 0.11, p = 0.740). However, assuming that 303 

the visual features contributing to target salience were equally weighted (i.e. 𝜔𝐿 = 𝜔𝐶 =304 

𝜔𝑂 = 1) did not produce the best-fitting model (Fig. 4b-d); instead, model fit increased 305 

roughly linearly as the relative luminance (𝜔𝐿) and orientation (𝜔𝑂) weights increased (Fig. 306 

4b), with a moderate contribution from colour (𝜔𝐶) (Fig. 4c,d). The best-fitting model had 307 

the following feature weights: 𝜔𝐿 = 1.0, 𝜔𝐶 = 0.5 and 𝜔𝑂 = 0.7 (χ2(1) = 20.38, p < 0.001). 308 

Comparing the alternative camouflage metrics, the best-fitting models were the ‘optimally’-309 

weighted (ΔAIC = 0.0) and equally-weighted (ΔAIC = 0.9) saliency models, both of which 310 
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provided a substantially better fit than the next best metric, the Gabor Edge Disruption 311 

Ratio (ΔAIC = 10.6) (Table 1). 312 

 313 

Experiment 2 314 

Target salience significantly predicted the survival of moth-like targets deployed in the field 315 

(χ2(1) = 8.93, p = 0.003), such that those surviving predation by birds had a significantly 316 

lower target salience than those that were predated (Fig. 5a). As for Experiment 1, model fit 317 

varied considerably with feature weight, although the overall pattern was somewhat 318 

different. Specifically, the best-fitting model occurred when orientation was weighted high 319 

(𝜔𝑂 = 0.9), luminance was weighted relatively low (𝜔𝐿 = 0.3), and colour did not 320 

contribute at all to target salience (𝜔𝐶 = 0.0) (χ2(1) = 18.56, p < 0.001; Fig. 5b,c,d). 321 

When comparing between the different metrics, the best-fitting models were those 322 

including Sub-band Entropy (ΔAIC = 0.0) and the ‘optimally’-weighted saliency model (ΔAIC = 323 

1.5). The next-best fitting models included Luminance Feature Congestion (ΔAIC = 4.8), the 324 

equally-weighted saliency model (ΔAIC = 11.2), Overall Feature Congestion (ΔAIC = 11.4) and 325 

Orientation Congestion (ΔAIC = 11.8) (Table 1). 326 

 327 

Discussion 328 

This study explored the efficacy of species-relevant saliency maps as predictors of predator 329 

performance in two tasks involving locating cryptic targets against noisy backgrounds. The 330 

results clearly demonstrate that across both laboratory and field contexts target salience is a 331 

good predictor of predator performance, with laboratory quail locating salient virtual moths 332 

quicker than those that were estimated to appear less salient (Experiment 1), and wild birds 333 

most successfully predating artificial moths that were deemed the most salient (Experiment 334 

2). Moreover, it allowed information on the possible weighting of the different feature types 335 

contributing to a predator’s perception of target salience to be inferred. Interestingly, these 336 

weightings differed between the two experiments. In Experiment 1, birds appeared to be 337 

using a combination of luminance, colour and orientation features to inform their 338 

behaviour, although the highest weightings came from luminance and orientation. In 339 
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Experiment 2, the birds appeared to be predominantly using orientation features, with a 340 

lesser reliance on luminance and no contribution at all from colour. While this provides 341 

some evidence that the relative efficacy of luminance-based cues may be greater than 342 

chromatic cues (Stevens and Cuthill (2006); cf. Schaefer and Stobbe (2006)), it is impossible 343 

to know whether the difference in the relative weightings of the three feature types 344 

between the two experiments was driven by differences in vision or cognition between the 345 

species involved, or by differences between the experimental setups. For example, in 346 

Experiment 2 the distance at which prey were viewed was likely to be both initially greater 347 

and considerably more variable than in Experiment 1, which would be important if the 348 

weighting of the different feature types depended on distance or perceived prey size. 349 

Moreover, the search space in Experiment 2 included three-dimensional information 350 

(providing a possible explanation for the reduced reliance of luminance cues, as these may 351 

be less useful when searching in a three-dimensional environment; Zhang et al. (2010)), and 352 

would have included elevated (but unmeasured) noise in luminance and colour due to 353 

short-term illumination changes, possibly rendering colour and luminance cues less reliable. 354 

However, despite these differences the findings of both experiments are broadly consistent 355 

with previous studies, in which the textural (i.e. orientation-based) complexity of the 356 

background (Xiao & Cuthill 2016) and the conspicuousness of the prey’s outline (Stevens & 357 

Cuthill 2006; Lovell et al. 2013; Webster et al. 2013; Kang et al. 2015; Troscianko et al. 2016; 358 

Troscianko, Skelhorn & Stevens 2017) have been identified as important determinants of 359 

predator success. Orientation features therefore appear to be a key component in the 360 

detection of camouflaged prey across a range of species and contexts, although the results 361 

of this study emphasise the need to also consider the relative contribution of other feature 362 

types if we are to fully understand the mechanisms predators use to detect prey. 363 

As well as predicting predator performance in the two experiments reported here, the 364 

performance of the saliency model also compared very favourably with a number of 365 

alternative metrics that have been proposed to quantify prey conspicuousness in analogous 366 

situations (Xiao & Cuthill 2016; Troscianko, Skelhorn & Stevens 2017). In Experiment 1 it 367 

performed substantially better than all the other metrics tested, possibly because the birds 368 

appeared to be using a combination of luminance, colour and orientation features to inform 369 

their behaviour; something that is not encapsulated in metrics that focus on a single feature 370 
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type. For example, the next best performing metric, the Gabor Edge Disruption Ratio, was 371 

found to perform extremely well in Troscianko, Skelhorn and Stevens (2017)’s human-based 372 

study, possibly because achromatic stimuli were used. While focussing on achromatic 373 

stimuli was entirely reasonable, given that the luminance channel in primates has numerous 374 

oriented edge detectors suitable for shape processing (Hesse & Georgeson 2005), colour is 375 

also known to contribute to target detection by facilitating the segregation of surfaces that 376 

differ in chromaticity (Gegenfurtner & Rieger 2000). It is possible, therefore, that had 377 

chromatic information also been unavailable in the present study, birds may have weighted 378 

orientation-based features more heavily. In Experiment 2, the best-performing metrics were 379 

Sub-band Entropy (cf. Xiao and Cuthill (2016)) and the ‘optimally’-weighted saliency model, 380 

with Luminance Congestion also performing well. Such variation in model fit between the 381 

various metrics is likely to stem, at least in part, from what they are actually quantifying, as 382 

well as the characteristics of the specific prey and backgrounds used. For example, the 383 

‘congestion’ and ‘clutter’ metrics (which include Sub-band Entropy and Luminance 384 

Congestion) are global measures of the background against which the prey is viewed, and 385 

do not explicitly compare features of the prey with those of its background (Xiao & Cuthill 386 

2016). As such, a plain prey item against a congested background could actually appear 387 

highly salient. Similarly, other metrics focussing specifically on the outline of the prey, such 388 

as the number of true edges detected by the Hough transform (Stevens & Cuthill 2006) and 389 

the Gabor Edge Disruption Ratio (Troscianko, Skelhorn & Stevens 2017), ignore at least 390 

some of the prey’s internal features, which may themselves be highly salient. Further work 391 

is therefore needed to identify the strengths and weaknesses of these various approaches 392 

across different contexts, particularly with regard to the alternative mechanisms of 393 

camouflage (Stevens & Merilaita 2009). For example, the relative performance of the edge-394 

based metrics may well have been improved if the targets explicitly incorporated disruptive 395 

patterns rather than simply representing samples of the background. It should also be noted 396 

that, while the saliency model performed well, measures of overall salience per se tell us 397 

little about the mechanisms underpinning successful camouflage. To address this, we still 398 

need to consider the various component parts separately.  399 

The model of visual salience used in this paper is primarily concerned with ‘bottom-up’ 400 

salience, which reflexively directs visual focus based on certain low-level visual features (Itti 401 
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& Koch 2001). This mimics the case where a predator has no a priori knowledge of the prey 402 

or its background, and is not an unrealistic assumption for the experiments described here 403 

given that each of the moths and background combinations was unique. However, given 404 

repeated exposure to a prey item with particular identifying characteristics, a predator may 405 

have the opportunity to learn about the statistical properties of both the prey and its 406 

background and use this to optimise its search (Navalpakkam & Itti 2006; Borji & Itti 2013). 407 

A camouflaged prey item that lacks bottom-up salience could therefore still be effectively 408 

detected through ‘top-down’, or knowledge-based, guidance to known prey locations and 409 

features. In terms of the model used here, this could be implemented by optimising the 410 

weighting given to each of the bottom-up feature and conspicuity maps when computing 411 

the final saliency map, with the aim of giving high weighting to features predominantly 412 

found in prey and low weighting to features that predominate in the background. This 413 

would be akin to a sensory system enhancing neurons tuned to properties of the prey 414 

and/or supressing neurons tuned to properties of the background, thereby maximising 415 

target detection speed (Navalpakkam & Itti 2006). 416 

The focus of this paper has been on using salience to describe the efficacy of camouflage in 417 

animals. However, the general approach would apply equally well to the assessment of 418 

conspicuity in animals or plants that have evolved to maximise their probability of 419 

detection, including those displaying conspicuous signals within a mate choice context. 420 

Because it is possible to use the feature and (colour, luminance and orientation) conspicuity 421 

maps to make inferences about which feature channel most contributes to the saliency of a 422 

target, it may allow us to better understand both signal design and receiver cognition. For 423 

example, Fig. 6 shows the three peafowl-specific conspicuity maps derived from a calibrated 424 

colour image of a displaying peacock (Pavo cristatus), in which the relative contribution of 425 

colour, luminance and orientation features are presented. There is little evidence of 426 

luminance salience in the elements of the peacock’s colouration compared to the 427 

background they are viewed against (although this may be because saliency was derived 428 

from a static photograph; due to the iridescence of the peacock’s eyespots [Loyau et al. 429 

2007], there is likely to be large modulations of luminance with movement, creating salience 430 

through signal change). However, the eyespots on the tail feathers, which have been 431 

repeatedly implicated as a target for female choice (Petrie, Halliday & Sanders 1991; Petrie 432 
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& Halliday 1994; Loyau et al. 2007; Dakin & Montgomerie 2011), exhibit clear colour 433 

salience when viewed against their local background, with the different colour elements of 434 

the eyespots clearly delineated. Furthermore, the radial changes in the tail feather 435 

orientation around the train result in local orientation contrasts and hence regions of high 436 

orientation salience. Combined, these make elements of the peacock’s train highly salient 437 

against their local background. This is, of course, simply an illustrative example; however, an 438 

approach like this could allow studies to identify and focus on particular aspects of a signal 439 

that contribute disproportionately to its conspicuousness, while avoiding aspects that may 440 

be poorly perceived.  441 

In this study the focus was necessarily on avian visual systems under fairly constrained 442 

experimental conditions, although the visual salience of a given target may in fact differ 443 

considerably between receivers of different species and in response to variation in the 444 

physical and biological environment. In particular, the spectrum, intensity and orientation of 445 

illuminating light, as well as the presence of features such as shadows, will likely play a 446 

significant role in determining how salient a target appears. This has been widely explored 447 

in terms of chromatic contrasts (Uy & Endler 2004), although less so in terms of luminance 448 

and orientation (Troscianko et al. 2016). Moreover, several features which have been linked 449 

to salience in humans remain largely unexplored in animals, including contrasts arising from 450 

variation in depth (Zhang et al. 2012; Ma & Hang 2015) and motion (Belardinelli, Pirri & 451 

Carbone 2009; Peters 2010); the approach used here provides the flexibility needed to 452 

incorporate these different visual features (Walther & Koch 2006) to explore how salient 453 

targets appear to a variety of different visual systems, across a range of different biological 454 

and physical contexts. 455 
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Table 1. Relative performance of the various metrics used to quantify target 598 

conspicuousness, in terms of their ΔAIC. Please refer to the supplementary material for a 599 

full description of these metrics and details of the analysis. For each experiment, the best-600 

fitting model is denoted by an asterisk (*). 601 

Predictor ΔAIC (Experiment 1) ΔAIC (Experiment 2) 

This Model (equal 

weighting of feature types) 

0.9 11.2 

This Model (‘optimal’ 

weighting of feature types) 

0.0* 1.5 

Gabor Edge Disruption 

Ratio 

10.6 20.0 

Number of SIFT Feature 

Correspondences 

27.4 18.3 

Colour Congestion 17.2 18.9 

Luminance Congestion 16.7 4.8 

Orientation Congestion 19.0 11.8 

Overall Feature Congestion 19.0 11.4 

Sub-band Entropy 20.3 0.0* 

Number of Hough Edges 23.6 18.9 

 602 

 603 

 604 

 605 

 606 

 607 

 608 
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 610 

Figure 1. Schematic illustration of the saliency model used here, adapted from Itti, Koch and 611 

Niebur (1998). Input to the model is a series of grayscale ‘images’, each representing 612 

topographical variation in the estimated quantum catch of one of the viewing bird’s cone 613 

classes; one for each of the four single cones (L, M, S and U, which are assumed to 614 

contribute to the perception of colour) and one for the double cones (D, which are assumed 615 

to encode luminance). These are used to construct feature maps that encode local colour, 616 

luminance and orientation contrasts, before being aggregated hierarchically, first by 617 

grouping features by type into conspicuity maps, then by combining these conspicuity maps 618 

(using the weights 𝜔𝐿, 𝜔𝐶  and 𝜔𝑂) to compute the final saliency map. Please refer to the 619 

text for full details. 620 

 621 
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 629 

Figure 2. (a) Representative input ‘images’ for one of the stimuli used in Experiment 1. 630 

These were used to compute conspicuity maps for (b) colour, (c) luminance and (d) 631 

orientation, which were then combined (in this case using equal-weighting, i.e. 𝜔𝐿 = 𝜔𝐶 =632 

𝜔𝑂 = 1) to produce the final saliency map (e). Please refer to the text for full details. In each 633 

map, colour is proportional to salience, with lighter colours denoting regions of relatively 634 

high salience and darker colours regions of relatively low salience. The camouflaged virtual 635 

moth is shown by the white arrow, and is at the same corresponding position in each map. 636 

In this example there is little evidence of colour salience in the target compared to its 637 

background. However, some elements of the target’s pattern are relatively salient in the 638 

luminance channel (seen as blobs of high salience corresponding to the positions of brighter 639 

regions on the outer edge of the wings), and edges that differ in direction from the 640 
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surrounding background are clearly evident in the orientation channel. Combined, these 641 

features contribute to the overall salience of the target. Note that in each map the target is 642 

not necessarily the only (or most) salient region, but its salience is sufficiently high to likely 643 

make it conspicuous against this particular background to this particular predator. 644 
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 667 

Figure 3. Calculation of target salience, illustrated using representative stimuli from 668 

Experiment 2. (a) Overall saliency map, which includes a relatively salient moth-like target 669 

(indicated by the white arrow). Colour is proportional to salience, with lighter colours 670 

denoting regions of relatively high salience and darker colours regions of relatively low 671 

salience. (b) Frequency histogram of pixel salience values for the background (blue) and 672 

target (red) of the scene shown in (a), with the region of overlap shown in purple. Both 673 

histograms have been normalised to aid comparison. The inset shows the cumulative 674 

histogram of these data, with the grey shaded region indicating the difference between 675 

histograms from which relative target salience was calculated. Please refer to the text for 676 

full details. (c) Overall saliency map including a relatively unsalient moth-like target 677 

(indicated by the white arrow), along with (d) the corresponding frequency and cumulative 678 

histograms of pixel salience values for the background (blue) and target (red).  679 

 680 

 681 
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 682 

Figure 4. (a) Time taken for Japanese quail to successfully predate virtual moths, as a 683 

function of target salience. Each data point represents one moth, and data from all birds 684 

have been combined for clarity. The solid line denotes the estimated fit from the linear 685 

mixed-effects model. For simplicity, the three feature types (luminance, colour and 686 

orientation) were assumed to contribute equally to the computation of target salience (i.e. 687 

𝜔𝐿 = 𝜔𝐶 = 𝜔𝑂 = 1). (b-d) Variation in model ΔAIC as the relative weight of the luminance, 688 

colour and orientation features types was systematically changed. Grey values denote the 689 

minimum ΔAIC score for the given combination of weights, with lighter shades indicative of 690 

better fitting models. 691 
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 697 

Figure 5. (a) The probability that moth-like targets survived predation by wild birds over a 24 698 

hour period as a function of their salience. Individual data points represent a single target, 699 

and the curve represents the fit of the binomial generalized linear mixed model used to 700 

model the data. For simplicity, the three feature types (luminance, colour and orientation) 701 

were assumed to contribute equally to the computation of target salience (i.e. 𝜔𝐿 = 𝜔𝐶 =702 

𝜔𝑂 = 1). (b-d) Variation in model ΔAIC as the relative weight of the luminance, colour and 703 

orientation features types was systematically changed. Grey values denote the minimum 704 

ΔAIC score for the given combination of weights, with lighter shades indicative of better 705 

fitting models.  706 

 707 
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 712 

Figure 6. (a) Calibrated colour image of a displaying peacock (Pavo cristatus), and the 713 

conspicuity maps for (b) colour, (c) luminance and (d) orientation that result from applying 714 

the model of visual salience used in this paper. (e) The final overall saliency map. In each 715 

map, colour is proportional to salience, with lighter colours denoting regions of relatively 716 

high salience and darker colours regions of relatively low salience. The procedure used was 717 

as described for experiment 2, but using data on the peafowl’s photoreceptor spectral 718 

sensitivity from Hart (2002). 719 


