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concept of a co-evolved mutualism between yeasts and Drosophila has 

permeated the literature. However, until robust evidence regarding the 

evolution and maintenance of this yeast-fly association has been 

provided, we suggest there is no compelling evidence to reject the more 

simplistic null hypothesis that these interactions are due to exaptation, 

and not a mutualism driven by natural selection.  
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ABSTRACT 

The fruit fly Drosophila melanogaster and the baker’s yeast Saccharomyces cerevisiae are 

classic research model organisms that are also associated in nature, at least around vineyards. 

Sharing the same ephemeral fruit niche, winged Drosophila feed on immotile yeasts. That a 

yeast diet is essential for larvae development, and that saprophagous fruit flies are attracted to 

a suite of yeast volatiles, has been well established over the last century.  Recently, research 

has focussed on the potential mutual benefit of this interaction hypothesising yeasts also 

benefit via dispersal from ephemeral fruits. It now appears that the concept of a co-evolved 

mutualism between yeasts and Drosophila has permeated the literature. However, until robust 

evidence regarding the evolution and maintenance of this yeast-fly association has been 

provided, we suggest there is no compelling evidence to reject the more simplistic null 

hypothesis that these interactions are due to exaptation, and not a mutualism driven by natural 

selection.  

 

Keywords  

Coevolution, Chemical Communication, Drosophila, Ehrlich-pathway, Fermentation, 

Interspecific Interaction, Mutualism, Niche Construction, Semiochemicals, Yeast 

 

INTRODUCTION  

The emergence of Ascomycota, Basidiomycota and Glomales, which comprise the three 

major groups of fungi, can be dated to 600-million years ago (Mya), and plant-fungus 

mutualisms are known to have occurred during early colonisation of land by terrestrial plants 

in the Ordovician about 460 Mya (Redecker et al. 2000), 60-million years before the first 
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land-bound insect evolved flight in the Devonian period. Within the Ascomycota, two 

independent lineages emerged from a metabolically aerobic ancestor about 500 Mya:  

1) fission yeasts (Taphrinomycotina) 

 2) budding yeasts (Saccharomycotina). 

Both lineages independently evolved a novel metabolic strategy (the Crabtree effect) where 

sugars are preferentially fermented even in the presence of oxygen (Dashko et al. 2014). The 

ability to propagate as facultative anaerobes, however, was modified during further 

diversification events within the Saccharomycotina subphylum over the last 200 Mya, leading 

to Crabtree-positive (preferential use of fermentation that can occur simultaneously with 

respiration) and Crabtree-negative (preferential respiration) species.  

 

Yeasts are often associated with insects and plants (Chandler et al. 2012, Stefanini et al. 

2012, Witzgall et al. 2012, Six 2013) and fermenting species quickly dominate in sugar-rich 

sources such as fruits, where they produce ethanol in the presence of oxygen (preferential 

fermentation) and other volatile compounds (Cordente et al. 2012). Human history is linked 

with the utilisation and refinement of food and beverage fermentation by microbes, with 

evidence of their preparation from rice, honey and fruit (hawthorn and/or grape) as early as 

7000 BC (McGovern et al. 2004). Preferential fermentation is one of the most distinguishing 

features of Saccharomyces species, and this has actively been harnessed by humans to such a 

degree that certain lineages of this species are termed “domesticated” (Legras et al. 2007, Liti 

et al. 2009).  Drosophila fruit flies of the subgenus Sophophora such as D. melanogaster are 

human commensals which may also co-inhabit the same ephemeral fruit niche as fermenting 

yeasts, and they cloud around wineries and often drown themselves in fermented foods, like 

wine and vinegar. Drosophila evolved in the mid-late Eocene (40 Mya) from a common 
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ancestor and further diversified in response to biogeographic events (Izumitani et al. 2016). 

Drosophila are generally saprophagous microbe-feeders although a trophic shift to herbivory 

evolved in the subgenus Scaptomyza about 20 Mya which might be linked to the loss or 

pseudogenisation of odour-receptors crucial for the recognition of yeast volatiles (Goldman-

Huertas et al. 2015).  

It is well documented that a yeast diet enhances fly fecundity and larvae development 

(Anagnostou et al. 2010, Rohlfs and Kurschner 2010, Matavelli et al. 2015) and while a few 

studies provide tentative evidence of a mutualism with specific fly and yeast isolates (Buser 

et al. 2014, Christiaens et al. 2014), the origin and extent of more general Drosophila-

Saccharomyces interactions has not described: are they all mutualisms (see supplementary 

Table for definition of terms)? Have yeasts and flies generally coevolved as a result of 

selective pressures to optimise their life history traits and reproductive output? Or has any 

association arisen by chance from a coincidental combination of pre-existing adaptations 

(exaptation) of both partners in just a handful of specific situations?  

 

Biochemistry of yeast volatile production and hypotheses for biological benefit 

The evolution of the Crabtree effect allows most Saccharomyces yeasts to employ 

preferential alcoholic fermentation, even in the presence of oxygen, as powerful means of 

ecosystem engineering (Goddard 2008, see supplementary Table for definition of terms): in 

sugar-rich media, glucose is converted to cytotoxic ethanol, carbon dioxide and heat. 

Although respiration delivers more ATP to the organism, therefore increasing biomass 

production, preferential fermentation is ecologically successful. Preferential fermentation 

may act as an antagonistic strategy to both sabotage and outcompete other microorganisms as 

it allows ATP to be generated more rapidly, which translates to a greater growth rate, and 
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simultaneously creates a toxic, hot and alcoholic environment (Goddard 2008; Pfeiffer & 

Morley 2014). In addition, along with the predictions from niche-construction theory, 

Crabtree-positive yeasts are particularly well adapted not only to survive the hostile 

conditions they create but also to defend carbon resources from competitors as many species 

have evolved the ability to catabolise ethanol (Thomson et al. 2005; Pfeiffer & Morley 2014).  

In addition to ethanol, yeasts also produce short to medium-chain alcohols (fusel alcohols) 

during assimilation of plant-based amino acids (Fig 1). Fusel alcohols are formed from fusel 

aldehydes via the Ehrlich pathway and can be further oxidised to organic acids (Hazelwood et 

al. 2008). These volatile organic compounds may be converted into more complex 

metabolites by the cell, with one example being alcohol acyl transferases (ATF, Fig 1) which 

use alcohols as precursors for the formation of esters at the expense of acetyl-CoA or fatty 

acyl-CoAs that are common intermediates of the primary sugar and fatty acid metabolism. 

Yeast volatiles may escape the cell and diffuse rapidly through air. Volatile ester biosynthesis 

and the formation of fusel-like aldehydes, alcohols and acids is not exclusive to yeasts and 

are common among fruits (El Hadi et al. 2013). However, yeasts alter the composition and 

concentrations of fruit volatiles to produce a different chemical signature (Cordente et al. 

2012).  Olfactory recognition of these esters and fusel volatiles is common in vertebrates as 

well as invertebrates feeding on fruit, which is not surprising considering that these 

compounds are a signal for food sources. Generally, several biological functions have been 

hypothesised for volatile ester production in yeasts, summarised by Saerens et al. (2010), and 

these suggest they act as metabolic ‘relief valves’, detoxification pathways, or fill an 

ecological function as infochemicals to promote dispersal by insects. To date, there is no 

clear evidence that allow these hypotheses to be robustly tested. 
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The effects of fungal secondary metabolites on insects can generally be classified into 

stimulants, attractants, deterrents and repellents (Holighaus & Rohlfs 2016) which constitute 

a variety of diverging biological functions. In addition, certain filamentous fungi such as 

Aspergillus respond to insect-grazing by induced production of mycotoxins, such as the 

polyketide sterigmatocystin, to successfully defeat their predators (Rohlfs 2015). Although 

this secondary metabolite is not volatile, polyketides are formed from acetyl-CoA precursors, 

the same substrate used by ATF for the formation of volatile esters. The enzymatic apparatus 

required for the biosynthesis of polyketides, however, has not naturally evolved in yeasts. To 

date, yeast secondary metabolites with insecticidal properties have not been identified 

whereas there is evidence for their role as insect attractants or repellents, especially in 

association with Drosophila (Hutner et al. 1937, Becher et al. 2012, Palanca et al. 2013, 

Scheidler et al. 2015). 

 

The role of yeast volatiles in mediating Drosophila interactions 

That D. melanogaster feasts on yeasts and that this microbial diet is crucial for larval 

development was first reported by Baumberger (1917) and later confirmed by Phaff (1956) 

who isolated yeasts from the alimentary canal of fruit flies. It is now established that yeast are 

an essential staple of Drosophila diet, and common life history traits of  D. melanogaster 

such as survival, development time and adult body weight are influenced by both, yeast-

species and yeast-biomass available to the larvae (Anagnostou et al. 2010). Further, yeast 

diversity was also shown to positively impact Drosophila life history traits not only by 

increasing larval development, possibly due to enhanced nutrition, but also by increasing 

larval survival rates in the presence of antagonistic filamentous fungi (Rohlfs & Kurschner 

2010). Yeasts can detoxify mycotoxins (Hathout & Aly 2014), and this might add further 
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potential benefits for flies. Further, Stamps et al. (2012) observed that D. melanogaster larval 

activity increased yeast density while simultaneously reducing species diversity to increase 

yeasts that are more beneficial to larvae. This has been termed ‘proto-farming’ where growth 

rate survival and/or density of an edible species (yeast) increases at a locality due to the 

presence of a “farmer” (larvae).  

 

Given the benefits derived from yeasts, it is unsurprising that D. melanogaster odour 

receptors respond to yeast volatiles (Hallem and Carlson 2004, 2006). Experiments 

conducted with a few strains of S. cerevisiae, show yeast volatiles can attract fruit flies, 

stimulate oviposition and affect mating success by increasing sexual receptivity in females 

(Becher et al. 2012, Gorter et al. 2016). Even in the absence of yeasts, fermentation-like 

volatiles can lure fruit flies (Stökl et al. 2010) and at least one case of specialised floral 

mimicry is described in a rainforest orchid which attracts a single drosophilid species 

(Scaptodrosophila bangi) for pollination (Martos et al. 2015). These examples of chemical 

mimicry of yeast volatiles by plants suggest a relationship between yeasts and flies that is 

sufficiently old and stable to have allowed secondary mimics to evolve. 

 

Although several volatiles are likely to act as semiochemicals (Table 1, see supplementary 

Table for definition of terms), the evidence suggests the effectiveness of Drosophila 

attraction by Saccharomyces yeasts is not controlled by the presence or absence of single 

compounds but is a function of volatile ratios in combination with a fruit context (Arguello et 

al. 2013, Günther et al. 2015). Any yeast-fly interaction has to be considered as part of a 

tripartite relationship which includes fruit/plant, and this raises the question of to what extent 

the attractiveness of a particular yeast is contingent on the third plant partner. For example, 
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yeasts synthesise 3-methylbutanol from L-leucine via the Ehrlich-pathway and the 

corresponding acetate ester is known to mediate D. simulans attraction, but only when 

presented in a fruit context (Günther et al. 2015).   

 

At first inspection the nature of the yeast-Drosophila association appears to be one of 

predation, i.e. it comprises benefit only for Drosophila. Usually organisms avoid predation, 

be it through defence (chemical or physical) or escape. Ethanol production by yeasts might 

have acted as a predator repellent ancestrally, but it cannot be regarded as an anti-predator 

adaptation against fruit flies today. Yeasts share the same ephemeral fruit niche with insects 

such as Drosophila. However, one key difference between these species is that yeasts are 

immotile and depend on dispersal via other agents to persist. Following this, one idea 

suggests that yeast volatile production is a means of chemical communication (see 

supplementary Table for definition of terms) with microbe-feeding flies, and this is beneficial 

as it increases the propensity of yeast dispersal to new habitats by flies (Saerens et al. 2010, 

Buser et al. 2014, Christiaens et al. 2014). If this were the case then the yeast-fly association 

would be bidirectional and resemble characters of mutualism, where both partners must 

receive increased fitness from the association, and not a simple predator-prey interaction 

where only one  side of the association realises fitness increases  (West et al. 2007). If this 

proposed mutualism was maintained by chemical communication then particular yeast 

volatiles will be under selection, and research suggests that volatile ester production, 

especially the acetate esters ethyl acetate and 3-methylbutyl acetate (Christiaens et al. 2014, 

Günther et al. 2015), is important for Drosophila attraction.  

 

Are yeast-fly associations just chance?  
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The mutualism hypothesis articulated above appears intuitively attractive, but the evidence to 

support this is weak and sporadic. D. melanogaster and S. cerevisiae are significant model 

organisms in their own right and thus very good candidates to study interspecific interactions 

of microbes and insects. D. melanogaster is likely the best studied animal model which has 

been used for genetic research for over a century and S. cerevisiae was the first eukaryote to 

have its genome sequenced in 1996. Despite this, the ecological reality of these organisms is 

embedded in multitrophic networks, and any data generated from their analyses in isolation 

may not be representative:  

First, correlations between attraction and yeast dispersal have only been shown for three S. 

cerevisiae genotypes with just two Drosophila isolates (one D. simulans and one D. 

melanogaster, Buser et al. 2014, Christiaens et al. 2014). Further, some S. cerevisiae 

genotypes are repulsive, and others have different levels of attractiveness, to at least two iso-

female lines of Drosophila (one D. simulans and one D. melanogaster; Buser et al. 2014; 

Palanca et al. 2013), demonstrating that attraction is by no means a fixed trait. In addition, S. 

cerevisiae, is not abundant on fruit and rarely associated with D. melanogaster naturally 

(Goddard & Greig, 2015, Hoang et al. 2015, Lam & Howell 2015). Together this calls an 

evolved mutualism of these species into question. Other than S. cerevisiae, olfactory response 

of D. melanogaster was evaluated to a limited range of Saccharomycetales yeasts from other 

genera, such as Hanseniaspora uvarum and Pichia kluyverii (Palanca et al 2013, Hoang et al. 

2015, Scheidler et al 2015), which are more commonly associated with Drosophila in nature 

(Dobzhanski et al. 1956, Hamby et al. 2012, Lam & Howell 2015). However, whether 

attraction corresponds with success in yeast dispersal for these is not known.  
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Second, one might be tempted to view a mutualism between yeasts and flies as underpinned 

by adaptation of the expression of atf1 for acetate ester formation in yeasts and the 

corresponding odour receptor genes (or43b, or47a, or85b) in Drosophila. Chemical signals 

can evolve from cues (Steiger et al. 2011, see supplementary Table for definition of terms) 

but to date there are no compelling data to suggest that yeast volatile production has evolved 

to establish a mutualism. Further, in evolutionary terms, budding yeasts are hundreds of 

millions of years older than Drosophila fruit flies and we have little data concerning the 

history of the interaction between these two organisms. Despite their long-standing status as 

model organisms, genetic evidence of traits selected for as a result of their interactions in 

nature is scarce. Although several studies imply the coevolution of yeasts and flies (Stökl et 

al. 2010, Goldman-Huertas et al. 2015, Martos et al. 2015) mechanisms supporting their 

molecular evolution are yet to be elucidated. Odour receptors responding to yeast volatiles 

such as acetate esters are generally broadly tuned (Mansourian & Stensmyr 2015) conferring 

attraction to a range of chemically similar compounds. Therefore, volatiles that stimulate 

antennal responses and might influence behaviour are not strictly yeast-specific. Adaptive 

evolution has been described for the alcohol dehydrogenase (Adh) locus in Drosophila which 

is crucial for the detoxification and carbon-recycling of ethanol and at least three independent 

parallel-evolutionary events have resulted in novel protein functions of the ancestral gene 

between 2-30 Mya (Jones & Begun 2005). Ethanol tolerance is linked to ADH protein levels 

in Drosophila and differs drastically even between evolutionary sibling species such as D. 

melanogaster and D. simulans with the latter showing reduced ethanol tolerance and lower 

ADH-levels (Laurie et al. 1990). Ethanol adaptation has also been linked to acetic acid 

tolerance in D. melanogaster and was suggested as a mechanism to reduce environmental 

ethanol stress and allow colonisation of substrates altered through microbial infestation 

(Chakir et al. 1993). While differential adaptations to ethanol and acetic acid are likely to 
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impact yeast preference and D. simulans was repulsed by acetic acid (Günther et al. 2015), 

both sympatric Drosophila species are attracted to the Brewer’s yeast S. cerevisiae.  

 

Third, the ecological relationship of Saccharomyces and Drosophila is far from exclusive. 

Saccharomyces are not only associated with fruit flies, but other insects including bees and 

wasps (Goddard et al. 2010; Stefanini et al. 2012). While specific flies prefer particular 

yeasts over others (Palanca et al. 2013, Buser et al. 2014, Scheidler et al. 2015) and differ in 

their attraction to infested substrates (Matavelli et al. 2015, Date et al. 2017), only a few 

genera of yeasts are consistently associated with fruit fly populations. Frequently isolated 

yeasts include Candida, Pichia, Hanseniaspora, Metschnikowia, Torulaspora but rarely 

Saccharomyces (Hamby et al. 2012, Stamps et al. 2012, Buser et al. 2014, Lam and Howell 

2015). None of these yeasts are exclusively associated with Drosophila, and distributions of 

these yeasts have been shown to be more strongly influenced by Drosophila diet rather than 

fly species in at least fifteen common Drosophila populations (Chandler et al. 2012). 

Although flies might discriminate for some yeasts, alternative species are likely to 

compensate when the favourite food is absent (Dobzhansky et al. 1956). Further, it has long 

been known that flies are not only associated with yeasts but also bacteria (Baumberger 

1917). The bacterial gut commensals Lactobacillus and Acetobacter are indirectly involved in 

yeast-fly associations by enhancing the flies’ appetite for dietary yeasts in response to amino 

acid deprivation (Leitao-Goncalves et al. 2017). Although bacterial volatiles generally trigger 

a different set of odour receptors in the fly, Drosophila is also attracted to volatile amines 

released during bacterial decomposition of organic matter (Min et al. 2013). Throughout the 

literature a subset of volatiles (Table 1) has been suggested to act as semiochemicals, 

mediating fruit fly attraction. These volatiles are not only produced by a range of yeasts but 

also by bacteria and some fruits: 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12 
 

 Small quantities of acetic acid are released during fermentation by yeasts, but the 

accumulation of acetic acid is more commonly a result of oxidative fermentation of ethanol 

by acetic acid bacteria. Although ambiguous in its role as fruit fly attractant, acetic acid can 

be a very effective lure for the vinegar fly D. melanogaster, enhance mating success and 

stimulate oviposition (Joseph et al. 2009, Cha et al. 2012, Gorter et al. 2016). Other key 

volatiles for Drosophila attraction, namely 3-methyl butanol and acetoin also comprise major 

volatiles produced by the human skin microbiota, for example by Staphylococcus epidermidis 

(Verhulst et al. 2009). Therefore, Drosophila attraction to a particular substrate is likely the 

result of microbial activity, involving yeast and/or bacteria and both microbes are potentially 

dispersed by the fly. Lastly, O’Conner et al. (2014) hypothesised that the adaptive radiation 

of Drosophila populations endemic to Hawaii was linked to plant colonisation with symbiotic 

yeasts, and that flies might be radiating with the microbes rather than host plants themselves. 

Recent studies testing host plant specificity of cactophilic D. majovensis state that olfactory 

preference for the plant species can shift in response to plant-microbe and microbe-microbe 

interactions thus emphasising the importance of each partner to volatile composition in this 

three-way interaction (Date et al. 2017). While yeasts might play a role in Drosophila 

phylogenetic diversification, there are no data to suggest that yeast speciation coevolved with 

Drosophila or flying insects in general, as yeasts evolved before flying insects emerged. 

 

Although a few studies have provided evidence that interactions between specific Drosophila 

and S. cerevisiae isolates may be classed as a facultative mutualism, there is no evidence to 

support the claim that this may be generalised further. At present there is no compelling 

evidence to reject the null hypothesis that general interactions between Drosophila and 

Saccharomyces are either coincidental, fortuitously resulting from pre-existing traits, i.e. this 

interaction is an exaptation. At most the evidence supports a one-way interaction in terms of 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 
 

benefits for Drosophila. If yeast volatile production were an adaptation acting to attract 

insects, then this would have to be classed as a generalist approach, targeting a broad range of 

flying vectors (Table 1) including wasps, moths and beetles in addition to Drosophila. Taking 

a generalist approach in enhancing odours to attract a variety of vectors rather than relying on 

one species for dispersal seems a strategy that selection would more readily operate on, but is 

a more elusive idea to test, and there is no evidence that flying insects other than Drosophila 

derive fitness benefits from their association with yeasts.  

 

It is desirable to consider experiments that could rigorously test hypotheses regarding the 

nature of interactions between yeast and flies. The facultative nature of these associations 

makes such experiments hard to conduct. Ultimately these would need to assay the fitness 

benefits and costs of specific associations. Buser et al. (2014) have done this in a limited way 

and found different extents of yeast fitness (measured by dispersal) among isolates. First one 

would need to assay multiple combinations of fly and yeast genotypes to evaluate the space 

over which both fly and yeast fitness were increased: if this were large, a more general claim 

for a mutualistic interaction would be supported. This is a huge task. Another approach is to 

evaluate the degree to which these interaction and fitness benefit traits are malleable. If these 

traits change readily over a few generations, this suggests that such associations are not acted 

on strongly by selection: i.e. they are ephemeral, just like the fruit that yeasts and Drosophila 

temporarily co-inhabit.  
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CAPTIONS 

Figure 1: Volatile production in yeast. Linking Ehrlich-pathway with fatty acid biosynthesis 

and preferential fermentation (in the presence of oxygen). ATF: Alcohol acyl transferase; 

CA: Acetyl-CoA carboxylase 
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