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Abstract

This thesis details the synthesis and characterisation of ruthenium metal complexes

containing functionalised ferrocene β-diketonate ligands. The anticancer and 

antimicrobial potential of these complexes has been explored and structural activity

relationships investigated through further mechanistic investigations.

A library of functionalised ferrocene β-diketonate ligands were synthesised and used 

in the formation of two libraries of ruthenium complexes. The first series of

complexes consist of organometallic ruthenium(II) arene complexes and the second

series comprising of ruthenium(II) bis-bipyridyl coordination complexes. Detailed

synthetic routes are outlined and all complexes are fully characterised by 1H NMR

spectroscopy, 13C [1H] NMR spectroscopy, mass spectrometry and elemental

analysis. X-ray crystallographic data was obtained when possible.

The complexes were screened for their activity against one healthy and two

cancerous cell lines; the ruthenium arene complexes were found to be highly

selective towards the cancerous cell lines while the ruthenium bis-bipyridyl

complexes were found to possess potent toxicity towards all cell lines. Selected

complexes from each series were then studied in a low oxygen environment which

caused a reduction in the cytotoxicity of the complexes. The antibacterial and

antifungal properties of the two series of ruthenium complexes have also been

assessed. Mechanistic studies have been conducted on selected complexes in the

form of hydrolysis, hydrophobicity, biomembrane CV and comet assay in order to

deduce a possible mechanism of action and mode of transport of these complexes.
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1.1 Cancer

Cancer is a disease which affects almost everybody’s lives in one way or another,

whether it be through a personal diagnosis, or a family member or friend who is

fighting the disease. In Great Britain the incident rates related to cancer have steadily

increased since the mid-1970s by 23% in males and 43% in females to the point

where every two minutes someone is now diagnosed. The UK had more than 440

deaths related to cancer every day in 2012, which is more than one person every

four minutes, and accounted for a quarter of all deaths, with those figures increasing

to more than half in people aged over 75.1 The most common forms of cancers are

breast, lung, prostate and bowel cancer which together account for 54% of all cancer

cases.1 In males, the most common case is prostate cancer accounting for 27% of all

cases and, in females, breast cancer is the most common totalling 29% of all cases.2

Cancer services cost the NHS £5 billion annually, but including costs due to loss of

productivity, society as a whole is losing £18.3 billion.3 Although these statistics look

bleak, recent findings have now shown that 50% of cancer patients are surviving for

ten years or more after treatment.4 This is almost certainly due to the increase in

research effort into combating the disease, however the UK survival rates are still

lacking in comparison to other less wealthy countries.3

Cancer is a disease which involves the alteration of the cellular genome causing the

growth of a tumour.5 The expression or function of genes controlling cell

differentiation and growth are affected by these alterations and form cancer genes

called oncogenes, with dominant gain of function (rapid growth), and tumour

suppressor genes, with recessive loss of function. These cancer genes control cell

mitosis which is a process of cellular growth through cell division. If one or more of

these genes has a mutation then the cell will divide uncontrollably and allow cells

which would usually undergo cell death to proliferate.6 This can lead to the

formation of either a benign tumour which is easily treated and not life threatening,

or a malignant tumour which can be difficult to treat as they can undergo the process

of metastasis, allowing the flow of cancerous cells into the bloodstream. These

metastasising cells can be carried to various other parts of the body where they may

attach to tissue and proliferate.7 There are many different forms of cancer
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depending on what type of cell is affected. To correctly combat the cancer an

appropriate form of cancer therapy must be used, sometimes in tandem with

another. These include surgery, radiotherapy, chemotherapy, immunotherapy and

hormonal therapy.8

1.2 Metal Based Drugs

The use of metal based medicine has been found to date back thousands of years to

the early days of civilisation. To sterilise water, the famous Greek physician

Hippocrates used mercury and the ancient Egyptians used copper for the same

application. China has records of gold being used in medical applications dating back

to 2500 BC but it was not until the discovery of Salvarsan in the 1900s that metal-

based drugs started to make an impact on modern medicine.9

Salvarsan was first produced in 1910 by Ehrlich as a remedy for syphilis and is

regarded as the introduction of targeted chemotherapy to the medicinal community.

The arsenic based compound is formed from the reaction of 3-nitro-4-

hydrophenylarsonic acid with dithionite which simultaneously reduces both the NO2

group to NH2 and AsV to AsI. Ehrlich originally thought the structure was a dimer

bound together via a double bond but it has since been found to actually form

trimers and pentamers (Figure 1.1).10

Figure 1.1 Structures of Salvarsan10

The early 20th century paved the way for the modern use of gold in medicine, termed

chrysotherapy, when Professors Ander-Jean Chrestien and Pierre Figuier described

the chemical formulation of many gold compounds and determined them valuable

in the treatment of tuberculosis.11 Robert Koch’s observation that gold cyanide

exhibited antibacterial effects in vitro against tubercle bacilli started a 40 year long
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search for gold derivatives which could be used in the treatment for both human and

bovine strains of the bacteria.12 The assumption that rheumatoid disease was similar

to tuberculosis created the chance discovery that gold compounds were effective at

treating rheumatoid arthritis.13 The most frequently used drugs were

aurothioglucose and sodium aurothiomalate which are polymeric and must be

administered by intramuscular injection. An oral drug became available in the 1970s

with the discovery of a monomeric gold(I) phosphine drug called Auranofin™ (Figure

1.2).14

OAc

S

AcO

AcO

OAc

Au

PEt3

Figure 1.2 Auranofin14

There is now a diversity of metal based compounds which have successfully been

used to combat a range of illnesses and diseases such as malaria, blood diseases and

trypanosomiasis to name a few.15 Undoubtedly the biggest breakthrough in the field

of metal based drugs came with the discovery of the platinum based anti-cancer

drug, cisplatin.

1.3 Cisplatin

In 1965, Barnett Rosenberg was investigating the effects of electromagnetic

radiation on mammalian and bacterial cells to see if either the magnetic or electric

fields altered the cell division process. His work consisted of using platinum

electrodes on Escherichia coli grown in an ammonium chloride buffer, but the

applied field caused the bacteria to appear as abnormally long filaments rather than

the expected short rods. It was found that this phenomenon was due to the

electrolysis products formed from the use of the platinum electrodes, one of which

was cisplatin [cis-diamminedichloroplatinum(II)] (Figure 1.3).16 Analysis of cisplatin

showed that it had been synthesised before by Peyrone in 1845 under the name



Introduction Chapter 1

5

Peyrone’s salt.17 However, Rosenberg was the first to test cisplatin’s anti-cancer

properties and it has since had widespread use in combating many forms of cancer

including head and neck, cervical, ovarian, lung and especially testicular cancer.18

The overall cure rate for patients with testicular cancer who are treated with

cisplatin is greater than 95% and even 80% for the metastatic form.19

Figure 1.3 Cisplatin16

When in the bloodstream, cisplatin takes advantage of the change in chloride

concentration between the inside and outside of its target cells. The high chloride

concentration (100 mM) outside of the cell prevents aquation of the chloride leaving

groups. Intact cisplatin molecules can then enter the cell primarily through the

copper transporter CRT1 transmembrane channels.20,21 Inside the cell, the chloride

concentration is much lower (4-20 mM) and therefore cisplatin can become

activated by a series of spontaneous aquation reactions. The chloride ligands are

substituted with water ligands to form a charged complex which cannot readily leave

the cell. The monoaquated species is highly reactive and susceptible to cytoplasmic

inactivation by intercellular components but its formation is rate limiting in the

interaction with nucleophiles inside the cell.22 In vitro experiments on the

monoaquated species have shown that it is involved in no less than 98% of the DNA

binding in the cell nucleus.23

Figure 1.4 Molecular structures of a guanine, b adenine and c cytosine. Arrows
indicate potential binding sites.23
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The platinum binds to one of the available bases on DNA, the N7 of guanine is the

preferred initial binding site as it is the most nucleophilic but it is also possible to

bind to the nitrogen lone pairs on cytosine and adenine (Figure 1.4).23 In order for

cisplatin to be effective against cancer cells it must bind to two sites on DNA, forming

a bifunctional adduct. This can occur in one of two ways, either directly from the

monofunctional adduct or the aquation of the second chloride ligand and

consequently binding to a second DNA base.24 Guanine-guanine intrastrand adducts

are formed approximately 65% of the time and adenine-guanine intrastrand 25%.25

When cisplatin forms these intrastrand crosslinked DNA structures it distorts the

DNA duplex causing it to bend towards the major groove, exposing the minor groove

surface. Proteins such as high mobility group (HMG) box proteins can bind to this

exposed surface, leading to cell death/initiation of DNA damage repair (Scheme

1.1).26 Although cisplatin is a very popular and effective anti-cancer agent, it is highly

toxic towards healthy organs, particularly the kidneys and gastrointestinal tract.27

Hence, work has since been done in an attempt to develop cisplatin analogues which

retain their cytotoxicity but are less harmful towards healthy cells.

Scheme 1.1 Cytotoxic pathway for cisplatin
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1.4 Further Generations of Platinum Based Anti-cancer Drugs

Carboplatin (Figure 1.5 a), also invented by Rosenberg, is another platinum based

compound which has gained widespread approval for use on a range of different

cancers.28,29 It was designed to minimise the toxicity related to the rapid aquation of

cisplatin’s chloride leaving groups, causing unintended and harmful biological

interactions.30 The bis-carboxylate bidentate ligand undergoes substitution much

slower than the chloride ligands as it is much more stable and therefore shows

reduced toxicity as the drug has more time to reach the target cells. This is

advantageous in cancer therapy as although its cytotoxicity is an order of magnitude

lower than that of cisplatin, carboplatin can be administered in much higher doses

due to its less toxic side effects, resulting in an increased cancer cell death rate.31 As

carboplatin and cisplatin have very similar activities and modes of action, the cancer

cell lines resistant to cisplatin will also not be affected by carboplatin.

Figure 1.5 Molecular structures of a carboplatin,28 b satraplatin32 and c oxaliplatin35

Satraplatin (Figure 1.5 b) is a platinum (IV) based anti-cancer drug rationally designed

to accommodate two axial acetate groups, increasing the lipophilicity of the

compound, which in turn makes it the first orally bioavailable platinum analogue.32

With comparable efficiency to many well established platinum drugs, activity against

cisplatin resistant cell lines in vitro and low toxicity levels similar to that of

carboplatin,33 satraplatin could possibly be a highly successful drug if it is passed

through its current phase III trials.34

Oxaliplatin (Figure 1.5 c) was the first approved drug that was able to combat

cisplatin resistant cancer strains, particularly colorectal cancer where it is active
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against six of the eight cancer cell lines.35 This activity is attributed to the bulky

diaminocyclohexane moiety which is present after aquation.36

The success of cisplatin and its analogues caused much of the early work on metal

based cancer therapy to be developed based on their interactions with DNA. It has

since become apparent that many other metal complexes, such as ruthenium, can

show similar activity to cisplatin without necessarily behaving in the same manner.

1.5 Ruthenium Based Anti-Cancer Compounds

Ruthenium is a popular candidate in the search for new metal based anticancer

drugs. The flexible and easily tuneable properties of ruthenium complexes has

facilitated the formation of potent cytotoxic complexes active against a wide range

of cancer cell lines, while also being relatively benign towards healthy cells. There

are several important properties that ruthenium complexes possess which make

them particularly attractive candidates for cancer therapeutic applications;

1) Geometry

Ruthenium complexes, like many other metal scaffolds, can cover more biologically

relevant chemical space in comparison to organic compounds. Their octahedral

coordination geometry facilitates the organisation of substituents around the metal

centre, increasing the number of spatial positions which it is possible to occupy. For

example an octahedral centre with six different ligands is able to adopt 30

stereoisomers.37

2) Ligand Exchange

The rate of ligand exchange can play a large role in determining a complex’s

biological activity as very few metal complexes reach their intended biological target

site without being modified to some degree.38 Ruthenium(II) and ruthenium(III)

complexes have similar ligand exchange rates to that of platinum(II) complexes

which is typically in the range of minutes to days when a small molecule such as

water is considered.39, 40 This kinetic stability and resistance to rapid equilibrium

reactions allows their ligand exchange time scale to mimic that of many cell division
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processes, and is therefore thought to be a key factor which contributes to their

antineoplastic properties.41

3) Oxidation States

Variations in the oxidation state of ruthenium between (II), (III) and (IV) can be

achieved under physiological conditions and play a very important role in allowing

the complexes to exist in biological fluids. By the appropriate choice of ligands, it is

possible to control and stabilise the different oxidation states of the metal centre

and tune the redox potential of the complexes.42, 43 Compared to ruthenium(II)/(IV),

ruthenium(III) complexes tend to be more biologically inert and can be administered

as “pro-drugs” which undergo a reduction or oxidation process inside the body. Such

a reduction can be achieved inside tumours where the oxygen concentration is low

due to their high metabolism. This creates an internal reducing environment that

activates the pro-drug and subsequently increases the tumour selectivity of the

compound.44

4) Iron Mimicking

It has been suggested that ruthenium has the ability to mimic iron in binding to

proteins such as albumin and transferrin (Figure 1.6), which are iron-carriers present

in blood plasma, in order to mediate the uptake of ruthenium into cancerous cells.45

Ruthenium (and some other metal complexes) can strongly bind to transferrin via

the two iron(III) binding sites, and as transferrin in human serum is only 30%

saturated with iron, this leaves the remaining 70% of the sites vacant and free to

bind to other metal ions.46,47 Tumours require increased amounts of iron for growth,

metabolism and development, hence there are higher levels of transferrin receptors

on their surface compared to healthy cells.48 The iron mimicking potential of

ruthenium complexes therefore allows an increase in their selectivity, with in vivo

studies showing a 2- to 12-fold increase in ruthenium concentration present in

cancerous cell over healthy cells, increasing their cytotoxic potency while

simultaneously decreasing general toxicity.49 However, it should be noted that this

area is still under debate due in part to the rather sterically hindered binding sites

on the transport proteins.
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Figure 1.6 Molecular structures of Fe(III) binding site on transferrin45

1.5.1 NAMI-A

NAMI-A (imidazolium trans-imidazoledimethylsulfoxidetetrachlororuthenate,

Figure 1.7), was the first ruthenium complex to enter clinical trials and has shown a

metastasis reduction of up to 100% in preclinical models including Lewis lung

carcinoma, TS/A mammary adeno carcinoma, MCa mammary carcinoma, b16

melanoma and H460M2 lung cancer.50-51

Figure 1.7 NAMI-A50

In vitro testing showed low levels of cytotoxicity from cisplatin-like interactions with

DNA and has suggested that its activity is related to disruptions with the G2/M phase

of the cell cycles leading to cell cycle arrest, inhibiting proliferation.52 Furthermore,

NAMI-A has been shown to prevent tumour cells from spreading to surrounding

healthy tissue by increasing the extracellular matrix around tumour blood vessels

and also increasing the capsule thickness surrounding the primary tumour.

Toxicology studies on dogs and mice have also yielded promisingly low results.53
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1.5.2 KP1019

KP1019 (indazolium bisindazoletetrachlororuthenate, Figure 1.8) is another

promising ruthenium based anti-cancer drug which has shown good results from

phase I clinical trials, being particularly effective against colorectal tumours, most

excitingly the chemoresistant MAC15A colon carcinoma.54

Figure 1.8 KP101954

After incubation with KP1019, the nucleus of cells were found to harbour 55% of the

total intracellular ruthenium,55 which is considerably greater than that of many other

metal based drugs such as cisplatin (less than 10%).56 This efficient uptake into cells

increases the amount of damage and oxidative stress towards DNA, causing

apoptosis towards cells also at the primary tumour site, exhibiting more than just

the anti-metastatic properties from NAMI-A.57 With respect to its mechanism of

action it is typical of many metal based anti-cancer drugs, becoming more cytotoxic

after reduction, and undergoes similar interactions with DNA to that of cisplatin but

with lower intensity.58 However, due to transport issues in the bloodstream arising

from the low water solubility of KP1019 it has been superseded by KP1339, which is

the sodium salt of KP1019, and therefore has increased solubility.59

1.5.3 Ruthenium Arene Complexes

Organometallic ruthenium complexes have been extensively studied for their use in

cancer therapeutics since Sheldrick et al. first reported the biological applications of

half-sandwich ruthenium complexes with piano stool geometry, demonstrating that

η6-arene ruthenium(II) complexes containing L-alanine and L-alanine methyl ester

are able to coordinate to the N7 nitrogen atom of guanine derivatives (Figure 1.9).60
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In the decades following this discovery, η6-arene ruthenium complexes have formed

some of the most promising anticancer candidates. Their structural activity

relationships have been scrutinised and their structures honed in attempts to

understand their mechanism of action and improve their cytotoxicity.

Figure 1.9 η6-arene-ruthenium(II) L-alanine and L-alanine methyl ester complexes60

RM175 ([(η6-C6H5C6H5)RuCl(H2NCH2CH2NH2-N,N′)]+ [PF6]−, Figure 1.10) is a

ruthenium-arene complex specifically designed to combat cancer through its DNA

interactions and is one of many “piano stool” structures which have been produced

and studied by Sadler et al. Existing as ruthenium(II), this does not follow the

mechanism which is seen from the ruthenium(III) complexes in which the reduction

of the metal causes its activation.61, 62

Figure 1.10 RM17561

These types of ruthenium complexes are thought to aquate much faster than

cisplatin, resulting in a product that will react rapidly with guanine.63 DNA

interactions with complexes with non-single ring arene ligands can involve a

combination of different forms of binding to DNA (Figure 1.11). Besides the typical

binding to DNA via the guanine N7 position, the arene ligands give the drug scope

for non-covalent, hydrophobic interactions with DNA and the possibility of arene

intercalation and minor groove binding. Sadler et al. studied the interaction of these
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complexes with guanine derivatives in vitro and a crystal structure was determined

which demonstrates the intermolecular π-π stacking between the pendant phenyl 

ring and the guanine base, along with hydrogen bond interactions between the NH

of the ethylendiamine and guanine O6.61

Figure 1.11 Interactions between RM175 and ethyl guanine61

In vitro testing has shown RM175 to exhibit comparable, and in most cases greater,

cytotoxic effects in comparison to those of carboplatin with minimal cross-resistance

from platinum based drugs.64 RM175 also acts in a similar way to NAMI-A as there is

a significant delay of tumour growth observed in vivo.65

RAPTA-T ([Ru(η6-toluene)Cl2(PTA)], Scheme 1.2), developed by Dyson et al., is

another ruthenium organometallic complex that adopts the “piano stool”

conformation. It belongs to the RAPTA series of complexes where a characteristic

PTA (1,3,5-triaza-7-phosphoadamantane) ligand is present in place of the

ethylendiamine used by Sadler et al.,66 and it is this PTA moiety which is responsible

for the drug’s biologically active properties in the low oxygen environment of solid

tumours. In vitro testing showed almost no damage was caused to DNA at pH > 7,

which is the pH region in which healthy cells grow, whereas at pH < 7 there was

prevalent damage observed towards DNA.67 Therefore, at the low pH levels inside

the tumour, the PTA ligand can become protonated (Scheme 1.2), and therefore

activated, selectively causing damage towards the DNA of cancerous cells.68
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Scheme 1.2 Hydrolysis and protonation of RAPTA-T leading to DNA damage68

Even though this is a ruthenium(II) organometallic complex, it exhibits similar anti-

cancer behaviour to that of NAMI-A, which is a ruthenium(III) complex. They are both

active towards secondary metastasis tumours, such as MCa mammary carcinoma,

but are not active with regard to the primary tumour site.69 They also show very low

levels of toxicity and pharmacokinetic studies show that, in the case of RAPTA-C,

ruthenium is rapidly removed from the organs and bloodstream.67

1.5.4 Ruthenium Polypyridyl Complexes

Ruthenium complexes with pyridyl-based ligands are of great interest in the field of

inorganic medicinal drug applications. The combination of the potential therapeutic

properties and useful photophysical diagnostic capabilities combine into what is

known as a theragnostic agent. As well as imparting the fluorescent capabilities to

the complexes, which facilitate the possibility of monitoring cellular accumulation,

trafficking, biodistribution and even the characterisation of cancer cells, the

multidentate polypyridyl ligands confer shape and chirality which can be customised

to achieve increased DNA/biomolecule binding.70-72 The structure and chemical
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composition of DNA provides many potential binding modes for molecular

substrates with binding interactions being either reversible or irreversible.73

Irreversible binding

“Classical chemotherapy”, such as that observed from cisplatin and its derivatives, is

based on the induction of DNA damage through a molecule forming a covalent bond

to the phosphodiester backbone, sugar residue or nucleic bases which make up DNA.

Cancer cells are not able to correctly deal with the molecular irregularity caused by

this binding event and consequently undergo cell cycle arrest.74

Reversible binding

Interest is increasing in coordination complexes that reversibly bind to DNA. These

systems achieve successful binding through the three-dimensional arrangements of

ligands around the metal centre and, as ligands are easily changed or modified, allow

control over the binding affinity, selectivity, hydrophobicity and cellular uptake.

However, ligand choice does not only play a part in molecular binding, the astute

pairing of ligands and metal centres can tune the overall photophysical properties of

the complex, a property which is prevalent in many octahedral d6 metal complexes

containing polypyridyl ligands.75 There are several reversible binding motifs that

these systems can exploit:

I. Electrostatic interaction. A vast number of coordination complexes are

charged, the cationic portion of these complexes have the ability to

associate with the negative charge of DNA biopolymer. Simple metal

complexes (such as [Ru(bpy)3]2+) rely solely on this weak electrostatic

binding interaction to interact with DNA, but this offers very low binding

affinity. For larger and more complex compounds, the electrostatic

interaction only contributes slightly to the overall binding affinity as they

predominantly recognise DNA through other, stronger, binding modes.

II. Intercalation. One such binding mode is intercalation, which involves the

overlap of the π system of planar aromatic compounds and DNA bases 

upon insertion of the compound between the DNA base pairs. Enforced

by van der Waals, hydrophobic and electrostatic interactions,
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intercalation can massively distort the DNA double helix, causing it to

unwind and increase in length.76-78

III. Groove binding. It is also possible for compounds to reversibly bind to

DNA via association within the major and minor grooves around the

double helix. Molecules which are able to associate to DNA through this

binding mode often span many base pairs and have high sequence-

selective recognition, dictated by a combination of specific hydrogen

bonding motifs, van der Waals, hydrophobic and electrostatic

interactions.79-81

Besides the more “classical” methods of inducing cancer cell death through DNA

binding, there are multiple different approaches to the development of ruthenium

polypyridyl complexes which exploit their photophysical and photochemical

attributes for use in the light-mediated treatment of cancer, some of which are

shown in Figure 1.12.82-84

Figure 1.12 Flow chart demonstrating many of the potential photochemical and
photophysical mechanisms which lead to a therapeutic response from ruthenium

polypyridyl complexes82
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One such photosensitiser (PS) designed to be used in photodynamic therapy (PDT) is

TLD-1433 ([Ru(dmb)2(IP-TT)]2+ dmb = 4,4’-dimethyl-2,2’-bipyridine, IP-TT = 2-

(2’,2’’:5’’,2’’-terthiophene)-imidazo[4,5-f][1,10]phenanthroline) reported by

McFarland et al.,85 a ruthenium(II) polypyridyl complex containing an

α-oligothiophene moiety (Figure 1.13) which is entering phase Ib clinical trials

against non-muscle invasive bladder cancer.86-88 This complex, and many of its

analogues, have been shown to be excellent DNA binders with light-sensitive

cytotoxic activity, exhibiting no DNA interference in the dark but with IC50 values in

the low micromolar range against HL-60 cells when exposed to visible/red light. A

major part of this activity is due to the α-oligothiophene ligand as these small organic 

molecules are good 1O2 generators and biophotosensitisers. This combination of

α-oligothiophene and ruthenium polypyridyl complex form a system capable of 

acting as dual type I/II photosensitiser, meaning that after light absorption the

reactive excited state complex can transfer an electron (type I) or energy (type II) to

ground state oxygen, forming ROS of either superoxide radical anions or singlet

oxygen, respectively, depending on the local oxygen environment.89

Figure 1.13 Molecualr structure of TLD-143385

A particularly exciting development into TLD-1433 was uncovered when the

compound was incubated with the iron-binding protein transferrin, forming a new

TLD-1433-transferrin complex with greatly improved biomedical properties. These

enhancements increased the efficiency of TLD-1433, more than doubling the
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maximum tolerated dose. The PDT efficiency of the drug was also increased through

greater photostabilty and longer photoactivation (increased ROS generation),

extension of its absorbance window into the red/near infrared region of light for

deeper tissue penetration, and reduced cell toxicity in the dark.86, 87

Vidimar et al. has had some excellent results in the fight against cancer using

ruthenium(II) bis-phenanthroline complexes, work which has built upon the

demonstrated structural-activity relationship between ruthenium(II) compounds

showing a general increase in the IC50 value when bound to a phenanthroline

ligand.90 It was for this reason that a second phenanthroline ligand was used along

with electron-withdrawing and -donating substituents bound to the ligand (Figure

1.14). Complexes were tested against HCT116 (human colon cancer cell line) and it

was shown that the complex containing the electron-withdrawing NO2 group (IC50 <

2 µM) is not only more active than the electron-donating NH2 equivalent (IC50 2-4

µM) but also more active than cisplatin (IC50 8 µM). Studies into their mode of action

have shown that they trigger cell death by the production of ROS and the activation

of caspase-8 (a protein that plays a central role in the execution-phase of cell

apoptosis) as blocking these pathways gave a significant reduction in the activity of

each compound.91, 92

Figure 1.14 Ruthenium(II) phenanthroline complexes90
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Ruthenium complexes with distorted octahedral geometry have been shown to

undergo a photo-irradiation initiated ligand dissociation pathway to form aqua

species which can bind to DNA in a similar fashion to that of cisplatin.93, 94 This is one

type of light-mediated treatment known as photoactivated chemotherapy (PACT).

Unlike PDT, PACT has no reliance on the presence of oxygen in its mechanism of

action, which is one of the main drawbacks of PDT due to the low oxygen conditions

inside hypoxic tumours. Glazer et al. have used this concept in the formation of

ruthenium bis-bipy complexes along with a third ligand causing a distorted strain by

the use of methyl substituents (Figure 1.15).95

Figure 1.15 Strained ruthenium(II) bis-bipy complexes95

When exposed to >450nm light irradiation they were able to observe the

photoejection of the methylated ligands from both of the strained complexes

(Scheme 1.3) and decided to study the activity of the newly formed aqua species on

biomolecules. It was found that DNA damage was observed strictly from the

complexes irradiated with the aforementioned light irradiation (including the

unstrained complex). The complexes were then tested in vitro against cancer cell

lines HL60 (leukemia) and A549 (lung cancer) to see if the DNA damage would

correlate to an increased anti-cancer activity. The complexes were incubated with

the cells in dark conditions before irradiation with >450 nm light for 3 minutes,

followed by further incubation. All three complexes showed little-to-no toxicity

(IC50 >100 µM) in the dark over the same period of incubation but the compounds

exposed to the light irradiation gave a huge increase in activity, with IC50 values
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recorded between 1-2 µM for the strained complexes against both cell lines (more

active than cisplatin and the unstrained complex).96

Scheme 1.3 Photoejection process of the methylated ruthenium(II) bis-bipy
complexes96

Structural-activity relationships of polypyridyl ligands have been explored by

Schatzschneider et al. Varying the N^N ligand in a series of [Ru(bpy)2(N^N)]2+

complexes (N^N = bpy, phen, dppz, dppn) and studying their cytotoxicity towards

HT-29 and MCF-7 cancer cell lines the authors found there to be a positive

correlation between the ligand size and anticancer activity, with the

[Ru(bpy)2(dppn)]2+ complex (Figure 1.16) displaying cytotoxicity of a similar order of

magnitude to cisplatin.97 Further work on these complexes by Li et al. has shown that

they posses the capability to efficiently photoinactivate the bacteria E. coli. The

combination of these two key observations may be due to the complexes’ ability to

produce reactive oxygen species capable of cleaving DNA after photoexcitation,

demonstrating the potential for these types of complexes to be used as

photosensitisers in photodynamic antimicrobial chemotherapy (also known as

PACT).98-100 Yet this is one of a plethora of cases of antibacterial activity observed for

ruthenium polypyridyl complexes. Aldrich-Wright and Bolhuis have shown three

ruthenium(II) intercalators all exhibit antibacterial ability, with the Ru(dppz) complex

emitting the greatest activity against B. subtilis, S. aureus and, more notably, MRSA

strains of bacteria.101
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Figure 1.16 Cytotoxic and antibacterial agent Ru dppn97

A study into the mechanism by which a series of ruthenium(II) complexes that

contain β-carboline alkaloid ligands (Figure 1.17) generate their anti-proliferative

effects has been carried out by Xu et al. revealing that these complexes are able to

provoke ROS generation and autophagy followed by apoptosis in human cancer cell

lines. Additionally, they found that the cell membrane penetration abilities and in

vitro DNA binding affinities of these complexes correlated with the cytotoxicity, and

with CLMS studies indicating that these complexes accumulate mainly in the nucleus

of the cell. This reinforces the theory that the activity is due to DNA binding

interactions. However, the most active complex actually showed limited nuclear

accumulation but rather was found to be distributed throughout the cytosol,

suggesting that DNA binding may not be the sole cytotoxic mechanism.102 Their more

recent work involving a coordinated naturally occurring β-carboline alkaloid 

Norharman (9H-pyrido[3,4-b]indole) showed potent anticancer activity towards a

range of cell lines. Apoptosis, in this case, was shown to be induced by mitochondrial

dysfunction and ROS generation, with in vitro studies again showing DNA is a

potential cellular target.103
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Figure 1.17 Ruthenium(II) β-carboline alkaloid complexes103

1.6 Ferrocene in Cancer Therapy

Ferrocene (Figure 1.18) is a sandwich compound consisting of an iron atom bound

between two cyclopentadienyl ligands. Its discovery in 1951 is regarded by some as

the starting point for modern organometallic chemistry, with its stability in aqueous,

aerobic media, the availability of many derivatives, and its electrochemical

properties having made it an extremely popular choice for many biological

applications.104, 105 The anti-tumour activity of ferrocene takes advantage of its ease

of oxidation as it involves the radical induced electron transfer between itself and

another molecule, typically water, which will produce hydroxyl radicals to cleave

DNA strands.106

Figure 1.18 Ferrocene104

1.6.1 Functionalised Ferrocene

The incorporation of organometallic functionality on to a hormone was first explored

by Jaouen et al. in the 1980s by incorporating a variety of different metal complexes
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onto a protected estradiol steroid.107 The aim of labelling hormones with

organometallic moieties was to develop biochemical markers to detect an increased

amount of estrogen receptors which is associated with breast cancer.108 Among the

different species formed, the ferrocene-containing 17α-ferrocenyl-17β-estradiol 

(Figure 1.19) was found to be a strong receptor inhibitor and the cytotoxic activity

of ferrocenium showed the potential of functionalising drugs with organometallic

groups.109

Figure 1.19 Structure of 17α-ferrocenyl 17β-estradiol109

In 1996, building upon their previous discovery, Jaouen et al. synthesised the first

compound of ferrocene coupled with hydroxytamoxifen (Figure 1.20), the active

metabolite of tamoxifen, a popular breast cancer targeting drug.110,111 Incorporation

of a biologically active metal with a biologically active molecule resulted in a

collaborative effect which enhanced the anti-cancer properties of both species. The

hydroxytamoxifen moiety showed activity against hormone dependant and

independent tumours, whereas tamoxifen is only active towards the hormone

dependant strains,112 and the ferrocene imparts increased lipophilicity to increase

cellular uptake, leading to the oxidation of the iron atom core, facilitating the

formation of quinine methides which are highly cytotoxic.113
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Figure 1.20 Molecular structures of a hydroxytamoxifen and b ferrocifen110

The success of the work done by Jaouen et al. has spurred the search for more

ferrocene-based drugs/drug collaborations. Swarts et al. have produced a series

containing β-diketones (Figure 1.21) and investigated their antineoplastic activity

against human cancer cell lines. Their investigation showed that not only does the

redox potential of the ferrocenyl group determine the antineoplastic activity, but

also other features such as substituent chain length and relative acidity of these

complexes all contributed to its cytotoxicity. The most successful compound

(R = CF3) was found to be up to three times more selective than cisplatin in

decreasing cell growth and also showed considerable activity towards some cisplatin

resistant cell lines.114

Figure 1.21 Structure of ferrocene-containing β-diketones114

One of the most important classes of anti-cancer agents are thioureas,

aroylthioureas, N-nitrosoureas, diarylsulfonylureas and benzoylureas as they have a

wide range of activity against solid tumours.115 However, the low lipophilicity of

these compounds causes the need for high doses of the drug to be administered to

patients which is associated with adverse side effects such as the initiation of
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leukaemia and other diseases.116 Ferrocene-based N,N’-distributed thioureas (Figure

1.22) have been synthesised in an attempt to increase lipophilicity and decrease the

aforementioned side effects while at the same time reducing healthy cell toxicity.117

Figure 1.22 Ferrocenyl thioureas where R = phenyl groups117

While these compounds were not as active towards some ovarian cancer strains as

cisplatin they have in fact shown activity against some cisplatin resistant tumour

models. This is thought to be due to their different binding mode with DNA as

voltammetric measurements have suggested that they interact electrostatically with

the anionic phosphate backbone.117

Similarly, Huang et al. have recently built upon their own previous research into

ferrocene derivatives as anti-cancer drugs and developed some novel ferrocene

containing pyrazolyl complexes (Figure 1.23).118 They found that the drugs were not

quite as potent in vitro as cisplatin on the cell lines tested but still showed promising

results.119

Figure 1.23 Ferrocene containing pyrazolyl where R = N-alkyl118
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1.6.2 Ferrocene/Metal Drug Infusions

Some interesting work by Goswami et al. has focused on the photocytotoxic

properties of ternary copper(II) complexes containing ferrocene-conjugated

L-tyrosine reduced Schiff base and phenanthroline bases (Figure 1.24). These

complexes, designed to have a dual action of DNA binding and photosensitising,

showed much lower IC50 values in dark conditions (2.31-13.84 μM) against human 

cervical cancer cells in comparison to cisplatin (71.3 μM) and the phototoxic drug 

photofrin (41 μM) with a further reduction in those values of approximately 50% 

when exposed to visible light. Significant cytotoxicity was also observed towards

breast cancer cells with photo-induced DNA cleavage activity occurring in blue, green

and red light. Furthermore, complexes lacking the ferrocene moiety showed much

lower cytotoxicity and decreased activity to DNA photocleavage, demonstrating the

importance of the ferrocene in the medicinal application of these drugs.120

Figure 1.24 Phototoxic copper(II) complexes containing ferrocene120

The potential of ruthenium(II) arene complexes as anti-cancer drugs has been

previously discussed within this chapter. Auzias et al. have combined these

ruthenium complexes with ferrocene based ligands to produce novel anti-cancer

agents (Figure 1.25). In vitro tests on human ovarian cancer cell lines showed that

the diruthenium complexes were twice as active when compared to their

monorutheium counterparts, leading to the deduction that the ruthenium-arene
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motifs are responsible for the complexes activity. However, ruthenium complexes

linked by an alkyl chain did not show an increase in cytotoxicity over the

mononuclear analogues,121 This suggests that the different redox potential of

ferrocene is in part responsible for the increase anti-cancer effects. The IC50 values

obtained (14.8-49.5 μM) were greater than that of cisplatin (1.6 μM) towards the 

same cancer cell lines although these are generally low values for ruthenium anti-

cancer complexes, which are usually less active in vitro.122

Figure 1.25 Ferrocenoyl pyridine arene ruthenium complexes121

Building on the success of the antimetastatic ruthenium drug NAMI-A, a series of

ferrocene functionalised NAMI-A analogues (Figure 1.26) have been produced by

Walsby et al.123 Both metal components of the complexes were found to be crucial

to the overall biological activity, exhibiting a synergistic effect, with the water

solubility of the ferrocenylpyridine ligands vastly improving upon coordination to the

NAMI salt, which in turn activated the complexes in aqueous media. The ferrocene-

absent NAMI-Pyr was shown to be at least an order of magnitude less active against

SW480 colorectal adenocarcinoma cells (IC50 > 400 μM) than the NAMI-Fc complexes 

(IC50 35-69 μM) which have comparable cytotoxicity to that of the successful 

antineoplastic ruthenium(III) complexes KP1019 and NKP1339. 124-128 Further studies

revealed that the presence of the ferrocene in these complexes enhanced the

noncoordinate interactions with human serum albumin (hsA) protein and reduce the

formation of protein-coordinated species, increasing the bioavailability of the
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complexes through enhanced transmembrane transport. One of the most important

properties of NAMI-A is its anti-invasive effects. Migration assays carried out on the

NAMI-Fc complexes revealed that the ability to inhibit cell motility does not change

in the presence of the ferrocenylpyridine ligands. The antimetastatic behaviour of

these complexes, coupled with the cytotoxic properties, demonstrates the potential

of these drugs in future studies and also highlights the beneficial pharmaceutical

effects of the incorporated ferrocene.123

Figure 1.26 Ferrocene functionalised NAMI-A analogues123

Due to the huge success of platinum based complexes in cancer therapy, there has

been much interest into forming a successful platinum-ferrocene collaborative drug.

Dichlorido(ethane-1,2-diamine)platinum(IV) complexes and oxaliplatin derivatives

(Figure 1.27) have been synthesised by Keppler et al. and their activity tested in

cisplatin resistant/sensitive colon and ovarian carcinomas as well as non-small cell

lung carcinomas. The anti-proliferative effects of these compounds were found to

be greatest in the ovarian cancer cell lines with IC50 values in the low micromolar

range (0.84-2.3 μM) but in contrast the IC50 values found for the colon (2.7-46 μM) 

and lung carcinomas (24-84 μM) were in the intermediate range with the oxaliplatin 

derivatives possessing more cytotoxicity in all cases.129 It is worth noting that the

complexes reported by Keppler et al. are platinum(IV) metals whereas cisplatin and

oxaliplatin are in the +2 oxidation state, therefore the platinum(IV) complexes have

to be activated inside the organism by reduction so they cannot be assessed based

solely on their in vitro investigations.
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Figure 1.27 Example of a a dichlorido(ethane-1,2-diamine)platinum(IV) complex
and b an oxaliplatin derivative129

Recent work by Nieto et al. who were studying the anti-cancer activity of

heterometallic platinum(II) compounds with β-aminoethylferrocenes has yielded 

very promising results.130 They have demonstrated the synthesis and first cell culture

tests of ferrocene-platinum derivatives with one particularly exciting result (Figure

1.28). This cis-configured complex showed in vitro activity against multiple cancer

cell lines including human breast, lung, colon and cervical cancers with IC50 values in

the low micromolar range (1.7-2.3 μM) for all lines tested. What makes this complex 

exceptional is that its anti-proliferative activity is superior to that of cisplatin (1.9-26

μM), especially in the more drug resistant colon cell lines (2.3 μM compared to 

cisplatin’s 26 μM).130 Cell cycle studies have shown that these compounds undergo

a different mechanism of action than cisplatin but further investigations are required

to identify the specific mechanism and the exact biological target.

Figure 1.28 Heterometallic platinum(II) compound with β-aminoethylferrocenes130
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1.7 Aims and Objectives

This project aims to build upon the recent success of ferrocene-based ligands used

in conjunction with other metal complexes to enhance their anti-cancer activity. The

overall objective of this project is to synthesise novel metal complexes by binding

ruthenium metal centres to ferrocene through different bidendate β-diketonate 

ligands containing O- donor atoms (Scheme 1.4). The anti-cancer potential of the

synthesised complexes will be evaluated through cell line testing and further studies

will be undertaken to deduce any structural activity relationships.

The overall objectives are as follows:

 Synthesise a range of β-diketonate ferrocene ligands (Scheme 1.4, Route A),

varying their electronic and steric properties to maximise their anti-cancer

potential when incorporated into the complex. These will be fully

characterised using 1H NMR spectroscopy, 13C NMR spectroscopy, mass

spectrometry, micro-analysis and X-ray crystallographic studies.

 Synthesise a range of bimetallic metal complexes containing β-diketonate 

ferrocene ligands (Scheme 1.4, Route B/C), and fully characterise them using

1H NMR spectroscopy, 13C NMR spectroscopy, mass spectrometry, micro-

analysis and X-ray crystallographic studies.

 Investigate the anti-cancer potential of these complexes and ligands by the

use of several biological assays to determine their cytotoxicity and effect on

healthy cells.

 Structural activity relationships (SAR) of the metal complexes will be probed

further through studies to determine their hydrolysis and hydrophobic

properties, for example.

The β-diketonate ferrocene ligands will be formed from adapted versions of the 

synthetic routes used by Swarts et al. and Shi et al. (Scheme 1.4, Route A).114,131

The production of the ruthenium complexes will follow the synthetic routes

previously used by members of the McGowan group (Scheme 1.4, Route B)132 and

adapted methods from literature procedure (Scheme 1.4, Route C).133
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Scheme 1.4 Proposed starting synthetic routes for the formation of ferrocene
β-diketonate ruthenium metal complexes
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2.0 Ligand Synthesis

The ligands synthesised in this report have been prepared from adapted methods

used by Swarts et al.1 and have built upon the library of β-diketonate ligands which 

have previously been synthesised in the McGowan group.2,3 All ligands have been

fully characterised by 1H NMR spectroscopy, 13C [1H] NMR spectroscopy, mass

spectrometry and micro-analysis (Figure 2.1). X-ray crystallographic data has also

been obtained for all ligands where possible.

Fe

R

O OH

R = Me L1 3'-MePh L9 3',5'-ClPh L17 4-Py L25

CF3 L2 3',5'-MePh L10 4'-BrPh L18 2-Py L26

CHF2 L3 4'-FPh L11 3'-BrPh L19

3-Furan L4 3'-FPh L12 4'-IPh L20

2-Furan L5 2'-FPh L13 3'-IPh L21

Ph L6 3',5'-FPh L14 4'-OMePh L22

1-Naph L7 4'-ClPh L15 3'-OMePh L23

4'-MePh L8 3'-ClPh L16 4'-OEtPh L24

Figure 2.1 Synthesised β-diketonate ligands reported in this chapter

2.1 β-Diketonate Ferrocene Ligands 

2.1.1 Synthesis of β-Diketonate Ferrocene Ligands 

β-Diketonate ferrocene ligands have been produced via a Claisen condensation type

reaction from acetyl ferrocene with a range of benzoates and acetates in the

presence of sodium ethoxide (Scheme 2.1).4 All of the ligands were purified by

column chromatography to give pure solids with yields ranging from 20-96 %.
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Fe

O OH

R

Fe

O

H

Fe

O

EtO R

O

Fe

O O

R
OEt

Fe

O O

R

HFe

O O

R

H

Tautomerisation H+

OEt

OEt

Scheme 2.1 Claisen condensation mechanism for the formation of β-diketonate 
ferrocene ligands

2.1.2 NMR Characterisation of β-Diketonate Ferrocene Ligands 

The 1H NMR data of all the β-diketonate ligands (Figure 2.2) show a characteristic

methine singlet peak from the hydrogen in the centre of the enol which occurs

around 5.6-6.9 ppm. This was used to deduce whether or not the reaction was

successful. NMR samples were first prepared in chloroform-d but the obtained

spectra showed broad peaks (Figure 2.2). This was attributed partly to the

fluctuating nature of the ligands as they can undergo tautomerisation between the

cyclic enol and diketo forms. The use of more polar deuterated solvents were able

to stabilise the enol system through hydrogen bonding interactions, producing sharp

peaks in the NMR spectra (Figure 2.2).5
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Figure 2.2 1H NMR spectra (500MHz) for β-diketonate ferrocene ligand L11 in
varying deuterated solvents

The 1H NMR spectra of the ligands all follow the general trend (an example is shown

in Figure 2.3) with the highest chemical shifts in the region of 7.0-8.0 ppm which are

assigned to any aromatic hydrogens (i and J). The characteristic methine proton (f)

singlet peak is found in the region of 5.5-7.0 ppm. The hydrogens bound to the Cp

rings of ferrocene produce three peaks; two from the different proton environments

of the top Cp ring (b and c), typically found in the region of 4.5-5.0 ppm, and one

from the bottom Cp ring (a) where all protons are in the same environment and

therefore produce a large singlet peak in the NMR spectra in the region of 4.0-4.5

ppm. In the cases where alkyl moieties are present, the proton signals are found in

the region of 2.0-4.0 ppm.

Figure 2.3 1H NMR spectra (500 MHz, Acetone-d6) for β-diketonate ferrocene ligand
L11
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The 13C [1H] NMR spectra of the pure ligands also follow a general trend. The greatest

chemical shift arises from the carbonyl carbons (e and g) due to the deshielding from

the adjacent oxygen atoms; these peaks arise in the region of 175-195 ppm.

Quaternary aromatic carbon (h and k) peaks are in the region of 130-160 ppm and

protonated aromatic carbon (i and j) peaks arise in the region of 100-130 ppm. The

peak from the methine carbon (f) is in the region of 90-95 ppm which is slightly

higher than that of the carbons in the ferrocene Cp rings (a-d), found in the region

of 65-80 ppm. Any alkyl moieties present in the ligands show peaks in the NMR

between 20-30 ppm. Full assignments given in Chapter 7.

2.1.3 X-ray Characterisation of β-Diketonate Ferrocene Ligands 

X-ray crystallographic data was obtained for all ligands except L17 and L25. Ligands

L1,1 L2,1 L5,6 L67 and L268 had previously been synthesised but no crystal structure

was obtained. Crystals suitable for X-ray crystallographic analysis were obtained by

the slow evaporation of acetonitrile for all ligands apart from L2 and L3, which were

grown from the vapour diffusion of pentane into dichloromethane solutions;

red/orange crystals were obtained in all cases. A typical labelling scheme is shown in

Figure 2.4 and molecular structures of the ligands are shown in Figure 2.5. The

ligands crystallised into monoclinic cells in all cases except for L1, L5 and L23

(orthorhombic), L14 (triclinic) and L4 and L21 (tetragonal). Structural solutions were

performed in P21/c (L6, L10, L11, L13, L10, L22, L24 and L26), P21/n (L2, L3, L7-L9,

L12, L15 and L18), P212121 (L1 and L5), P42/n (L21), Pbca (L23), P-1 (L14), C2/c (L16

and L19) and I-4 (L4) with one molecule per asymmetric unit in all cases except L7

which possesses four molecules per asymmetric unit.
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Figure 2.4 Typical labelling scheme for all ligands. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

The ferrocene moiety adopts an eclipsed geometry in all cases (except L24 which

adopts a staggered geometry), which has been postulated to be the energetically

preferred conformer.9-11 All ligand molecules display a planar structure with angles

of 119-122˚ and bond lengths of 1.3-1.4 Å around the β-diketonate centre which is 

typical of the enol tautomeric form.12, 13 The O2-C13-C12 bond angle of L2 (125.5˚), 

L3 (126.2˚) and L7 (117.5˚) deviates from this general observation. In the case of L7,

the increased steric bulk and electronic repulsion of the naphthyl moiety may repel

O2, decreasing the O2-C13-C12 bond angle. The larger O2-C13-C12 bond angle of L2

and L3 may arise from potential hydrogen bonding interactions between the

CF3/CHF2 substituents and O2-H. Short intramolecular hydrogen bonding

interactions are observed between O-H…O at a distance of 2.4-2.5 Å (D…A) in all

cases which is characteristic for acetylacetone molecules in their enol formation.12,

13 Notable bond lengths and angles are shown in Table 2.1 and Table 2.2,

respectively.
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Table 2.1 Notable bond lengths for ligands. ESDs given in parentheses.

Ligand Bond Distance (Å)

O1-C11 O2-C13 C11-C12 C12-C13

L1 1.286(4) 1.304(4) 1.413(4) 1.393(4)

L2 1.291(7) 1.268(8) 1.420(9) 1.379(9)

L3 1.255(9) 1.313(12) 1.445(11) 1.342(11)

L4 1.311(4) 1.279(4) 1.384(4) 1.410(4)

L5 1.313(4) 1.296(5) 1.398(5) 1.397(5)

L6 1.292(3) 1.304(3) 1.397(4) 1.388(4)

L7 1.290(5) 1.306(5) 1.405(6) 1.383(5)

L8 1.265(6) 1.325(6) 1.428(7) 1.365(7)

L9 1.278(3) 1.316(3) 1.423(3) 1.372(3)

L10 1.270(2) 1.330(2) 1.433(3) 1.374(3)

L11 1.305(2) 1.293(2) 1.398(2) 1.400(3)

L12 1.264(3) 1.329(3) 1.439(3) 1.364(3)

L13 1.270(2) 1.325(2) 1.429(2) 1.376(2)

L14 1.280(3) 1.312(3) 1.417(3) 1.381(3)

L15 1.274(7) 1.332(7) 1.436(8) 1.355(8)

L16 1.263(2) 1.329(2) 1.441(3) 1.355(3)

L18 1.274(9) 1.319(10) 1.426(10) 1.360(11)

L19 1.265(2) 1.334(2) 1.439(3) 1.364(3)

L20 1.280(3) 1.323(3) 1.420(4) 1.372(4)

L21 1.295(5) 1.315(5) 1.410(6) 1.368(6)

L22 1.286(4) 1.304(4) 1.413(4) 1.393(4)

L23 1.264(3) 1.321(3) 1.436(4) 1.369(4)

L24 1.274(3) 1.316(3) 1.426(3) 1.375(3)

L26 1.286(3) 1.298(3) 1.414(4) 1.380(4)
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Table 2.2 Notable bond angles for ligands. ESDs given in parenthesis.

Ligand Bond Angle (˚)

O1-C11-C12 O2-C13-C12 C11-C12-C13

L1 120.1(6) 121.2(5) 120.7(5)

L2 119.9(6) 125.5(6) 120.3(5)

L3 121.9(7) 126.2(10) 117.9(9)

L4 121.2(3) 121.4(3) 119.7(3)

L5 120.1(3) 122.5(3) 120.0(3)

L6 120.5(3) 120.1(3) 121.2(3)

L7 120.2(4) 117.5(3) 120.6(4)

L8 120.5(4) 120.6(3) 120.8(4)

L9 120.7(2) 120.3(2) 120.0(2)

L10 120.9(2) 121.3(2) 120.2(2)

L11 120.7(2) 120.7(2) 120.3(2)

L12 120.8(2) 121.1(2) 120.8(2)

L13 120.3(1) 121.1(2) 119.4(1)

L14 120.6(2) 120.8(2) 120.2(2)

L15 120.2(5) 121.4(6) 120.5(5)

L16 120.6(2) 122.2(2) 120.2(2)

L18 120.5(7) 121.6(7) 120.2(7)

L19 120.8(2) 122.0(2) 120.7(2)

L20 120.6(3) 120.4(3) 120.6(3)

L21 120.0(4) 120.8(4) 120.6(4)

L22 120.8(3) 119.3(3) 119.2(3)

L23 120.8(2) 121.0(2) 120.4(2)

L24 121.1(2) 120.2(2) 120.0(2)

L26 120.5(3) 121.8(2) 120.1(3)
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L1 L2 L3 L4

L5 L6 L7

L8 L9 L10

L11 L12 L13
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L14 L15 L16

L18 L19 L20

L21 L22 L23

L24 L25

Figure 2.5 Molecular structures of ligands. Hydrogen atoms are omitted for clarity and thermal
ellipsoids at the 50% probability level.
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2.2 Conclusion

A library of ferrocene β-diketonate ligands with differing electronic and steric 

properties has been produced. These ligands have been fully characterised by 1H and

13C [1H] NMR, mass spectrometry and micro-analysis with X-ray crystallography data

being obtained for the ligands when possible. X-ray crystallographic structural

solutions were performed in monoclinic space groups for all ligand complexes except

for the L1, L5 and L23 (orthorhombic), L14 (triclinic) and L4 and L21 (tetragonal).

Ferrocene β-diketonate ligands show intramolecular hydrogen bonding between 

O-H…O at a distance of 2.4-2.5 Å (D…A) in all cases which restrains them into a planar

orientation and the ferrocene adopts an eclipsed geometry (except L24). Angles of

118-126˚ and bond lengths of 1.3-1.4 Å are observed around the enol centres which 

is expected from a planar system and similar to previously reported acetylacetone

molecules.12, 13 Ligands were used in the formation of ruthenium-based complexes

in the following chapters.
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3.0 Ruthenium(II) Arene Metal Complexes

Ruthenium compounds have been investigated in a range of medical applications

such as antimicrobial agents, nitric oxide scavengers, immunosuppressants and

antimalarials.1 Work in this chapter aims to build upon the “piano stool” like

ruthenium complexes with (N,N), (N,O) and (O,O) chelating ligands which have been

previously studied in the McGowan and Sadler groups, among others.2-4

Sadler et al. have worked widely in this area, producing ruthenium compounds as

potential anti-cancer agents.5, 6 The bulk of these compounds follow the same recipe

of a stable bidentate ligand, hydrophobic arene ligand and a single ligand exchange

centre which is commonly a halogen (Figure 3.1). The IC50 values for many of these

compounds were shown to be comparable, and in many cases superior, to that of

cisplatin and carboplatin against A2780cis (cisplatin resistant human ovarian

carcinoma) and A2780 (human ovarian carcinoma) cell lines.

Figure 3.1 Ruthenium complex backbone used by Sadler et al.2

Recent work from McGowan et al. has produced a series of Cp* diphosphine

ruthenium complexes with their activities biologically tested against A2780 (human

ovarian carcinoma) and HT-29 (human colon carcinoma).7 Hypoxic and normoxic

studies demonstrated activity in the nanomolar range with the most active

compound (Figure 3.2 a) producing IC50 values much lower than cisplatin in both

environments. Further work on ruthenium β-ketoiminato complexes (Figure 3.2 b)

from the McGowan group has yielded promising biological results by demonstrating

significant cancer cell death by apoptosis and single strand DNA breakage.8 The

compounds were found to be active against MCF-7 (human breast carcinoma), HT-29

(human colon carcinoma) and A2780 with some shown to be three times more active

than cisplatin towards A2780cis. Moreover, under hypoxic conditions the complexes
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showed high activity with some showing a direct correlation between a decrease in

oxygen concentration and activity.

Figure 3.2 Compounds previously synthesised by McGowan et al.7, 8

3.1 Synthesis of Ruthenium(II) p-Cymene Complexes

All β-diketonate ruthenium complexes were prepared by methods adapted from 

those which have been previously used in the McGowan group.9 Two equivalents of

ferrocene β-diketonate ligand were stirred at room temperature overnight with 

triethylamine and [p-cymRuCl2]2 in dichloromethane (Scheme 3.1). Complexes were

purified by column chromatography and obtained as orange micro-crystalline solids

in yields of 68-91 %.

Scheme 3.1 General synthetic pathway for ruthenium(II) compounds
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All complexes produced are novel (C1-C24, Scheme 3.1) and were fully

characterised by 1H NMR spectroscopy, 13C [1H] NMR spectroscopy, mass

spectrometry and micro analysis. X-ray crystallographic data was obtained for all

complexes except C2, C7 and C9.

3.1.1 NMR Characterisation of Ruthenium(II) p-Cymene Complexes

The 1H NMR spectra of all [(β-diketonate)(p-cym)Ru(II)Cl] complexes (Figure 3.3)

show the upfield shift from the ferrocene top face Cp protons as two broad triplets

(k) and two broad quartets (j), one proton per peak, at 4.2-5.0 ppm. Prior to the

complexation the ferrocene top face Cp ring gave only two signals in the NMR

spectra, two protons per peak, at 4.5-5.0 ppm, but due to intramolecular interactions

and loss of symmetry of the ligand upon complexation the protons exist in different

environments. Another characteristic shift from the complexation is the shift of the

methine proton (n) much further upfield (in the case of Figure 3.3, 0.6 ppm from 6.6

ppm to 6.0 ppm) in comparison to the free β-diketonate ligands.  

Figure 3.3 1H NMR (500 MHz, Acetone-d6) for ruthenium complex (red) and free
β-diketonate ligand (blue)
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The 13C [1H] NMR spectra of all (β-diketonate)(p-cym)Ru(II)Cl complexes also follow

a general trend. The furthest downfield peaks, which correspond to the carbonyl

carbons (o and m), appear in the 170-190 ppm range. Although this is a similar range

to the carbonyl carbons of the free ligands, there is an observed upfield shift of the

corresponding peaks in the 13C [1H] NMR spectra of the complexes. The methine

carbon (n) peak is also shifted slightly upfield during complexation reaction and is

located in the same region the aromatic p-cymene carbon (b-e) signals in the region

of 80-100 ppm. Furthermore, the complexation reaction splits the peaks seen

between 65-85 ppm from the top Cp ring of ferrocene (j-l) in a similar manner to that

previously mentioned in the 1H NMR data, which is displayed as five separate peaks

instead of the three seen in the case of the β-diketonate ligand only. Full 

characterisation given in Chapter 7.

3.1.2 X-Ray Characterisation of Ruthenium(II) p-Cymene Complexes

Single crystals of all complexes except C2, C7 and C9 were obtained from the slow

evaporation or vapour diffusion methods which afforded red/orange irregular

crystals in all cases. X-ray crystallographic data solutions were performed in

monoclinic cells in all cases except complex C14 which was triclinic and complex C3

which was orthorhombic. All bound ferrocene ligands display a planar structure with

the ferrocene adopting an eclipsed geometry, as seen in the case of the free ligands,

for all complexes except C13 and C24. Upon complexation, the bond lengths of the

β-diketonate ligand centres become more symmetrical and similar in length 

compared to the free ligands; this is attributed to the delocalisation of electrons

around the β-diketonate centre. Furthermore, there is a significant change in the 

bond angles around the β-diketonate ligand centres, increasing from 118-126˚ to 

124-129˚, presumably due to the steric and electronic effects of binding to 

ruthenium. A typical labelling scheme is shown in Figure 3.4.
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Figure 3.4 Typical labelling scheme for all complexes. Hydrogen atoms are omitted
for clarity and thermal ellipsoids at the 50% probability level.

All complexes adopt the expected “piano stool” structures with the angles around

the ruthenium metal centre showing geometry which is common for the pseudo

octahedral structures. Bonding interactions observed in the solid state have been

noted due to the potential for these interactions to play a crucial role in the

anticancer activity through processes such as DNA or enzyme binding.

Intramolecular hydrogen bonding interactions (D…A 3.3-4.0 Å) are seen between the

bottom Cp ring of ferrocene (C11-C15) and Cl1 in all cases except complex C3; these

interactions could be a contributing factor to the upfield shift and splitting of the Cp

signals observed in the 1H NMR spectra. Further intramolecular hydrogen bonding

interactions are observed between the p-cymene C8-C10 and Cl1 in many cases,

while interactions between the p-cymene C8-C10 and O1/O2 are observed in all

complexes except C3 and C21. Intermolecular hydrogen bonding interactions (D…A

3.1-4.1 Å) occur in all complexes, typically between the p-cymene moiety (C1-C10)

and Cl1/O1/O2 of adjacent molecules, although multiple other intermolecular

hydrogen bonding interactions occur depending on the electronic and steric

properties of the R substituent. Complex C23 was the only molecule which displayed

π-π stacking interactions.  



Synthesis of Ruthenium(II) Arene Complexes Chapter 3

58

3.1.2.1 X-Ray Characterisation of Complex C1

Orange single crystals of complex C1 were obtained by the vapour diffusion of

dichloromethane and pentane at 4 ˚C. The molecular structure is shown in Figure 3.5

with notable bond lengths and angles stated in Table 3.1. Intramolecular and

intermolecular interactions are shown in Figure 3.6 with bond lengths and angles

stated in Table 3.2. Complex C1 crystallised in a monoclinic cell and structural

solution performed in the P21/c space group with two molecules per asymmetric unit.

Atoms corresponding to the second molecule in the asymmetric unit are marked by

an asterisk.

Figure 3.5 Molecular structure of complex C1. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.057(3) O1-Ru1-O2 87.78(12)

Ru1-O2 2.079(3) Ru1-O1-C21 126.2(3)

O1-C21 1.279(5) Ru1-O2-C23 125.7(3)

O2-C23 1.275(5) O1-C21-C22 126.1(4)

C21-C22 1.400(6) O2-C23-C22 126.2(4)

C22-C23 1.392(6) C21-C22-C23 125.0(4)

Table 3.1 Bond lengths and angles for complex C1. ESDs given in parentheses.
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Figure 3.6 Intermolecular and intramolecular interactions for complex C1. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…Cl1 3.790(5) C10-H…Cl1 3.880(6)

C10-H…O1 3.548(7)

Intermolecular C7*-H…O2 3.257(5) C3-H…Cl1* 3.775(5)

C7*-H…Cl1 3.900(4) C19-H…O1* 3.601(6)

C3-H…O2* 3.300(3) C19-H…O2* 3.925(5)

Table 3.2 Intermolecular and intramolecular bond lengths and angles for complex
C1. ESDs given in parentheses.

3.1.2.2 X-Ray Characterisation of Complex C3

Orange single crystals of complex C3 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.7 with notable bond

lengths and angles stated in Table 3.3. Intramolecular and intermolecular

interactions are shown in Figure 3.8 with bond lengths and angles stated in Table

3.4. Complex C3 crystallised in an orthorhombic cell and structural solution

performed in the Pbca space group with one molecule per asymmetric unit. The

structure showed disorder around the CHF2 group, with the F atoms being split

across three partitions in a 0.3:0.84:0.86 ratio.
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Figure 3.7 Molecular structure of complex C3. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.082(4) O1-Ru1-O2 88.65(17)

Ru1-O2 2.076(4) Ru1-O1-C21 127.4(4)

O1-C21 1.260(7) Ru1-O2-C23 124.1(4)

O2-C23 1.282(8) O1-C21-C22 125.0(6)

C21-C22 1.418(9) O2-C23-C22 129.3(6)

C22-C23 1.362(9) C21-C22-C33 125.4(6)

Table 3.3 Bond lengths and angles for complex C3. ESDs given in parentheses.

Figure 3.8 Intermolecular and intramolecular interactions for complex C3. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C1-H…F1 3.843(10) C9-H…Cl1 3.620(7)

Intermolecular C1-H…F1 3.742(10) C7-H…O2 3.307(8)

C1-H…F2 3.280(10) C8-H…F1 3.771(10)

C3-H…F2 3.568(10) C8-H…F2 3.841(10)

C6-H…F1 3.740(9) C18-H…Cl1 3.600(7)

C6-H…O2 3.359(7) C18-H…O1 3.674(8)

C7-H…Cl1 3.700(16)

Table 3.4 Intermolecular and intramolecular bond lengths and angles for complex
C3. ESDs given in parentheses.
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3.1.2.3 X-Ray Characterisation of Complex C4

Orange single crystals of complex C4 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.9 with notable bond

lengths and angles stated in Table 3.5. Intramolecular and intermolecular

interactions are shown in Figure 3.10 with bond lengths and angles stated in Table

3.6. Complex C4 crystallised in a monoclinic cell and structural solution performed in

the P21/c space group with one molecule and one molecule of acetonitrile.

Figure 3.9 Molecular structure of complex C4. Hydrogen atoms and solvent
molecule are omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.080(2) O1-Ru1-O2 87.23(7)

Ru1-O2 2.079(2) Ru1-O1-C21 126.1(2)

O1-C21 1.282(3) Ru1-O2-C23 125.6(2)

O2-C23 1.291(3) O1-C21-C22 125.6(2)

C21-C22 1.398(4) O2-C23-C22 125.9(2)

C22-C23 1.385(4) C21-C22-C33 125.1(2)

Table 3.5 Bond lengths and angles for complex C4. ESDs given in parentheses.
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Figure 3.10 Intermolecular and intramolecular interactions for complex C4. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.750(4) C11-H…Cl1 3.914(3)

C10-H…Cl1 3.941(3)

Intermolecular C6-H…O2 3.423(3) C10-H…O3 3.900(3)

C7-H…O1 3.479(3) C12-H…O2 3.504(4)

C7-H…O2 3.414(3) C27-H…Cl1 3.943(3)

C8-H…O3 3.974(4)

Table 3.6 Intermolecular and intramolecular bond lengths and angles for complex
C4. ESDs given in parentheses.

3.1.2.4 X-Ray Characterisation of Complex C5

Orange single crystals of complex C5 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.11 with notable bond

lengths and angles stated in Table 3.7. Intramolecular and intermolecular

interactions are shown in Figure 3.12 with bond lengths and angles stated in Table

3.8. Complex C5 crystallised in a monoclinic cell and structural solution performed in

the P21/n space group with one molecule per asymmetric unit.
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Figure 3.11 Molecular structure of complex C5. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.067(3) O1-Ru1-O2 88.38(10)

Ru1-O2 2.066(3) Ru1-O1-C21 125.5(3)

O1-C21 1.278(4) Ru1-O2-C23 126.3(2)

O2-C23 1.279(5) O1-C21-C22 127.1(4)

C21-C22 1.391(6) O2-C23-C22 125.4(4)

C22-C23 1.401(5) C21-C22-C23 125.1(3)

Table 3.7 Bond lengths and angles for complex C5. ESDs given in parentheses.

Figure 3.12 Intermolecular and intramolecular interactions for complex C5. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.913(6) C11-H…Cl1 3.667(4)

Intermolecular C17-H…O2 3.765(5) C13-H…O3 3.769(5)

C18-H…O3 3.362(5) C7-H…Cl1 3.550(4)

C10-H…O3 3.743(5) C11-H…Cl1 3.667(4)

Table 3.8 Intermolecular and intramolecular bond lengths and angles for complex
C5. ESDs given in parentheses.
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3.1.2.5 X-Ray Characterisation of Complex C6

Orange single crystals of complex C6 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.13 with notable bond

lengths and angles stated in Table 3.9. Intramolecular and intermolecular

interactions are shown in Figure 3.14 with bond lengths and angles stated in Table

3.10. Complex C6 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.

Figure 3.13 Molecular structure of complex C6. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.065(2) O1-Ru1-O2 88.07(9)

Ru1-O2 2.072(2) Ru1-O1-C21 126.2(2)

O1-C21 1.280(4) Ru1-O2-C23 126.3(2)

O2-C23 1.281(4) O1-C21-C22 125.7(3)

C21-C22 1.398(5) O2-C23-C22 125.3(3)

C22-C23 1.396(4) C21-C22-C23 125.9(3)

Table 3.9 Bond lengths and angles for complex C6. ESDs given in parentheses.

Figure 3.14 Intermolecular and intramolecular interactions for complex C6. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O2 3.429(4) C11-H…Cl1 3.741(4)

Intermolecular C28-H…Cl1 3.691(4) C9-H…Cl1 3.829(4)

C27-H…Cl1 3.630(4)

Table 3.10 Intermolecular and intramolecular bond lengths and angles for complex
C6. ESDs given in parentheses.

3.1.2.6 X-Ray Characterisation of Complex C8

Orange single crystals of complex C8 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.15 with notable bond

lengths and angles stated in Table 3.11. Intramolecular and intermolecular

interactions are shown in Figure 3.16 with bond lengths and angles stated in Table

3.12. Complex C8 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.

Figure 3.15 Molecular structure of complex C8. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.079(2) O1-Ru1-O2 86.79(9)

Ru1-O2 2.079(2) Ru1-O1-C21 126.0(2)

O1-C21 1.287(4) Ru1-O2-C23 126.6(2)

O2-C23 1.287(4) O1-C21-C22 126.6(3)

C21-C22 1.400(5) O2-C23-C22 125.2(3)

C22-C23 1.393(5) C21-C22-C23 125.1(3)

Table 3.11 Bond lengths and angles for complex C8. ESDs given in parentheses.
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Figure 3.16 Intermolecular and intramolecular interactions for complex C8. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…Cl1 3.706(4) C10-H…O1 3.401(5)

Intermolecular C3-H…O1 3.367(4) C7-H…Cl1 3.583(4)

C3-H…O2 3.453(4) C12-H…Cl1 3.843(4)

C4-H…O2 3.424(4) C12-H…O2 3.415(4)

Table 3.12 Intermolecular and intramolecular bond lengths and angles for complex
C8. ESDs given in parentheses.

3.1.2.7 X-Ray Characterisation of Complex C10

Orange single crystals of complex C10 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.17 with notable bond

lengths and angles stated in Table 3.13. Intramolecular and intermolecular

interactions are shown in Figure 3.18 with bond lengths and angles stated in Table

3.14. Complex C10 was solved in a monoclinic cell and structural solution performed

in the P21/c space group with two molecule per asymmetric unit. Atoms

corresponding to the second molecule in the asymmetric unit are marked by an

asterisk.
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Figure 3.17 Molecular structure of complex C10. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.071(2) O1-Ru1-O2 86.83(7)

Ru1-O2 2.070(2) Ru1-O1-C21 126.4(2)

O1-C21 1.277(3) Ru1-O2-C23 126.9(2)

O2-C23 1.288(3) O1-C21-C22 126.4(3)

C21-C22 1.404(4) O2-C23-C22 125.6(3)

C22-C23 1.386(4) C21-C22-C23 124.3(3)

Table 3.13 Bond lengths and angles for complex C10. ESDs given in parentheses.

Figure 3.18 Intermolecular and intramolecular interactions for complex C10. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.746(4) C15-H…Cl1 3.843(4)

C10-H…Cl1 4.031(4)

Intermolecular C3-H…O1 3.473(3) C1*-H…Cl1* 3.579(3)

C3-H…O2 3.515(4) C3*-H…Cl1* 3.512(3)

C4-H…O2 3.455(3) C15*-H…O2* 3.531(4)

C7-H…Cl1 3.590(3) C19*-H…Cl1* 4.095(3)

C11-H…O2 3.648(4) C22*-H…Cl1* 3.992(3)

C29-H…Cl1 3.839(3) C25*-H…Cl1* 3.815(3)

Table 3.14 Intermolecular and intramolecular bond lengths and angles for complex
C10. ESDs given in parentheses.

3.1.2.8 X-Ray Characterisation of Complex C11

Orange single crystals of complex C11 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.19 with notable bond

lengths and angles stated in Table 3.15. Intramolecular and intermolecular

interactions are shown in Figure 3.20 with bond lengths and angles stated in Table

3.16. Complex C11 crystallised in a monoclinic cell and structural solution performed

in the I2/a space group with one molecule per asymmetric unit. Residual electron

density could not be adequately modelled as solvent; hence the SQUEEZE routine of

Platon was used.10

Figure 3.19 Molecular structure of complex C11. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.081(2) O1-Ru1-O2 87.72(6)

Ru1-O2 2.083(2) Ru1-O1-C21 126.0(2)

O1-C21 1.282(3) Ru1-O2-C23 124.8(2)

O2-C23 1.291(3) O1-C21-C22 125.7(2)

C21-C22 1.398(3) O2-C23-C22 126.2(2)

C22-C23 1.394(3) C21-C22-C23 125.6(2)

Table 3.15 Bond lengths and angles for complex C11. ESDs given in parentheses.

Figure 3.20 Intermolecular and intramolecular interactions for complex C11. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…Cl1 3.914(3) C10-H…O1 3.576(4)

C11-H…Cl1 3.800(3)

Intermolecular C3-H…Cl1 3.505(2) C7-H…O2 3.415(3)

C25-H…Cl1 3.793(3) C7-H…O1 3.370(3)

C15-H…O2 3.652(3) C17-H…F1 3.511(3)

C6-H…O2 3.382(3)

Table 3.16 Intermolecular and intramolecular bond lengths and angles for complex
C11. ESDs given in parentheses.

3.1.2.9 X-Ray Characterisation of Complex C12

Orange single crystals of complex C12 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.21 with notable bond

lengths and angles stated in Table 3.17. Intramolecular and intermolecular

interactions are shown in Figure 3.22 with bond lengths and angles stated in Table

3.18. Complex C12 crystallised in a monoclinic cell and structural solution performed
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in the P21/c space group with one molecule and one molecule of water per

asymmetric unit. The structure shared disorder of the fluorine atom across two

partitions, which was modelled in a 0.45:0.55 ratio.

Figure 3.21 Molecular structure of complex C12. Hydrogen atoms and solvent are
omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.079(4) O1-Ru1-O2 87.22(14)

Ru1-O2 2.081(4) Ru1-O1-C21 126.1(3)

O1-C21 1.280(6) Ru1-O2-C23 125.3(3)

O2-C23 1.280(6) O1-C21-C22 126.3(5)

C21-C22 1.395(8) O2-C23-C22 127.0(5)

C22-C23 1.396(8) C21-C22-C23 124.2(5)

Table 3.17 Bond lengths and angles for complex C12. ESDs given in parentheses.

Figure 3.22 Intermolecular and intramolecular interactions for complex C12. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.459(9) C11-H…Cl1 3.860(7)

C10-H…Cl1 3.892(7)

Intermolecular C10-H…F1a 3.389(14) C29-H…Cl1 3.906(7)

C14-H…F1a 3.467(11) C3-H…O1 3.404(7)

C10-H…F1b 3.411(11) C3-H…O2 3.481(6)

C9-H…F1b 3.358(11) C4-H…O2 3.387(7)

C7-H…Cl1 3.474(6) C12-H…O2 3.424(7)

C12-H…Cl1 3.945(7)

Table 3.18 Intermolecular and intramolecular bond lengths and angles for complex
C12. ESDs given in parentheses.

3.1.2.10 X-Ray Characterisation of Complex C13

Orange single crystals of complex C13 were obtained by the vapour diffusion of

diethyl ether into dichloromethane. The molecular structure is shown in Figure 3.23

with notable bond lengths and angles stated in Table 3.19. Intramolecular and

intermolecular interactions are shown in Figure 3.24 with bond lengths and angles

stated in Table 3.20. Complex C13 crystallised in a monoclinic cell and structural

solution performed in the P21/c space group with one molecule per asymmetric unit.

Figure 3.23 Molecular structure of complex C13. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.080(3) O1-Ru1-O2 89.06(12)

Ru1-O2 2.075(3) Ru1-O1-C21 124.9(3)

O1-C21 1.283(5) Ru1-O2-C23 124.4(3)

O2-C23 1.276(5) O1-C21-C22 126.2(4)

C21-C22 1.397(6) O2-C23-C22 127.3(4)

C22-C23 1.393(6) C21-C22-C33 125.6(4)

Table 3.19 Bond lengths and angles for complex C13. ESDs given in parentheses.

Figure 3.24 Intermolecular and intramolecular interactions for complex C13. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O2 3.673(8) C11-H…Cl1 3.807(8)

Intermolecular C11-H…Cl1 3.807(8) C10-H…O2 3.920(10)

C14-H…Cl1 3.728(7) C1-H…F1 3.587(6)

C1-H…O1 3.994(10) C27-H…F1 3.105(6)

Table 3.20 Intermolecular and intramolecular bond lengths and angles for complex
C13. ESDs given in parentheses.

3.1.2.11 X-Ray Characterisation of Complex C14

Orange single crystals of complex C14 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.25 with notable bond

lengths and angles stated in Table 3.21. Intramolecular and intermolecular

interactions are shown in Figure 3.26 with bond lengths and angles stated in Table

3.22. Complex C14 crystallised in a triclinic cell and structural solution performed in

the P-1 space group with one molecule per asymmetric unit.
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Figure 3.25 Molecular structure of complex C14. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.072(2) O1-Ru1-O2 87.01(8)

Ru1-O2 2.065(2) Ru1-O1-C21 126.5(2)

O1-C21 1.273(3) Ru1-O2-C23 126.1(2)

O2-C23 1.282(4) O1-C21-C22 125.3(3)

C21-C22 1.406(4) O2-C23-C22 126.1(3)

C22-C23 1.377(4) C21-C22-C33 125.3(3)

Table 3.21 Bond lengths and angles for complex C14. ESDs given in parentheses.

Figure 3.26 Intermolecular and intramolecular interactions for complex C14. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.260(4) C11-H…Cl1 3.722(4)

C10-H…Cl1 3.840(4)

Intermolecular C1-H…Cl1 3.916(4) C9-H…F1 3.483(4)

C7-H…Cl1 3.641(3) C13-H…F1 3.450(4)

C8-H…Cl1 3.997(4) C3-H…F2 3.361(4)

C6-H…F1 3.731(4) C12-H…F2 3.369(4)

C8-H…F1 3.429(4) C22-H…F2 3.232(3)

Table 3.22 Intermolecular and intramolecular bond lengths and angles for complex
C14. ESDs given in parentheses.

3.1.2.12 X-Ray Characterisation of Complex C15

Orange single crystals of complex C15 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.27 with notable bond

lengths and angles stated in Table 3.23. Intramolecular and intermolecular

interactions are shown in Figure 3.28 with bond lengths and angles stated in Table

3.24. Complex C15 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.

Figure 3.27 Molecular structure of complex C15. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.085(2) O1-Ru1-O2 86.92(6)

Ru1-O2 2.074(2) Ru1-O1-C21 125.8(2)

O1-C21 1.286(4) Ru1-O2-C23 126.2(2)

O2-C23 1.284(4) O1-C21-C22 125.8(3)

C21-C22 1.399(4) O2-C23-C22 125.6(3)

C22-C23 1.391(4) C21-C22-C23 125.2(3)

Table 3.23 Bond lengths and angles for complex C15. ESDs given in parentheses.
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Figure 3.28 Intermolecular and intramolecular interactions for complex C15. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…Cl1 3.751(4) C10-H…O1 3.373(4)

Intermolecular C6-H…O2 3.410(4) C15-H…Cl1 3.847(4)

C7-H…O2 3.434(4) C3-H…Cl1 3.549(3)

C7-H…O1 3.361(4) C26-H…Cl2 3.846(4)

C15-H…O2 3.424(4)

Table 3.24 Intermolecular and intramolecular bond lengths and angles for complex
C15. ESDs given in parentheses.

3.1.2.13 X-Ray Characterisation of Complex C16

Orange single crystals of complex C16 were obtained by the slow evaporation of

ethyl acetate and hexane. The molecular structure is shown in Figure 3.29 with

notable bond lengths and angles stated in Table 3.25. Intramolecular and

intermolecular interactions are shown in Figure 3.30 with bond lengths and angles

stated in Table 3.26. Complex C16 crystallised in a monoclinic cell and structural

solution performed in the C2/c space group with one molecule and one molecule of

ethyl acetate per asymmetric unit.
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Figure 3.29 Molecular structure of complex C16. Hydrogen atoms and solvent are
omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.083(2) O1-Ru1-O2 86.80(9)

Ru1-O2 2.068(2) Ru1-O1-C21 126.8(2)

O1-C21 1.281(4) Ru1-O2-C23 126.1(2)

O2-C23 1.286(4) O1-C21-C22 125.1(3)

C21-C22 1.409(5) O2-C23-C22 126.4(3)

C22-C23 1.385(5) C21-C22-C23 124.7(3)

Table 3.25 Bond lengths and angles for complex C16. ESDs given in parentheses.

Figure 3.30 Intermolecular and intramolecular interactions for complex C16. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…Cl1 3.890(9) C10-H…O1 3.668(10)

C11-H…Cl1 3.878(9)

Intermolecular C3-H…O1 3.488(6) C7-H…Cl1 3.593(7)

C3-H…O2 3.436(7) C12-H…Cl1 4.096(10)

C4-H…O2 3.458(8) C26-H…Cl1 4.140(8)

C12-H…O2 3.518(9) C12-H…F1 4.045(9)

Table 3.26 Intermolecular and intramolecular bond lengths and angles for complex
C16. ESDs given in parentheses.

3.1.2.14 X-Ray Characterisation of Complex C17

Orange single crystals of complex C17 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.31 with notable bond

lengths and angles stated in Table 3.27. Intramolecular and intermolecular

interactions are shown in Figure 3.32 with bond lengths and angles stated in Table

3.28. Complex C17 crystallised in a monoclinic cell and structural solution performed

in the P21/c space group with two molecules per asymmetric unit. Atoms

corresponding to the second molecule in the asymmetric unit are marked by an

asterisk.

Figure 3.31 Molecular structure of complex C17. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.076(18) O1-Ru1-O2 86.33(7)

Ru1-O2 2.078(18) Ru1-O1-C21 127.3(2)

O1-C21 1.274(3) Ru1-O2-C23 126.6(2)

O2-C23 1.284(3) O1-C21-C22 125.6(2)

C21-C22 1.413(4) O2-C23-C22 126.1(2)

C22-C23 1.390(4) C21-C22-C23 123.9(3)

Table 3.27 Bond lengths and angles for complex C17. ESDs given in parentheses.

Figure 3.32 Intermolecular and intramolecular interactions for complex C17. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…Cl1 4.016(6) C10-H…O1 3.711(6)

C11-H…Cl1 3.928(5)

Intermolecular C13*-H…O2* 3.512(6) C3-H…Cl1 3.529(4)

C14-H…O2 3.593(6) C25-H…Cl1 3.826(6)

C6-H…O2 3.451(6) C15*-H…Cl2 3.910(6)

C1*-H…Cl1* 3.561(4) C18*-H…Cl2 3.642(5)

C7*-H…Cl1* 3.489(5) C9*-H…Cl3 4.06(5)

C16*-H…Cl1* 4.023(7) C17-H…Cl2* 3.784(5)

C22*-H…Cl1* 3.908(5) C12-H…Cl2* 4.011(7)

C29*-H…Cl1* 3.792(6)

Table 3.28 Intermolecular and intramolecular bond lengths and angles for complex
C17. ESDs given in parentheses.

3.1.2.15 X-Ray Characterisation of Complex C18

Orange single crystals of complex C18 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.33 with notable bond
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lengths and angles stated in Table 3.29. Intramolecular and intermolecular

interactions are shown in Figure 3.34 with bond lengths and angles stated in Table

3.30. Complex C18 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.

Figure 3.33 Molecular structure of complex C18. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.079(2) O1-Ru1-O2 86.78(8)

Ru1-O2 2.071(2) Ru1-O1-C21 126.6(2)

O1-C21 1.280(4) Ru1-O2-C23 125.9(2)

O2-C23 1.286(4) O1-C21-C22 125.3(3)

C21-C22 1.401(4) O2-C23-C22 126.0(3)

C22-C23 1.390(4) C21-C22-C23 125.0(3)

Table 3.29 Bond lengths and angles for complex C18. ESDs given in parentheses.

Figure 3.34 Intermolecular and intramolecular interactions for complex C18. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.412(5) C11-H…Cl1 3.737(4)

Intermolecular C28-H…Br1 3.921(4) C12-H…O2 3.454(4)

C3-H…O1 3.391(4) C7-H…Cl1 3.584(3)

C3-H…O2 3.406(4) C12-H…Cl1 3.872(4)

C4-H…O2 3.401(4)

Table 3.30 Intermolecular and intramolecular bond lengths and angles for complex
C18. ESDs given in parentheses.

3.1.2.16 X-Ray Characterisation of Complex C19

Orange single crystals of complex C19 were obtained by the slow evaporation of

ethyl acetate and hexane. The molecular structure is shown in Figure 3.35 with

notable bond lengths and angles stated in Table 3.31. Intramolecular and

intermolecular interactions are shown in Figure 3.36 with bond lengths and angles

stated in Table 3.32. Complex C19 crystallised in a monoclinic cell and structural

solution performed in the C2/c space group with one molecule and one ethyl acetate

molecule per asymmetric unit.

Figure 3.35 Molecular structure of complex C19. Hydrogen atoms and solvent are
omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.084(3) O1-Ru1-O2 87.04(13)

Ru1-O2 2.077(3) Ru1-O1-C21 126.1(3)

O1-C21 1.286(6) Ru1-O2-C23 125.4(3)

O2-C23 1.278(6) O1-C21-C22 125.5(5)

C21-C22 1.398(7) O2-C23-C22 127.0(5)

C22-C23 1.381(7) C21-C22-C23 124.9(5)

Table 3.31 Bond lengths and angles for complex C19. ESDs given in parentheses.
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Figure 3.36 Intermolecular and intramolecular interactions for complex C19. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.663(10) C11-H…Cl1 3.884(8)

C10-H…Cl1 3.901(8)

Intermolecular C7-H…O1 3.488(7) C3-H…Cl1 3.615(2)

C6-H…O2 3.455(7) C25-H…Cl1 4.069(7)

C7-H…O2 3.439(7) C17-H…Br1 4.035(7)

C12-H…O2 3.539(8)

Table 3.32 Intermolecular and intramolecular bond lengths and angles for complex
C19. ESDs given in parentheses.

3.1.2.17 X-Ray Characterisation of Complex C20

Orange single crystals of complex C20 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.37 with notable bond

lengths and angles stated in Table 3.33. Intramolecular and intermolecular

interactions are shown in Figure 3.38 with bond lengths and angles stated in Table

3.34. Complex C20 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.
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Figure 3.37 Molecular structure of complex C20. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.087(3) O1-Ru1-O2 86.98(11)

Ru1-O2 2.067(3) Ru1-O1-C21 126.9(3)

O1-C21 1.278(5) Ru1-O2-C23 125.6(3)

O2-C23 1.291(5) O1-C21-C22 124.9(4)

C21-C22 1.414(6) O2-C23-C22 126.4(4)

C22-C23 1.380(6) C21-C22-C23 125.0(4)

Table 3.33 Bond lengths and angles for complex C20. ESDs given in parentheses.

Figure 3.38 Intermolecular and intramolecular interactions for complex C20. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 3.501(6) C15-H…Cl1 3.743(5)

C10-H…Cl1 3.925(6)

Intermolecular C3-H…O1 3.445(5) C11-H…O2 3.505(5)

C3-H…O2 3.381(5) C7-H…Cl1 3.667(4)

C4-H…O2 3.374(5) C11-H…Cl1 3.898(5)

Table 3.34 Intermolecular and intramolecular bond lengths and angles for complex
C20. ESDs given in parentheses.
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3.1.2.18 X-Ray Characterisation of Complex C21

Orange single crystals of complex C21 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.39 with notable bond

lengths and angles stated in Table 3.35. Intramolecular and intermolecular

interactions are shown in Figure 3.40 with bond lengths and angles stated in Table

3.36. Complex C21 crystallised in a monoclinic cell and structural solution performed

in the I2/a space group with one molecule per asymmetric unit.

Figure 3.39 Molecular structure of complex C21. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.083(4) O1-Ru1-O2 88.15(16)

Ru1-O2 2.064(4) Ru1-O1-C21 125.4(4)

O1-C21 1.271(6) Ru1-O2-C23 125.4(4)

O2-C23 1.278(7) O1-C21-C22 126.0(6)

C21-C22 1.413(8) O2-C23-C22 127.1(5)

C22-C23 1.392(8) C21-C22-C23 124.6(5)

Table 3.35 Bond lengths and angles for complex C21. ESDs given in parentheses.



Synthesis of Ruthenium(II) Arene Complexes Chapter 3

84

Figure 3.40 Intermolecular and intramolecular interactions for complex C21. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C8-H…Cl1 3.470(5) C11-H…Cl1 3.610(10)

Intermolecular C27-H…Cl1 3.586(8) C7-H…Cl1 3.594(3)

C28-H…Cl1 3.618(7) C12-H…O2 3.607(4)

Table 3.36 Intermolecular and intramolecular bond lengths and angles for complex
C21. ESDs given in parentheses.

3.1.2.19 X-Ray Characterisation of Complex C22

Orange single crystals of complex C22 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.41 with notable bond

lengths and angles stated in Table 3.37. Intramolecular and intermolecular

interactions are shown in Figure 3.42 with bond lengths and angles stated in Table

3.38. Complex C22 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.
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Figure 3.41 Molecular structure of complex C22. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.075(2) O1-Ru1-O2 87.25(8)

Ru1-O2 2.082(2) Ru1-O1-C21 126.1(2)

O1-C21 1.282(4) Ru1-O2-C23 125.4(2)

O2-C23 1.291(3) O1-C21-C22 125.8(3)

C21-C22 1.398(4) O2-C23-C22 125.6(3)

C22-C23 1.388(4) C21-C22-C23 125.6(3)

Table 3.37 Bond lengths and angles for complex C22. ESDs given in parentheses.

Figure 3.42 Intermolecular and intramolecular interactions for complex C22. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…Cl1 3.925(5) C11-H…Cl1 3.708(4)

C10-H…O1 3.585(6)

Intermolecular C28-H…O3 3.514(4) C12-H…Cl1 3.964(4)

C3-H…O2 3.388(4) C7-H…Cl1 3.594(3)

C4-H…O2 3.400(4) C12-H…O2 3.607(4)

C3-H…O1 3.447(4)

Table 3.38 Intermolecular and intramolecular bond lengths and angles for complex
C22. ESDs given in parentheses.
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3.1.2.20 X-Ray Characterisation of Complex C23

Orange single crystals of complex 23 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.43 with notable bond

lengths and angles stated in Table 3.39. Intramolecular and intermolecular

interactions are shown in Figure 3.44 with bond lengths and angles stated in Table

3.40. Complex 23 crystallised in a monoclinic cell and structural solution performed

in the P21/c space group with one molecule per asymmetric unit.

Figure 3.43 Molecular structure of complex C23. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.087(2) O1-Ru1-O2 87.00(10)

Ru1-O2 2.073(3) Ru1-O1-C21 127.1(2)

O1-C21 1.265(4) Ru1-O2-C23 128.2(2)

O2-C23 1.280(4) O1-C21-C22 125.9(3)

C21-C22 1.407(5) O2-C23-C22 125.0(4)

C22-C23 1.391(5) C21-C22-C23 125.9(4)

Table 3.39 Bond lengths and angles for complex C23. ESDs given in parentheses.
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Figure 3.44 Intermolecular and intramolecular interactions for complex C23. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C9-H…O1 3.331(5) C11-H…Cl1 3.567(5)

C10-H…O1 3.351(5)

Intermolecular C8-H…O3 3.498(5) C19-H…Cl1 3.948(5)

C15-H…O3 3.313(7) C25-H…Cl1 3.881(4)

C26-H…O2 3.636(4) C30-H…Cl1 3.581(4)

 C7-H…Cl1 3.693(4) π π 3.363(5) 

Table 3.40 Intermolecular and intramolecular bond lengths and angles for complex
C23. ESDs given in parentheses.

3.1.2.21 X-Ray Characterisation of Complex C24

Orange single crystals of complex C24 were obtained by the slow evaporation of

acetonitrile. The molecular structure is shown in Figure 3.45 with notable bond

lengths and angles stated in Table 3.41. Intramolecular and intermolecular

interactions are shown in Figure 3.46 with bond lengths and angles stated in Table

3.42. Complex C24 crystallised in a monoclinic cell and structural solution performed

in the P21/n space group with one molecule per asymmetric unit.
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Figure 3.45 Molecular structure of complex C24. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) 

Ru1-O1 2.055(2) O1-Ru1-O2 88.81(7)

Ru1-O2 2.070(2) Ru1-O1-C21 126.4(2)

O1-C21 1.272(3) Ru1-O2-C23 126.1(2)

O2-C23 1.273(3) O1-C21-C22 125.9(2)

C21-C22 1.407(4) O2-C23-C22 126.1(2)

C22-C23 1.391(4) C21-C22-C23 125.4(3)

Table 3.41 Bond lengths and angles for complex C24. ESDs given in parentheses.

Figure 3.46 Intermolecular and intramolecular interactions for complex C24. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C10-H…O1 4.002(4) C11-H…Cl1 3.690(4)

Intermolecular C3-H…O3 3.601(3) C8-H…O1 3.554(3)

C30-H…O3 3.736(4) C25-H…Cl1 3.554(3)

C31-H…O3 3.539(4)

Table 3.42 Intermolecular and intramolecular bond lengths and angles for complex
C24. ESDs given in parentheses.
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3.2 Conclusion

A library of novel ferrocene β-diketonate ruthenium(II) chloride “piano stool” 

complexes with varying electronic and steric properties have been synthesised. All

complexes have been fully characterised by 1H NMR, 13C [1H] NMR, micro-analysis

and mass spectrometry. X-ray crystallographic data has been obtained when

possible. 1H NMR and 13C [1H] NMR spectra of the complexes show distinct shifts of

the ligand peaks, especially the methine proton. Single crystals of these complexes

were grown from the slow evaporation or vapour diffusion methods to give

red/orange single crystals and structural solutions were performed in monoclinic,

triclinic (C14) and orthorhombic (C3) cells. Observed angles around the ruthenium

metal centre are close to 90˚ which is common for the pseudo octahedral geometry.

Solid state bonding interactions in the form of hydrogen bonds and π-π stacking have 

been noted due to their potential involvement in the biological mode of action of

the complexes. The p-cymene and the ferrocene Cp ring have been shown to be

involved in both intramolecular and intermolecular interactions in the X-ray

crystallographic data. Complex C23 was the sole molecule which displayed π-π 

stacking interactions.

The various steric and electronic properties of the functionalised ferrocene

β-diketonate ligands used in these complexes will allow for the determination of any 

structural activity relationships with regards to their biological activity. The ability of

these complexes to act as anticancer and antimicrobial agents will be discussed in

Chapter 5.
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4.0 Bipyridyl Complexes

Ruthenium complexes with pyridyl-based ligands have been explored for a large

scope for various medicinal applications such as cellular imaging, diagnostics and

therapeutics.1-4 Work in this chapter aims to extend the libraries of ruthenium

complexes containing bipyridine chelating ligands, something which has not

previously been attempted in the McGowan group.

The biological potential of ruthenium(II) polypyridyl complexes was first observed by

Dwyer et al. in the 1950s when they illustrated the diverse biological activities of

these types of complexes through enzyme inhibition, anticancer and antibacterial

studies. Ignited by the findings of Dwyer, numerous research groups have worked in

this area, with the number of ruthenium(II) pyridyl complexes being explored for

their anticancer activity steadily increasing over the past several decades.5-7

Figure 4.1 Ruthenium polypyridyl complexes tested by Dwyer et al. in 19525

Their kinetically inert octahedral d6 metal centre and rigid aromatic architectures,

spanning all three spatial dimensions, impart excellent steric and electronic

properties onto the complexes, allowing them to non-covalently bind to DNA with a

high affinity.8 It is these properties that allow them to function as DNA imaging

agents but, given longer exposure times, also allow the complexes to exhibit

antiproliferative effects. The central ruthenium metal atom can be considered as a

central scaffold in many cases, to which active ligands may be conjugated. Control

over the properties of the ancillary ligands influences the cytotoxicity of the

complexes through the modulation of their cellular uptake and binding specificity.9
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4.1 Synthesis of Ruthenium(II) Bipyridyl Complexes

Ruthenium complexes were prepared from an adapted literature procedure.10 The

complexation reactions took place in ethanol solutions of Ru(bpy)2Cl2, the

appropriate ferrocene β-diketonate ligand and triethylamine at reflux for 48 hours 

(Scheme 4.1). A dark red solid was precipitated with aq. NH4PF6 before being dried

overnight. The complexes were purified by column chromatography eluting with

20% acetonitrile/80% dichloromethane to obtain purple/black solid powder in yields

of 19-39 %.

Scheme 4.1 General synthetic pathway for ruthenium(II) bipyridyl compounds

All complexes were fully characterised by 1H NMR spectroscopy, 13C [1H] NMR

spectroscopy, mass spectrometry and micro-analysis. Additionally, X-ray

crystallographic data was obtained for all complexes except C’3, C’5, C’6, C’9 and

C’15

4.1.1 NMR Characterisation of Ruthenium(II) Bipyridyl Complexes

The 1H NMR spectra of all [(β-diketonate)Ru(II)(bpy)2]PF6 complexes (example shown

in Figure 4.2) show the clear upfield shift of all proton peaks corresponding to the

β-diketonate ligand upon complexation, with an upfield shift of around 0.5 ppm 
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corresponding to the ferrocene bottom face Cp protons (a) at 3.5-4 ppm. Unlike the

top face Cp protons observed for the complexes discussed in Chapter 3, which exist

as four individual signals, for these types of complexes only one of the proton signals

(c) splits upon complexation, arising from the loss of symmetry down the plane of

the β-diketonate ligand. These changes in the NMR spectra are indicative of whether 

or not the reaction was successful.

Figure 4.2 1H NMR (500 MHz, Acetone-d6) for ruthenium complex (red) and free
β-diketonate ligand (blue)

The 13C [1H] NMR spectra of all [(β-diketonate)Ru(II)(bpy)2]PF6 complexes show a

slight upfield shift for β-diketonate carbon signals in the aromatic region upon 

complexation which are found, along with the bipyridine ligand carbon peaks, at

approximately 100-165 ppm. The methine carbon (f) peak is also shifted slightly

upfield during complexation but to a much lesser extent than that which is observed

for the corresponding proton signal in the 1H NMR. A considerable downfield shift

can be observed from the quaternary Cp signal (d) in the region of 78-84 ppm.

However, the other Cp signals were shifted upfield with the splitting of the Cp signals
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(c and b) of the top face of ferrocene from two large double carbon peaks to four

single peaks found between 65-75 ppm, again which arises from the loss of

symmetry down the plane of the β-diketonate ligand. Full assignments given in 

Chapter 7.

4.1.2 X-Ray Characterisation of Ruthenium(II) Bipyridyl Complexes

X-ray crystallographic data was obtained for the complexes and solutions were

performed in monoclinic (C’1, C’7, C’8 and C’12) or triclinic cells (C’2, C’4, C’10, C’11,

C’13 and C’14). Bound ferrocene ligands display a planar structure unless an

aromatic R substituent is present in which case torsion around that C23…C24 bond

is observed. The ferrocene moiety adopts an eclipsed geometry as seen in the case

of the free ligands. As in the case of the ruthenium arene complexes, the

β-diketonate ligand centres become more symmetrical and similar in length upon 

complexation compared to the free ligands; this is attributed to the delocalisation of

electrons around the β-diketonate centre. Again, there is a significant change in the 

bond angles around the β-diketonate ligand centres, increasing from 118-126˚ to 

124-130˚, presumably due the electronic and steric effects upon binding to 

ruthenium. A typical labelling scheme is shown in Figure 4.3.

Figure 4.3 Typical labelling scheme for all complexes. Counter ion and hydrogen
atoms are omitted for clarity. Thermal ellipsoids at the 50% probability level.
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All complexes show a distorted octahedral geometry around the ruthenium centre

with bond angles ranging between 81-90˚. Bonding interactions observed in the solid 

state have been noted due to the potential for these interactions to play a crucial

role in the anticancer activity through processes such as DNA intercalation or enzyme

binding. Intramolecular hydrogen bonding interactions (D…A 3.8-4.1 Å) are seen

between the bottom Cp ring of ferrocene (C11-C15) and N1 for complexes C’1, C’4,

C’8, C’12, C’13 and C’14. As with the ruthenium arene complexes discussed in the

previous chapter, this interaction could be a contributing factor to the upfield shift

of the ferrocene Cp ring signals observed in the 1H NMR spectra. Multiple

intermolecular hydrogen bonding interactions (D…A 3.2-4.1 Å) are seen in all

complexes typically between bipyridine/ferrocene C-H and bipyridine N and/or O2.

Interactions with O1 are not observed, except in the case of C’10, due to the steric

hindrance caused by the ferrocenyl group. Further intermolecular interactions can

be observed in the form of π-π stacking for all complexes, except C’2, with bond

distances in the range of 3.5-3.9 Å. The PF6 counter ion is involved in both inter- and

intra-molecular interactions.

4.1.2.1 X-Ray Characterisation of Complex C’1

Black single crystals of complex C’1 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.4 with notable bond lengths

and angles stated in Table 4.1. Intramolecular and intermolecular interactions are

shown in Figure 4.5 with bond lengths and angles stated in Table 4.2. Complex C’1

crystallised in a monoclinic cell and structural solution performed in the I2/a space

group with one molecule per asymmetric unit.
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Figure 4.4 Molecular structure of complex C’1. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.057(2) O1-Ru1-N1 87.75(10) O1-Ru1-O2 92.45(10)

Ru1-O2 2.061(2) O1-Ru1-N2 88.66(10) Ru1-O1-C21 123.6(2)

Ru1-N1 2.045(3) O2-Ru1-N1’ 87.23(11) Ru1-O2-C23 122.5(2)

Ru1-N2 2.026(3) O2-Ru1-N2’ 90.05(11) O1-C21-C22 125.6(3)

Ru1-N1’ 2.043(3) N1-Ru1-N2 79.39(11) O2-C23-C22 126.9(3)

Ru1-N2’ 2.030(3) N1’-Ru1-N2’ 78.99(12) C21-C22-C23 128.1(3)

O1-C21 1.282(4)

O2-C23 1.288(4)

C21-C22 1.404(5)

C22-C23 1.392(5)

Table 4.1 Bond lengths and angles for complex C’1. ESDs given in parentheses.

Figure 4.5 Intermolecular and intramolecular interactions for complex C’1. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C15-H…N1 3.909(9)

Intermolecular C3-H…O2 3.372(1) C3-H…N2’ 4.004(12)

C3’-H…O2 3.474(8) π π 3.669(9)

C19-H…N1’ 3.920(13)

Table 4.2 Intermolecular and intramolecular bond lengths and angles for complex
C’1. ESDs given in parentheses.

4.1.2.2 X-Ray Characterisation of Complex C’2

Black single crystals of complex C’2 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.6 with notable bond lengths

and angles stated in Table 4.3. Intramolecular interactions of feasible distances were

not observed in this case. Intermolecular interactions are shown in Figure 4.7 with

bond lengths and angles stated in Table 4.4. Complex C’2 crystallised in a triclinic cell

and structural solution performed in the P-1 space group with one molecule per

asymmetric unit. The structure showed disorder around the CF3 group, with the F

atoms being split across three partitions in a 0.55:0.56:0.61 ratio.

Figure 4.6 Molecular structure of complex C’2. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.054(4) O1-Ru1-N1 88.79(19) O1-Ru1-O2 91.79(18)

Ru1-O2 2.066(4) O1-Ru1-N2 87.70(20) Ru1-O1-C21 126.3(4)

Ru1-N1 2.043(6) O2-Ru1-N1’ 86.90(20) Ru1-O2-C23 121.2(4)

Ru1-N2 2.040(6) O2-Ru1-N2’ 90.15(19) O1-C21-C22 124.1(6)

Ru1-N1’ 2.054(6) N1-Ru1-N2 79.30(20) O2-C23-C22 130.4(7)

Ru1-N2’ 2.031(5) N1’-Ru1-N2’ 79.50(20) C21-C22-C23 126.1(7)

O1-C21 1.271(8)

O2-C23 1.283(8)

C21-C22 1.430(10)

C22-C23 1.374(9)

Table 4.3 Bond lengths and angles for complex C’2. ESDs given in parentheses.

Figure 4.7 Intermolecular and intramolecular interactions for complex C’2. Only

selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intermolecular C9’-H…O2 3.521(14) C11-H…F2 3.356(15)

C4-H…F1 3.661(2) C1-H…F3 3.371(2)

C8’-H…F2 3.288(14)

Table 4.4 Intermolecular and intramolecular bond lengths and angles for complex
C’2. ESDs given in parentheses.

4.1.2.3 X-Ray Characterisation of Complex C’4

Black single crystals of complex C’4 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.8 with notable bond lengths

and angles stated in Table 4.5. Intramolecular and intermolecular interactions are

shown in Figure 4.9 with bond lengths and angles stated in Table 4.6. Complex C’4
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crystallised in a triclinic cell and structural solution performed in the P-1 space group

with one molecule per asymmetric unit.

Figure 4.8 Molecular structure of complex C’4. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.042(5) O1-Ru1-N1 85.8(2) O1-Ru1-O2 92.2(2)

Ru1-O2 2.050(5) O1-Ru1-N2 85.2(2) Ru1-O1-C21 125.0(4)

Ru1-N1 2.050(6) O2-Ru1-N1’ 89.0(2) Ru1-O2-C23 122.9(4)

Ru1-N2 2.017(6) O2-Ru1-N2’ 88.3(2) O1-C21-C22 124.7(7)

Ru1-N1’ 2.054(6) N1-Ru1-N2 79.4(2) O2-C23-C22 127.0(6)

Ru1-N2’ 2.038(6) N1’-Ru1-N2’ 79.0(2) C21-C22-C23 128.2(7)

O1-C21 1.285(9)

O2-C23 1.291(9)

C21-C22 1.401(10)

C22-C23 1.383(10)

Table 4.5 Bond lengths and angles for complex C’4. ESDs given in parentheses.

Figure 4.9 Intermolecular and intramolecular interactions for complex C’4. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…N1 4.106(11)

Intermolecular C4’-H…O2 3.404(9) π π 3.798(13) 

C7’-H…O2 3.745(11)

Table 4.6 Intermolecular and intramolecular bond lengths and angles for complex
C’4. ESDs given in parentheses.

4.1.2.4 X-Ray Characterisation of Complex C’7

Black single crystals of complex C’7 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.10 with notable bond lengths

and angles stated in Table 4.7. Intramolecular interactions of feasible distances were

not observed in this case. Intermolecular interactions are shown in Figure 4.11 with

bond lengths and angles stated in Table 4.8. Complex C’7 crystallised in a monoclinic

cell and structural solution performed in the P21/n space group with one molecule

per asymmetric unit.

Figure 4.10 Molecular structure of complex C’7. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.055(2) O1-Ru1-N1 84.40(9) O1-Ru1-O2 92.43(9)

Ru1-O2 2.056(2) O1-Ru1-N2 86.89(9) Ru1-O1-C21 123.9(2)

Ru1-N1 2.041(2) O2-Ru1-N1’ 86.05(9) Ru1-O2-C23 122.9(2)

Ru1-N2 2.008(3) O2-Ru1-N2’ 89.86(9) O1-C21-C22 125.1(3)

Ru1-N1’ 2.050(2) N1-Ru1-N2 79.34(10) O2-C23-C22 126.5(3)

Ru1-N2’ 2.025(3) N1’-Ru1-N2’ 78.85(10) C21-C22-C23 128.6(3)

O1-C21 1.275(4)

O2-C23 1.270(4)

C21-C22 1.394(4)

C22-C23 1.399(4)

Table 4.7 Bond lengths and angles for complex C’7. ESDs given in parentheses.

Figure 4.11 Intermolecular and intramolecular interactions for complex C’7. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intermolecular C8’-H…O2 3.291(3) C16-H…N1’ 3.827(3)

 C14-H…N1 4.033(3) π π 3.667(13) 

Table 4.8 Intermolecular and intramolecular bond lengths and angles for complex
C’7. ESDs given in parentheses.

4.1.2.5 X-Ray Characterisation of Complex C’8

Black single crystals of complex C’8 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.12 with notable bond lengths

and angles stated in Table 4.9. Intramolecular and intermolecular interactions are

shown in Figure 4.13 with bond lengths and angles stated in Table 4.10. Complex C’8

crystallised in a monoclinic cell and structural solution performed in the P21/c space

group with one molecule per asymmetric unit.
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Figure 4.12 Molecular structure of complex C’8. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.042(2) O1-Ru1-N1 87.50(9) O1-Ru1-O2 92.09(8)

Ru1-O2 2.064(2) O1-Ru1-N2 81.67(8) Ru1-O1-C21 124.8(2)

Ru1-N1 2.043(2) O2-Ru1-N1’ 90.03(9) Ru1-O2-C23 122.6(2)

Ru1-N2 2.029(2) O2-Ru1-N2’ 89.68(9) O1-C21-C22 125.7(3)

Ru1-N1’ 2.052(2) N1-Ru1-N2 79.61(10) O2-C23-C22 127.5(3)

Ru1-N2’ 2.040(2) N1’-Ru1-N2’ 79.30(10) C21-C22-C23 127.2(3)

O1-C21 1.274(4)

O2-C23 1.288(4)

C21-C22 1.408(4)

C22-C23 1.385(4)

Table 4.9 Bond lengths and angles for complex C’8. ESDs given in parentheses.

Figure 4.13 Intermolecular and intramolecular interactions for complex C’8. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C15-H…N1 3.964(7)

Intermolecular C4’-H…O2 3.213(5) C17-H…F1 3.464(6)

C2-H…N2’ 4.071(7) C22-H…F1 3.464(6)

 C11-H…F1 3.460(5) π π 3.864(7) 

Table 4.10 Intermolecular and intramolecular bond lengths and angles for complex
C’8. ESDs given in parentheses.

4.1.2.6 X-Ray Characterisation of Complex C’10

Black single crystals of complex C’10 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.14 with notable bond lengths

and angles stated in Table 4.11. Intramolecular and intermolecular interactions are

shown in Figure 4.15 with bond lengths and angles stated in Table 4.12. Complex

C’10 crystallised in a triclinic cell and structural solution performed in the P-1 space

group with one molecule and one molecule of acetone per asymmetric unit.

Figure 4.14 Molecular structure of complex C’10. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.054(4) O1-Ru1-N1 90.00(16) O1-Ru1-O2 92.80(14)

Ru1-O2 2.053(4) O1-Ru1-N2 85.98(17) Ru1-O1-C21 122.7(3)

Ru1-N1 2.047(5) O2-Ru1-N1’ 86.60(16) Ru1-O2-C23 123.8(3)

Ru1-N2 2.037(5) O2-Ru1-N2’ 83.91(16) O1-C21-C22 126.8(5)

Ru1-N1’ 2.047(5) N1-Ru1-N2 79.4(2) O2-C23-C22 125.8(5)

Ru1-N2’ 2.029(4) N1’-Ru1-N2’ 80.09(18) C21-C22-C23 128.1(6)

O1-C21 1.277(7)

O2-C23 1.273(7)

C21-C22 1.404(5)

C22-C23 1.392(5)

Table 4.11 Bond lengths and angles for complex C’10. ESDs given in parentheses.

Figure 4.15 Intermolecular and intramolecular interactions for complex C’10. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intermolecular C4-H…O1 3.715(8) C2’-H…F2 4.135(7)

 C7-H…O1 3.695(14) π π (Ph-Ph) 3.534(9) 

C13-H…N2 3.789(9) π π 3.832(11)

C13-H…N2’ 3.784(9)

Table 4.12 Intermolecular and intramolecular bond lengths and angles for complex
C’10. ESDs given in parentheses.

4.1.2.7 X-Ray Characterisation of Complex C’11

Black single crystals of complex C’11 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.16 with notable bond lengths

and angles stated in Table 4.13. Intramolecular interactions of feasible distances

were not observed in this case. Intermolecular interactions are shown in Figure 4.17

with bond lengths and angles stated in Table 4.14. Complex C’11 crystallised in a
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triclinic cell and structural solution performed in the P-1 space group with two

molecules and one molecule of water per asymmetric unit. Atoms corresponding to

the second molecule in the asymmetric unit are marked by an asterisk.

Figure 4.16 Molecular structure of complex C’11. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.063(4) O1-Ru1-N1 85.7(2) O1-Ru1-O2 91.94(17)

Ru1-O2 2.072(5) O1-Ru1-N2 90.1(2) Ru1-O1-C21 123.6(4)

Ru1-N1 2.054(6) O2-Ru1-N1’ 86.1(2) Ru1-O2-C23 122.7(4)

Ru1-N2 2.019(5) O2-Ru1-N2’ 89.8(2) O1-C21-C22 126.2(6)

Ru1-N1’ 2.060(6) N1-Ru1-N2 79.5(2) O2-C23-C22 126.8(6)

Ru1-N2’ 2.029(6) N1’-Ru1-N2’ 79.1(2) C21-C22-C23 127.5(7)

O1-C21 1.278(8)

O2-C23 1.275(8)

C21-C22 1.397(9)

C22-C23 1.398(9)

Table 4.13 Bond lengths and angles for complex C’11. ESDs given in parentheses.
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Figure 4.17 Intermolecular and intramolecular interactions for complex C’11. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intermolecular C4-H…N2’* 3.372(1) C7’-H…O2 3.465(2)

 C17-H…Cl1 3.805(2) π π (Ph-Ph) 3.624(2) 

C14*-H…Cl1 3.708(2) π π 3.993(2)

 C18*-H…Cl1* 3.706(2) π π 3.594(2) 

Table 4.14 Intermolecular and intramolecular bond lengths and angles for complex
C’11. ESDs given in parentheses.

4.1.2.8 X-Ray Characterisation of Complex C’12

Black single crystals of complex C’12 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.18 with notable bond lengths

and angles stated in Table 4.15. Intramolecular and intermolecular interactions are

shown in Figure 4.19 with bond lengths and angles stated in Table 4.16. Complex

C’12 crystallised in a monoclinic cell and structural solution performed in the P21/c

space group with one molecule and one water molecule per asymmetric unit.
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Figure 4.18 Molecular structure of complex C’12. Hydrogen atoms are omitted for
clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.044(5) O1-Ru1-N1 87.7(2) O1-Ru1-O2 91.3(2)

Ru1-O2 2.078(5) O1-Ru1-N2 81.4(2) Ru1-O1-C21 125.9(5)

Ru1-N1 2.044(6) O2-Ru1-N1’ 89.6(2) Ru1-O2-C23 122.7(4)

Ru1-N2 2.041(6) O2-Ru1-N2’ 89.0(2) O1-C21-C22 125.4(7)

Ru1-N1’ 2.046(6) N1-Ru1-N2 79.5(2) O2-C23-C22 128.1(6)

Ru1-N2’ 2.044(6) N1’-Ru1-N2’ 79.3(2) C21-C22-C23 126.4(7)

O1-C21 1.263(9)

O2-C23 1.273(9)

C21-C22 1.414(10)

C22-C23 1.393(10)

Table 4.15 Bond lengths and angles for complex C’12. ESDs given in parentheses.

Figure 4.19 Intermolecular and intramolecular interactions for complex C’12. Only
selected intermolecular interactions shown for charity.
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Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…N1 3.822(10)

Intermolecular C4’-H…O2 3.395(9) π π (Ph-Ph) 3.560(9) 

C7’-H…O2 3.520(7) π π 3.629(9)

C19-H…Cl1 3.882(11)

Table 4.16 Intermolecular and intramolecular bond lengths and angles for complex
C’12. ESDs given in parentheses.

4.1.2.9 X-Ray Characterisation of Complex C’13

Black single crystals of complex C’13 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Figure 4.20 with notable bond lengths

and angles stated in Table 4.17. Intramolecular and intermolecular interactions are

shown in Figure 4.21 with bond lengths and angles stated in Table 4.18. Complex

C’13 crystallised in a triclinic cell and structural solution performed in the P-1 space

group with two molecules per asymmetric unit. Atoms corresponding to the second

molecule in the asymmetric unit are marked by an asterisk.

Figure 4.20 Molecular structure of complex C’13. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.
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Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.053(7) O1-Ru1-N1 86.9(3) O1-Ru1-O2 92.2(3)

Ru1-O2 2.087(7) O1-Ru1-N2 89.8(3) Ru1-O1-C21 123.6(6)

Ru1-N1 2.061(9) O2-Ru1-N1’ 87.1(3) Ru1-O2-C23 122.8(6)

Ru1-N2 2.045(8) O2-Ru1-N2’ 90.2(3) O1-C21-C22 126.6(10)

Ru1-N1’ 2.068(10) N1-Ru1-N2 79.9(4) O2-C23-C22 126.3(9)

Ru1-N2’ 2.047(8) N1’-Ru1-N2’ 78.7(3) C21-C22-C23 127.5(11)

O1-C21 1.286(13)

O2-C23 1.279(12)

C21-C22 1.400(15)

C22-C23 1.384(13)

Table 4.17 Bond lengths and angles for complex C’13. ESDs given in parentheses.

Figure 4.21 Intermolecular and intramolecular interactions for complex C’13. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C11-H…N1 3.975(9)

Intermolecular C4’-H…O2 3.584(6) C12-H…Br1* 3.842(6)

C7’-H…O2 3.526(11) C17-H…Br1 3.991(9)

 C3*-H…Br1 4.125(10) π π (Ph-Ph) 3.612(9) 

C11*-H…Br1 3.795(7) π π 3.704(7)

Table 4.18 Intermolecular and intramolecular bond lengths and angles for complex
C’13. ESDs given in parentheses.
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4.1.2.10 X-Ray Characterisation of Complex C’14

Black single crystals of complex C’14 were obtained by the slow evaporation of

acetone. The molecular structure is shown in Table 4.19 with notable bond lengths

and angles stated in Figure 4.22. Intramolecular and intermolecular interactions are

shown in Figure 4.23 with bond lengths and angles stated in Table 4.20. Complex

C’14 crystallised in a triclinic cell and structural solution performed in the P-1 space

group with two molecules per asymmetric unit. Atoms corresponding to the second

molecule in the asymmetric unit are marked by an asterisk.

Figure 4.22 Molecular structure of complex C’14. Hydrogen atoms and counter ion
are omitted for clarity and thermal ellipsoids at the 50% probability level.

Bond Distance (Å) Bond Angle (˚) Bond Angle (˚) 

Ru1-O1 2.041(5) O1-Ru1-N1 87.1(2) O1-Ru1-O2 92.18(19)

Ru1-O2 2.054(6) O1-Ru1-N2 87.6(2) Ru1-O1-C21 124.9(4)

Ru1-N1 2.040(7) O2-Ru1-N1’ 87.9(2) Ru1-O2-C23 122.8(4)

Ru1-N2 2.030(6) O2-Ru1-N2’ 90.2(2) O1-C21-C22 125.4(7)

Ru1-N1’ 2.048(7) N1-Ru1-N2 80.2(3) O2-C23-C22 127.4(6)

Ru1-N2’ 2.027(6) N1’-Ru1-N2’ 79.3(3) C21-C22-C23 126.3(7)

O1-C21 1.272(9)

O2-C23 1.275(9)

C21-C22 1.421(10)

C22-C23 1.402(9)

Table 4.19 Bond lengths and angles for complex C’14. ESDs given in parentheses.
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Figure 4.23 Intermolecular and intramolecular interactions for complex C’14. Only
selected intermolecular interactions shown for charity.

Interaction Bond D…A Distance (Å) Bond D…A Distance (Å)

Intramolecular C15-H…N1 3.982(11)

Intermolecular C4’-H…O2 3.653(10) π π 3.938(7) 

C7’*-H…O2* 3.449(8) π π 3.896(7)

 π π (Ph-Ph) 3.807(6) π π 3.598(7) 

Table 4.20 Intermolecular and intramolecular bond lengths and angles for complex
C’14. ESDs given in parentheses.
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4.2 Conclusion

A library of novel ruthenium(II) bipyridyl complexes containing functionalised

ferrocene β-diketonate ligands possessing varying electronic and steric properties 

has been synthesised. Complexes have been fully characterised by 1H NMR, 13C [1H]

NMR, micro-analysis, mass spectrometry and X-ray crystallographic analysis (when

possible). As seen in the previous chapter, 1H NMR and 13C [1H] NMR spectra of the

complexes show distinct shifts of the ligand peaks, particularly those associated with

the ferrocene moiety and methine CH. Single crystals of these complexes were

grown from the slow evaporation or vapour diffusion methods to give purple/black

single crystals in all cases. Structural solutions were performed in triclinic cells in all

cases except complex C’1, C’7, C’8 and C’12 which were monoclinic. Observed angles

around the ruthenium metal centre are in the range of 81-90˚ showing that all 

complexes exist in a distorted octahedral geometry. The N1 of the bipyridine ligand

and ferrocene Cp rings have been shown to be involved in intramolecular hydrogen

bonding interactions in complexes C’1, C’4, C’8, C’12, C’13 and C’14. Multiple

intermolecular hydrogen bonding interactions are seen in all complexes with π-π 

stacking observed for all complexes except C’2. PF6 counter ion is involved in both

inter- and intra-molecular interactions. The bonding interactions which are observed

in the solid state may help us to understand how these complexes interact with their

biological targets.

As with the ruthenium arene complexes, the various steric and electronic properties

of the functionalised ferrocene β-diketonate ligands facilitates the determination of 

any structural activity relationships. The biological activity of these complexes will

be discussed in Chapter 5.
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5.0 In vitro Cytotoxicity Evaluation

Cytotoxicity and cell viability assays used during in vitro toxicology studies are based

on a variety of cell functions such as enzyme activity, cell membrane permeability,

cell adherence, ATP production, co-enzyme production, and nucleotide uptake

activity.1 These cell-based assays are used to measure metabolic biomarkers

attributed to the aforementioned cellular activities and facilitate the screening of

libraries of drug candidates to determine if the compounds produce any positive

effects in the way of cell anti-proliferation or cytotoxicity.2 There are many different

assay methods which can be used to deduce the activity of a given compound but

they all work with the same underlying premise, that the measured cell biomarker

activities are relative to the number of viable cells and, therefore, a reduction in cell

activity compared to a control is indicative of cell-cycle arrest or programmed cell

death.3

5.0.1 MTT assay

The MTT (3-(4,5-diemthylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay is a

sensitive and reliable colorimetric assay which is used as an indicator of cellular

metabolic activity. Existing as a yellow water-soluble tetrazolium dye, MTT is able to

be reduced to its water-insoluble purple formazan equivalent by NADPH or NADH

dependent cellular oxidoreductase enzymes (Scheme 5.1). Therefore, this assay uses

the enzymatic conversion of MTT to formazan, mainly from the reductive activity of

dehydrogenases found in the mitochondria of living cells, as a measure of cell

viability.4, 5
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Scheme 5.1 Reduction of MTT to Formazan4, 5

Potential anticancer drugs are incubated with cancer cells at 37 ˚C for periods of 3-5 

days. After this time the aqueous MTT solution is added to the cells followed by a

further 3-4 hours of incubation time to allow for the reduction of MTT. The MTT

solution/medium is removed from the incubation wells via pipette to leave behind

the insoluble formazan crystals which are then dissolved in DMSO. The absorbance

of the formazan solution is measured between 500 and 600 nm to calculate the

concentration of converted MTT and hence, viable cells, allowing for the calculation

of IC50 values.

5.1 Cytotoxicity Screening

5.1.1 Cytotoxicity Results & Discussion

Cytotoxic screening was conducted at the University of Huddersfield by Pablo

Caramés-Méndez under the supervision of Samantha Sheppard and Prof. Roger

Philips on the complexes described in Chapters 3 and 4, with cisplatin, carboplatin

and oxaliplatin as controls. The cell lines used comprise of two cancerous cell lines,

MIA PaCa-2 (human pancreatic carcinoma) and HCT116++ (human colon carcinoma),

and a non-cancerous cell line, ARPE-19 (human retinal pigment epithelial cells).

Assays were carried out over a 5-day period with 4-day drug exposure and incubation

period at 37 °C, after which time the incubated cells were treated with MTT solution

(5 mg/mL) with the concentration of the surviving cells being determined from the
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measured absorbance at 540 nm. It should be noted that complexes were dissolved

in DMSO for their use in cell line testing. Due to the potential for DMSO binding to

the complexes, samples were frozen and prepared fresh if necessary. IC50 values

were calculated for each complex by plotting a graph of percentage cell survival

against drug concentration (µM) with the final value being found at 50% cell survival.

An example of a concentration curve used in the determination of an IC50 value is

shown in Figure 5.1.

Figure 5.1 Logarithmic graph to show IC50 determination for complex C5

Cytotoxic results for the ruthenium arene piano stool complexes and bpy

coordination complexes have been tabulated and summarised in the form of a bar

chart in Figure 5.2 and Figure 5.3, respectively.
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Table 5.1 Summary of IC50 values for cisplatin, carboplatin, oxaliplatin and
ruthenium arene complexes against MIA PaCa-2, HCT116++ and ARPE-19 averaged

over 3 runs

Complex MIA PaCa-2 HCT116++ ARPE-19
IC50 (µM) ±SD (µM) IC50 (µM) ±SD (µM) IC50 (µM) ±SD (µM)

Cisplatin 3.62 0.74 3.26 0.38 6.41 0.95
Carboplatin 35.59 7.91 32.37 11.14 - -
Oxaliplatin 6.44 1.05 0.93 0.12 6.15 2.68

C1 93.33 11.55 91.72 7.18 100 -
C2 11.39 3.24 50.82 3.63 100 -
C3 100 - 94.84 8.94 100 -
C4 40.14 9.16 75.12 10.51 100 -
C5 7.9 2.32 72.41 18.65 100 -
C6 49.58 6.33 83.64 8.58 100 -
C7 100 - 100 - 100 -
C8 74.83 2.1 100 - 100 -
C9 100 - 83.84 14.25 100 -

C10 24.54 3.53 52.37 11.69 100 -
C11 32.61 2.9 84.67 12.94 100 -
C12 26.19 1.87 85.25 13.52 100 -
C13 100 - 92.9 6.16 100 -
C14 100 - 83.95 15.57 100 -
C15 28.51 3.29 78.38 17.34 100 -
C16 100 - 74.61 19.31 100 -
C17 26.26 7.99 53.25 16.11 100 -
C18 100 - 87.83 21.08 100 -
C19 100 - 64.88 18.93 100 -
C20 100 - 100 - 100 -
C21 25.14 7.44 88.83 19.35 100 -
C22 65.09 21.02 100 - 100 -
C23 40.44 10.29 87.98 16.64 100 -
C24 38.78 8.07 48.11 8.07 100 -

Note – No standard deviation is given for complexes with activity lower than the 100 µM limit
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Figure 5.2 Chart to summarise the IC50 values for the ruthenium arene complexes

From the cell line data it is not possible to derive any general structural-activity

relationships for these complexes against either cell line. However, what is evident

is that these complexes are generally much more active towards the MIA PaCa-2 cell

line than the HCT116++ cell line. p-Cymene ruthenium arene complexes previously

reported in the McGowan group have similarly shown a lack of overall trend in

activity.6

The most active arene complexes against the MIA PaCa-2 cell line were found to be

C2 (R = CF3) and C5 (R = 2-furan), with IC50 values of 11.39 µM and 7.90 µM

respectively, compared to 3.62 µM for cisplatin. Interestingly, when the CF3 group of

C2 is substituted for the CHF2 group of C3 the complex is rendered almost completely

inactive towards both cancer cell lines and is, in fact, one of the least cytotoxic of all

the tested complexes. Similarly, the substitution of the 2-furan substituent of C5 to

the 3-furan of C4 gave a decrease of activity but to a much lesser extent than that

observed between C2 and C3.

Although complexes C1-C24 may not be as active as the well-known platinum-based

anticancer drugs, their selectivity towards cancerous cells is greatly increased. The

obtained IC50 values for all the tested ruthenium arene complexes was found to
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be > 100 µM for the ARPE-19 cell line, demonstrating the lack of toxicity towards

healthy cells at concentrations lower than the experimental threshold. Therefore, it

is plausible that these complexes will be tolerated much better by the body than the

platinum-centred drugs and may present less severe side effects in vivo, allowing

higher concentrations of these complexes to be administered during cancer

chemotherapy to compensate for the lower cancer cell activity.7, 8

Table 5.2 Summary of IC50 values for cisplatin, carboplatin, oxaliplatin and
ruthenium bipyridyl complexes against MIA PaCa-2, HCT116++ and ARPE-19

averaged over 3 runs

Complex MIA PaCa-2 HCT116++ ARPE-19
IC50 (µM) ±SD (µM) IC50 (µM) ±SD (µM) IC50 (µM) ±SD (µM)

Cisplatin 3.62 0.74 3.26 0.38 6.41 0.95
Oxaliplatin 6.44 1.05 0.93 0.12 6.15 2.68
Carboplatin 35.59 7.91 32.37 11.14 - -

C'1 0.43 0.1 0.34 0.03 0.74 0.04
C'2 2.41 0.25 2.95 0.12 2.71 0.52
C'3 0.11 0.01 0.23 0.07 0.10 0.03
C'4 0.13 0.01 0.30 0.04 0.32 0.07
C'5 0.09 0.02 0.11 0.03 0.11 0.03
C'6 0.13 0.03 0.21 0.03 0.21 0.02
C'7 0.12 0.01 0.30 0.04 0.25 0.08
C'8 0.25 0.03 0.32 0.04 0.18 0.06
C'9 0.33 0.01 0.72 0.05 0.27 0.03

C'10 0.35 0.02 0.82 0.07 0.35 0.06
C'11 0.16 0.04 0.32 0.04 0.13 0.02
C'12 0.1 0.02 0.11 0.00 0.13 0.01
C'13 0.12 0.01 0.30 0.07 0.13 0.03
C'14 0.12 0.02 0.19 0.04 0.11 0.02
C'15 0.22 0.03 0.25 0.06 0.13 0.03
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Figure 5.3 Chart to summarise the IC50 values for the ruthenium bpy complexes

The ruthenium coordination complexes were found to be highly cytotoxic towards

all tested cell lines (Figure 5.3) with IC50 values in the nanomolar range,

demonstrating cytotoxicity which is superior to that of cisplatin, a chemical attribute

that still holds true even when the least active complex is taken into consideration.

The most active complex C’5 was found to be 40-fold more active than cisplatin

against the MIA PaCa-2 cell line. Surprisingly, the least active complex (C’2) was

found to contain the CF3 moiety, a feature which has been shown in the literature to

enhance the potency of many drug candidates.9 This observation is also in contrast

to the aforementioned arene complexes where the complex containing the same

ligand was shown to possess high levels of activity. However, the lower activity in

this case may be explained due to the electron withdrawing ability of the CF3 group,

removing electron density from the ruthenium/β-diketonate bonds and potentially 

leading to a reduced stability of the complex. As with the arene complexes, the

observed activity towards the MIA PaCa-2 cell line is generally greater than towards

the HCT116++ cell line.
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Figure 5.4 Chart to summarise the trends in IC50 values for the ruthenium bpy
complexes

A clear correlation can be seen between the increasing aromaticity of the R

substituent on the β-diketonate ligand and the cytotoxicity of the complexes across 

all cell lines tested (Me < Ph < Naph) (Figure 5.4), a finding which is common for

ruthenium polypyridyl complexes.10 One justification could be that the increasing

hydrophobicity may be aiding in the passive transport through the cell membrane

into the cell. Moreover, the increased aromaticity allows for greater overlap

between the π systems of the complex and DNA bases during intercalation, 

increasing the binding affinity. Groove binding may also be increased with the

increased size of the R group as the additional aromaticity and torsional freedom

allows the complex to span more base pairs and increases the number of possible

binding sites in the major and minor grooves of DNA. Another such correlation in the

cytotoxic behaviour can be observed for the halogen substituents at the para

position of the phenyl ring on the β-diketonate ligand, as moving down the halogen 

column of the periodic table resulted in an increase in the cytotoxicity of the

complexes.
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Table 5.3 Selectivity of ruthenium bipyridyl complexes

Complex MIA PaCa-2 ARPE19 Selectivity

Cisplatin 3.62 6.41 1.77

C'1 0.43 0.74 1.72

C'2 2.41 2.71 1.12

C'3 0.11 0.10 0.91

C'4 0.13 0.32 2.46

C'5 0.09 0.11 1.22

C'6 0.13 0.21 1.62

C'7 0.12 0.25 2.08

C'8 0.25 0.18 0.72

C'9 0.33 0.27 0.82

C'10 0.35 0.35 1.00

C'11 0.16 0.13 0.81

C'12 0.1 0.13 1.30

C'13 0.12 0.13 1.08

C'14 0.12 0.11 0.92

C'15 0.22 0.13 0.59
Selectivity was calculated from ARPE19/MIA PaCa-2

An initial indicator of selectivity of the complexes is given as a ratio of IC50 values in

ARPE-19 cells to cancer cells (in this case MIA PaCa-2), with a value of > 1

demonstrating increased response from cancer cells (Table 5.3). Compounds tested

which showed preferential selectivity towards cancer cell lines are highlighted in

yellow (selectivity between 1-1.5) and complexes with values highlighted in green

were found to have comparable or superior selectivity to that of cisplatin (selectivity

> 1.5).

A decrease in selectivity can be observed from C’4 (R = Ph) to C’5 (R = Naph), as the

increasing activity with the larger aromaticity of the R substituent also increases

activity of the complexes towards ARPE-19. A further, and more general, decrease

can be seen with regards to the halogenated phenyl ring moieties in comparison to

the unsubstituted ring or ones which contain alkyl substituents. However, the

selectivity is not favoured by more electropositive polar effects, which this

observation may indicate as C’15, containing an electron donating group (p-OMe),

possesses the worst selectivity of all the coordination complexes studied. These
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findings then suggest that preferential cytotoxicity is favoured towards complexes

containing β-diketonate ligand with more neutral electronic proerties. 

5.2 Cytotoxicity Studies under Hypoxic Conditions

5.2.1 Hypoxia in human tumours

Hypoxia, the result of an inadequate supply of oxygen, is a common feature of many

solid tumours. The oxygen levels in healthy human tissue (normoxia/physoxia)

ranges between 4.6 and 9.5 % but varies greatly between different organs due to the

diverse blood vessel network and metabolic activity. Hypoxic tissue, on the other

hand, experiences a decrease in oxygenation in comparison to healthy tissue and

exists with average oxygen levels of between 1-2 %.11 Growing past a diameter of

1mm, tumours must begin to develop their own blood supply by creating a vascular

network from either pre-existing blood vessels or by forming new microvessels

through angiogenesis. However, the network formed during the rapid growth phase

of the tumour is usually quite inadequate and riddled with abnormalities, leading to

a hindered flow of blood and as a result, a restricted supply of oxygen Figure 5.5.12-

16

Figure 5.5 Examples of vascular networks inside normal and tumour tissue17

Hypoxic cells have been well known to cause resistance towards radiotherapy

treatments from as early as the 1950s, when Gray et al. performed studies to
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establish the effect of ionizing radiation on cells.18 During the study they noted a

remarkable reduction in the ionizing effects in the absence of oxygen, although this

finding was not new. Earlier reports had demonstrated similar radioresistance in the

absence of oxygen but were thought to be a product of lower metabolic rate of the

cells rather than oxygen tension.19-22 Rather, it has now been hypothesised that the

high affinity of oxygen for the free radical on the irradiated DNA solidifies the

radiation damage at a physicochemical level, preventing chemical restitution

(Scheme 5.2).23, 24

Normoxia

Scheme 5.2 Mechanism of radiation induced DNA damage in normoxia and
hypoxia22

Furthermore, hypoxic cells are considered to be resistant to a multitude of

chemotherapy drugs.25 Clear links between chemotherapy resistance and hypoxia

have been proven through preclinical studies which show that this occurrence arises

for several reasons; hypoxic cells are located further away from a blood supply

(blood vessel, capillary etc.) than most healthy cells, and hence they are not exposed

to the same concentrations of anticancer compound as it travels around the

cardiovascular system.26-28 Cellular proliferation is another factor that also decreases

with increasing distance from blood supply.29 Hypoxia favours the formation of cells

which are desensitised towards p53-mediated cell apoptosis, a common biological

exploit during the mechanism of action of a number of anticancer compounds.30 On

a similar note, the cytotoxicity of some anticancer complexes is due to their ability

to form reactive oxygen species inside a cell, leading to DNA damage and cell death.

Evidently in hypoxia, this pathway is not as feasible as with cells in normoxic

conditions.31, 32 Upregulation of genes involved in drug resistance, such as

p-glycoprotein and HIF-1, is common in hypoxia.33, 34 Furthermore, the reducing

environment associated with hypoxia can cause particular difficulties for transition
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metals as a change in their oxidation state can lead to a change in their structure,

binding mode, cellular drug uptake, metabolism, and even reduce the effectiveness

of their cellular mechanism of action or change it completely.6

5.2.2 Responses to Hypoxia

Hypoxia has been shown to impair growth and provoke cell death through changes

in the proteome of tumour cells. On the other hand, some of the proteomic changes

actually help the tumour to successfully adapt and thrive in the low-oxygen, nutrient-

deprived state.35-39 Hypoxic cells undergo multiple adaptive responses to the low

oxygen conditions which allow them to survive and proliferate.40 The development

of a more effective nutrient and oxygen supply is created through the changes in

expression of genes for erythropoietin, transferring receptors, and the angiogenic

vascular endothelial growth factor (VEGF), amongst other proteins. Cellular energy

requirements are also met through the control of glycolytic enzymes and glucose

transporters in the metabolic pathway by these adaptive response genes. Gene

expression for a number of the aforementioned proteins is regulated by the

transcriptional hypoxia-inducible factor (HIF-1α), a factor which also contributes to 

the aggressiveness of a tumour through the regulation of genes involved in invasion

and metastasis, such as downregulation of adhesion molecules.41-50

5.2.3 HIF-1

HIF-1 is a heterodimeric transcription factor, comprising of HIF-1α and HIF-1β 

subunits, which mediates adaptive responses to hypoxia.42 The HIF-1β subunit is a 

constitutively expressed nuclear protein which is independent of oxygen tension.

Conversely, HIF-1α is an oxygen sensitive cytoplasmic protein whose expression and 

activity is regulated by cellular oxygen concentrations.51, 52 In well oxygenated cells,

HIF-1α is continuously degraded by the hydroxylation of select prolyl residues of the 

subunit by oxygen-dependant enzyme activity. These hydroxylated prolyl sites cause

the HIF-1α to be recognised by the von Hippel-Lindau tumour suppressor protein 
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which further modifies HIF-1α, marking it for degradation by the proteasome.53, 54

Under hypoxic conditions, the HIF-1α subunits do not undergo hydroxylation but 

instead migrate to the nucleus of the cell, where they are stabilised by the HIF-1β 

subunits and heterodimerise into the active HIF-1 protein.55, 56 It is this active HIF-1

which goes on to bind to the core DNA and activates the transcription of hundreds

of genes (transferrin, VEGF, glycotic enzymes etc.) which are over expressed in

human tumour cells.44, 57, 58

5.2.4 Hypoxia Results and Discussion

In order to assess the influence of oxygen concentration upon chemosensitivity, the

arene compounds which showed the highest activity against MIA PaCa-2 cells under

normoxic conditions were selected. Complexes C2 and C5 were studied over a five

day period in vitro using the MTT assay under hypoxic conditions at 0.1% O2 against

MIA PaCa-2 cells; cisplatin was also studied as a comparison.

The results show a decrease in cytotoxicity for all three tested complexes, including

cisplatin, when the oxygen concentration is reduced to 0.1% (Figure 5.6). Complex

C2 experienced the least loss of activity from normoxia to hypoxia (11.39 ± 3.24 →

44.16 ± 7.17 µM) becoming the more active ruthenium complex of the two tested,

where the opposite observation is true in normoxia. It is not possible to comment on

the exact loss of activity of complex C5 as the IC50 values concentration reached the

threshold limit of 50 µM. Surprisingly, cisplatin’s IC50 value rose from 3.62 ± 0.74 µM

to > 50 µM under the hypoxic conditions, which is a significant decrease in

cytotoxicity compared to complex C2 under these conditions. Therefore, although

there is a decrease in the activity of complexes C2 and C5, complex C2 remained

much more cytotoxic than cisplatin against MIA PaCa-2 under 0.1% oxygen

conditions.
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Table 5.4 Summary of IC50 values for cisplatin, C2 and C5 under normoxic and
hypoxic conditions against MIA PaCa-2 averaged over 3 runs

Complex MIA PaCa-2
NORMOXIA HYPOXIA

IC50 (µM) ±SD (µM) IC50 (µM) ±SD (µM)

Cisplatin 3.62 0.74 50 -

C2 11.39 3.24 44.16 7.17
C5 7.9 2.32 50 -

Note – No standard deviation is given for complexes with activity lower than the 50 µM limit

Figure 5.6 Chart to summarise the IC50 values of complexes C2, C5 and cisplatin
under differing oxygen concentrations

Coordination complexes were studied in the same manner to the aforementioned

arene complexes over a five day period in vitro using the MTT assay at 0.1% O2

against both HCT116++ and MIA PaCa-2 cells. Three platinum anticancer

compounds, including cisplatin, were also studied as a comparison. Complexes C’1,

C’4, C’5, C’6, C’7 and C’12 were selected for study, a larger cross section was chosen

compared to the arene complexes due to the potent cytotoxicity of the whole library

of coordination compounds on both cell lines in normoxia.

Results show that the reduction in oxygen concentration gave a decrease in activity

for all complexes against both cell lines, although to a lesser degree for the MIA

PaCa-2 cell line, but it should be noted that the platinum complexes were rendered

completely inactive under the same conditions at the 50 µM threshold limit (Figure
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5.7). For reasons yet unknown, complex C’1 was also found to be inactive at the

tested concentrations (IC50 > 50 µM) in hypoxia but solely towards the HCT116++ cell

line. Complexes with a 3’,5’- substituted phenyl ring at the R position (C’7 and C’12)

were the most active against both cell lines under hypoxia, with C’7 (R = 3’,5’-Me)

being found to be approximately twice as cytotoxic than the mono-substituted para

methyl C’6. With regards to the effect of increasing aromaticity, the same trend in

cytotoxicity across the complexes observed in normoxia remained under hypoxia

(C’5 > C’4 > C’1) although complex C’1 experienced a greater loss of activity in

comparison to the others. Remarkably, under hypoxic conditions, complex C’5, C’7

and C’12 (2.77 µM, 2.09 µM and 2.43 µM, respectively) were still more active than

cisplatin under normoxic conditions (3.62 µM) against the MIA PaCa-2 cell line.

Table 5.5 Summary of IC50 values for cisplatin, carboplatin, oxaliplatin, C’1, C’4-C’7
and C’12 under normoxic and hypoxic conditions against MIA PaCa-2 and

HTC116++ averaged over 3 runs

Complex MIA PaCa-2 HTC116++
NORMOXIA HYPOXIA NORMOXIA HYPOXIA
IC50

(µM)

±SD

(µM)

IC50

(µM)

±SD

(µM)

IC50

(µM)

±SD

(µM)

IC50

(µM)

±SD

(µM)

Cisplatin 3.62 0.74 50 - 3.26 0.38 50 -
Carboplatin 35.59 7.91 50 - 32.37 11.14 50 -
Oxaliplatin 6.44 1.05 50 - 0.93 0.12 50 -

C’1 0.43 0.10 12.55 4.02 0.34 0.03 50 -
C’4 0.13 0.01 6.41 2.55 0.30 0.04 10.20 2.11
C’5 0.09 0.02 2.77 0.66 0.11 0.03 9.96 2.33
C’6 0.13 0.03 4.84 0.80 0.21 0.03 9.03 2.52
C’7 0.12 0.01 2.09 0.42 0.30 0.04 4.97 0.77

C’12 0.1 0.02 2.43 0.28 0.11 0.004 5.26 0.17
Note – No standard deviation is given for complexes with activity lower than the 100 µM limit
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Figure 5.7 Chart to summarise the IC50 values of ruthenium bpy complexes under
differing oxygen concentrations

5.3 Antibacterial Activity

There has been a vast expansion in the development of compounds which are used

to treat bacterial infection since the discovery of the first antibiotic drug, penicillin.

However, the often unnecessary and wide use of antibiotics has caused bacteria to

grow increasingly resistant to common antibacterial agents, a problem which is fast

becoming one of the great challenges of modern medicine.59-62 Microorganisms

develop drug resistance from a variety of genetically controlled biochemical

processes, arising from either mutation of their intrinsic cellular genes or the transfer

of genes from resistant bacteria.63 These mutated genes yield several biochemical

mechanisms of resistance including, but not limited to, drug

inactivation/modification, target modification/repair, immunity, increased

impermeability, and biofilm formation, amongst other unknown mechanisms.64, 65

Consequently, the concern centred around antibiotic resistance has prompted the

progress and production of novel antimicrobial therapies.

Numerous transition metal complexes have been shown to display antibacterial

activity.66-69 In some cases these complexes contain already existing antibacterial

compounds as ligands, creating a synergistic effect which have been shown to
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enhance the antimicrobial activity of the organic fragment and, notably, greatly

increase their activity towards drug-resistant strains of bacteria.70-72

Silver and its complexes have long been used as antibacterial agents; silver nitrate is

used in the clinical treatment of ophthalmia neonatorum and silver sulfadiazine is a

widely used broad-spectrum antibiotic ointment applied to severely burnt skin.73

More generally, silver complexes with oxygen donor ligands display a broad range of

antibacterial activities which are independent from the ligand itself, but rather stems

from the ease of ligand replacement with biological ligands due to the weaker Ag-O

bond.74 Anti-arthritic drugs containing gold, such as auranofin and several other

related complexes, have been discovered to inhibit the growth of Pseudomonas

putida. A further synergistic effect was discovered between Cu(II) compounds and

the Au(I) complexes, as the co-administration caused an increase in their toxic

effects towards strains of P. putida.75

As well as being widely studied for their anticancer properties, the therapeutic

potential of ruthenium metal complexes as antimicrobial agents has also been

explored.76-87 The structural and electronic properties of the metal complexes which

allow them to strongly interact with nucleic acids - and impart anticancer activity -

also provide the basis for protein and enzyme targeting. For example, work by

Meggers and Pandey on ruthenium arene and polypyridyl complexes has

demonstrated their ability to bind and inhibit enzymes such as acetylcholinesterase

and protein kinases that are involved in tumourgenisis and metastasis.88-90

Ruthenium polypyridyl complexes as antimicrobial agents is a growing area of

interest but they have been studied in this role for over 60 years. Initial investigations

were conducted by Dwyer et al. in the 1950s on ruthenium tris(bidentate) complexes

containing derivatives of 1,10-phenanthroline and 2,2’-bipydridine against Gram

positive, Gram negative and acid-fast bacteria.83, 91, 92 During these investigations the

authors were able to demonstrate the importance of the metal complexes’

lipophilicity, dramatically increasing the activity of the inert [Ru(phen)3]2+ against all

tested bacterial strains - in particular Gram positive bacteria and Mycobacterium

tuberculosis - by the addition of methyl substituents to the phenanthroline ligands.

More importantly, bacteria did not easily become resistant towards this type of
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compound, after sub-culturing the highly virulent Staphylococcus pyogenes var.

Phillips in the presence of [Ru(Me4phen)2(acac)]+ every 48 hours for a total of 25

repeats, the bacteria only showed a two-fold increase in resistance in contrast with

the antibiotic control penicillin, where there was an observed 10,000-fold decrease

in activity.74

Figure 5.8 Molecular structure of [Ru(phen)3]2+, [Ru(Me4phen)3]2+ and
[Ru(Me4phen)2(acac)]+ 74

More recently, Aldrich-Wright et al. have reported significant antibacterial activity

against B. subtilis and S. aureus (including several methicillin-resistant strains) from

polypyridyl ruthenium(II) DNA binders. Although these complexes were found to be

inactive against Gram negative bacteria, some of the complexes display particularly

low minimum inhibitory concentrations (MIC) of as little as 2 μg ml-1 towards Gram

positive strains.87 Furthermore, their low toxicity towards eukaryotic systems was

demonstrated by treating S. aureus infected Caenorhabditis elegans - a roundworm

which is used as an infection model for human pathogens - with the most active

compound [Ru(2,9-Me2phen)2(dppz)]2+, resulting in an 80% increase in the survival

population of the worms.87 It is thought that this selectivity towards bacterial cells

over eukaryotic cells is due to differences in the membrane composition, as the

greater abundance of negatively charged components (phospholipids) in the

bacterial membrane and cell wall will have a high affinity for the cationic ruthenium

complexes.93
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Figure 5.9 Molecular structure of [Ru(2,9-Me2phen)2(dppz)]2+ 87

Derivatives of ferrocene have also been explored for their potential antibacterial

properties as far back as the 1970s when Marr et al. published antibacterial studies

on ferrocene derivatives of the bactericides penicillin and cephalosporin.94-96 Testing

against a number of different bacterial strains the complexes exhibited moderate

activity although some complexes were shown to exhibit comparable activity to that

of the control molecules. Work in this area has increased in recent years, with the

antibacterial properties of ferrocene derivatives being explored either as standalone

complexes69, 97-99 or incorporated into other metal complexes in the form of a

ligand.100-103

5.3.1 Antibacterial Results and Discussion

Complexes were screened for their anti-bacterial activity against Escherichia coli

(E coli), Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii

(A. baumannii), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus

aureus (S. aureus) by The Community for Antimicrobial Drug Discovery (CO-ADD) at

The University of Queensland. The complexes, at a single concentration of 32

μg mL-1, were incubated with the bacterial strains at 37 °C for 18 hours without

shaking. All growth inhibition assays were performed in duplicate. Growth inhibition

was determined by measuring absorbance at 600 nm. Complexes with growth

inhibition values greater than 80 % are classed as active and complexes with growth

inhibition values in the range 50 - 80 % are classed as partially active.
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Antibacterial screening results for the ruthenium arene piano stool complexes and

bpy coordination complexes have been summarised in Table 5.6 and Table 5.7,

respectively. Active complexes have been highlighted for ease of observation.

Table 5.6 Growth inhibition for ruthenium arene complexes against bacterial
strains

Complex Inhibition / %
Sa Ec Kp Pa Ab

C01 34.22 -29.09 10.46 -22.97 30.61
C02 27.64 -15.35 8.87 -14.99 30.09
C03 23.53 -35.27 6.05 -16.69 13.58
C04 75.12 -20.02 0.46 -20.43 17.98
C05 29.52 -24.87 -1.68 -13.98 11.61
C06 93.65 -25.98 7.11 -33.19 18.91
C07 83.43 -49.1 0.52 -33.93 11.05
C08 94.64 -13 5.99 -24.77 7.47
C09 88.03 -22.03 2.7 -49.1 10.04
C10 85.24 -22.37 4.43 -33.05 22.24
C11 58.92 -37.82 2.56 -22.47 25.81
C12 31.77 -40.32 -1.28 -20.53 18.45
C13 12.06 -20.48 4.71 -19.35 2.95
C14 11.5 -45.46 -1.28 -32.88 9.73
C15 51.92 -44.24 6.09 -23.9 12.63
C16 49.6 -42.9 0.03 -29.13 15.11
C17 86.29 -31.94 2.17 -32.12 8.22
C18 43.52 -33.89 6.65 -40.78 21.16
C19 57.51 -34.73 0.92 -22.19 15.77
C20 24.07 -17.95 7.29 -38.57 18.12
C21 57.13 -27.9 6.54 -22.07 16.76
C22 90.91 -10.07 7.62 -22.57 28.15
C23 29.91 -23.77 -0.71 -40.74 9.38
C24 69.07 -22.29 0.38 -25.37 22.4

The ruthenium arene complexes showed considerably greater activity towards the

Gram positive strain of bacteria, S. aureus, compared to the other four observed

Gram negative bacterial strains, against which they proved inactive, an observation

which is not uncommon for ruthenium complexes.63 Of the seven complexes active

against S. aureus, five of them contained a β-diketonate ligand with neutral inductive 

aromatic ring systems (C6 – C10). However, C17 (R = 3’,5’-Cl) and C22 (R = 4’-OMe)

were also shown to have comparable antibacterial activity to the previously
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mentioned active complexes, despite containing electron withdrawing and donating

moieties, respectively.

Considering only the S. aureus inhibition results, complex C17 (R = 3’,5’-Cl) has an

almost two-fold increase in the inhibition of bacterial growth over complexes

containing a mono-chlorinated β-diketonate ligand (C15 and C16), which would

suggest that the number of halogens plays a part in the active mechanism.

Conversely, the equivalent fluorine containing complexes show a decrease in activity

with the increase in fluorine atom substituents. In fact, C14 (R = 3’,5’-F) is the least

active of all the complexes with fluorinated aromatic rings and is five times less active

than the partially active C11 (R = 4’-F). A trend in decreasing activity of the complexes

can be seen with the position and number of fluorine atoms around the ring of the

β-diketonate R substituent (C11 > C12 > C13 > C14).

The electronic properties of the substituents at the meta and para position of the

β-diketonate aromatic ring appears to have an interesting impact on the bacterial 

inhibition activity of the ruthenium arene complexes. The decreasing

electronegativty of the halogen atoms F > Cl > Br > I causes a decrease in the activity

of complexes when the halogen atom is located at the para position and an increase

in activity of the complexes when the halogen atom is located at the meta position

(Figure 5.10). The opposite observation is true for electron donating substituents (i.e

R = Me/OMe) as the antibacterial activity is favoured for substituents in the para

position. These observations suggest that the inductive effects around the aromatic

ring may be responsible to some degree in imparting the bacterial inhibition

properties to the complexes.
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Figure 5.10 Chart to show how bacterial inhibition changes with para and meta
halogen substituents

As with the ruthenium arene complexes, the ruthenium bpy coordination complexes

were also considerably more active towards the Gram positive strain of bacteria,

S. aureus, rather than the other Gram negative strains, although their activity

towards A. baumannii is generally much improved with some of the coordination

complexes entering the “partially active” region of inhibition (C’8, C’9 and C’15). The

inhibition percentages for S. aureus are also generally greater with all complexes

being classed as at least partially active, demonstrating growth inhibition in the

range of 66.35 – 87.15 %. These results are in agreement with other work stating

that ruthenium polypyridyl complexes have superior activity towards Gram positive

strains of bacteria in comparison to Gram negative strains.63, 104, 105 A slight decrease

in activity can be seen with the decreasing electronegativity of the halogen atoms at

the para position of the β-diketonate (C’8 > C’11 > C’13 > C’14). A further decrease

in activity is observed between the para halogenated complexes and their meta

dihalogenated counterparts (C’8 > C’10 and C’11 > C’12). However, this observation

is in contrast to the results shown from the equivalent methyl complexes which see

better bacterial inhibition from the meta dimethyl moiety (C’7 > C’6).
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Table 5.7 Growth inhibition for ruthenium bipyridyl complexes against bacterial
strains

Complex Inhibition / %
Sa Ec Kp Pa Ab

C'01 85.24 -21.18 -4.5 -15.78 -4.11
C'02 73.83 -40.63 -16.41 -39.57 7.09
C'03 86.29 12.89 -8.66 3.29 9.26
C'04 73.41 10.63 -13.94 11.9 44.87
C'05 85.33 -0.09 -3.89 -14.08 34.28
C'06 66.35 2.98 -19.17 -19.16 42.08
C'07 77.26 -12.11 -13.9 -21.2 48.31
C'08 80.21 8.15 -10.85 -17.98 58.89
C'09 84.31 9.33 -8.47 13.86 52.55
C'10 74.54 -7.78 -14.81 -15.46 9.9
C'11 76.69 -3.32 -24.46 -21.2 43.91
C'12 68.66 -31.58 -23.66 -29.02 5.73

C'13 76.05 -5.68 -15.89 -28.95 42.22
C'14 71.57 -11.65 -15.31 -23.23 40.35
C'15 87.15 8.86 -1.68 -0.64 76.46

Complexes which were classed as active underwent hit confirmation to determine

their minimum inhibitory concentration (MIC). MIC is the lowest drug concentration

which prevents visible growth of the pathogen, in this case bacteria. The MIC values

were determined against E. coli, K. pneumoniae, A. baumannii, P. aeruginosa and

S. aureus by CO-ADD at The University of Queensland. The complexes, at eight

concentrations, were incubated with the cell suspensions of the bacterial strains at

35 °C for 18 hours without shaking. All growth inhibition assays were performed in

duplicate. Inhibition of bacterial growth was determined by measuring the

absorbance at 600 nm. The MIC was determined as the lowest concentration at

which the growth was fully inhibited, defined by an inhibition ≥ 80 %. Complexes 

with MIC less than 16 μg mL-1 are classed as confirmed active hits.

The cytotoxicity of these complexes was also determined against the HEK293

(human embryonic kidney) cell line. The complexes, at eight concentrations, were

incubated with the cells at 37 °C for 20 hours in 5 % CO2. Cytotoxicity was measured

by fluorescence, with excitation at 560 nm and emission at 590 nm, after the

addition of resazurin and further incubation for three hours under the same
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conditions as previously stated. Cytotoxicity is expressed in terms of CC50, which is

defined as the concentration of drug required to produce 50 % of cell death.

Haemolysis assays were also conducted using human whole blood. The complexes,

at eight concentrations, were shaken with the cells for ten minutes before incubation

at 37 °C for one hour. Haemolysis was determined by measuring the supernatant

absorbance at 405 nm of the centrifuged samples and is expressed in terms of HC10,

which is the concentration of the drug required to cause 10 % haemolysis.

The antibacterial MICs, cytotoxicity and haemolysis results for complexes C6 – C10,

C17 and C22 are summarised in Table 5.8, with the results for complexes C’1 – C’15

summarised in Table 5.9.

Table 5.8 Antibacterial toxicity and cytotoxicity of complexes C6-C10, C17 and C22

Complex MIC / μg mL-1 CC50 / μg mL-1 HC10 / μg mL-1

Sa Ec Kp Pa Ab Hk Hm

C06 16 >32 >32 >32 >32 21.38 >32
C07 32 >32 >32 >32 >32 11.94 >32
C08 32 >32 >32 >32 >32 20.45 >32
C09 32 >32 >32 >32 >32 14.79 >32
C10 16 >32 >32 >32 >32 5.79 >32
C17 32 >32 >32 >32 >32 6.27 >32
C22 32 >32 >32 >32 >32 28.37 >32

Despite the initial screening results for complexes C6 – C10, C17 and C22 displaying

positive growth inhibition of S. aureus only complexes C6 and C10 display sufficient

activity to be classed as active hits. All complexes also showed varying degrees of

cytotoxicity towards HEK293 cells, with C10 being shown to be the most toxic to

eukaryotic cells (CC50 = 5.79 μg mL-1) and C6 being shown to be one of the least toxic

(CC50 = 21.38 μg mL-1) despite its antibacterial activity. These results are in contrast

to the previous cytotoxicity studies performed on the ARPE19 human retinal pigment

epithelial cells which showed no cytotoxicity at the tested 100 μM concentrations. 

Haemolysis results, on the other hand, were extremely positive and showed that the

tested ruthenium arene complexes are non-toxic to human blood under 32 μg mL-1.
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Table 5.9 Antibacterial toxicity and cytotoxicity of complexes C’1-C’15

Complex MIC / μg mL-1 CC50 / μg mL-1 HC10 / μg mL-1

Sa Hk Kp Pa Ab Hk Hm

C'01 8 >32 >32 >32 >32 9.494 >32
C'02 8 >32 >32 >32 >32 6.654 >32
C'03 4 >32 >32 >32 >32 4.659 17.58
C'04 0.5 >32 >32 >32 16 4.442 9.072
C'05 1 >32 >32 >32 >32 3.623 2.401
C'06 2 >32 >32 >32 >32 4.892 14.91
C'07 4 >32 >32 >32 >32 2.91 1.851
C'08 1 >32 >32 >32 >32 3.862 4.731
C'09 2 >32 >32 >32 >32 5.365 4.549
C'10 2 >32 >32 >32 >32 4.689 7.92
C'11 2 >32 >32 >32 16 2.749 2.608
C'12 2 >32 >32 >32 >32 4.652 4.482
C'13 4 >32 >32 >32 >32 5.828 11.72
C'14 2 >32 >32 >32 >32 6.906 16.05
C'15 2 >32 >32 >32 >32 2.865 <=0.25

Compared to the ruthenium arene complexes, the ruthenium coordination

complexes gave considerably lower MIC values for S. aureus, which was to be

expected considering their inhibitory activity results during the initial antibacterial

screening. Their potential potency has also been demonstrated previously in the

anticancer cytotoxicity results (Table 5.2). The most active complex C’4 (MIC = 0.5

μg mL-1) shares the same β-diketonate ligand (R = Ph) as one of the active arene 

complexes C6. Furthermore, C’4 was one of only two complexes to show an active

hit against the Gram negative A. baumannii, the other being C’11. However, with the

keen potency of these complexes comes increased toxicity towards the HEK293

healthy cells and human blood cells, although C’1 and C’2 remained non-toxic during

the haemolysis studies but possess the largest active MIC values of all the

coordination complexes.
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5.4 Antifungal Activity

Advances in modern medicine have granted us the ability to treat diseases which

were previously beyond our medical and surgical capabilities. With these advances

we delve deeper into the fundamental workings of the human body, bypassing or

suppressing the body’s natural defences in order to manage diseases which the

immune system has failed to combat. Treatments of this kind, such as organ

transplantation, cancer chemotherapy or immunosuppressive treatment for

HIV/AIDS, which are associated with the more major health issues often leaves

patients immunocompromised and vulnerable to severe fungal infections.106

Of the millions of different fungal species, only around 300 have been recorded to

cause disease in humans, with approximately 25 of those responsible for 99% of

reported infections.107-110 These infections can be classified into two categories;

superficial fungal infections (SFI) and invasive fungal infections (IFI), with the latter

often being life-threatening and resulting in high mortality rates amongst

immunocompromised individuals. The most common of these IFI pathogens are

Candida albicans (mortality rate: 20-40%), Cryptococcus neoformans (mortality rate:

20-70%) and Aspergillus fumigates (mortality rate: 50-90%).111

Despite these considerable mortality rates, advances in the formation and discovery

of new antifungal treatments have been slow. The main problems related to the

treatment of fungal infections are similar to those faced during cancer therapy; both

human and fungi are eukaryotic organisms comprised of cells which are similar in

structure and function, and as a result, antifungal treatments can often exhibit high

toxicity towards the closely related healthy mammalian cells.112, 113 Furthermore, the

increasing problem of drug resistance in fungal infections can be attributed in many

cases to the over expression of multidrug resistant pumps, a property which has also

been linked to the increased chemotherapy resistance of cancerous cells.114, 115

In spite of the desperate need for new fungal treatments, very few organometallic

and coordination complexes have been explored for their potential antifungal

effects. The first row transition metals (manganese, iron, cobalt, nickel, copper and

zinc) are popular choices in the development of novel antifungal complexes.116-120
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They possess the required redox and catalytic activities which enable them to serve

as cofactors for a plethora of enzymes involved in the biological processes associated

with the infections.121

Several ruthenium arene PTA complexes from the RAPTA series developed by Dyson

et al. containing p-cymene and labile halogen and thiocyanate ligands, originally

devolved for cancer therapy,122 were subsequently explored for their antimicrobial

activity.123 During these studies the halogens proved to play an important role on the

growth inhibition activity of the complexes. Compounds containing the heavier

halogen atoms (I, Br) were practically inactive with non-specific antimicrobial action.

The chloro- and thiocyan- complexes were found to selectively inhibit fungal growth,

specifically Trycophyton mentagrophytes and Cladosporium resinae, over the tested

bacteria and viruses.

Figure 5.11 Ruthenium RAPTA complexes123

As well as being explored for their antibacterial properties as previously mentioned,

many ferrocene derivatives have been simultaneously probed for their antifungal

effects.97, 98, 103 A common theme in the development of antifungal ferrocene

derivatives is the incorporation of a ferrocene moiety into already well established

fungicidal molecules such as triadimefon,124 sedaxane125 and fluconazole.126

Although the antifungal toxicity of these ferrocene analogues varies considerably

from case-to-case, the parent drug molecule often displays greater fungal growth

inhibition than its ferrocenyl analogue.
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5.4.1 Antifungal Results and Discussion

Complexes were screened for their anti-fungal activity against Candida albicans

(C. albicans) and Cryptococcus neoformans (C. neoformans) by CO-ADD at The

University of Queensland. The complexes, at a single concentration of 32 μg mL-1,

were incubated with the fungal strains at 35 °C for 24 hours without shaking. All

growth inhibition assays were performed in duplicate. Growth inhibition of C.

albicans was determined by measuring absorbance at 530 nm. Growth inhibition of

C. neoformans was determined by measuring the difference in absorbance between

580 and 600 nm following the addition of resazurin and incubation at 35 °C for a

further two hours. Complexes with growth inhibition values greater than 80 % are

classed as active and complexes with growth inhibition values in the range 50 - 80 %

are classed as partially active.

Antifungal screening results for the ruthenium arene piano stool complexes and bpy

coordination complexes have been summarised in Table 5.10 and Table 5.11,

respectively. Active complexes have been highlighted for ease of observation.

Table 5.10 Growth inhibition of ruthenium arene complexes against fungal strains

Complex Inhibition / % Complex Inhibition / %
Ca Cn Ca Cn

C01 7.16 -18.91 C13 1.86 -6.95
C02 18.53 -21.78 C14 -0.84 -16.03
C03 11.06 -17.24 C15 9.99 -15.73
C04 30.27 -19.96 C16 2.67 -15.88
C05 46.13 -18.6 C17 8.98 -10.28
C06 25.32 116.19 C18 2.74 -18.15
C07 20.22 59.6 C19 13.02 -16.49
C08 4.27 -11.64 C20 3.39 -17.85
C09 7.77 -6.5 C21 8.71 -18.15
C10 12.81 119.73 C22 7.7 -13.91
C11 17.93 -19.81 C23 8.57 -14.67
C12 6.96 -21.63 C24 10 -13.61

Only two complexes were found to be active against the C. neoformans strain of

fungus, complexes C6 and C10. Interestingly, complexes C6 and C10 were also the

only two complexes classed as active during the antibacterial hit confirmation

studies (Table 5.6) and contain β-diketonate ligands with phenyl and 3’, 5’-dimethyl 
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substituents, respectively. Complex C7, containing a naphthalene moiety, shows

partial activity with 59.6 % growth inhibition of C. neoformans. All other complexes

were found to be inactive towards C. neoformans and C. albicans, suggesting that a

more electro-neutral aromatic substituent favours the inhibitive activity towards

C. neoformans.

Table 5.11 Growth inhibition of ruthenium bipyridyl complexes against fungal
strains

Compound Inhibition / % Compound Inhibition / %
Ca Cn Ca Cn

C'01 5.59 -11.34 C'09 26.95 118.48
C'02 8.44 123.67 C'10 16.79 116.82
C'03 10.66 115.99 C'11 100.37 129.28
C'04 96.71 123.46 C'12 100.3 116.19
C'05 99.96 120.14 C'13 100.44 124.29
C'06 99.96 121.59 C'14 100.03 120.76
C'07 99.96 120.14 C'15 89.8 119.52
C'08 96.91 127.2

As was observed for the antibacterial and cytotoxicity studies, the ruthenium

coordination complexes have superior fungal inhibition activity than the ruthenium

arene complexes. All complexes except C’1 were found to be excellent inhibitors in

the growth of C. neoformans. With regards to C. albicans, complexes C’4 – C’8, C’11

– C’15 were again highly active, with growth inhibition in the range of 89.8 –

100.44 %. Complexes C’1 – C’3 which were inactive towards C. albicans are lacking

an aromatic substituent on the β-diketonate ligand, suggesting that the aromatic 

group is essential for the C. albicans antifungal activity, possibly due to the increased

potential for DNA binding by intercalation. However, C’9 and C’10 were also inactive

to C. albicans and both of which contain phenyl substituents with fluorine at the

meta positions.

Complexes which were classed as active underwent hit confirmation to determine

their minimum inhibitory concentration (MIC). The MIC values were determined

against C. albicans and C. neoformans by CO-ADD at The University of Queensland.

The complexes, at eight concentrations, were incubated with the cell suspensions of

the fungal strains at 35 °C for 36 hours without shaking. All growth inhibition assays
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were performed in duplicate. Growth inhibition of C. albicans was determined by

measuring absorbance at 630 nm. Growth inhibition of C. neoformans was

determined by measuring the difference in absorbance between 570 and 600 nm

following the addition of resazurin and incubation at 35 °C for a further two hours.

The MIC was defined as the lowest concentration at which the growth was fully

inhibited, set at ≥ 80% for C. albicans and inhibition ≥ 70% for C. neoformans (due to

higher variance in growth and inhibition of C. neoformans compared to C. albicans).

Complexes with MIC less than 16 μg mL-1 are classed as confirmed active hits. The

cytotoxicity and haemolysis assays were conducted as previously described for the

antibacterial hit confirmation.

The antifungal MICs, cytotoxicity and haemolysis results for complexes C6 – C10, C17

and C22 are summarised in Table 5.12, with the results for complexes C’1 – C’15

summarised in Table 5.13. Despite displaying growth inhibition of C. albicans in the

initial screening, complexes C6 and C10 did not display sufficient MICs to be classed

as active hits.

Table 5.12 Antifungal toxicity and cytotoxicity of complexes C6-C10, C17 and C22

Complex MIC / μg mL-1 CC50 / μg mL-1 HC10 / μg mL-1

Ca Cn Hk Hm

C06 >32 32 21.38 >32
C07 >32 32 11.94 >32

C08 32 32 20.45 >32
C09 32 32 14.79 >32
C10 32 32 5.794 >32
C17 >32 >32 6.27 >32
C22 >32 32 28.37 >32

As with the antibacterial hit confirmation, the ruthenium coordination complexes

were found to possess much lower MIC values in general than the ruthenium arene

complexes, although these is no correlation between their antibacterial MIC values

and those obtained from the antifungal studies. Complexes were found to be more

active towards C. neoformans than C. albicans, though this was to be expected from

their initial fungal inhibition results. Antifungal activity of these complexes generally

correlate with increased toxicity towards HEK293 kidney cells and human blood cells.
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Table 5.13 Antibacterial toxicity and cytotoxicity of complexes C’1-C’15

Complex MIC / μg mL-1 CC50 / μg mL-1 HC10 / μg mL-1

Ca Cn Hk Hm

C'01 >32 32 9.494 >32
C'02 >32 16 6.654 >32
C'03 >32 16 4.659 17.58
C'04 16 8 4.442 9.072
C'05 8 8 3.623 2.401
C'06 8 8 4.892 14.91
C'07 8 8 2.91 1.851
C'08 16 16 3.862 4.731
C'09 32 8 5.365 4.549
C'10 32 8 4.689 7.92
C'11 16 8 2.749 2.608
C'12 8 8 4.652 4.482
C'13 16 8 5.828 11.72
C'14 16 16 6.906 16.05
C'15 16 16 2.865 ≤0.25 
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5.5 Conclusions

Two libraries of ruthenium complexes have been screened for their anticancer

activity under normoxic conditions (21 % O2). Many of the ruthenium arene

complexes were found to possess moderate to strong cytotoxicity against cancer cell

lines, with increased activity towards the MIA PaCa-2 cell line. These complexes were

shown to be highly selective for cancer cells, with IC50 values exceeding the tested

threshold limit for healthy cells. The ruthenium coordination complexes were found

to be highly cytotoxic towards all tested cell lines with IC50 values in the nanomolar

range. Selected active complexes from each library were then studied under extreme

hypoxia (0.1 % O2) which saw a decrease in activity for all complexes, yet they were

more active than cisplatin under the same conditions.

Both series of ruthenium complexes were screened for their antimicrobial activity

against multiple bacterial and fungal strains. Against Gram positive bacteria, both

sets of complexes showed elevated inhibition activity over the Gram negative

strains, with the coordination complexes generally being far more active than the

arene complexes. Hit confirmation was carried out on the active complexes to

determine their MIC values and returned figures of as little as 0.5 μg mL-1 for the

most active coordination complex. Only two arene complexes showed active

inhibition of fungal growth but failed to be classed as active during hit confirmation

stages of testing. Conversely, almost all the coordination complexes were extremely

active growth inhibitors and gave MIC values or 8/16 μg mL-1.

From both the cytotoxicity and antimicrobial results it is currently not possible to

conclude any general structural activity relationship trends. The potential shown by

both libraries of complexes promoted them to be taken forward and investigated

further, the results of which are discussed in the following chapter.
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6.0 Biological Relevance

In the search for new potential cancer therapeutic drugs, conclusions of their success

must not be based solely on their cytotoxic screening results. The assessment of new

drug compounds is multi-layered and preclinical investigations must be undertaken

in an attempt to determine their biological relevance. Through various in depth

studies it is possible to determine, to some degree of certainty, how a drug molecule

will behave in vivo (e.g. mode of transport, mechanism of action, cellular

distribution) and from this data, we can establish important structural-activity

relationships (SAR) between the molecular structure of a drug and its biological

activity. As the majority of new drug compounds fail before clinical trials, the SAR

information gathered at this stage of testing can be used to modify various physical

traits of a molecule to improve its biocompatibility.

6.1 Hydrolysis Studies

Many of the successful metal-based anticancer drug compounds can be classed as

“prodrugs”, meaning that they are biologically inactive upon administration but can

become active under certain biological conditions. As discussed in Chapter 1, the

potent cytotoxic mode of action of cisplatin is strongly related to the drug’s

hydrolysis mechanism.1-5 Upon entering the cell membrane, the drop in chloride

concentration facilitates the ligand substitution reaction to form the active hydro-

platinum species which can bind to DNA.

One of the possible modes of action for the successful ruthenium anticancer

compounds NAMI-A and KP1019 is thought to involve the reduction of Ru(III) to

Ru(II).6-10 Such a reduction can be achieved in multiple ways under physiological

conditions or in vivo, either through the aquation pathway to form a number of

potentially active species,11-14 or from interactions with an intracellular reducing

agent such as ascorbate or glutathione within the cell.15 Although these two

complexes are rather similar, they undergo hydrolysis at very different rates. NAMI-A

begins the process of hydrolysis within minutes of being administered to the body,

whereas the more stable KP1019 is much slower, with a better cellular uptake,
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resulting in much more of the ruthenium complex being delivered to the nucleus of

cells.16

Figure 6.1 Reduction pathways of ruthenium(III) compounds in vivo

The strong connection between the hydrolysis pathway and the mechanism of action

of these successful anticancer complexes demonstrates the importance of

conducting hydrolysis studies on newly formed anticancer compounds. Anticancer

ruthenium “piano stool” complexes containing ancillary ligands have also been

shown to hydrolyse and bind to nucleobase through a mono- or di- hydrated

intermediate species under physiological conditions.17-19 Furthermore, previous

work in the McGowan group on ruthenium(III) bis-picolinamide dihalide complexes

found that the more cytotoxic dichloro complexes hydrolyse to a greater degree than

their less active counterparts.20

6.1.1 Hydrolysis Results and Discussion

Hydrolysis studies were performed on all ruthenium complexes and monitored by

UV-vis spectroscopy with 1H NMR and electrospray mass spectrometry also

conducted on selected complexes. UV-Vis samples were prepared in 90%

acetonitrile/10% water to give a final concentration of 50 μM and 1H NMR samples

were prepared in 90% d3-acetonitrile or d6-acetone /10% D2O to give final

concentration of 5 mg ml-1. Attempts to increase the water concentration of the
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solvent solutions caused the complex to precipitate, affecting the overall

concentration. Samples were analysed every 24 hours at 293 K over a period of four

days to mimic the drug exposure time used during the in vitro MTT assay. UV-Vis

spectra are assigned tentatively from TD-DFT calculations on similar structures.21-25

Over the four day study there was an observed change in the UV-Vis spectra for all

of the ruthenium arene complexes C1-C24 (Table 6.1) which is associated with the

colour change of the sample solutions from red/purple to yellow/brown during the

period of observation. UV-Vis absorption spectra for the complexes generally follow

the same trend, an example of which is shown in Figure 6.2, with the arrows on the

graph indicating the change in peak intensity. Intense ligand based absorbance

(π-π*) can be observed at approximately 200 nm, followed by less intense metal-to-

ligand charge transfer transitions, interligand and ligand-centred transitions at

250-330 nm and a weak d-d transition at 450-550 nm, all of which experience a loss

in intensity over the four day period. Moreover, there is a hyperchromic shift of a

newly formed metal-to-ligand charge-transfer band in the region of 330-370 nm and

ligand based absorbance at 220-230nm, which appears as a shoulder in many but

not all cases. These changes in the spectral properties of the complexes strongly

suggest that they undergo a ligand substitution reaction in aqueous media to form

hydrolysis products.

Figure 6.2 Typical changes in UV-Vis spectra for ruthenium arene complexes.
Complex C6 used as an example
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Table 6.1 Table of wavelengths of absorption bands of ruthenium arene complexes

Complex Wavelength / nm

Day 0 Day 4

C1 245(sh), 293, 348, 463 296, 348, 455

C2 337, 372(sh) 238(sh), 331

C3 330, 373(sh) 345

C4 255(sh), 310, 368, 487 274, 315(sh), 348

C5 274, 324, 387(sh), 492 221, 273, 347

C6 260, 309, 368, 489 264, 316(sh), 347

C7 252, 308(sh), 318, 378(sh), 487 277(sh), 285, 347

C8 267, 312, 377, 486 223, 266, 348

C9 263, 310, 384(sh), 490 223(sh), 272, 347

C10 266, 310, 368, 492 271, 347

C11 261, 309, 369(sh), 494 269, 347

C12 260, 311, 375(sh), 497 271, 348

C13 256, 307, 365(sh), 495 219(sh), 271, 348

C14 263(sh), 312, 353(sh), 396(sh), 503 272, 347

C15 265, 312, 358, 497 272, 348

C16 260, 311, 378(sh), 495 223(sh), 273, 348

C17 261, 311, 391(sh), 505 273, 349

C18 267, 312, 385(sh), 497 269, 347

C19 261, 311, 388(sh), 498 273, 351

C20 275, 315, 383(sh), 493 243, 272(sh), 347

C21 222(sh), 260, 311, 386(sh), 498 272, 347

C22 278, 320, 374, 485 247(sh), 273(sh), 343

C23 262, 309, 384(sh), 491 274, 347

C24 281, 321, 375, 483 245(sh), 273(sh), 346
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Figure 6.3 UV-Vis spectra for ruthenium arene complexes. Key: Day 0 = blue, Day 1 = orange, Day 2 = grey, Day 3 = yellow, Day 4 = green
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The most active complexes against the MIA PaCa-2 cell line, C2 and C5, and their less

active but structurally similar counterparts, C3 and C4 respectively, were of

particular interest in the search for links between hydrolysis and anticancer activity

(Figure 6.4).

C2 and C3 gave similar UV-Vis spectra, which is to be expected, with an intense ligand

based absorbance (π-π*) at approximately 200 nm and a broad and less intense band 

at 300-400 nm arising from metal-to-ligand charge transfer transitions, coupled

with some interligand and ligand-centered transitions. Over the four day period a

hypochromic shift in the AMax of both absorbance bands can be observed for both

complexes, but to a greater extent in the case of the C2, especially over the first two

days. As the relative hydrolysis rates can be inferred from the from the UV-Vis

spectra, we can therefore conclude that the relative hydrolysis rates of these two

complexes (C2 > C3) correlate to their anticancer activity.

Complexes C4 and C5 also have similar UV-Vis absorption spectra to each other; both

possess an intense ligand based absorbance (π-π*) at approximately 200 nm, a less 

intense band at 290-330 nm arising from metal-to-ligand charge transfer

transitions, coupled with some interligand and ligand-centred transitions, and a

weak d-d transition at 480-510 nm. A hypochromic shift in the AMax of both the ligand

based absorbance, metal-to-ligand charge-transfer and d-d transition band was

observed over the four day period with a hyperchromic shift of a newly formed

metal-to-ligand charge-transfer band in the region of 330-370 nm. In the case of

complex C5, there was the formation of another band at 220-230 nm by the end of

the four days. As with the case of the comparison of complex C2 and C3 but to a

lesser extent, the more active complex C5 hydrolyses at a slightly increased rate over

C4, as the difference in the IC50 value between C5 and C4 is considerably less than

that between complexes C2 and C5. Again, the most active complex showed a

greater rate of hydrolysis when compared to their less active equivalents (C5 > C4),

further suggesting that there is a correlation between the relative rate of hydrolysis

and the anti-cancer activity of these particular complexes. However, it should be

noted that the correlation between the hydrolysis rate and anticancer activity is not

observed for all complexes.
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Figure 6.4 UV-vis spectra for the hydrolysis of complexes C2-C5

The formation of new species in the presence of water was further confirmed by 1H

NMR spectroscopy, an example of which is shown in Figure 6.5. In the NMR spectra,

there is a change of the peaks at 5.3-6.5 ppm, the region associated with the

aromatic p-cymene protons and methine proton, where there is a clear formation of

multiple new proton environments. Further changes can be observed in the region

of 3.0 ppm, again arising from the formation of new proton environments around

the p-cymene ligand. However, this information alone brings us no closer to

deciphering the structure of the hydrolysis products which are clearly forming under

these conditions.
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Figure 6.5 1H NMR (500 MHz, Acetone-d6) spectra of complex C6 under aqueous
conditions over 4 days

ES-MS was collected for multiple hydrolysis samples, all of which gave peaks which

correspond to structures analogous to those shown in Figure 6.6, although it should

be noted that there is currently no further data to support the presence of these

exact structures. Other hydrolysis products may form in the solutions that may be

unstable and degrade when passed through the ES-MS, although these could also be

important hydrolysis products. There is also the possibility that the proposed

complexes in Figure 6.6 may form inside the ES-MS device from unstable hydrolysed

complexes. Attempts to try and isolate the hydrolysis products have proved futile.

Figure 6.6 Mass spectrometry peaks and assignments for complex C6



Mechanistic Studies Chapter 6

166

The formation of the additional peaks in the NMR spectra could arise from the

breakdown of the ferrocene β-diketonate ligand into cyclopentadiene and 

β-diketonate (containing a Cp ring). These Cp protons will appear in the regions of 

the newly found proton environments in the 1H NMR spectra. The possibility of the

ferrocene present in these β-diketonate ligands breaking down under hydrolysis 

conditions has been previously observed by Dr. Laura Ghandhi in the McGowan

group.26 During hydrolysis studies on the isolated ligands in 20% water/acetonitrile

over five days, there were changes in the UV-Vis, 1H NMR and ES-MS spectra, but

assignment of the hydrolysis products was not possible. Over time, dark brown

crystals formed in the aqueous solutions of which it was possible to obtain single

crystal x-ray data showing the presence of an iron centred complexes Figure 6.7.

Figure 6.7 Molecular structure of the ferrocenyl β-diketonate ligand hydrolysis 
product. Displacement ellipsoids are at the 50 % probability level. Hydrogen atoms

are omitted for clarity

The ruthenium coordination complexes were found to be highly stable under the

previously mentioned hydrolysis condition. In both the NMR and UV-vis studies,

there was found to be no notable change in the spectra over the four day

observation window. The UV-Vis sample for complex C’4 was retained and a spectra

was obtained at 35 days on top of the four day study to demonstrate the degree of

resistance to hydrolysis, a graph of the combined spectrum is shown in Figure 6.8.

The UV-Vis absorption spectra of complex C’4 displays an intense band at 245 and
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295 nm which typically arise from bpy π → π2* and  π → π1* intraligand transitions,

respectively. A broad Ru(dπ) →bpy(π*) metal-to-ligand charge transfer band occurs 

centred around 500 nm.27-32 Absorbance peaks at 205 and 330 nm likely arise from

a ligand based absorbance and metal-to-ligand charge transfer transition from the

ferrocene β-diketonate ligand.  

Figure 6.8 Changes in UV-Vis spectra for ruthenium bipyridyl complexes

Contrary to the proposed mechanism of cisplatin, NAMI-A and KP1019, not all metal

complexes possess a ligand-substitution step during their mechanism of action.

Work by Meggers et al. has demonstrated the biological potential of a variety of

metal-based enzyme inhibitors, including substitutionally inert ruthenium(II)

complexes.33 Furthermore, the observed stability in aqueous conditions for these

ruthenium coordination complexes is in agreement with findings from other

ruthenium polypyridyl DNA binders.34

If hydrolysis of these complexes was observed in a similar manner to the mode of

activation of cisplatin, their ability to bind through non-covalent interactions, such

as intercalation, could potentially be hindered. This is to not say that hydrolysis of

ruthenium polypyridyl complexes would cause a decrease in their anticancer
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potency, but rather than the conditions required are more specific; incorporating

sterically demanding ligands which cause distorted octahedral geometries around

the ruthenium centre and therefore facilitates the photo-induced ligand loss of the

sterically bulky ligand, forming bis-aqua complexes under aqueous conditions.35-38

These findings therefore suggest that any interactions which occur between the

ruthenium bipyridyl complexes and DNA will be in the form of reversible binding

interactions such as intercalation or electrostatics. It should be noted however, that

the cytotoxic effects of ruthenium polypyridyl complexes may only be partially

attributed to their non-covalent DNA binding interactions.39 Further studies have

provided evidence that their anticancer activity may also arise from intracellular

enzyme inhibition and cell wall interactions amongst other biological processes.40-44

6.2 Hydrophobicity Studies

Hydrophobicity and hydrophobic interactions are some of the most important and

extensively studied natural phenomenon.45 Work which dates back to the late 19th

century by Meyer and Overton first explores the importance of hydrophobic

interactions in drug design by correlating the hydrophobic nature of anaesthetic

gases to their biological potency.46-48 Since then, hydrophobic interactions have been

shown to be a key factor which is taken into account during the drug design,

discovery and development phases, playing a crucial role in a multitude of

computational modelling systems.49-52 Furthermore, the significance of

hydrophobicity is demonstrated in Lipinski’s “rule of 5” which state that: absorption

or permeation of a chemical entity is reduced when the octanol-water partition

coefficient (LogP) is greater than 5, the molecule possess more than 5 H-bond donors

and weighs more than 500 Da.53, 54 These rules were later changed and extended by

Lipinski in an attempt to improve predictions of “drug-likeness” with a new LogP

range of -0.4 - +5.6 and then further refined to classify “lead-like” compounds with

a LogP of less than 3.55-57 The LogP range stated by Lipinski’s rules allows a molecule

to be orally administered through a balance of sufficient hydrophilicity, to dissolve

in aqueous bodily fluids and enter the blood stream through the stomach or
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intestines, and yet also sufficient hydrophobicity, to permeate lipophilic biological

membranes.

6.2.1 Hydrophobicity Results and Discussion

The hydrophobicity of the ruthenium complexes was determined by their octanol-

water partition coefficient obtained from the shaken-flask method which was

conducted in the following manner; NaCl saturated deionised water and octanol in

a 1:1 ratio was stirred overnight at room temperature and then separated into two

layers of water-saturated octanol and octanol-saturated water. Complexes were

found to be insoluble in the octanol-saturated water, which was to be expected.

Complexes were therefore dissolved in water-saturated octanol, followed by the

addition of an equal amount of octanol-saturated water and shaken at 1000 gmin-1

for two hours. A minimum of six repeats were taken per complex. The organic layers

of the solutions, before and after partitioning, were analysed by UV-vis spectroscopy

to obtain the values of maximum absorbance (Amax). Using pre-prepared calibration

graphs for each individual complex, it was possible to calculate the concentration of

complex ([C]org) in each sample from the Amax and hence, determine the partition

coefficient Equation 6.1.58-61

ࡼܗۺ = ቆܗۺ
ࢇࢌ[]

–ࢇ࢚[] ࢇࢌ[]
ቇ

Equation 6.1

When determining the hydrophobicity of a compound from the shaken-flask

method, octanol acts as a model for the cell membrane, mimicking the lipophilic

layers. In order for a complex to be classed as hydrophobic it must accumulate more

readily in the organic phase rather than the aqueous phase, its LogP value will

therefore be positive. If the opposite is true and the compound concentration is

greater in the aqueous phase then the compound is hydrophilic and will produce a

negative LogP value.
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The hydrophobity for complexes C1 – C24 was studied using the aforementioned

process and their obtained LogP values are summarised in Table 6.2 and Figure 6.1.

It was not possible to obtain the partition coefficient for complexes C’1 – C’15 due

to their lack of solubility in water and only partial solubility in octanol.

Table 6.2 LogP values for ruthenium arene complexes

Complex LogP ±SD Complex LogP ±SD

C1 1.11 0.09 C14 0.74 0.05
C2 1.76 0.18 C15 0.69 0.06
C3 1.13 0.09 C16 0.42 0.19
C4 0.97 0.1 C17 1.86 0.22
C5 1.02 0.11 C18 1.55 0.45
C6 0.8 0.1 C19 1.09 0.23
C7 1.04 0.2 C20 1.4 0.16
C8 0.33 0.08 C21 1.17 0.17
C9 0.64 0.22 C22 1.08 0.01

C10 0.55 0.13 C23 0.97 0.13
C11 0.79 0.09 C24 1.22 0.04
C12 1.26 0.05 Cisplatin -2.2 0.2
C13 1.36 0.16

Figure 6.9 Graph of LogP values for ruthenium arene complexes

All complexes were found to possess positive LogP values in the range of 0.33-1.86

and are therefore hydrophobic, partitioning preferentially into the organic layer. This
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result was unsurprising as their poor hydrophilicty was observed during attempts to

solubilise the complexes in octanol-saturated water. The LogP values for all the

complexes fall well within the range dictated by Lipinski’s rules but these complexes

do not obey the rules in their entirety, weighing considerable more than required.

However, transition metal complexes are an exception when it comes to obeying

some of Lipinski’s rules as many metal complexes have a molecular weight above the

proposed maximum of 500 Da. Furthermore, Cisplatin has a LogP value of -2.2,62-64

well out of the acceptable ranges for a drug candidate set by Lipinski, and yet it is

one of the most successful anticancer metal complexes to date.

The two most hydrophobic complexes, C2 (LogP 1.76) and C17 (LogP 1.86), were

found to be two of the more potent cytotoxic complexes towards both tested cancer

cell lines. In agreement with this, the complexes with the lowest LogP values, C8

(LogP 0.33) and C16 (LogP 0.42), were two of the least cytotoxic complexes observed.

However, the same correlation between hydrophobicity and anticancer actively

does not remain true when complexes with a LogP value in the middle of the

obtained range are taken into consideration, an observation which has previously

been seen for ruthenium piano-stool complexes in the McGowan group.26, 65 As all

the complexes were found to be hydrophobic, this suggests that the complexes will

enter cells via passive diffusion due to their greater potential to cross the cell

membrane of lipophilic layers.66 However, it should be noted that LogP only

describes the lipophilicity of compounds in their neutral form, and although it can

be very useful for comparing overall trends it should be used carefully. To obtain a

more accurate description of the partition coefficient of ionisable compounds the

pH should be taken into consideration with the use of a buffer solution as the

aqueous phase such as phosphate-buffered saline.

6.3 Biomembrane Studies

The human body contains a range of various biomembranes with various different

functions, from guarding cells and tissues from harmful molecules, to acting as

gateways for biomolecules to penetrate cells. After administration, a drug molecule
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will come into contact and interact with many of these biomembranes before

reaching its target site.67 Biomembrane interactions are consequently a crucial factor

in the distribution and bioavailability of drug molecules once inside the body,

controlling both the rate of penetration and partitioning of the drug molecule.68

Biomimetic model membrane systems - such as vesicles or liposomes, Langmuir

monolayer, solid support bilayers and tethered bilayer lipid membranes – are

designed to mimic the basic structural and functional properties of a natural

membrane while at the same time being much more robust than membrane

proteins. This offers the opportunity to observe drug-membrane interactions at

preclinical stages of drug development under defined and controlled conditions.69

Furthermore, recent work on ruthenium(II) complexes from well-established

researchers has reported the induction of cell death via apoptosis, facilitated

through the metal complexes interfering with the cell membrane potential.42, 44, 70-72

A unique biomembrane sensing device has been developed by Nelson et al. at the

University of Leeds.73-81 The intelligent design of this system utilises a dioleoyl

phosphatidylcholine (DOPC) phospholipid monolayer deposited upon a

microfabricated Pt/Hg sensing electrode (Figure 6.10) which acts as an excellent and

effective artificial biomembrane model. This electrode is connected to an online high

throughput flow system which allows for the rapid screening of mass amounts of

compounds and records rapid cyclic voltammograms (RCVs) to show changes in the

capacitance current peaks when a voltage of 40 Vs-1 is applied. Fluctuations in the

RCV peaks are recorded by the electrode and show damage of the membrane caused

by exposure to membrane active compounds. The mercury support facilitates the

detection of any membrane interactions by allowing the formation of a self-healing

and defect-free DOPC phospholipid monolayer.77-79, 81

This electrochemical setup has been previously used as a toxin detection device for

water supplies,77, 78, 80 however, it is currently being investigated as a fast, easy and

inexpensive potential pre-screening technique for anti-cancer compounds as

interactions with DOPC can help deduce the in vivo behaviour between a compound

and the cell membrane.
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Figure 6.10 Schematic diagram of the electrochemical screening device80

The DOPC monolayer produces two sharp characteristic capacitance current peaks

which correspond to two potential induced phase transitions which occur when a

potential between 0.2-1.8 V is applied (Figure 6.11).76 These peaks arise firstly from

the passing of electrolytes into the DOPC layer and secondly from the formation of

bilayers and micelles. Any interactions which occur between a biomembrane active

compound and the phospholipids will lead to selective membrane damage and cause

a change in the organisation and/or fluidity of the DOPC monolayer. If the DOPC

monolayer becomes compromised in this manner, changes in the phase transitions

will occur that can be detected electrochemically and consequently result in a

change in the position, shape and height of the characteristic double peak

configuration of the RCV.
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Figure 6.11 Predicted phase transitions of DOPC monolayer76

6.3.1 Biomembrane Results and Discussion

The experimental procedure was carried out by Danielle Marriott and Dr. Nicola

William under the supervision of Professor Andrew Nelson at The University of

Leeds. Solutions of the complexes were prepared by dissolving compounds C1-C2,

C6-C8, C11, C14-C15, C17-C18, C20 and Cisplatin in acetone to yield 15.6 μmol dm-3

solutions. Three solutions are introduced into the flow cell, separately, in the

following order; control phospate-buffered saline (PBS), DOPC dispersion in PBS and

the sample solution. Prior to and throughout each experiment an argon gas flow is

maintained above the control and sample electrolytes and the DOPC layer to exclude

oxygen. A constant flow of PBS is maintained over the electrode with a flow rate of

5-10 cm3 min-1. A potential excursion is applied from -0.4V to -3.0V at a scan rate of

100Vs-1 during the introduction of the DOPC into the flow cell, which deposits the

DOPC on the mercury chip. The potential excursion is altered to -0.4 to -1.2V and by

repetitive cycling the characteristic capacitance current peaks of DOPC on mercury

can be monitored. The solutions containing the complex is then introduced into the

flow system with RCV monitoring the interactions of the sample with the DOPC

monolayer while cycling the electrode potential from -0.4 to -3.0V.

As a proof of concept, cisplatin was screened first through the biomembrane sensing

device and resulted in no change to RCV plot compared to the primary DOPC layer

(Figure 6.12). This result was to be expected as cisplatin is hydrophilic and reported
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to enter cells readily via active transport through copper transport channels and not

by passive diffusion.82-85 Therefore, cisplatin is not able to interact with the DOPC

monolayer just as it is not able to interact and diffuse through a cell membrane.

Figure 6.12 RCV plot of cispaltin

The RCVs of the tested complexes displayed varying, yet promising degrees of

interaction with the DOPC layer depending on their electronic and steric properties

(Figure 6.14). Both peaks show great deformation in the presence of the tested

compounds with the second peak reducing more vastly in size than the former,

suggesting the second DOPC phase transition (the nucleation and growth process) is

affected to a greater extent than the first phase transition (movement of ions).

The increasing electronegativity of the halogens in the para position of the R

substituent correlates to an obvious increase in the degree of DOPC damage (C11 >

C15 > C18 > C20). In the case of the iodo- containing complex the peaks in the RCV

are well defined, gradually becoming less and less distinct with decreasing halogen

atom size (Figure 6.13). This rise in monolayer disruption could be attributed to the

increasing potential of the electronegative complexes to interact with the positively

charged head group of DOPC. It could be argued that this is a size dependant SAR;

the increasing size of the halogen atom may disrupt the transport of the complex

into the DOPC monolayer, an observation that holds true for the bulky complexes C7

(R = 1-Naph) and C17 (R = 3’,5’-Cl). However, complexes with much smaller R

substituents, such as C1 (R = Me) and C2 (R = CF3), have also been shown to cause
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little disruption in the RCV plots in comparison to C11 and C14, both of which contain

fluoro-phenyl substituents.

Figure 6.13 RCV graphs to show degree of DOPC monolayer disruption varying with
halogen substituent

For several of the compounds (C1, C2, C7, C17, C20) partial recovery of the

membrane was observed following the DOPC/complex interaction (Figure 6.15). This

implies the mode of action of these molecules may not involve compromising the

cell membrane itself, as they may penetrate the cell membrane with a lesser effect

on its integrity and impart their cytotoxicity more internally within the cells. Again,

the degree of recovery varies depending on the R substituent of the complex,

although the recovery was found to be lesser extent in the complex C17.

Overall, these displayed changes in the RCV graphs clearly show the complexes

ability to penetrate and interact with the DOPC layer. When applied to a biological

system this may potentially translate to the complexes ability to enter and damage

the cell membrane, unlimitedly leading to cellular apoptosis. However, there is no

notable correlation between the complexes IC50 values and the degree of

degradation of the DOPC monolayer peaks, an observation which is contrary to

previous studies in the McGowan group on cobalt picolinamide anticancer
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complexes using this exact biomembrane sensing device.26 Therefore, even though

the high membrane permeability displayed by this series of complexes suggests that

their mode of cell entry is mainly, if not solely, via passive diffusion, the extent of

which they passively diffuse into the cell has no bearing on their anticancer activity

in this case, an observation which is in agreement with the previous mentioned

hydrophobicty studies.
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Figure 6.14 RCVs showing interaction of ruthenium/ferrocene complexes (RED) with DOPC (BLUE)
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6.4 Comet Assay

The comet assay, otherwise known as single-cell gel electrophoresis, is a simple

method of determining DNA strand breakage in eukaryotic cells (Figure 6.16).86

Microgel electrophoresis was first developed by Ostaling and Johanson in 1984 to

measure single-strand breaks in DNA supercoils. This technique was later modified

in 1988 by Singh et al. to incorporate alkaline conditions which has become the

widespread method used to this day.87

Figure 6.16 Comet assay procedure88

Eukaryotic cells are embedded in agarose, a polysaccharide gel, before being lysed

with a buffer solution in order to break down the cell membrane. The remaining DNA

is too large to diffuse into the agarose and is retained in the nucleoids created by the

cells. Electrophoresis is then conducted in alkaline conditions which results in the

flow towards the anode of broken and relaxed negatively charged DNA from the

immobile DNA supercoils. This phenomenon creates a comet like image when

observed with a fluorescent dye through a microscope. The degree of DNA damage

is proportional to the amount of DNA in the comet “tail” compared to the comet

“head”.86

6.4.1 Comet Assay Results and Discussion

Comet assays were conducted by Dr. Rianne Lord at The University of Bradford.

Complexes C2, C5 and C6 were tested for their ability to induce single strand

breakage (SSB) of DNA, with varying concentrations of compound from 20 – 2.5 μM.  
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MIA PaCa-2 cells were chosen for this study due to their increased sensitivity to the

complexes under observation. An incubation period of 48 hours was determined

from shorter term MTT assay results which proved interesting and will be discussed

later (Table 6.3). After harvesting the cells, they were added to pre-prepared slides

containing an agarose layer. Neutral lysing solution was added to the slides followed

by the alkaline electrophoresis buffer. The slides were then placed into the

electrophoresis chamber where an electric field of 24 V was applied for 25 minutes

before being washed and dried overnight. A staining solution was added to the slides

and a minimum of 50 comets were analysed using Comet assay III software

Table 6.3 IC50 values for complexes C2, C5 and C6 over 24 and 48 hours averaged
over 3 runs

Complex IC50 Values ± SD
24 h 48 h

Cisplatin >100 76 ± 3
C2 >100 29.6 ± 0.9
C5 >100 23 ± 2
C6 >100 >100

Complexes C2 and C6 only show a small degree of SSB (tail moments of 6.1 and 5.6

respectively) when incubated for 48 hours, but an increase in DNA damage is

observed with respect to an increase in compound concentration. However, complex

C5 showed a significant degree of SSB (tail moment of 19.2) after 48 hours, and was

similarly dose-dependent with respect to an increase in compound concentration.

These values are in agreement with the IC50 values obtained in the short 48-hour

exposure times, in which a low IC50 value corresponds to a higher degree of SSB and

hence, increased DNA damage. These results therefore suggest a strong correlation

between the amount of DNA SSB and activity of these complexes. Whilst the

induction of SSB damage may not be the only cause of cell death, it provides a

possible cause of the apoptotic phenotype induced by these compounds. Induction

of single strand DNA breaks in a dose-dependent manner may suggest a different

mechanism of action to cisplatin which primarily induces DNA cross-linking.

However, to fully understand the mechanism of action, further investigations into

Double Strand Breakages (DSB) and cross-linking assays must be undertaken.
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Figure 6.17 Bar-chart showing the tail moments after MIA-PaCa-2 cells were
incubated with compounds C2, C5 and C6 for 48 hours.

Figure 6.18 Images of ‘Comets’ observed for compound C5

The anticancer activity for the studied complexes was found to follow the order of

C5 > C2 > C6 for both the 48 hour and 4 day MTT cytotoxicity assays. However,

complexes C2 and C5 were found to have superior anticancer activity than cisplatin

over 48 hours, an observation which is not true for the longer incubation period. The

mechanism of action for these complexes must therefore be much more rapid than

that of cisplatin; or rather their window of action is narrower so that they are active

only for a short period of time relative to cisplatin. Hydrolysis studies on these

complexes discussed earlier in this chapter suggested a correlation between the

hydrolysis rate and activity, with more active complexes hydrolysing faster,

especially over the first couple of days of observation. However, this theory cannot

be confirmed by the 48 hour cytotoxicity studies alone, other factors such as the rate

of cellular uptake, biodistribution or protein interactions could be responsible for the

greater rate of activity.
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6.5 Conclusion

Hydrolysis studies were carried out on the ruthenium arene complexes and

ruthenium coordination complexes in an attempt to understand the mechanism of

action of these types of anticancer complexes. The ruthenium arene complexes were

all shown to undergo hydrolysis with the most cytotoxic compounds hydrolysing at

an increased rate than their structurally similar but less active equivalents. However,

this trend in hydrolysis rate is not seen for the majority of the other complexes.

Efforts to deduce the exact hydrolysis products of these complexes have proven

unsuccessful, although potential hydrolysis products have been obtained through

ES-MS and the breakdown of the ferrocene ring of the β-diketonate ligands seems 

likely. The ruthenium coordination compounds were shown to be extremely stable

in aqueous conditions for up to 35 days. The structural stability of these complexes

suggests that any DNA interactions will occur in a non-covalent manner through

intercalation and/or electrostatic interactions.

Ruthenium arene complexes were all found to be hydrophobic, with positive LogP

values obtained from the water-octanol partition coefficient that fall within the

values set by Lipinski’s rules. It was not possible to obtain the LogP values for the

coordination complexes due to solubility issues in both water and octanol. A

marginal trend was observed at the upper and lower limits of the obtained LogP

range which corresponded to greater and lower cytotoxicity, respectively. However,

no overall correlation was found between the hydrophobic properties of these

complexes and their IC50 values. The hydrophobicty of the complexes suggests that

their mode of entry into the cell is via passive diffusion, a theory which is supported

by the biomembrane studies. Disruption of the RCV graphs shows clearly that these

complexes are able interact with the artificial phospholipid biomembrane. As with

the hydrophobicity studies, no general correlation can be found between the degree

of biomembrane interaction and the IC50 values, suggesting that the mode of action

for the arene complexes is not limited by their cell wall interactions.

The comet assay conducted on the two most active and one less active ruthenium

arene complexes found a clear link between the amount of single strand DNA

breakage and their cytotoxicity. Furthermore, a shorter term MTT assay (48 hours)
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conducted as part of the Comet assay showed that their activity was superior to that

of cisplatin over shorter incubation times.
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7.1 General Conclusions

This project has seen the formation of an array of ferrocene β-diketonate ligands 

with varying steric and electronic properties, and their use in the formation of two

libraries of ruthenium metal complexes which have been explored for their biological

potential. The first series of complexes consist of organometallic ruthenium(II) arene

complexes and the second series comprising of ruthenium(II) bis-bipyridyl

coordination complexes. All ligands and complexes have been fully characterised by

1H NMR spectroscopy, 13C [1H] NMR spectroscopy, mass spectrometry and elemental

analysis, with X-ray crystallographic data obtained when possible.

Figure 7.1 Ruthenium(II) arene complexes and ruthenium(II) bis-bipyridyl
coordination complexes

Both sets of ruthenium complexes were screened for their anti-cancer activity

against two cancerous cell lines and one healthy cell line; the ruthenium bis-bipyridyl

complexes were found to express potent toxicity against all cell lines, including the

healthy cell line, while the ruthenium arene complexes were found to be less toxic

in comparison, they were highly selective towards the cancerous cell lines and

showed no toxicity towards healthy cells at the used experimental concentrations.

The most active complexes were studied under extreme hypoxia which resulted in a

loss of anti-cancer activity for all complexes; however, all complexes were shown to

be more active than cisplatin under the same conditions. The antimicrobial activity

of these complexes was also probed through the screening against multiple bacterial

and fungal strains. All ruthenium complexes showed elevated antibacterial effects
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against Gram positive bacteria over Gram negative strains, with the bis-bipyridyl

complexes showing greater activity than the arene complexes. The same observation

holds true for the antifungal effects, but to a much greater extent, with almost all

the bis-bipyridyl complexes being shown to be extremely potent growth inhibitors

compared to only two of the arene complexes. However, from the cytotoxicity and

antimicrobial results it is not possible to conclude any structural activity relationship

trends.

To further try and establish any important structural activity relationships and

possible mechanisms of action for these ruthenium complexes, several mechanistic

studies were undertaken. The arene complexes were all found to undergo hydrolysis

with the most cytotoxic complexes hydrolysing more rapidly than their structurally

similar but less active equivalents. Potential hydrolysis products have been

tentatively assigned and the degradation of the ferrocene moiety appears likely. The

bis-bipyridyl complexes were found to be stable under the used hydrolysis conditions

for up to 35 days, suggesting that these complexes will non-covalently interact with

their target site. Hydrophobicity studies conducted on the arene complexes revealed

that they were all hydrophobic with LogP values well within the values set by

Lipinski’s rules. A marginal trend was observed between the upper and lower limits

of the obtained LogP values which correspond to greater and lower cytotoxicity,

respectively. The hydrophobicity of the arene complexes, combined with the results

from the biomembrane studies, suggests that their mode of cellular entry is via

passive diffusion. Comet assay studies conducted on the most active arene

complexes demonstrates a clear link between the DNA stand breakage and their

cytotoxicity, suggesting DNA interaction is one of the possible mechanisms of action

for these types of complexes.

Overall, this project has demonstrated the potential of ferrocene-containing

ruthenium complexes in combating cancer and other microorganisms. Through

several mechanistic studies it has been possible to suggest potential mechanisms of

action for these complexes, however there still many pathways left to be explored

in order to strengthen our understanding of how these complexes are imparting

their biological activity.
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7.2 Future Work

Moving forward with this project it would be appropriate to investigate the

importance, if any, of the ferrocene moiety in the biological activity of these

complexes. This could be achieved through cyclic voltammetry experiments to

deduce any correlation between the activity and formal reduction potential of the

complexes, allowing for conclusions to be made as to whether or not the redox

properties of the complex are crucial to their interaction with cells. Furthermore,

substitution of the ferrocene moiety for its isoelectronic ruthenium equivalent,

ruthenocene, would facilitate this investigation as although they are structurally

similar, they have very different redox properties.1, 2

Figure 7.2 Ruthenocene β-diketonate ligand

The phototoxicity of the ruthenium bis-bipyridyl complexes should also be explored.

Conducting cell line cytotoxicity assays under dark conditions and then comparing

these results to their IC50 values obtained after exposure to light will allow for

conclusions to be made as to whether these complexes are producing reactive

oxygen species, a critical mode of action used in photodynamic therapy (PDT). If this

same process is repeated under hypoxia it would then be possible to comment on

the photoactivated chemotherapy (PACT) properties of these complexes. Unlike

PDT, PACT does not require the presence of oxygen in its mode of action as the

complex itself becomes activated after light exposure.3 Moreover, modifications to

the bipyridyl ligands in a way that extends their conjugated ring systems should

permit the tuning of their photo-active properties, another future route for these

complexes which would hopefully yield interesting results.
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Figure 7.3 Photodynamic therapy vs photoactivated chemotherapy

Other mechanistic studies should be conducted in order to further our

understanding of the mechanisms of action for both libraries of ruthenium

complexes. Obtaining a greater comprehension of the complexes fluorescent

properties would allow the use of confocal laser scanning microscopy (CLSM) in

order to observe the cellular distribution and localisation of these complexes,

something which could also be investigated in vitro through inductively coupled

plasma mass spectrometry (ICP-MS).4, 5 The possibility of enzyme inhibition could be

explored through the thioredoxin reductase (TrxR) assay. As the TrxR enzyme is

upregulated in many types of cancer, and is also essential for cell growth and

survival, it is an excellent target for cancer therapeutic drugs.6 Cell viability and cell

cycle analysis will advance our interpretations of exactly how these complexes are

imparting their biological activity, as the mode of action of a drug can be deduced to

some degree from the phase of the cell cycle which it inhibits.7
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8.0 Experimental

8.1 General Experimental Procedures

Synthetic procedures were conducted under aerobic conditions unless stated

otherwise. All chemicals were supplied by Sigma-Aldrich Chemical Co., Acros

Organics, Alfa Aesar, Fisher Chemicals and BOC gases used without further

purification. Deuterated NMR solvents were purchased from Sigma-Aldrich Chemical

Co. or Acros Organics. Chromatography columns were prepared using Fisher

Chemicals 60A 35–70 micron silica gel.

8.2 Instrumentation

Nuclear magnetic resonance spectra were recorded using Bruker Avance 300, 400,

500, DPX300 and DPX500 MHz spectrometers. Chemical shifts are reported in parts

per million (δ) downfield relative to the internal reference tetramethylsilane or 

referenced to the solvent signal. Unless otherwise specified NMR spectra were

recorded in deuterochloroform, deuteroacetone or deutroacetonitrile at room

temperature. Abbreviations used: Ar = aromatic, dd = doublet of doublets, dt =

doublet of triplets, m = multiplet, s = singlet, d = doublet, t = triplet, q = quartet. Mass

spectra were recorded using a micromass ZMD 2000 spectrometer employing the

electrospray (ES+/-) ionisation technique. Accurate molecular masses were obtained

from Walters LCT, GCT or Bruker MicroTof spectrometers. Microanalyses were

acquired either by Ms. Tanya Marinko-Covell at the University of Leeds

Microanalytical Service using a Carlo Erba 1108 Elemental Analyser or by Mr.

Stephen Boyer at the London Metropolitan University Elemental Analysis Service.

UV/vis absorption spectra were acquired on a Cary Series UV-Vis spectrophotometer

using 1 cm path length quartz cuvettes.
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8.3 X-Ray Crystallography

Single crystal X-ray diffraction data were collected by the author or Dr Christopher

Pask. A suitable single crystal was selected and immersed in inert oil. The crystal was

then mounted to a goniometer head on an Agilent SuperNova X-ray diffractometer

fitted with an Atlas area detector and a kappa-geometry 4-circle goniometer, using

mirror monochromated Mo-Kα radiation (0.71073 = ߣ Å) or Cu-Kα (ߣ = 1.54184 Å)

radiation. The crystal was cooled to 120 K by an Oxford cryostream low temperature

device.1 The full data set was recorded and the images processed using CrysAlis Pro.2

Structure solution by direct methods was achieved through the use of SHELXS863

SHELXL-20144 or SHELXT5 programs, and the structural model refined by full matrix

least squares on F2 using SHELX976 interfaced through the program Olex2.7

Molecular graphics were plotted, editing of CIFs and construction of tables of bond

lengths and angles were achieved using Olex2. Unless otherwise stated, hydrogen

atoms were placed using idealised geometric positions (with free rotation for methyl

groups), allowed to move in a “riding model” along with the atoms to which they

were attached, and refined isotropically. The SQUEEZE routine of Platon was used to

refine structures where diffuse electron density could not be adequately modelled

as solvent of crystallisation.8 Complexes C’13 and C’14 were collected at diamond

light source

8.4 Synthesis of β-diketonate Ferrocene and β-ketoiminate Ferrocene Ligands 

Ligands have been synthesised from the following general procedure (unless stated

otherwise) using methods adapted from Swarts et al. and Shi et al. and are fully

characterised.9,10

General Procedure: Ethyl ester was added to a stirred solution of acetyl

ferrocene (1.64 g, 7.2 mmol) and sodium ethoxide (0.89 g, 13 mmol) in ether (20

mL). The solution was stirred at reflux for 24-72 hours after which time the product

was isolated by one of two methods;

1. The solid precipitate was isolated by filtration, dissolved in distilled water

(150 mL) and acidified with 10% hydrochloric acid until pH 5 which caused a
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red solid to precipitate out in solution. The solid was filtered and dried over

night under vacuum before purification.

2. The solution was acidified with 10% hydrochloric acid until pH 5 and added

to water (50 ml). The product was extracted with ether (3 x 20 mL) and the

organic layers were combined, dried over MgSO4 and filtered. Solvent was

removed in vacuo to give a red solid product.

8.4.1 Synthesis of 1-Ferrocenylbutane-1,3-dione L1

Acetyl ferrocene (2.80 g, 12.3 mmol) was dissolved in ethyl acetate (25 mL) and

stirred for a few minutes before the addition of sodium ethoxide (1.70 g, 25.0 mmol).

The solution was stirred at reflux for 3 hours forming a yellow solid which was filtered

and washed with ethyl acetate. The yellow solid was then dissolved in distilled water

(150 mL) and acidified with 10% hydrochloric acid until pH 5 which caused a red solid

to crash out in solution. Recrystallisation from hexane gave red crystals (2.70 g,

81 %).

δH (500 MHz, CDCl3); 5.63 (s, 0.67 H, enol CH, H12), 4.77

(broad t, 2 H, J 6.82Hz, C5H4, H6,9), 4.50 (d, 2 H, J 4.1 Hz,

C5H4, H7,8), 4.19 (s, 5 H, C5H5, H1-5), 3.76 (s, 0.46 H, keto

CH2, H12), 2.25 (s, 0.69 H, keto CH3, H14), 2.00 (s, 2.31 H,

enol CH3, H14); δC{1H}; (125 MHz, CDCl3); 192.5

(quaternary CO, C11), 186.4 (quaternary CO, C13), 98.2 (CH, C12), 77.7 (quaternary Cp,

C10), 73.1 (Cp CH, C6/9), 72.1 (Cp CH, C6/9), 70.3 (Cp ring, C1-5), 70.1 (Cp CH, C7/8), 68.7

(Cp CH, C7/8), 24.2 (CH3, C14); Analysis: Calculated C 62.25, H 5.22 %, Found C 62.28,

H 5.10 %; H.R.M.S. [ES+] found [MH+] 271.041.

8.4.2 Synthesis of 1-Ferrocenyl-4,4,4-trifluorobutane-1,3-dione L2

Prepared using ethyl-trifluoroacetate (1.55 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column
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chromatography, eluting 85:15 v/v hexane/ethyl acetate to give a red solid (1.63 g,

70 %).

δH (500 MHz, CDCl3); 6.01 (s, 1H, CH, H12), 4.80 (t, 2H,

J 1.8 Hz, C5H4, H6,9), 4.61 (t, 2H, J 1.8 Hz, C5H4, H7,8),

4.17 (s, 1H, C5H5, H1-5); δC{1H} (125 MHz, (CDCl3);

194.6 (quaternary CO, C11), 171.4 (q, quaternary CO, J

35.8 Hz, C13), 115.9 (q, CF3, J 281.1 Hz, C14), 93.3 (CH,

C12), 75.4 (quaternary Cp, C10), 73.7 (Cp CH, C6,9), 70.9 (Cp ring, C1-5), 69.2 (Cp CH,

C7,8); Analysis: Calculated C 51.89, H 3.42 %, Found C 51.73, H 3.49 %; H.R.M.S. [ES+]

found [M-H+] 322.999.

8.4.3 Synthesis of 1-Ferrocenyl-4,4-difluorobutane-1,3-dione L3

Prepared using ethyl difluoroacetate (1.37 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 1. The product precipitated out as a pure red solid (2.13

g, 97 %).

δH (500 MHz, (CD3)2CO); 6.17 (s, 1H, CH, H12), 4.87 (t,

2H, J 1.8 Hz, C5H4, H6,9), 4.60 (t, 2H, J 1.8 Hz, C5H4, H7,8),

4.22 (s, 1H, CHF2, H14), 4.13 (s, 5H, C5H5, H1-5); δC{1H}

(125 MHz, (CD3)2CO); 197.0 (quaternary CO, C11),

163.6 (quaternary CO. C13), 111.3 (t, CHF2, J 242.6 Hz,

C14), 95.8 (CH, C12), 77.8 (quaternary Cp, C10), 74.3 (Cp CH, C6,9), 71.4 (Cp ring, C1-5),

70.1 (Cp CH, C7,8); Analysis: Calculated C 54.94, H 3.95 %, Found C 54.40, H 3.90 %;

H.R.M.S. [ES+] found [MH+] 307.022.

8.4.4 Synthesis of 1-Ferrocenyl-3-(3-furanyl)propane-1,3-dione L4

Prepared using ethyl-3-furoate (1.76 mL, 13.0 mmol), refluxed for 48 hours and

worked up following method 1. The product was purified by column
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chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (0.71 g,

31 %).

δH (500 MHz, (CD3)2CO); 8.17 (s, 1H, Furan CH, H15),

7.57 (t, 1H, J 1.6 Hz, Furan CH, H17), 6.83 (d, 1H, J

1.2 Hz, Furan CH, H16), 6.35 (s, 1H, CH, H12), 4.83 (t,

2H, J 1.8 Hz, C5H4, H6,9), 4.46 (t, 2H, J 1.8 Hz, C5H4,

H7,8), 4.09 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz,

(CD3)2CO); 193.9 (quaternary CO, C11), 176.7 (quaternary CO, C13), 150.4 (quaternary

Furan C, C14), 146.3 (Furan CH, C15), 145.5 (Furan CH, C17), 109.0 (Furan CH, C16), 95.4

(CH, C12), 79.0 (quaternary Cp, C10), 73.0 (Cp CH, C6,9), 71.1 (Cp ring, C1-5), 69.6 (Cp

CH, C7,8); Analysis: Calculated C 63.38, H 4.38 %, Found C 63.27, H 4.47 %; H.R.M.S.

[ES+] found [MH+] 322.029.

8.4.5 Synthesis of 1-Ferrocenyl-3-(2-furanyl)propane-1,3-dione L5

Prepared using ethyl-2-furroate (1.82 g, 13.0 mmol), refluxed for 24 hours and

worked up following method 1. The product was purified by column

chromatography, eluting 85:15 v/v hexane/ethyl acetate to give red solid (1.37 g,

59 %).

δH (500 MHz, (CD3)2CO); 7.71 (m, 1H, Furan CH,

H17), 7.12 (d, 1H, J 3.4 Hz, Furan CH, H15), 6.57 (m,

1H, Furan CH, H16), 6.33 (s, 1H, CH, H12), 4.83 (t,

2H, J 1.8 Hz, C5H4, H6,9), 4.49 (t, 2H, J 1.8 Hz, C5H4,

H7,8), 4.11 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz,

(CD3)2CO); 192.8 (quaternary CO, C11), 173.1 (quaternary CO. C13), 151.3 (Furan

quaternary C, C14), 147.1 (Furan CH, C17), 115.3 (Furan CH, C15), 113.4 (Furan CH, C16),

93.5 (CH, C12), 78.6 (quaternary Cp, C10), 73.1 (Cp CH, C6,9), 71.1 (Cp ring, C1-5), 69.5

(Cp CH, C7,8); Analysis: Calculated C 63.38, H 4.38 %, Found C 63.50, H 4.45 %;

H.R.M.S. [ES+] found [M-H+] 321.022.
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8.4.6 Synthesis of 1-Ferrocenyl-3-phenylpropane-1,3-dione L6

Prepaed using ethyl benzoate (1.87 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 2. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (1.07 g,

45 %).

δH (500 MHz, (CD3)2CO); 7.93 (d, 2H, J 7.3 Hz,

ArH, H15,19), 7.45 (t, 1H, J 7.3 Hz, ArH, H17), 7.39

(t, 2H, J 7.3 Hz, ArH, H16,18), 6.63 (s, 1H, CH, H12),

4.92 (broad t, 2H, J 1.8 Hz, C5H4, H6,9), 4.49

(broad d, 2H, J 1.8 Hz, C5H4, H7,8), 4.10 (s, 5H,

C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 195.6 (quaternary CO, C11), 180.2

(quaternary CO, C12), 136.1 (quaternary ArC, C10), 132.8 (ArCH, C15/19), 129.5 (ArCH,

C16,18), 127.6 (ArCH, C17), 94.6 (CH, C12), 79.3 (quaternary Cp, C10), 73.2 (Cp CH, C6,9),

71.1 (Cp ring, C1-5), 69.8 (Cp CH, C7,8); Analysis: Calculated C 68.70, H 4.86 %, Found

C 68.59, H 4.93 %; H.R.M.S. [ES+] found [M-H+] 331.042.

8.4.7 Synthesis of 1-Ferrocenyl-3-(1-naphthyl)propane-1,3-dione L7

Prepared using ethyl-1-naphthoate (2.35 mL, 13.0 mmol), refluxed for 48 hours and

worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (0.98 g,

28 %).

δH (500 MHz, (CD3)2CO); 8.41 (d, 1H, J 8.5 Hz,

ArH, H15), 7.95 (d, 1H, J 8.3 Hz, ArH, H16), 7.88 (d,

1H, J 7.6 Hz, ArH, H17), 7.74 (dd, 1H, J 7.2, 0.9 Hz,

ArH, H19), 7.52-7.41 (m, 3H, ArH, H20-22), 6.34 (s,

1H, CH, H12), 4.88 (t, 2H, J 1.8 Hz, C5H4, H6,9), 4.50

(t, 2H, J 1.8 Hz, C5H4, H7,8), 4.14 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 194.7

(quaternary CO, C11), 184.7 (quaternary CO, C13), 135.3 (quaternary ArC, C14), 134.9

(quaternary ArC, C23), 132.1 (ArCH, C15), 131.2 (quaternary ArC, C18), 129.4 (ArCH,
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C16), 127.9 (ArCH, C17), 127.9 (ArCH, C22), 127.2 (ArCH, C19), 126.6 (ArCH, C21), 126.0

(ArCH, C20), 99.7 (CH, C12), 78.8 (quaternary Cp, C10), 73.3 (Cp CH, C6,9), 71.2 (Cp ring,

C1-5), 69.8 (Cp CH, C7,8); Analysis: Calculated (+ 0.5H2O) C 70.61, H 4.90 %, Found C

69.90, H 4.80 %; H.R.M.S. [ES+] found [MH+] 383.073.

8.4.8 Synthesis of 1-Ferrocenyl-3-(4-methylphenyl)propane-1,3-dione L8

Prepared using ethyl p-toluate (2.07 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 2. The product was purified by column

chromatography, eluting 85:15 v/v hexane/ethyl acetate to give red solid (1.04 g,

42 %).

δH (500 MHz, (CD3)2CO); 7.82 (d, 2H, J 8.3 Hz,

ArH, H15,19), 7.21 (d, 2H, J 8.3 Hz, ArH, H16,18),

6.60 (s, 1H, CH, H12), 4.90 (broad t, 2H, J 1.5

Hz, C5H4, H6,9), 4.48 (braod t, 2H, J 1.7 Hz,

C5H4, H7,8), 4.09 (s, 5H, C5H5, H1-5), 2.28 (s,

3H, CH3, H20); δC{1H} (125 MHz, (CD3)2CO); 194.9 (quaternary CO, C11), 180.7

(quaternary CO, C13), 143.4 (quaternary ArC, C14), 133.4 (quaternary ArC, C17), 130.2

(ArCH, C15,19), 127.7 (ArCH, C16,18), 94.1 (CH, C12), 79.4 (quaternary Cp, C10), 73.1 (Cp

CH, C6,9), 71.1 (Cp ring, C1-5), 69.7 (Cp CH, C7,8), 21.5 (CH3, C20); Analysis: Calculated C

69.39, H 5.24 %, Found C 69.20, H 5.25 %; H.R.M.S. [ES+] found [M-H+] 345.058.

8.4.9 Synthesis of 1-Ferrocenyl-3-(3-methylphenyl)propane-1,3-dione L9

Prepared using ethyl-m-toluate (2.07 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 2. The product was purified by column

chromatography, eluting 85:15 v/v hexane/ethyl acetate to give red solid (1.73 g,

69 %).
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δH (500 MHz, (CD3)2CO); 7.91 (s, 1H, ArH, H15),

7.87 (t, 1H, J 3.6 Hz, ArH, H18), 7.43 (d, 2H, J 4.6

Hz, ArH, H17,19), 6.77 (s, 1H, CH, H12), 5.06 (t,

2H, J 1.7 Hz, C5H4, H6,9), 4.65 (t, 2H, J 1.7 Hz,

C5H4, H7,8), 4.26 (s, 5H, C5H5, H1-5), 2.45 (s, 3H,

CH3, H20); δC{1H} (125 MHz, (CD3)2CO); 195.4 (quaternary CO, C11), 180.4 (quaternary

CO, C13), 139.2 (quaternary ArC, C14), 136.0 (quaternary ArC, C16), 133.5 (ArCH, C15),

129.4 (ArCH, C19), 128.1 (ArCH, C17), 124.8 (ArCH, C18), 94.6 (CH, C12), 79.3

(quaternary Cp, C10), 73.2 (Cp CH, C6,9), 71.1 (Cp ring, C1-5), 69.8 (Cp CH, C7,8), 21.4

(CH3, C20); Analysis: Calculated C 69.39, H 5.24 %, Found C 69.28, H 5.31 %; H.R.M.S.

[ES+] found [MH+] 346.066.

8.4.10 Synthesis of 1-Ferrocenyl-3-(3,5-dimethylphenyl)propane-1,3-dione L10

Prepared using ethyl-3,5-dimethylbenzoate (2.08 mL, 13.0 mmol), refluxed for 24

hours and worked up following method 2. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (0.74 g,

28 %).

δH (500 MHz, (CD3)2CO); 7.54 (s, 2H, ArH,

H15,19), 7.08 (s, 1H, ArH, H17), 6.60 (s, 1H, CH,

H12), 4.89 (t, 2H, J 1.8 Hz, C5H4, H6,9), 4.47 (t,

2H, J 1.8 Hz, C5H4, H7,8), 4.09 (s, 5H, C5H5, H1-5),

2.24 (s, 6H, CH3, H20,21); δC{1H} (125 MHz,

(CD3)2CO); 195.3 (quaternary CO, C11), 180.7 (quaternary CO, C13), 139.1 (ArCH,

C15,19), 136.0 (quaternary ArC, C14), 134.3 (ArCH, C17), 125.4 (quaternary ArC, C16,18),

94.6 (CH, C12), 79.4 (quaternary Cp, C10), 73.1 (Cp CH, C6,9), 71.1 (Cp ring, C1-5), 69.7

(Cp CH, C7,8), 21.3 (CH3, C20,21); Analysis: Calculated C 70.02, H 5.60 %, Found C 69.40,

H 5.70 %; H.R.M.S. [ES+] found [MH+] 361.088.
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8.4.11 Synthesis of 1-Ferrocenyl-3-(4-fluorophenyl)propane-1,3-dione L11

Prepared using ethyl-4-flourobenzoate (1.90 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 80:20 v/v hexane/ethyl acetate to give a red solid (1.59 g,

63 %).

δH (500 MHz, (CD3)2CO); 8.10 (m, 2H, ArH,

H15,19), 7.29 (t, 2H, J 8.7 Hz, ArH, H16,18), 6.59 (s,

1H, CH, H12), 5.00 (t, 2H, J 1.8 Hz, C5H4, H6,9),

4.66 (t, 2H, J 1.8 Hz, C5H4, H7,8), 4.26 (s, 5H,

C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 195.0

(quaternary CO, C11), 179.7 (quaternary CO, C13), 165.8 (d, ArCF, J 250.2 Hz, C17),

132.6 (d, quaternary ArC, J 2.1 Hz, C14), 130.3 (d, ArCH, J 9.3 Hz, C15,19), 116.4 (d,

ArCH, J 21.8 Hz, C16,18), 94.4 (CH, C12), 73.5 (quaternary Cp, C10), 73.2 (Cp CH, C6/9),

71.1 (Cp ring, C1-5), 70.8 (Cp CH, C6/9), 70.6 (Cp CH, C7/8), 69.8 (Cp CH, C7/8); Analysis:

Calculated C 65.17, H 4.32 %, Found C 65.00, H 4.40 %; H.R.M.S. [ES+] found [M-H+]

3490.33.

8.4.12 Synthesis of 1-Ferrocenyl-3-(3-fluorophenyl)propane-1,3-dione L12

Prepared using ethyl-3-flourobenzoate (1.93 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 83:17 v/v hexane/ethyl acetate to give red solid (2.00 g,

80 %).

δH (500 MHz, (CD3)2CO); 7.77 (broad d, 1H, J 7.8

Hz, ArH, H15), 7.66 (broad d, 1H, J 10.1 Hz, ArH,

H19), 7.44 (dt, 1H, J 8.2, 6.0 Hz, ArH, H17), 7.22

(td, 1H, J 8.4, 1.8 Hz, ArH, H18), 6.68 (s, 1H, CH,

H12), 4.95 (broad s, 2H, C5H4, H6,9), 4.52 (broad

s, 2H, C5H4, H7,8), 4.11 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 196.0

(quaternary CO, C11), 178.37 (quaternary CO, C13), 163.9 (d, ArCF, J 243.9 Hz, C16),
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138.6 (d, quaternary ArC, J 7.8 Hz, C14), 131.5 (d, ArCH, J 8.3 Hz, C19), 123.6 (d, ArCH,

J 2.1 Hz, C18), 119.4 (d, ArCH, J 21.8 Hz, C17), 114.2 (d, ArCH, J 23.9 Hz, C15), 95.1 (CH,

C12), 79.0 (quaternary Cp, C10), 73.5 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.9 (Cp CH,

C7,8); Analysis: Calculated C 65.17, H 4.32 %, Found C 65.10, H 4.30 %; H.R.M.S. [ES+]

found [M-H+] 349.032.

8.4.13 Synthesis of 1-Ferrocenyl-3-(2-fluorophenyl)propane-1,3-dione L13

Prepared using ethyl-2-fluorobenzoate (1.90 mL, 13.0 mmol), refluxed for 72 hours

and worked up following method 2. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (1.17 g,

47 %).

δH (500 MHz, (CD3)2CO); 7.84 (td, 1H, J 7.8, 1.6

Hz, ArH, H19), 7.47 (m, 1H, ArH, H16), 7.22 (m, 1H,

ArH, H18), 7.16 (m, 1H, ArH, H17), 6.47 (s, 1H, CH,

H12), 4.82 (q, 2H, J 2.1 Hz, C5H4, H6,9), 4.52 (q, 2H,

J 1.8 Hz, C5H4, H7,8), 4.11 (s, 5H, C5H5, H1-5); δC{1H}

(125 MHz, (CD3)2CO); 196.3 (quaternary CO, C11), 175.4 (d, quaternary CO, J 3.11 Hz,

C13), 161.7 (d, ArCF, J 253.3 Hz, C15), 134.2 (d, ArCH, J 8.8 Hz, C17), 130.6 (d, ArCH, J

2.1 Hz, C19), 125.6 (d, ArCH, J 3.1 Hz, C18), 124.2 (d, quaternary ArC, J 10.4 Hz, C14),

117.4 (d, ArCH, J 23.4 Hz, C16), 99.6 (d, CH, J 11.9 Hz, C12), 79.0 (quaternary Cp, C10),

73.6 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.8 (Cp CH, C7,8); Analysis: Calculated C 65.17,

H 4.32 %, Found C 65.10, H 4.30 %; H.R.M.S. [ES+] found [MH+] 351.049.

8.4.14 Synthesis of 1-Ferrocenyl-3-(3,5-difluorophenyl)propane-1,3-dione L14

Prepared using ethyl-3,5-difluorobenzoate (1.98 mL, 13.0 mmol), refluxed for 24

hours and worked up following method 2. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (2.56 g,

96 %).
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δH (500 MHz, (CD3)2CO); 7.56 (dd, 2H, J 7.3, 2.1

Hz, ArH, H15,19), 7.12 (tt, 1H, J 8.9, 2.3 Hz, ArH,

H17), 6.72 (s, 1H, CH, H12), 4.97 (t, 2H, J 1.6 Hz,

C5H4, H6,9), 4.55 (t, 2H, J 1.6 Hz, C5H4, H7,8),

4.13 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz,

(CD3)2CO); 196.4 (quaternary CO, C11), 176.7 (t, quaternary CO, J 2.4 Hz, C13), 165.1

(d, ArCF, J 13.0 Hz, C16/18), 163.4 (d, ArCF, J 12.5 Hz, C16/18), 139.9 (t, quaternary ArC,

J 9.1 Hz, C14), 110.5 (dd, ArCH, J 20.4, 6.5 Hz, C15,19), 107.5 (t, ArCH, J 26.0 Hz, C17),

95.5 (CH, C12), 78.8 (quaternary Cp, C10), 73.7 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 70.0

(Cp CH, C7,8); Analysis: Calculated C 61.99, H 3.83 %, Found C 61.60, H 3.80 %;

H.R.M.S. [ES+] found [MH+] 368.031.

8.4.15 Synthesis of 1-Ferrocenyl-3-(4-chlorophenyl)propane-1,3-dione L15

Prepared ethyl-4-chlorobenzoate (2.02 mL, 13.0 mmol), refluxed for 48 hours and

worked up following method 1. The product was purified by column

chromatography, eluting 83:17 v/v hexane/ethyl acetate to give a red solid (1.65 g,

63 %).

δH (500 MHz, (CD3)2CO); 7.95 (d, 2H, J 8.7 Hz,

ArH, H15,19), 7.41 (d, 2H, J 8.7 Hz, ArH, H16,18),

6.36 (d, 1H, J 5.5 Hz, CH, H12), 4.92 (broad t,

2H, J 1.7 Hz, C5H4, H6,9), 4.51 (broad t, 2H, J 1.7

Hz, C5H4, H7,8), 4.11 (s, 5H, C5H5, H1-5); δC{1H}

(125 MHz, (CD3)2CO); 195.7 (quaternary CO, C11), 178.9 (quaternary CO, C13), 134.9

(quaternary ArC, C14), 131.4 (ArCCl, C17), 129.7 (ArCH, C15,19), 129.3 (ArCH, C16,18), 94.8

(CH, C12), 79.1 (quaternary Cp, C10), 73.4 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.8 (Cp

CH, C7,8); Analysis: Calculated C 62.25, H 4.12, Cl 9.67 %, Found C 62.30, H 4.10, Cl

9.50 %; H.R.M.S. [ES+] found [MH+] 366.011.
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8.4.16 Synthesis of 1-Ferrocenyl-3-(3-chlorophenyl)propane-1,3-dione L16

Prepared using ethyl-3-chlorobenzoate (2.02 mL, 13.0 mmol), refluxed for 48 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (1.89 g,

72 %).

δH (500 MHz, (CD3)2CO); 7.92 (t, 1H, J 1.8 Hz,

ArH, H15), 7.88 (dt, 1H, J 7.8, 1.3 Hz, ArH, H19),

7.48 (dq, 1H, J 7.8, 1.0 Hz, ArH, H17), 7.42 (t,

1H, J 7.8 Hz, ArH, H18), 6.70 (s, 1H, CH, H12),

4.95 (t, 2H, J 2.0 Hz, C5H4, H7,8), 4.52 (t, 2H, J

2.0 Hz, C5H4, H6,9), 4.12 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 196.0

(quaternary CO, C11), 178.3 (quaternary CO, C13), 138.2 (quaternary ArC, C14), 135.2

(ArCCl, C16), 132.4 (ArCH, C15), 131.3 (ArCH, C19), 127.4 (ArCH, C17), 126.1 (ArCH, C18),

95.1 (CH, C12), 79.0 (quaternary Cp, C10), 73.5 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.9

(Cp CH, C7,8); Analysis: Calculated C 62.15, H 4.12 %, Found C 62.18, H 4.13 %;

H.R.M.S. [ES+] found [MH+] 366.010.

8.4.17 Synthesis of 1-Ferrocenyl-3-(3,5-dichlorophenyl)propane-1,3-dione L17

Prepared using ethyl-3,5-dichlorobenzoate (2.85 g, 13.0 mmol), refluxed for 24 hours

and worked up following method 2. The product precipitated out as a pure red solid

(2.37 g, 83 %).

δH (500 MHz, (CD3)2CO); 7.92 (s, 1H, ArH, H17),

7.59 (s, 1H, ArH, H15/19), 7.50 (s, 1H, ArH,

H15/19), 6.79 (s, 1H, CH, H12), 5.01 (t, 2H, J 1.7

Hz, C5H4, H6,9), 4.58 (t, 2H, J 1.7 Hz, C5H4, H7,8),

4.16 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz,

(CDCl3); 194.8 (quaternary CO, C11), 176.4 (quaternary CO, C13), 138.3 (ArCCl, C16/18),

135.5 (ArCH, C15/ 19), 133.7 (ArCCl, C16/18), 131.3 (ArCH, C15/19), 128.8 (quaternary

ArCH, C14), 125.1 (ArCH, C17), 94.2 (CH, C12), 77.2 (quaternary Cp, C6,9), 72.8 (Cp CH,
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C7/8), 70.5 (Cp ring C1-5), 69.0 (Cp CH, C7/8); Analysis: Calculated (+H2O) C 54.45, H

3.85 %, Found C 53.80, H 3.20 %; H.R.M.S. [ES+] found [MH+] 399.972.

8.4.18 Synthesis of 1-Ferrocenyl-3-(4-bromophenyl)propane-1,3-dione L18

Prepared using ethyl-4-bromobenzoate (2.12 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (2.76 g,

93 %).

δH (500 MHz, (CD3)2CO); 7.87 (d, 2H, J 8.0 Hz,

ArH, H15,19), 7.58 (d, 2H, J 7.1 Hz, ArH, H16,18),

6.66 (s, 1H, CH, H12), 4.92 (Broad s, 2H, C5H4,

H6,9), 4.51 (Broad s, 2H, C5H4, H7,8), 4.11 (s, 5H,

C5H5, H1-5); δC{1H} (125 MHz, (CDCl3); 194.3

(quaternary CO, C11), 178.5 (quaternary CO, C13), 134.2 (quaternary ArC, C14), 131.9

(ArCH, C15,19), 128.2 (ArCH, C16,18), 126.5 (ArCBr, C17), 93.6 (CH, C12), 78.0 (quaternary

Cp, C10), 72.4 (Cp CH, C6,9), 70.4 (Cp ring, C1-5), 68.8 (Cp CH, C7,8); Analysis: Calculated

(+0.75 DCM) C 49.96, H 3.50 %, Found C 50.00, H 3.20 %; H.R.M.S. [ES+] found [MH+]

409.960.

8.4.19 Synthesis of 1-Ferrocenyl-3-(3-Bromophenyl)propane-1,3-dione L19

Prepared using ethyl-3-bromobenzoate (2.08 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (2.32 g,

78 %).
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δH (500 MHz, (CD3)2CO); 8.07 (t, 1H, J 1.6 Hz,

ArH, H15), 7.93 (dt, 1H, J 7.8, 1.1 Hz, ArH, H19),

7.62 (dt, 1H, J 8.0, 0.8 Hz, ArH, H17), 7.36 (t,

1H, J 7.9 Hz, ArH, H18), 6.69 (s, 1H, CH, H12),

4.94 (t, 2H, J 1.8 Hz, C5H4, H6,9), 4.52 (t, 2H, J

1.8 Hz, C5H4, H7,8), 4.11 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 196.0

(quaternary CO, C11), 178.3 (quaternary CO, C13), 138.4 (quaternary ArC, C14), 135.4

(ArCH, C15), 131.5 (ArCH, C19), 130.3 (ArCH, C17), 126.5 (ArCH, C18), 123.3 (ArCBr, C16),

95.1 (CH, C12), 79.0 (quaternary Cp, C10), 73.5 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.9

(Cp CH, C7,8); Analysis: Calculated C 55.52, H 3.68 %, Found C 55.54, H 3.77 %;

H.R.M.S. [ES+] found [MH+] 409.960.

8.4.20 Synthesis of 1-Ferrocenyl-3-(4-iodophenyl)propane-1,3-dione L20

Prepared using ethyl-4-iodobenzoate (2.19 mL, 13.0 mmol), refluxed for 48 hours

and worked up following method 2. The product was purified by column

chromatography, eluting 95:5 v/v hexane/ethyl acetate to give red solid (1.65 g,

50 %).

δH (500 MHz, (CD3)2CO); 7.79 (d, 2H, J 8.3 Hz,

ArH, H15,19), 7.71 (d, 2H, J 8.5 Hz, ArH, H16,18),

6.65 (s, 1H, CH, H12), 4.92 (t, 2H, J 1.6 Hz, C5H4,

H6,9), 4.51 (t, 2H, J 1.4 Hz, C5H4, H7,8), 4.10 (s,

5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO);

195.8 (quaternary CO, C11), 179.0 (quaternary CO, C13), 138.8 (ArCH, C15,19), 135.7

(quaternary ArC, C14), 129.5 (ArCI, C17), 129.3 (ArCH, C16,18), 94.7 (CH, C12), 79.1

(quaternary Cp, C10), 73.4 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.9 (Cp CH, C7,8); Analysis:

Calculated C 49.82, H 3.30, I 27.70 %, Found C 50.20, H 3.35, I 27.50 %; H.R.M.S. [ES+]

found [MH+] 457.947.
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8.4.21 Synthesis of 1-Ferrocenyl-3-(3-iodophenyl)propane-1,3-dione L21

Prepared using ethyl-3-iodobenzoate (2.02 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (1.02 g,

31 %).

δH (500 MHz, (CD3)2CO); 8.41 (t, 1H, J 1.4 Hz,

ArH, H15), 8.11 (dd, 1H, J 7.8, 0.8 Hz, ArH, H19),

7.98 (dt, 1H, J 7.8, 0.8 Hz, ArH, H17), 7.36 (t, 1H,

J 7.9 Hz, ArH, H18), 6.83 (s, 1H, CH, H12), 5.09 (t,

2H, J 1.8 Hz, C5H4, H6,9), 4.67 (t, 2H, J 1.8 Hz,

C5H4, H7,8), 4.27 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 195.9 (quaternary CO,

C11), 178.3 (quaternary CO, C13), 142.9 (quaternary ArC, C14), 141.5 ArCH, C15), 138.3

(ArCI, C16), 136.2 (ArCH, C19), 131.5 (ArCH, C17), 127.0 (ArCH, C18), 94.8 (CH, C12), 79.0

(quaternary Cp, C10), 73.5 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.9 (Cp CH, C7,8); Analysis:

Calculated C 49.82, H 3.30 %, Found C 49.75, H 3.23 %; H.R.M.S. [ES+] found [MH+]

457.946.

8.4.22 Synthesis of 1-Ferrocenyl-3-(4-methoxyphenyl)propane-1,3-dione L22

Prepared using ethyl-4-methoxybenzoate (2.10 mL, 13.0 mmol), refluxed for 24

hours and worked up following method 1. The product was purified by column

chromatography, eluting 80:20 v/v hexane/ethyl acetate to give a red solid (0.53 g,

21 %).

δH (500 MHz, (CD3)2CO); 7.90 (d, 2H, J 8.3

Hz, ArH, H15,19), 6.92 (d, 2H, J 8.7 Hz, ArH,

H16,18), 6.56 (d, 1H, J 6.9 Hz, CH, H12), 4.89

(broad s, 2H, C5H4, H6,9), 4.46 (broad s, 2H,

C5H4, H7,8), 4.09 (s, 5H, C5H5, H1-5), 3.77 (s,

3H, OMe, H20); δC{1H} (125 MHz, (CD3)2CO); 193.7 (quaternary CO, C11), 181.4

(quaternary CO, C13), 163.9 (ArCOMe, C17), 132.0 (quaternary ArC, C14), 129.7 (ArCH,



Experimental Chapter 8

213

C15,19), 114.8 (ArCH, C16,18), 93.4 (CH, C12), 79.4 (quaternary Cp, C10), 72.9 (Cp CH, C6,9),

71.0 (Cp ring, C1-5), 69.6 (Cp CH, C7,8), 55.9 (OCH3, C20); Analysis: Calculated C 66.32,

H 5.01 %, Found C 66.10, H 5.00 %; H.R.M.S. [ES+] found [M-H+] 361.053.

8.4.23 Synthesis of 1-Ferrocenyl-3-(3-methoxyphenyl)propane-1,3-dione L23

Prepared using ethyl-3-methoxybenzoate (2.15 mL, 13.0 mmol), refluxed for 24

hours and worked up following method 2. The product was purified by column

chromatography, eluting 80:20 v/v hexane/ethyl acetate to give red solid (1.67 g,

64 %).

δH (500 MHz, (CD3)2CO); 7.66 (d, 1H, J 7.6

Hz, ArH, H19), 7.58 (s, 1H, ArH, H15), 7.46 (t,

1H, J 8.0 Hz, ArH, H18), 7.17 (dd, 1H, J 8.0,

2.3 Hz, ArH, H17), 6.77 (s, 1H, CH, H12), 5.08

(s, 2H, C5H4, H6,9), 4.65 (s, 2H, C5H4, H7,8),

4.26 (s, 5H, C5H5, H1-5), 3.92 (s, 3H, OCH3, H20); δC{1H} (125 MHz, (CD3)2CO); 195.4

(quaternary CO, C11), 180.2 (quaternary CO, C13), 161.0 (quaternary ArC-OMe, C16),

137.5 (quaternary ArC, C14), 130.6 (ArCH, C15), 120.0 (ArCH, C19), 118.4 (ArCH, C17),

112.8 (ArCH, C18), 94.8 (CH, C12), 79.2 (quaternary Cp, C10), 73.2 (Cp CH, C6,9), 71.1

(Cp ring, C1-5), 69.8 (Cp CH, C7,8), 55.8 (OCH3, C20); Analysis: Calculated C 66.32, H

5.01 %, Found C 66.19, H 5.12 %; H.R.M.S. [ES+] found [MH+] 362.061.

8.4.24 Synthesis of 1-Ferrocenyl-3-(4-ethoxyphenyl)propane-1,3-dione L24

Prepared using ethyl-4-ethoxybenzoate (2.36 mL, 13.0 mmol), refluxed for 24 hours

and worked up following method 1. The product was purified by column

chromatography, eluting 87:13 v/v hexane/ethyl acetate to give red solid (0.38 g,

14 %).
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δH (500 MHz, (CD3)2CO); 8.04 (d, 2H, J

2.1 Hz, ArH, H15,19), 7.05 (d, 2H, J 2.3 Hz,

ArH, H16,18), 6.72 (s, 1H, CH, H12), 5.05

(Broad s, 2H, C5H4, H6,9), 4.62 (Broad s,

2H, C5H4, H7,8), 4.25 (s, 5H, C5H5, H1-5),

4.18 (m, 2H, OCH2, H20), 1.43 (t, 3H, J 3.3 Hz, CH3, H21); δC{1H} (125 MHz, (CD3)2CO);

193.7 (quaternary CO, C11), 181.4 (quaternary CO, C13), 163.3 (ArCOEt, C17), 132.1

(quaternary ArC, C14), 129.7 (ArCH, C15,19), 115.3 (ArCH, C16,18), 93.4 (CH, C12), 79.4

(quaternary Cp, C10), 72.9 (Cp CH, C6,9), 71.0 (Cp ring, C1-5), 69.6 (Cp CH, C7,8), 64.5

(OCH2, C20), 15.0 (CH3, C21); Analysis: Calculated C 67.04, H 5.36 %, Found C 67.10, H

5.40 %; H.R.M.S. [ES+] found [MH+] 377.083.

8.4.25 Synthesis of 1-Ferrocenyl-3-(2-pyridinyl)propane-1,3-dione L25

Prepared using ethyl picolinate (1.76 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 1. The product was purified by column

chromatography, eluting 90:10 v/v hexane/ethyl acetate to give red solid (1.57 g,

66 %).

δH (500 MHz, (CD3)2CO); 8.60 (broad d, 1H, J 3.9

Hz, ArH, H18), 7.97 (d, 1H, J 7.8 Hz, ArH, H15), 7.87

(td, 1H, J 7.6, 1.6 Hz, ArH, H17), 7.44 (qd, 1H, J

4.8, 2.8, 0.9 Hz, ArH, H16), 7.01 (s, 1H, CH, H12),

4.85 (broad t, 2H, J 1.6 Hz, C5H4, H6,9), 4.54

(broad t, 2H, J 1.6 Hz, C5H4, H7,8), 4.12 (s, 5H, C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO);

188.5 (quaternary CO, C11), 178.4 (quaternary CO, C13), 150.4 (ArCH, C18), 138.1

(ArCH, C19), 128.4 (quaternary ArC, C14), 127.0 (ArCH, C15), 122.2 (ArCH, C16), 95.1

(CH, C12), 78.9 (quaternary Cp, C10), 73.5 (Cp CH, C6,9), 71.2 (Cp ring, C1-5), 69.8 (Cp

CH, C7,8); Analysis: Calculated C 64.89, H 4.54, N 4.20 %, Found C 65.10, H 4.60, N

4.10 %; H.R.M.S. [ES+] found [M-H+] 332.037.
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8.4.26 Synthesis of 1-Ferrocenyl-3-(4-pyridinyl)propane-1,3-dione L26

Prepared using ethyl isonicotinate (1.95 mL, 13.0 mmol), refluxed for 24 hours and

worked up following method 1. The product precipitated out of solution as a pure

solid (2.29 g, 96 %).

δH (500 MHz, (CD3)2CO); 8.78 (d, 2H, J 5.7 Hz,

ArH, H16,17), 7.94 (d, 2H, J 6.0 Hz, ArH, H15,18),

6.90 (s, 1H, CH, H12), 5.11 (broad t, 2H, C5H4,

H6,9), 4.71 (broad t, 2H, C5H4, H7,8), 4.28 (s, 5H,

C5H5, H1-5); δC{1H} (125 MHz, (CD3)2CO); 197.6

(quaternary CO, C11), 175.7 (quaternary CO, C13), 151.5 (ArCH, C16, 17), 142.8

(quaternary ArC, C14), 120.9 (ArCH, C15,18), 96.3 (CH, C12), 79.0 (quaternary Cp, C10),

73.8 (Cp CH, C6,9), 71.2 (Cp ring, C1-5) 70.1 (Cp CH, C7,8); Analysis: Calculated C 64.89,

H 4.54, N 4.20 %, Found C 65.10, H 4.60, N 4.10 %; H.R.M.S. [ES+] found [MH+]

334.053.
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8.5 Synthesis of Ruthenium p-cymene Complexes

Complexes have been synthesised using the following general procedure adapted

from methods previously used in the McGowan group.95

General Procedure: The required ligand was dissolved in dichloromethane

(20 mL) followed by addition of triethylamine (0.05 mL, 0.392 mmol) and

[p-cymRuCl2]2 (0.12 g, 0.196 mmol) and stirred at room temperature overnight.

Solvent was removed in vacuo to give a red solid product.

8.5.1 Synthesis of (p-cymene)Ru(II)(1-Ferrocenylbutane-1,3-dione)Cl C1

Prepared using 1-ferrocenylbutane-1,3-dione (0.11 g, 0.392 mmol) and purified by

column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give orange solid

(0.144 g, 68 %).

δH (500 MHz, (CD3)2CO); 5.47 (d, 1H, J 6.0 Hz,

p-cymene ArH, H4/6), 5.45 (d, 1H, J 6.0 Hz, p-

cymene ArH, H4/6), 5.32 (s, 1H, CH, H22), 5.12

(d, 2H, J 6.0 Hz, p-cymene ArH, H3,7), 4.75 (t,

1H, J 1.4 Hz, C5H4, H16/19), 4.51 (t, 1H, J 1.4 Hz,

C5H4, H16/19), 4.24 (q, 1H, J 2.5, 1.3 Hz, C5H4,

H17/18), 4.20 (q, 1H, J 2.5, 1.3 Hz, C5H4, H17/18), 4.07 (s, 5H, C5H5, H11-15), 2.83 (sept, 1H,

J 6.9 Hz, p-cymene CH(Me)2, H8), 2.07 (s, 3H, p-cymene ArCH3, H1), 1.79 (s, 3H, CH3,

H24), 1.29 (dd, 6H, J 6.9, 2.3 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO);

184.9 (quaternary CO, C21), 184.6 (quaternary CO, C23), 99.2 (quaternary p-cymene,

C5), 97.7 (quaternary p-cymene, C2), 95.9 (acac CH, C22), 84.6 (p-cymene ArCH,

C3/4/6/7), 84.1 (p-cymene ArCH, C3/4/6/7), 81.7 (quaternary Cp, C20), 79.6 (p-cymene

ArCH, C3/4/6/7), 71.3 (Cp CH, C19/16), 71.3 (Cp CH, C16/19), 70.8 (Cp ring, C11-15), 69.8 (Cp

CH, C17/18), 68.4 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 27.5 (acac CH3, C24) 22.6 (p-

cymene C(CH3)2, C9,10), 17.7 (p-cymene CH3, C1); Analysis: Calculated C 53.40, H 5.04,

Cl 6.57%, Found C 53.40, H 5.10, Cl 6.40%; H.R.M.S. [ES+] found [MH+]-Cl 505.042.
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8.5.2 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-4,4,4-trifluorobutane-1,3-

dione)Cl C2

Prepared using 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione (0.13 g, 0.392 mmol)

and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give

orange solid (0.20 g, 85 %).

δH (500 MHz, (CD3)2CO); 5.63 (s, 1H, CH, H22),

5.61 (t, 2H, J 5.5 Hz, p-cymene ArH, H4,6), 5.30

(d, 1H, J 5.5 Hz, p-cymene ArH, H3/7), 5.27 (d,

1H, J 5.5 Hz, p-cymene ArH, H3/7), 4.83 (t, 1H,

J 1.4 Hz, C5H4, H16/19), 4.68 (t, 1H, J 1.4 Hz,

C5H4, H16/19), 4.46 (m, 1H, C5H4, H17/18), 4.41

(m, 1H, C5H4, H17/18), 4.13 (s, 5H, C5H5, H11-15), 2.83 (sept, 1H, J 6.9 Hz, p-cymene

CH(Me)2, H8), 2.10 (s, 3H, p-cymene ArCH3, H1), 1.17 (d, 6H, J 7.3 Hz, p-cymene

C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 218.9 (quaternary CO, C21), 191.8

(quaternary CO, C23), 99.5 (quaternary p-cymene, C5), 98.3 (quaternary p-cymene,

C2), 92.2 (acac CH, C22), 84.8 (p-cymene ArCH, C4/6), 84.2 (p-cymene ArCH, C4/6), 80.1

(quaternary Cp, C20), 79.5 (p-cymene ArCH, C3/7), 79.5 (p-cymene ArCH, C3/7), 73.5

(Cp CH, C16/19), 73.1 (Cp CH, C16/19), 71.3 (Cp ring, C11-15), 70.9 (Cp CH, C17/18), 67.5 (Cp

CH, C17/18), 31.8 (p-cymene CH, C8), 22.5 (p-cymene C(CH3), C9/10), 22.5 (p-cymene

C(CH3), C9/10), 17.7 (p-cymene CH3, C1); Analysis: Calculated C 48.54, H 4.07, Cl

5.97 %, Found C 48.90, H 4.10, Cl 6.00 %; H.R.M.S. [ES+] found [MH+]-Cl 559.023.

8.5.3 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-4,4-difluorobutane-1,3-dione)Cl

C3

Prepared using 1-ferrocenyl-4,4-difluorobutane-1,3-dione (0.12 g, 0.392 mmol) and

purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give

orange solid (0.17 g, 77 %).
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δH (500 MHz, (CD3)2CO); 5.86 (t, 1H, J 55.2 Hz,

CH, H22), 5.57 (broad t, 2H, J 6.2 Hz, p-cymene

ArH, H4,6), 5.56 (broad s, H, CHF2, H24), 5.22 (t,

2H, J 5.6 Hz, p-cymene ArH, H3/7), 4.80 (broad

s, 1H, C5H4, H16/19), 4.62 (broad s, 1H, C5H4,

H16/19), 4.40 (broad s, 1H, C5H4, H17/18), 4.35

(broad s, 1H, C5H4, H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.71 (sept, 1H, J 5.9 Hz, p-cymene

CH(Me)2, H8), 2.09 (s, 3H, p-cymene ArCH3, H1), 1.30 (t, 6H, J 5.9 Hz, p-cymene

C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 190.1 (quaternary CO, C21), 172.8 (t,

quaternary CO, J 22.1 Hz, C23), 112.2 (t, CHF2, J 246.3 Hz, C24), 99.5 (quaternary p-

cymene, C5), 98.2 (quaternary p-cymene, C2), 92.6 (acac CH, C22), 84.9 (p-cymene

ArCH, C4/6), 84.2 (p-cymene ArCH, C4/6), 80.5 (quaternary Cp, C20), 79.9 (p-cymene

ArCH, C3/7), 79.5 (p-cymene ArCH, C3/7), 72.7 (Cp CH, C16/19), 72.6 (Cp CH, C16/19), 71.2

(Cp ring, C11-15), 70.1 (Cp CH, C17/18), 69.1 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.6

(p-cymene C(CH3), C9/10), 22.5 (p-cymene C(CH3), C9/10), 17.7 (p-cymene CH3, C1);

Analysis: Calculated C 50.06, H 4.38, Cl 6.16 %, Found C 50.30, H 4.40, Cl 6.30 %;

H.R.M.S. [ES+] found [MH+]-Cl 541.023.

8.5.4 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-furanyl)propane-1,3-

dione)Cl C4

Prepared using 1-ferrocenyl-3-(3-furanyl)propane-1,3-dione (0.13 g, 0.392 mmol)

and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give

orange solid (0.19 g, 81 %).

δH (500 MHz, (CD3)2CO); 8.19 (s, 1H, Furan CH,

H27), 7.60 (t, 1H, J 1.6 Hz, Furan CH, H25), 6.90

(d, 1H, J 1.2 Hz, Furan CH, H26), 5.97 (s, 1H,

CH, H22), 5.68 (t, 2H, J 6.1 Hz, p-cymene ArH,

H4,6), 5.35 (t, 2H, J 5.3 Hz, p-cymene ArH,

H3,7), 4.96 (d, 1H, J 1.2 Hz, C5H4, H16/19), 4.84

(d, 1H, J 1.2 Hz, C5H4, H16/19), 4.44 (m, 1H,
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C5H4, H17/18), 4.40 (m, 1H, C5H4, H17/18), 4.25 (s, 5H, C5H5, H11-15), 3.04 (sept, 1H, J 6.9

Hz, p-cymene CH(Me)2, H8), 2.29 (s, 3H, p-cymene ArCH3, H1), 1.49 (dd, 6H, J 6.9, 0.9

Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 186.0 (quaternary CO, C21),

173.6 (quaternary CO, C23), 145.0 (Furan CH, C27), 144.4 (Furan CH, C26), 128.8

(quaternary Furan C, C24), 109.8 (Furan CH, C25), 99.2 (quaternary p-cymene, C5), 97.8

(quaternary p-cymene, C2), 94.0 (acac CH, C22), 84.7 (p-cymene ArCH, C4/6), 84.5

(p-cymene ArCH, C4/6), 82.0 (quaternary Cp, C20), 79.9 (p-cymene ArCH, C3/7), 79.8 (p-

cymene ArCH, C3/7), 71.5 (Cp CH, C16/19), 71.5 (Cp CH, C16/19), 70.9 (Cp ring, C11-15),

69.8 (Cp CH, C17/18), 68.6 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene

C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.7 (p-cymene CH3, C1); Analysis:

Calculated C 54.79, H 4.60 %, Found C 54.72, H 4.55 %; H.R.M.S. [ES+] found [MH+]-

Cl 557.043.

8.5.5 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(2-furanyl)propane-1,3-

dione)Cl C5

Prepared using 1-ferrocenyl-3-furanylpropane-1,3-dione (0.13 g, 0.392 mmoland

purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give

orange solid (0.20 g, 86 %).

δH (500 MHz, (CD3)2CO); 7.53 (broad d, 1H, J

0.9 Hz, Furan CH, H25), 6.96 (broad d, 1H, J 3.4

Hz, Furan CH, H27), 6.44 (dd, 1H, J 3.7, 1.6 Hz,

Furan CH, H26), 5.92 (s, 1H, CH, H22), 5.53 (t,

2H, J 6.3 Hz, p-cymene ArH, H4,6), 5.20 (t, 2H,

J 5.7 Hz, p-cymene ArH, H3,7), 4.79 (broad t,

1H, J 1.2 Hz, C5H4, H16/19), 4.60 (broad t, 1H, J

1.2 Hz, C5H4, H16/19), 4.32 (broad q, 1H, J 2.5, 1.2 Hz, C5H4, H17/18), 4.28 (broad q, 1H,

J 2.5, 1.2 Hz, C5H4, H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.88 (sept, 1H, J 6.9 Hz, p-cymene

CH(Me)2, H8), 2.14 (s, 3H, p-cymene ArCH3, H1), 1.33 (d, 6H, J 6.9 Hz, p-cymene

C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 186.6 (quaternary CO, C21), 168.6

(quaternary CO, C23), 163.6 (quaternary Furan C, C24), 145.0 (Furan CH, C25), 113.3
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(Furan CH, C27), 112.9 (Furan CH, C26), 99.2 (quaternary p-cymene, C5), 97.9

(quaternary p-cymene, C2), 92.3 (acac CH, C22), 84.8 (p-cymene ArCH, C4/6), 84.5 (p-

cymene ArCH, C4/6), 81.9 (quaternary Cp, C20), 79.9 (p-cymene ArCH, C3/7), 79.8 (p-

cymene ArCH, C3/7), 71.7 (Cp CH, C16/19), 71.7 (Cp CH, C16/19), 70.9 (Cp ring, C11-15),

69.9 (Cp CH, C17/18), 68.6 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene

C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.7 (p-cymene CH3, C1); Analysis:

Calculated C 54.79, H 4.60, Cl 5.99 %, Found C 55.05, H 4.60, Cl 5.70 %; H.R.M.S.

[ES+] found [MH+]-Cl 557.036.

8.5.6 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-phenylpropane-1,3-dione)Cl

C6

Prepared using 1-ferrocenyl-3-phenylpropane-1,3-dione (0.13 g, 0.392 mmol) and

purified by column chromatography, eluting 2:3 v/v petrol/ethyl acetate to give

orange solid (0.21 g, 89 %).

δH (500 MHz, (CD3)2CO); 7.84 (broad d, 2H, J

7.3 Hz, ArH, H25,29), 7.33 (t, 1H, J 7.3 Hz, ArH,

H27), 7.28 (t, 2H, J 7.3 Hz, ArH, H26,28), 6.04 (s,

1H, CH, H22), 5.55 (d, 2H, J 6.4 Hz, p-cymene

ArH, H4,6), 5.24 (dd, 2H, J 6.0, 1.8 Hz, p-

cymene ArH, H3,7), 4.83 (t, 1H, J 1.2 Hz, C5H4,

H16/19), 4.73 (t, 1H, J 1.2 Hz, C5H4, H16/19), 4.32

(broad q, 1H, J 2.2, 1.4 Hz, C5H4, H17/18), 4.28

(broad q, 1H, J 2.3, 1.4 Hz, C5H4, H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.91 (sept, 1H, J 6.9

Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3, H1), 1.34 (d, 6H, J 7.3 Hz, p-

cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 186.8 (quaternary CO, C21), 178.4

(quaternary CO, C23), 140.5 (quaternary ArC, C24), 131.2 (ArCH, C25,29), 128.9 (ArCH,

C26,28), 127.9 (ArCH, C27), 99.4 (quaternary p-cymene, C5), 97.8 (quaternary p-

cymene, C2), 93.4 (acac CH, C22), 84.6 (p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH,

C4/6), 82.1 (quaternary Cp, C20), 80.0 (p-cymene ArCH, C3/7), 80.0 (p-cymene ArCH,

C3/7), 71.7 (Cp CH, C16/19), 71.6 (Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.9 (Cp CH,
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C17/18), 68.7 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1); Analysis: Calculated C 57.87,

H 4.86, Cl 5.89 %, Found C 57.70, H 5.20, Cl 5.75 %; H.R.M.S. [ES+] found [MH+]-Cl

567.058.

8.5.7 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(1-naphthyl)propane-1,3-

dione)Cl C7

Prepared using 1-ferrocenyl-3-(1-naphthyl)propane-1,3-dione (0.15 g, 0.392 mmol)

and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate to give

orange solid (0.21 g, 82 %).

δH (500 MHz, (CD3)2CO); 8.54 (d, 1H, J 7.8 Hz,

ArH, H25), 7.82 (d, 1H, J 8.0 Hz, ArH, H26), 7.78

(dd, 1H, J 7.1, 2.1 Hz, ArH, H27), 7.45 (d, 1H, J

7.1 Hz, ArH, H32), 7.37 (m, 3H, ArH, H29-31),

5.72 (s, 1H, CH, H22), 5.57 (d, 1H, J 5.7 Hz, p-

cymene ArH, H4/6), 5.53 (d, 1H, J 5.9 Hz, p-

cymene ArH, H4/6), 5.25 (t, 2H, J 4.9 Hz, p-

cymene ArH, H3,7), 4.83 (d, 1H, J 0.7 Hz, C5H4,

H16/19), 4.62 (d, 1H, J 0.9 Hz, C5H4, H16/19), 4.33 (m, 1H, C5H4, H17/18), 4.27 (m, 1H, C5H4,

H17/18), 4.14 (s, 5H, C5H5, H11-15), 2.86 (sept, 1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.09

(s, 3H, p-cymene ArCH3, H1), 1.30 (t, 6H, J 6.7 Hz, p-cymene C(CH3)2, H9,10); δC{1H}

(125 MHz, (CD3)2CO); 186.9 (quaternary CO, C21), 176.0 (quaternary CO, C23), 156.4

(quaternary ArC, C24), 140.5 (quaternary ArC, C33), 134.9 (quaternary ArC, C28), 132.0

(ArCH, C25), 130.2 (ArCH, C26), 128.6 (ArCH, C27), 128.4 (ArCH, C32), 126.8 (ArCH, C329),

125.7 (ArCH, C31), 125.6 (ArCH, C30), 99.7 (quaternary p-cymene, C5), 98.3 (acac CH,

C22), 97.7 (quaternary p-cymene, C2), 84.4 (p-cymene ArCH, C4/6), 84.2 (p-cymene

ArCH, C4/6), 81.5 (quaternary Cp, C20), 80.1 (p-cymene ArCH, C3/7), 80.1 (p-cymene

ArCH, C3/7), 71.9 (Cp CH, C16/19), 71.9 (Cp CH, C16/19), 71.0 (Cp ring, C11-15), 69.9 (Cp

CH, C17/18), 68.8 (Cp CH, C17/18), 31.6 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 17.8 (p-cymene CH3, C1); Analysis: Calculated C 60.79,
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H 4.79, Cl 5.44 %, Found C 60.70, H 4.90, Cl 5.20 %; H.R.M.S. [ES+] found [MH+]-Cl

617.074.

8.5.8 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-methylphenyl)propane-1,3-

dione)Cl C8

Prepared using 1-ferrocenyl-3-(4-methylphenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.18 g, 75 %).

δH (500 MHz, (CD3)2CO); 7.74 (d, 2H, J 8.3 Hz,

ArH, H25,29), 7.10 (d, 2H, J 7.8 Hz, ArH, H26,28),

6.02 (s, 1H, CH, H22), 5.54 (broad d, 2H, J 6.0

Hz, p-cymene ArH, H4,6), 5.22 (d, 2H, J 6.0 Hz,

p-cymene ArH, H3,7), 4.82 (t, 1H, J 1.2 Hz,

C5H4, H16/19), 4.71 (t, 1H, J 1.2 Hz, C5H4, H16/19),

4.30 (m, 1H, C5H4, H17/18), 4.27 (m, 1H, C5H4,

H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.90 (sept,

1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.24 (s, 3H, ArCH3, H30), 2.16 (s, 3H, p-cymene

ArCH3, H1), 1.34 (d, 6H, J 6.9 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO);

186.4 (quaternary CO, C21), 178.4 (quaternary CO, C23), 141.4 (quaternary ArC, C24),

137.7 (quaternary ArC, C27), 129.6 (ArCH, C25,29), 127.9 (ArCH, C26,28), 99.4

(quaternary p-cymene, C5), 97.8 (quaternary p-cymene, C2), 93.0 (acac CH, C22), 84.7

(p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 82.2 (quaternary Cp, C20), 79.9 (p-

cymene ArCH, C3,7), 71.6 (Cp CH, C16/19), 71.5 (Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.9

(Cp CH, C17/18), 68.6 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene C(CH3),

C9/10), 22.6 (p-cymene C(CH3), C9/10), 21.4 (PhMe, C30), 17.8 (p-cymene CH3, C1);

Analysis: Calculated C 58.50, H 5.07, Cl 5.76 %, Found C 58.60, H 5.10, Cl 5.80 %;

H.R.M.S. [ES+] found [MH+]-Cl 581.072.
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8.5.9 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-methylphenyl)propane-1,3-

dione)Cl C9

Prepared using 1-ferrocenyl-3-(3-methylphenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 1:1 v/v petrol/ethyl acetate

to give orange solid (0.23 g, 93 %).

δH (500 MHz, (CD3)2CO); 7.79 (s, 1H, ArH, H25),

7.75 (m, 1H, ArH, H29), 7.29 (m, 2H, ArH,

H27,28), 6.15 (s, 1H, CH, H22), 5.68 (dt, 2H, J 4.9,

1.5 Hz, p-cymene ArH, H4,6), 5.36 (dt, 2H, J

4.9, 1.5 Hz, p-cymene ArH, H3,7), 4.96 (t, 1H, J

1.2 Hz, C5H4, H16/19), 4.84 (t, 1H, J 1.2 Hz, C5H4,

H16/19), 4.44 (m, 1H, C5H4, H17/18), 4.40 (m, 1H,

C5H4, H17/18), 4.24 (s, 5H, C5H5, H11-15), 3.04

(sept, 1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.42 (s, 3H, ArCH3, H30), 2.29 (s, 3H, p-

cymene ArCH3, H1), 1.47 (d, 6H, J 7.1 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz,

(CD3)2CO); 186.6 (quaternary CO, C21), 178.6 (quaternary CO, C23), 140.5 (quaternary

ArC, C24), 138.4 (quaternary ArC, C26), 131.8 (ArCH, C25), 128.8 (ArCH, C29), 128.5

(ArCH, C27), 125.1 (ArCH, C28), 99.4 (quaternary p-cymene, C5), 97.8 (quaternary p-

cymene, C2), 93.4 (acac CH, C22), 84.6 (p-cymene ArCH. C4/6), 84.5 (p-cymene ArCH,

C4/6), 82.1 (quaternary Cp, C20), 80.0 (p-cymene ArCH, C3/7), 80.0 (p-cymene ArCH,

C3/7), 71.6 (Cp CH, C16/19), 71.6 (Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.9 (Cp CH,

C17/18), 68.7 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 21.5 (ArCH3, C30), 17.8 (p-cymene CH3, C1); Analysis:

Calculated C 58.50, H 5.07 %, Found C 57.91, H 5.06 %; H.R.M.S. [ES+] found [MH+]-

Cl 581.072.
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8.5.10 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3,5-

dimethylphenyl)propane-1,3-dione)Cl C10

Prepared using 1-ferrocenyl-3-(3,5-dimethylphenyl)propane-1,3-dione (0.14 g,

0.392 mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl

acetate to give orange solid (0.20 g, 80 %).

δH (500 MHz, (CD3)2CO); 7.45 (s, 2H, ArH,

H25,29), 6.98 (s, 1H, ArH, H27), 6.01 (s, 1H, CH,

H22), 5.54 (t, 2H, J 4.0 Hz, p-cymene ArH, H4,6),

5.22 (d, 2H, J 4.4 Hz, p-cymene ArH, H3,7), 4.82

(broad s, 1H, C5H4, H16/19), 4.69 (broad s, 1H,

C5H4, H16/19), 4.30 (broad s, 1H, C5H4, H17/18),

4.26 (broad s, 1H, C5H4, H17/18), 4.10 (s, 5H,

C5H5, H11-15), 2.90 (sept, 1H, J 6.9 Hz,

p-cymene CH(Me)2, H8), 2.21 (s, 6H, ArCH3, C30,31), 2.16 (s, 3H, p-cymene ArCH3, H1),

1.34 (d, 6H, J 6.9 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 185.5

(quaternary CO, C21), 178.0 (quaternary CO, C23), 139.6 (quaternary ArC, C24), 137.4

(quaternary ArC, C26,28), 131.7 (ArCH, C27), 124.9 (ArCH, C25/29), 124.5 (ArCH, C25/29),

98.5 (quaternary p-cymene, C5), 96.9 (quaternary p-cymene, C2), 92.5 (acac CH, C22),

83.8 (p-cymene ArCH, C4/6), 83.6 (p-cymene ArCH, C4/6), 81.3 (quaternary Cp, C20),

79.1 (p-cymene ArCH, C3/7), 79.0 (p-cymene ArCH, C3/7), 70.7 (Cp CH, C16/19), 70.6 (Cp

CH, C16/19), 70.0 (Cp ring, C11-15), 69.0 (Cp CH, C17/18), 67.8 (Cp CH, C17/18), 30.8 (p-

cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 20.6

(ArCH3, C30,31), 17.9 (p-cymene CH3, C1); Analysis: Calculated C 59.01, H 5.28, Cl

5.63 %, Found C 59.30, H 5.30, Cl 5.50 %; H.R.M.S. [ES+] found [MH+]-Cl 595.090.
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8.5.11 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-fluorophenyl)propane-1,3-

dione)Cl C11

Prepared using 1-ferrocenyl-3-(4-fluorophenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.12 g, 82 %).

δH (500 MHz, (CD3)2CO); 7.91 (q, 2H, J 5.5, 3.2

Hz, ArH, H28/26), 7.04 (t, 2H, J 8.7 Hz, ArH,

H26,28), 6.02 (s, 1H, CH, H22), 5.56 (d, 2H, J 6.4

Hz, p-cymene ArH, H4,6), 5.24 (t, 2H, J 4.4 Hz,

p-cymene ArH, H3,7), 4.83 (t, 1H, J 1.2 Hz, C5H4

H16/19), 4.73 (t, 1H, J 1.2 Hz, C5H4, H16/19), 4.32

(broad q, 1H, J 2.4, 1.1 Hz, C5H4, H17/18), 4.28

(broad q, 1H, J 2.4, 1.1 Hz, C5H4, H17/18), 4.11

(s, 5H, C5H4, H11-15), 2.90 (sept, 1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-

cymene ArCH3, H1), 1.33 (d, 6H, J 6.9 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz,

(CD3)2CO); 187.0 (quaternary CO, C21), 177.0 (quaternary CO, C23), 165.0 (d, ArCF, J

248.6 Hz, C27), 136.9 (d, quaternary ArC, J 3.1 Hz, C24), 130.3 (d, ArCH, J 8.8 Hz, C25,29),

115.6 (d, ArCH J 21.8 Hz, C26,28), 99.5 (quaternary p-cymene, C5), 97.8 (quaternary p-

cymene, C2), 93.2 (acac CH, C22), 84.6 (p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH,

C4/6), 82.0 (quaternary Cp, C20), 80.0 (p-cymene ArCH, C3,7), 71.7 (Cp CH, C16/19), 71.7

(Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.9 (Cp CH, C17/18), 68.8 (Cp CH, C17/18), 31.7 (p-

cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3) C9/10), 17.9 (p-

cymene CH3, C1); Analysis: Calculated C 56.19, H 4.55, Cl 5.72 %, Found C 56.20, H

4.95, Cl 5.95 %; H.R.M.S. [ES+] found [MH+]-Cl 585.047.
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8.5.12 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-fluorophenyl)propane-1,3-

dione)Cl C12

Prepared using 1-ferrocenyl-3-(3-fluorophenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.19 g, 78 %).

δH (500 MHz, (CD3)2CO); 7.70 (broad dt, 1H, J

7.8 Hz, ArH, H25), 7.61 (dq, 1H, J 10.4, 1.6, 0.9

Hz, ArH, H29), 7.36 (m, 1H, ArH, H27), 7.14 (td,

1H, J 8.3, 2.3 Hz, ArH, H28), 6.08 (s, 1H, CH,

H22), 5.62 (d, 2H, J 6.2 Hz, p-cymene ArH,

H4,6), 5.29 (t, 2H, J 4.7 Hz, p-cymene ArH,

H3,7), 4.89 (quintet, 1H, J 1.2 Hz, C5H4, H16/19),

4.81 (quintet, 1H, J 1.2 Hz, C5H4, H16/19), 4.37

(m, 1H, C5H4, H17/18), 4.34 (m, 1H, C5H4, H17/18), 4.15 (s, 5H, C5H5, H11-15), 2.94 (sept,

1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.20 (s, 3H, p-cymene ArCH3, H1), 1.38 (d, 6H, J

7.1 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.6 (quaternary CO,

C21), 179.1 (quaternary CO, C23), 164.6 (d, quaternary ArCF, J 243.9 Hz, C26), 143.0 (d,

quaternary ArC, J 6.7 Hz, C24), 130.8 (d, ArCH, J 8.3 Hz, C28), 123.6 (d ArCH J 2.6 Hz,

C29), 117.7 (d, ArCH J 21.3 Hz, C25), 114.5 (d, ArCH J 22.8 Hz, C27), 99.5 (quaternary

p-cymene, C5), 97.9 (quaternary p-cymene, C2), 93.6 (acac CH, C22), 84.6 (p-cymene

ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.8 (quaternary Cp, C20), 80.0 (p-cymene

ArCH, C3/7), 80.0 (p-cymene ArCH, C3/7), 71.9 (Cp CH, C16/19), 71.8 (Cp CH, C16/19), 71.0

(Cp ring, C11-15), 70.0 (Cp CH, C17/18), 68.9 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7

(p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1);

Analysis: Calculated C 56.19, H 4.55, Cl 5.72 %, Found C 56.30, H 4.85, Cl 5.30 %;

H.R.M.S. [ES+] found [MH+]-Cl 585.048.
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8.5.13 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(2-fluorophenyl)propane-1,3-

dione)Cl C13

Prepared using 1-ferrocenyl-3-(2-fluorophenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.18 g, 72 %).

δH (500 MHz, (CD3)2CO); 7.87 (td, 1H, J 7.7,

1.2 Hz, ArH, H29), 7.49 (m, 1H, ArH, H26), 7.28

(t, 1H, J 7.6 Hz, ArH, H28), 7.19 (dd, 1H, J 11.8,

1.2 Hz, ArH, H27), 6.02 (s, 1H, CH, H22), 5.71

(d, 2H, J 4.8 Hz, p-cymene ArH, H4,6), 5.39 (t,

2H, J 4.8 Hz, p-cymene ArH, H3,7), 4.93 (d, 1H,

J 0.8 Hz, C5H4, H16/19), 4.75 (d, 1H, J 0.9 Hz,

C5H4, H16/19), 4.49 (broad t, 1H, C5H4, H17/18),

4.45 (broad t, 1H, C5H4, H17/18), 4.27 (s, 5H, C5H5, H11-15), 3.04 (sept, 1H, J 6.9 Hz, p-

cymene CH(Me)2, H8), 1.99 (s, 3H, p-cymene ArCH3, H1), 1.48 (d, 6H, J 6.9 Hz, p-

cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.1 (quaternary CO, C21), 174.8

(d, quaternary CO, J 3.6 Hz, C22), 160.6 (d, ArCF, J 250.1 Hz, C25), 132.3 (d, ArCH, J 8.8

Hz, C29), 131.7 (d, ArCH, J 3.1 Hz, C28), 129.3 (d, quaternary ArC, J 11.9 Hz, C24), 125.1

(d, ArCH, J 3.6 Hz, C27), 116.9 (d, ArCH, J 23.9 Hz, C26), 99.5 (quaternary p-cymene,

C5), 97.9 (d, acac CH, J 5.2 Hz, C22), 97.8 (quaternary p-cymene, C2), 84.5 (p-cymene

ArCH, c4/6), 84.4 (p-cymene ArCH, C4/6), 81.7 (quaternary Cp, C20), 79.9 (p-cymene

ArCH, C3,7), 71.9 (Cp CH, C16/19), 71.9 (Cp CH, C16/19), 71.1 (Cp ring, C11-15), 69.9 (Cp CH,

C17/18), 68.8 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1); Analysis: Calculated C 56.19,

H 4.55, Cl 5.72 %, Found C 55.90, H 4.70, Cl 5.90 %; H.R.M.S. [ES+] found [MH+]-Cl

585.049.
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8.5.14 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3,5-difluorophenyl)propane-

1,3-dione)Cl C14

Prepared using 1-ferrocenyl-3-(3,5-difluorophenyl)propane-1,3-dione (0.15 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.19 g, 76 %).

δH (500 MHz, (CD3)2CO); 7.45 (d, 2H, J 6.9 Hz,

ArH, H25,29), 6.99 (tt, 1H, J 8.9, 2.1 Hz, ArH,

H27), 6.05 (s, 1H, CH, H22), 5.60 (d, 2H, J 6.0

Hz, p-cymene ArH, H4,6), 5.28 (t, 2H, J 5.0 Hz,

p-cymene ArH, H3,7), 4.87 (broad s, 1H, C5H4,

H16/19), 4.83 (broad s, 1H, C5H4, H16/19), 4.36

(broad s, 1H, C5H4, H17/18), 4.32 (broad s, 1H,

C5H4, H17/18), 4.12 (s, 5H, C5H5, H11-15), 2.90

(sept, 1H, J 7.0 Hz, p-cymene CH(Me)2, H8), 2.17 (s, 3H, ArCH3, H1), 1.34 (d, 6H, J 6.9

Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 188.4 (quaternary CO, C21),

174.6 (quaternary CO, C23), 163.7 (dd, ArCF, J 264.0, 12.8 Hz, C26,28), 144.3

(quaternary ArC, J 8.3 Hz, C24), 110.7 (dd, ArCH, J 20.2, 6.2 Hz, C25,29), 105.9 (t, ArCH,

J 26.0 Hz, C27), 99.6 (quaternary p-cymene, C5), 98.0 (quaternary p-cymene, C2), 93.7

(acac CH, C22), 84.6 (p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.6

(quaternary Cp, C20), 80.0 (p-cymene ArCH, C3,7), 72.1 (Cp CH, C16/19), 72.0 (Cp CH,

C16/19), 71.0 (Cp ring, C11-15), 70.0 (Cp CH, C17/18), 69.1 (Cp CH, C17/18), 31.7 (p-cymene

CH, C8), 22.7 (p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene

CH3, C1); Analysis: Calculated C 54.60, H 4.27, Cl 5.56 %, Found C 55.20, H 4.40, Cl

5.57 %; H.R.M.S. [ES+] found [MH+]-Cl 603.040.
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8.5.15 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-chlorophenyl)propane-1,3-

dione)Cl C15

Prepared using 1-ferrocenyl-3-(4-chlorophenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.23 g, 91 %).

δH (500 MHz, (CD3)2CO); 7.86 (broad d, 2H, J

8.7 Hz, ArH, H25,29), 7.31 (broad d, 2H, J 8.7 Hz,

ArH, H26,28), 6.03 (s, 1H, CH, H22), 5.56 (d, 2H,

J 6.0 Hz, p-cymene ArH, H4,6), 5.24 (t, 2H, J 4.6

Hz, p-cymene ArH, H3,7), 4.84 (t, 1H, J 1.4 Hz,

C5H4, H16/16), 4.74 (t, 1H, J 1.2 Hz, C5H4, H16/19),

4.33 (q, 1H, J 2.3, 1.2 Hz, C5H4, H17/18), 4.29 (q,

1H, J 2.3, 1.4 Hz, C5H4 H17/18), 4.11 (s, 5H, C5H5,

H11-15), 2.90 (sept, 1H, J 6.9 Hz, CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3, H1), 1.33

(d, 6H, J 6.9 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.3

(quaternary CO, C21), 176.8 (quaternary CO, C23), 139.2 (quaternary ArC, C24), 136.6

(quaternary ArC, C27), 129.6 (ArCH. C25,29), 129.0 (ArCH, C26,28), 99.5 (quaternary p-

cymene, C5), 97.8 (quaternary p-cymene, C2), 93.4 (acac CH, C22), 84.6 (p-cymene

ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.9 (quaternary Cp, C20), 80.0 (p-cymene

ArCH, C3,7), 71.9 (Cp CH, C16/19), 71.8 (Cp CH. C16/19), 71.0 (Cp ring, C11-15), 70.0 (Cp CH,

C17/18), 68.8 (Cp CH, C17/18), 31.74 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1); Analysis: Calculated C 54.74,

H 4.44, Cl 11.14 %, Found C 54.90, H 4.50, Cl 11.10 %; H.R.M.S. [ES+] found [MH+]-Cl

601.016.
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8.5.16 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-chlorophenyl)propane-1,3-

dione)Cl C16

Prepared using 1-ferrocenyl-3-(3-chlorophenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.23 g, 92 %).

δH (500 MHz, (CD3)2CO); 7.99 (t, 1H, J 1.8 Hz,

ArH, H25), 7.93 (dt, 1H, J 7.8, 1.4 Hz, ArH, H29),

7.52 (dq, 1H, J 8.0, 1.1 Hz, ArH, H27), 7.46 (t,

1H, J 7.8 Hz, ArH, H29), 6.20 (s, 1H, CH, H22),

5.73 (dd, 2H, J 4.8, 1.4 Hz, p-cymene ArH,

H4,6), 5.42 (t, 2H, J 5.0 Hz, p-cymene ArH,

H3,7), 5.01 (quin, 1H, J 1.3 Hz, C5H4, H16/19),

4.93 (pent, 1H, J 1.3 Hz, C5H4, H16/19), 4.49 (m,

1H, C5H4, H17/18), 4.45 (m, 1H, C5H4, H17/18), 4.27 (s, 5H, C5H5, H11-15), 3.06 (sept, 1H, J

6.9 Hz, p-cymene CH(Me)2, H8), 2.32 (s, 3H, p-cymene ArCH3, H1), 1.50 (d, 6H, J 7.1

Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.7 (quaternary CO, C21),

176.3 (quaternary CO, C23), 142.6 (ArCCl, C26), 134.6 (quaternary ArC, C24), 130.9

(ArCH, C25), 130.7 (ArCH, C29), 127.8 (ArCH, C27), 126.2 (ArCH, C28), 99.5 (quaternary

p-cymene, C5), 97.6 (quaternary p-cymene, C2), 93.6 (acac CH, C22), 84.6 (p-cymene

ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.8 (quaternary Cp, C20), 80.0 (p-cymene

ArCH, C3/7), 80.0 (p-cymene ArCH), 71.9 (Cp CH, C16/19), 71.9 (Cp CH, C16/19), 71.0 (Cp

ring, C11-15), 70.0 (Cp CH, C17/18), 68.9 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-

cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1);

Analysis: Calculated C 54.74, H 4.44 %, Found C 53.95, H 4.51 %; H.R.M.S. [ES+]

found [MH+]-Cl 601.0183.
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8.5.17 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3,5-dichlorophenyl)propane-

1,3-dione)Cl C17

Prepared using 1-ferrocenyl-3-(3,5-dichlorophenyl)propane-1,3-dione (0.16 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.16 g, 61 %).

δH (500 MHz, (CD3)2CO); 7.94 (d, 2H, J 1.8 Hz,

ArH, H25,29), 7.59 (t, 1H, J 1.8 Hz, ArH, H27),

6.21 (s, 1H, CH, H22), 5.75 (d, 2H, J 5.7 Hz, p-

cymene ArH, H4,6), 5.44 (t, 2H, J 5.7 Hz, p-

cymene ArH, H3,7), 5.03 (d, 1H, J 0.9 Hz, C5H4,

H16/19), 4.98 (d, 1H, J 1.1 Hz, C5H4, H16/19),

4.52 (broad t, 1H, C5H4, H17/18), 4.47 (broad t,

1H, C5H4, H17/18), 4.27 (s, 5H, C5H5, H11-15),

3.05 (sept, 1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.32 (s, 3H, p-cymene ArCH3, H1),

1.49 (d, 6H, J 7.1 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.7

(quaternary CO, C21), 173.5 (quaternary CO, C23), 143.0 (ArCCl, C26,28), 134.6

(quaternary ArC, C24), 129.4 (ArCH, C25,29), 125.5 (ArCH, C27), 98.7 (quaternary p-

cymene, C5), 97.0 (quaternary p-cymene, C2), 92.9 (acac CH, C22), 83.7 (p-cymene

ArCH, C4/6), 83.6 (p-cymene ArCH, C4/6), 80.6 (quaternary Cp, C20), 79.2 (p-cymene

ArCH, C3/7), 79.1 (p-cymene ArCH, C3/7), 71.3 (Cp CH, C16/19), 71.2 (Cp CH, C16/19), 70.1

(Cp ring, C11-15), 69.2 (Cp CH, C17/18), 68.2 (Cp CH, C17/18), 30.9 (p-cymene CH, C8), 21.8

(p-cymene C(CH3), C9/10), 21.7 (p-cymene C(CH3), C9/10), 17.0 (p-cymene CH3, C1);

Analysis: Calculated C 51.92, H 4.06, Cl 15.86 %, Found C 51.00, H 3.90, Cl 15.86 %;

H.R.M.S. [ES+] found [MH+]-Cl 634.979.
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8.5.18 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-bromophenyl)propane-

1,3-dione)Cl C18

Prepared using 1-ferrocenyl-3-(4-bromophenyl)propane-1,3-dione (0.16 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.17 g, 64 %).

δH (500 MHz, (CD3)2CO); 7.78 (d, 2H, J 8.7 Hz,

ArH, H25,29), 7.46 (d, 2H, J 8.7 Hz, ArH, H26,28),

6.03 (s, 1H, CH. H22), 5.56 (d, 2H, J 6.2 Hz, p-

cymene ArH, H4,6), 5.24 (t, 2H, J 4.7 Hz, p-

cymene ArH, H3,7), 4.83 (q, 1H, J 1.3 Hz, C5H4,

H16/19), 7.47 (q, 1H, J 1.3 Hz, C5H4, H16/19), 4.33

(m, 1H, C5H4, H17/18), 4.29 (m, 1H, C5H4,

H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.90 (sept,

1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3, H1), 1.33 (d, 6H, J

6.9 Hz, p-cymene C(CH3)2, H9,10), δC{1H} (125 MHz, (CD3)2CO); 194.4 (quaternary CO,

C21), 189.7 (quaternary CO, C23), 139.7 (quaternary ArC, C24), 132.0 (ArCH, C25,29),

129.8 (ArCH, C26,28), 106.7 (ArCBr, C27), 99.5 (quaternary p-cymene, C5), 97.8

(quaternary p-cymene, C2), 93.4 (acac CH, C22), 84.6 (p-cymene ArCH, C4/6), 84.5 (p-

cymene ArCH, C4/6), 81.9 (quaternary Cp, C20), 80.0 (p-cymene ArCH, C3/7), 80.0 (p-

cymene ArCH, C3/7), 71.9 (Cp CH, C16/19), 71.8 (Cp CH, C16/19), 71.0 (Cp ring, C11-15),

69.9 (Cp CH, C17/18), 68.8 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-cymene

C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1); Analysis:

Calculated C 51.16, H 4.15 %, Found C 51.20, H 4.20 %; H.R.M.S. [ES+] found [MH+]-

Cl 644.968.
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8.5.19 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-bromophenyl)propane-

1,3-dione)Cl C19

Prepared using 1-ferrocenyl-3-(3-bromophenyl)propane-1,3-dione (0.16 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.23 g, 84 %).

δH (500 MHz, (CD3)2CO); 7.99 (t, 1H, J 1.7 Hz,

ArH, H25), 7.81 (dt, 1H, J 7.8, 1.1 Hz, ArH, H29),

7.51 (dq, 1H, J 7.8, 0.9 Hz, ArH, H27), 7.24 (t,

1H, J 7.8 Hz, ArH, H28), 6.03 (s, 1H, CH, H22),

5.57 (dd, 2H, J 5.0, 1.4 Hz, p-cymene ArH,

H4,6), 5.26 (t, 2H, J 5.0 Hz, p-cymene ArH,

H3,7), 4.85 (quin, 1H, J 1.2 Hz, C5H4, H16/19),

4.77 (quin, 1H, J 1.2 Hz, C5H4, H16/19), 4.34 (m,

1H, C5H4, H17/18), 4.30 (m, 1H, C5H4, H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.90 (sept, 1H, J

6.9 Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3, H1), 1.33 (d, 6H, J 7.1

Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.7 (quaternary CO, C21),

176.2 (quaternary CO, C23), 142.8 (quaternary ArC, C24), 133.8 (ArCH, C25), 130.9

(ArCH, C29), 130.8 (ArCH, C28), 126.6 (ArCH, C27), 122.8 (ArCBr, C26), 99.5 (quaternary

p-cymene, C5), 97.9 (quaternary p-cymene, C2), 93.6 (acac CH, C22), 84.6 (p-cymene

ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.7 (quaternary Cp, C20), 80.1 (p-cymene

ArCH, C3/7), 80.0 (p-cymene ArCH, C3/7), 72.0 (Cp CH, C16/19), 71.9 (Cp CH, C16/19), 71.0

(Cp ring, C11-15), 70.0 (Cp CH, C17/18), 68.9 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7

(p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1);

Analysis: Calculated C 51.16, H 4.15 %, Found C 51.06, H 4.18 %; H.R.M.S. [ES+]

found [MH+]-Cl 646.967.
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8.5.20 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-iodophenyl)propane-1,3-

dione)Cl C20

Prepared using 1-ferrocenyl-3-(4-iodophenyl)propane-1,3-dione) (0.18 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.29 g, 79 %).

δH (500 MHz, (CD3)2CO); 7.66 (broad d, 4H, J

12.8 Hz, ArH, H25,26,28,29), 6.02 (s, 1H, CH, H22),

5.56 (broad s, 2H, p-cymene ArH, H4,6), 5.24

(broad s, 2H, p-cymene ArH, H3,7), 4.83 (broad

m, 1H, C5H4, H16/19), 4.73 (broad m, 1H, C5H4,

H16/19), 4.31 (broad d, 2H, J 18.6 Hz, C5H4,

H17,18), 4.11 (s, 5H, C5H5, H11-51), 2.90 (sept,

1H, J 6.8 Hz, p-cymene CH(Me)2, H8), 2.15 (s,

3H, p-cymene ArCH3, H1), 1.34 (d, 6H, J 6.2 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125

MHz, (CD3)2CO); 187.1 (quaternary CO, C21), 178.8 (quaternary CO, C23), 140.2

(quaternary ArC, C24), 138.2 (ArCH, C25,29), 129.8 (ArCH, C26,28), 105.9 (ArCI, C27), 99.5

(quaternary p-cymene, C5), 97.8 (quaternary p-cymene, C2), 93.3 (acac CH, C22), 84.6

(p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 81.9 (quaternary Cp, C20), 80.0 (p-

cymene ArCH, C3/7), 80.0 (p-cymene ArCH, C3/7), 71.9 (Cp CH, C16/19), 71.8 (Cp CH,

C16/19), 71.0 (Cp ring, C11-15), 69.9 (Cp CH, C17/18), 68.8 (Cp CH, C17/18), 31.7 (p-cymene

CH, C8), 22.7 (p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.9 (p-cymene

CH3, C1); Analysis: Calculated C 47.86, H 3.88 %, Found C 48.00, H 3.90 %; H.R.M.S.

[ES+] found [MH+]-Cl 692.955.
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8.5.21 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-iodophenyl)propane-1,3-

dione)Cl C21

Prepared using 1-ferrocenyl-3-(3-iodophenyl)propane-1,3-dione (0.18 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.23 g, 80 %).

δH (500 MHz, (CD3)2CO); 8.20 (t, 1H, J 1.6 Hz,

ArH, H25), 7.83 (dt, 1H, J 8.0, 1.2 Hz, ArH, H29),

7.71 (dt, 1H, J 7.8, 0.7 Hz, ArH, H27), 7.10 (t,

1H, J 7.8 Hz, ArH, H28), 6.01 (s, 1H, CH, H22),

5.57 (dt, 2H, J 4.81, 1.3 Hz, p-cymene ArH,

H4,6), 5.26 (t, 2H, J 5.0 Hz, p-cymene ArH,

H3,7), 4.85 (t, 1H, J 1.2 Hz, C5H4, H16/19), 4.76

(t, 1H, J 1.2 Hz, C5H4, H16/19), 4.34 (m, 1H,

C5H4, H17/18), 4.30 (m, 1H, C5H4, H17/18), 4.11 (s, 5H, C5H5, H11-15), 2.90 (sept, 1H, J 6.9

Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3, H1), 1.34 (d, 6H, J 7.1 Hz, p-

cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO); 187.6 (quaternary CO, C21), 176.3

(quaternary CO, C23), 142.7 (quaternary ArC, C24), 139.9 (ArCH, C25), 136.9 (ArCH, C29),

131.0 (ArCH, C28), 127.0 (ArCH, C27), 105.9 (ArCI, C26), 99.5 (quaternary p-cymene,

C5), 97.8 (quaternary p-cymene, C2), 93.5 (acac CH, C22), 84.5 (p-cymene ArCH, C4/6),

84.5 (p-cymene ArCH, C4/6), 81.8 (quaternary Cp, C20), 80.1 (p-cymene ArCH, C3/7),

80.0 (p-cymene ArCH, C3/7), 71.9 (Cp CH, C16/19), 71.9 (Cp CH, C16/19), 71.0 (Cp ring,

C11-15), 70.0 (Cp CH, C17/18), 68.9 (Cp CH, C17/18), 31.7 (p-cymene CH, C8), 22.7 (p-

cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10), 17.8 (p-cymene CH3, C1);

Analysis: Calculated C 47.86, H 3.88 %, Found C 47.89, H 3.72 %; H.R.M.S. [ES+]

found [MH+]-Cl 692.954.
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8.5.22 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-methoxyphenyl)propane-

1,3-dione)Cl C22

Prepared using 1-ferrocenyl-3-(4-methoxyphenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.22 g, 89 %).

δH (500 MHz, (CD3)2CO); 7.83 (dt, 2H, J 9.2, 2.8

Hz, ArH, H25,29), 6.82 (dt, 2H, J 9.2, 2.8 Hz, ArH,

H26,28), 6.01 (s, 1H, CH, H22), 5.53 (dd, 2H, J

6.0, 0.9 Hz, p-cymene ArH, H4,6), 5.21 (d, 2H,

J 6.4 Hz, p-cymene ArH, H3,7), 4.82 (t, 1H, J 1.2

Hz, C5H4, H16/19), 4.71 (t, 1H, J 1.2 Hz, C5H4,

H16/19), 4.92 (m, 1H, C5H4, H17/18), 4.25 (m, 1H,

C5H4, H17/18), 4.10 (s, 5H, C5H5, H11-15), 3.73 (s,

3H, OMe, H30), 2.91 (sept, 1H, J 6.9 Hz, p-cymene CH(Me)2, H8), 2.16 (s, 3H, p-cymene

ArCH3, H1), 1.34 (d, 6H, J 7.3 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO);

185.9 (quaternary CO, C21), 178.0 (quaternary CO, C23), 162.7 (quaternary ArC, C27),

132.8 (quaternary ArC, C24), 129.7 (ArCH, C25,29), 114.2 (ArCH, C26,28), 99.3

(quaternary p-cymene, C5), 97.8 (quaternary p-cymene, C2), 92.6 (acac CH, C22), 84.6

(p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 82.4 (quaternary Cp, C20), 79.9 (p-

cymene ArCH, C3/7), 79.9 (p-cymene ArCH, C3/7), 71.4 (Cp CH, C16/19), 71.4 (Cp CH,

C16/19), 70.9 (Cp ring, C11-15), 69.9 (Cp CH, C17/18), 68.6 (Cp CH, C17/18), 55.8 (OMe, C30),

31.7 (p-cymene CH, C8), 22.7 (p-cymene C(CH3), C9/10), 22.6 (p-cymene C(CH3), C9/10),

17.8 (p-cymene CH3, C1); Analysis: Calculated C 57.02, H 4.94, Cl 5.60 %, Found C

57.00, H 5.00, Cl 5.50 %; H.R.M.S. [ES+] found [MH+]-Cl 597.066.
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8.5.23 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(3-methoxyphenyl)propane-

1,3-dione)Cl C23

Prepared using 1-ferrocenyl-3-(3-methoxyphenyl)propane-1,3-dione (0.14 g, 0.392

mmol) and purified by column chromatography, eluting 1:1 v/v petrol/ethyl acetate

to give orange solid (0.20 g, 80 %).

δH (500 MHz, (CD3)2CO); 7.55 (s, 1H, ArH, H25),

7.54 (d, 1H, J 7.8 Hz, ArH, H29), 7.34 (t, 1H, J

8.1 Hz, ArH, H28), 7.06 (dt, 1H, J 7.3, 1.7 Hz,

ArH, H27), 6.17 (s, 1H, CH, H22), 5.72 (q, 2H, J

2.4 Hz, p-cymene ArH, H4,6), 5.39 (q, 2H, J 2.4

Hz, p-cymene ArH, H3,7), 4.99 (broad s, 1H,

C5H4, H16/19), 4.89 (broad s, 1H, C5H4, H16/19),

4.47 (broad d, 1H, J 0.9 Hz, C5H4, H17/18), 4.43

(broad d, 1H, J 0.9 Hz, C5H4, H17/18), 4.27 (s, 5H, C5H5, H11-15), 3.89 (s, 3H, ArOCH3, H30),

3.07 (sept, 1H, J 6.7 Hz, p-cymene CH(Me)2, H8), 2.33 (s, 3H, p-cymene ArCH3, H1),

1.50 (dd, 6H, J 6.9, 1.6 Hz, p-cymene C(CH3)2, H9,10); δC{1H} (125 MHz, (CD3)2CO);

186.9 (quaternary CO, C21), 178.1 (quaternary CO, C23), 160.6 (quaternary ArCOMe,

C26), 142.0 (quaternary ArC, C24), 129.9 (ArCH, C25), 120.1 (ArCH, C29), 116.9 (ArCH,

C27), 113.3 (ArCH, C28), 99.3 (quaternary p-cymene, C5), 97.9 (quaternary p-cymene,

C2), 93.5 (acac CH, C22), 84.7 (p-cymene ArCH, C4/6), 84.7 (p-cymene ArCH, C4/6), 82.1

(quaternary Cp, C20), 79.9 (p-cymene ArCH, C3/7), 79.9 (p-cymene ArCH, C3/7), 71.7

(Cp CH, c16/19), 71.7 (Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.9 (Cp CH, C17/18), 68.8 (Cp

CH, C17/18), 55.6 (ArOCH3, C30), 31.7 (p-cymene CH, C8), 22.8 (p-cymene C(CH3), C9/10),

22.6 (p-cymene C(CH3), C9/10), 17.8 (p-cymene CH3, C1); Analysis: Calculated C 57.02,

H 4.94 %, Found C 57.09, H 4.90 %; H.R.M.S. [ES+] found [MH+]-Cl 597.068.
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8.5.24 Synthesis of (p-cymene)Ru(II)(1-Ferrocenyl-3-(4-ethoxyphenyl)propane-

1,3-dione)Cl C24

Prepared using 1-ferrocenyl-3-(4-ethoxyphenyl)propane-1,3-dione (0.15 g, 0.392

mmol) and purified by column chromatography, eluting 3:2 v/v petrol/ethyl acetate

to give orange solid (0.19 g, 75 %).

δH (500 MHz, (CD3)2CO); 7.82 (d, 2H, J 8.9 Hz,

ArH, H25,29), 6.80 (d, 2H, J 8.9 Hz, ArH, H26,28),

6.00 (s, 1H, CH, H22), 5.53 (dt, 2H, J 4.8, 1.2 Hz,

p-cymene ArH, H4,6), 5.21 (d, 2H, J 5.2 Hz, p-

cymene ArH, H3,7), 4.82 (t, 1H, J 1.2 Hz, C5H4,

H16/19), 4.70 (t, 1H, J 1.2 Hz, C5H4, H16/19), 4.29

(m, 1H, C5H4, H17/18), 4.25 (m, 1H, C5H4,

H17/18), 4.10 (s, 5H, C5H5, H11-15), 3.99 (q, 2H, J

6.9 Hz, OCH2, H30), 2.90 (sept, 1H, J 6.9 Hz, CH(Me)2, H8), 2.16 (s, 3H, p-cymene ArCH3,

H1), 1.33 (d, 6H, J 6.9 Hz, p-cymene C(CH3)2, H9,10) 1.26 (t, 3H, J 6.9 Hz, CH3, H31);

δC{1H} (125 MHz, (CD3)2CO); 185.8 (quaternary CO, C21), 178.0 (quaternary CO, C23),

162.1 (ArCOEt, C27), 132.6 (quaternary ArC, C24), 129.7 (ArCH, C25,29), 114.7 (ArCH,

C26,28), 99.3 (quaternary p-cymene, C5), 97.7 (quaternary p-cymene, C2), 92.5 (acac

CH, C22), 84.6 (p-cymene ArCH, C4/6), 84.5 (p-cymene ArCH, C4/6), 82.4 (quaternary

Cp, C20), 79.9 (p-cymene ArCH, C3/7), 79.9 (p-cymene ArCH, C3/7), 71.4 (Cp CH, C16/19),

71.4 (Cp CH, C16/19), 70.9 (Cp ring, C11-15), 69.8 (Cp CH, C17/18), 68.6 (Cp CH, C17/18),

64.2 (OCH2Me, C30), 31.7 (p-cymene CH, C8), 22.8 (p-cymene C(CH3), C9/10), 22.6

(p-cymene C(CH3), C9/10), 17.9 (p-cymene CH3, C1), 15.0 (CH3, C31); Analysis:

Calculated C 57.64, H 5.15, Cl 5.49 %, Found C 57.65, H 5.25, Cl 5.40 %; H.R.M.S.

[ES+] found [MH+]-Cl 611.085.
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8.6 Synthesis of Ruthenium Bipyridine Complexes

Ruthenium bipyridine complexes were prepared using the following general

procedure from an adapted literature method.11

General Procedure: The required ligand was dissolved in ethanol (20 mL)

followed by addition of triethylamine (0.05 mL, 0.3 mmol) and bis(2,2′-

bipyridine)dichlororuthenium (0.15 g, 0.3 mmol). The solution was stirred at reflux

for 48 hours. Solvent was reduced in vacuo and red solid crashed out with the

addition of aq NH4PF6. The mixture was filtered and the solid was washed with water

and ether before being dried overnight in a desiccator.

8.6.1 Synthesis of (1-Ferrocenylpropane-1,3-dione)bis(bipyridine)Ru(II)PF6 C’1

Prepared using 1-ferrocenylpropane-1,3-dione (0.09 g, 0.3 mmol) and purified by

column chromatography, eluting 1:9 v/v acetonitrile/dichloromethane to give dark

red solid (0.05 g, 21 %).

δH (500 MHz, (CD3)2CO); 8.93 (d, 1H, J 5.7

Hz, bpyH, H1’), 8.70 (m, 2H, bpyH, H1,4’),

8.65 (d, 1H, J 8.3 Hz, bpyH, H4), 8.60 (d, 1H,

J 8.0 Hz, bpyH, H7’), 8.53 (d, 1H, J 8.0 Hz,

bpyH, H7), 8.10 (q, 2H, J 8.5 Hz, bpyH, H3’,3),

7.97 (d, 1H, J 5.5 Hz, bpyH, H10’), 7.90 (d,

1H, J 5.3 Hz, bpyH, H10), 7.86 (t, 1H, J 7.6

Hz, bpyH, H8’), 7.82 (t, 1H, J 8.0 Hz, bpyH,

H8), 7.74 (t, 1H, J 6.2 Hz, bpyH, H2’), 7.66 (t,

1H, J 6.4 Hz, bpyH, H2), 7.21 (q, 2H, J 6.4 Hz, bpyH, H9’,9), 5.71 (s, 1H, CH, H22), 4.49

(broad s, 1H, Cp CH, H16/19), 4.31 (broad s, 1H, Cp CH, H16/19), 4.17 (broad s, 2H, Cp

CH, H17,18), 3.66 (s, 5H, Cp ring, H11-15), 1.78 (s, 3H, Me, H24); δC{1H} (125 MHz,

(CD3)2CO); 185.7 (quaternary CO, C21), 178.0 (quaternary CO, C23), 160.4 (quaternary

bpyC, C5’), 160.3 (quaternary bpyC, C5), 159.1 (quaternary bpyC, C6’), 159.0

(quaternary bpyC, C6), 154.3 (bpyC, C1’), 154.2 (bpyC, C1), 151.5 (bpyC, C10’), 151.0

(bpyC, C10), 137.4 (bpyC, C3’), 137.2 (bpyC, C3), 135.7 (bpyC, C8’), 135.7 (bpyC, C8),
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127.3 (bpyC, C2,), 127.1 (bpyC, C2), 126.3 (bpyC, C9’), 126.2 (bpyC, C9), 124.1 (bpyC,

C4’,4), 124.0 (bpyC, C7’,7), 97.3 (CH, C22), 83.1 (quaternary Cp, C20), 71.3 (Cp CH, C16/19),

71.2 (Cp CH, C16/19), 70.5 (Cp ring, C11-15), 69.7 (Cp CH, C17/18), 68.0 (Cp CH, C17/18),

28.3 (CH3, C24); Analysis: Calculated (+2H2O) C 47.79, H 3.28, N 6.49 %, Found C

47.79, H 3.28, N 6.49 %; H.R.M.S. [ES+] found [MH+]-PF6 683.066.

8.6.2 Synthesis of (1-Ferrocenyl-4,4,4-trifluorobutane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’2

Prepared using 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione (0.1 g, 0.3 mmol) and

purified by column chromatography, eluting 1:9 v/v acetonitrile/dichloromethane to

give dark red solid (0.06 g, 21 %).

δH (500 MHz, (CD3)2CO); 8.99 (d, 1H, J 5.0

Hz, bpyH, H1’), 8.90 (d, 1H, J 8.5 Hz, bpyH,

H1), 8.81 (m, 2H, bpyH, H4’,4), 8.77 (d, 1H, J

8.0 Hz, bpyH, H7’), 8.67 (d, 1H, J 7.8 Hz,

bpyH, H7), 8.30 (q, 2H, J 7.1 Hz, bpyH, H3’,3),

8.11 (broad s, 2H, bpyH, H10’,10), 8.04 (t,

1H, J 7.1 Hz, bpyH, H8’), 7.98 (m, 2H, bpyH,

H8,2’), 7.83 (t, 1H, J 6.4 Hz, bpyH, H2), 7.37

(dq, 2H, J 18.3, 6.4 Hz, bpyH, H9’,9), 6.14 (s,

1H, CH, H22), 4.79 (broad s, 1H, Cp CH, H16/19), 4.51 (broad s, 1H, Cp CH, H16/19), 4.48

(broad s, 2H, Cp CH, H17,18), 3.86 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz, (CD3)2CO);

190.9 (quaternary CO, C23), 160.3 (quaternary bpyC, C5’), 160.2 (quaternary bpyC, C5),

159.1 (quaternary bpyC, C6’), 158.9 (quaternary bpyC, C6), 154.8 (bpyC, C1’), 154.7

(bpyC, C1), 151.1 (bpyC, C10’), 151.0 (bpyC, C10), 138.3 (bpyC, C3’), 138.1 (bpyC, C3),

136.6 (bpyC, C8’), 136.5 (bpyC, C8), 127.9 (bpyC, C2’), 127.5 (bpyC, C2), 126.6 (bpyC,

C9’), 126.5 (bpyC, C9), 124.4 (bpyC, C4’,4), 124.3 (bpyC, C7’,7), 93.7 (d, J 2.08 Hz, CH,

C22), 81.8 (quaternary Cp, C20), 73.0 (Cp CH, C16/19), 72.9 (Cp CH, C16/19), 70.9 (Cp ring,

C11-15), 69.9 (Cp CH, C17/18), 68.8 (Cp CH, C17/18), 15.6 (CF3, C24); Analysis: Calculated C
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46.33, H 2.97, N 6.36 %, Found C 46.27, H 2.89, N 6.28 %; H.R.M.S. [ES+] found [MH+]-

PF6 737.041.

8.6.3 Synthesis of (1-Ferrocenyl-3-(2-furanyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’3

Prepared using 1-ferrocenyl-3-(2-furanyl)propane-1,3-dione (0.1 g, 0.3 mmol) and

column chromatography, eluting 1:9 v/v acetonitrile/dichloromethane to give dark

red solid (0.08 g, 31 %).

δH (500 MHz, (CD3)2CO); 8.88 (d, 1H, J 5.3

Hz, bpyH, H1’), 8.71 (m, 2H, bpyH, H1,4’),

8.60 (t, 2H, J 7.3 Hz, bpyH, H4,7’), 8.52 (d,

1H, J 8.0 Hz, bpyH, H7), 8.06 (q, 2H, J 8.7

Hz, bpyH, H3’,3), 7.98 (d, 1H, J 5.5 Hz, bpyH,

H10’), 7.91 (d, 1H, J 5.3 Hz, bpyH, H10), 7.84

(quin, 2H, J 7.8 Hz, bpyH, H8’,8), 7.70 (t, 1H,

J 6.6 Hz, bpyH, H2,), 7.61 (t, 1H, J 6.6 Hz,

bpyH, H2), 7.47 (s, 1H, Furan H, H25), 7.21

(m, 2H, bpyH, H9’,9), 6.63 (d, 1H, J 3.2 Hz, Furan H, H27), 6.34 (m, 1H, Furan H, H26),

6.25 (s, 1H, CH, H22), 4.55 (broad s, 1H, Cp CH, H16/19), 4.34 (broad s, 1H, Cp CH, H16/19),

4.20 (broad d, 2H, J 7.3 Hz, Cp CH, H17,18), 3.66 (s, 5H, Cp ring, H11-15); δC{1H} (125

MHz, (CDCl3)); 212.3 (quaternary CO, C21) C 185.0 (quaternary CO, C23), 168.0

(quaternary Furan C, C24), 158.9 (quaternary bpyC, C5’/5), 158.8 (quaternary bpyC,

C5’/5), 157.7 (quaternary bpyC, C6’/6), 153.5 (quaternary bpyC, C6’/6), 153.1 (bpyC, C1’),

153.0 (bpyC, C1), 151.4 (bpyC, C10’), 149.8 (bpyC, C10), 143.1 (Furan C, C27), 136.4

(bpyC, C3’), 136.3 (bpyC, C3), 134.9 (bpyC, C8’), 134.8 (bpyC, C8), 126.1 (bpyC, C2’),

125.9 (bpyC, C2), 125.4 (bpyC, C9’/9), 122.9 (bpyC, C4’/4), 122.9 (bpyC, C7’,7), 112.2

(Furan C, C25), 112.0 (Furan C, C26), 93.0 (CH, C22), 82.7 (quaternary Cp, C20), 71.3 (Cp

CH, C16/19), 71.2 (Cp CH, C16/19), 70.3 (Cp ring, C11-15), 69.9 (Cp CH, C17/18), 67.7 (Cp CH,

C17/18); Analysis: Calculated C 50.53, H 3.32, N 6.37 %, Found C 50.64, H 3.19, N

6.28 %; H.R.M.S. [ES+] found [MH+]-PF6 735.064.
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8.6.4 Synthesis of (1-Ferrocenyl-3-phenylpropane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’4

Prepared using 1-ferrocenyl-3-phenylpropane-1,3-dione (0.1 g, 0.3 mmol) and

purified by column chromatography, eluting 1:9 v/v acetonitrile/dichloromethane to

give dark red solid (0.06 g, 23 %).

δH (500 MHz, (CD3)2CO); 9.03 (d, 1H, J 5.3

Hz, bpyH, H1’), 8.87 (m, 2H, bpyH, H1,4’),

8.75 (d, 2H, J 7.8 Hz, bpyH, H4,7’), 8.68 (d,

1H, J 7.6 Hz, bpyH, H7), 8.21 (quin, 2H, J 7.6

Hz, bpyH, H3’,3), 8.17 (d, 1H, J 5.0 Hz, bpyH,

H10), 8.11 (d, 1H, J 5.0 Hz, bpyH, H10), 8.00

(quin, 2H, J 6.5 Hz, bpyH, H8’,8), 7.84 (t, 1H,

J 6.4 Hz, bpyH, H2’), 7.75 (m, 3H, bpyH and

ArH, H2,25,29), 7.43 (t, 1H, J 6.6 Hz, ArH, H27),

7.37 (t, 2H, J 6.6 Hz, bpyH, H9’,9), 7.33 (t, 2H, J 7.3 Hz, ArH, H26,28), 6.52 (s, 1H, CH,

H22), 4.83 (broad s, 1H, Cp CH, H16/16), 4.55 (broad s, 1H, Cp CH, H16/19), 4.36 (broad

s, 2H, Cp CH, H17,18), 3.83 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz, CD3CN); 185.2

(quaternary CO, C21), 177.8 (quaternary CO, C23), 158.9 (quaternary bpyC, C5’), 158.8

(quaternary bpyC, C5), 157.7 (quaternary bpyC, C6’), 157.6 (quaternary bpyC, C6),

153.1 (bpyC, C1’,1), 150.0 (bpyC, C10’), 149.8 (bpyC, C10), 139.6 (quaternary ArC, C24),

136.2 (bpyC, C3’), 136.1 (bpyC, C3), 134.5 (ArC, C27), 129.8 (bpyC, C8’,8), 127.9 (ArC,

C25,29), 126.0 (ArC, C26,28), 125.8 (bpyC, C2’), 125.8 (bpyC, C2), 124.9 (bpyC, C9’), 124.9

(bpyC, C9), 122.8 (bpyC, C4’,4), 122.7 (bpyC, C7’), 122.7 (bpyC, C7), 93.7 (CH, C22), 82.3

(quaternary Cp, C20), 70.5 (Cp CH, C16/19), 70.4 (Cp CH, C16/19), 69.4 (Cp ring, C11-15),

68.4 (Cp CH, C17/18), 67.0 (Cp CH, C17/18); Analysis: Calculated C 52.66, H 3.51, N

6.30 %, Found C 52.67, H 3.47, N 6.26 %; H.R.M.S. [ES+] found [MH+]-PF6 745.084.
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8.6.5 Synthesis of (1-Ferrocenyl-3-(1-naphthyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’5

Prepared using 1-ferrocenyl-3-(1-naphthyl)propane-1,3-dione (0.12 g, 0.3 mmol)

and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.11 g, 39 %).

δH (500 MHz, (CD3)2CO); 8.98 (d, 1H, J 5.3

Hz, bpyH, H1’), 8.92 (d, 1H, J 5.1 Hz, bpyH,

H1), 8.74 (t, 2H, J 8.5 Hz, bpyH, H3’,3), 8.61

(d, 1H, J 8.1 Hz, bpyH, H4’), 8.49 (d, 1H, J

8.48 Hz, bpyH, H4), 8.24 (t, 1H, J 7.6 Hz,

ArH, H25), 8.12 (m, 2H, bpyH, H7’,7), 7.88

(m, 2H, bpy H, H8’,8), 7.72 (m, 5H, ArH and

bpyH, H10’,10,2’,2,26), 7.46 (d, 1H, J 6.6 Hz,

ArH, H27), 7.29 (m, 3H, ArH and bpyH,

H9’,9,29), 7.05 (m, 3H, ArH, H30-32), 6.03 (s, 1H, CH, H22), 4.55 (broad s, 1H, Cp CH,

H16/19), 4.37 (broad s, 1H, Cp CH, H16/19), 4.19 (broad s, 2H, Cp CH, H17/18), 3.74 (s, 5H,

Cp ring, H11-15); δC{1H} (125 MHz, (CD3)2CO); 186.4 (quaternary CO, C21), 183.0

(quaternary CO, C23), 160.3 (quaternary bpyC, C5’), 160.3 (quaternary bpyC, C5), 159.5

(quaternary bpyC, C6’), 159.2 (quaternary bpyC, C6), 154.6 (bpyC, C1’), 154.5 (bpyC,

C1), 154.4 (quaternary ArC, C24), 151.5 (bpyC, C10’), 151.4 (bpyC, C10), 140.9

(quaternary ArC, C33), 137.8 (bpyC, C3’), 137.7 (bpyC, C3), 136.0 (bpyC, C8’), 135.8

(bpyC, C8), 134.7 (quaternary ArC, C28), 131.3 (ArC, C27), 129.9 (ArC, C25), 129.0 (ArC,

C26), 127.5 (ArC, C32), 127.3 (ArC, C29), 126.7 (bpyC, C2’), 126.6 (bpyC, C2), 126.3 (bpyC,

C9’), 126.3 (bpyC, C9), 126.0 (bpyC, C4’), 126.0 (bpyC, C4), 125.1 (ArC, C31), 124.2 (ArC,

C30), 124.1 (bpyC, C7’), 124.0 (bpyC, C7), 99.8 (CH, C22), 83.1 (quaternary Cp, C20), 71.8

(Cp CH, C16/19), 71.7 (Cp CH, C16/19), 70.7 (Cp ring, C11-15), 69.7 (Cp CH, C17/18), 68.4 (Cp

CH, C17/18); Analysis: Calculated C 54.96, H 3.54, N 5.96 %, Found C 54.86, H 3.44, N

5.91 %; H.R.M.S. [ES+] found [MH+]-PF6 735.064.
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8.6.6 Synthesis of (1-Ferrocenyl-3-(4-methylphenyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’6

Prepared using 1-ferrocenyl-3-(4-methylphenyl)propane-1,3-dione (0.1 g, 0.3 mmol)

and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.08 g, 28 %).

δH (500 MHz, (CD3)2CO); 8.85 (d, 1H, J 5.7

Hz, bpyH, H1’), 8.73 (d, 1H, J 5.3 Hz, bpyH,

H1), 8.70 (d, 1H, J 8.3 Hz, bpyH, H4’), 8.60

(d, 2H, J 8.0 Hz, bpyH, H7’,7), 8.52 (d, 1H, J

8.0 Hz, bpyH, H4), 8.05 (m, 2H, bpyH, H3’,3),

8.01 (d, 1H, J 5.5 Hz, bpyH, H10’), 7.95 (d,

1H, J 5.7 Hz, bpyH, H10), 7.86 (dt, 1H, J 7.8,

1.2 Hz, bpyH, H8’), 7.83 (dt, 1H, J 7.8, 1.2

Hz, bpyH, H8), 7.68 (t, 1H, J 6.2 Hz, bpyH,

H2’), 7.60 (t, 1H, J 6.2 Hz, bpyH, H2), 7.49 (d,

2H, J 8.3 Hz, ArH, H25,29), 7.21 (t, 2H, J 6.7 Hz, bpyH, H9’,9), 6.99 (d, 2H, J 8.0 Hz, ArH,

H26,28), 6.35 (s, 1H, CH, H22), 4.65 (broad t, 1H, J 1.2 Hz, Cp CH, H16/19), 4.38 (broad t,

1H, J 1.2 Hz, Cp CH, H16/19), 4.19 (m, 2H, Cp CH, H17,18), 3.66 (s, 5H, Cp ring, H11-15),

2.16 (s, 3H, ArCH3, H30); δC{1H} (125 MHz, (CD3)2CO); 186.0 (quaternary CO, C21),

178.8 (quaternary CO, C23), 160.3 (quaternary bpyC, C5’/5/6’/6), 160.3 (quaternary

bpyC, C5’/5/6’/6), 154.3 (bpyC, C1’), 154.3 (bpyC, C1), 151.3 (bpyC, C10’), 151.0 (bpyC,

C10), 141.3 (quaternary ArC, C24), 138.0 (bpyC, C3’,3), 137.5 (bpyC, C8’), 137.4 (bpyC,

C8), 135.8 (ArC, C27), 129.7 (ArC, C25,29), 127.4 (bpyC, C2’), 127.3 (ArC, C26,28), 127.1

(bpyC, C2), 126.3 (bpyC, C9’), 126.3 (bpyC, C9), 124.1 (bpyC, C4’), 124.1 (bpyC, C4),

124.0 (bpyC, C7’), 124.0 (bpyC, C9), 94.3 (CH, C22), 83.7 (quaternary Cp, C20), 71.5 (Cp

CH, C16/19), 71.4 (Cp CH, C16/19), 70.6 (Cp ring, C11-15), 69.8 (Cp CH, C17/18), 68.2 (Cp CH,

C17/18), 21.3 (ArCH3, C30); Analysis: Calculated C 53.17, H 3.68, N 6.20 %, Found C

53.09, H 3.55, N 6.18 %; H.R.M.S. [ES+] found [MH+]-PF6 759.102.
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8.6.7 Synthesis of (1-Ferrocenyl-3-(3,5-dimethylphenyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’7

Prepared using 1-ferrocenyl-3-(3,5-dimethylphenyl)propane-1,3-dione (0.11 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.1 g, 35 %).

δH (500 MHz, (CD3)2CO); 8.87 (d, 1H, J 5.5

Hz, bpyH, H1’), 8.72 (t, 2H, J 8.5 Hz, bpyH,

H3’,3), 8.60 (d, 2H, J 7.9 Hz, bpyH, H4’,4),

8.52 (d, 1H, J 7.9 Hz, bpyH, H1), 8.04 (m,

3H, bpyH, H7’,7,10’), 7.94 (d, 1H, J 5.5 Hz,

bpyH, H10), 7.84 (q, 2H, J 8.0 Hz, bpyH,

H8’,8), 7.69 (t, 1H, J 6.2 Hz, bpyH, H2’), 7.61

(t, 1H, J 6.2 Hz, bpyH, H2), 7.21 (m, 4H, ArH

and bpyH, H9’,9,25,29), 6.92 (s, 1H, ArH, H27),

6.33 (s, 1H, CH, H22), 4.63 (broad s, 1H, Cp

CH, H16/19), 4.37 (broad s, 1H, Cp CH, H16/19), 4.19 (broad s, 2H, Cp CH, H17,18), 3.66 (s,

5H, Cp ring, H11-15), 2.10 (s, 6H, ArCH3, H30,31); δC{1H} (125 MHz, (CD3)2CO); 185.9

(quaternary CO, C21), 179.5 (quaternary CO, C23), 159.1 (quaternary bpyC, C5’,5), 159.0

(quaternary bpyC, C6’,6), 154.4 (bpyC, C1’), 154.3 (bpyC, C1), 151.3 (bpyC, C10’), 151.0

(bpyC, C10), 140.9 (quaternary ArC, C24), 138.4 (ArC, C27), 137.5 (bpyC, C3’), 137.4

(bpyC, C3), 135.8 (bpyC, C8’,8), 132.5 (quaternary ArC, C26,28), 127.4 (bpyC, C2’), 127.1

(bpyC, C2), 126.3 (bpyC, C9’), 126.3 (bpyC, C9), 125.1 (ArC, C25,29), 124.1 (bpyC, C4’),

124.0 (bpyC, C4), 124.0 (bpyC, C7’), 124.0 (bpyC, C7), 94.8 (CH, C22), 83.6 (quaternary

Cp, C20), 71.5 (Cp CH, C16/19), 71.3 (Cp CH, C16/19), 70.5 (Cp ring, C11-15), 69.8 (Cp CH,

C17/18), 68.2 (Cp CH, C17/18), 21.3 (ArCH3, C30,31); Analysis: Calculated C 53.67, H 3.84,

N 6.11 %, Found C 53.73, H 3.81, N 5.98 %; H.R.M.S. [ES+] found [MH+]-PF6 773.117.
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8.6.8 Synthesis of (1-Ferrocenyl-3-(4-fluorophenyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’8

Prepared using 1-ferrocenyl-3-(4-fluorophenyl)propane-1,3-dione (0.1 g, 0.3 mmol)

and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.06 g, 20 %).

δH (500 MHz, (CD3)2CO); 8.87 (d, 1H, J 5.5

Hz, bpyH, H1’), 8.73 (d, 1H, J 5.5 Hz, bpyH,

H1), 8.70 (d, 1H, J 8.3 Hz, bpyH, H4’), 8.60

(broad d, 2H, J 8.3 Hz, bpyH, H7’,7), 8.52 (d,

1H, J 8.0 Hz, bpyH, H4), 8.06 (m, 2H, bpyH,

H3’,3), 8.01 (d, 1H, J 5.7 Hz, bpyH, H10’), 7.94

(d, 1H, J 5.5 Hz, bpyH, H10), 7.86 (t, 1H, J 7.8

Hz, bpyH, H8’), 7.83 (t, 1H, J 7.8 Hz, bpyH,

H8), 7.67 (m, 3H, ArH and bpyH, H2’,25,29),

7.61 (t, 1H, J 6.6 Hz, bpyH, H2), 7.21 (t, 2H, J 6.6 Hz, bpyH, H9’,9), 6.92 (t, 2H, J 8.7 Hz,

ArH, H26,28), 6.35 (s, 1H, CH, H22), 4.67 (broad s, 1H, Cp CH, H16/19), 4.39 (broad s, 1H,

Cp CH, H16/19), 4.20 (broad t, 2H, J 2.4 Hz, Cp CH, H17,18), 3.67 (s, 5H, Cp ring, H11-15);

δC{1H} (125 MHz, (CD3)2CO); 186.6 (quaternary CO, C21), 177.3 (quaternary CO, C23),

164.8 (d, J 248.6 Hz, ArCF, C27), 160.3 (quaternary bpyC, C5’), 160.3 (quaternary bpyC,

C5), 159.1 (quaternary bpyC, C6’), 159.0 (quaternary bpyC, C6), 154.4 (bpyC, C1’), 154.4

(bpyC, C1), 151.3 (bpyC, C10), 151.0 (bpyC, C10’), 137.6 (bpyC, C3’), 137.5 (bpyC, C3),

137.1 (d, J 3.1 Hz, quaternary ArC, C24), 135.9 (bpyC, C8’,8), 139.7 (d, J 8.3 Hz, ArC,

C25,29), 127.5 (bpyC, C2’), 127.1 (bpyC, C2), 126.4 (bpyC, C9’), 126.3 (bpyC, C9), 124.2

(bpyC, C4’), 124.1 (bpyC, C4), 124.1 (bpyC, C7’), 124.0 (bpyC, C7), 115.7 (d, J 21.8 Hz,

ArC, C26,28), 94.5 (CH, C22), 83.2 (quaternary Cp, C20), 71.6 (Cp CH, C16/19), 71.5 (Cp CH,

C16/19), 70.6 (Cp ring, C11-15), 69.8 (Cp CH, C17/18), 68.3 (Cp CH, C17/18); Analysis:

Calculated C 51.61, H 3.33, N 6.17 %, Found C 51.55, H 3.25, N 6.12 %; H.R.M.S. [ES+]

found [MH+]-PF6 763.075.
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8.6.9 Synthesis of (1-Ferrocenyl-3-(3-fluorophenyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’9

Prepared using 1-ferrocenyl-3-(3-fluorophenyl)propane-1,3-dione (0.1 g, 0.3 mmol)

and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.08 g, 28 %).

δH (500 MHz, (CD3)2CO); 8.89 (d, 1H, J 5.7

Hz, bpyH, H1’), 8.73 (d, 1H, J 5.5 Hz, bpyH,

H1), 8.70 (d, 1H, J 8.5 Hz, bpyH, H4’), 8.61

(d, 2H, J 7.9 Hz, bpyH, H7’,7), 8.53 (d, 1H, J

8.3 Hz, bpyH, H4), 8.05 (m, 3H, bpyH,

H10’,3’,3), 7.96 (d, 1H, J 5.3 Hz, bpyH, H10),

7.85 (q, 2H, J 7.8 Hz, bpyH, H8’,8), 7.70 (t,

1H, J 6.5 Hz, bpyH, H2’), 7.61 (t, 1H, J 6.5

Hz, bpyH, H2), 7.47 (d, 1H, J 8.1 Hz, ArH,

H29), 7.24 (m, 4H, ArH and bpyH, H9’,9,25,26), 7.04 (td, 1H, J 8.1, 2.6 Hz, ArH, H27), 6.38

(s, 1H, CH, H22), 4.72 (broad s, 1H, Cp CH, H16/19), 4.40 (broad s, 1H, Cp CH, H16/19),

4.22 (broad s, 2H, Cp CH, H17,18), 3.68 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz,

(CD3)2CO); 187.0 (quaternary CO, C21), 180.0 (quaternary CO, C23), 160.3 (quaternary

bpyC, C5’), 160.2 (quaternary bpyC, C5), 159.0 (quaternary bpyC, C6’), 159.0

(quaternary bpyC, C6), 154.4 (bpyC, C1’), 154.4 (bpyC, C1), 151.3 (bpyC, C10’), 151.0

(bpyC, C10), 142.8 (quaternary ArCF, C28), 137.6 (bpyC, C3’), 137.5 (bpyC, C3), 135.9

(bpyC, C8’,8), 130.9 (quaternary ArC, C24), 127.5 (bpyC, C2’), 127.2 (bpyC, C2), 126.4

(bpyC, C9’), 126.3 (bpyC, C9), 124.2 (bpyC, C4’), 124.1 (bpyC, C4), 124.1 (bpyC, C7’),

124.1 (bpyC, C7), 123.0 (d, J 2.5 Hz, ArC, C26), 117.5 (d, J 21.2 Hz, ArC, C29), 114.5 (d, J

22.4 Hz, ArC, C27), 94.9 (CH, C22), 83.4 (quaternary Cp, C20), 71.8 (Cp CH, C16/19), 71.7

(Cp CH, C16/19), 70.6 (Cp ring, C11-15), 69.8 (Cp CH, C17/18), 68.4 (Cp CH, C17/18); Analysis:

Calculated C 51.61, H 3.33, N 6.17 %, Found C 51.57, H 3.40, N 6.18 %; H.R.M.S. [ES+]

found [MH+]-PF6 763.076.
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8.6.10 Synthesis of (1-Ferrocenyl-3-(3,5-difluorophenyl)propane-1,3-

dione)bis(bipyridine)bis(bipyridine)Ru(II)PF6 C’10

Prepared using 1-ferrocenyl-3-(3,5-difluorophenyl)propane-1,3-dione (0.11 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.06 g, 23 %).

δH (500 MHz, (CD3)2CO); 8.90 (d, 1H, J 5.1

Hz, bpyH, H1’), 8.71 (m, 2H, bpyH, H1,4’),

8.61 (m, 2H, bpyH, H4,7’), 8.53 (d, 1H, J 8.1

Hz, bpyH, H7), 8.08 (q, 2H, J 7.2 Hz, bpyH,

H3’,3), 8.02 (d, 1H, J 5.7 Hz, bpyH, H10’), 7.96

(d, 1H, J 5.7 Hz, bpyH, H10), 7.85 (q, 2H, J

8.1 Hz, bpyH, H8’,8), 7.69 (t, 1H, J 6.4 Hz,

bpyH, H2’), 7.62 (t, 1H, J 6.6 Hz, bpyH, H2),

7.22 (m, 4H, ArH and bpyH, H9’,9,25,29), 6.93

(tt, 1H, J 9.1, 2.2 Hz, ArH, H27), 6.38 (s, 1H, CH, H22), 4.77 (broad s, 1H, Cp CH, H16/19),

4.41 (broad s, 1H, Cp CH, H16/19), 4.22 (broad s, 2H, Cp CH, H17,18), 3.68 (s, 5H, Cp ring,

H11-15); δC{1H} (125 MHz, (CD3)2CO); 187.7 (quaternary CO, C21), 177.4 (quaternary

CO, C23), 164.7 (quaternary ArCF, C26,28), 160.3 (quaternary bpyC, C5’), 160.2

(quaternary bpyC, C5), 159.0 (quaternary bpyC, C6’), 158.9 (quaternary bpyC, C6),

154.5 (bpyC, C1’), 154.5 (bpyC, C1), 151.4 (bpyC, C10’), 151.0 (bpyC, C10), 137.7 (bpyC,

C3’), 137.7 (bpyC, C3), 136.0 (bpyC, C8’,8), 127.6 (quaternary ArC, C24), 127.2 (bpyC,

C2’,2), 126.4 (bpyC, C9’), 126.3 (bpyC, C9), 124.2 (bpyC, C4’,4), 124.1 (bpyC, C7’), 124.1

(bpyC, C7), 109.6 (d, J 25.5 Hz, ArC, C25,29), 105.4 (d, J 25.5 Hz, ArC, C27), 95.0 (CH, C22),

83.2 (quaternary Cp, C20), 71.9 (Cp CH, C16/19), 71.8 (Cp CH, C16/19), 70.6 (Cp ring, C11-

15), 69.8 (Cp CH, C17/18), 68.5 (Cp CH, C17/18); Analysis: Calculated C 50.61, H 3.16, N

6.05 %, Found C 50.05, H 2.72, N 6.08 %; H.R.M.S. [ES+] found [MH+]-PF6 781.067.
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8.6.11 Synthesis of (1-Ferrocenyl-3-(4-chlorophenyl)propane-1,3-

dione)bis(bipyridine)Ru(II)PF6 C’11

Prepared using 1-ferrocenyl-3-(4-chlorophenyl)propane-1,3-dione (0.11 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.06 g, 22 %).

δH (500 MHz, (CD3)2CO); 9.00 (dq, 1H, J 5.5,

0.7 Hz, bpyH, H1’), 8.86 (dq, 1H, J 5.6, 0.7

Hz, bpyH, H1), 8.83 (d, 1H, J 8.1 Hz, bpyH,

H4’), 8.73 (d, 2H, J 8.1 Hz, bpyH, H7’,7), 8.65

(d, 1H, J 8.66 Hz, bpyH, H4), 8.21 (td, 1H, J

8.1, 1.5 Hz, bpyH, H3’), 8.18 (td, 1H, J 8.1,

1.5 Hz, bpyH, H3), 8.14 (dd, 1H, J 5.6, 0.7

Hz, bpyH, H10’), 8.07 (dd, 1H, J 5.6, 0.6 Hz,

bpyH, H10), 7.99 (td, 1H, J 7.8, 1.3 Hz, bpyH,

H8’), 7.96 (td, 1H, J 7.8, 1.4 Hz, bpyH, H8), 7.81 (ddd, 1H, J 5.6, 1.2, 0.6 Hz, bpyH, H2’),

7.75 (dt, 2H, J 8.7, 2.3 Hz, ArH, H25,29), 7.73 (m, 1H, bpyH, H2), 7.34 (ddt, 2H, J 7.4, 1.5,

1.4 Hz, bpyH, H9’,9), 7.32 (dt, 2H, J 8.8, 2.2 Hz, ArH, H26,28), 6.50 (s, 1H, CH, H22), 4.80

(quin, 1H, J 1.3 Hz, Cp CH, H16/19), 4.52 (quin, 1H, J 1.2 Hz, Cp CH, H16/19), 4.34 (m, 2H,

Cp CH, H17,18), 3.81 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz, (CD3)2CO); 186.8

(quaternary CO, C21), 177.1 (quaternary CO, C23), 160.3 (quaternary bpyC, C5’), 160.3

(quaternary bpyC, C5), 159.1 (quaternary bpyC, C6’), 159.0 (quaternary bpyC, C6),

154.4 (bpyC, C1’), 154.4 (bpyC, C1), 151.3 (bpyC, C10’), 151.0 (bpyC, C10), 139.4

(quaternary ArC, C24), 137.6 (bpyC, C3’), 137.5 (bpyC, C3), 136.4 (quaternary ArCCl,

C27), 135.9 (bpyC8’,8), 129.1 (ArC, C25,29), 129.0 (ArC, C26,28), 127.5 (bpyC, C2’), 127.2

(bpyC, C2), 126.4 (bpyC, C9’), 126.3 (bpyC, C9), 124.2 (bpyC, C4’), 124.1 (bpyC, C4),

124.1 (bpyC, C7’), 124.0 (bpyC, C7), 94.7 (CH, C22), 83.4 (quaternary Cp, C20), 71.7 (Cp

CH, C16/19), 71.6 (Cp CH, C16/19), 70.6 (Cp ring, C11-15), 69.8 (Cp CH, C17/18), 68.3 (Cp CH,

C17/18); Analysis: Calculated C 50.69, H 3.27, N 6.06 %, Found C 50.52, H 3.19, N

6.01 %; H.R.M.S. [ES+] found [MH+]-PF6 779.046.
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8.6.12 Synthesis of (1-Ferrocenyl-3-(3,5-dichlorophenyl)propane-1,3-

dione)bis(bipyridine)bis(bipyridine)Ru(II)PF6 C’12

Prepared using 1-ferrocenyl-3-(3,5-dichlorophenyl)propane-1,3-dione (0.12 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.09 g, 32 %).

δH (500 MHz, (CD3)2CO); 8.93 (d, 1H, J 8.9

Hz, bpyH, H1’), 8.71 (m, 2H, bpyH, H1,4’),

8.61 (dd, 2H, J 8.1, 2.2 Hz, bpyH, H7’,7), 8.53

(d, 1H, J 7.7 Hz, bpyH, H4), 8.08 (q, 2H, J 7.2

Hz, bpyH, H3’,3), 8.01 (d, 1H, J 5.7 Hz, bpyH,

H10’), 7.94 (d, 1H, J 5.5 Hz, bpyH, H10), 7.85

(q, 2H, J 8.5 Hz, bpyH, H8’,8), 7.70 (t, 1H, J

6.6 Hz, bpyH, H2’), 7.62 (t, 1H, J 6.4 Hz,

bpyH, H2), 7.53 (d, 2H, J 1.7 Hz, ArH, H25,29),

7.37 (broad s, 1H, ArH, H27), 7.22 (t, 2H, J 6.6 Hz, bpyH, H9’,9), 6.39 (s, 1H, CH, H22),

4.76 (broad s, 1H, Cp CH, H16/19), 4.41 (broad s, 1H, Cp CH, H16/19), 4.23 (broad s, 2H,

Cp CH, H17,18), 3.68 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz, (CD3)2CO); 187.8

(quaternary CO, C21), 174.6 (quaternary CO, C23), 160.3 (quaternary bpyC, C5’), 160.2

(quaternary bpyC, C5), 159.0 (quaternary bpyC, C6’), 159.0 (quaternary bpyC, C6),

154.5 (bpyC, C1’), 154.4 (bpyC, C1), 151.5 (bpyC, C10’), 151.0 (bpyC, C10), 144.0

(quaternary ArC, C24), 137.7 (bpyC, C3’), 137.7 (bpyC, C3), 136.0 (bpyC, C8’), 135.5

(bpyC, C8), 134.8 (quaternary ArCCl, C26,28), 130.1 (ArC, C27), 127.6 (bpyC, C2’), 127.2

(bpyC, C2), 126.4 (bpyC, C9’), 126.3 (bpyC, C9), 125.8 (ArC, C26,28), 124.2 (bpyC, C4’),

124.1 (bpyC, C4), 124.1 (bpyC, C7’), 124.1 (bpyC, C7), 95.2 (CH, C22), 83.2 (quaternary

Cp, C20), 72.0 (Cp CH, C16/19), 71.8 (Cp CH, C16/19), 70.6 (Cp ring, C11-15), 69.9 (Cp CH,

C17/18), 68.5 (Cp CH, C17/18); Analysis: Calculated C 48.87, H 3.05, N 5.85 %, Found C

48.66, H 2.99, N 5.76 %; H.R.M.S. [ES+] found [MH+]-PF6 813.007.
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8.6.13 Synthesis of (1-Ferrocenyl-3-(4-bromophenyl)propane-1,3-

dione)bis(bipyridine)bis(bipyridine)Ru(II)PF6 C’13

Prepared using 1-ferrocenyl-3-(4-bromophenyl)propane-1,3-dione (0.12 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.05 g, 19 %).

δH (500 MHz, (CD3)2CO); 8.87 (d, 1H, J 5.5

Hz, bpyH, H1’), 8.73 (d, 1H, J 5.3 Hz, bpyH,

H1), 8.70 (d, 1H, J 8.3 Hz, bpyH, H4’), 8.60

(d, 2H, J 8.3 Hz, bpyH, H7’,7), 8.52 (d, 1H, J

7.8 Hz, bpyH, H4), 8.06 (dt, 2H, J 12.8, 7.8

Hz, bpyH, H3’,3), 8.01 (d, 1H, J 5.7 Hz, bpyH,

H10’), 7.95 (d, 1H, J 5.3 Hz, bpyH, H10), 7.85

(dt, 2H, J 12.8, 7.8 Hz, bpyH, H8’,8), 7.68 (t,

1H, J 6.4 Hz, bpyH, H2’), 7.61 (t, 1H, J 6.4

Hz, bpyH, H2), 7.55 (d, 2H, J 8.3 Hz, ArH, H25,29), 7.34 (d, 2H, J 8.4 Hz, ArH, H26,28), 7.22

(t, 2H, J 6.4 Hz, bpyH, H9’,9), 6.37 (s, 1H, CH, H22), 4.68 (borad s, 1H, Cp CH, H16/19),

4.39 (broad s, 1H, Cp CH, H16/19), 4.21 (broad s, 2H, Cp CH, H17,18), 3.67 (s, 5H, Cp ring,

H11-15); δC{1H} (125 MHz, (CD3)2CO); 186.9 (quaternary CO, C21), 177.1 (quaternary

CO, C23), 160.3 (quaternary bpyC, C5’), 160.3 (quaternary bpyC, C5), 159.1 (quaternary

bpyC, C6’), 159.0 (quaternary bpyC, C6), 154.4 (bpyC, C1’), 154.4 (bpyC, C1), 151.3

(bpyC, C10’), 151.0 (bpyC, C10), 139.8 (quaternary ArC, C24), 137.6 (bpyC, C3’), 137.5

(bpyC, C3), 135.9 (bpyC, C8’,8), 132.1 (ArC, C25,29), 129.2 (ArC, C26,28), 127.5 (bpyC, C2’),

127.2 (bpyC, C2), 126.4 (bpyC, C9’), 126.3 (bpyC, C9), 124.8 (quaternary ArCBr, C27),

124.2 (bpyC, C4’), 124.1 (bpyC, C4), 124.1 (bpyC, C7’), 124.0 (bpyC, C7), 94.7 (CH, C22),

83.4 (quaternary Cp, C20), 71.7 (Cp CH, C16/19), 71.6 (Cp CH, C16/19), 70.6 (Cp ring, C11-

15), 69.8 (Cp CH, C17/18), 68.3 (Cp CH, C17/18); Analysis: Calculated C 48.37, H 3.12, N

5.79 %, Found C 48.27, H 3.06, N 5.71 %; H.R.M.S. [ES+] found [MH+]-PF6 822.994.
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8.6.14 Synthesis of (1-Ferrocenyl-3-(4-iodophenyl)propane-1,3-

dione)bis(bipyridine)bis(bipyridine)Ru(II)PF6 C’14

Prepared using 1-ferrocenyl-3-(4-iodophenyl)propane-1,3-dione (0.14 g, 0.3 mmol)

and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.09 g, 28 %).

δH (500 MHz, (CD3)2CO); 8.87 (d, 1H, J 5.0

Hz, bpyH, H1’), 8.71 (m, 2H, bpyH, H1,4’),

8.60 (d, 2H, J 8.0 Hz, bpyH, H7’,7), 8.52 (d,

1H, J 7.8 Hz, bpyH, H4), 8.06 (dt, 2H, J 13.3,

7.8 Hz, bpyH, H3’,3), 8.00 (d, 1H, J 5.5 Hz,

bpyH, H10), 7.95 (d, 1H, J 5.7 Hz, bpyH, H10),

7.85 (dt, 2H, J 13.3, 7.8 Hz, bpyH, H8’,8),

7.69 (t, 1H, J 6.4 Hz, bpyH, H2’), 7.61 (t, 1H,

J 6.4 Hz, bpyH, H2), 7.55 (d, 2H, J 8.3 Hz,

ArH, H25,29), 7.39 (d, 2H, J 8.3 Hz, ArH, H26,28), 7.21 (t, 2H, J 5.5 Hz, bpyH, H9’,9), 6.36

(s, 1H, CH, H22), 4.67 (broad s, 1H, Cp CH, H16/19), 4.38 (broad s, 1H, Cp CH, H16/19),

4.21 (broad s, 2H, Cp CH, H17,18), 3.67 (s, 5H, Cp ring, H11-15); δC{1H} (125 MHz,

(CD3)2CO); 186.8 (quaternary CO, C21), 179.4 (quaternary CO, C23), 160.3 (quaternary

bpyC, C5’), 160.2 (quaternary bpyC, C5), 159.1 (quaternary bpyC, C6’), 159.0

(quaternary bpyC, C6), 154.4 (bpyC, C1’), 154.4 (bpyC, C1), 151.3 (bpyC, C10’), 151.0

(bpyC, C10), 148.9 (quaternary ArC, C24), 138.3 (ArC, C25,29), 137.6 (bpyC, C3’), 137.5

(bpyC, C3), 135.9 (bpyC, C8’,8), 129.2 (ArC, C26,28), 127.4 (bpyC, C2’), 127.1 (bpyC, C2),

126.4 (bpyC, C9’), 126.3 (bpyC, C9), 124.2 (bpyC, C4’), 124.1 (bpyC, C4), 124.1 (bpyC,

C7’), 124.0 (bpyC, C7), 118.9 (quaternary ArCI, C27), 94.6 (CH, C22), 83.6 (quaternary

Cp, C20), 71.7 (Cp CH, C16/19), 71.6 (Cp CH, C16/19), 70.6 (Cp ring, C11-15), 69.8 (Cp CH,

C17/18), 68.3 (Cp CH, C17/18); Analysis: Calculated C 46.13, H 2.98, N 5.52 %, Found C

45.27, H 2.58, N 5.00 %; H.R.M.S. [ES+] found [MH+]-PF6 870.983.
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8.6.15 Synthesis of (1-Ferrocenyl-3-(4-methoxyphenyl)propane-1,3-

dione)bis(bipyridine)bis(bipyridine)Ru(II)PF6 C’15

Prepared using 1-ferrocenyl-3-(4-methoxyphenyl)propane-1,3-dione (0.11 g, 0.3

mmol) and purified by column chromatography, eluting 1:9 v/v

acetonitrile/dichloromethane to give dark red solid (0.08 g, 30 %).

δH (500 MHz, (CD3)2CO); 8.84 (d, 1H, J 4.8

Hz, bpyH, H1’), 8.74 (d, 1H, J 5.5 Hz, bpyH,

H1), 8.69 (d, 1H, J 8.0 Hz, bpyH, H4’), 8.60

(d, 2H, J 8.0 Hz, bpyH, H7’,7), 8.52 (d, 1H, J

7.6 Hz, bpyH, H4), 8.04 (m, 3H, bpyH,

H3’,3,10’), 7.94 (d, 1H, J 6.2 Hz, bpyH, H10),

7.84 (m, 2H, bpyH, H8’,8), 7.67 (t, 1H, J 6.2

Hz, bpyH, H2’), 7.60 (m, 3H, bpyH and ArH,

H2, 25,29), 7.21 (t, 2H, J 6.9 Hz, bpyH, H9’,9),

6.70 (d, 2H, J 8.2 Hz, ArH, H26,28), 6.33 (s, 1H, CH, H22), 4.65 (broad s, 1H, Cp CH, H16/19),

4.38 (broad s, 1H, Cp CH, H16/19), 4.19 (borad s, 2H, Cp CH, H17,18), 3.67 (s, 8H, Cp ring

and OMe, H11-15,30); δC{1H} (125 MHz, CD3CN); 184.5 (quaternary CO, C21), 179.0

(quaternary CO, C23), 159.1 (quaternary bpyC, C5’), 158.9 (quaternary bpyC, C5), 157.7

(quaternary bpyC, C6’), 157.6 (quaternary bpyC, C6), 153.1 (bpyC, C1’,1), 150.0 (bpyC,

C10’), 149.7 (bpyC, C10), 136.9 (quaternary ArC, C24), 136.1 (bpyC, C3’), 136.0 (bpyC,

C3), 134.4 (bpyC, C8’,8), 127.8 (ArC, C25,29), 126.0 (bpyC, C2’), 125.7 (bpyC, C2), 124.9

(bpyC, C9’), 124.8 (bpyC, C9), 122.8 (bpyC, C4’), 122.7 (bpyC, C4), 122.7 (bpyC, C7’),

122.7 (quaternary ArCOMe), 122.6 (bpyC, C7), 113.1 (ArC, C26,28), 92.8 (CH, C22), 79.6

(quaternary Cp, C20), 70.2 (Cp CH, C16/19), 70.1 (Cp CH, C16/19), 69.4 (Cp ring, C11-15),

68.4 (Cp CH, C17/18), 66.8 (Cp CH, C17/18), 54.7 (OCH3, C30); Analysis: Calculated C

52.24, H 3.62, N 6.09 %, Found C 52.18, H 3.55, N 6.02 %; H.R.M.S. [ES+] found [MH+]-

PF6 775.096.
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8.7 Cytotoxic Evaluation

Cytotxic studies were carried out by Pablo Caramés-Méndez at the University of

Huddersfield. Sterile techniques were used throughout this work. Chemicals were

purchased from Sigma-Aldrich Chemical Co. MIA PaCa-2 (human pancreatic

carcinoma), HCT116+/+ (human colorectal carcinoma) and ARPE-19 (human retinal

pigment epithelial cells) cells were obtained from Prof. Roger Phillips (University of

Huddersfield). Stock cell cultures were grown in T-25 or T-75 flasks containing RPMI-

1640 complete cell medium (20 mL) and incubated at 37 °C in an atmosphere of 5 %

carbon dioxide. The complete medium was prepared from RPMI-1640 incomplete

medium (500 mL), sodium pyruvate (5 mL, 0.5 mmol), L-glutamine (5 mL, 1.0 mmol)

and foetal bovine serum (FBS) (50 mL). Hank’s balanced salt solution (HBSS) was used

to wash cells before use and 0.25 % trypsin-EDTA solution was used to detach cells

from the flask. MTT stock solutions (5 mg mL-1) were prepared by dissolving MTT

(250 μg) in distilled water (50 mL) followed by passage through a 0.2 μm sterile filter. 

RPMI-1640 incomplete medium, RPMI-1640 complete medium, sodium pyruvate,

MTT and MTT stock solutions were all stored at 4 °C. L-glutamine, FBS and 0.25 %

trypsin-EDTA solution were all stored at -20 °C. All chemicals except the MTT stock

solution were incubated at 37 °C prior to use.

Cells were washed with HBSS (3 × 10 mL) and HBSS carefully removed. 0.25 %

trypsinEDTA solution (5 mL) was added and the flasks incubated at 37 °C for 5

minutes. Following cellular detachment from the flask wall, cell media (10 mL) was

added. Cells were split into new flasks, diluted with cell media, the lids loosened and

the flasks transferred into the incubator at 37 °C. Each cell suspension (10 μL) was 

transferred to each side of the glass haemocytometer and cells were counted using

an optical microscope and an average taken with units of 104 cells mL-1.

8.7.1 Five-day MTT Assay (Normoxia)

The cell suspension was diluted with RPMI-1640 complete media to give a

concentration of 2 × 104 cells mL-1. 100 μL of cell media was added to the first lane 

of the 96-well plate to act as a blank. 100 μL of diluted cell suspension were added 
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to the other wells and the plate incubated at 37 °C overnight with 5 % CO2.

Complexes were prepared in DMSO and then further diluted with RPMI-1640 media

to give a final concentration of 250 μM (with a final DMSO concentration at 0.1 %). 

Further dilutions were carried out to give eight different drug concentrations. All

experiments were carried out in triplicate. Drug solutions were added to the cells

and the plate incubated for five days at 37 °C with 5 % CO2. After four days, 20 μL of 

a MTT stock solution (5 mg mL-1) was added to each well and incubated for a further

3 hours at 37 °C with 5 % CO2. The media and MTT wasremoved and 150 μL of DMSO 

added to each well to dissolve any formazan crystals. The absorbance at 540 nm was

determined with a Thermo Scientific Multiskan EX microplate photometer. Cell

survival was determined at the absorbance of treated cells compared to the

absorbance of non-treated cells (negative control). IC50 values were determined

from plots of percentage survival against drug concentration.

8.7.2 Five-day MTT Assay (hypoxia)

The assay was conducted according to the protocol stated previously for normoxic

conditions. However, all the incubations periods, the addition of the drug and the

addition of the MTT solution were carried out inside a Don Whitley Scientific H35

Hypoxystation with the oxygen level set at 0.1 %. Cell culture media was conditioned

for 24 hours at 0.1 % O2 prior to the start of the experiment.

8.8 Antimicrobial Studies

Antimicrobial screening was performed by CO-ADD (The Community for

Antimicrobial Drug Discovery), funded by the Wellcome Trust (UK) and The

University of Queensland (Australia).
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8.8.1 Antibacterial Evaluation

Complexes were prepared in DMSO and water to a give a final concentration of 32

μg mL-1 in 384-well non-binding surface (NBS) plate. The final DMSO concentration

was at a maximum of 1.0 %. All bacteria were cultured in Cationadjusted Mueller

Hinton broth (CAMHB) at 37 °C overnight. A sample of each culture was diluted 40-

fold in fresh broth and incubated at 37 °C for 1.5 - 3 hours. The resultant mid-log

phase cultures were diluted (CFU mL-1 measured by OD600), then added to each well

of the compound containing plates, giving a cell density of 5 × 105 CFU mL-1 and a

total volume of 50 μL. Colistin and vancomycin were used as positive bacterial 

inhibitor standards for Gram-negative and Gram-positive bacteria, respectively. Each

standard was provided in 4 concentrations, with 2 above and 2 below its MIC or CC50

value, and plated into the first 8 wells of column 23 of the 384-well NBS plates. All

the plates were covered and incubated at 37 °C for 18 hours without shaking. All

experiments were carried out in duplicate. Inhibition of bacterial growth was

determined measuring absorbance at 600 nm (OD600), using a Tecan M1000 Pro

monochromator plate reader. The percentage of growth inhibition was calculated

for each well, using the negative control (media only) and positive control (bacteria

without inhibitors) on the same plate as references. The significance of the inhibition

values was determined by modified Z-scores, calculated using the median and MAD

of the samples (no controls) on the same plate. Samples with inhibition value above

80 % and Z-Score above 2.5 for either replicate were classed as actives. Samples with

inhibition values in the range 50 to 80 % and Z-Score above 2.5 for either replicate

were classed as partial actives.

8.8.2 Antibacterial Hit Confirmation

Complexes were prepared in DMSO and water to a give a final concentration of 32

μg mL-1 and serially diluted two fold for eight times. Each sample concentration was

prepared in 384-well non-binding surface (NBS) plate for each bacterial strain or

tissue-culture treated plates for mammalian cell types. The final DMSO

concentration was at a maximum of 0.5 % DMSO. All bacteria were cultured in
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Cation-adjusted Mueller Hinton broth (CAMHB) at 37 °C overnight. A sample of each

culture was then diluted 40-fold in fresh broth and incubated at 37 °C for 1.5-3 h.

The resultant mid-log phase cultures were diluted (CFU mL-1 measured by OD600),

then added to each well of the compound containing plates, giving a cell density of

5105 CFU mL-1 and a total volume of 50 µL. Colistin and vancomycin were used as

positive bacterial inhibitor standards for Gram-negative and Gram-positive bacteria,

respectively. Each standard was provided in 4 concentrations, with 2 above and 2

below its MIC or CC50 value, and plated into the first 8 wells of column 23 of the 384-

well NBS plates. All the plates were covered and incubated at 37 °C for 18 h without

shaking. All experiments were performed in duplicate. Inhibition of bacterial growth

was determined measuring absorbance at 600 nm (OD600), using a Tecan M1000 Pro

monochromator plate reader. The percentage of growth inhibition was calculated

for each well, using the negative control (media only) and positive control (bacteria

without inhibitors) on the same plate as references. The percentage of growth

inhibition was calculated for each well, using the negative control (media only) and

positive control (bacteria without inhibitors) on the same plate. The MIC was

determined as the lowest concentration at which the growth was fully inhibited,

defined by an inhibition ≥ 80%. In addition, the maximal percentage of growth 

inhibition is reported as DMax, indicating any compounds with partial activity. Hits

were classified by MIC ≤ 16 μg mL-1 or MIC ≤ 10 μM in either replicate. 

8.8.3 Antifungal Evaluation

Complexes were prepared in DMSO and water to a give a final concentration of 32

μg mL-1 in 384-well non-binding surface (NBS) plate. The final DMSO concentration

was at a maximum of 1.0 %. Fungal strains were cultured for three days on yeast

extract-peptone dextrose (YPD) agar at 30 °C. A yeast suspension of 1 x 106 to 5 x 106

CFU mL-1 (as determined by OD530) was prepared from five colonies. The suspension

was diluted and added to each well of the compound-containing plates giving a final

cell density of fungi suspension of 2.5 × 103 CFU mL-1 and a total volume of 50 μL. 

Fluconazole was used as a positive fungal inhibitor standard and provided in 4

concentrations, with 2 above and 2 below its MIC or CC50 value, and plated into the
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first 8 wells of column 23 of the 384-well NBS plates. All the plates were covered and

incubated at 35 °C for 36 hours without shaking. All experiments were carried out in

duplicate. Growth inhibition of C. albicans was determined measuring absorbance at

630 nm (OD630) and the growth inhibition of C. neoformans was determined

measuring the difference in absorbance between 600 and 570 nm (OD600-570), after

the addition of 0.001 % resazurin and incubation at 35 °C for an additional 2 hours.

The absorbance was measured using a Biotek Synergy HTX plate reader. The

percentage of growth inhibition was calculated for each well, using the negative

control (media only) and positive control (fungi without inhibitors) on the same

plate. The significance of the inhibition values was determined by modified Z-scores,

calculated using the median and MAD of the samples (no controls) on the same

plate. Samples with inhibition value above 80 % and Z-Score above 2.5 for either

replicate were classed as actives. Samples with inhibition values in the range 50 to

80 % and Z-Score above 2.5 for either replicate were classed as partial actives.

8.8.4 Antifungal Hit Confirmation

Complexes were prepared in DMSO and water to a give a final concentration of 32

μg mL-1 and serially diluted two fold for eight times. Each sample concentration was

prepared in 384-well non-binding surface plate for each fungal strain or tissue-

culture treated plates for mammalian cell types. The final DMSO concentration was

at a maximum of 0.5 % DMSO. Fungal strains were cultured for three days on YPD

agar at 30 °C. A yeast suspension of 1 x 106 to 5 x 106 CFU mL-1 (as determined by

OD530) was prepared from five colonies. The suspension was subsequently diluted

and added to each well of the compound-containing plates giving a final cell density

of fungi suspension of 2.5 × 103 CFU mL-1 and a total volume of 50 μL. Fluconazole 

was used as a positive fungal inhibitor standard and provided in 4 concentrations,

with 2 above and 2 below its MIC or CC50 value, and plated into the first 8 wells of

column 23 of the 384-well NBS plates. All plates were covered and incubated at 35 °C

for 36 hours without shaking. All experiments were performed in duplicate. Growth

inhibition of C. albicans was determined measuring absorbance at 630 nm (OD630)

and the growth inhibition of C. neoformans was determined measuring the
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difference in absorbance between 600 and 570 nm (OD600-570) after the addition of

0.001 % resazurin and incubation at 35 °C for 2 hours. The absorbance was measured

using a Biotek Multiflo Synergy HTX plate reader. The percentage of growth

inhibition was calculated for each well, using the negative control (media only) and

positive control (fungi without inhibitors) on the same plate. The MIC was

determined as the lowest concentration at which the growth was fully inhibited,

defined by an inhibition ≥ 80% for C. albicans and an inhibition ≥ 70% for C. 

neoformans. Due to a higher variance in growth and inhibition, a lower threshold

was applied to the data for C. neoformans. In addition, the maximal percentage of

growth inhibition is reported as DMax, indicating any compounds with marginal

activity. Hits were classified by MIC ≤ 16 μg mL-1 or MIC ≤ 10 μM in either replicate.  

8.8.5 Cytotoxicity Assay

To assess the cytotoxicity, HEK293 cells were counted manually in a Neubauer

haemocytometer and then plated in the 384-well plates containing the compounds

to give a density of 5000 cells well-1 in a final volume of 50 μL. Dulbecco’s modified 

eagle medium (DMEM) supplemented with 10 % FBS was used as growth media and

the cells were incubated together with the compounds for 20 hours at 37 °C in 5 %

CO2. Tamoxifen was used as a positive cytotoxicity standard in 8 concentrations in 2

fold serial dilutions with 50 µg mL-1 highest concentration. All experiments were

performed in duplicate. Cytotoxicity was measured by fluorescence with excitation

at 560 nm and emission at 590 nm (F560/590), after addition of 5 μL of resazurin (25 

μg mL-1) and incubation for a further 3 hours at 37 °C in 5% CO2. The fluorescence

intensity was measured using a Tecan M1000 Pro monochromator plate reader,

using automatic gain calculation. CC50 were calculated by curve fitting the inhibition

values against log(concentration) using sigmoidal dose-response function, with

variable fitting values for bottom, top and slope. The maximal percentage of

cytotoxicity is reported as DMax, indicating any compounds with partial cytotoxicity.

The curve fitting was implemented using Pipeline Pilot's dose-response component.

Any value with > indicates a sample with no activity (low DMax value) or samples with

CC50 values above the maximum tested concentration (higher DMax value). Cytotoxic
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samples were classified by CC50 ≤ 32 μg mL-1 or CC50 ≤ 10 μM in either replicate. In 

addition, samples were flagged as partial cytotoxic if DMax ≥ 50%, even with CC50 >

the maximum tested concentration.

8.8.6 Haemolysis Assay

To assess blood toxicity, Human whole blood was washed three times with 3

volumes of 0.9% NaCl and then resuspended in same to a concentration of 0.5 x 108

cells mL-1, as determined by manual cell count in a Neubauer haemocytometer. The

washed cells were then added to the 384-well compound-containing plates for a final

volume of 50 µL. After a 10 min shake on a plate shaker the plates were then

incubated for 1 h at 37 °C. Melittin was used as a positive heamolytic standard in 8

concentrations in 2 fold serial dilutions with 50 µg mL-1 highest concentration. After

incubation, the plates were centrifuged at 1000g for 10 min to pellet cells and debris,

25 µL of the supernatant was then transferred to a polystyrene 384-well assay plate.

Haemolysis was determined by measuring the supernatant absorbance at 405 mm

(OD405). The absorbance was measured using a Tecan M1000 Pro monochromator

plate reader. HC10 and HC50 (concentration at 10% and 50% haemolysis, respectively)

were calculated by curve fitting the inhibition values vs. log(concentration) using a

sigmoidal dose-response function with variable fitting values for top, bottom and

slope. In addition, the maximal percentage of haemolysis is reported as DMax,

indicating any compounds with partial haemolysis. The curve fitting was

implemented using Pipeline Pilot's dose-response component. Any value with >

indicate sample with no activity (low DMax value) or samples with HC10 values above

the maximum tested concentration (higher DMax value). Haemolysis samples were

classified by HC10 ≤ 32 µg mL-1 or HC10 ≤ 10 µM in either replicate. In addition, 

samples were flagged as partial haemolytic if DMax ≥ 50%, even with HC10 > the

maximum tested concentration.
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8.9 Hydrolysis

Hydrolysis samples of complexes for investigation by NMR spectroscopy were

prepared from a 9:1 mixture of d3-acetonitrile/deuterium oxide to give a final

concentration of 8 mg mL-1. The NMR spectra of these samples were acquired every

24 hours over a four day period. Hydrolysis samples of complexes for investigation

by UV/vis spectroscopy were prepared from a 9:1 mixture of acetonitrile/water to

give a final concentration of 50 μM. The UV/vis spectra of these samples were 

acquired every 24 hours over a four day period. After the four day investigation

period, the mass spectra of the hydrolysis samples were acquired.

8.10 Hydrophobicity

Equal volumes of 1-octanol and sodium chloride saturated distilled water were

stirred for 16 hours and separated to give water-saturated octanol and octanol-

saturated water. Standard solutions of each complex (5, 10, 20, 40 and 60 μM) were 

prepared in water-saturated octanol. The calibration curve of absorbance against

concentration was determined from the maximum absorbance (λmax) of the standard

solutions. Stock solutions of each complex (50 μM) in water-saturated octanol (25 

mL) were prepared. Six independent samples were prepared by the addition of the

stock solution (3 mL) to a 15 mL Falcon tube followed by layered addition of octanol-

saturated water (3 mL). Samples were shaken at 1000 g min-1 for 2 hours using an

IKA Vibrax VXC basic shaker. The layers were separated and the water-saturated

octanol layer retained. The concentration of each sample in the water-saturated

octanol layer was determined by UV/vis spectroscopy with reference to the

individual calibration curves to give an average concentration for shaken samples

([C]final). The concentration of an unshaken sample of stock solution was determined

to give [C]initial. The partition coefficient (logP) was determined with:

ࡼܗۺ = ቆܗۺ
ࢇࢌ[]

–ࢇ࢚[] ࢇࢌ[]
ቇ
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8.11 Biomembrane Studies

The biomembrane studies were performed by Miss. Danielle Marriott and Dr.

Shahrzad Mohamadi at the University of Leeds. The micro fabricated electrode

coated with DOPC lipid was contained in a closed flow cell. A constant flow of

phosphate-buffered saline (PBS) (pH 7.4) was passed over the electrode using a

peristaltic pump at a flow rate of 5 - 10 mL min-1. A constant flow of DOPC dispersion

in PBS was deposited on the electrode with the Experimental Chapter 8 265

application of a potential excursion from -0.4 to -3.0 V at a scan rate of 100 Vs-1. The

electrode in the flow cell was connected to the PGSTATI2 potentiostat interfaced to

a Powerlab signal generator and controlled by Scope software. A flow of argon gas

is maintained over the electrolytes and the DOPC layer throughout. RCVs were

obtained by applying a saw-tooth waveform from -0.4 to -1.2 V (vs Ag/AgCl) with

ramp rate 40 V s-1 applied to the electrode surface. In the absence of faradaic

reactions, the current on the RCV plot was directly proportional to the capacitance

of the surface and is displayed as a function of voltage. All assays were carried out

with 15.6 μM solutions of each complex in acetone with a constant flow of 0.1 M 

PBS. The complexes are sampled for 400 seconds followed by PBS for 400 seconds

to allow in situ cleaning of the electrode.12, 13
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Name L1 L2 L3

Empirical formula C14H14O2Fe C14H11O2F3Fe C14H12O2F2Fe

Formula weight 270.10 324.08 306.09

Temperature/K 119.99(10) 119.99(10) 119.97(10)

Crystal system orthorhombic monoclinic monoclinic

Space group P212121 P21/n P21/n

a/Å 5.7213(6) 5.8522(4) 5.7964(13)

b/Å 12.3631(16) 10.2689(7) 9.8412(17)

c/Å 16.259(2) 20.7234(14) 21.224(3)

α/° 90 90 90

β/° 90 91.540(6) 90.662(16)

γ/° 90 90 90

Volume/Å3 1150.1(2) 1244.94(15) 1210.6(4)

Z 4 4 4

ρcalcg/cm3 1.560 1.729 1.679

μ/mm-1 1.295 1.246 1.264

F(000) 560.0 656.0 624.0

Crystal size/mm3 0.40 × 0.08 × 0.08 0.39 × 0.16 × 0.12 0.33 × 0.13 × 0.11

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.592 to 59.276 7.112 to 59.08 7.094 to 59.482

Index ranges -7 ≤ h ≤ 7, -11 ≤ k ≤ 17, -17 ≤ l ≤ 21 -7 ≤ h ≤ 8, -13 ≤ k ≤ 14, -27 ≤ l ≤ 20 -7 ≤ h ≤ 7, -13 ≤ k ≤ 13, -28 ≤ l ≤ 19

Reflections collected 4902 6502 2490

Independent reflections 2555 [Rint = 0.0654, Rsigma = 0.1169] 2940 [Rint = 0.0486, Rsigma = 0.0781] 2490 [Rint = ?, Rsigma = 0.1895]

Data/restraints/parameters 2555/213/156 2940/18/182 2490/18/183

Goodness-of-fit on F2 1.065 1.060 0.916

Final R indexes [I>=2σ (I)] R1 = 0.0580, wR2 = 0.0798 R1 = 0.0823, wR2 = 0.1937 R1 = 0.0715, wR2 = 0.1566

Final R indexes [all data] R1 = 0.0867, wR2 = 0.0965 R1 = 0.1229, wR2 = 0.2222 R1 = 0.1284, wR2 = 0.1731

Largest diff. peak/hole / e Å-3 0.68/-0.52 1.59/-0.86 0.90/-1.02
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Name L4 L5 L6

Empirical formula C17H14FeO3 C17H14O3Fe C19H16FeO2

Formula weight 322.13 322.13 332.17

Temperature/K 119.99(14) 120.02(17) 120.1(3)

Crystal system tetragonal orthorhombic monoclinic

Space group I-4 P212121 P21/c

a/Å 21.5997(7) 10.0711(4) 10.6800(8)

b/Å 21.5997(7) 10.1028(5) 12.4980(8)

c/Å 5.9013(4) 13.3273(5) 11.3058(8)

α/° 90.00 90.00 90.00

β/° 90.00 90.00 105.695(7)

γ/° 90.00 90.00 90.00

Volume/Å3 2753.2(2) 1356.00(10) 1452.82(17)

Z 8 4 4

ρcalcg/cm3 1.554 1.578 1.519

μ/mm-1 1.102 1.119 1.042

F(000) 1328.0 664.0 688.0

Crystal size/mm3 0.12 × 0.09 × 0.08 0.09 × 0.06 × 0.04 0.25 × 0.14 × 0.07

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 7.16 to 59.64 6.48 to 59.26 6.52 to 52.74

Index ranges -28 ≤ h ≤ 24, -29 ≤ k ≤ 19, -5 ≤ l ≤ 8 -9 ≤ h ≤ 13, -10 ≤ k ≤ 11, -11 ≤ l ≤ 17 -13 ≤ h ≤ 11, -15 ≤ k ≤ 13, -14 ≤ l ≤ 13

Reflections collected 4289 4095 7863

Independent reflections 2775 [Rint = 0.0328, Rsigma = 0.0662] 2518 [Rint = 0.0306, Rsigma = 0.0535] 2970 [Rint = 0.0648, Rsigma = 0.0735]

Data/restraints/parameters 2775/0/191 2518/0/191 2970/0/200

Goodness-of-fit on F2 1.028 1.056 1.093

Final R indexes [I>=2σ (I)] R1 = 0.0379, wR2 = 0.0687 R1 = 0.0376, wR2 = 0.0682 R1 = 0.0451, wR2 = 0.0914

Final R indexes [all data] R1 = 0.0432, wR2 = 0.0706 R1 = 0.0515, wR2 = 0.0740 R1 = 0.0571, wR2 = 0.0970

Largest diff. peak/hole / e Å-3 0.30/-0.25 0.28/-0.47 0.46/-0.41
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Name L7 L8 L9

Empirical formula C23H18O2Fe C20H18FeO2 C20H18O2Fe

Formula weight 382.22 346.19 346.19

Temperature/K 120.03(11) 120.02(10) 120.01(16)

Crystal system monoclinic monoclinic monoclinic

Space group P21/n P21/n P21/n

a/Å 8.1103(2) 6.0823(5) 5.8242(3)

b/Å 23.0948(7) 34.008(2) 20.8201(11)

c/Å 37.1744(13) 7.5433(7) 12.8959(6)

α/° 90 90.00 90.00

β/° 89.946(3) 99.547(8) 96.123(5)

γ/° 90 90.00 90.00

Volume/Å3 6963.0(4) 1538.7(2) 1554.84(14)

Z 15 4 4

ρcalcg/cm3 1.367 1.494 1.479

μ/mm-1 0.825 0.987 0.977

F(000) 2970.0 720.0 720.0

Crystal size/mm3 0.23 × 0.16 × 0.12 0.31 × 0.17 × 0.11 0.54 × 0.25 × 0.19

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 5.756 to 59.622 5.6 to 59.5 6.36 to 59.66

Index ranges -10 ≤ h ≤ 11, -31 ≤ k ≤ 31, -51 ≤ l ≤ 46 -7 ≤ h ≤ 7, -37 ≤ k ≤ 43, -10 ≤ l ≤ 7 -7 ≤ h ≤ 7, -28 ≤ k ≤ 24, -17 ≤ l ≤ 14

Reflections collected 48495 9385 9449

Independent reflections 16628 [Rint = 0.0677, Rsigma = 0.0915] 3759 [Rint = 0.0873, Rsigma = 0.1059] 3804 [Rint = 0.0522, Rsigma = 0.0723]

Data/restraints/parameters 16628/0/942 3759/44/246 3804/0/210

Goodness-of-fit on F2 0.963 1.208 1.026

Final R indexes [I>=2σ (I)] R1 = 0.0605, wR2 = 0.1478 R1 = 0.0782, wR2 = 0.1741 R1 = 0.0445, wR2 = 0.0847

Final R indexes [all data] R1 = 0.0994, wR2 = 0.1824 R1 = 0.1007, wR2 = 0.1883 R1 = 0.0642, wR2 = 0.0959

Largest diff. peak/hole / e Å-3 0.80/-0.62 0.57/-0.51 0.43/-0.45
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Name L10 L11 L12

Empirical formula C21H20O2Fe C19H15FFeO2 C19H15O2FFe

Formula weight 360.22 350.16 350.16

Temperature/K 120.00(10) 120.00(16) 120.01(11)

Crystal system monoclinic monoclinic monoclinic

Space group P21/c P21/c P21/n

a/Å 16.6707(7) 14.9206(5) 7.5254(3)

b/Å 9.2042(4) 9.6135(3) 12.5232(6)

c/Å 10.7241(5) 10.6994(4) 15.8320(8)

α/° 90.00 90.00 90.00

β/° 90.123(4) 104.132(3) 90.632(4)

γ/° 90.00 90.00 90.00

Volume/Å3 1645.49(12) 1488.26(8) 1491.95(12)

Z 4 4 4

ρcalcg/cm3 1.454 1.563 1.559

μ/mm-1 0.926 1.031 1.028

F(000) 752.0 720.0 720.0

Crystal size/mm3 0.35 × 0.23 × 0.16 0.14 × 0.06 × 0.06 0.31 × 0.20 × 0.09

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 5.84 to 59.38 6.84 to 52.74 6.32 to 59.44

Index ranges -21 ≤ h ≤ 22, -12 ≤ k ≤ 8, -14 ≤ l ≤ 13 -18 ≤ h ≤ 16, -11 ≤ k ≤ 12, -13 ≤ l ≤ 13 -9 ≤ h ≤ 10, -15 ≤ k ≤ 17, -21 ≤ l ≤ 20

Reflections collected 11240 8051 11936

Independent reflections 4025 [Rint = 0.0441, Rsigma = 0.0533] 3031 [Rint = 0.0297, Rsigma = 0.0327] 3704 [Rint = 0.0502, Rsigma = 0.0545]

Data/restraints/parameters 4025/0/220 3031/2/213 3704/0/209

Goodness-of-fit on F2 1.069 1.068 1.050

Final R indexes [I>=2σ (I)] R1 = 0.0397, wR2 = 0.0838 R1 = 0.0296, wR2 = 0.0703 R1 = 0.0450, wR2 = 0.0894

Final R indexes [all data] R1 = 0.0511, wR2 = 0.0914 R1 = 0.0363, wR2 = 0.0738 R1 = 0.0634, wR2 = 0.0965

Largest diff. peak/hole / e Å-3 0.40/-0.51 0.31/-0.21 0.54/-0.78
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Name L13 L14 L15

Empirical formula C19H15O2FFe C19H14O2F2Fe C19H15ClFeO2

Formula weight 350.16 368.15 366.61

Temperature/K 120.00(10) 120.00(11) 120.01(10)

Crystal system monoclinic triclinic monoclinic

Space group P21/c P-1 P21/n

a/Å 6.6106(2) 6.1461(5) 6.0395(4)

b/Å 11.4523(4) 7.2741(6) 33.719(2)

c/Å 20.1433(6) 17.3881(14) 7.6325(5)

α/° 90.00 88.372(6) 90

β/° 99.109(3) 85.025(7) 99.641(7)

γ/° 90.00 74.844(7) 90

Volume/Å3 1505.76(8) 747.50(10) 1532.40(17)

Z 4 2 4

ρcalcg/cm3 1.545 1.636 1.589

μ/mm-1 1.019 1.040 1.164

F(000) 720.0 376.0 752.0

Crystal size/mm3 0.40 × 0.29 × 0.17 0.42 × 0.09 × 0.04 0.14 × 0.06 × 0.04

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) Mo Kα (λ = 0.71073)

2Θ range for data collection/° 6.9 to 59.58 6.24 to 62.54 5.928 to 59.312

Index ranges -8 ≤ h ≤ 8, -15 ≤ k ≤ 14, -28 ≤ l ≤ 25 -8 ≤ h ≤ 8, -10 ≤ k ≤ 9, -25 ≤ l ≤ 22 -6 ≤ h ≤ 8, -44 ≤ k ≤ 46, -10 ≤ l ≤ 7

Reflections collected 9632 8548 9008

Independent reflections 3687 [Rint = 0.0240, Rsigma = 0.0293] 4185 [Rint = 0.0506, Rsigma = 0.0826] 3704 [Rint = 0.0546, Rsigma = 0.0807]

Data/restraints/parameters 3687/0/209 4185/0/218 3704/28/245

Goodness-of-fit on F2 1.065 1.071 1.045

Final R indexes [I>=2σ (I)] R1 = 0.0317, wR2 = 0.0794 R1 = 0.0520, wR2 = 0.1011 R1 = 0.0836, wR2 = 0.1709

Final R indexes [all data] R1 = 0.0373, wR2 = 0.0837 R1 = 0.0716, wR2 = 0.1146 R1 = 0.1052, wR2 = 0.1814

Largest diff. peak/hole / e Å-3 0.32/-0.30 0.49/-0.55 0.47/-0.72
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Name L16 L18 L19

Empirical formula C19H15ClFeO2 C19H15O2FeBr C19H15BrFeO2

Formula weight 366.61 411.07 411.07

Temperature/K 120.0(2) 119.99(10) 119.99(18)

Crystal system monoclinic monoclinic monoclinic

Space group C2/c P21/n C2/c

a/Å 18.5701(10) 6.0794(4) 18.5887(10)

b/Å 8.4583(5) 33.9257(14) 8.4492(4)

c/Å 20.0424(11) 7.6388(4) 20.5237(10)

α/° 90.00 90 90.00

β/° 103.602(6) 99.609(5) 103.869(5)

γ/° 90.00 90 90.00

Volume/Å3 3059.8(3) 1553.38(15) 3129.5(3)

Z 8 4 8

ρcalcg/cm3 1.592 1.758 1.745

μ/mm-1 1.166 3.549 3.523

F(000) 1504.0 824.0 1648.0

Crystal size/mm3 0.16 × 0.14 × 0.04 0.45 × 0.40 × 0.19 0.18 × 0.10 × 0.05

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.44 to 59.84 5.918 to 59.396 7.04 to 59.62

Index ranges -25 ≤ h ≤ 25, -11 ≤ k ≤ 11, -27 ≤ l ≤ 24 -6 ≤ h ≤ 8, -46 ≤ k ≤ 45, -8 ≤ l ≤ 10 -24 ≤ h ≤ 25, -11 ≤ k ≤ 11, -28 ≤ l ≤ 26

Reflections collected 9189 8492 10058

Independent reflections 3697 [Rint = 0.0234, Rsigma = 0.0310] 3754 [Rint = 0.0488, Rsigma = 0.0746] 3793 [Rint = 0.0300, Rsigma = 0.0378]

Data/restraints/parameters 3697/0/209 3754/144/245 3793/0/209

Goodness-of-fit on F2 1.068 1.266 1.058

Final R indexes [I>=2σ (I)] R1 = 0.0334, wR2 = 0.0787 R1 = 0.0815, wR2 = 0.1726 R1 = 0.0270, wR2 = 0.0577

Final R indexes [all data] R1 = 0.0424, wR2 = 0.0833 R1 = 0.1044, wR2 = 0.1820 R1 = 0.0366, wR2 = 0.0617

Largest diff. peak/hole / e Å-3 0.41/-0.24 0.83/-1.13 0.43/-0.48
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Name L20 L21 L22

Empirical formula C19H15O2FeI C19H15FeIO2 C20H17FeO3

Formula weight 458.06 253.18 361.19

Temperature/K 120.00(11) 120.03(10) 120.4(8)

Crystal system monoclinic tetragonal monoclinic

Space group P21/c P42/n P21/c

a/Å 6.7169(4) 23.3147(6) 18.5141(12)

b/Å 23.1415(12) 23.3147(6) 7.8814(6)

c/Å 10.5163(5) 6.0679(2) 10.7330(9)

α/° 90.00 90 90.00

β/° 95.487(5) 90 93.702(7)

γ/° 90.00 90 90.00

Volume/Å3 1627.16(15) 3298.38(19) 1562.9(2)

Z 4 8 4

ρcalcg/cm3 1.870 1.784 1.535

μ/mm-1 2.830 2.790 0.980

F(000) 896.0 1673.0 748.0

Crystal size/mm3 0.22 × 0.07 × 0.05 0.34 × 0.14 × 0.06 0.26 × 0.06 × 0.04

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.1 to 59.4 6.938 to 59.438 6.42 to 59.54

Index ranges -8 ≤ h ≤ 8, -28 ≤ k ≤ 32, -14 ≤ l ≤ 14 -30 ≤ h ≤ 31, -28 ≤ k ≤ 32, -6 ≤ l ≤ 8 -23 ≤ h ≤ 24, -10 ≤ k ≤ 10, -14 ≤ l ≤ 9

Reflections collected 10586 13311 4203

Independent reflections 3957 [Rint = 0.0384, Rsigma = 0.0502] 4123 [Rint = 0.0614, Rsigma = 0.0730] 4203 [Rint = 0.0000, Rsigma = 0.0566]

Data/restraints/parameters 3957/0/209 4123/0/209 4203/0/219

Goodness-of-fit on F2 1.044 1.063 1.043

Final R indexes [I>=2σ (I)] R1 = 0.0334, wR2 = 0.0590 R1 = 0.0454, wR2 = 0.0833 R1 = 0.0468, wR2 = 0.1074

Final R indexes [all data] R1 = 0.0465, wR2 = 0.0647 R1 = 0.0909, wR2 = 0.1038 R1 = 0.0610, wR2 = 0.1109

Largest diff. peak/hole / e Å-3 0.49/-0.62 0.92/-1.11 1.06/-0.46
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Name L23 L24 L26

Empirical formula C20H18FeO3 C21H20O3Fe C18H15NO2Fe

Formula weight 362.19 376.22 333.16

Temperature/K 120.0(2) 120.01(10) 120.00(17)

Crystal system orthorhombic monoclinic monoclinic

Space group Pbca P21/c P21/c

a/Å 7.8804(5) 7.3774(3) 10.4632(10)

b/Å 12.2936(9) 19.9872(9) 12.5638(12)

c/Å 32.965(2) 11.5735(5) 11.1284(11)

α/° 90 90.00 90.00

β/° 90 94.357(4) 104.247(10)

γ/° 90 90.00 90.00

Volume/Å3 3193.7(4) 1701.62(13) 1417.9(2)

Z 8 4 4

ρcalcg/cm3 1.507 1.469 1.561

μ/mm-1 0.959 0.903 1.069

F(000) 1504.0 784.0 688.0

Crystal size/mm3 0.28 × 0.16 × 0.05 0.36 × 0.18 × 0.13 0.14 × 0.11 × 0.06

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.264 to 59.59 6.66 to 59.38 6.48 to 59.54

Index ranges -10 ≤ h ≤ 10, -17 ≤ k ≤ 16, -37 ≤ l ≤ 41 -8 ≤ h ≤ 10, -27 ≤ k ≤ 26, -15 ≤ l ≤ 15 -13 ≤ h ≤ 14, -16 ≤ k ≤ 17, -14 ≤ l ≤ 15

Reflections collected 14752 12219 8466

Independent reflections 4044 [Rint = 0.0593, Rsigma = 0.0659] 4130 [Rint = 0.0443, Rsigma = 0.0515] 3462 [Rint = 0.0523, Rsigma = 0.0709]

Data/restraints/parameters 4044/0/219 4130/0/228 3462/2/207

Goodness-of-fit on F2 1.108 1.074 1.092

Final R indexes [I>=2σ (I)] R1 = 0.0581, wR2 = 0.0775 R1 = 0.0477, wR2 = 0.1007 R1 = 0.0489, wR2 = 0.0883

Final R indexes [all data] R1 = 0.0837, wR2 = 0.0847 R1 = 0.0611, wR2 = 0.1086 R1 = 0.0725, wR2 = 0.0999

Largest diff. peak/hole / e Å-3 0.36/-0.40 0.62/-0.47 0.43/-0.34
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Name C1 C3 C4

Empirical formula C24H27ClFeO2Ru C24H25O2F2ClFeRu C29H30ClFeNO3Ru

Formula weight 539.83 575.81 632.91

Temperature/K 120.0(2) 119.97(16) 120.00(10)

Crystal system monoclinic orthorhombic monoclinic

Space group P21/c Pbca P21/c

a/Å 7.4917(3) 19.5151(5) 12.5821(3)

b/Å 16.7786(7) 7.64427(16) 11.0033(2)

c/Å 34.6443(13) 29.7943(7) 18.9377(5)

α/° 90.00 90.00 90.00

β/° 93.844(3) 90.00 100.613(3)

γ/° 90.00 90.00 90.00

Volume/Å3 4345.0(3) 4444.67(18) 2576.98(11)

Z 8 8 4

ρcalcg/cm3 1.650 1.721 1.631

μ/mm-1 1.503 12.153 1.285

F(000) 2192.0 2320.0 1288.0

Crystal size/mm3 0.05 × 0.04 × 0.02 0.15 × 0.12 × 0.06 0.17 × 0.12 × 0.09

Radiation MoKα (λ = 0.71073) CuKα (λ = 1.54184) MoKα (λ = 0.71073)

2Θ range for data collection/° 5.96 to 52.74 5.94 to 148.4 6.2 to 59.66

Index ranges -9 ≤ h ≤ 9, -20 ≤ k ≤ 20, -42 ≤ l ≤ 43 -24 ≤ h ≤ 22, -9 ≤ k ≤ 7, -34 ≤ l ≤ 37 -17 ≤ h ≤ 16, -15 ≤ k ≤ 15, -21 ≤ l ≤ 25

Reflections collected 34705 21602 20080

Independent reflections 8869 [Rint = 0.0777, Rsigma = 0.0811] 4521 [Rint = 0.0918, Rsigma = 0.0585] 6317 [Rint = 0.0443, Rsigma = 0.0537]

Data/restraints/parameters 8869/0/531 4521/3/292 6317/0/329

Goodness-of-fit on F2 1.097 1.044 1.094

Final R indexes [I>=2σ (I)] R1 = 0.0564, wR2 = 0.0805 R1 = 0.0586, wR2 = 0.1295 R1 = 0.0358, wR2 = 0.0663

Final R indexes [all data] R1 = 0.0853, wR2 = 0.0872 R1 = 0.0837, wR2 = 0.1448 R1 = 0.0533, wR2 = 0.0758

Largest diff. peak/hole / e Å-3 0.69/-0.70 1.38/-1.09 1.24/-0.63
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Name C5 C6 C8

Empirical formula C27H27ClFeO3Ru C29H29ClFeO2Ru C30H31ClFeO2Ru

Formula weight 591.86 601.89 615.92

Temperature/K 120.00(17) 120.03(14) 120.02(10)

Crystal system monoclinic monoclinic monoclinic

Space group P21/n P21/n P21/n

a/Å 10.3157(10) 17.1925(10) 13.6289(4)

b/Å 7.7100(5) 7.8494(3) 11.1315(3)

c/Å 29.976(3) 19.8402(11) 17.4025(5)

α/° 90.00 90.00 90.00

β/° 98.403(8) 114.807(7) 104.404(3)

γ/° 90.00 90.00 90.00

Volume/Å3 2358.5(4) 2430.4(2) 2557.14(13)

Z 4 4 4

ρcalcg/cm3 1.667 1.645 1.600

μ/mm-1 1.396 1.354 1.289

F(000) 1200.0 1224.0 1256.0

Crystal size/mm3 0.09 × 0.07 × 0.01 0.17 × 0.14 × 0.04 0.23 × 0.17 × 0.08

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 5.96 to 59.46 5.28 to 52.74 6.24 to 52.74

Index ranges -8 ≤ h ≤ 13, -10 ≤ k ≤ 8, -39 ≤ l ≤ 39 -21 ≤ h ≤ 21, -8 ≤ k ≤ 9, -22 ≤ l ≤ 24 -17 ≤ h ≤ 13, -12 ≤ k ≤ 13, -21 ≤ l ≤ 21

Reflections collected 17457 19425 17005

Independent reflections 5933 [Rint = 0.0472, Rsigma = 0.0607] 4963 [Rint = 0.0759, Rsigma = 0.0667] 5211 [Rint = 0.0721, Rsigma = 0.0737]

Data/restraints/parameters 5933/0/301 4963/0/310 5211/0/320

Goodness-of-fit on F2 1.183 1.103 1.095

Final R indexes [I>=2σ (I)] R1 = 0.0565, wR2 = 0.0824 R1 = 0.0383, wR2 = 0.0812 R1 = 0.0402, wR2 = 0.0844

Final R indexes [all data] R1 = 0.0799, wR2 = 0.0884 R1 = 0.0521, wR2 = 0.0917 R1 = 0.0529, wR2 = 0.0955

Largest diff. peak/hole / e Å-3 0.65/-0.76 0.71/-0.59 0.58/-0.66
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Name C10 C11 C12

Empirical formula C31H33O2ClFeRu C30.25H31.5ClFFeO2Ru C29H28.5ClFFeO2.25Ru

Formula weight 629.94 638.42 624.39

Temperature/K 119.97(13) 120.02(18) 119.98(18)

Crystal system monoclinic monoclinic monoclinic

Space group P21/c I2/a P21/c

a/Å 26.3687(8) 27.2044(9) 12.5415(9)

b/Å 10.8733(3) 10.8246(3) 10.8998(6)

c/Å 19.1980(6) 19.3956(6) 19.2961(11)

α/° 90.00 90.00 90.00

β/° 97.429(3) 102.313(3) 97.400(6)

γ/° 90.00 90.00 90.00

Volume/Å3 5458.1(3) 5580.2(3) 2615.8(3)

Z 8 8 4

ρcalcg/cm3 1.533 1.520 1.585

μ/mm-1 1.209 1.189 1.267

F(000) 2576.0 2600.0 1266.0

Crystal size/mm3 0.14 × 0.06 × 0.04 0.41 × 0.09 × 0.06 0.16 × 0.13 × 0.05

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.16 to 59.54 5.56 to 52.74 6.26 to 59.5

Index ranges -35 ≤ h ≤ 36, -15 ≤ k ≤ 14, -26 ≤ l ≤ 23 -33 ≤ h ≤ 33, -13 ≤ k ≤ 12, -23 ≤ l ≤ 24 -16 ≤ h ≤ 13, -14 ≤ k ≤ 14, -26 ≤ l ≤ 24

Reflections collected 52077 29606 20406

Independent reflections 13791 [Rint = 0.0479, Rsigma = 0.0529] 5706 [Rint = 0.0439, Rsigma = 0.0338] 6443 [Rint = 0.0671, Rsigma = 0.0884]

Data/restraints/parameters 13791/0/659 5706/0/319 6443/0/332

Goodness-of-fit on F2 1.085 1.029 1.153

Final R indexes [I>=2σ (I)] R1 = 0.0445, wR2 = 0.0782 R1 = 0.0284, wR2 = 0.0572 R1 = 0.0758, wR2 = 0.1357

Final R indexes [all data] R1 = 0.0627, wR2 = 0.0841 R1 = 0.0382, wR2 = 0.0599 R1 = 0.1101, wR2 = 0.1470

Largest diff. peak/hole / e Å-3 0.86/-0.55 0.40/-0.29 1.95/-0.89
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Name C13 C14 C15

Empirical formula C29H28ClFFeO2Ru C29H27O2F2ClFeRu C29H28Cl2FeO2Ru

Formula weight 619.88 637.88 636.33

Temperature/K 119.99(13) 120.00(10) 120.00(10)

Crystal system monoclinic triclinic monoclinic

Space group P21/c P-1 P21/n

a/Å 9.8233(2) 7.6330(3) 13.6335(7)

b/Å 24.0372(5) 12.2543(7) 11.1308(5)

c/Å 10.9711(3) 14.0013(8) 17.3417(9)

α/° 90 73.783(5) 90.00

β/° 101.171(3) 82.163(4) 104.646(5)

γ/° 90 89.834(4) 90.00

Volume/Å3 2541.46(10) 1244.94(11) 2546.1(2)

Z 4 2 4

ρcalcg/cm3 1.620 1.702 1.660

μ/mm-1 10.619 1.338 1.399

F(000) 1256.0 644.0 1288.0

Crystal size/mm3 0.09 × 0.07 × 0.05 0.14 × 0.11 × 0.06 0.34 × 0.31 × 0.25

Radiation CuKα (λ = 1.54184) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 7.356 to 148.096 6.12 to 59.52 6.82 to 59.68

Index ranges -12 ≤ h ≤ 12, -26 ≤ k ≤ 29, -13 ≤ l ≤ 12 -10 ≤ h ≤ 8, -16 ≤ k ≤ 16, -19 ≤ l ≤ 17 -15 ≤ h ≤ 19, -14 ≤ k ≤ 15, -24 ≤ l ≤ 23

Reflections collected 18908 14927 17793

Independent reflections 5063 [Rint = 0.0790, Rsigma = 0.0635] 6055 [Rint = 0.0477, Rsigma = 0.0691] 6285 [Rint = 0.0762, Rsigma = 0.0775]

Data/restraints/parameters 5063/0/319 6055/0/328 6285/0/319

Goodness-of-fit on F2 1.042 1.042 1.093

Final R indexes [I>=2σ (I)] R1 = 0.0428, wR2 = 0.0963 R1 = 0.0427, wR2 = 0.0775 R1 = 0.0459, wR2 = 0.1014

Final R indexes [all data] R1 = 0.0620, wR2 = 0.1070 R1 = 0.0571, wR2 = 0.0862 R1 = 0.0570, wR2 = 0.1135

Largest diff. peak/hole / e Å-3 1.10/-0.78 0.68/-0.75 0.84/-0.74



Appendix

277

Name C16 C17 C18

Empirical formula C31H32Cl2FeO3Ru C29H27O2Cl3FeRu C29H28O2ClFeBrRu

Formula weight 680.38 670.77 680.79

Temperature/K 290.42(10) 290.42(10) 120.00(10)

Crystal system monoclinic monoclinic monoclinic

Space group C2/c P21/c P21/n

a/Å 27.5025(7) 26.1643(4) 13.7350(7)

b/Å 11.1189(2) 10.8621(2) 11.0892(5)

c/Å 19.0656(4) 19.1456(3) 17.3899(10)

α/° 90 90 90.00

β/° 102.835(2) 96.426(2) 105.003(5)

γ/° 90 90 90.00

Volume/Å3 5684.5(2) 5406.98(16) 2558.4(2)

Z 8 8 4

ρcalcg/cm3 1.590 1.648 1.768

μ/mm-1 1.261 1.417 2.849

F(000) 2768.0 2704.0 1360.0

Crystal size/mm3 0.20 × 0.18 × 0.09 0.14 × 0.11 × 0.04 0.20 × 0.15 × 0.03

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 5.656 to 59.614 5.582 to 59.636 5.72 to 62.52

Index ranges -38 ≤ h ≤ 30, -14 ≤ k ≤ 15, -25 ≤ l ≤ 26 -32 ≤ h ≤ 36, -14 ≤ k ≤ 13, -26 ≤ l ≤ 26 -19 ≤ h ≤ 19, -13 ≤ k ≤ 15, -24 ≤ l ≤ 20

Reflections collected 24289 47874 20795

Independent reflections 7106 [Rint = 0.0352, Rsigma = 0.0405] 13518 [Rint = 0.0434, Rsigma = 0.0494] 7335 [Rint = 0.0604, Rsigma = 0.0817]

Data/restraints/parameters 7106/35/375 13518/0/655 7335/0/319

Goodness-of-fit on F2 1.183 1.064 1.028

Final R indexes [I>=2σ (I)] R1 = 0.0431, wR2 = 0.0804 R1 = 0.0352, wR2 = 0.0616 R1 = 0.0471, wR2 = 0.0758

Final R indexes [all data] R1 = 0.0580, wR2 = 0.0856 R1 = 0.0621, wR2 = 0.0723 R1 = 0.0739, wR2 = 0.0860

Largest diff. peak/hole / e Å-3 0.84/-0.71 0.61/-0.58 0.66/-0.88
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Name C19 C20 C21

Empirical formula C31H32BrClFeO3Ru C29H28O2ClFeRuI C29H28O2ClFeRuI

Formula weight 724.84 727.78 727.78

Temperature/K 120.1(3) 119.99(18) 120.1(4)

Crystal system monoclinic monoclinic monoclinic

Space group C2/c P21/n I2/a

a/Å 27.7319(5) 13.9912(7) 20.2251(4)

b/Å 11.1421(3) 11.0716(5) 7.77335(16)

c/Å 19.0333(4) 17.4043(8) 33.7938(11)

α/° 90 90.00 90

β/° 102.770(2) 105.450(5) 91.661(2)

γ/° 90 90.00 90

Volume/Å3 5735.6(2) 2598.6(2) 5310.7(2)

Z 8 4 8

ρcalcg/cm3 1.679 1.860 1.820

μ/mm-1 2.550 2.456 19.233

F(000) 2912.0 1432.0 2864.0

Crystal size/mm3 0.14 × 0.10 × 0.04 0.16 × 0.11 × 0.03 0.14 × 0.05 × 0.05

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) CuKα (λ = 1.54184)

2Θ range for data collection/° 5.656 to 59.572 6.2 to 59.48 8.748 to 147.572

Index ranges -38 ≤ h ≤ 37, -14 ≤ k ≤ 10, -24 ≤ l ≤ 26 -19 ≤ h ≤ 18, -13 ≤ k ≤ 14, -24 ≤ l ≤ 24 -24 ≤ h ≤ 25, -9 ≤ k ≤ 7, -38 ≤ l ≤ 39

Reflections collected 26100 17635 10588

Independent reflections 7254 [Rint = 0.0394, Rsigma = 0.0418] 6258 [Rint = 0.0538, Rsigma = 0.0735] 4952 [Rint = 0.0393, Rsigma = 0.0486]

Data/restraints/parameters 7254/35/376 6258/0/319 4952/0/319

Goodness-of-fit on F2 1.200 1.065 1.074

Final R indexes [I>=2σ (I)] R1 = 0.0570, wR2 = 0.1174 R1 = 0.0472, wR2 = 0.0753 R1 = 0.0426, wR2 = 0.1040

Final R indexes [all data] R1 = 0.0707, wR2 = 0.1226 R1 = 0.0713, wR2 = 0.0826 R1 = 0.0545, wR2 = 0.1112

Largest diff. peak/hole / e Å-3 1.28/-1.77 1.50/-0.89 1.09/-0.74
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Name C22 C23 C24

Empirical formula C30H31O3ClFeRu C30H31O3ClFeRu C31H33O3ClFeRu

Formula weight 631.92 631.94 645.94

Temperature/K 120.02(10) 120.01(10) 119.99(11)

Crystal system monoclinic monoclinic monoclinic

Space group P21/n P21/c P21/n

a/Å 14.1001(4) 8.0188(2) 8.1226(3)

b/Å 11.0079(2) 10.5765(3) 7.4214(3)

c/Å 17.4370(4) 29.8235(9) 44.6460(13)

α/° 90.00 90 90.00

β/° 105.602(3) 92.186(3) 91.909(3)

γ/° 90.00 90 90.00

Volume/Å3 2606.73(11) 2527.52(12) 2689.81(16)

Z 4 4 4

ρcalcg/cm3 1.610 1.6606 1.595

μ/mm-1 1.269 1.309 1.232

F(000) 1288.0 1285.5 1320.0

Crystal size/mm3 0.25 × 0.16 × 0.15 0.56 × 0.35 × 0.14 0.52 × 0.15 × 0.11

Radiation MoKα (λ = 0.71073) Mo Kα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.2 to 52.74 5.62 to 59.46 5.8 to 59.52

Index ranges -15 ≤ h ≤ 17, -13 ≤ k ≤ 11, -19 ≤ l ≤ 21 -10 ≤ h ≤ 11, -14 ≤ k ≤ 11, -31 ≤ l ≤ 39 -10 ≤ h ≤ 11, -7 ≤ k ≤ 10, -57 ≤ l ≤ 60

Reflections collected 17274 15946 19235

Independent reflections 5324 [Rint = 0.0742, Rsigma = 0.0702] 6124 [Rint = 0.0629, Rsigma = 0.0856] 6455 [Rint = 0.0494, Rsigma = 0.0600]

Data/restraints/parameters 5324/0/329 6124/0/328 6455/0/338

Goodness-of-fit on F2 1.094 1.084 1.080

Final R indexes [I>=2σ (I)] R1 = 0.0416, wR2 = 0.0946 R1 = 0.0496, wR2 = 0.0819 R1 = 0.0400, wR2 = 0.0733

Final R indexes [all data] R1 = 0.0501, wR2 = 0.1040 R1 = 0.0817, wR2 = 0.0978 R1 = 0.0520, wR2 = 0.0794

Largest diff. peak/hole / e Å-3 0.69/-0.68 1.24/-1.12 0.46/-0.70



Appendix

280

Name C’1 C’2 C’4

Empirical formula C34H29F6FeN4O2PRu C34H26N4O2F9PFeRuCl0.5 C39H31F6FeN4O2PRu

Formula weight 827.50 899.20 889.58

Temperature/K 119.99(16) 119.97(13) 119.96(17)

Crystal system monoclinic triclinic triclinic

Space group I2/a P-1 P-1

a/Å 22.6760(8) 11.6698(7) 12.5718(10)

b/Å 10.6551(3) 11.7149(7) 12.8149(11)

c/Å 26.2259(10) 15.0528(6) 14.8974(9)

α/° 90 111.259(4) 91.133(6)

β/° 92.863(3) 92.925(4) 114.006(7)

γ/° 90 107.395(5) 116.548(8)

Volume/Å3 6328.7(4) 1800.48(18) 1900.7(3)

Z 8 2 2

ρcalcg/cm3 1.737 1.659 1.5543

μ/mm-1 1.062 0.988 7.281

F(000) 3328.0 897.0 897.3

Crystal size/mm3 0.29 × 0.22 × 0.15 0.32 × 0.25 × 0.12 0.16 × 0.04 × 0.03

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) Cu Kα (λ = 1.54184)

2Θ range for data collection/° 6.222 to 59.616 5.796 to 59.696 6.7 to 147.64

Index ranges -27 ≤ h ≤ 30, -14 ≤ k ≤ 14, -34 ≤ l ≤ 34 -14 ≤ h ≤ 14, -15 ≤ k ≤ 16, -16 ≤ l ≤ 21 -15 ≤ h ≤ 15, -15 ≤ k ≤ 9, -18 ≤ l ≤ 18

Reflections collected 12388 19543 14361

Independent reflections 12388 [Rint = ?, Rsigma = 0.0487] 8661 [Rint = 0.0566, Rsigma = 0.0896] 7188 [Rint = 0.0576, Rsigma = 0.0755]

Data/restraints/parameters 12388/0/447 8661/0/469 7188/0/486

Goodness-of-fit on F2 1.003 1.283 0.951

Final R indexes [I>=2σ (I)] R1 = 0.0498, wR2 = 0.1250 R1 = 0.0837, wR2 = 0.2279 R1 = 0.0709, wR2 = 0.2195

Final R indexes [all data] R1 = 0.0650, wR2 = 0.1300 R1 = 0.1118, wR2 = 0.2550 R1 = 0.0917, wR2 = 0.2446

Largest diff. peak/hole / e Å-3 1.13/-2.00 3.56/-1.70 2.99/-1.30
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Name C’7 C’8 C’10

Empirical formula C41H35F6FeN4O2PRu C39H30F7FeN4O2PRu C40.65H32.3F8FeN4O2.55PRu

Formula weight 917.62 907.56 957.49

Temperature/K 120.3(7) 120.0(2) 120.01(12)

Crystal system monoclinic monoclinic triclinic

Space group P21/n P21/c P-1

a/Å 13.7236(13) 12.3359(2) 11.5358(5)

b/Å 12.5273(12) 20.1065(4) 11.8110(5)

c/Å 22.629(2) 14.6967(3) 15.7319(7)

α/° 90 90 102.635(4)

β/° 95.299(8) 97.1081(16) 95.616(4)

γ/° 90 90 104.201(4)

Volume/Å3 3873.8(6) 3617.25(12) 2001.46(16)

Z 4 4 2

ρcalcg/cm3 1.573 1.667 1.589

μ/mm-1 0.876 7.707 0.859

F(000) 1856.0 1824.0 963.0

Crystal size/mm3 0.15 × 0.10 × 0.04 0.16 × 0.09 × 0.06 0.34 × 0.14 × 0.05

Radiation MoKα (λ = 0.71073) CuKα (λ = 1.54184) MoKα (λ = 0.71073)

2Θ range for data collection/° 6.324 to 59.354 7.222 to 147.822 5.358 to 59.272

Index ranges -19 ≤ h ≤ 18, -17 ≤ k ≤ 17, -30 ≤ l ≤ 30 -15 ≤ h ≤ 15, -23 ≤ k ≤ 24, -18 ≤ l ≤ 18 -15 ≤ h ≤ 14, -15 ≤ k ≤ 14, -18 ≤ l ≤ 20

Reflections collected 35647 29073 21623

Independent reflections 9722 [Rint = 0.0779, Rsigma = 0.0980] 7333 [Rint = 0.0449, Rsigma = 0.0389] 9487 [Rint = 0.0641, Rsigma = 0.1051]

Data/restraints/parameters 9722/0/507 7333/0/496 9487/18/546

Goodness-of-fit on F2 1.042 1.047 1.038

Final R indexes [I>=2σ (I)] R1 = 0.0562, wR2 = 0.0790 R1 = 0.0348, wR2 = 0.0866 R1 = 0.0727, wR2 = 0.1579

Final R indexes [all data] R1 = 0.0965, wR2 = 0.0891 R1 = 0.0417, wR2 = 0.0905 R1 = 0.1198, wR2 = 0.1889

Largest diff. peak/hole / e Å-3 0.52/-0.67 0.96/-0.76 2.54/-1.07
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Name C’11 C’12 C’13

Empirical formula C39H31ClF6FeN4O2.5PRu C39H31Cl2F6FeN4O3PRu C39H30BrF6FeN4O2PRu

Formula weight 933.02 976.47 968.47

Temperature/K 120.4(9) 120.1(3) 293(2)

Crystal system triclinic monoclinic triclinic

Space group P-1 P21/c P-1

a/Å 12.5053(5) 13.1656(4) 12.6098(19)

b/Å 16.5786(9) 20.9269(6) 16.989(4)

c/Å 19.9096(11) 14.0300(4) 19.373(5)

α/° 99.243(4) 90 98.47(2)

β/° 106.818(4) 98.331(3) 106.116(18)

γ/° 102.522(4) 90 103.128(18)

Volume/Å3 3745.3(3) 3824.67(18) 3783.7(16)

Z 4 4 4

ρcalcg/cm3 1.655 1.696 1.700

μ/mm-1 8.073 8.574 1.860

F(000) 1876.0 1960.0 1928.0

Crystal size/mm3 0.17 × 0.04 × 0.04 0.14 × 0.08 × 0.04 0.01 × 0.02 × 0.03

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) Synchrotron (λ = 0.6889)

2Θ range for data collection/° 6.45 to 149.42 7.642 to 147.99 2.448 to 51.004

Index ranges -15 ≤ h ≤ 15, -20 ≤ k ≤ 20, -17 ≤ l ≤ 24 -15 ≤ h ≤ 16, -25 ≤ k ≤ 23, -17 ≤ l ≤ 17 -15 ≤ h ≤ 15, -21 ≤ k ≤ 21, -24 ≤ l ≤ 22

Reflections collected 32402 30029 36914

Independent reflections 14201 [Rint = 0.0635, Rsigma = 0.0791] 7718 [Rint = 0.0827, Rsigma = 0.0715] 14682 [Rint = 0.1712, Rsigma = 0.1885]

Data/restraints/parameters 14201/126/995 7718/0/517 14682/0/991

Goodness-of-fit on F2 1.021 1.142 0.919

Final R indexes [I>=2σ (I)] R1 = 0.0642, wR2 = 0.1464 R1 = 0.0814, wR2 = 0.2145 R1 = 0.1087, wR2 = 0.2605

Final R indexes [all data] R1 = 0.1037, wR2 = 0.1675 R1 = 0.1003, wR2 = 0.2316 R1 = 0.1915, wR2 = 0.2979

Largest diff. peak/hole / e Å-3 1.28/-1.36 2.81/-1.74 2.25/-0.58
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Name C’14

Empirical formula C39F6FeIN4O2PRu

Formula weight 985.22

Temperature/K 100(2)

Crystal system triclinic

Space group P-1

a/Å 12.6452(2)

b/Å 17.0679(3)

c/Å 18.9907(4)

α/° 98.076(2)

β/° 105.417(2)

γ/° 103.430(2)

Volume/Å3 3752.72(13)

Z 4

ρcalcg/cm3 1.744

μ/mm-1 1.595

F(000) 1880.0

Crystal size/mm3 0.06 × 0.04 × 0.02

Radiation synchrotron (λ = 0.6889)

2Θ range for data collection/° 3.376 to 54.68

Index ranges -16 ≤ h ≤ 16, -22 ≤ k ≤ 22, -25 ≤ l ≤ 25

Reflections collected 45950

Independent reflections 17988 [Rint = 0.0629, Rsigma = 0.0517]

Data/restraints/parameters 17988/0/991

Goodness-of-fit on F2 1.083

Final R indexes [I>=2σ (I)] R1 = 0.0918, wR2 = 0.2537

Final R indexes [all data] R1 = 0.1036, wR2 = 0.2635

Largest diff. peak/hole / e Å-3 3.43/-2.12
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