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Thesis Summary 

By 2025, most households in the UK are provided with smart electricity meters, which 

will provide the Distribution Network Operators (DNOs) with new streams of customer 

data at Low Voltage (LV) network levels. Smart meters will enable the two-way 

transfer of information between the network operators and end user/generators. In the 

UK, smart meters will provide the DNOs with half-hourly customer demands which are 

required to be aggregated at LV level. This in theory can enable a more proactive 

management of the LV networks, which has not been possible before. However, as the 

electricity network becomes smarter and accommodates higher amounts of Distributed 

Generation (DG) and Low Carbon Technologies (LCTs) at lower voltage levels of the 

network, the questions have been raised whether the provision of smart meter data at 

half-hourly time resolutions and in aggregated formats can provide the network 

operators with sufficiently detailed information or more granular smart meter data is 

required for the smart LV grid applications to become a reality. This research presents a 

picture of the current status and the future developments of the LV electricity grid and 

the capabilities of the smart metering programme in the UK as well as investigating the 

major research trends and priorities in the field of Smart Grid. This work also 

extensively examines the literature on the crucial LV network performance indicators 

such as losses, voltage levels, and cable capacity percentages and the ways in which 

DNOs have been acquiring this knowledge as well the ways in which various LV 

network applications are carried out and rely on various sources of data.  

This work combines 2 new smart meter data sets with 5 established methods to predict a 

proportion of consumer’s data is not available using historical smart meter data from 

neighbouring smart meters. Our work shows that half-hourly smart meter data can 

successfully predict the missing general load shapes, but the prediction of peak demands 

proves to be a more challenging task. This work then investigates the impact of smart 

meter time resolution intervals and data aggregation levels in balanced and unbalanced 

three phase LV network models on the accuracy of critical LV network performance 

indicators and the way in which these inaccuracies affect major smart LV network 

application of the DNOs in the UK. This is a novel work that has not been carried out 

before and shows that using low time resolution and aggregated smart meter data in 

load flow analysis models can negatively affect the accuracy of critical low voltage 

network estimates. 
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Chapter 1 Introduction 

This thesis analyses how information provided by domestic smart electricity meters can 

improve the management of the low voltage network in the UK. This is important 

because of two factors. Firstly, the low voltage network forms a substantial part of the 

UK’s electricity network. It comprises 48% of the total length of the distribution and 

transmission networks (EurElectric 2013). The amount of energy lost on the low voltage 

network due to the impedance of the conductors has been estimated as 5% of the energy 

that the network supplies (Sohn Associates Limited 2009). This compares with 

estimated losses of 3% on all of the rest of the distribution network.  

Secondly, the low voltage network has not been actively managed in the way that the 

higher voltage networks are. This stems from there being very little knowledge of the 

sizes of the currents on the low voltage network due to the lack of monitoring points on 

the network. However, more active management is becoming increasingly desirable as 

the amount of embedded generation on the low voltage network rises. The United 

Kingdom government has made a commitment to reduce its CO2 emission levels by 

80% by 2020 compared to the levels in 1990 (DECC 2009). This requires a 

considerable rise in the amount of electricity produced from renewable sources of 

energy from 5.5% (in 2009) to 30% (DECC 2009). The latest reports by the Department 

for Business, Energy, and Industrial Strategy (BEIS) (2016) shows 29% increase in the 

production of energy from renewable sources of energy since 2014 that includes 87% 

increase in the amount of energy from solar panels. High levels of this intermittent 

generation bring the challenges of reversed power flows and rapid changes in the power 

flows as well as increased levels of network losses and voltage variation (Sohn 

Associates Limited 2013). This increases the need for higher levels of monitoring at the 

low voltage side of the network. However, the sheer size of the low voltage network 

means that the cost of installing more meters to rectify this deficiency is prohibitive. 

The roll out of smart electricity meters to the UK’s domestic customers is due for 

completion in 2025 (Smart Energy GB 2017). If the data from these meters can be 

utilised by the network operators to accurately model the low voltage currents, then this 

would be a highly cost effective way of solving the information gap, and so would 

provide the foundations for active management of the low voltage network. However, 

there are a number of issues that impinge on the accuracy of the currents, voltages and 
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losses that are calculated from the smart meter data. Investigating the accuracy level that 

can be expected from using new streams of data from smart meters in the UK is the core 

of this research. 

This chapter provides a background into the UK’s electricity network and the role and 

the limitations of smart meters, based upon which the research aims and objectives are 

derived. 

 

1.1 The UK’s Electricity Network 

Electrical power systems are usually broken down into 3 element types: generation, 

transmission, and distribution. In the UK, the larger generating units (power stations) 

normally deliver their energy at 132 kiloVolts (kV). As conductor losses depend on the 

square of the current (I
2
), the voltage is normally stepped up to 275kV or 400kV before 

it is transmitted over long distances to reach the demand. This network is the 

transmission network and is owned by the National Grid. When the energy reaches 

closer to the demand points, it is stepped down to 132kV and then lower voltages before 

it reaches the customers.  

The network from 132kV downwards is the distribution network and is run (and owned) 

by the UK’s Distribution Network Operators (DNOs). There are now 6 DNOs running 

the 14 distribution networks in England, Scotland and Wales (see Figure 1-1).  
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Figure 1-1: The Distribution Network Operators in the UK and Ireland (ENA 2018) 

 

The main voltages present in the distribution network are 132kV, 66kV, 33kV, 11kV 

and low voltage, although small amounts of other voltages exist (mainly from legacy 

systems). The higher voltages, i.e. 132kV, 66kV, 33kV and 11kV, are composed of 

three live conductors – these three phases being labelled red, yellow, and blue. The 

voltage label, e.g. 132kV, is the phase to phase Root Mean Square (RMS) voltage 

(Alinjak et al. 2017). However, on the low voltage network, besides the three phases, 

there is also a neutral (return) phase. The phase to phase voltage is around 400V and the 

phase to neutral voltage is approximately 230V (Alinjak et al. 2017). Normally, 

domestic customers are connected between one of the live phases and the neutral phase.  

Putting all this together, gives the representation of the network shown in Figure 1-2, 

although this figure is slightly misleading in that (as mentioned above) the 230V (low 

voltage) network’s length is about half the total network length. 
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Figure 1-2: GB electricity industry components (EDW Technology 2016) 

 

1.2 Need for Smarter Electricity Distribution Grids  

Cities and highly populated urban areas have been and will be the heartbeat of the 

established and emerging economies. The energy sector and mainly the electricity grid 

is a major part of these economies and in order to support the move towards smarter 

cities and also reduce the carbon footprint emitted from the energy sector, the grid has 

to become more flexible and more intelligent (IEA 2011; Bulkeley et al. 2016). This 

mainly involves increasing the ability of the electricity network to accommodate more 

embedded generation, to be more responsive to increasing demands from customers and 

new demand patterns from widespread low carbon technologies in the future (Bulkeley 

et al. 2016; Dede et al. 2017).  

The existing vertical structure of the electricity network has largely remained 

unchanged since the early 20
th

 century and this makes meeting new generation (e.g. 

from solar Photovoltaics) and demand patterns (e.g. from electric vehicles and heat 
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pumps) particularly difficult (Güngör et al. 2011). Traditionally, the electricity grid has 

not been designed to accommodate bi-directional flow of energy, and active 

participation by customers, or to provide visible information about the state of the 

network (Gharavi and Ghafurian 2011). Therefore, these are the main reasons that drive 

the need for transformation of the traditional electricity networks to a more proactive or 

smart electricity grid (Gharavi and Ghafurian 2011).  

The need for more interconnected or horizontal networks was first pointed out in the 

1960s (Amin and Wollenberg 2005) and it has been given further importance since the 

turn of the century with the gradual introduction of higher proportions of embedded 

generation and low carbon technologies into the distribution network (see Figure 1-3).  

 

 

Figure 1-3: A horizontal electricity network (IEEE 2013) 
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1.2.1 What is a Smart Grid? 

Smart grids are at the heart of smart cities. There has been a large number of smart city 

projects worldwide such as the Australian smart city project (Arup et al. 2014), Japan’s 

smart city project (McGranaghan 2017), India’s “Smart Cities Mission”, London’s Low 

Carbon Networks (LCN) project, and Malmo’s “Smart Climate” project (Bulkeley et al. 

2016). Smart grids are one of the key elements of these research projects as the DNOs 

will have to face the challenges of improving the flexibility and the efficiency levels of 

the electricity network while at the same time integrating more proactive and complex 

network applications (Dede et al. 2016).  

Momoh (2009) describes the smart grid as a network that provides sufficient 

behavioural data to the operators and is capable of self-healing. On the other hand, Yu 

et al. (2011) define a smart grid as a reliable network that engages all the stakeholders 

such as consumers, generators, and prosumers by means of the state-of-the-art 

Information Technology (IT) to deliver efficient, cost-effective, and sustainable 

electrical power to the end users. By the same token, the Smart Grid Forum (2012) and 

Gharavi and Ghafurian (2011) also emphasise the bi-directional use of IT throughout 

the various levels of the electricity network in order to supply efficient, cost-effective, 

sustainable, and secure power (Smart Grid Forum 2014). In other words, the smart grid 

can be described as the effective integration of IT and power technology into the 

electricity grid (Momoh 2009; Gharavi and Ghafurian 2011; Yu et al. 2011; Cowan & 

Daim 2012).  

There are many features associated with smart grids, such as reliability, security, 

flexibility, proactivity, cleanness, and self-healing capability (Farhangi 2010; Zhang et 

al. 2010; IEEE 2013). The Electric Power Research Institute (EPRI) and the 

International Electrochemical Commission (IEC)  (Li et al. 2011) describe the following 

characteristics that encompass a smart grid (Yu et al. 2011; Covig et al. 2014) (Table  

1-1): 
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Table 1-1: Smart Grid features based on the American and the European perspectives  

(IEC 2010; Li et al. 2011) 

 

 

 

 

Smart Grid  

Features 

American Perspective European Perspective 

Self-Healing Advanced Automation 

Optimization Structure Service 

Information Integration Support DG 

Forecasting Customer Orientation 

Interaction Interaction 

Safety Reliable Supply 

Coordination Flexibility 

 

As Table 1-1 shows, the European Smart Grid perspective revolves more heavily 

around accommodating the integration of embedded generation at lower levels of the 

distribution network, whereas the American perspective represented by the EPRI places 

more emphasis on features such as self-healing and safety.  

The topic of Smart Grid covers a wide range of areas and also varies from country to 

country in terms of research priorities and implementation level based on differences in 

electricity networks or market set ups. More importantly, definitions of the “Smart 

Grid” vary based on the viewpoints of different stakeholders.  

For example, from the point of view of DNOs the most important feature of a smart grid 

is the fact that the traditional unidirectional flow to customers will change into an 

unfamiliar bidirectional flow of energy and data to and from customers that both 

consume and produce electricity, otherwise known as “prosumers” (Cowan and Daim 

2012). This dramatic change itself can also affect the electricity network companies in a 

way that their traditional “in front of the meter” role will have to be expanded to 

“behind the meter” as well or in other words, they will have to take into account what 

happens to the energy after it has been delivered to consumers or when it is produced by 

“prosumers” (Cowan & Daim 2012).  

Figure 1-4 highlights the complications and new relationships within Smart Grids 

compared to the traditional electricity grids. Smart substations, smart buildings, smart 

sensors on the network are also part of the eventual target of the full smart grid 
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implementation to achieve smart cities and these targets all rely on two-way transfer of 

smart and new kinds of data to enable the DNOs to manage the future network 

efficiently, effectively, intelligently, and proactively (Energy Network Association 

2009; IEEE 2013). 

 

 

Figure 1-4: From traditional grid to a full Smart Grid (Cowan and Daim 2012) 

 

It is important to note that smart grids do not merely consist of changes in the 

infrastructure of the electricity network, but that they heavily rely on smart meters, 

smart appliances, home area networks, and monitoring equipment (e.g. on low voltage 
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feeders). In fact, it can be said that smart meters are the main enablers that drive the 

transformation of the traditional grid into the Smart Grid (Cowan & Daim 2012; IEEE 

2013; Smart Grid Forum 2014), by providing a two-way flow of information between 

customers and network operators.  

Since the plan to provide every customer in the UK with smart meters is already in 

motion, from the point of view of the DNOs, this could be the most cost effective way 

of the rectifying the problem of information gaps on the existing low voltage network. 

The next section explains the potential problems that this information gap can pose to 

the DNOs. 

 

1.3 Challenges of Monitoring Embedded Generation and New Demand 

Patterns on Low Voltage Networks 

According to the Office of Gas and Electricity Markets (OFGEM), embedded 

generation or Distributed Generation (DG) is the term used for smaller and newer 

electricity power generation units (e.g. solar Photovoltaics (PVs), wind farms, 

hydroelectric power, Combined Heat and Power (CHP) plants) that are connected to the 

distribution network directly and insert power into the system from various locations on 

the distribution network (OFGEM 2017a).  

The DNOs have a responsibility to ensure that the capacity of the network is well 

designed to meet the various customer demands at the present and in the future (Sallam 

& Malik 2011) so as to be able to deliver high quality and reliable power to customers 

in an efficient manner. Operation of networks, which in the past did not require close 

monitoring, will have to cope with the introduction of new loads related to various Low 

Carbon Technologies (LCTs) such as electric vehicles, heat pumps, and micro 

generators (Smart Grid Forum 2012). This is of a huge significance in relation to 

balancing the voltage on the network within the statutory requirements and maintaining 

the voltage quality delivered to customers, or planning for new connections (Smart Grid 

Forum 2012). 

The main reason behind the need for the more proactive management of the distribution 

networks is that the introduction of embedded generation and new demands from LCTs 

will increase issues such as voltage variations, thermal stress, reverse power flows, and 
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network losses at the low voltage level of the network (Hollingworth & Miller 2012; 

Wang et al. 2012; Western Power Distribution 2013). 

Figure 1-5 below demonstrates the various low carbon generation and demand sources 

integrated in smart electricity distribution grids of the future. It shows that the 

distribution grids of the future will comprise new and interconnected elements such as 

rooftop solar PVs, electric vehicles, and smart meters, which will introduce new 

demand types, intermittent generation patterns, and two-way flows of information and 

power. 

 

 

 Figure 1-5: A schematic representation of the smart distribution system vision  

 (McGranaghan 2017) 

 

As highlighted earlier, the low voltage side of the distribution network has not been 

designed based on two-way flow energy or information. In fact as emphasised by 

Electricity North West Ltd (2014), the main problem is “always” a voltage problem 
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resulting from the future bi-directional flow of energy at low voltage level with thermal 

stress on the network as a major consequence.  

Another major problem flagged by Western Power Distribution (2013) is that different 

customer demands on different phases of a low voltage network will cause phasing 

imbalance that in turn will lead to higher technical network losses. Technical network 

losses are caused by the load being passed through cables with resistance and the heat 

produced as a result. On average, network losses constitute 7% of consumer bills and 

approximately 50% of total losses on the electricity network occur on 11kV or lower 

voltage levels of the distribution network. In theory, smart meter data can offer more 

accurate ways of determining technical network losses. 

At the present time, extremely little monitoring of power flows on the 11kV and low 

voltage network of the electricity distribution grid is carried out (Lees 2014; Stephen et 

al. 2014). As Reinders et al. (2017) emphasise, the invisibility of the low voltage 

network to the DNOs together with the new and unknown loads and generation patterns 

from higher proportions of  low carbon technologies and embedded generation being 

installed at the lower voltage level, will create a challenging combination for the DNOs. 

Although load flow analysis tools such as Distribution Network Information System 

(DINIS) are currently used at 11kV to set the position of open points so as to, for 

example, minimise losses, the data fed into these programs are usually only based on 

rough estimations. On higher voltage levels of the electricity network, Supervisory 

Control and Data Acquisition (SCADA) is employed to provide information about the 

High Voltage (HV) and Medium Voltage (MV) parts of the network, but SCADA does 

not cover the low voltage parts of the network. As Silva et al. (2011) point out, even if 

SCADA systems were to be available at lower levels of the network (which is very 

costly and unrealistic due to the size of the low voltage network), the current 

capabilities of the SCADA systems would not be able to cope with the complexities of 

the new load/generation patterns on the low voltage networks (Silva et al. 2011). 

At present, most low voltage substations are only equipped with Maximum Demand 

Indicator (MDI) meters which record the Maximum Demand (MD) on each phase (red, 

yellow, and blue) of the downstream cables (Figure 1-6), but these meters are not very 

accurate (SP Energy Networks 2015). This means that they cannot provide the DNOs 

with a granular and detailed knowledge of the sizes of current at various points on the 
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network. Some of the major problems related to the accuracy with these meters 

according to SP Energy Networks (2015) are that the meters are read manually and only 

occasionally, MD is recorded at the substation level for 140-200 customers, the time 

range of peak loads are not recorded, customer peak diversity is neglected, and network 

faults and/or ambient temperature can influence the MD readings shown on the meters.  

 

 

Figure 1-6: A typical secondary substation MDI meters on each phase (SP Energy Networks 2015) 

 

These substation meters (shown in Figure 1-6) are the last monitoring point for the 

DNOs and there still remains a lack of knowledge and visibility downstream of the low 

voltage substations notwithstanding the presence of these meters. 

However, in recent years the twin developments of the introduction of smart meters and 

the increasing levels of embedded generation, have led to there being significant interest 

in how the low voltage network can be more actively managed and monitored using 

data provided at lower voltage levels of the network, namely from customer smart 

meters. 
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1.4 Smart Meter Programme and Specifications in the UK 

The main driver behind the UK’s domestic smart meter programme is the improved 

energy efficiency that can come from: 

 the introduction of time of day tariffs with the hope that some of the peak 

demand will be shifted to off-peak periods. 

 reduction in electricity consumption if users can see the real-time cost of the 

electricity they are using. 

The requirement for better energy efficiency stems from the UK Government’s highly 

ambitious vision for the future of the country’s power networks. The deployment of 

smart meters and Advanced Metering Systems (AMIs) to homes and businesses 

respectively, is central to this challenging move towards low-carbon power networks,  

smart grids, and ultimately smart cities (DECC 2010; Smart Grid Forum 2014). The 

major benefits that the government has identified as stemming from the introduction of 

smart meters are the ability to read meters remotely and to use the information provided 

by smart meters to more actively manage the network.  

Hence the Department of Energy and Climate Change (DECC) along with OFGEM  

E-Serve summarised the benefits in the Smart Metering Implementation Prospectus 

published in DECC (2011) as: 

 stimulating the transition to a low carbon economy 

 tackling the climate change 

 providing consumers with the information they need to reduce their 

consumption, save money and reduce emissions 

 enabling suppliers to read the meters remotely 

 enabling Smart grids, Active Network Management (ANM) for renewable 

energy and electric vehicles  

Another essential element that is highlighted in this document is the need for 

establishing a new GB-wide data entity called DataCommsCo. (DCC), which enables 

the central communication and data management aspect of smart meters (DECC 2011). 

Half-hourly data in killoWatt hours (kWh) from smart meters are stored in the meters 

for up to 13 months and more historic data is kept and managed by the DCC.  



14 

 

The smart metering prospectus (DECC 2011) also touches on the issue of smart grids 

and how smart metering can pave the way for greater certainty in business decisions and 

ensure successful future innovations in the grid. A number of benefits to various 

stakeholders have also been identified in order to help define the functional 

requirements for smart metering systems.  

Table 1-2 below lists a summary of those benefits that apply to the stakeholders. As 

shown in this table, the benefits to DNOs have not been defined by the DECC. This lack 

of identification of benefits for the DNOS can also been extended to the DNOs 

themselves. Therefore, the need to identify the ways in which the full benefits from 

smart meter data can be achieved has arisen. This knowledge can pave the way to 

achieve the Smart Grid vision successfully (IEEE 2013; Smart Grid Forum 2014). 

 

Table 1-2: Impact assessment and benefits of smart meter to various stakeholders in the UK 

(DECC 2011) 

Stakeholders Benefits 

 

 

Consumers 

 

Energy savings 

Load Shifting 

Easy switching 

Time of use tariffs 

CO2 reduction 

 

 

 

 

Suppliers 

 

Avoided meter reading 

Inbound enquiries 

Customer service overheads 

Debt handling 

Remote disconnection 

Avoided site visits 

Reduced losses 

Reduced theft 

Micro-generation 

 

 

Distributors 

 

 

No information 

 

In 2014, minimum specification requirements of smart meters in UK were decided in 

consultation with major UK electricity market stakeholders, including the DNOs in the 
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UK. This consultation took place from 2012 to 2014. According to the Smart Metering 

Equipment Technical Specifications Version 1.58 published as a result of this 

consultation in November 2014 by the DECC, the minimum physical requirements for 

UK smart metering system are as follows (DECC 2010) (Figure 1-7): 

 time display 

 data storage space 

 the physical meter 

 Home Area Network (HAN) 

 load switch 

 a customer interface 

 

 

Figure 1-7: A typical domestic smart meter customer interface (Ivy Link 2015) 

 

In terms of the type of smart meter data collected, the followings highlight some of the 

most important aspects of the data communicated by smart meters, which can 

potentially be used by DNOs to obtain a more in-depth knowledge of the low voltage 

network and can also be used by the suppliers to provide more accurate customer bills: 

 half-hourly consumption and generation 

 active energy import and export 

 maximum demand import and export data over every half-hour interval 
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 average RMS voltage 

 RMS extreme overvoltage 

 RMS extreme undervoltage 

 loss and restoration of supply 

These new streams of data can significantly upgrade the level of information available 

to the DNOs on the low voltage side of the network. Therefore, it is very important for 

the DNOs to understand to what extent these new smart meter data streams are able to 

provide more accurate network information data and to what extent they fall short due 

to potential limitations and restrictions either based on current policies in place and/or 

due to functional limitations of the meters. 

The next section describes the various areas of the low voltage network operation that 

can potentially benefit from the smart meter data from the point of view of the DNOs in 

the UK.  

1.4.1 Potential Smart Meter Impact Areas 

In theory, smart meters can provide new levels of low voltage network visibility to the 

DNOs which have not been available before. Also, smart meters facilitate the  

bi-directional flow of information and energy in the lower voltages of the electricity 

network by providing smarter and more granular data about customer demands on the 

network to the DNOs. Smart meters and AMIs potentially have the capability to 

continuously measure the voltage, current and phase angle at each and every consumer 

level. Hence, smart meters have the potential to radically change the knowledge of 

power flows on 11kV and low voltage networks, and so to have a major impact on how 

these networks are managed (IEEE 2013).  

However, although it is easy to imagine how having perfect meter readings at a 

particular point in time can allow the DNOs to have a far better grasp of the low voltage 

network state, in practice there is very little if any knowledge of what is the optimal way 

to gain benefit from the data that smart meters provide. In fact, turning smart meter data 

into information and practical knowledge to the DNOs has posed a major challenge to 

the various stakeholders of the electricity distribution grid, especially to utility 

companies. Hence, this is a major if not the major current research area in the field of 

electricity distribution network operational research. Smart meter information is one of 

the main pieces of the jigsaw in providing the opportunity for more active management 
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of the electricity distribution network. One of the major challenges for the DNOs on the 

low voltage side is to be able to actively monitor and manage the state of the network 

which will be experiencing higher shares of embedded generation and low carbon 

technologies year by year.  

A study by UK Power Networks and TE Connectivity (2015) highlights the need for the 

DNOs to better monitor the power flows on the low voltage networks and use the 

information to optimise the network capacity as well as identify the areas that are under 

stress and need reinforcement and replacement. In other words, using new data which 

provide more visibility on the low voltage network to actively manage the demand and 

generation on the network and make better informed decision about network planning 

and design as well as network asset management (UK Power Networks 2015). As 

Western Power Distribution (2013) emphasises, the role of smart meters and AMIs are 

becoming increasingly more crucial in providing a clearer picture about the behaviour 

of customers at the low voltage level and ultimately a more in-depth understanding of 

demand and generation patterns at the low voltage side of the network.  

Potentially, these new sources of information can dramatically enhance conventional 

low voltage network applications such as network planning and design, asset 

management, and fault management as well paving the way for the development of 

modern network applications such as Active Network Management (ANM), Demand-

Side Management (DSM), and automatic voltage control (Western Power distribution 

2013). Some of the main areas that the DNOs are interested in developing are areas such 

as ANM, voltage control, fault level management, planning of new connections, 

dynamic rating of cables, DSM, using network storage, and using smart meter Time of 

Use (ToU) tariffs to manage customer demands (EA Technology 2016). The overall aim 

of the DNOs in developing these applications is to reduce network stress and to operate 

the network more cost effectively.  

In theory, high quality smart meter data can help DNOs overcome these challenges as 

well as helping them with investment and planning decisions (Smart Grid Forum 2014). 

However, the current policies and specification in the UK may hinder the ability of 

smart meters to provide optimum levels of accurate network to the DNOs. 
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1.4.2 Potential Limitations of Smart Meter Data 

Over the past few years, there has been a major debate over issues of smart metering 

data access and handling, mainly due to privacy concerns. The UK Government has 

been working on the existing legislations, principally the Data Protection Act 1998, to 

examine whether the current legal frameworks could cover smart metering data or not 

(DECC 2011). Smart metering data is useful to all of the stakeholders, but it should be 

noted that the Government’s approach aims to protect the privacy of consumers while 

providing the industry with the appropriate data that they rely on to meet the statutory 

requirements (DECC 2011). This approach strives to implement the “privacy by design” 

principle adopted from international best practices and recommendations from the data 

protection regulator and the Information Commissioner’s Office (ICO) (DECC 2011). 

Essentially, if the data can identify the individuals then the data is considered to be 

personal data and of a sensitive nature, hence the establishment of the DCC as an 

independent third-party entity in the autumn of 2013. The DCC is responsible for 

managing the procurement and contract management of smart metering data and 

communication services (DECC 2011; OFGEM 2017b).  

The programme encourages suppliers and network operators to carry out studies and 

justify that a higher resolution of data is required for them to meet their operational 

statutory requirements and this will not invade the privacy framework being designed 

by the programme (DECC 2011). However, there is a lack of research in this area and it 

requires more detailed investigations, especially in the case of network operators, where 

the need for near real-time data will grow as the grid becomes smarter. In the near 

future aggregated and anonymous data may not suffice (DECC 2011).  

The evolving nature of the smart grid applications pose a particular challenge to the 

DNOs in determining the optimal frequency, time resolution and aggregation of the 

smart meter data required. For example, access to voltage quality data and customer 

loads are essential to help network operators manage the local network more efficiently 

and the EU Smart Grid Task Force considers the data to be of a technical nature, but it 

must be proved that privacy measures are not affected by granting access to this kind of 

data at half-hourly resolution or higher (DECC 2011). 

The network operators obtain their required data from the DCC as opposed to directly 

from suppliers and research is needed for the network operators to demonstrate their 
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business dependence on detailed and half-hourly levels of data (DECC 2011). 

Therefore, careful studies must be conducted about the appropriate frequency and time 

resolution of data required for the various operational applications within their business.  

According to the current regulations, the DNOs in the UK will receive half-hourly 

averages of customer demands, but the smart meter data is required to be aggregated 

and anonymised before it is processed within the DNO applications due to privacy 

issues (OFGEM 2017b). Therefore, the DNOs and the field of electricity network 

operation research are very interested in finding ways of filling in the gaps where smart 

meters are not yet available as well as identifying how various aspects of smart 

electricity distribution grid operation and monitoring benefit or suffer from having 

aggregated and lower time resolution of smart meter data.  

Currently in the UK, the availability of real-time and high resolution smart meter data 

from all customers to the DNOs is and will be restricted due to: 

 the incremental process of smart meter deployment until 2025. 

 smart meter communication delays and faults. 

 presence of non-smart meters even after 2025. 

 averaging of customer demands at half-hourly intervals instead of 1 minute  

real-time readings. 

 anonymization of customer demands from smart meters by aggregating the data 

from customers. 

These limitations can reduce the benefits of smart meter data to the DNOs and 

consequently affect the quality of smart meter data for distribution network applications 

such as network planning and design, asset management, fault management, and 

network capacity management. 

This is why Northern Powergrid is supporting this research project in order to determine 

the impact that various frequency, granularity, and aggregation levels of smart meter 

data will have on the accuracy of information on the low voltage network. The 

frequency of smart meter data is the time period of the data that is made available to the 

DNOs (e.g. daily, weekly, monthly). The time granularity or resolution of data denotes 

the resolution of smart meter time intervals (e.g. real-time, 1 minute, 5 minute, half-

hourly, etc.). The aggregation level of data indicates the number of customers for which 
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the readings have been grouped together as part of anonymization process (e.g. 2 

customers, 4 customers, etc.) 

The extent to which these issues can affect the accuracy of smart meter data in the 

context of the DNO application is at the core of this research.  

 

1.5 Research Aims and Objectives 

There is uncertainty over the ability of smart meter data relayed to the DNOs to provide 

accurate low voltage network information. The central focus of this research is to 

examine the extent that factors such as smart meter time resolutions and frequency, 

customer data aggregation levels, and the unavailability of smart meter data can affect 

the estimation accuracy of low voltage network currents, losses, and voltage levels.  

It also investigates the effects that these inaccuracies can have on major DNO 

applications such as network planning and design, asset management, network 

monitoring, and fault management. Additionally, some recommendations are also made 

about the ways in which some of the data gaps and inaccuracies can be overcome.  

The main aim of this research is to investigate and identify: 

 the impact of having partial, half-hourly averaged and/or aggregated smart meter 

data on the accuracy of the information used by the low voltage network 

operational applications of the DNOs in the UK. 

The main objective of this thesis is to address the following research questions: 

 What are the impacts of gaps and inaccuracies in smart meter data, as a result of 

the averaging and aggregation of customer demands recorded by smart meters, 

on the accuracy of critical low voltage network information used by the DNOs 

in the UK? 

 To what extent do these inaccuracies affect major DNO applications such as 

network planning and design, asset management, fault management, and 

network monitoring in typical low voltage network models?  

 What is the optimum frequency, time resolution, and aggregation level which 

can enhance the management of the low voltage networks? 
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These research questions are investigated by: 

 finding missing values: applying practical low voltage estimation methods to 

new smart meter data sets to fill in missing half-hourly customer loads using 

historical smart meter data. 

 studying smart meter time resolutions: statistically analysing the effects of 

various time resolutions of smart meter data from data set to 120 minutes on low 

voltage network loss, voltage level, and cable load estimates.  

 studying smart meter aggregation levels: statistically and graphically analysing 

the effects of various levels of customer data aggregation from 1 to 10 customers 

on low voltage network loss, voltage level, and cable load estimates.  

 contextualising the impacts: placing the findings in the context of low voltage 

network applications such as asset management, network planning and design, 

fault management, ANM, and DSM to propose the optimum levels smart meter 

data frequency, time resolution, and aggregation level to the DNOs and policy 

makers. 

This study is carried out using actual customer demand data from two smart meter trials 

in the UK fitted into various test low voltage network models. This work differs from 

previous studies such as Urquhart & Thomson (2015) and Urquhart et al. (2017) in that 

the low voltage network models used in this work are representative of typical three 

phase low voltage networks in practice and comprise of 100 houses. This is a unique 

approach and significantly improves previous studies in this field such as in Brandauer 

et al. (2013) and Urquhart and Thompson (2015), which are carried out on single phase 

low voltage network models with a limited number of houses. Another novelty of this 

work is that our analysis also includes the impact of smart meter data aggregation, from 

1 to 10 customers, on major low voltage network performance indicators which has not 

been addressed before. To date, the only work in this area is the study presented in EA 

Technology (2015b) which only estimates the costs that DNOs will incur as a result of 

having aggregated customer data at 2 or 4 customer aggregation level compared to 

having disaggregated individual smart meter data.  

The models used in this study are also very close to low voltage networks found in the 

UK both in terms of the network geometry and network component characteristics. 

However, our work is applicable to most a majority of low voltage networks and our 
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studies can be used by other DNOs or experts in the field. The major novelties of this 

research is that both the extent to which the accuracy of smart meter data is affected by 

time resolution and customer data aggregation is investigated and subsequently 

contextualised with respect to the DNO applications. This research also makes use of 

descriptive statistical methods, which are the most appropriate and common in the field.  

Detailed description of the data sets, methods, and network models employed in this 

research will be discussed in chapter 3.  

 

1.6 Research Outputs 

Findings from this research have been presented and disseminated in academic journals 

and conferences, industrial reports and workshops, governmental seminars, and public 

engagement exercises.  

The following research outputs have been generated from this thesis: 

Journal Papers: 

 Chapter 4 Output: The International Journal of Electrical Power and Energy 

Systems (IJEPES), “Low Voltage Current Estimation Using Smart Meter Data”. 

In press. Reference no. JEPE4507. Impact Factor: 3.289 

 Chapter 5 Output: The IET Journal on Generation, Transmission and 

Distribution, “Using Smart Meters to Estimate Low Voltage Losses”. In press. 

DOI: 10.1049/iet-gtd.2017.1300, Impact factor: 2.213 

Conference Publications: 

 CIRED 2017, Glasgow, “Analysing the Ability of Smart Meter Data to Provide 

Accurate Information to the UK DNOs”. Published in IET Open Access Journal. 

DOI: 10.1049/oap-cired.2017.0654 

 IEEE PowerTech 2015, Eindhoven, “Geospatial Visualisation of Smart Data for 

Improved Network Management”. Published in IEEE Xplore.  DOI: 

10.1109/PTC.2015.7232445 

 CIRED 2015, Lyon, “Smarter Business Processes Resulting from Smart Data”. 

Published CIRED Conference Proceedings.  

 

http://dx.doi.org/10.1049/iet-gtd.2017.1300
http://dx.doi.org/10.1049/oap-cired.2017.0654
https://doi.org/10.1109/PTC.2015.7232445


23 

 

Workshops, seminars, and reports: 

 Presentation of the findings to the industrial experts in the field by producing 

reports and organising workshops regularly from 2014 to 2017. 

 Presentation of the findings to major policy makers in the UK, the Department 

for Business, Energy, and Industrial Strategy (BEIS), in December 2016.  

 Presentation of our findings about time resolution and loss estimates in chapter 5 

in a report published by the Northern Powergrid (Northern Powergrid 2016). 

Public Engagement: 

 Sheffield Festival of Science and Engineering, Birley Community College, 

Sheffield, 2014. 

 

1.7 Thesis outline 

This work comprises 7 chapters. Chapters 1 to 3 lay the foundation and the theoretical 

underpinnings of the research as well the methods and the data sets used and chapters 4 

to 6 contain the main analysis carried out in this research, followed by chapter 7 which 

summarises the main findings as well as highlighting conclusions and contributions of 

this study. The content of each chapter is outlined below. 

Chapter 2 describes the literature review process followed by identifying the research 

trends and priorities in the field of smart grids and smart meters that are found in the 

literature. In the next step, the research and studies that are relevant to the aims and 

objectives of this work are reviewed. In the first place, this is carried out by identifying 

the main approaches in obtaining important low voltage network performance indicators 

with and without smart meter data. Secondly, the ways in which major low voltage 

network applications are undertaken in the absence of smart meter data and the ways in 

which they can be enhanced by having detailed smart meter data are investigated.  

Chapter 3 describes the data sets employed in this study and highlights their 

characteristics. This is followed by presenting the main low voltage network models and 

the methods used in carrying out the analysis in chapters 4 to 6 and the ways in which 

they are different from relevant studies.  
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Chapter 4 presents the results of predicting missing low voltage currents from a portion 

of customers on the network using historical smart meter data from the neighbouring 

meters. In this chapter, 5 estimation methods in combination with half-hourly smart 

meter data from two different data sets are tested on a 20-house low voltage network 

model and the 2 best preforming methods are then tested on a 50-house network model. 

The best two methods and the 50-house network model is also ultimately used in order 

to estimate the missing currents from individual customers.  

Chapter 5 demonstrates the correlation between smart meter time resolution and the 

estimation accuracy of critical low voltage network information such as technical losses, 

voltage levels, and cable loading percentages. This chapter examines how these 

estimates are affected by the time resolution of smart meters varying from 1 to 120 

minute averages in a balanced and an unbalanced three phase low voltage network using 

data from 8 sample dates of the two different data sets. Chapter 5 also examines two 

methods of predicting 1 minute loss estimates based on half-hourly values of losses and 

the accuracy of the methods is examined. 

Chapter 6 investigates the correlation between smart meter aggregation levels of 1, 2, 

4, 6, 8, and 10 customers and the accuracy level of critical low voltage network 

information such as technical losses, and voltage levels. The effects of aggregation 

scenarios on voltage and loss estimates are examined in two different low voltage 

network topologies and on 8 different sample dates in a balanced and an unbalanced 

network model.  

Chapter 7 draws conclusions from the findings of this study and the ways in which the 

findings contribute to the academic and practical knowledge. It also sheds more light on 

the limitations of the analysis carried out and recommends the future research 

directions. 
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Chapter 2 Literature Review  

This chapter investigates the literature relating to the various aspects of DNO 

applications and the role that the smart meter data can play in improving these 

applications. In the first place, the literature review steps are described. Secondly, the 

major research trends, priorities, and gaps in the field are identified, followed by an  

in-depth investigation of low voltage network performance indicators that are important 

to the DNOs, such as estimation of customer loads, network losses, voltage levels, and 

cable capacity percentages. These are the types of information that major DNO 

applications are heavily reliant on. Last but not least, major DNO applications that are 

relevant to the low voltage side of the network and the ways in which they have been 

operated prior and after the availability of smart meter data from customers are 

investigated. These DNO applications consist of asset management, fault location and 

restoration, network design and planning, network planning, network monitoring, power 

quality management and integration of embedded generation, and Active Network 

Management (ANM). 

 

2.1 Literature Review Process 

The topic of Smart Grid covers a wide range of areas and also varies from country to 

country in terms of research priorities and implementation level based on differences in 

electricity networks or market set ups. Our study focuses on how the DNOs in the UK 

can benefit from smart meter data based on the current policies in the UK. Considering 

these issues, it was important to investigate the relevant studies carried out and select 

the methods and approaches that work in the context of the UK’s distribution network. 

To this end, the literature review process was divided into two stages. An initial 

narrative review of the wide variety of the works being produced in the field was carried 

out to identify the general research trends and gaps in the field.  The secondary stage of 

the literature review process comprised a systematic review of the academic literature in 

order to focus on the latest research and the most relevant studies to the aim and 

objectives of this thesis.  

2.1.1 Initial Literature Review Stage 

The first step of the literature review entailed carrying out a narrative literature review 

of the topics of smart grids and smart meters by investigating the most recent and 
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relevant conference publications from the IEEE Smart Grid and the CIRED conferences 

(e.g. IEEE Smart Grid conference in Berlin (2013) and CIRED conferences in Frankfurt 

(2011) and Stockholm (2013)). This was carried out in order to investigate the latest 

research being produced since the process of publishing in journals usually takes longer 

than presentation of the work that is underway at the relevant conferences. This is 

particularly important in our field as research around the topic of smart grids and smart 

meters is gathering pace every day and the areas that are of interest vary.  

Additionally, the journal papers published in the databases relevant to the field of smart 

grids such as the IEEE Xplore and the IET were also investigated. These were 

combined with reviewing the most recent policy documents about the Smart Grid vision 

and the smart meter implementation documents published by the OFGEM in 

consultation with the UK DNOs and suppliers.  

This step was also complemented with visiting various DNO application teams at the 

Northern Powergrid operation sites, including asset management, network planning and 

design, fault management, and smart meter implementation. This was carried out in 

order to obtain the operational needs and expectations from the future smart meter data 

that are specific to each application context. The findings from reports published by 

other DNOs in the UK (e.g. Western Power Distribution and Scottish and Southern 

Electric) were also reviewed to find the common areas that are of interest to the DNOs 

in the UK.  

The next step was to review the major Smart Grid and smart meter projects in Europe 

and in the UK to further investigate the research priorities and the data sets available to 

us as well as reducing the chances of conflict in research interests. The most important 

Smart Grid project in the UK, especially with respect to our research project, is the 

Customer-Led Network Revolution (CLNR), mainly due to the involvement of 

Northern Powergrid in the project and the smart meter data sets that were obtained from 

this project. CLNR was a £31 million project in the UK which aimed at decreasing the 

level of carbon emissions produced by customers by promoting the use of low carbon 

technologies and studying Smart Grid solutions and the behaviour of households 

equipped with smart meters (CLNR 2012). As part of the CLNR project, smart meter 

roll-out trials were carried out in the UK between 2011 and 2014 with the aim of 

facilitating the eventual full smart meter deployment in the country.  
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The project was carried out by British Gas, Northern Powergrid, Durham Energy 

Institute, the Newcastle University, EA Technology, and Low Carbon Network Fund 

(LCNF) and through this project 14,000 homes in the North East and Yorkshire were 

provided with smart meters, out of which 2500 were using solar PVs or heat pumps 

(Dudeney et al. 2015). Data from these trials were gathered and analysed by the parties 

involved to examine the new kinds of customer demand which will be new to the 

electricity distribution network as well as testing the Low Carbon Technology (LCT) 

solutions and various tariffs (CLNR 2012; Dudeney et al. 2015). CLNR is a major 

source of data for this research project as well. Smart meter data sets from the trials 

provide invaluable information to our research purposes.  

In summary, the bodies of work that were investigated in this stage of the literature 

review can be divided into the following three major categories: 

 policy, consultation, and advisory documents from major international and 

European organisations in the field and the UK regulatory bodies. 

 academic research. 

 learning outcomes and reports from major industrial and academic collaborative 

trials and studies. 

The main reason for investigating these various sources was the fragmented and diverse 

nature of the research in the field and also the fact that the research priorities and 

directions are to a large extent driven by the perspectives of the various players in the 

field. 

2.1.2 Secondary Literature Review Process 

After the initial review of the literature, a number of meetings were held with the 

academic and the industrial supervisors and also with members of the CLNR team. 

During these meeting a number of issues such the research trends and priorities, gaps in 

knowledge, and the available data sets were discussed in order to narrow down the 

scope of the research and to identify a set of aims and objectives that offer novel 

contributions to the realms of academia and the industry. After consolidating the main 

aims and objectives of this research, a more detailed and systematic review of the 

literature was carried out by identifying the relevant databases in the first place. 
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The next step of the literature review process for this thesis was conducted by defining 

search terms or “search strings” relevant to the research aims and objectives and the 

research question defined in 1.5. The relevant papers were identified using Boolean 

searches (Linnenluecke 2017) of the following search strings in Scopus and Google 

Scholar: 

 Smart grid* 

 Smart meter* or AMI 

 Low Voltage or LV 

 Load prediction/Allocation/Forecasting 

 Losses 

 Voltage or voltage level*  

 Asset management 

 Network planning 

 Network design 

 Fault management 

 Active network management 

 Distributed generation/embedded generation 

 Network monitoring 

These search strings were used hierarchically starting with searching for papers, 

conference publications, and book chapters containing the term “smart grid*”. This 

search returns 28,380 papers. These papers are then narrowed down to only 720 papers 

by searching the search strings of “smart meter*” and “LV” or “Low Voltage” in the 

whole text of works. Figure 2-1 below demonstrates the systematic literature review 

steps taken and the number of papers found at each stage (N).  

As Figure 2-1 shows the 720 search returns found in step 2 were then further narrowed 

down in separate searches using search strings of “load prediction”/” load forecasting, 

“voltage*”, “losses”, “asset management”, “network planning”, “network design”, 

“fault management”, “active network management”, “distributed 

generation”/”embedded generation”. 
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Figure 2-1: The systematic literature review steps 

1. Using search string “smart 

grid*” in Scopus: 

N= 28,380  

(inc. journal papers, conference 

papers, and book chapters) 

2. Applying search strings 

“smart meter*” and “low 

voltage”/”LV” within the 

results in 1: N= 720  3a. Applying 

search strings 

“load 

prediction”/”load 

forcasting” 

N= 285  

3c. Applying 

search strings 

“losses” 

N= 200 

3b. Applying 

search strings 

“voltage*” 

N= 82 

3d. Applying 

search strings 

“asset 

management” 

N= 230  

3e. Applying 

search strings 

“network 

planning” 

N= 108 

3f. Applying 

search strings 

“network design” 

N= 273 

3g. Applying 

search strings 

“fault 

management” 

N= 317 

3h. Applying 

search strings 

“active network 

management” 

N= 385 

3i. Applying 

search strings 

“distributed 

generation”/”emb

edded 

generation” 

N= 107 
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The title and the abstract section of these papers were then read and the studies that 

were related to this research were then selected to be investigated in full. It was decided 

to include relevant conference papers from major conferences in the field that ensured a 

good quality of peer review (e.g. CIRED and IEEE Smart Grid). As Tranfield et al. 

(2003) highlight, a complete literature review should also include published and 

unpublished works that have been through credible peer review processes. The selected 

papers were deemed eligible based on their relevance to the DNO application of interest 

or whether they contained methods related to studying the relationship between smart 

meter data frequency, time resolution, or aggregation level and estimation of customer 

loads, network losses, or voltage levels.  

Additionally, various known governmental and organisational websites as well as the 

websites for major trials and studies were also investigated and tracked to gather the 

documents and reports related to this research. These websites and databases include 

CIRED conference proceedings, IEEE Xplore, IET journals, OFGEM, DECC, 

European Joint Research Centre (JRC), and the Department for Business, Energy and 

Industrial Strategy (BEIS). This was very helpful to find the relevant studies related to 

the DNO applications of interest.  

Some of the literature on the smart meter projects and regulations around the smart 

meter time resolutions, gradual implementation, and aggregation of smart meters have 

been selected to explain the limitations that these issues can cause in the UK. However, 

the remainder of the literature has not been restricted to the studies in the UK only. This 

study can be used by the network operators and the experts in the field in other 

countries that face similar issues such as many European countries. However, it should 

be noted that the difference between the electricity market set up in the UK and other 

European countries means that the DNOs in the UK are more limited in their access to 

smart meter data and customer data information. For example, in the UK the DNOs own 

and run the distribution networks and the customer billing is carried out by suppliers. 

However, in most European countries the utility companies carry out both all of these 

tasks, which provides them with access to more types of data. Therefore, some of the 

works carried out in other countries were inapplicable to the network set up in the UK.  
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2.1.3 Selected Academic Papers 

In terms of load prediction or load allocation searches (3a), the studies deemed relevant 

to the scope of this research are McQueen et al. (2004); Kersting and Philips (2008); 

Arritt et al. (2012); Ferreira et al. (2012); Li et al. (2012); Rossi and Brunelli (2013); 

Gajowniczeka and Ząbkowskia (2014); Huang et al. (2014); Mirowski et al. (2014); 

Stephen et al. (2014); Velez et al. (2014); Hayes et al. (2015); Mcloughlin et al. (2015) ; 

Quilumba et al. (2015); Wong and Chung 2015; Klonari et al. (2016); Valgaev et al. 

(2016); Vasudevaro et al. (2016).  

Considering the studies on voltage levels and losses (3b and 3c), the papers that deemed 

eligible to be included in our study are Hackman et al. (2013); Rossi and Brunelli 

(2013); Gajowniczeka and Ząbkowskia (2014); Mahmud et al. (2014); Alzate et al. 

(2015); Bokhari et al. (2015); Urquhart and Thompson (2015); Garcia et al. (2016); 

Pompodakis et al. (2016); Wang et al. (2016); Nijhuis et al. (2017); Urquhart et al. 

(2017); Vasudevaro et al. (2016); Celik et al. (2017); Konstantelos et al. (2017). 

The major works related to the DNO applications that were selected are summarised 

below: 

Asset management (3d): Brown and Humphrey (2005); Tor and Shahidehpour (2006); 

Brint et al. (2008); Black et al. (2009); Brint and Black (2014); Lees (2014); Miller 

(2015); Sirto et al. (2015); Goyal (2016); Mohsenzadeh et al. (2016). 

Network planning (3e) and network design (3f): Brown (2008); Porter and Strbac 

(2007); Strbac et al. (2010); ENA (2012); Roupioz et al. (2013); You et al. (2014); 

Nijhuis et al. (2017). 

Fault management (3g): Apel et al. (2001); Verho et al. (2004); Gano et al. (2011); 

Makinen et al. (2013), Zhao et al. (2013), Abusdal et al. (2015); Estebsari et al. (2016); 

Jiang et al. (2016); Jamali and Bahmanyar (2016); Jamali et al. (2017). 

Embedded generation (3h) and active network management (3i): Lees (2014); 

Mcdonald et al. (2010); Strbac (2010); Repo et al. (2013); Chiandone et al. (2014); 

Degefa et al. (2014); Zhou et al. (2014); Hattam (2015); Jagtap and Khatod (2015); 

Neaimeh et al. (2015); Sandulec et al. (2015); Navaro-Espinoza and Ochoa (2016); 

Paterakis et al. (2016); Phoghosyan et al. 2016; Watson et al. (2016); Barbato et al. 

(2017). 
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In summary, the literature review process was dictated by the fragmented, diverse, and 

transdisciplinary nature of the literature being produced in the field of Smart Grid and 

smart meter research. The results that were deemed to be relevant to this project are 

presented in chapters 1, 2, 3, and 7 of this thesis.  

 

2.2 Research Trends in the Field of Smart Grids 

The Smart Grid agenda is pursued differently in different countries and regions based 

on their priorities and network characteristics. The IEA (2012) emphasises that the 

process of transforming the grid is an ongoing and a gradual process as needs and 

applications of the DNOs emerge and evolve over time. In a broader context documents 

and studies such IEEE’s “2050 Grid Vision” (2013), European Union’s JRC reports 

(Giordano et al. 2011; Covig et al. 2014), and also European Technology Platform on 

Smart Grid’s report (ETP SmartGrids 2013) draw the main research and development 

areas of the Smart Grid. In the context of the UK’s Smart Grid agenda, the Energy 

Network Association’s report (2009) and the OFGEM’s Smart Grid Forum’s document 

(2014) highlight the Smart Grid vision and roadmap for the DNOs in the UK (Energy 

Network Association 2009; OFGEM et al. 2014). These will be outlined in the 

following section.  

2.2.1 Smart Grid Research Areas and Priorities  

According to the latest report from Joint Research Centre (JRC) of the European Union, 

there has been a growing investment in Smart Grid projects across all European 

countries (see Figure 2-2 below) reaching £56 billion allocated to 459 projects (Covig et 

al. 2014). The majority of these projects involve collaborations among various parties 

from governments, academia, and industry as well as investments from different 

countries (Covig et al. 2014). 
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Figure 2-2: Spread of Smart Grid projects in Europe (JRC 2016) 

 

A great majority of investments in the field of smart grids originate from France, United 

Kingdom, Spain, Italy, and Germany (Covig et al. 2014). Some of the main challenges 

which these projects encounter are the social, policy and regulatory constraints that vary 

from country to country and as Covig et al. (2014) also emphasise, these challenges 

restrict the potential replicability of the results from these projects in different countries. 

Based on IEEE (2013) and ETP Smart Grids (2015), the top research priorities in the 

Smart Grid can be summarised as follows: 

 Observability and control: raising the visibility level of the network operation, 

especially at the lower levels of the electricity networks to enable a more 

proactive operation of the grid. 

 Modelling power systems and Information and Communication Technology 

(ICT): modelling the various areas of the electricity networks and testing the 

possibility of utilising advanced information technologies (e.g. smart meters, 

substation meters, etc.). 
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 Consumer maturity: raising the awareness level to change passive consumers 

into informed decision makers. 

 Power technology to increase network flexibility: researching the most 

effective ways in which embedded generation can be integrated into modern 

distribution grids 

 Integration of demand-side management: researching the most practical 

incentives to reduce the strain on the network at peak consumption times. 

A summary of  major Smart Grid and smart metering projects are presented in Tables  

2-1 and 2-2 below.  

As Table 2-1 highlights, most European Smart Grid projects are large-scale and  

multi-national. Majority of these projects are focused on integration of embedded 

generation or low voltage technologies in the medium voltage network, while reducing 

risks and costs.  

Table 2-2 shows that smart metering projects are more focused on the lower voltage 

side of the network with more emphasis on the relationship between customers and 

smart meter data and the ways in which such data can be used to incentivise higher 

uptake of solar PVs and shift in consumption at peak times. 

Since this thesis focuses on the challenges that smart meter specifications and 

regulations in the UK can pose to the benefits gained from smart meters (see section 

1.4) and also the fact that the electricity market set up in the UK is different from other 

European countries, Table 2-2 only highlights the smart meter projects in the UK. 
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Table 2-1: Summary of major Smart Grid projects in Europe 

Project Title Collaborators Scale Focus 

Meter-On  

(Marcoci et al. 

2013) 

 

Network Operators 

Academics 

Technological Institutions 

European 

Level 

Minimising and removing 

technical and market barriers 

towards widespread 

implementation of customer 

smart meters.  

Enel Distribuzione 

(Stein et al. 2013) 

 

Network Operators 

Academics 

Suppliers 

European  

Level 

Improving the integration of 

renewables in the medium 

voltage network. 

Grid+ 

(Losa et al. 2013) 

Network Operators 

Academics 

Technological Institutions 

European 

Level 

Fostering the evolution of the 

electricity grid toward the 

European Smart Grid 2020 

objectives, especially higher 

shares of renewables. 

InovGrid 

(Matos et al. 2013) 

 

Network Operators 

Academics 

Country  

Level: 

Portugal 

Integrating of information 

systems and the distribution 

network in order to reduce 

operating costs and increase 

efficiency. 

Endsea Smart 

Metering Roll-out 

(Open meter 2011; 

Tellechea 2013; 

Vadacchino et al. 

2013) 

 

Network Operators 

Academics 

Suppliers 

Country 

Level: 

Spain 

Using innovative technologies 

in transferring data from smart 

meters to the utility companies 

and also in the management of 

the electricity network. 

Smartlife 

(Soepboer et al. 

2013) 

 

Academics 

Suppliers 

Technological Institutions 

European  

Level 

Developing new ways of asset 

management and distribution 

asset management in MV 

networks. 
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Table 2-2: Summary of Smart Grid and smart meter projects in the UK 

Project Title Collaborators Scale Focus 

Lincolnshire Low 

Carbon Hub 

(Douglas 2011 and 

Bale 2015). 

 

Suppliers 

Academics 

 

Community 

Level 

Active Network Management 

(ANM) solutions in to 

facilitate integration of DG 

into the LV networks. 

Hook Norton Low 

Carbon 

(Douglas 2011) 

 

Suppliers 

Academics 

Community 

Level 

Monitoring of consumer 

demands at LV substation 

and neighbourhood levels 

within a “smart” community. 

Ashton Hayes 

Project 

(Kadar 2011) 

DNOs 

Suppliers 

Academics 

Community 

Level 

Transforming the village to a 

carbon neutral village. 

Northern Isles New 

Energy Solutions 

(NINES) 

(Reid 2011) 

DNOs 

Academics 

Community 

Level 

Researching proactive 

network management 

solutions in order to provide 

network constraint relief and 

reduce network peak 

demands. 

Low Voltage 

Network Solutions 

(Electricity North 

West 2014) 

DNOs 

Academics 

Suppliers 

Community 

Level 

Investigate load patterns on 

networks to accommodate 

higher shares of DG in the 

LV network. 

Low Voltage 

Templates 

DNOs 

Academics 

County 

Level 

Finding ways of integrating 

higher shares of DG into the 

LV network by developing a 

tool that categorises sections 

of the LV network into 

typical LV templates  

 

 

In the context of the UK electricity networks, the Smart Grid research areas and 

priorities as highlighted by the ENA (2009) and the OFGEM (2014) can be summarised 

as follows: 

 Rising energy security and integration of embedded generation 
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 Enhancing energy security and reliability 

 Improving network capacity 

 Improving network visibility 

 Enabling low carbon technology connections (e.g. electric vehicles and 

combined heat pumps) 

Observability and control, especially at the distribution level can potentially be achieved 

by utilising the smart data received by the DNOs via AMIs and smart meters (ETP 

SmartGrids 2015; IEEE 2013). This is the key enabler of effective integration of 

embedded generation and low carbon technologies into the modern grids. However, 

obtaining a higher level of observability at the low voltage level by installing  

fine-grained measuring devices at low voltage substations is a very expensive option, 

mainly due to the tens of thousands of low voltage substations that need to be equipped 

with these meters and the enormous costs involved (EurElectric 2013).  

On the other hand, about 80% of customers in Europe will be provided with smart 

meters by 2020 (some countries such as the UK until 2025) (EurElectric 2013), 

therefore it is far cheaper to use these smart meters in a bottom-up approach and draw 

benefits from the smart data that will be available to the DNOs as a result of widespread 

smart meter deployment programmes in Europe. It is expected that smart meter data can 

provide DNOs with a higher level of observability and control at the lower levels of the 

grid by recording and transmitting the sizes of generation and demand from every 

customer to the DNOs, and as a result eliminate the need for the DNOs to install high 

resolution meters at every low voltage substation.  

 

2.3 Smart Meters and Smart Low Voltage Grid Operation 

Potentially, having real-time smart meter data, which provide actual customer loads, can 

improve the accuracy of fundamental network information such as size of the currents 

on various section of the network and as a result lead to more accurate estimates of 

losses, voltage levels, and low voltage cable load capacities. This information can in 

turn increase the visibility of the low voltage network to the DNOs and enhance the 

distribution network applications such as network planning and design, asset 

management, network monitoring, fault management, and power quality management. 

However, in reality it is highly unlikely that the DNOs can obtain high resolution and 
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fine-grained smart meter readings from customers on all of the low voltage networks, 

due to limitations posed by smart meter specifications, time delays, privacy concerns, 

and the lack of infrastructure. Traditionally, the data that the smart meters can provide 

has not been available to the DNOs beyond the low voltage substation level. However, 

this will potentially change with the widespread deployment of smart meters and the 

provision of real-time customer demands.  

In the traditional electricity network set up, the amount of real-time information that 

DNOs have about the status of the electricity distribution network decreases as the 

number of monitoring points drop from high to low voltage networks, to such an extent 

that it is very rare for the DNOs to have data monitors beyond the primary substations 

(Karimi et al. 2013). For example, in the UK normally the nearest monitoring point to 

the low voltage network has usually been at the 33kV to 11kV substation (Lees 2014; 

Stephen et al. 2014).  

Since the early 1990s, experts have been pointing out the limitations of data available to 

DNOs and have been arguing that merely having voltage and power readings at 

substations are not sufficient to ensure the quality of supply to customers and more 

detailed data are required (Baran 1993; Baran and Kelly 1994). In recent years, the 

DNOs have been studying the benefits of installing advanced meters at low voltage 

substations (e.g. CLNR project). However, the enormous costs involved in fitting every 

low voltage substation with advanced meters has encouraged the DNOs to turn their 

attention to the information data that can be obtained from customer smart meters at no 

additional costs.  

In 2010, Imperial College London and Energy Network Associations (ENA) carried out 

a study to identify the extent of benefits that will be gained by implementing smart 

meters to achieve a real-time operational control of the Smart Grids (Strbac et al. 2010). 

This work was further taken forward in ENA (2012); Balta-Ozkan et al. (2014); and 

Miller (2015) that argued the importance of smart meters in the future of the electricity 

distribution grid as the UK Government has been looking to devise ambitious renewable 

energy strategies in order to decarbonise the grid by 2030 and beyond. Smart meter data 

is highlighted by Strbac et al. (2010); ENA (2012); Balta-Ozkan et al. (2014); and 

Miller (2015) to be the main enabler in the transition towards a more proactive network 

management which provides the capability of utilising schemes such Demand Response 
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Management (DRM), which could potentially decrease and/or shift the future daily peak 

demands resulting from widespread use of electric vehicles and combined heat pumps 

from 50% to just under 30% of the network capacity.  

They provide five different electric vehicle and combined heat pump penetration 

scenarios in Figure 2-3 that shows the various possible penetration levels of low carbon 

technologies in the UK’s electricity grid by 2030, ranging from the most pessimistic 

(10%) to the most optimistic (100%) scenario. This shows that even in the most 

pessimistic scenario, there will be a far greater need for network observability and 

control, most notably via smart meters, in order to manage the new demand patterns on 

the low voltage network. 

 

 

Figure 2-3: Future Low Carbon Technology (LCT) penetration scenarios (Strbac et al. 2010) 

 

EA Technology (2015b) have also made an estimation of the number of units of electric 

vehicles and heat pumps that will be installed in 4 of the main DNO license areas. These 

projected numbers are shown in Figure 2-4 below. 
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Figure 2-4: Electric vehicle and heat pump installations per license area (EA Technology 2015b) 

 

As Figure 2-4 shows the volume of low carbon technologies installed on the low 

voltage network will increase significantly and the DNOs need to manage these new 

patterns more proactively than before.  

Strbac et al. (2010) define two network operation modes of Business As Usual (BAU) 

and “Smart”, that represent the passive and active operation of the grid, respectively. 

They also estimate that the latter (Smart) mode of operation, empowered by smart meter 

information, will lead to lower costs of network reinforcement in the long run, 

especially in scenarios with lower penetration levels of electric vehicles and combined 

heat pumps (Strbac et al. 2010). In their “Smart 2050” scenario, Balta-Ozkan et al. 

(2014) also define the best case smart grid development scenario in the UK. In this 

scenario low carbon technologies are fully integrated into the smart grid applications 

and the DNOs and customers are both fully engaged in active management of the 

networks. These scenarios are driven by the assumption that smart meters will pave the 

way for extensive adoption of demand response programmes, which is still open to 

debate.  

In this light, Strbac et al. (2010) and ENA (2012) foresee the following benefits from 

the deployment of smart meters in the UK: 
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 Reductions in generation demands by accommodating demand response 

programmes and utilisation of renewable generation 

 Improving the flexibility of the grid 

 Improving the decision making in fault restoration and network investment 

This will be even more vital as DNOs become more active in the operation of the 

distribution networks and develop smarter ways of information gathering, control 

technology and distributed resource integration, which in turn will drive the 

development of Advanced Distribution Management Systems (ADMS) for the 

improved operation of electricity networks (Fan and Borlase 2009; Arritt and Dugan 

2011; Uribe-Perez et al. 2016). A number of studies have raised the point that the future 

Smart Grids with embedded generation will be heavily reliant on real-time information 

from smart meters or AMIs to facilitate a more proactive network operation 

(Meliopoulos et al. 2011; Karimi et al. 2013; Quilumba et al. 2015; Spencer 2015). It is 

also highlighted that the current limited Supervisory Control and Data Acquisitions 

(SCADA) data in relation to MV/LV network information has become less prevalent at 

lower voltage levels of the distribution network as highlighted earlier (Baran and 

McDermott 2009; Karimi et al. 2013).  

2.3.1 Integration of Smart Meter Data into DNO Applications 

The smart meter deployment programme in the UK is a gradual process taking place 

between 2014 and 2024. Therefore, while the DNOs adapt their applications to integrate 

new streams of data from smart meters, it is highly likely that smart meters in some 

areas of the network are not available, so the half-hourly demand/generation data from 

some parts of the networks will not be available to the DNOs. Also, the smart meter 

data which are transmitted to the DNOs will be half-hourly averages of the customer 

loads, which in itself can potentially decrease the accuracy of the data. Additionally, the 

DNOs are required to anonymise and aggregate these half-hourly averages from the 

customers (ENA 2015; OFGEM 2017), which can potentially introduce another element 

of inaccuracy. 

These policies and regulations vary from country to country in terms of the time 

resolution intervals and aggregation requirements of the smart meter data. For example, 

in the United States the smart meter firmware can be updated by the utilities to obtain 

higher resolutions of data and there are also no requirements in terms of anonymization 
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of the customer data by the operators (Mirowski 2014). Also some European countries 

have decided on higher or lower time resolutions of smart meter data and data access 

arrangements. For example, Belgium, Austria, Italy, and Denmark have chosen higher 

time resolution of 15 minute intervals, whereas countries such as Estonia and Sweden 

have opted for lower time resolutions of 1 hour intervals (Ilves 2016). Potentially, these 

specifications can affect the quality and capability of smart meter data to provide the 

DNOs with accurate low voltage network information which in turn will limit the ability 

of the DNOs to play a more proactive role in the operation and control of the low 

voltage network and the future smart grid applications.  

From the viewpoint of the DNOs, the issues which can potentially limit the benefits of 

the smart meter data in the UK are as follows: 

 Missing customer meter data, due to faults or non-existence of smart meters 

 Time resolutions of the smart meter data available to the DNOs 

 Lack of individual customer data, due to aggregation of the data 

 Lack of customer phasing information, due to radio frequency technology used 

in the UK for the transmission of data from smart meters 

Major smart meter and smart grid trials in the UK have attempted to investigate and 

clarify the changes that will have to take place on the low voltage distribution side of 

the electricity network in order for the DNOs to be able to overcome the challenges of 

accommodating new generation and demand patterns as a result of higher take up of 

embedded generation and low carbon technologies at customer levels. For example, 

Npower (2011) and Western Power Distribution (2013) put a strong emphasis on the 

role of the smart metering systems in providing the required sources of information to 

facilitate the transition to decarbonised distribution grids. A study by the UK Power 

Networks and TE Connectivity (UK Power Networks 2013) highlights the need for the 

DNOs to better monitor the loads on the low voltage networks and use the information 

to optimise the network capacity as well as identify the areas that need reinforcement 

and replacement. In other words, using new data can provide more visibility on the low 

voltage network to actively manage the loads and generation on the network and can 

lead to making better informed decision about network planning and design as well as 

network asset management (UK Power Networks 2013).  
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According to a report by EA Technology (2016), the areas that the DNOs are interested 

in developing in the future or have already developed to some extent are areas such as 

ANM, voltage control, fault level management, planning of new connections, dynamic 

rating, Demand-Side Management (DSM), using network storage, and using smart 

meter Time of Use tariffs to manage customer demands (EA Technology 2016). ANM 

is particularly important in managing network loading capacity, voltage levels and 

power flows and many DNOs are integrating the ANM measures to some extent as 

more renewables are installed in their existing network (EA Technology 2016). For 

example, better voltage level management can allow a DNO to install higher shares of 

embedded generation in the low voltage network while maintaining the voltage levels in 

the statutory limit ranges of 230V +10% -6%. EA Technology (2016) argues that the 

more in-depth behavioural knowledge of the low voltage networks is becoming ever 

more pressing to the DNOs as customers’ demand and generation are becoming more 

varied and intermittent.  

Western Power distribution (2013) and Barbato et al. (2017) emphasise that the role of 

smart meters and AMIs are becoming increasingly more crucial in providing a clearer 

picture about the behaviour of customers at the low voltage level and ultimately a more 

in-depth understanding of demand and generation patterns at the low voltage side of the 

network. Potentially, these new sources of information can dramatically enhance the 

conventional low voltage network. The following sections of this chapter investigate the 

important and relevant research on the major low voltage network information areas and 

the DNO applications that will be even more greatly dependent on accurate low voltage 

network information as the Smart Grids evolve.  

The current work addresses the impact of time resolution, missing meter data, and 

customer data aggregation on the accuracy of major low voltage network information. 

The information includes network performance indicators such as network losses, 

voltage levels, low voltage cable loading percentages, and load prediction. 

Consequently, the findings are contextualised in terms of the impacts on the major low 

voltage network applications such as fault detection and restoration, asset management, 

ANM, DSM, and network planning and design.  
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2.4 Fundamental Low Voltage Network Information Areas 

In this section, traditional approaches to estimating missing loads, network losses, 

voltage variations, and cable capacity percentages and the ways in which smart meter 

data can improve them are described. These are critical low voltage network indicators 

that inform and enhance the DNO applications which will be discussed in section 2.5. 

The main reasons why parameters such as losses, voltage levels, customer loads and 

cable loading percentages have been chosen in this study as the main low voltage 

performance indicators are: 

 the direct relationship of these information from these indicators with the 

objectives of the Smart Grid agenda in the UK. 

 the importance of these information areas to the DNOs and the regulatory bodies 

and the reliance of smart grid applications on them. 

 the possibility of quantifying the impact of time resolution, missing loads, and 

customer data aggregation on the accuracy of the information.  

The following sections provide an overview of the research that has been carried out on 

the ways in which the mentioned low voltage network performance indicators are 

obtained.   

2.4.1 Estimation of Loads on Low Voltage Networks 

Since the turn of the century, a great deal of research has been carried out on the  

short-term forecasting of the loads on the network (24-hour ahead) using Probabilistic 

Neural Network (PNN), Bayesian Neural Network (BNN) (Laurret et al. 2007), or 

Artificial Intelligence (AI). However, the majority of the research have been focused on 

the higher voltage levels of the network (Amjadi 2001; Beccali et al. 2004; Gerbec et al. 

2005).  

Load forecasting methods, or more specifically Short-Term Load Forecasting (STLF) 

techniques, have long been devised, developed, and employed by transmission network 

operators for an effective electricity network planning and operation as well as efficient 

retail purposes (Gerbec et al. 2005; Lauret et al. 2007; Taylor and McSharry 2007; Hahn 

et al. 2009). More recently however, more research has been carried out on utilising 

smart meter/AMI data in the STLF techniques by Baran and McDermott (2009); 

Ghofrani et al. (2011); Aung et al. (2012); Alzate and Sinn (2013); Mirowski (2014); 
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Quilumba et al. (2015). An overview of these studies are presented in the following 

section and a more detailed investigation of the methods used is found in chapter 3.   

The methods that have been developed in order to compensate for the lack of 

distribution network data and network visibility can be divide into three main categories 

of Distribution State Estimation (DSE), Load Allocation (LA), and load profiling. These 

methods are discussed in the following sections, respectively.  

2.4.1.1 State Estimation (SE): 

SE algorithms aim to provide voltage magnitude and phase angles at every bus on the 

transmission system (Celik and Liu 1998; Yih-Feng et al. 2012). Yih-Feng et al. (2012) 

describe State Estimation (SE) as a function that can provide more accurate monitoring 

data to various grid operation applications by obtaining a real-time picture of the 

network. SE for power systems was first introduced by Scheppe and Wildes in 1970 and 

it was mainly based on steady state operation conditions (Scheppe and Wildes 1970). 

Since then, SE has been a major part of network operation of power systems, especially 

at transmission levels (Celik and Liu 1998). Accurate SE models are useful in 

optimising power flows, as well as security and reliability analysis. Celik and Liu 

(1998) point out that at transmission levels, most network analysis tools rely on SE 

algorithms to obtain a system state picture of the network.  

On the other hand, SE techniques on the distribution side have lagged behind compared 

to the transmission side due to the design and operational differences between the two 

systems (Hayes and Prodanovic 2014). Transmission networks and distribution 

networks are different in a number of ways, which make the SE methods for each type 

of network very different. For example, there are far more measuring points and 

measurement types available at higher levels of the networks. Also, distribution 

networks are much more varied, complex, and extensive compared to transmission 

networks (Hayes and Prodanovic 2014). In the 1990s, the Distribution System State 

Estimate (DSSE) flourished in order to cope with the growing shares of embedded 

generation being installed in the distribution network (Hayes and Prodanovic 2014).  

On higher voltage levels, state estimator programmes act as providers of information to 

the SCADA system, which is a major part of the network operating system, especially 

in relation to Distribution Automation (DA) (Celik and Liu 1998; Baran and 

McDermott 2009; Yih-Feng et al. 2012). Karimi et al. (2013) explain that a statistical 
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SE algorithm provides voltage magnitudes, phase angles and power flow information at 

node points by utilising available data and customers’ load data, which are either 

measured or predicted from historical data, load forecasting methods, or Load 

Allocation (LA) methods. 

A number of researchers have pointed out that most SE approaches are suited for the 

transmission network, where there are more monitoring points on the network. Ghosh et 

al. (1997a); Celik and Liu (1998); Yih-Feng et al. (2012); Meliopoulos et al. (2011); 

Karimi et al. (2013) all raise the issue that the lack of real-time information at the 

distribution level has been hindering a widespread implementation of SE methods for 

the purpose of DA. They also highlight the fact that these transmission state estimator 

approaches fail to take into account the data limitations of traditional distribution 

networks.  

Celik and Liu (1998) also suggests that despite the fact that SCADA systems can 

contribute to dispatch teams and network engineers by providing some types of  

real-time data, the distribution network applications are far from integrating these  

data effectively, especially at lower voltage levels of the network. 

These issues that have hindered the implementation of SE methods at lower voltage 

levels can be overcome with the introduction of smart meters and AMIs to the low 

voltage networks (Uribe-Perez et al. 2016). More research is now under way to develop 

distribution SE methods that can be appropriately applied to distribution network 

scenarios, which are gaining even more significance by the development of the Smart 

Grid agenda and rising penetration level of embedded generation on the consumer end 

of the network (Meliopoulos et al. 2011; Karimi et al. 2013). Estimation of customers’ 

loads still remains one of the main aspects of SE. This is known as Load Allocation 

(LA) and is discussed further in the following section.   

2.4.1.2 Load Allocation (LA): 

Load Allocation (LA) methods constitute techniques that the network operators have 

developed over time to assign realistic load estimates to network transformers (Ghosh et 

al. 1997; Wong and Chung 2015). SE algorithms rely on customers’ load data which are 

not normally available in real-time on electricity distribution networks, hence state 

estimators require load models which are produced by LA methods (Ghosh et al. 1997b; 

Poursharif et al. 2015). Research has been carried out on methods that can provide load 
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demands at node points, mainly on MV distribution network scales. Efforts have been 

focused on moving away from traditional estimation of loads based only on peak 

loading conditions (Ghosh et al. 1997a). On the other hand, a lack of research in the 

area of low voltage load modelling is clear, which is an issue considering the need for a 

more proactive distribution network operation and the fact that the distribution network 

forms 48% percent of the total length of the UK distribution and transmission networks 

(EurElectric 2013).  

A better knowledge of low voltage network loads is required, and the more realistic the 

load modelling technique is, the more accurate the results of SE and other advanced 

applications fed by SE results are, which include estimation of power losses, power and 

reactive power and can also contribute to voltage optimisation, voltage and reactive 

power control, feeder reconfiguration, and demand side management (Ghosh et al. 

1997a; Ghosh et al. 1997b; Carmona et al. 2010; Baran and McDermott 2009; Sharifian 

et al. 2012). A number of other processes such as power flows, fault detection, and 

service restoration benefit from data produced by LA methods (Carmona et al. 2010).  

Traditional LA Methods 

In the UK, usually the lowest load monitoring point on the distribution network has 

been of the 11kV feeders at 33kV substations (Karimi et al 2013; Lees 2014). Beyond 

this point, the approximately yearly consumption (billing) totals from the individual low 

voltage customers and the maximum currents recorded at distribution substations have 

been available. The main low voltage current estimation methods have centred on the 

peak currents for use in the design and extension of low voltage networks. The two 

approaches that have been widely employed in the UK for estimating these are: 

1. After Diversity Maximum Demand (ADMD) (McQueen et al. 2004): this 

approach was developed in the 1950s. The maximum demand for a customer of 

a particular type is specified.  The maximum demand from a number of these 

customers is then taken to be this individual maximum demand times a diversity 

factor that is a function of the number of customers in the group.   

2. Customer demand curves (Carson and Cornfield 1973; McQueen et al. 2004; 

Vélez et al. 2014): allowing customers with peaks at different times to be 

modelled.  
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The LA methods have been improving to take into account various factors other than 

only peak loads based on transformer kVA and customers’ peak consumption or 

predefined demand tables and voltage drops (Ghosh et al. 1997b; Carmona et al. 2010).  

The traditional LA approach, that has been used by many network analysis and 

statistical estimation programmes, utilises the consumer transformer ratings and their 

nominal kVA to calculate the loads (Kersting and Philips 2008). The accuracy of these 

values or pseudo measurements can be enhanced by integrating variables such as 

customers’ monthly consumption values, customer types, time of day, and weather 

conditions (Sharifian et al. 2012; Poursharif et al. 2015).  

Improvements on Traditional LA Methods 

Lee and Etezadi-Amoli (1993) attempt to improve the traditional LA method for 

electrical distribution systems with incomplete information by acquiring a ratio factor in 

relation to customer type coincident factors. They classify customer types into two 

categories of residential and commercial and assign two different power factor values to 

them (Lee and Etezadi-Amoli 1993). This power factor is based on average power 

factor for each customer type (Lee and Etezadi-Amoli 1993). The coincident factor and 

power ratio factor values are then applied to the substation measurements (Lee and 

Etezadi-Amoli 1993).  

Although this is an improvement on the traditional transformer rate method, this method 

still relies on peak load measurements at each feeder and substation, which were the 

available data streams at the time of the study. At the time of that study, information 

such as power factor of the circuit, load phases, coincident factors, and load distribution 

patterns were not available to network engineers. Therefore, most network models were 

not accurate due to the lack of real time information downstream of substations or the 

costs associated with acquiring more detailed information (Lee and Etezadi-Amoli 

1993).  

This lack of data would lead to a lack of correct information about problems at lower 

levels of the network by hiding the individual load pattern variations. This is a major 

problem when using aggregation of customer loads as opposed to using more fine-

grained disaggregated customer data. For example, a linear factor approach commonly 

known as substation kVA method considers a direct proportional relationship between 
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electrical demand and the total kVA of installed transformers in that area which clearly 

neglects the variation in demand profiles of different customer types (Lee and Etezadi-

Amoli 1993). Lee and Etezadi-Amoli (1993) argue that using different coincident 

factors for different customer types in conjunction with some meter data instead of 

kVA, produces more accurate LA results.  

Ghosh et al. (1997b) focus further on customer information and the use of customer 

class curves and consumers’ billing information on a 934-bus distribution circuit to 

present load estimates and a level of uncertainty in the results. They aim to present an 

LA model that can represent the real time measurements which are very scarce in the 

reality of distribution network operation and planning. They also try to improve a major 

drawback of the traditional LA method, which is not providing a level of uncertainty in 

load estimations (Ghosh et al., 1997b). At the time, there was little literature on this 

subject apart from the work of Lee and Etezad-Amoli (1993), so Ghosh et al. (1997b) 

proposed a model to improve the traditional LA method by making use of all power 

flow measurements and available customer usage information from bills to present two 

values of expected loads and certainty variance associated with the expected loads. 

Load curves for each customer types are created by statistical analysis and customer 

types Load Modelling Factors (LMF) are applied to the values to adjust the expected 

load results (Ghosh et al. 1997b). While this method makes use of customer class types 

and time of day information, the various demand profiles within customer types are 

neglected, which may not be very crucial at MV levels with large number of consumers 

but it will be at low voltage levels. Early references to the need for the use of AMI data 

can be found in the works of Brakkan et al. (2006) and Carmona et al. (2010). This is 

mainly due the investment that utility companies made at the turn of the century to gain 

more information about their customers (Brakkan et al., 2006).  

Brakkan et al. (2006) emphasise the need for the integration of load allocation values 

with the network models in Geographical Information Systems (GIS), while Carmona et 

al. (2010) raises the importance of integrating accurate LA results in modern 

Distribution Management Systems (DMS) of the Smart Grid and the dependency of 

processes such as power flow analysis, fault management, and Volt/Var control on this 

integration. Carmona et al. (2010) propose a Load Allocation model based on three 

customer types of residential, industrial, and services and then divides them up into 

smaller clusters based on similarities in load types. The model uses the solution of least-
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squares and is carried out on MV levels in a context where each MV substation feeder is 

connected to customers via distribution transformers (Carmona et al. 2010). Carmona et 

al. (2010) present the best and the worst case scenario ranges, filling in the missing 

information with forecasted information and daily reference values at certain hours 

based on historical data.  

Kersting and Philips (2008) and Arritt et al. (2012) have presented LA methods which 

make use of AMI data in some way. They both use 15 minute time resolution meter data 

but differently and on different scales. Kersting and Philips (2008) work on 3 months of 

meter data from 314 consumers connected to 23 distribution transformers and make use 

of a concept termed “diversified demand” which is defined by them as period by period 

sum of the values of the 23 transformers. They argue that the traditional kVA method of 

LA can cause overestimation of demand and there is no direct relationship between the 

transformer rating and the number of consumers served by it. In this study, results from 

four methods of LA are compared to the values from AMI to determine which method 

best reflects the true values obtained from AMI readings. The three methods 

investigated are based on daily kWh, Monthly kWh, transformer kVA which is proved 

to be less accurate compared to using maximum diversified demands of the 

transformers obtained from 15 minute AMI data (Kersting and Philips 2008).  

On the other hand, Arritt et al. (2012) point out that with the widespread presence of 

AMI in the future, different load shapes can be drawn for different customers and that 

information can be fed into network modelling and simulation programmes. They make 

use of 15 minute resolution AMI data of a network with 1,179 consumers for a period of 

almost 4 months and also compare the LA results of four different methods including 

AMI allocation, transformer kVA allocation, monthly usage allocation, and class load 

shape allocation, but in the context of different network operation and planning 

processes (Arritt et al. 2012). While Arritt et al. (2012) prove that aggregated AMI load 

measurement can significantly improve the processes and State Estimation studies of 

distribution network, this is carried out at MV scale on a network with high numbers of 

consumers which may not be, at least in theory, susceptible to variation demand profiles 

of individual consumers.   
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2.4.1.3 Load profiling and clustering methods 

Clustering methods aim at exploring and finding inherent structures in sets of data by 

merging similar behaviours into clusters (Jain 2010; Klonari et al. 2015). Load profiling 

methods are based on clustering the data from various numbers of customers and using 

statistical methods such as mean and meridian to produce representative load curves 

(consumption patterns) for different customer types based on their location or social 

status (Klonari et al. 2015; Al-otaibi et al. 2016). As Jain (2010) highlights a number of 

methods have developed over the years in the field of cluster analysis, yet k-means still 

remains one of the most important methods which is indicative of the difficulty of 

devising a high performance clustering algorithm.  

Recently, there has been a number of studies on improving the load profiling and 

clustering of the consumers using high-resolution smart meter data in order to improve 

the traditional customer type classifications. For example, in the UK, domestic 

customers have been divided into two broad categories of either consumers on 

Economy 7 tariff or the non-economy 7 tariff and the industrial customers have been 

placed into 6 broad categories (Al-otaibi et al. 2016).  

Stephen et al. (2014) and Al-otaibi et al. (2016) both highlight the fact that most DNOs 

have been and are using annual or quarterly consumption data in their network 

performance indicator estimations. The provision of smart meter data can improve this 

situation. Mutanen et al. (2011) use Iterative Self Organizing Data Analysis Technique 

(ISODATA) to group various commercial consumers into representative profile classes 

at the MV level. There is far less deviation from the average load patterns in large 

samples of data from a large number of customers. However, this is not the case at the 

low voltage level and due to smaller number of customers, the individual load patterns 

become significant (Mutanen et al. 2011).  

Stephen et al. (2014) employ various linear Gaussian load profiling methods combined 

with customer smart meter data to model a particular type of consumer’s load pattern on 

a given day and they show that the peaks and drops in customer demands can be 

simulated with a high degree of certainty. Labeeuw and Deconinck (2013) utilise data 

from 1,300 customers using a top-bottom approach and Markov models within the 

customer clusters to produce representative load profiles. Ferreira et al. (2012) employ 

temporal data to examine patterns within the clusters of customers and produce seasonal 
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load profiles. Mcloughlin et al. (2015) use three methods of k-means, k-medoids, and 

Self Organising Maps (SOM) to examine the best ways of clustering customers together 

based on their pattern electricity use and then produce typical consumer profile classes. 

The methods employed in the studies presented in this section will be further 

investigated in chapter 3 and chapter 4 where the justifications and the explanations for 

the methodology employed in this thesis are described in detail. 

2.4.2 Estimation of Low Voltage Network Losses 

Network losses are one of the main network performance indicators for the DNOs and 

will become increasingly more crucial in the future Smart Grid scenarios. Power losses 

on electricity networks are strong indicators of the efficiency level of the network 

system delivering power from generators to customers. The allocation of these losses is 

not an easy task, because the losses and the customer loads on the network have a  

non-linear relationship (Slavickas 2000). Network losses make the provision process of 

electricity to consumers more expensive and the costs are usually passed down to the 

customers (Slavickas, 2000). For example, in the USA these network losses account for 

5 to 10 percent of the power produced to be transmitted and can lead to the losses of 

millions of dollars worth of energy (Alturki 2011). In Europe, this figure can range 

between 2.3 to 11.8 percent of the electricity generation (Heckmann et al. 2013). In the 

UK, network losses constitute approximately 5% of the energy transmitted to 

customers.  

The DNOs, under the new OFGEM Losses Incentive Mechanisms, are having to spend 

around £100 million per year to reduce the network losses (Sohn Associates 2009; 

OFGEM 2016). Network losses are far greater on the low voltage side compared to the 

higher levels of the distribution network, but accurately estimating the amount of losses 

has been particularly challenging to the DNOs, due to varying characteristics of each 

low voltage network and the lack of information on them.  

Figure 2-5 below shows the proportion of losses experienced on the distribution 

network in the UK compared to the total losses. 
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Figure 2-5: Proportion of losses on the electricity distribution network in the UK (Sohn Associates 

2013) 

 

As Figure 2-5 above demonstrates that a large proportion of losses on the electricity 

network occurs on the distribution network side managed by the DNOs.  

2.4.2.1 Loss Estimation Approaches 

The simplest approach is to measure the difference between the input and output energy 

at each end of the low voltage network as suggested by Urquhart et al. (2017), but this 

requires measuring devices on both ends of the low voltage network. This method also 

fails to distinguish between technical and non-technical losses or localise where on the 

network the losses are occurring. Therefore, various studies, especially in the field of 

energy management research have been carried out over time to (Fourie and Calmeyer 

2004): 

 estimate technical/non-technical losses of the power networks  

 decrease the technical losses  

 investigate the effects of embedded generation on the power losses  

For example, square root of mean current (I
2
), Artificial Neural Network (ANN), 

regression analysis, clustering models, and Radial Basis Flow (RBF) network, and 



54 

 

forward backward sweep are amongst the methods used in the absence of smart meter 

data (Hui-Ian et al. 2005; Zhang and Bo 2010).  

Non-technical losses are mainly related to illegal withdrawal of power from the network 

as well as unmetered loads such as street lights. However, technical losses are mainly 

caused by the resistance (impedance) in the cables, losses from heat, or electromagnetic 

fields (Fourie and Calmeyer 2004; Diop and Cercle 2005). Before the availability of 

smart meter data, the energy usage from each customer had been measured over long 

periods, e.g. 6 months or a year, and these periods were extremely unlikely to be the 

same for all customers on a low voltage circuit, e.g. the starting day of the period will 

vary for different customers. Even if the metering periods for all customers did 

coincide, the breakdown of the losses to individual conductors and time periods would 

not be known (Dashtaki and Haghifam 2013). 

A new element that can influence the network losses is the introduction of embedded 

generation and low carbon technologies into the distribution grid. Salman (1996) argues 

that the introduction of embedded generation into the low voltage distribution system 

can either increase or decrease the power losses depending on factors such as the 

location of the generators, topology of the network, and the ratio of generation to the 

load demand on the network. While Bell et al. (2009) discuss that the introduction of 

generation into the distribution system can decrease the network energy losses, Fourie 

and Calmeyer (2004) point out that there is only a certain degree to which technical 

network losses can be reduced, due to the physical restrictions of the electricity 

network.  

This is particularly challenging to assess for the DNOs, because the sizes of currents on 

the low voltage network with or without embedded generation or low carbon 

technologies is relatively unknown to them (Costa and Matos 2004; Carpaneto et al. 

2006; Frame et al. 2012; Jagtap and Khatod 2015a; Jagtap and Khatod 2015b). Studies 

such as Beddoes et al. (2007) and Karimi et al. (2013) demonstrate that the distribution 

networks with embedded generation normally experience a higher percentage of peak 

losses, which signifies the importance of the size, location and the operating mode of 

the embedded generation units connected to this level of the network (Zhang and Bo 

2010). In fact, Zhang and Bo (2010) demonstrate that network losses can be minimised 

by almost 76% by choosing the appropriate size, location, and operating mode of the 



55 

 

units in the distribution network. In Heckmann et al. (2013), the impact of embedded 

generation on losses is examined at various levels of the distribution network. They 

argue that although initially the introduction of distributed generation reduces the 

network losses, in the long run and with more penetration levels, this decreasing effect 

slows down or is cancel out.  

Loss Estimation in the Absence of Smart Meter Data 

In the absence of detailed customer load data from smart meters, Diop and Cercle 

(2005) use a regression analysis model to link the annual load measurement at MV and 

low voltage substations to model the total network losses including both technical and 

non-technical losses. The main drawback of this approach can be its restricted 

applicability to the networks with similar topology and consumption patterns (Diop and 

Cercle 2005). Beddoes et al. (2007) take an interesting approach to estimate the 

technical losses of a distribution network and the ways in which the penetration of 

embedded generation can affect the technical losses in all voltage levels ranging from 

132 kV to 0.4 kV. In this work, the element of time is introduced and the fact that 

technical loss calculations become more intricate as the network and the level of 

distributed generation integration increase due to consumption and generation variations 

in time (Beddoes et al. 2007). Three main elements that were used in this study are Grid 

Supply Points (GSP) on the network, distributed generation penetration level, and real 

customer demand data (Beddoes et al. 2007). Three types of urban, rural, and mixed low 

voltage networks are synthesized based on annual demand data from EA Technology 

and various embedded generation penetration scenarios to examine the impact of 

distributed generation on annual or daily technical losses of different low voltage 

networks (Beddoes et al. 2007).  

Au et al. (2008) use the feeder characteristics and general customer type load profiles to 

calculate the technical losses on the low voltage network. Characteristics such as feeder 

length, ratio of demand to maximum capacity and the load distribution profile on the 

low voltage cables are used by Au et al. (2008). This approach calculates the maximum 

percentage of power losses along the 11 kV and low voltage cables based on the 

mentioned characteristics (Au et al. 2008).  

Another approach has been to estimate low voltage losses using loss factors (Oliveira 

and Padilha-Feltrin 2009; Quiroz et al. 2012). This factor is used to multiply the peak 
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load losses to the given average losses. The attraction of this approach is that maximum 

demand is often measured (or estimated) for low voltage circuits and so, it provides a 

straightforward way to estimate the losses. However, this method only provides a rough 

estimate of the losses as the relationships between the peak demand and the peak losses, 

and between the peak losses and the average (or total) losses, are very dependent on the 

circuit’s characteristics and the shape of the load curves at different points on the 

circuit. Quiroz et al. (2012) argue that using the average demand rather than the 

maximum demand is better as it reflects a period of time rather than one time instant.  

An alternative approach estimates a low voltage circuit’s losses by matching the circuit 

with a set of benchmark circuits. Various features can be used for the matching, for 

example, Dashtaki and Haghifam (2013) use the main feeder length, the length of 

branches, the number of branches, customer information and conductor sizes. The 

approach relies on the benchmark circuits having been modelled in detail, and so their 

calculated loss values are regarded as being accurate. However, as previously 

mentioned by Dortolina and Nadira (2005) a flaw of this type of method is that low 

voltage networks vary greatly in size and topology. 

Improvement of Loss Estimation Methods Using Smart Meter Data  

A general weakness of the mentioned approaches is that they only provide a single 

figure for the losses rather than providing a geographical and temporal breakdown of 

the losses. Brandauer et al. (2013) note that breaking down the losses is becoming more 

important due to decentralised generation and the move towards smart grids. They look 

at the consequences of simplifications such as using mean or peak loads by combining 

existing standard load profiles with smart meter data. Brandauer et al. (2013) found that 

existing loss estimation approaches had particular problems in low density rural areas. 

These branches were also sensitive to the time resolution of the data used to calculate 

losses with losses calculated using one second mean values being up to 20% higher than 

those calculated using 15 minute values.   

Having customer smart meter readings available for a low voltage circuit will allow the 

“copper” or technical losses to be estimated using a load flow analysis (Carpaneto et al. 

2006; Quiroz et al. 2012). Not only will this avoid the coarse approximations involved 

in using loss factors and allow a temporal breakdown of the losses, but the 

consequences of phase imbalance (Frame et al. 2012) and embedded generation can be 
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accounted for. However, although their measurement time periods are much shorter 

than the months or years of the meters that they are replacing, the typical measurement 

time periods of 15, 30 and 60 minutes (McKenna et al. 2011) mean that the losses 

calculated using smart meter data underestimates the true losses (Brandauer et al. 2013; 

Urquhart and Thompson 2015).  

Urquhart and Thompson (2015) investigated the effect of the time period length on the 

calculated losses and considered the losses from a single appliance switching on and off 

at random. For short time periods, i.e. in terms of seconds rather than minutes, the 

underestimation was modelled (and validated) as being a linear function of the time 

period. As the time period increases, the assumption of there being at most a single 

switching event (either off to on or on to off) in any time interval breaks down and the 

relationship stops being linear. Comparing the summed demands from between 1 and 22 

dwellings indicated that the relationship between losses calculated using 1 minute 

resolution and larger time resolutions became closer to a linear one as the number of 

dwellings increased. Figure 2-6 from Urquhart and Thompson (2015) shows the ratio of 

estimated losses at different averaging periods for different sizes of customer groups.  

 

 

Figure 2-6: Loss ratio for grouping of dwellings (Urquhart and Thompson 2015) 
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The weakness of this work is that the network model is limited to 22 houses and the 

houses are arranged in a single phase model. This results in the losses being calculated 

for each house without considering the neutral phase currents and the effects of the 

loads from other customers on the various phases on the calculation of overall low 

voltage network losses.  

Clearly, the estimation of network losses is a pressing issue for the DNOs and having 

information about the outgoing power and the delivered power, which can be obtained 

or allocated from smart meter data can help measure the minimum and maximum 

technical losses experienced on the network. Cao et al. (2009) highlight the fact that the 

ageing UK electricity network structure can greatly benefit from having accurate 

information about the power deficiencies of the existing networks. This was also 

highlighted earlier by Davidson and Ljumba (2002). They also argued that network 

operators can pursue more advanced asset management, Research and Development 

(R&D), and personnel allocation if they have accurate network loss information in hand 

(Davidson and Ljumba 2002).   

It is also extremely likely that the network operators may soon face statutory 

requirements to maintain their network losses within certain limits and this has already 

begun in countries such as Germany and Sweden (Heckmann 2013).  

2.4.3 Estimation of Voltage Drops on Low Voltage Networks 

The issue of voltage variations on the low voltage network is becoming more significant 

as new generation and demands such as embedded generation and low carbon 

technologies (e.g. electric vehicles and combined heat pumps) are introduced to the low 

voltage side of the network. Kaspirek (2013) and Konstantelos et al. (2017) argue that 

with rising levels of embedded generation installed in the distribution grid, it will 

become even more problematic for the DNOs to maintain the voltage levels within the 

statutory limits of 230V +10%/-6% in the UK (Miller 2015).   

Often, integration of embedded generation in the distribution system can cause 

problems for the DNOs in terms of voltage regulations and meeting the statutory 

voltage limits of between 216V and 253V (Salman 1996; Conti 2001; Caire 2002; Scott 

et al. 2002; Caldon et al. 2005; Tonkoski et al. 2008; Wang et al. 2016; Konstantelos et 

al. 2017). Voltage variations can also affect the network losses which were discussed 

previously (Desmet et al. 2007). It will be increasingly crucial for the DNOs to be able 
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to anticipate the voltage variation ranges experienced on the low voltage network, 

because voltage drop levels of a network system is a significant indicator of the quality 

of power that is delivered by the system to the end consumers (Vujošević et al. 2002; 

Konstantelos et al. 2017). Klonari et al. (2016) argue that when the demand on the low 

voltage is low and solar panels are producing high amounts of power (e.g. summer 

time), the overvoltage occurs in the system that not only affects the quality of power 

delivered to the end users, but can also disrupt the injection of power from the 

prosumers into the low voltage network.   

To a large degree, voltage levels on the low voltage networks are affected by the load 

on each section of the network, i.e. the load variations can affect the voltage behaviour 

on the cables (Vujošević et al. 2002; Konstantelos et al. 2017).  Therefore, a good 

knowledge of customer loads on the network can lead to accurate voltage drop 

estimations. Lin et al. (2012) argue that the most significant factor in voltage variation 

is load power factor, in particular at the end of the supply networks where the substation 

reactive power and load power drop. Emelin et al. (2013) argue that the voltage 

variations are directly affected by load density on that section of the distribution 

network.  Konstantelos et al. (2017) argue that the voltage variations on the low voltage 

networks can directly impact the ability of the DNOs to accommodate embedded 

generation on the networks. Smart meter data collected or allocated, which can be 

determined using methods such as in chapter 4, can introduce new possibilities of 

greater voltage variation monitoring and control to the DNOs.   

In the past, a number of studies have been carried out to investigate the ways in which 

voltage levels in distribution systems with distributed generation can be regulated. For 

example, Vujošević et al. (2002) estimate voltage variations using global parameter 

method based on length and section of the distribution cable applicable to all levels of 

the distribution network.  

Caldon et al. (2005) assume that active power factors of the embedded generation on the 

low voltage network cannot be managed with great certainty using the known methods 

such as HV/MV substation On Load Tap Changer (OLTC) transformers, or shunt 

compensators, however they can be used in conjunction with HV/MV substation OLTC 

transformers, Step Voltage Regulators (SVR), and static Var compensator to control the 

voltage levels at strategic points of the network (Caldon et al. 2005; Doumbia and 
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Agbossou 2007; Senjyu et al. 2008). In Bokhari et al. (2015) the role of Conservative 

Voltage Reduction (CVR) and embedded generation in urban low voltage systems is 

investigated.  

In Mahmud et al. (2014), an analytical approach to study how distributed generation 

units can affect voltage variations in the distribution systems is presented, defining the 

worst case scenario where the penetration level is at maximum allowed. Penetration 

level of distributed generation is defined as the ratio of power generated by embedded 

generation to the total power generated in a particular time loading (Bokhari et al. 

2015). Mahmud et al. (2014) and Pompodakis et al. (2016) also argue that the reactive 

power from distributed generation sources can reduce network losses and voltage 

variations. On the other hand, insertion of generation from such sources at low voltage 

levels can cause high voltage levels at that part of the network, higher than other points 

where power is only withdrawn by customers (Pompodakis et al. 2016).  

Tonkoski et al. (2008), Mahmud et al. (2014), and Pompodakis et al. (2016) argue that 

the capacity of a distribution network to integrate embedded generation effectively 

depends on a number of variables such as voltage variations on that system, particularly 

at the receiving end, the size and the distance of the distributed generation, and the loads 

on the system. This signifies the importance of smart meter data and geographical 

representation of the networks even further.  

Sexauer and Mohagheghi (2013) highlight the fact that the uncertainty that is associated 

with the rising shares of embedded generation and low carbon technologies in the 

system effectively requires an operational change from deterministic approaches to 

probabilistic approaches, taking into account what ranges of voltage variations different 

sections of the distribution network are likely to experience under different operating 

conditions. Navarro-Espinoza and Ochoa (2016) argue that the DNOs can use new data 

to set voltage variation thresholds at various points of their network to flag and monitor 

potentially problematic areas. 

ENA (2012) recommend that DNOs be provided with half-hourly consumption and 

generation information from smart meters as well as half-hourly voltage information at 

important points along the low voltage network, which can be obtained from half-hourly 

smart meters. This data can be used to ensure that the loadings on various sections of 
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the low voltage network do not exceed the thermal ratings of the low voltage cables as 

well as monitoring the voltage variations that the low voltage network experiences. 

Therefore, it is important to examine to what extent does real-time or predicted load 

readings from customers via smart meters can provide the DNOs with information 

about the voltage levels that is being experienced by the customers and to what extent 

variations in time resolutions, network arrangements, and aggregation patterns can 

influence the accuracy of such information. The reliance of smart grid applications on 

these estimates will be discussed further in the following chapters.   

2.4.4 Low Voltage Cable Loading Percentage Estimation 

Knowledge of capacity of low voltage underground cables to accommodate additional 

loads is becoming increasingly more important as Smart Grid management solutions 

such as load shifting and demand response management at community levels, are 

becoming more widespread (Miller 2015). The question is whether the real-time 

demand on each phase of the low voltage cables can be monitored using smart meter 

data and to what extent the information are improved or distorted as the granularity of 

smart meter data is decreased from data set to 120 minute averages.  

This knowledge will then determine the headroom that is available on each phase which 

can potentially facilitate more proactive load management of the low voltage network 

by the DNOs and also optimal use of the distributed generation in the system. One of 

the main characteristics that is of particular interest to the DNOs is the peak demands at 

feeder level, which is the accumulation of loads withdrawn by customers on that feeder. 

This is mainly due to the fact that the higher the load peaks are, the higher the network 

losses and voltage drops experienced on the piece of low voltage network (Ijumba et al. 

1999).  

On the other hand, the DNOs need to design and manage the distribution network in a 

way that can cope with the Maximum Demand (MD) and demand diversity that will 

occur on the network (Strbac 2008; Barteczko-Hibbert 2015). Also, the peaks can be 

managed using embedded generation installation near the areas of the network that 

experience higher peak demands. As Ijumba et al. (1999) demonstrate, this will lead to 

loss reduction on the network. Additionally, with the increasing shares of distributed 

generation installed in the distribution network a need for more accurate knowledge of 

the network capacity is required (Strbac 2008).  
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The knowledge of the headroom available at peak times or off-peak times on a feeder 

can enable a more effective embedded generation and low carbon technology 

integration as well as a more efficient network asset management and investment 

strategies. Also, having knowledge of the network capacity on each phase of the various 

feeders leaving a low voltage substation can provide the network designers with useful 

information in terms of allocating new connections to various phases without the 

network being overloaded.  

One of the main Smart Grid applications that can benefit from the knowledge of cable 

loading percentages is DRM. From the point of view of the DNOs, DRM involves 

measures that enable the shifting of peak loads to minimise network losses, voltage 

drops, and network strain, and maximise embedded generation integration (Infield et al. 

2007; Strbac 2008). This will be discussed in more detail in section 2.5, which is about 

the distribution grid applications, but it is important to emphasise the role of customer 

loads obtained from smart meter data to estimate the peak loads that the various low 

voltage cable phases are likely to experience. This knowledge can provide the DNOs 

with invaluable information which has not been available to them before.  

The following sections explain the ways in which the knowledge of customer loads, 

losses, voltage levels, and cable capacity usage at the low voltage level can greatly 

improve smart grid applications. 

 

2.5 Major DNO Applications Impacted by Smart Meter Data 

This section of the thesis introduces the major smart grid applications that are vital to 

the operation the distribution networks. Traditional and recent methods in conducting 

the DNO applications are introduced here as well as how these applications have coped 

with a lack of detailed low voltage data and the ways in which they can be improved 

with the availability of smart meter data.  

2.5.1 Asset Management 

In one sense, asset management is the core business of a DNO (Brint et al. 2008) with 

over a billion pounds being spent on it annually in the UK (OFGEM 2004). As Banyard 

and Bostock (1998) point out, distribution utilities such as those in the electricity, water 

and gas industries can be differentiated from many other industries by the high value of 
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their asset base compared with their turnover. Hence ensuring that this asset base stays 

in a good operating condition is fundamental to a distribution utility’s long-term future. 

The amount of money that the network operators in the UK spend every year on 

replacing their aging and underperforming assets constitute about 50% of the network 

status maintenance related investments, which can rise above tens of millions of pound 

per year (Black et al. 2009). Therefore, asset management has become an integral part 

of the utility sector. As Brint et al. (2008) point out, the rise in importance of asset 

management has been driven by the following three factors:  

 the ageing of the distribution networks  

 the advent of new technology   

 the changes in the structure of the industry 

Since the mid-20
th

 century major changes in the electricity networks have taken place, 

assets have naturally aged and coupled with the customer load growth gave rise to a 

greater need for monitoring, maintaining and improving the network (Brint et al. 2008). 

Also, the changes in record keeping practices and the move from paper based network 

schematics to more computerised databases in the 1990s and even more recently GIS 

based records, have enabled more intricate asset condition monitoring practices (Brint et 

al. 2008). Additionally, the utility market changes as a result of privatisation in the UK 

and the fact that investment decisions and priorities are investigated by market 

regulators, also reinforced the major role of asset management in the DNOs business 

structure (Brint et al. 2008). 

The term asset management started off in the financial sector, but began to be widely 

used by distribution utilities in the late 1980s and early 1990s (Brown and Humphrey 

2005). However, asset management in the context of the utilities is much more complex 

due to the complex nature of the industry, performance related issues such as 

refurbishment and renewal of assets, and the intricate relationships in the utility 

networks (Brown and Humphrey 2005). A number of definitions of Asset Management 

when applied to distribution networks have been put forward with perhaps the clearest 

one being (Howard 2001):  

“Simply the way we look after the assets around us, both day to day in 

maintenance and operations, and medium to long-term in strategic asset 

planning.” (Howard 2001) 
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In the context of Northern Powergrid, asset management has been defined as:  

“Ensuring that the distribution asset performs its required function safely, within 

the law and at a minimum lifetime cost.” (Hammond and Jones 2000) 

Or as it is defined by Sallam and Malik (2011) asset management: 

“aims to manage all distribution plant assets through their lifecycle to meet                                                                         

customer reliability, safety, and service needs.” (Sallam and Malik 2011, p.9) 

Monitoring the equipment installed on the network, replacing old or obsolete pieces, 

and investing in new technologies are the subtasks of the asset management team (Carer 

2006). The tasks can be divided into short-term tasks such as maintaining the healthy 

status of the network, which is reliant on real-time and near real-time data, or more 

medium and long-term tasks such as maintenance or replacement tasks, which are more 

dependent on monthly, seasonal, and annual data (Tor and Shahidehpour 2006).  

Historically, many assets have been managed on the basis of their “asset life”. However, 

Clutterbuck et al. (2005) point out that a number of “asset lives” have been used, such 

as the manufacturer’s recommended life, the financial life, the commercial life and the 

technical asset life. As the networks have aged and the pressure for efficiency 

improvements has increased, there has been a move away from using asset lives to 

using condition information or condition monitoring. Using only age to predict asset 

condition ignores the fact that condition is affected by manufacturing and installation 

quality, along with the asset’s operating history and environment (Morton 1999).  

As Black et al. (2009) emphasise the relationship between age and status and failure of 

utility network assets is very complex. OFWAT has commented that the prediction 

models are too often hampered by the poor quality of data that is input to them (Parsons 

2006). Therefore, attention has concentrated on estimating conditions by periodically 

sampling the assets coupled with simple deterioration functions.  

Hughes (2003) uses an exponential ageing curve, while Black et al. (2005) use a semi-

Markov model. Brint and Black (2014) investigate the best way to handle the data when 

it is regarded as a sampling on two occasions problem. As Brown and Humphrey (2005) 

point out, a reliable information system should be at the heart of asset management 

procedures of utility network operators and these information sources should supply 

engineering and management decisions.  
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More accurate information about the way in which distribution network assets are used 

in terms of their capacity and loading percentages and also vital performance indicators 

such as network losses and voltage variations, can help DNOs take more proactive asset 

management approach as opposed to the current reactive approach (Brown and 

Humphrey 2005). 

2.5.1.1 Use of Smart Data in Asset Management 

Smart data offers the opportunity to model the asset’s operating history and 

environment. The data from smart meters will allow much better estimates of current 

flows to be made and these can be combined with the knowledge of ambient 

temperatures (and where appropriate, ground conditions). This will allow much more 

accurate estimation of the stress that an asset has been experiencing, and so improve the 

estimates of the conditions of the assets that have not been sampled recently. As Sirto et 

al. (2015) point out, data from the customer end of the network can contribute greatly to 

better predict and subsequently manage the loads that will be experienced by various 

assets of the low voltage network, especially the transforms. Low voltage transformers 

are known to be the most expensive components of the distribution network and a more 

detailed knowledge of the operating capacities and conditions of these transformers can 

lead to a better preservation of them (Mohsenzadeh et al. 2016).  

Two studies have been carried out in recent years to incorporate various types of 

customer meter data with the aim of improving the existing asset management 

approaches. Goyal (2016) use characteristic data of 10 sample 400kV transformers, 

along with minimum and maximum daily temperature data and annual 15 minute smart 

meter data from the customers connected to the transformers to calculate the electrical 

age of the transformers. The typical electrical age of a transformer of this size is usually 

about 180,000 hours or 21 years, but this can be affected by factors such as the number 

of hours during which the maximum capacity of the transformer is used and the 

temperature conditions. In Goyal (2016) these operational conditions are examined by 

having detailed smart meter information and temperature data from the nearest weather 

station. Mohsenzadeh et al. (2016) use similar types of data to Goyal (2016), but from 

1000 kV transformers. They also incorporate demand response measures into their 

models to examine to the extent to which decreasing the load at peak times effects the 

longevity of the transformers. 
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As can be seen asset management to some extent is also very closely linked to network 

design and also network planning. Miller (2015) argues that smart data can help the 

DNOs reduce the amount of network component replacement and strengthening 

operations if they have enough smart information about demands on the network. For 

example, new research by CLNR shows that the domestic peak demand from 

households is around 0.9 kW, which is far lower than 1.5 to 2 kW figures that are 

traditionally used by the DNOs. However, with the introduction of LCTs into the low 

voltage network and the rising uptaking of such technologies in the future the demand 

diversity and the behavioural changes need to be understood in order for the asset 

management team to reinforce the capacity of the network where it is required to avoid 

both power quality and asset life deterioration. Additionally, Miller (2015) argues that 

with rising levels of embedded generation units in the low voltage network, knowing 

detailed voltage levels up to the customer end of the network is necessary, so that the 

potentially problematic areas can be identified and resolved by the asset management 

and network design teams.  

2.5.2 Network Design 

A key parameter in low voltage network design is accommodation of peak demand on 

the network (Brown 2008). It is uneconomic to design electricity networks so as to be 

able to supply every customer on the basis that they would all simultaneously have a 

Maximum Demand (MD) equal to the rating of their premises. For example, a domestic 

customer may have a rating of 75 amps, and there may be 100 customers on a feeder, 

but the feeder’s thermal rating will be nowhere near 7,500 amps as it is assumed that 

people will not all require 75 amps at the same time. In fact, the cable rating is likely to 

be just a few hundred amps (Note that the situation is not quite as precarious as it may 

appear as most assets can run considerably over their thermal rating for short periods of 

time as it takes time for them to overheat and each phase is fused at the substation).   

Let n be the number of customers on a feeder and Dn be the design demand from each 

customer, then the feeder is designed to meet a demand of  

                                                                   n × Dn 

Diversity between customers means that Dn is a strictly decreasing function of n. The 

After Diversity Maximum Demand (ADMD) approach that was developed by the UK 
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electricity supply industry in the 1950s and 1960s formalised how Dn should be 

calculated.  

However, the ADMD method is based around having a single MD figure for each 

customer. With the introduction of more complex tariffs such as Economy 7 in the 

1960s, the Electricity Council’s Load Research Unit produced tables of demand and the 

variability in the demand for the most important annual 60 half hours for each customer 

type. This in turn led to the development by the Electricity Council Research Centre 

(ECRC) of a design method based on using these half hours which was implemented in 

the program DEBUT (Carson and Cornfield 1973).  

In essence, the approach assumes that the demand from each customer type for each 

half an hour can be modelled as a normal distribution. The independence of the demand 

from different customers is assumed. Hence the demand from a group of customers can 

be calculated by adding the means and the variances. A windows version, WinDebut, 

was created in 1997. 

2.5.2.1 Smart Data and Network Design  

Smart Data is likely to have a significant impact on low voltage and 11kV network 

design. Amongst other things: 

 Feedback – The better knowledge of low voltage and 11kV power flows will 

allow the quality of the network (and so its design) to be assessed. Currently, 

only those networks that end up with a problem, e.g. voltage drops, provide any 

feedback. 

 Knowing the existing power flows will allow better design of network 

extensions.  

 General knowledge of typical power flows in low voltage and 11kV networks 

will also lead to an order of magnitude improvement in the assessment of 

alternative network designs such as how many voltage levels to have, the 

amount of interconnection that is optimal, and comparisons with the US pad 

mounted transformer designs. The comparisons that have been carried out (e.g. 

Brint et al. (1998); Porter and Strbac (2007)) have been severely hampered by a 

lack of detailed knowledge of the power flows.   

 An understanding of how loads change as the network matures. 
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 Insights into how to modify designs to make them appropriate for embedded 

generation networks.  

ENA (2012) points out that future low carbon technologies such as electric vehicles and 

combined heat pumps will introduce higher peak demands as well as unknown demand 

and generation diversity, consumption patterns, and more fluctuant voltage variations 

and/or reverse power flow due to the presence of embedded generation in the low 

voltage network, all of which will require greater knowledge of loading percentages on 

the low voltage network. For example, CLNR studies by Miller (2015) shows that 

demand of customers with low carbon technologies can be assumed to be twice as much 

as regular domestic customers.  

ENA (2012) recommends that the DNOs should be provided with half-hourly 

consumption and generation information from smart meters as well as half-hourly 

voltage information at important points along the low voltage network, which can be 

obtained from half-hourly smart meters. This data can be used to ensure that the 

loadings on various sections of the low voltage network do not exceed the thermal 

ratings of the low voltage cables as well as monitoring the voltage variations that the 

low voltage network will experience to ensure that the statutory voltage limits of 230V 

+10%/-6% (216V and 253V) are met by the DNOs (Strbac et al. 2010; ENA 2012; 

DNV KEMA 2013; and Miller 2015). This is particularly important in the context of 

low voltage network design to ensure that the network is set up in a way that meets the 

demands of new connections as well as providing high quality service to the existing 

consumers.  

Lees (2014) notes that the type of data that is required for network design is different 

from the type of data that is required for planning or monitoring. For planning purposes, 

longer intervals of data at lower resolution will suffice, but for design purposes it is 

ideal for the DNOs to have the most recent demand and voltage data at high resolution 

at critical points of specific types of low voltage networks (Lees 2014).  

You et al. (2014) argue that smart meter data can provide the DNOs with the essential 

network planning and design parameters such as system losses, customer loads, and 

voltage levels. They point out that the availability of fine-grained smart meter data can 

shift the network planning methods toward “Stochastic” methods that incorporate 

uncertainties and variations in load demands, which are neglected in traditional methods 
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carried out based on peak demands (You et al. 2014). Roupioz et al. (2013) have made 

some initial recommendations about using smart meter data in long term network 

planning of the networks and the studies presented in section 2.4.1 can also be used to 

further improve the loading profiles on the network using smart meter data. However, 

the use of such data in short-term network planning, expansion, and design has been 

neglected to a great extent (Nijhuis et al. 2017). Nijhuis et al. (2017) present a method 

for low voltage network planning and expansion that takes into account various sources 

of information, including smart meter data. They use a bottom-up approach of assigning 

smart meter load profiles to customers randomly in order to estimate typical low voltage 

feeder profiles and then compare planning methods based on this type of data compared 

to only using peak loads (Nijhuis et al. 2017).  

There have also been a number of other studies using smart meter data in predicting 

demand and generation pattern on low voltage networks with embedded generation. 

These studies will be presented in section 2.5.4.1.    

In theory, smart meter data can either provide the necessary information directly or 

yield the process of retrieving them. For example, the DNOs that have accurate smart 

meter information can run the required load flow analysis and models to determine what 

parts of the network are under stress and where is likely to experience over/under 

voltages. This information can also be used by the DNOs to proactively predict the parts 

of the network that are likely to be experiencing faults as a result of overloading and/or 

flag up the parts of the network that are under performing due to faults.   

2.5.3 Fault Location and Restoration 

Fault management is a very important part of a DNO’s business remit as some of the 

key regulatory measures relate directly to faults, e.g. the number of customer minutes 

lost. Significant resources and investment are required to keep up with changes in the 

industry as well as dealing with the everyday task of maintaining a reliable supply to 

customers (Apel et al. 2001). The poor visibility that the DNO have of their low voltage 

network means that they are not usually aware of faults on the low voltage network until 

they receive notification from the customer end. The fault management team’s task then 

consists of localising the fault, separating the affected area from the rest of the network, 

and restoring the power to the customers and all of these tasks need to be carried out as 

quickly and cost effectively as possible to benefit all stakeholders (Apel et al. 2001).  
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In addition to these tasks, incidents and interventions are required to be reported to the 

regulator (Verho et al. 2004). Problems on the network can occur due to changes in 

weather conditions and natural disasters or technical failures, in which case the affected 

part of the network is localised, isolated by tripping the system protection at circuit 

breakers or fuses (at low voltage level) (Verho et al. 2004; Estebsari et al. 2016).  

Makinen et al. (2013) point out that the traditional ways of fault management in the low 

voltage networks need improving, especially in terms of collecting more detailed data 

on the incident location and the nature of the faults. The process has traditionally been 

based on trial and error until the protective relay tripped the feeder, but with the advent 

of numerical relays, which enabled reading the current at substations, finding the 

location of faults has gradually become less manual (Lehtonen et al. 2000). Relays work 

in milliseconds with two-minute response time in some cases such as first automatic 

switching and restoration. Historic information can be used in cases of voltage quality 

complaints as well as enabling the dispatchers to make decision about fault locations. 

Reliability of supply and ensuring an acceptable voltage quality standard are also the 

other main targets of the fault management team (Gono et al. 2007).  

2.5.3.1 Fault Location at Low Voltage Level in the UK 

The current system still relies on phone calls from customers to report the problems 

(Thomas et al. 2012). Call takers find the name and postcodes of the customers. The 

system stores call history, incidents, causes, ready messages to affected customers, and 

it also has the ability to update the messages as maintenance works progress. When 

customers report a fault, the incident is dealt with based on the three priority categories 

below: 

P1: Urgent (e.g. smoke) 

P2: Loss of supply 

P3: Quality of supply complaints (e.g. flickering lights) 

Once the phone calls are logged in, dispatchers send the appropriate team to deal with 

the issue by usually sending a “rapid” (a general technician) to carry out an initial 

assessment and then more specialised teams such as diggers, jointers, etc. Dispatchers 

use GIS, schematics and diagrams (see Figure 2-7) and use their own knowledge and 
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experience in sending teams to attend faults and they use a system called “phone 

tracker” to make contacts with the teams.  

The information about the nature and causes of the problem and works being carried out 

by the team are passed to the dispatchers on the phone and records are updated. 

Regulation requires faults to be addressed within the first three hours from the time that 

they are reported and in practice, the typical restoration time is between 45 minutes to 1 

hour. In the near future, restoration teams will be equipped with smart tablets that will 

allow them to log in information, access job details, and update the status of the job 

easily. These interventions and steps are recorded in the Outage Management System 

(OMS) as job reports and then the Quality of Supply team will produce incident reports 

and pass them to the regulator, OFGEM. At low voltage level, 100% of incidents must 

be reported to OFGEM.  

Currently, dispatchers deal with 20 calls per day on average. 20% of these calls are 

related to the quality of supply, which in theory can be predicted, diagnosed, and 

rectified with greater ease if high quality smart meter data are available to the DNOs. In 

addition to that, loss supply alerts, last gasp, and the restoration of the supply can be 

reported to the DNOs by smart meters. Presently, the network companies would not 

know if customers are back on supply unless the maintenance team informed the 

dispatchers, but smart meters are equipped to notify the DNOs when the customers are 

back on supply. 
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Figure 2-7: an example of GIS enabled OMS (Esri 2011) 

 

2.5.3.2 Smart Data and Fault Management 

The problem with the smart meter readings transmitted to the DNOs is that they are not 

always in real-time and one of the major aspects of fault management is fault location 

and this is about fixing a real-time problem. One specific capability of smart meters is 

the ability to send a (last gasp) signal to the DNOs when it loses power. Last gasp alerts 

are created when the supply of voltage in meters are lost (Estesbari et al. 2016). The 

DNOs will receive last gasp alerts from meters that lose their power, but there could be 

issues with this, for example if two separate faults within the same low voltage area 

occur, the DNOs may not recognise that these are two separate incidents.  

An alternative would be for the DNOs to monitor the low voltage feeders leaving their 

11kV substations. This could possibly alert them to a fault having occurred and then the 

smart meter data could be used to detect its likely location, given the impact on the 

power flow in the feeder that is affected. However, it is likely to be very expensive for 

the DNOs to equip their substations with separate network meters.  
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Theoretically if the DNOs have enough information about the various parts of the low 

voltage network that are overloaded for long periods of time or are not performing well 

in terms of showing unusual amounts of losses and voltage variations, they may be able 

to identify the potential problematic areas of the network where faults are more likely to 

occur. This aspect of the application ties into the information from the asset 

management team as well.  

Historic customer-based and system-based data such as failure and outages of particular 

pieces of equipment, total and average interruptions experienced by customers, and 

average duration of interruptions can also help the fault management team in identifying 

the affected areas of the network (Gono et al. 2011). Liu et al. (2002) propose a model 

to integrate various data sources such as SCADA, customer calls, and network meter 

polling to predict faults on the network, while Zhao et al. (2013) present a fault 

prediction model based on simulated AMI load data and power flow data from 

distribution network sensors. Mäkinen et al. (2013) and Jiang et al. (2016) present 

models that combines smart meter trial data in Distribution Management System 

(DMS). This is to send the DNOs automatic fault alarms, which has now been resolved 

with the introduction of last gasp functionality on all smart meters. In Abusdal et al. 

(2015) smart meter voltage information are used to detect faulty conductors. In Jamali 

and Bahmanyar (2016) load demand are forecasted using partial smart meter data on 

various branches of a model distribution network in conjunction with network and 

feeder information to detect faults.  

In recent years, DNOs have invested heavily in integrating IT and GIS into the fault 

management processes. These can help them locate faults on the network (using 

customer postcodes and meter registration numbers), monitor lines and equipment, 

dispatch personnel more quickly and effectively through an integrated system called 

OMS, hence shorten the outage time (Li et al., 2012). For example, Estesbari et al. 

(2016) introduces a fault detection method which uses smart meter data and network 

topology data from the GIS system to run power flow simulations at different nodes of 

particular low voltage networks and identify the nearest node to the affected area based 

on the changes between the measured and the calculated voltages on each phase of the 

network. The success of this method relies on the availability of good quality and 

complete smart meter data as well as great knowledge of the low voltage network 

topology and customer phases. Jamali et al. (2017) proposes a fault detection algorithm 
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which incorporates current and voltage data from substations and partial field 

measurements from the low voltage network downstream of the substation. This method 

is less reliant on real-time household smart meter data in comparison to the method 

highlighted in Estesbari et al. (2016). On the other hand, it assumes the availability of 

high resolution data from low voltage substations meters which is very expensive for 

the DNOs to install.  

2.5.4 Network Monitoring 

The ability to better monitor the low voltage networks directly contributes to one of the 

most important targets of the Smart Grid agenda, improved observability and control. It 

also enhances a majority of DNO applications such as asset management, network 

design, power quality management and embedded generation integration, and active 

network management. 

ENA (2012) argues that achieving the higher visibility of power flows and voltage 

behaviour on the low voltage side of the network via smart meters is the cheapest and 

the most efficient way. On the other hand, DNV KEMA (2013); Lees (2014); Miller 

(2015) argue for more monitoring points to be devised on the network in order to collect 

a higher granularity of data (e.g. 5 to 10 minute granularity or smart meters on low 

voltage feeders). They also raise this issue that various low voltage network applications 

require various granularities, latency and accuracy of data. For example, the data 

requirements for network control, network planning, and network design are different as 

mentioned earlier (DNV KEMA 2013; Lees 2014; Miller 2015).  

Sanduleac et al. (2015) point out that the smart meter data are required to be highly 

accurate to be able to enable an effective monitoring of the low voltage networks. 

Barbato et al. (2017) argue that the evolution of the low voltage side of the distribution 

network to be able to facilitate and manage the integration of higher shares of embedded 

generation and low carbon technologies is highly reliant on the ability of the DNOs to 

monitor power losses, voltage levels, phase imbalances, and network losses.  

2.5.4.1 Effective Integration of embedded generation  

Salman (1996); Mcdonald et al. (2010); Chiandone et al. (2014); Jagtap and Khatod 

(2015b) reiterate the issue that the transition from a passive and rigid traditional 

electricity distribution grid with one one-way flow of energy and information to an 

active/smart distribution grid with two-way flow of energy and information is mainly 
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driven by the need to accommodate higher proportions of embedded generation in the 

system. According to Salman (1996) and Hattam and Vukadinovic (2017) some of the 

main areas of the network operation and management such as network planning and 

design, asset management, and fault management can be affected by higher shares of 

distributed generation in the network due to the following factors: 

 loss of supply due to faults 

 harmonic distortions 

 volatile reliability of the network 

 voltage variations 

 changes in network losses 

 phase imbalance 

Inevitably, the rising penetration level of low carbon technologies and embedded 

generation in the low voltage network will lead to voltage sag and swell (dip and rise) 

and harmonic distortion on the low voltage network and ENA (2012) argues that 

although smart meters cannot in theory provide power quality data, DNOs can utilise 

the smart meter information to pinpoint the problematic areas of the network.  

Miller (2015) argues that in scenarios with a lower penetration level of electric vehicles 

and heat pumps, serious problems seem unlikely, but this can change as the penetration 

level of low carbon technologies rise in the future (Degefa et al. 2014; Zhou et al. 

2014). To this end, a number of studies in recent years have focused on investigating the 

impact of electric vehicles and small scale distributed generators such as rooftop PVs on 

the low voltage network. In Neaimeh et al. (2015), the authors combine 1-minute 

resolution electric vehicle charging data and driving information with half-hourly smart 

meter data from the CLNR project to analyse the impact of electric vehicle charging on 

the low voltage network loads. Watson et al. (2016) use GIS and SCADA data to create 

a low voltage model of the network which can be populated with customer loads and 

PV data to run power flows of a realistic three phase low voltage network. They mainly 

focus on the impact of PV generation at various levels on the capacity of the low 

voltage network in New Zealand (Watson et al. 2016). Navaro-Espinoza and Ochoa 

(2016) also use probabilistic methods to look at the impact of PVs, electric vehicles, and 

heat pumps on the voltage levels of a realistic low voltage network. The smart meter 

profiles used in this study were simulated at 1-minute time resolutions, but were then 
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adopted to create 5-minute demand profiles (Navaro-Espinoza and Ochoa 2016). 

Phoghosyan et. al (2016) use agent based bottom up simulations of electrical vehicle 

loads in accordance with the UK Government’s prediction of various levels of electric 

vehicle uptakes in the next 10 years in order to study their impact on the peak loads in 

the low voltage networks. They use half-hourly smart meter data and daily electrical 

vehicle charging patterns (Phoghosyan et. al 2016). A similar approach has also been 

used in Hattam and Greethard (2015).  

2.5.4.2 Active network Management (ANM) 

Active Network Management (ANM) comprises of a set of measures to monitor and 

manage the capacity of the network in accommodating more low carbon technologies 

and embedded generation in the system without the low voltage cables being 

overloaded or strained or the quality of supply being affected (ENA 2012 and Miller 

2015). Mcdonald (2008) points out the importance of the term “active” in the 

application’s name, contrasting it with the current passive design of the traditional 

medium and low voltage electricity networks. ANM aims to optimise the network 

capacity to meet the new demands instead of using more expensive and less 

environmentally friendly methods of adding new circuits to expand the networks 

(Mcdonald 2008; Zhou et al. 2014).  

The main purposes of ANM are to integrate embedded generation in the distribution 

grid more effectively and provide flexible measures for the DNOs to accommodate new 

patters of demand from consumers with electric vehicles and other forms of low carbon 

technologies (Mcdonald 2008; ENA 2012; Miller (2015).   

According to Strbac (2010); DNV KEMA (2013); Lees (2014); and Miller (2015) ANM 

could include: 

 active voltage monitoring of the low voltage network using half-hourly voltage 

information from strategic points on the network. 

 control of the power factor. 

 flexible changing of the low voltage open points. 

 warning systems in the cases of peak demands and overloading of the low 

voltage cables. 
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 better investment decisions resulting from power flow and voltage information, 

estimated about 5% or £3.5m reduction in annual network investments  

(DNV KEMA 2013 and Miller 2015). 

 using demand response schemes to manage the loading capacity of low voltage 

cables 

 active voltage control measure. 

Miller (2015) argues that these measures can be achieved without the DNOs having to 

invest more money in the communication infrastructure of the low voltage network as 

the smart metering implementation programme is already on the way to deliver new 

voltage and power flow data on the low voltage network. ANM is particularly important 

in managing network loading capacity, voltage levels and power flows and many DNOs 

are integrating the ANM measures to some extent as more renewables are installed in 

their existing network (EA Technology 2016). For example, better voltage level 

management can allow a DNO to install more distributed generation on the low voltage 

network while maintaining the voltage levels in the statutory limit ranges of 230V 

+10% -6%.  

Zhou et al. (2014) carried out a study integrating various electric vehicle charging data 

into the distribution management system in order to enhance the network visibility and 

observation of the DNOs. Degefa et al. (2014) focus on the relationship between 

thermal stress and stochastic generation patterns from distributed generators on a test 

low voltage network and examine the role Real Time Thermal Rating (RTTR) in 

managing the thermal stress and increasing the loading capacity of conductors in the 

network. Also, studies such as Repo et al (2013) and Paterakis et al. (2016) have 

focused on market incentives in actively managing a group of customers with low 

carbon technologies and embedded generation in smart neighbourhood scenarios.  

EA Technology (2016) argues that the requirement for more in-depth behavioural 

knowledge of the low voltage networks is becoming ever more pressing to the DNOs as 

customers’ demand and generation are becoming more varied and intermittent. 

However, as it was highlighted earlier critical network information that are required for 

ANM such as voltage levels will be somewhat distant from the reality of the situation as 

smart meter data are aggregated and averaged over half-hourly intervals. 
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2.6 Summary 

Smart grid applications are heavily reliant on key low voltage network information 

parameters such as power flows, network losses, voltages, and cable loading 

percentages. It is likely that their reliance level will increase further as smart grids 

evolve and more embedded generation and low carbon technologies are connected to 

the low voltage levels of the network.  

Traditionally, it has not been easy for the DNOs to obtain accurate estimations of these 

key network performance indicators as the information on the low voltage side of the 

network has been limited. In the absence of data on the low voltage networks, different 

methods were devised to fill this information gap, including these described in this 

chapter. However, smart meters are regarded as the game changer which can either 

improve some of these methods that are still in practice, or completely change the way 

in which the key low voltage network information are obtained by the DNOs. In theory, 

smart meter data can provide the DNOs with high resolution data which in turn will lead 

to more accurate estimations of power flows, losses, voltage levels, phasing imbalance, 

and customer loads. This can lead to the enhancement of DNO applications such as 

asset management, network planning and design, fault location and restoration, and 

network monitoring. These applications were traditionally carried out in the absence of 

detailed information on the low voltage side of the electricity distribution network. 

However, this will change with the availability of smart meter data. Accurate 

information on the low voltage network can help the DNOs manage embedded 

generation and customer loads consumed and/or generated through programmes such as 

ANM and DSM, as well as managing areas of the network that will encounter reverse 

power flows.  

Operation and maintenance of low voltage networks, which in the past did not require 

close monitoring, will also benefit from more accurate information resulting from smart 

meter data in coping with the introduction of new loads related to electric vehicles, heat 

pumps, and micro generators. This is of a huge significance when it comes to balancing 

the voltage on the network within the statutory requirements and maintaining the 

voltage quality delivered to customers, or planning for new connections (Smart Grid 

Forum 2014). 
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Based on the literature presented above, the extent to which DNO applications are and 

will be reliant on high resolution smart meter data is presented in Table 2-3 below. 

 

Table 2-3: Reliance level of major low voltage network applications on high resolution smart meter 

data 

 

Applications 

Accuracy of Loss 

Estimates 

Accuracy of 

Voltage Estimates 

Accuracy of Cable 

Loading Estimates 

 

Asset Management 

 

High 

 

High 

 

High 

Power Quality 

Management and 

Integration of DG 

 

High 

 

High 

 

High 

Active Network 

Management 

 

High 

 

High 

 

High 

Network Design 

and Planning 

 

Medium 

 

High 

 

High 

Network 

Monitoring 

 

Medium 

 

High 

 

High 

 

Fault Management 

 

 

Low 

 

Medium 

 

Low 

 

The question still remains how much in reality smart meter data can contribute to the 

accuracy of key low voltage network information required by DNOs to run their smart 

grid applications, especially if the data are of low resolution, low frequency, or are 

aggregated. This is the main question this thesis is aiming to answer. This a question 

that is particularly important in the UK as the potential benefits that the DNOs can gain 

from the smart meter data can be affected by factors such as time resolution intervals 

and aggregation of smart meter data and the gradual implementation of smart meters. 

However, the answer to this question can apply to other countries that have set similar 

smart meter data specifications. 



80 

 

The next chapter presents the methods and models used in conducting this study and the 

ways in which they compare to the relevant research that has been carried out in recent 

years in the field.  
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Chapter 3 Methods 

This chapter describes the methods and the models that are used in the light of the aims 

and objectives identified in chapter 1 in more detail. This is carried out by explaining 

the main differences between the methods employed in this work and similar studies. In 

the first place, the main data sets used in the various aspects of this study are described 

and their strengths and weaknesses are summarised. Secondly, the methods and the 

ways in which the data sets are used in each study model are described. 

3.1 Data Sources  

The data sets used in this research were: 

1. Loughborough University trial data  

Obtained from a study carried out by Loughborough University in 2008 and 

2009. This trial was sponsored by E.ON UK and the Engineering and Physical 

Sciences Research Council (EPSRC) (Richardson and Thomson 2010). The data 

sets are free to download and publicly available from Richardson and Thompson 

(2010). 

2. CLNR customer data:  

Collected by British Gas during the Customer-Led Network Revolution (CLNR) 

project from 2011-2014 (Customer-Led Network Revolution 2017). The 

collection of data from customers involved in these two trials were ethically 

approved and the data were obtained, anonymised, stored, and released to the 

interested researcher in accordance with the Data Protection legislation. The data 

sets are free to download and publicly available from CLNR Project Library 

(2017). 

The use of these data sets for the purpose of this research has also been approved by the 

data providers and the research project itself has been ethically approved by the 

University of Sheffield. The specific ways in which the Loughborough and CLNR data 

sets were used will be discussed in more depth in the following sections of this chapter. 

3.1.1 Loughborough 2008-2009 Data Sets 

This data set contains 1-minute customer consumption readings in kiloWatts (kW). 

These consumption readings were collected from 22 domestic smart meters from 2008 

to 2009. Along with the customer electricity consumption loads in kW, a set of 
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questionnaires were also filled out by the participants that indicates the type of the 

houses that the smart meters are installed in (e.g. detached, semi-detached, etc.) as well 

as the characteristics of the houses, for example the appliances in use (Richardson and 

Thomson 2010).  

A summary of properties of the data in this data set can be found in Table 3-1 below. 

 

Table 3-1: Summary of the characteristics of the Loughborough data set 

File Number 1 2 

Date of collection 2008 2009 

Number of houses 22 20 

Consumption data Yes-kW Yes-kW 

Time resolution 1 Minute 1 Minute 

House type information Yes Yes 

Number of occupants Yes Yes 

Geographical information Approximate Approximate 

 

 

The data from the 22 meters are stored in two separate Excel files for each house in 

2008 and 2009, accompanied by a separate excel spreadsheet containing information 

about the house types and the appliances available in each house.  

In the case of a majority of the 22 meters, the consumption data in both 2008 and 2009 

worksheets are clean and easily accessible, containing consumer loads in kW from 

January 2008 to December 2009. A perfect 1 minute time resolution data set should 

contain 525,600 recorded data points for a whole year for each meter. However, the data 

points recorded for the 22 meter in 2008 range from just above 260,000 to just under 

525,600 (1 data point for each minute). This shows that in the case of some meters, 

some data points have not been recorded and are missing.  

Meters 2 and 16 do not have any customer load records for 2009, which makes them 

redundant for some of the analysis that was the subject of this research, such as current 

estimation studies in section 3.3. On the other hand, the number of data points recorded 

for the remaining 20 meters in 2009 shows a greater range varying from minimum data 
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points at just under 70,000 to maximum data points at just above 525,000, which is 

indicative of the inconsistency of data points stored in the data recorded from the houses 

in 2009. Regardless of these irregularities, these data sets provide one of the most 

complete smart meter data sets available for research purposes at the moment. 

In relation to the research objectives of this project, the limited number of households 

(22 smart meters) and the inconsistency between the 2008 data and 2009 data were 

found to be particularly challenging for studies of current estimation in section 3.3, due 

to the lack of sufficient numbers of meters with at least 13 months of data. Ideally, at 

least 50 meters would be required to populate a two branch low voltage network with 25 

houses on each branch. However, the good quality of the data set resolution smart meter 

data available in these data sets provided an appropriate platform for carrying out the 

analysis regarding the effects of smart meter time resolution and aggregation variations 

in estimation of electricity network loss estimation, voltage drops, and cable loading 

percentages. This data set is referred to as “Loughborough data set” throughout this 

thesis. The data sets are free to download and publicly available from Richardson and 

Thompson (2010).  

3.1.2 CLNR Data Sets 

Customer-Led Network Revolution was launched in 2011 and completed in 2014. This 

project brought together academic and industrial players in the field of electricity 

network operation and supply, such as OFGEM, LCNF, Northern Powergrid, British 

Gas, EA Technology, the University of Durham, the Newcastle University, and 13,000 

customers to investigate the major challenges that the UK electricity network will 

encounter as the transition to a smarter and greener grid operation takes place 

(Customer-Led Network Revolution, 2016).  

The customers that were part of the CLNR project were equipped with smart metering 

systems and some groups of these customers were also provided with emerging low 

carbon generation and/or consumption technologies (e.g. solar PVs, electric vehicles, 

and heat pumps) (Customer-Led Network Revolution 2016). Therefore, the data sets 

produced by this project fall into the 9 different categories of data below, based on the 

categories of the customers (Bird, 2015): 
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1. Basic profiling of domestic smart meter customers 

2. Basic profiling of small and medium sized enterprise (SME) customers 

3. Domestic smart meter customers on time of use tariffs 

4. Domestic solar PV customers using In-Home Displays (IHDs) for manual  

in-premises balancing 

5. Domestic solar PV customers with automatic in-premises balancing for hot 

water charging 

6. Enhanced profiling of domestic customers with air source heat pumps 

7. Enhanced profiling of domestic customers with Electric Vehicles (EVs) 

8. Enhanced profiling of domestic customers with solar photovoltaics (PV) 

9. Enhanced profiling of domestic smart meter customers 

These data sets were released in December 2015 for the use of the parties that were not 

involved in the CLNR project, but the data sets for each category were stored in a 

format that was not easy to access using conventional Microsoft Office software 

programmes such as Excel or Access, therefore they were divided into smaller chunks 

using Python 2.7.2 (see Appendix A).  

There are a number of reasons for selecting data sets no.1 and no.8 from the nine 

categories of smart meter data available from the CLNR trials. Data set no.1 contains 

the most number of domestic smart meter consumption data at half-hourly time 

resolution, which will be the resolution at which such data will be available to the 

DNOs. Although this data set does not contain the data points for all the dates between 

2011 and 2013, the fact that the data recorded for matching meter IDs are present 

improves the chances of developing a more accurate low voltage network load 

prediction studies.  

Data set no.8 provides data set smart meter data from 150 meters. This is the largest 

data set with time resolution higher than 30 minutes within the CLNR data sets. This 

data set is ideal for studying the effects of smart meter time resolution variations on the 

accuracy of loss estimates, voltage levels, and cable loading percentage estimation. 
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Although this data set also contains some data gaps and the data points for some dates 

are missing, there are sufficient dates between 2012 to 2014 on which smart meter data 

from at least 100 meters is recorded.  

The other CLNR data sets listed earlier were not deemed to be suitable for the smart 

meter time resolution studies or aggregation studies, because either the smart meter data 

stored were recorder at half-hourly intervals in the first place or there were less than 100 

meter IDs with data set data recorded.  

The selected CLNR data sets are referred to as CLNR data set no.1 and no.8 throughout 

this thesis. The properties of these two CLNR data sets that are used in this research are 

presented in Table 3-2 below. 

 

Table 3-2: Summary of the characteristics of the CLNR data sets 

 

File name and number 

1. Basic Profiling of 

domestic smart meters 

(data set no.1) 

8.  Enhanced profiling of 

domestic customers with 

PVs (data set no.8) 

Date of collection 2011-2013 2012 to 2014 

Number of houses 5000 150 

Consumption data Yes-kW Yes-kW 

Time resolution 30 Minute 1 Minute 

House type information No No 

Number of occupants No No 

Geographical information Approximate Approximate 

 

It should be noted that the CLNR data sets do not contain any demographical 

information and the approximate geographical information about the trial locations 

made it possible to obtain the maximum daily temperature data from the nearest weather 

station. The Loughborough data set also included approximate geographical information 

that made it possible to acquire the maximum daily temperature data from the nearest 

weather station. The Loughborough data set also includes information about the house 

types and the appliances in each house. However, this type of data is not usually 
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transmitted to the DNOs due to privacy reasons and are therefore not accounted for in 

the methods used by the DNOs.  

In summary, the current estimation studies in chapter 4 are carried out using both the 

Loughborough data sets and the CLNR data set no.1 and the time resolution and 

aggregation studies use both the Loughborough data sets and the CLNR data set no.8. 

Figure 3-1 shows the data sets used in each study.  

 

 

 

 

 

 

 

 

 

 

 

 

The ways in which the network models are populated using these data sets are discussed 

in more detail in the following sections of this chapter. 

 

3.2 Low Voltage Current Estimation Using Historical Smart Meter Data 

Most load prediction and short term load forecasting methods have been developed at 

higher levels of the electricity networks (Hayes et al. 2015; Hong and Fan 2016; 

Valgaev et al. 2016) (see section 2.4.1). There has been a growing need for adopting 

these methods at lower voltage levels of the network due to the increasing integration of 

embedded generation. However, the adaptation of the methods to the low voltage side 

Figure 3-1: The data sources used in the three main studies in this thesis 
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has proven to be challenging (Hayes et al. 2015; Hong and Fan 2016; Valgaev et al. 

2016). This is mainly due to the fact that as the currents are disaggregated from higher 

levels to the lower levels of the network, the load profiles become noisier and more 

diverse (Hayes et al. 2015; Hong and Fan 2016; Valgaev et al. 2016). For example, load 

shapes of aggregated loads from customers at 11 kV substations show more 

homogenous trends compared to those obtained at low voltage substations, and 

subsequently at individual customer levels. 

From the point of view of the DNOs, the importance of estimating the loads of 

individual customers is to be able to carry out realistic load flows of the low voltage 

networks and use such analysis in the network applications. Since the smart meter 

implementation in the UK is a gradual process and the communication infrastructure 

can be prone to lags and faults, it is important to be able to estimate the missing smart 

meter data from the available data on the network. Also, it is highly unlikely that the 

DNOs will have any information about individuals’ lifestyle patterns, due to privacy 

reasons. Therefore, it is important to devise load estimation methods that are realistic in 

the context of the UK distribution network operation. 

The following sections describe the methods used in this thesis to calculate missing real 

time customers loads on the low voltage network using historical smart meter data from 

the neighbouring customers and the historical smart meter data. 

3.2.1 Data Used 

In order to carry out the analysis, a 20-house model (Model A) and a 50-house model 

(Model B) were created and populated with half-hourly smart meter consumption data. 

Model A-1 was populated with data from the Loughborough data sets and model A-2 

was populated with the CLNR data set no.1 data. Since the Loughborough data sets 

only contained 13 months data for 20 meters, model B was only populated with the 

CLNR data set no.1 data.  

Consequently, two sample dates in each data set were selected, for which there were 

sufficient number of smart meters with historical smart meter data (13 months). Figure 

3-2 below shows a representation of Model A, comprising households with 20 smart 

meters.  
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Additionally, since the region from which the CLNR data were obtained was 

approximately known, maximum daily temperature recorded at one the nearest weather 

stations to North Yorkshire was also obtained (Weatheronline 2016) to be used 

alongside the CNLR data to examine whether such data can improve the estimation 

accuracy of the methods. More granular temperature data such as half-hourly 

temperature data was not available. 

3.2.2 Load Estimation Methods 

Load estimation approaches can be divided into four major categories of: 

 Traditional methods such as After Diversity Maximum Demand (McQueen 

2004) and customer load curves (Kersting and Philips 2008) or Standardised 

Load Profiles (SLPs) (Valgaev et al. 2016). 

Figure 3-2: A schematic representation of Model A 
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 Methods using substation readings such in Kersting and Philips (2008) and 

Arritt et al. (2012) and a combination of substation data and smart meter data as 

in Mirowski et al. (2014). These approaches aim at predicting the peak loads, so 

methods used in this thesis have been devised to predict the load shapes of the 

customers for 24 hours using approaches similar to using billing data (methods 1 

to 4 below) 

 Methods to predict loads of a particular building type by using machine learning 

techniques such as Artificial Neural Network (ANN) such as in Wong et al. 

(2010) and Chitsaz et al. (2015). These methods are not generally used by the 

DNOs are at early stages of development at low voltage levels.  

 Methods using time series analysis and k-nearest neighbours such as in Iwafune 

et al. (2014) and Valgaev et al. (2016). Valgaev et al. (2016) use a combination 

of k-nearest neighbours and functional time series and a relatively recent work 

by Chaouch (2014) use functional time series to predict the load shape of 

individual customers. Our approach however, combines substation data and 

smart meter data and the predictions are point based in that each half-hour from 

historical data is used to estimate the missing half-hour load on the sample date, 

therefore k-nearest weighted average of the nearest neighbours was selected as 

the statistical approach of choice. 

Hayes et al. (2015) argue, simpler statistical methods are more effective at the lower 

voltage level of the network as the customer loads are disaggregated. Considering that 

the DNOs in the UK are not provided with customers’ lifestyle information due to 

privacy issues and will not have widespread low voltage substation metering 

infrastructure in place due to the costs involved, the following load estimation methods 

were tested on models A-1 and A-2 and the most accurate methods were then applied to 

model B with a larger sample size: 

1. Prediction of missing customer loads on the date based on real-time smart meter 

data from the neighbouring meters on the sample date and the historical data 

from a week earlier on a similar day. 

 

2. Prediction of missing customer loads on the date based on real-time smart meter 

data from the neighbouring meters on the sample date and the historical data 
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from a month earlier on a similar day. 

 

3. Prediction of  missing customer loads on the sample date based on real-time 

smart meter data from the neighbouring meters on the sample date and of 

average of historical data from four weeks before on a similar day. 

 

4. Prediction of missing customer loads on the sample date based on real-time 

smart meter data from the neighbouring meters on the sample date and the 

historical data from a similar type day from a year before on a similar day. 

 

5. Prediction of missing customer loads at peak times on the sample date based on 

real time smart meter data from the neighbouring meters on the sample date and 

the k-nearest weighted averages of the closest historical data values from the 

neighbouring smart meters. A recent work by Valgaev et al. (2016) also use a 

similar approach relying only on k-nearest smart meter values without the use of 

substation data. Also, our approach also incorporates the maximum daily 

temperature in calculating the distance between the nearby points. 

Central to methods 1 to 4 is the concept that although an individual consumer’s energy 

usage pattern is volatile, a customer’s energy consumption pattern on a specific day is 

likely to be similar to be to their load pattern on the same day type a week prior to the 

sample date or weeks further back. Figures 3-3 and 3-4 show the load shape for 6 

customers from the Loughborough data set (model A-1) and CLNR data set no.1 (model 

A-2) on the two sample dates, respectively. These figures demonstrate the difference 

between the consumption patterns of individual customers.  
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Figure 3-3: Load shapes of 6 different customers on the sample date (Loughborough data set) 

 

 

Figure 3-4: Load shapes of 6 different customers on the sample date (CLNR data set no.1) 



92 

 

Figures 3-5 and 3-6 show the load shape for meter ID 1 from the Loughborough data set 

and CLNR data set no.1, respectively. 

 

 

Figure 3-5: Load shapes of meter 1 on the sample date and the historical similar days 

(Loughborough data set) 

 

 

Figure 3-6: Load shapes of meter 1 on the sample date and the historical similar days (CLNR data 

set no.1) 
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Figures 3-5 and 3-6 show that there is a higher degree of similarity between a 

customer’s consumption patterns from week to week compared to month to month. On 

the other hand, Figures 3-3 and 3-4 show that different customers have very different 

consumption patterns, especially during peak times.  

To examine this further, methods 1 to 4 are used in order to determine the best input of 

historical smart meters to be combined with substation meter readings. The difference 

between the estimated half-hourly values and the measured half-hourly values on the 

sample dates (which are initially deleted) is calculated using Absolute Percentage Error 

(APE) for each half-hourly estimation. Subsequently Mean Absolute Percentage Error 

(MAPE) is calculated to determine the average estimation error using each method. 

APE for each half hour can be calculates using the equation below: 

APE = 100 × │Recorded load − Predicted load / Recorded load│ 

 

The best two performing methods are then applied to model B that contains data for 50 

customers. The results of these analysis are presented in chapter 4 and the findings will 

be discussed in detail. 

 

3.3 Impact of Smart Meter Time Resolutions on Estimation Accuracy of 

Losses, Voltage Levels, and Low Voltage Cable Currents 

This section describes the methods that are employed in this work to model a typical 

low voltage network model in order to study the ways in which the accuracy of vital 

low voltage performance indicators such as technical losses, voltage levels, and cable 

loading percentages are affected as the time resolution of smart meter data is decreased 

from data set intervals to 120 minute averages.  

3.3.1 Time Resolution and Customer Data  

To date, only a limited number of studies have focused on the effects time resolution of 

data on the information that can be acquired from customers. Wright and Firth (2006) 

argue that while having half-hourly interval billing data from customers are sufficient 

for suppliers and energy traders in the UK, this time resolution of data hides critical 

fluctuations in customer demands. The examine the impacts of having 1 minute data 

resolution from 2 houses on the load shapes and compare them to having half-hourly 
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data from the 2 dwellings (Wright and Firth 2006). They show that when the data are 

averaged over a half an hour, the demand from customers are underestimated and 

sudden spikes in customer demands (mainly caused by switching on high power 

devices) are flattened or are ignored as shown in Figure 3-7 (Wright and Firth 2006).  

 

Figure 3-7: Customer loads at 1 minute and half-hourly time resolution (Wright and Firth 2006) 

 

This issue has also been investigated in Richardson et al. (2010); Brandauer et al. 

(2013); McKenna and Thompson (2015). Richardson et al. (2010) examines 1 minute 

data from 22 houses to investigate the effects of customer behaviour and their use of 

appliances on the demand curves from customers. Brandauer et al. (2013) investigate 

the impact of having data at 15 minute time resolution intervals compared to 1 second 

time resolutions on low voltage networks. McKenna and Thompson (2015) use high 

resolution smart meter data to investigate the effects of thermal-electrical usage from 

households on load demands.  

In terms of the relationship between the estimation accuracy of losses and the time 

resolution of smart meter data, Urquhart and Thompson (2015) focus on the relationship 

between smart meter time resolution from1 to 30 minute intervals and loss estimates. 

They investigate the effect of smart meter time resolution on the estimation of losses in 

a 22 house single phase network model. The weakness of this work lies in that the 
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losses are calculated for each house without considering the neutral phase currents and 

the effects of the loads from other customers on the various phases on the calculation of 

overall low voltage network losses. However, our study focuses on the effects of time 

resolution on the estimation accuracy of three critical low voltage network information 

areas of losses, minimum voltage levels, and cable capacity percentages in a balanced 

and an unbalanced three phase low voltage network model with 100 customers. The 

importance of using the three phase model is that most low voltage networks in the 

urban areas in the modern economies, especially in the UK use three phase feeders with 

earth return. Also, the analysis in the unbalanced network model replicates the situation 

that the DNOs are likely to find in some of their low voltage networks. Additionally, 

our model uses different sample dates from 2 different data sets and uses them in the 

low voltage network model. The losses estimated on the various dates are also used in 

predicting the 1 minute losses based on estimated losses at half-hourly averages. The 

data used in our analysis is described in the next section and the way in which the 

critical low voltage network indicators were estimated at various time resolutions are 

explained in section 3.3.3.  

3.3.2 Data Used 

Both the Loughborough and the CLNR data sets were utilised for these studies which 

will be discussed in detail in chapters 5 and 6. As one of the most important parts of this 

research is studying the relationship between varying time granularity of the smart 

meter data and the accuracy of major low voltage estimations, the data available in the 

Loughborough data set and the CLNR data set no.8, which are 1 minute data, were 

selected as the most suitable options. The consumption readings from these two data 

sets were then used to populate a 100-house low voltage network. 

Since the Loughborough data sets only contained consumption information of 22 

households, the remaining 78 household consumption data profiles were required to be 

sampled using the closest dates to the chosen sample dates. The reason behind choosing 

the neighbouring dates was to maintain the daily consumption pattern of the households 

as much as possible.  

The CLNR data set no.8 contained reading from 150 meter IDs, but there were gaps in 

recorded data on some dates. Therefore, a query was run in Excel using Visual Basic to 

determine the dates on which data from at least 100 meters were available. The 52 dates 



96 

 

on which data from at least 100 customers were recorded were chosen as the pool of 

sample dates. Initially, 4 sample dates were selected from each data set were selected. In 

the next step and to carry out 1 minute loss predictions based on half-hourly estimates in 

section 5.3, 48 more sample dates from the CLNR data set no.8 were added to the 4 

initial sample dates. The data from the 8 sample dates from the Loughborough data set 

and the CLNR no.8 data set were then added to a simulated 100-house three-phase low 

voltage network model. Table 3-3 lists the 8 sample dates chosen. 

 
Table 3-3: The 8 selected sample dates from the two data sets 

Sample Day Loughborough Data Set CLNR Data Set no.8 

Day 1 Wednesday 16/01/2008 Saturday 12/01/2013 

Day 2 Wednesday 02/07/2008 Wednesday 12/02/2013 

Day 3 Wednesday 09/04/2008 Wednesday 10/04/2013 

Day 4 Saturday 06/09/2008 Wednesday 20/02/2013 

 

For the regression models used in section 5.3, 48 additional sample dates from the 

CLNR data set no.8 were selected from the 100 dates available to provide a 

representative mixture of: 

 Working days 

 Non-working days 

 Various months 

The 100-house three-phase low voltage model created comprises of a low voltage 

substation, three pieces of main low voltage cables (A, B, and C), a hundred service 

cables, and a hundred household smart meters. Thirty households were assigned to 

cable A and thirty and forty households to cables B and C, respectively. The low 

voltage cables were divided into 5-meter sections in order to facilitate the calculations at 

each section of the network. The service cables were allocated a constant length of six 

meters. The cable characteristics were obtained from the Northern Powergrid technical 

data documents, which can be found in the Appendix B.  

 

 



97 

 

Table 3-4: Cable types and their characteristics 

Cable Name Cable Type 

(mm) 

Nominal Rating 

(amps) 

 

Phase 

Resistance per 

Km (Ω) 

 

Neutral 

Resistance  

per Km (Ω) 

 

Mains-A 185 304 0.19 0.81 

Mains-B 95 208 0.38 1.57 

Mains-C 95 208 0.38 1.57 

Service 

Cables 

35 140 1.11 3.47 

 

Figure 3-8 on the next page shows the schematic representation of the low voltage 

model created. This model is colour-coded based on the phases allocated to each 

customer. The phase allocation was carried out on the basis of the common practice 

popular in the industry otherwise known as “balanced network”, which assigns each 

customer to one of the three phases starting from the red phase, followed by yellow and 

blue.  

This phasing pattern is used for the majority of the analysis. However, in section 5.2 

this balanced phasing pattern is changed to model an “unbalanced network”, in order to 

replicate the unbalanced low voltage network that are found in practice. Throughout the 

next chapters the former phasing pattern will be referred to as “balanced network” and 

the latter as “unbalanced network”.  
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Figure 3-8: The low voltage model colour-coded based on balanced phasing 
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3.3.3 Estimation Methods 

This section of the thesis describes the way in which the technical losses, voltage levels, 

and cable loading percentages were estimated on the low voltage network model in 

Figure 3-8.  

3.3.3.1 Estimation of losses 

The following steps were carried out to optimise the raw smart meter electricity 

consumption data, which were available at data set intervals, using Microsoft Excel and 

the built-in Visual Basic programme in Excel.  

1. 1-minute currents (I) in Amps are estimated from customers’ demand readings 

(P) in Watts based on constant voltage of 240V (equation 1). The current 

measurements are then calculated based on 5 minute, 10 minute, 15 minute, 30 

minute, 60 minute, and 120 minute averages of customer demands: 

 

(1).  I(A) = P(W) / V(V) 

 

2. Current measurements of the households are added on a three phase low voltage 

network model (see Figure 3-8) to calculate the total demand on each phase at 

the substation. 

3. Customer demands on each phase at each household downstream of the 

substation are also calculated. 

4. The currents on the red (R), yellow (Y), and blue (B) phases are then used to 

calculate the Current on the neutral phase (N) at each household (equation 2): 

 

(2).  N = √ (R
2
+Y

2
+B

2
-RY-RB-BY) 

 

5. Main phase and neutral phase resistance values are also calculated for each 

section of the network by multiplying the constant cable length (5 m) of the 

main cables and neutral phase resistance figures based on each cable type  

(see Table 3-4). 

6. Losses are then calculated at each section of the low voltage network using the 

load on each phase at that particular section and the resistance values (Salman 

1996 and Slavickas 2000), as calculated in equation 3: 
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(3).  Network loss at each section:  

Main phase resistance × (R
2
+Y

2
+B

2
) + Neutral phase resistance × (N

2
) 

 

7. Network losses at each section are then added to estimate the losses of the low 

voltage network. 

8. The same process is then repeated using decreased time granularity of currents 

from 1 minute to 5 minute, 10 minute, 15 minute, 30 minute, 60 minute, and 120 

minute averages of customer demands. 

9. The results of network losses at various time granularities for each day are then 

plotted for data analysis. 

3.3.3.2 Estimation of Voltage Levels 

1 minute currents in Amps are estimated from customers’ demand readings in Watts 

based constant voltage of 240V (equation 1). The current measurements are then 

calculated based on 5 minute, 10 minute, 15 minute, 30 minute, 60 minute, and 120 

minute averages of customer demands:  

(1).  I(A) = P(W) / V(V) 

 

1. Current measurements of households are added on the three phase low voltage 

network to calculate the total customer demands on each phase at the substation. 

2. Loads on each phase at every household downstream of the substation are also 

calculated. 

3. Main phase resistance is also calculated for each section of the network by 

multiplying the constant cable length (5m) and the main phase resistance based 

on each cable type (see Appendix B). 

4. Voltage levels on each phase at the end of each section of the network is 

calculated by multiplying the household loads on each phase and the main phase 

resistance and the results are added together to obtain minimum and maximum 

voltage drop on each phase based on load pattern change throughout a 24 hour 

period for the representative dates. 

5. A similar process is then repeated using decreased granularity of current data 

from 1 minute to 5 minute, 10 minute, 15 minute, 30 minute, 60 minute,  

and 120 minute time resolution of data. 
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6. The results of voltage level estimates at various time granularity for each day are 

then plotted. 

As anticipated the highest voltage drops are experienced at the end of each branch of the 

network on branches B and C. 

3.3.3.3 Estimation of Cable Loading Percentages 

In order to calculate the percentage of loads on each phase of the low voltage network 

the following steps are carried out: 

1. Current in Amps are estimated from customers’ demand reads in Watts based 

constant voltage of 240V (equation 1). The current measurements are then 

calculated based on 5 minute, 10 minute, 15 minute, 30 minute, 60 minute, and 

120 minute averages of customer demands:  

 

(1).  I(A) = P(W) / V(V) 

 

2. Current measurements of households are added based on a balanced three phase 

low voltage network model and unbalanced phasing arrangements to calculate 

the load on each phase at the substation. 

3. Loads on each phase at each household downstream of the substation are also 

calculated.  

4. The sections of each branch A, B, and C were examined to and the sections with 

maximum loads on each phase are chosen. 

5. The loads are divided by the maximum rating of each cable type to calculate the 

loading percentage of each phase of each cable. 

6. These are calculated and plotted based on time granularities decreasing from  

1 minute to 120 minute averages. 

7. The results are plotted to compare the shapes based on granularity level. 

 

3.4 Impact of Smart Meter Data Aggregation on Estimation Accuracy of 

Losses and Voltage Levels 

This section describes the methods that are employed in this work in order to study the 

ways in which the accuracy of vital low voltage performance indicators such as 
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technical losses and voltage levels are affected as the smart meter data from customers 

on the model low voltage network (see Figure 3-8) are aggregated together at various 

levels ranging from no aggregation to 10 customers on the same network.  

3.4.1 Preservation of Consumer Data 

Preserving the privacy and the individual lifestyle pattern of consumers is of utmost 

concern in relation to deployment of smart meters (Saputro and Akkaya 2013). In 

Saputro and Akkaya (2013), four main threats to customers’ privacy, which can result 

from having detail smart meter data, are identified as follows: 

 Obtaining individual behavioural data 

 Obtaining information about the appliances in use 

 Performing Surveillance 

 Attacking homes when unoccupied 

Under the Standard License Condition (SLC) 10 introduced by the OFGEM, the DNOs 

are not provided with load profiles of individual customers, due to privacy concerns 

(EA Technology 2015b; OFGEM 2017). Therefore, the DNOs are in the UK are asked 

to anonymise the data as soon as they receive them from the DCC in order to preserve 

customers’ privacy.  

3.4.1.1 Anonymization Methods 

Previously, data aggregation methods were proposed in Armknecht et al. (2008); Garcia 

and Jacobs (2010); Marmol et al. (2012a); Marmol et al. (2012b); Onen and Molva 

(2012); Biselli et al. (2013) to investigate the ways in which the smart meter data can be 

aggregated in order to preserve the lifestyle patterns of the individual customers. Garcia 

and Jacobs (2010); Marmol et al. (2012a); Marmol et al. (2012b); and Biselli et al. 

(2013) propose various methods of encrypting the smart data using computational 

techniques and then transferring the data key to an aggregator meter, while Armknecht 

et al. (2008) and Onen and Molva (2012) focus on aggregating the meter data at various 

node points based on the topology of the network. These studies focus on the ways of 

preserving the privacy of customers, but they do not evaluate the impact of these 

methods of aggregation on the operation side of the network. Also as Saputro and 

Akkaya (2013) and EA Technology (2015a) point out, due to the fact that the DNOs in 

the UK do not own the raw customer data in the first place and only obtain them from 

the DCC, they usually opt for methods of anonymization that result in dissociation of 
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customer IDs from the individual consumption data. Customer data aggregation based 

on phasing, which results in grouping the consumption data from a number of 

customers on a similar phase and within close proximity is deemed to be the most 

effective way of customer data anonymization (Saputro and Akkaya 2013; EA 

Technology 2015a).  

Most recently, EA Technology investigated the effects of customer data aggregation in 

low voltage networks. EA Technology (2015a) focuses on the reduction of customer 

identification risk percentage as the customer data are aggregated. EA Technology 

(2015a) uses the CREST model to simulate typical 24 hour half-hourly household loads 

for customers on 10 cable with 9 to 124 connections. The training customer loads are 

then aggregated at feeder level and verified using the CLNR network monitoring data 

from low voltage network substations (EA Technology 2015a). The similarity between 

the aggregated load profiles and the individual load profiles are then examined using 

graphical representation of loads, correlation investigation of a random load to the 

aggregated load, and the k-means clustering approach (EA Technology 2015a). The 

results from this study indicate that as the aggregation level increases from the 1 to the 5 

house level, the risk of customer identification drops from 100% to 15% (EA 

Technology 2015a), with the sharpest drop occurring between 1 and 2 house level of 

aggregation from 100% to 22% (EA Technology 2015a). EA Technology (2015b) also 

attempts to quantify the cumulative monetary losses to the DNOs as a result of customer 

meter data aggregation. The work carried out by the EA Technology (2015a and 2015b) 

investigate three network aggregation scenarios at aggregation points of looped 

services, and rural and urban feeder sections and examines the decrease in financial 

benefits in distribution grid investment strategies to the DNOs as customer data are 

aggregated. In EA Technology (2015b), the reduction in benefits as a result of customer 

data aggregation is expressed in monetary terms. The estimated financial impact 

involves the cost of disaggregating the aggregated customer profiles.  

Our work investigates the impact of customer load aggregation on loss and voltage 

estimates in an urban low voltage network model with 100 houses at 5 different 

aggregation levels of 2, 4, 6, 8, and 10 houses. Also analysis presented in this thesis 

presents the effects of data aggregation in the context of changes in the accuracy levels 

of important low voltage network performance indicators such as technical losses and 

voltage levels. 
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3.4.2 Data Used 

The smart meter data used in this part of the study is the half-hourly smart meter data 

obtained from averaging 1 minute data from the Loughborough data sets and the data 

set no.8 of the CLNR data sets. Our research uses actual customer demands from the 

CLNR and Loughborough trials for 8 sample dates from the two data sets between 

2012-2013 and 2008 and 2009.  

3.4.3 Aggregation Methods 

Since the smart data will be transmitted to the DNOs in the UK are in half-hourly 

format, it was decided to investigate various house aggregation scenarios of the half-

hourly averages of the demand data. In order to achieve this, the smart meter data used 

in a balanced 100-house three phase low voltage model (see Figure 3-8) are aggregated 

based on 5 different scenarios (see Figure 3-9). The smart meter data that are used in the 

studies presented earlier are aggregated at 2-house, 4-house, 6-house, 8-house, and 10-

house aggregation points on the network. Figure 14 below shows a representation of 

some of the aggregation points for the customers on the red phase of cable A (as shown 

previously in Figure 3-8). The results of network loss and voltage estimates at each 

aggregation level are then compared with zero aggregation (1-house) results. 

The technical network losses on the main three phase low voltage cables are calculated 

by using the load of a single customer on each phase and 5 meter section length of the 

low voltage cable where that load is connected to before the next customer is connected, 

which means the losses at each section are then added together to calculate the total loss 

of the network. However, when aggregation points are placed on the network model (as 

in Figure 3-9), the customer demands from two neighbouring houses on a similar phase 

are added together at the end of a 15 meter cable which is the middle point between the 

two houses.  

 



105 

 

 

Figure 3-9: A sample of the aggregation points for customers on red phase (cable A) 

 

In order to further investigate the impact of the placement of aggregation points on the 

estimate values, the network model represented in Figure 3-8, which is a 100-house 

balanced three phase low network with three cables and two branches, is changed to a 

100-house balanced three phase low network with only one main cable and no branches. 

This new model is presented in Figure 3-10.  

Throughout this thesis, the model in Figure 3-10 is referred to as “alternative” low 

voltage network model.  
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Figure 3-10: The alternative low voltage network model for customer aggregation studies (the 

colour codes refer to the customers’ designated phases) 

 

The model is then populated with smart meter data used in the first model and the 

aggregation points for the 5 levels of aggregation are placed on the new network as 

previously shown in Figure 3-9.  
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Chapter 4 Estimation of Missing Smart Meter Readings Using Smart 

Meter Data 

In the UK, about 53 million smart gas and electricity meters will be deployed at 

households by 2025 (OFGEM 2016), with small businesses required to install 

Advanced Metering Infrastructure (AMI), and also more low voltage substations are 

likely to be equipped with feeder phase current measuring devices (Lees 2014). Not all 

smart meter consumption/generation data on every specific low voltage network will be 

available to the DNOs in the UK in real-time, due to the need for customer data 

aggregation for privacy reasons, time delays in processing and transmission, or lack of 

smart meter installations (Lees 2014). Therefore, as more smart low voltage grid 

applications are developed to utilise smart meter data, a need for determining the 

missing smart meter customer loads in low voltage networks will arise. This is 

becoming ever more important, especially with the growing reliance of smart grid 

applications such as network planning and design and Active Network Management 

(ANM) on more detailed and real-time customer demand information. Traditionally, 

DNOs have been using Maximum Demand (MD), load profiles, and annual billing data 

to predict consumers’ demand patterns.  

These approaches have been practical until recent years, due to the fact that they can 

provide accurate results in balancing the high voltage supply with the aggregated 

demands from end users (Valgaev et al. 2016). However, with the increasing share of 

embedded generation in the low voltage network, the demands need to be balanced at 

local levels and for disaggregated customers loads (Valgaev et al. 2016). Prediction of 

individual customer demands at local level is a difficult task, because as the demands 

are disaggregated from substation levels to end users, the load shapes become more 

volatile and diverse (Hayes et al. 2015). This is particularly challenging in the case of 

residential loads, where diversity between various lifestyle patterns and appliances in 

use can often create differences between two individual customers that may live in the 

same building but in two different flats. On the other hand, loads from commercial 

buildings usually follow a certain pattern during working hours and non-working hours 

(Valgaev et al. 2016).  

This chapter evaluates the applicability of smart meter data to a number of approaches 

in estimating the missing half-hourly customer currents on the low voltage network 
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using historical smart meter data and substation currents. 5 estimation methods have 

been selected as baseline approaches as the most that are deemed to be most practical 

within the DNOs applications and in relation to the data types that will be available to 

them. A number of other load forecasting methods have been tested previously. Short-

Term Load Forecasting (STFL) methods have been used by the energy market suppliers 

in predicting aggregated loads at higher levels of the network and they have not been 

used at lower levels, because they do not perform as well in predicting disaggregated 

loads at low voltage levels (Valgaev et al. 2016). Machine learning methods and 

Artificial Neural Network (ANN) methods have also been used at high voltage levels. 

These methods are more suited to the transmission level of the network due to the fact 

that there are higher levels of information about the network and loads available to the 

transmission network operators. In addition to the lack of monitoring points on the low 

voltage network, the computational complexities of such methods have led to a 

reluctance by the DNOs to develop such methods at low voltage levels.  

In this chapter, approaches 1 to 4 have been selected with regards to the types of data 

that will be available to the DNOs in the UK and the methods that are established in 

their network applications. These methods combine historical smart meter data with the 

transformer kVa allocation (Kerstin and Philips 2008; Arritt et al. 2012) and Monthly 

Usage Allocation (MUA) methods (Arritt et al. 2012), which are suited to the DNO 

applications at low voltage levels. Method 5 is a statistical approach based on the  

k-nearest weighted average of the closest points to the missing peak demand points. 

This approach is different from the k-nearest method used in Valgaev et al. (2016) in 

that it incorporates parameters such as half-hours, day types, weekly separation, 

substation load, and maximum temperature in calculating the Euclidean distance from 

the missing demand points, and it uses the weighted average of 5 nearest historical data 

points. 

Methods 1 to 5 are also preferable to methods such as clustering and using class load 

shapes in (Velez et al. 2014), because they are easily applicable to any type of low 

voltage network. On the other hand, the clustering and load shape methods are defined 

for a limited number of specific low voltage networks and the great diversity in the low 

voltage network types restricts the use of such methods.  
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In the next sections of this chapter, the selected estimation approaches (described in 

section 3.2.2) are tested on two model networks of A-1 and A-2 that are populated with 

readings from two different data sets. A schematic representation models A-1 and A-2 

is shown in Figure 3-2. These low voltage network models are created using smart 

meters from 20 households. Model A-1 is populated using data from the Loughborough 

Data set and Model A-2 is populated using data from the CLNR data set no.1. After 

testing the 5 estimation methods on the test networks of A-1 and A-2, the top 2 best 

performing estimation methods are applied on a network model with a larger number of 

customers, model B, and the results are reported.  

 

4.1 Load shapes at Substation Levels and End User Levels 

When customer data are measured in aggregated form at substations, the diversity in 

individual customer demand patterns is eliminated and the load shapes become 

smoother, with clear peaks and drops, compared to individual customer demands 

patterns.  

Figure 4-1 shows the individual load patterns for meters 19 and 20 from the 

Loughborough data set and CLNR data set no.1 used in models A-1 and A-2, 

respectively.  

The load shapes are for the sample dates of 25/02/2009 and 27/02/2013. These sample 

dates were selected based on the following factors: 

 Having the same day type (e.g. Wednesday). 

 Being from the same month (preferably in Winter when the demand is the at the 

highest). 

 The dates for which there is at least 13 month historical smart meter data are 

recorded. 
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Figure 4-1: Individual demand patterns for sample meters from model A-1 and A-2 on the sample 

dates 

 

As Figure 4-1 shows, investigating individual consumption patterns of 4 different 

consumers from 2 different data sets demonstrate a great degree of diversity. The load 

shapes from the two customers in model A-2 show a more homogenous pattern at  

non-peak times compared to the customers in model A-1. However, the way in which 

the four users consume energy at peak times seem to vary. 

Figure 4-2 below shows the aggregated loads from all 20 meters in models A-1 and A-2 

on the sample dates of 25/02/2009 and 27/02/2013. 
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Figure 4-2: Substation demand patterns for models A-1 and A-2 on the sample dates 

 

In Figure 4-2, a clear trend can be observed with peaks and drops in the demands. Also, 

Figure 4-1 clearly demonstrates that various customers have diverse lifestyle and usage 

patterns. In Figure 4-2, clear consumption trends can be observed with conventional 

peak times in the early morning and in the afternoon in model A-1 and a continuous 

increase in consumption from 06:00 to 14:00 and a peak later in the afternoon for 

customers in model A-2. A comparison between Figures 4-1 and 4-2 clearly 

demonstrate that the individual customer demand patterns are noisier and more volatile 

than aggregated demands at substations.  
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The estimation approaches presented in this thesis are based on the assumption that the 

proportion of loads from a group of customers on the low voltage substation is likely to 

be close to the proportion of loads from the same group of customer for “similar times 

and situations” in the past. For example, the split of currents from the meters 19 and 20 

compared to the total currents at the substation from a week before the sample date is a 

good indicator of the split of the current from the same group of customers (meters 19 

and 20) on the sample date. This is more likely to be accurate if similar day types (e.g. 

week days or weekends) are used. Figure 4-3 demonstrates the proportion of loads of 

meters 19 and 20 as percentages of the total loads at the substations on the sample dates 

and a week prior to the sample dates for models A-1 and A-2.  

 

Figure 4-3: Loads on meters 19 and 20 as percentage of substation loads on the sample dates and 

from a similar day a week prior to the sample dates 

As Figure 4-3 shows, for a majority of half-hourly intervals in a 24 hours cycle the load 

percentages of meters 19 and 20 as proportions of substation currents are similar to a 

similar day and a similar time interval from a week before. This is central to the 

estimation approaches presented in the next section.  
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In theory, the total currents at the substation should be a helpful measure in estimating 

the missing smart meter data on the sample dates in that through scaling, the volatility 

in individual smart meter demand patterns can be accounted for when the substation 

data and historical smart meter readings are combined. Also, the effect of seasonality is 

factored in the total substation currents and using the half-hourly substation current in 

the scaling calculations reflect the times of high or low demand if they are caused by 

seasonal effects. 

 

4.2 Analysis and Results  

The following load estimation methods have been tested on two models of low voltage 

network containing 20 meters (models A-1 and A-2). The estimation approaches 

assume that the real-time smart meter data for 90% of the customers are available on the 

sample date and the remaining 10% of the network do not communicate any smart 

meter data in real-time. However, historical data up to 13 months earlier are available 

for 100% of the network. This assumption is based on the prediction by the OFGEM 

that between 2% to 10% of the customers will not be provided with smart meters in the 

UK as the smart meters are gradually implemented by 2025 (OFGEM 2016). The 

approaches also assume that the total currents at the low voltage substations upstream of 

the network are available.  

4.2.1 Methods 1 to 4: Estimation of Low Voltage Currents Using Data from 

Similar Historical Dates 

These methods, previously described in section 3.2.2, assume that the total of the 

customer currents from the substation in models A-1 and A-2 are available to the 

DNOs. This data is combined with the substation readings from the other 18 meters on 

the network and smart meter readings of meters 19 and 20 from a similar day a week 

prior, a month prior, and a year prior to the sample dates of 25/02/2009 and 27/02/2013, 

respectively. Method 4 is employed by using the average of values recorded on similar 

dates to the sample dates up to 4 weeks earlier. The aim is to estimate the missing half-

hourly values of the loads for meters 19 and 20 on the sample dates.  

Predictions are made for loads from meters 19 and 20 at each of the 48 half-hourly 

intervals on the sample dates using the total loads recorded at the substation on the 

sample dates, the historical loads from meters 19 and 20, and the historical total 
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substation loads from the other 18 meters on the network. The predicted half-hourly 

loads for meters 19 and 20 are then compared to half-hourly measured load values for 

the two meters on the sample dates and the Absolute Percentage Error (APE) for each  

half-hour prediction is calculated followed by calculation of the Mean Absolute 

Percentage Error (MAPE) for each method.  

Estimation Equation: 

Let Sp1 be the total loads at the substation at the first half-hour of the day (00:00-00:30) 

on the sample date, Sh1 be the total historical loads (e.g. a week, a month, or a year 

before) at the substation at the same half-hour, and Lh1 be the historical loads recorded 

for meters 19 and 20 at a similar half-hour, then the missing half-hourly load of meters 

19 and 20 on the sample date, Lp1 can be estimated by the following formula: 

𝐿𝑝1  =  𝑆𝑝1 ×  
𝐿ℎ1

𝑆ℎ1
   

This can be used to estimate the missing values of currents for every half an hour on the 

sample dates (i.e. 1-48). 

For example, using method 1 the equation can be updated for model A-1 to:  

𝐿𝑝1 (25/02/2009)   =  𝑆𝑝1 (25/02/2009) ×  
𝐿ℎ1 (18/02/2009) 

𝑆ℎ1 (18/02/2009) 
   

Using method 2 the data used in the equation are obtained from a similar day a month 

prior to the sample date, so the equation will is expressed as follows:  

𝐿𝑝1 (25/02/2009)   =  𝑆𝑝1 (25/02/2009) ×  
𝐿ℎ1 (28/01/2009) 

𝑆ℎ1 (28/01/2009) 
 

Using method 3 the data used in the equation are obtained from a similar day a year 

prior to the sample date, so the equation is updated to:  

𝐿𝑝1 (25/02/2009)   =  𝑆𝑝1 (25/02/2009) ×  
𝐿ℎ1 (27/01/2008) 

𝑆ℎ1 (27/01/2008) 
 

In method 4, the average values for each half-hour from 4 weeks prior to the sample 

dates are used in equations.  
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Results: 

Figure 4-4 shows the sum of demands recorded and predicted for meters 19 and 20 on 

the sample date of 25/02/2009 in model A-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Estimated loads v predicted sum of loads from meters 19 and 20 using methods 1-4 (Model A-1) 

0

1

2

3

4

0
0

:0
0

0
2

:3
0

0
5

:0
0

0
7

:3
0

1
0

:0
0

1
2

:3
0

1
5

:0
0

1
7

:3
0

2
0

:0
0

2
2

:3
0M

e
te

r 
 1

9
+M

e
te

r 
2

0
 

Lo
ad

 (
kW

) 

Time Intervals 

Measured
Current (Wed
25/02/2009)

Estimated
Current  Based
on (Wed
18/02/2009)

0

1

2

3

4

0
0

:0
0

0
2

:3
0

0
5

:0
0

0
7

:3
0

1
0

:0
0

1
2

:3
0

1
5

:0
0

1
7

:3
0

2
0

:0
0

2
2

:3
0

M
e

te
r 

 1
9

+M
e

te
r 

2
0

 
Lo

ad
 (

kW
) 

Time Intervals 

Measured
Current (Wed
25/02/2009)

Estimated
Current  Based
on (Wed
28/01/2009)

0

1

2

3

4

0
0

:0
0

0
2

:3
0

0
5

:0
0

0
7

:3
0

1
0

:0
0

1
2

:3
0

1
5

:0
0

1
7

:3
0

2
0

:0
0

2
2

:3
0

M
e

te
r 

1
9

+M
e

te
r 

2
0

 
Lo

ad
 (

kW
) 

Time Intervals 

Measured
Current (Wed
25/02/2009)

Estimated
Current  Based
on (Wed
27/01/2008)

0

1

2

3

4

0
0

:0
0

0
2

:3
0

0
5

:0
0

0
7

:3
0

1
0

:0
0

1
2

:3
0

1
5

:0
0

1
7

:3
0

2
0

:0
0

2
2

:3
0M

e
te

r 
1

9
+M

e
te

r 
2

0
 

Lo
ad

 (
kW

) 

Time Intervals 

Measured
Current (Wed
25/02/2009)

Estimated
Current  Based
on 4 Weeks
Avg.

Method 1 

Method 2 

Method 3 

Method 4 



116 

 

Figure 4-5 shows the results of a similar analysis on model A-2 and on the sample date 

of 27/02/2013. 

 

  

Figure 4-5: Estimated loads v predicted sum of loads from meters 19 and 20 using methods 1-4 (Model A-2) 
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Figure 4-4 indicates that the measured load pattern for meters 19 and 20, that represent 

10% of the meters on the low voltage test network of A-1, show some unusual peaks at 

early hours of morning of the sample date. This can be due to anomaly in the data or an 

individual customer’s behavioural pattern. A close look at the data set indicates that this 

is not an anomaly and similar peaks in consumption at meter 19 can are observed in the 

early hours of the morning of a week before the sample date and also weeks earlier. 

This becomes marginal compared to the usual peaks observed in aggregated residential 

currents (e.g. in Figure 4-2).  

In relation to the three main peaks periods observed in the recorded loads in Figure 4-4 

at time intervals of 07:00-09:00. 11:30-13:30, and 17:00-19:00, none of methods 1-4 

successfully predict all three peaks. Method 1 using data from a week before, correctly 

estimates the peak in the morning and in the afternoon, but fails in predicting the peak 

demand at midday. Method 2 using data from 1 month earlier of the sample date, 

underestimates the first peak demand between 07:00-09:00 but provides a good 

estimation of the second and the third peaks. Method 3 using data from a year before, 

estimate the first and the second peak demands, but fails to accurately estimate the time 

periods at which these maximum demands take place. Method 4 using the average of 

the readings from 4 weeks prior to the sample date, fails to estimate 2 out of the 3 peak 

demand periods.  

Figure 4-5 shows less complex load shape for the sum of currents from meters 19 and 

20, that represent 10% of the meters on the low voltage test network of A-2. For these 

customers, the consumption peaks in the morning at around 09:00 and peaks again at 

around midday. This trend is also observed in the substation currents (see Figure 4-2). 

However, the substation currents also show a high consumption value in the afternoon 

from 17:30-19:30. Methods 1 to 4 all provide fairly accurate estimations of the general 

load shape on the sample date. However, the peak demands are either underestimated or 

predicted at a different time interval. The exception is method 2 which provides a fairly 

accurate estimation of the peak consumption readings.  

Looking at the errors between estimated and the measured loads at each 48 half-hour 

intervals reveals that Methods 1 and 4 proved the most accurate estimation of the 

missing loads. The APE values are calculated between the actual and the estimated 

current at every half-hour and then the average of the 48 values are calculate to find the 
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MAPE for each method. The spread of the APEs for each method is shown in Figures 4-

6 and 4-7 below. Figure 4-6 shows the APEs for model A-1 and Figure 4-7 shows the 

APEs for model A-2. The top whisker shows the maximum APE value, the bottom 

whisker shows the minimum APE value, and the box shows the interquartile range 

between Q1 and Q3. The line in the middle of the box shows the median APE value. 

 

 

Figure 4-6: The spread of APEs for the 4 estimation methods in model A-1 

 

The unusually large maximum errors shown in this figure should be treated as an outlier 

as a close look at the data shows that they are caused by estimation error at only one 
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19. This indicates that since this unusual consumption pattern is not represented by 

other customers on the network, these methods all fail to predict it. Notwithstanding 

this, most prediction errors range between just above 30-50%. On average in the case of 

model A-1, methods 1 to 4 provide MAPE values of 49.61%, 66.41%, 70.20%, 49.99%, 
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Figure 4-7: The spread of APEs for the 4 estimation methods in model A-2 

 

In the case of model A-2, looking at the APEs in Figure 4-7 shows that most prediction 
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close value to each other as well (Oliver & Webster 1990, Hofstra et al. 2008). The  

k-nearest weighted average approaches used in this section are carried out in three steps: 

1. Defining the separation parameters: instead of selecting the nearest points based 

on Euclidean distance (as done in geographical settings), various influential 

elements such as time and temperature are converted into weights (Wu et al. 

2014). 

2. Selecting the nearby points: k number of nearby points are chosen based on the 

lowest distance score (Ledolter 2013). The value of k is usually decided based 

on the best results produced on the test data (Fotheringham et al. 2002).  

3. Estimating the values: the separation parameters are converted to weights 

(Fotheringham et al. 2002) and the weighted average of the k-nearest historical 

values are used in order to estimate the peak demand values on the sample dates. 

The parameters that were used in step 1 were: 

 Three peak times of 8:00, 12:30, and 18:30 are chosen based on the peak times 

observed from the substation load shapes. 

 Half-hour in the day (H): each half hour in the day is given values between 1 to 

48 and the separation of each half-hour from the three peak times are calculated. 

 Day type (D): the separation between day types is calculated by assigning the 

value of 1 if the days are both on the same weekdays, 2 if they are different 

week days (e.g. Monday and Wednesday), and 4 if they are weekend days. 

 Week separation (W): the number of weeks that two situations are distant from 

each other is calculated by assigning from 1 to 52 to the situations. 

 Substation load difference (S): this is calculated by taking the difference the 

substation load on the sample date and the response date 

 Temperature separation (T): this is also the difference in the maximum 

temperature recorded on the dates. 

The Separation between each half hour and the peak times on the sample dates can be 

defined as: 

Separation = H
h
 × D

d
 × W

w
 × S

s 
× T

t
 

 



121 

 

In step 2, various k numbers were used and the k number that resulted in most accurate 

predictions were taken forward to be used in model B. 

In step 3, the reciprocal of the separations is used to calculate the weighted averages. 

Results: 

Initially, power factors in calculating the separation were set as 1 (e.g. h =1, d=1, etc.). 

The results show various accuracies in models A-1 and A-2 when calculating the MAPE 

for the three estimated peak demand points on the sample dates. Table 4-1 below shows 

the MAPE results found for various k numbers of points for the two models.  

 

Table 4-1: MAPE results using different k-nearest average numbers for models A-1 and A-2 

 MAPE (k=5) MAPE (k=10) MAPE (k=15) 

Model A-1 73.85% 74.08% 74.65% 

Model A-2 44.84% 45.01% 46.76% 

 

Based on these results k number was decided to be set as 5. So the average of values 

from 10 nearby points to the peak values on the sample dates were observed to provide 

the most accurate values. In the next step, the power values in the separation calculation 

were changed to examine whether the accuracy levels in predicting the peak 

consumption values can be improved. Since the weighted averages are carried out using 

the reciprocal of the separation and since it is more likely that the values from  

half-hours are close to the half-hour next to them, the separation measure were 

recalculated to emphasise this issue. To this end, the power factor for H was changed 

from 1 to 4 and the most accurate results were produced when h was set as 4 (h=4). 

Changing the temperature power factor (t) in the separation measure was found not to 

significantly improve the estimates. This could stem from the fact that the half-hourly 

temperature data was not available for these data sets and the maximum daily 

temperature values were the same for each half-hour. However, the fact that the 

temperature changes are already factored in the substation loads and since the substation 

load differences are also used in the separation, it can be argued that the impact of 

temperature changes has been accounted for. As Chaouch (2014) argues, aggregated 

loads at substation or node points along the network are more reflective of influencing 
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factors such as seasonality and weather conditions, whereas disaggregated customer 

loads are more influenced by individual lifestyle patterns of the consumers. 

Table 4-2 below shows the MAPE result of the k-nearest weighted averages when h is 

set as 4. 

 

Table 4-2: MAPE results using different k-nearest average numbers for models A-1 and A-2 (h=4) 

 MAPE (k=5) MAPE (k=10) MAPE (k=15) 

Model A-1 48.80% 55.00% 55.26% 

Model A-2 36.51% 

 

37.53% 

 

38.17% 

 

 

Figure 4-8 below shows the load shapes of the missing meters 19 and 20 on the sample 

dates of 25/02/2009 and 27/02/2013 and the peak estimates using the k-nearest 

weighted approach with k set as 5.  

 

 

Figure 4-8: Measured loads compared to estimated peak loads using k-nearest weighted average 
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As observed in Figure 4-8, the k-nearest approach does not provide perfect estimates of 

the peak consumptions. In theory, the models could have been improved by having  

half-hourly temperature data instead of maximum daily data, but this data was not 

available. The errors produced using the k-nearest weighted approach is only slightly 

lower than that of methods 1 and 4 discussed before. Table 4-3 below compares the 

MAPE results for the 5 methods. 

 
Table 4-3: MAPE results for various methods used in estimating the missing loads on samples dates 

in models A-1 and A-2 

Method Method 1 Method 2 Method 3 Method 4 Method 5 

MAPE A-1 49.61% 66.41% 70.20% 49.99% 48.80% 

MAPE A-2 29.83%, 44.51% 42.74%, 31.39% 36.51% 

 

 

As Table 4-3 shows, in the case of model A-1, method 5 offers just above 1% more 

accuracy compared to methods 1 and 4, but in the case of model A-2, methods 1 and 4 

provide a better estimates of the loads by 5-7%. This can be due to the fact that the 

outlier observed in data used in model A-1 (see Figure 4.6) is taken into account in 

methods 1 and 4 when MAPE of 48 half-hourly APEs is calculated, but method 5 only 

estimates the peak values at 3 peak half-hours. Table 4-4 below compares the MAPE 

results for the load estimates at the three daily peak times. 

 

Table 4-4: MAPE results for various methods used in estimating the missing loads on samples dates 

at peak times in models A-1 and A-2 

Method Method 1 Method 2 Method 3 Method 4 Method 5 

MAPE A-1 43.61% 28.65% 47.26% 42.31% 48.80% 

MAPE A-2 30.31%, 43.58% 40.81%, 35.91% 36.51% 

 

 

The results presented in Table 4-4 shows that methods 1 and 4 perform best in 

estimating the demand at peak times as well.  
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In the next step, methods 1 and 4 are used in a larger network model, model B, with 50 

meters to examine to what extent does having a larger customer group size can increase 

or decrease the accuracy levels of these estimation methods. 

Estimation of missing loads in Model B 

Model B is comprised of 50 customers. The smart meter data are obtained from CLNR 

data set no.1 and it is assumed that on the sample date of 27/02/2013, the substation 

currents are available but the smart meter data from only 90% of the network are 

communicated to the DNOs. Therefore, on the sample date, the smart data from meters 

1 to 45 are assumed to be available in addition to the total currents from the substation, 

but the data from meters 46 to 50 are missing and are required to be estimated. The 

most accurate methods in the previous step, which were methods 1 and 4 are applied to 

examine whether the accuracy level is improved if larger sets of data are available to the 

network operators. Figure 4-9 below shows the predicted loads based the historical data 

from a week before the sample date and the averages of the meter readings at each  

half-hour from the same day type (Wednesdays) of the previous 4 weeks.  

 

Figure 4-9:Estimated loads and measured loads for meters 46-50 in model B 
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Figure 4-9 shows that using the historical smart meter data from a week earlier to the 

sample date in combination with the substation data can accurately estimate the early 

morning peak demand between 07:00 to 09:00. Also, the first afternoon peak demand is 

shifted in the estimated currents from 19:30 to 18:30. The peak in the evening from 

22:00 is also shifted to 20:00.  

Figure 4-9 shows that using method 4 slightly underestimates the peak demand in the 

early morning hours from 07:00 to 09:00, but accurately estimates the demand at 

midday from 12:00 to 13:00. This method also underestimates the peak demand at 

22:00 and shifts the afternoon peak demand at 19:30 forward by an hour to 18:30.  

MAPE results applied to model B for methods 1 and 4 are 29.32% and 28.15%, 

respectively. These show a slight improvement when compared to MAPE results of 

methods 1 and 4 applied to model A-2 that are 29.83% and 36.51%, respectively. This 

shows that a larger sample size provides marginal improvements in the estimation 

approaches, as long as the proportions of missing current that are estimated are similar. 

In this case, both models A-2 and B assume that on the sample date, 10% of customer 

meters do not communicate real-time smart meter data to the network operators. In the 

next section the accuracy of approaches 1 and 4 in predicting the load demand of a 

single meter is examined. 

Using methods 1 and 4 to estimate individual meter loads: 

In this section, methods 1 and 4 which were the best performing methods in the 

previous models are tested on model B. However, this section assumes that smart meter 

data from one individual customer (e.g. meter 50) is missing on the sample date. This 

equates to 2% of the low voltage network in model B. The estimation of loads is 

repeated for each of the 50 meters in model B. Each time one of the meter’s data on the 

sample date is deleted and the loads for the meter is estimated using methods 1 and 4 

and the errors between the estimated and the measures loads for the meter are calculated 

using MAPE. Figure 4-10 below shows the MAPE results obtained for the 50 

estimation iterations carried out. 
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Figure 4-10: MAPE results for each 50 meters using methods 1 and 4 

 

As Figure 4-10 indicates, the maximum errors observed for methods 1 and 4 are 65.30% 

and 65.80%, respectively and the minimum errors are 28.97% and 30.99%. These 

results show the difficulty of predicting an individual meter’s load demand curve, due to 

the volatile and unpredictable nature of individual customers. Figure 4-10 also shows 

that there is less variation in results of method 4 as most estimation errors are in the 

interquartile range of 21.48%.  
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 Combination of smart meter data from the metered customers and substation 

data on the sample dates with smart meter readings and substation data from a 

week, a month, or a year earlier, respectively. 

 Combination of smart meter data from the metered customers and substation 

data on the sample dates with the average of smart meter readings and substation 

data from similar days up to 4 weeks earlier than the sample dates. 

 K-nearest weighted average of 5 closest readings to the loads on the sample 

dates. Four elements of half-hourly distance, day type distance, substation load 

distance, and temperature difference were incorporated into the calculation of 

separation scores. This method was used in estimating the three main peak times 

observed at the substation level. 

In section 4.2, the accuracy of these 5 methods were then calculated using the APE for 

each half hour and the MAPE for each method. It was found that methods 1 and 4 

provide the most accurate results by producing MAPE results of just under 50% in both 

cases for model A-1, while for model A-2, method 1 produced MAPE results of just 

under 30% and method 4 produced MAPE of just above 31%. All methods performed 

well in replicating the overall load shape, especially at non-peak times. However, the 

estimated peak demands were sometimes under estimated, overestimated, or peak times 

were shifted by half an hour to hour. Using method 5 did not show any significant 

improvements over the other method in predicting the correct peak demand values.  

In the next step, the top two performing methods, methods 1 and 4 were used in larger 

model (model B) with 50 customers to examine the effects of the having a larger sample 

size on the accuracy level of the estimation approaches 1 and 4. Since the missing 

portion of the sample size still constituted 10% of the low voltage network model, it as 

found that a using a larger sample size slightly improves the accuracy level of the 

estimations. The accuracy level of method 1 is increased by less than 1% and the 

accuracy level of method 4 is improved by 8% when errors are expressed as MAPE. 

However, method 1 and 4 in the context of model B produce far accurate estimation of 

the peak demand values and peak times, especially method 4 (see Figure 4-9).  

In the next stage, methods 1 and 4 were tested in estimating individual customer loads 

on the sample date in model B. The process involved predicting the missing loads from 

1 meter out of 50 meters in model B using both methods 1 and 4. This process was 
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iterated 50 times, where each time one meter was considered as the non-metered 

customer with missing smart meter data. The results of MAPE showed that for method 

1 the MAPE results range between 28.97% and 65.30% and for method 4 they range 

between 30.99% and 65.80%. However, in the case of method 4, more estimation errors 

lie in the interquartile range of 21.48% between just under 40% to just under 60% 

MAPE.  

 

4.4. Conclusions 

From the analysis and results presented above, it is clear that smart meter data can be 

utilised to increase the visibility of the customer load patterns on the low voltage 

networks beyond the low voltage substation levels. The 5 methods used in this chapter 

were devised to anticipate realistic situations in which portions of a meter data or a 

meter data as a whole is missing or is not available to the DNOs due to time delays, 

privacy concerns, faults, lack of coverage, or network errors.  

Methods 1 and 4 build upon the established methods of kVa transformer allocation in 

Kersting and Philips (2008) and Arritt et al. (2012), Monthly Usage Allocation (MUA) 

in Arritt et al. (2012), and the annual billing approaches used by the DNOs (Stephen et 

al. 2014), by combining the half-hourly smart meter data with substation data to predict 

missing loads on segments of the low voltage network. These approaches are also more 

easily applicable to various types of low voltage network compared to load profiling 

and clustering methods in Stephen et al. (2014); Velez et al. (2014); Klonari et al. 

(2015); and Al-otaibi et al. (2016). Method 5 that is a statistical method based on k-

nearest neighbours weighted averages alaso contributes to the k-nearest method used in 

Valgaev et al. (2016) by incorporating factors such as day types, week separation, 

substation load, and maximum daily temperatur to calcualte the closest historical half-

hourly demand values to the missing half-hourly peak deamand.  

Our analysis on two different sets of data shows that historical smart meter data from 

90% of the network model in combination with substation data can provide accurate 

estimation of the missing currents from the 10% of the customers that are 

communicating smart meter data in real time. The accuracy level is higher at non-peak 

times, but the prediction of the peak demands is found to be a more challenging task.  
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The best two methods of estimating the missing currents based on the Absolute 

Percentage Error (APE) scores were found to be Methods 1 and 4 which use historical 

smart meter data from a week prior to the sample dates and the average of historical 

readings from 4 weeks prior to the sample dates, respectively. It was found that using  

k-nearest weighted averages of historical current does not perform better than methods  

1 or 4.  

These are simple approaches that provide fairly accurate results when employed in 

estimating missing currents from a number of customers. Both methods produce Mean 

Absolute Percentage Error (MAPE) results of about 30%. However, the accuracy of the 

estimation methods drop when they are employed to estimate individual customer loads. 

In this scenario, the MAPE results while using methods 1 and 4 in estimating 50 

different individual loads range from just under 30% to 65%. However, in this case, 

method 4 produces more accurate estimations more consistently. This is mainly due to 

the variations in individual customer’s load patterns. Our results show that using the 

average currents from 4 similar times and dates from 4 weeks earlier to the sample date 

better replicates the behavioural patterns of individual customers, compared to using the 

data from 1 week earlier.  

The findings in chapter show that, half-hourly smart meter data can be used in simple 

statistical methods by the DNOs to predict the missing data from the smart meters that 

are not communicating their values to the DNOs in real-time. In relation to DNO 

applications, the estimated half-hourly values can be used in load flow analysis models 

to calculate network losses, voltage levels, and network capacity percentages. This 

information can subsequently be used in network planning and design and asset 

management. However, in relation to applications concerned with the monitoring of the 

network, a more accurate knowledge of peak demands can be highly beneficial to the 

DNOs. For example, Demand Response Management (DRM) or Active Network 

Management (ANM) rely heavily on the accurate knowledge of the customer peak 

consumptions at low voltage levels. This can be achieved with a more detailed 

knowledge of individual customer consumption patterns or more metering points at 

node points of the network.  
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Chapter 5 Studying the Relationship Between Smart Meter Time 

Resolutions and Important Low Voltage Network Performance 

Indicators 

Traditionally, low voltage networks have been invisible to the DNOs, due to the way in 

which they were designed. Low voltage networks were designed to supply end users in 

the most cost effective fashion with minimum wasted energy. However, the introduction 

of embedded generation and low carbon technologies by customers have encouraged the 

network operators to design, operate, and monitor the low voltage networks in a more 

proactive way. This requires having access to important detailed information at various 

location on the low voltage network that were not deemed to be vital in the past.  

The three performance indicators of technical losses, voltage levels, and network 

capacities can provide the DNOs with detailed picture of the low voltage networks. This 

knowledge can in turn improve various DNO applications such as asset management, 

network planning design, fault management, network monitoring, and active network 

management. For example, detailed knowledge of low voltage losses which in the UK 

constitutes for 5% of the energy delivered to the customers, can provide the DNOs with 

information about the underperforming parts of the network and the areas that need to 

be reconfigured and/or reinforced (Sohn Associates 2009; Dashtaki and Haghifam 

2013; Poursharif et al. 2017).  

Also the DNOs have financial incentives to reduce the losses on their operational 

networks. The incentives known as Loss Incentive Mechanism (LIM) were introduced 

by the regulator OFGEM in 2015 (OFGEM 2017) and a close look at the data published 

by Sohn Associates (2009) reveals that the amount of losses experienced on the low 

voltage network (5%) is far higher than the amount of losses experienced on the other 

parts of the electricity network (3%). A more detailed knowledge of voltage levels at 

various locations on the low voltage networks have also become increasingly pertinent 

due to higher proportions of embedded generation and low carbon technologies being 

installed on the customer end of the grids. The areas of the network that experience 

voltage rise and drop need to be identified by the DNOs in order to maintain the 

statutory voltage limits of 230V +10% -6%, which becomes more challenging as 

embedded generation can introduce reverse voltage into the system and low carbon 

technologies can introduce high voltage drops on different location on the networks. 
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Low voltage network feeder capacities are also indicators for the DNOs that are 

becoming increasingly important due to the rising proportions of low carbon technology 

demand and embedded generation at lower levels of the grid. Balancing the demand and 

generation on various phases of the network and identifying the headroom and ration of 

demand to the network capacity can provide significant information to the DNO 

applications.  

In theory, smart meter data can provide the DNOs with estimates of the mentioned 

performance indicators by complementing the low voltage load flow analysis models 

used in the DNO applications. However, one of the limitations that can potentially 

decrease the benefits gained from the smart meter data is the low time resolution of such 

data in the UK.  

In this chapter, the effects of decreasing the smart meter time resolution data from 1 

minute intervals to 5, 10, 15, 30, and 120 minute intervals are investigated. This is 

carried out by identifying the impacts on the estimation accuracy of network losses, 

voltage levels, and low voltage feeder capacities in the context of a balanced and an 

unbalanced 100-meter three-phase low voltage network model. The data are acquired 

from two different sources of smart meter data sets. CLNR data set no.8 and the 

Loughborough data set. 56 sample dates across the two data sets were selected and the 

consumption data from the customers were used to populate the low voltage network 

model. The sample dates were selected from the dates that have at least data from 100 

customers and can reflect different day types (working and non-working days) and 

different months. The information such as day and month type were used in order to 

estimate the 1 minute network losses based on loss estimates obtained at lower time 

resolutions of smart meter data in section 5.3 (e.g. a minute losses estimated using loss 

estimates at half-hourly averages).  

 

5.1 Impact of Varying Smart Meter Time Resolutions on Loss Estimations 

in Balanced Low Voltage Networks 

The main objective of this section is to investigate the impact of various smart meter 

data time resolutions on the accuracy of loss estimates in a balanced network model. A 

balanced low voltage network is the ideal situation for the DNOs. In a balanced low 

voltage network, customers are allocated equally to the three phases of red (R), yellow 
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(Y), and blue (B) to create a balanced network, in which customer loads are equally 

spread across the three phases. This ensures a lower amount of technical losses and a 

more efficient and cost effective operation of the low voltage networks.  

In the model presented in this section, 100 customers are allocated to the three phases 

on the 3 main cables of A, B, and C (see Figure 3-8). 30, 30, and 40 customers are 

connected to cables A. B, and C, respectively via service cables. On each cable, the 

customers are allocated to the three phases of red, yellow and blue. The model is 

populated by data set smart meter data on 4 sample dates from the Loughborough data 

sets and 4 sample dates from the CLNR data set no. 8. In the next step, the smart meter 

readings are averaged to calculate the customer loads at 5, 10, 15, 30, 60, and 120 

minute time resolutions. Finally, the technical losses for the entire network on each date 

is estimated by adding all the individual losses at each of the 100 houses.  

The main question that this section is aiming to answer is to what extent does changing 

the time resolution of smart meter data from 1 minute time resolution to 5, 10, 15, 30, 

60, and 120 time resolutions change the accuracy of the estimated losses and whether 

having smart meter data at time resolutions higher than 30 minutes (as will be the case 

for the DNOs in the UK) will improve the accuracy of loss estimations. 

Figures 5-1 and 5-2 show the losses estimated at different time resolutions on the 8 

sample dates from the Loughborough data set and the CNLR data set no.8 as a fraction 

of the losses estimated using 1 minute time resolution of smart meter data on the sample 

dates. The sample dates are presented in Table 5-1. 

 

Table 5-1: The 8 sample dates selected from the two data sets used in time resolution studies 

Sample Day Loughborough Data Set CLNR Data Set no.8 

Day 1 Wednesday 16/01/2008 Saturday 12/01/2013 

Day 2 Wednesday 02/07/2008 Wednesday 12/02/2013 

Day 3 Wednesday 09/04/2008 Wednesday 10/04/2013 

Day 4 Saturday 06/09/2008 Wednesday 20/02/2013 
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The loss ratio at every time resolution interval is calculated by dividing the estimated 

loss value at a particular time resolution by the estimated loss value at using 1 minute 

time resolution intervals.  

Let L1 be the estimated losses at 1 minute interval on one of the sample dates and L5 be 

the estimated losses at 5 minute time resolution on the same specific date. The loss 

ration of Lr can be calculated as follows: 

Lr = L5 / L1 

L5 in the above formula is then replaced by L15, L30, L60, and L120 in order to calculated 

the loss ratios at the lower time resolution of smart meter data as shown in Figures 5-1 

and 5-2.  

 

Figure 5-1: Fraction of  estimated losses for different time resolutions (Loughborough data set) 
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Figure 5-2: Fraction of losses for different time resolutions (CLNR data set no.8) 

 

As Figures 5-1 and 5-2 demonstrate, as the time resolution of smart meter data is 

decreased from 1 minute to 120 minute intervals, the estimated values for losses also 

decrease. Significantly, the sharpest fall in the loss estimate values (mean = 11.2%) 

occur between the data set and 30 minute intervals, which is highly important to the 

DNOs, due to the fact that the smart meters in the UK will collect, store, and transmit 

the consumer data on half-hourly averages. This underestimation trend is consistent 

across both sets of data and all of the 8 sample dates. The underestimation percentage at 

each time resolution interval compared to the estimated losses at 1 minute time interval 

is calculated as follows: 

│Lt / L1 – L1 / L1│× 100 

Where Lt represents loss estimates at different time resolution intervals (e.g. t = 5, 10, 

15, 30, 60, or 120) and L1 represents loss estimates at 1 minute time interval. 

Table 5-2 shows the average underestimation percentages for the 4 sample dates from 

each data set as the time resolutions are decreased from data set to 120 minute intervals.  
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Table 5-2: Mean underestimation percentages of loss estimates on the 8 sample dates 

Time 

Resolution 

(minutes) 

Average Underestimation % 

Loughborough Data Set 

Average Underestimation %  

CLNR Data Set No.8 

5 6.4 6.4 

10 8.8 9.0 

15 11.2 11.2 

30 19.3 18.4 

60 23.7 25.9 

120 26.9 29.0 

 

As Figures 5-1 and 5-2, and Table 5-2 show, on average, changing the time resolution 

of smart meter data from 1 minute intervals to 30 minute intervals leads to 

underestimation of losses by 19.33% and 18.44% on the sample dates from the 

Loughborough data set and CLNR data set no.8, respectively.  

In the case of the sample dates from the Loughborough data set, the underestimation 

percentages at 30 minute intervals range between 14% to 24% and in the case of the 

sample dates from CLNR data set no.8 these numbers range between 15% to 25%. 

Significantly, the highest percentage of underestimation occurs when the smart meter 

data time resolution is decreased from 1 to 15 minutes. This is significant, because 

many European countries such as Denmark and Italy have opted for smart meter 

collection at 15 minute intervals. 

Looking at the underestimation percentages in Table 5-2, the average underestimation 

for the sample dates from both data sets is just above 11%. In the case of the sample 

dates from Loughborough data set, the underestimation percentages at 15 minute 

intervals range between 8% to 16% and in the case of sample dates from CLNR data set 

no.8 these numbers range between 6% to 17%. This indicates that having smart meter 

data at 15 minute intervals instead of 30 minute intervals does not significantly improve 

the accuracy of losses and time resolutions of higher than 15 minutes are required to 

minimise the loss of estimation accuracy. On the other hand, the results above indicate 

that having smart meter data at time resolutions of 60 minutes does not severely 

decrease the accuracy of loss estimates compared to having smart meter data at 30 

minute time resolutions. 
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The results discussed above were also confirmed when 52 additional sample dates were 

tested using the data in CLNR data set no.8. The box plots in Figure 5-3 show the 

underestimation percentages occurred at each time resolution interval for all of the 56 

sample dates. The top whisker shows the maximum value, the bottom whisker shows 

the minimum value, and the box shows the interquartile range between Q1 and Q3. The 

line in the middle of the box shows the median value amongst the 56 values for each 

time resolution interval.  

 

 

Figure 5-3: Variations in underestimation percentages of losses at different time resolutions 

compared to data set time resolution losses 
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The underestimation of losses at lower times resolution intervals is caused when the 

high demand spikes in the customer loads are smoothened when currents are averaged 

over time (Quiroz et al. 2012; Urquhart and Thompson 2015; Poursharif et al. 2017). 

This occurs in loss estimation models based on power flow analysis. Power flow models 

take into account the impedance, individual customer demands, and network topologies 

and these advantages allow the network operators to calculate losses at various points 

on the network, whereas the method using power difference (input-output) do not 

provide the breakdown of losses on the network and require meters at both ends of the 

network (Poursharif et al. 2017; Urquhart et al. 2017).  

Power flow analysis models such as the model used in this thesis use the square of the 

current in I
2
R to estimate the technical losses. Therefore, as the spikes in customer 

demands are decreased when the currents are averaged, the losses estimated at each 

section of the network are underestimated.  

Based on common occurrences of spikes in the customer in customer loads, three cases 

can be defined: 

 Single high demand spike for a short period of time:  

 Let a current value be I for a time period of D and let us consider the 

current outside of D to be zero, then for the time interval of W (W ≥ D) 

the technical loss is calculated by using the average of current is 

calculated using I*D/W. Hence using the average of current in the loss 

calculation equation will lead to the underestimation of losses at the rate 

of 1/W. 

 

 Very low variations in demand: 

 Let us consider the current to have a constant value of I over the entire 

time interval. Then for a specified period of time, the calculated losses 

are independent of the number and size of the time intervals. 

 

 Smooth with linear trend: 

 Let us consider the situation in which there is constant rise in the current 

over the period of time. If the time period is divided into equal interval of 
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n, as the width of the intervals (W) increases, the losses calculated using 

the average of current in that time period decreases in line with W
2
. 

In practice, a mixture of these demand patterns occur in low voltage networks connected 

to multiple customers and therefore a combination of these relationships between the 

time intervals and the amount of losses estimated is likely to be present in the low 

voltage networks.   

 

5.2 Impact of Varying Smart Meter Time Resolutions on Loss Estimations 

in Unbalanced Low Voltage Networks 

Although the DNOs strive to design a balanced low voltage network, in reality some 

low voltage networks are unbalanced. Fleckenstein (2013) defines an unbalanced  

three-phase low voltage network as a situation in which at least one of the phases 

experience higher currents. This could be due to a higher number of customers being 

connected to one of the three phases (usually the red phase) when network extensions 

are carried out in the field or due to higher proportions of low voltage technologies 

being installed on one of the phases compared to the other (Pezeshki and Wolfs 2012; 

Ahmadi et al. 2016). Phase imbalance can lead to higher technical losses, lower quality 

of supply, and lower longevity of network assets (Pezeshki and Wolfs 2012). 

In order to create an unbalanced low voltage network model, the customers that were 

previously allocated to the three phases of red, yellow, and blue in 33:33:34 ratios were 

reallocated to these phases in 40:30:30 ratios with 40 out of the 100 customers on the 

red phase. The technical losses for this unbalanced low voltage network were calculated 

using the data from both Loughborough and CLNR no.8 data sets on the 8 sample dates 

which were previously used in section 5.1.  

Figure 5-4 below compares the averages of estimated losses for these 8 sample dates in 

the balanced and unbalanced network arrangements.  
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Figure 5-4: Average of technical losses on the 8 sample dates in the balanced and unbalanced 

models 
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Figure 5-5: Fraction of losses for different time resolutions in an unbalanced network 

(Loughborough data set) 

 

 

 

Figure 5-6: Fraction of losses for different time resolutions in an unbalanced network (CLNR data 

set no.8) 
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Figures 5-5 and 5-6 both confirm that a similar trend to the balanced network model can 

also be observed in the unbalanced network model in that as the time resolution of the 

smart meter data decreases from data set to 120 intervals, the technical losses are 

underestimated for all the 8 sample dates. Similar to the previous model in section 5.1, 

the larger amount of underestimation occurs when the smart meter data are averaged 

over half an hour intervals and the underestimation trend slows down from 30 minute to 

120 minute time intervals.  

As Table 5-3 below indicates, similar to the balanced network model the largest amount 

of loss underestimation occurs when the time resolution of the smart meter data is 

decreased from 1 to 15 minutes. On average, this figure is 25.46% and 28.75% for the 

sample dates from the Loughborough and CLNR no.8 data sets, respectively.  

 

Table 5-3: Comparison of average underestimation percentages losses in both balanced and 

unbalanced models  

Time 

Resolution 

(minutes) 

Average Underestimation % 

Loughborough Data Set 

(Balanced) 

Average Underestimation % 

Loughborough Data Set 

(Unbalanced) 

5 6.4 14.1 

10 8.8 21.8 

15 11.2 25.4 

30 19.3 29.9 

60 23.7 36.3 

120 26.9 40.1 

Time 

Resolution 

(minutes) 

Average Underestimation % 

CLNR Data Set No.8 

(Balanced) 

Average Underestimation % 

CLNR Data Set No.8 

(Unbalanced) 

5 6.4 12.8 

10 9.0 23.5 

15 11.2 28.7 

30 18.4 34.9 

60 25.9 38.3 

120 29.0 40.8 

 

Interestingly, as Table 5-3 shows, the underestimation percentages at each time intervals 

are more severe in the unbalanced network compared to the corresponding time interval 

in the balanced low voltage network model. For example, in the case of the balanced 
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network model, for the sample dates from the Loughborough and CLNR no.8 data sets, 

the average underestimation percentage of the calculated losses from 1 to 15 minutes 

intervals is just above 11%. However, this figure changes to 25.4% and 28.7% 

underestimation for the Loughborough and CLNR no.8 data sets, respectively. A similar 

trend can also be observed at the remaining time intervals.  

In the next section, methods are presented to estimate loss estimates at data set time 

resolution using the estimates at time resolutions of 30 minutes and/or higher. 

 

5.3 Prediction of 1 minute Losses Based on Half-Hourly Loss Values 

Investigations in sections 5.1 and 5.2 show that the values of technical network losses 

based on half-hourly averages of smart meter data, which is the way in which the DNOs 

in the UK receive them, are underestimated compared to the network loss values 

calculated using smart meter data at 1 minute time resolutions. This section presents a 

method to estimate the data set loss values based on loss values at lower time 

granularity of data which will be available to the DNOs such as loss values for 30 

minute, 60 minute, and 120 minute time periods. This is carried out in two ways: 

 by fitting the best curve to the loss values of each date that are available at 

higher granularity of 30, 60, and 120 and using the constants to estimate the data 

set value for each date 

 by obtaining an average constant values from various day types in the same 

month and apply the constant to half-hourly loss values in order to obtain the 

data set losses. 

For this study, the loss values for 52 sample dates from the CLNR data set no. 8 at 

various granularities of 1, 5, 10, 15, 30, 60, and 120 were selected and used in the model 

below to fit to the time interval width of t and losses data of L in equation 1 below: 

 

(1) L = β × t
α
   where α (0, 1) 

 

The value of α determines the shape of the loss curve, while β is the loss estimated at 
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time resolution of data set. L is the predicted losses for a specific time resolution, t is the 

time resolution (e.g. 1, 5, 10, 15, 30, 60, and 120).  

Given the losses L1 and L2 at times t1 and t2, then the value of α is calculated by: 

 

(2) α = log (L1/L2) + log (t2/t1) 

 

Values of α and β are constant and are obtained by fitting the best curves to the loss 

values of various granularity for each date in Microsoft Excel Solver. Excel Solver 

determines the optimum value of α for each date based on the non-linear regression 

model described above using loss values at a time resolution of 30 minutes and lower. 

This method in Excel solver minimises the sum of squared error for the equation 1 and 

fits the bust curves to the data (Horton and Leonard 2005). The data set loss values are 

then calculated using either the average of α values for each day type (e.g. the average α 

values on four Fridays in April) from the 30, 60, and 120 minute loss values or using the 

α value for each specific date and using the 30 minute, 60 minute, and 120 minute loss 

values. Let the former be called ͞α and the latter be called ͠α from now on in this section.  

The results of predicted data set losses based on both values of α are then compared to 

the actual measured curves in figures below. Figure 5-7 below shows the results of data 

set loss predictions based on ͠α based on half-hourly data using constant value of α 

obtained from the measured loss values at 30, 60, 120 time granularities on other similar 

day types in the sample dates. 
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Figure 5-7: Predicting 1 minute losses based on ͠α compared to the measured losses 

 

Figure 5-7 compares the measured total network losses and the fitted curves of 

predicted total losses based on loss values at 30, 60, and 120 minute granularity of data 

for 05/04/2013 and 12/04/2013. The data set loss prediction value of 974 kWh for the 

sample date of 12/04/2013 is very close to the measured 1 minute loss of 941 kWh. In 

this case, the prediction method which uses the constant ͠α value performs better than the 

method that uses ͞α that returns the value of 813 kWh. The prediction on 05/04/2013 is 

less close to the measured data set loss value of 1,121 kWh than the previous example, 

but still using the ͠α value for this specific date returns a closer value (1,232 kWh) than 

using the average of all α (͞α) values for Fridays in April 2013 (1,383 kWh).  

However, investigating the predicted losses for all of the sample dates indicate that 

using an average of α from each day type in each specific month (͞α) produced more 

accurate data set loss estimations compared to using α values for each date based on the 

correlation between lower time resolution intervals of 30, 60, and 120 minutes and the 

losses recorded at the time resolution intervals (͠α). Figure 5-8 below confirms this 

observation by showing the spread of individual APE scores recorded for all the sample 

dates.  
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Figure 5-8: APE scores using different values of α 
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voltage levels within the statutory limits is becoming more challenging for the DNOs 

with the installation of higher proportions of embedded generation and low carbon 

technologies on the lower voltage levels of the distribution networks. This is mainly due 

to intermittent reverse power flows and new demand patterns being introduced to the 

low voltage network which is not generally observable to the DNOs. 

In practice, as the distance from the low voltage substation increases, the voltage level 

on the network decreases. This is known as voltage drop and it can lead to lower quality 

of power (e.g. flickering light, etc.) supplied to the customers distant from the 

substation. This section examines the relationship between the various time resolution 

intervals of smart meter data and voltage levels estimated at the end of the balanced low 

voltage network model shown in Figure 3-8.  

The voltage levels at the end of cables B and C are calculated for each of the three 

phases by subtracting the sum of all the voltage drops at each section of the low voltage 

network from the voltage level at the substation level. The maximum voltage drop 

subtracted from the voltage level at the substation shows the lowest voltage level 

recorded on the low voltage network on each sample date.  

Figures 5-9 and 5-10 below, show the minimum voltage estimated, which occurs at the 

end of cable C, on the red phase for the sample dates from the Loughborough and 

CLNR data set no.8, respectively. The estimated voltages for each time resolution 

interval is displayed and the minimum voltage levels estimated for the customers on the 

yellow and blue phase can be found in Appendix C.   
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Figure 5-9: Minimum voltage levels on the red phase estimated using various smart meter time 

resolution intervals (Loughborough data set) 

 

 

 

Figure 5-10: Minimum voltage levels on the red phase estimated using various smart meter time 

resolution intervals (CLNR data set no.8) 
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As Figures 5-9 and 5-10 demonstrate, the estimated minimum voltage levels on the red 

phase increase as the customer smart meter time resolution intervals decrease from data 

set to 120 minutes. For all of the 8 sample dates from both of the data sets, the 

overestimation mainly occurs when the customer currents at data set intervals are 

averaged to 30 minute intervals. As both Figures 5-9 and 5-10 show, the highest 

overestimation percentages take place in the first 15 minute averages. Table 5-4 shows 

the average overestimation percentage at each time resolution interval for the 8 sample 

dates from the two data set.  

 

Table 5-4: Mean voltage overestimation percentage across the sample dates at each smart meter 

time resolution interval 

Time Resolution 

(minutes) 

Mean Overestimation 

Percentage (%) Loughborough 

Sample Dates 

Mean Overestimation 

Percentage (%) CLNR Data 

Set no.8 Sample Dates  

5 0.065 0.063 

10 0.125 0.128 

15 0.139 0.150 

30 0.170 0.184 

60 0.210 0.239 

120 0.248 0.260 

 

The major rise in overestimation occurs when the granularity of data decreases from 

data sets to 30 minutes, with the main increase between 1 and 15 minute time period, 

which is consistent in the case of all representative dates, and all phases of the network. 

The trend slows down when the granularity of data decreases from 30 minutes to 120 

minutes. In the case of the sample dated from the Loughborough data set, the average 

overestimation from 1 to 15 minute time resolution intervals is 0.139%, but this 

overestimation percentage only rises by just over 0.040% when the smart meter time 

resolutions decrease from 15 to 30 minutes. A similar trend can be observed for the 

sample dates from the CLNR data set no.8. This indicates that although having smart 

meter data at 15 minute resolutions improves the voltage level estimations compared to 

having 120, 60, or 30 minute resolutions, the most sever inaccuracy occurs when the 

data is averaged from data set intervals to 15 minute intervals.  
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The overestimation of minimum voltage levels is caused by averaging the customer 

currents over time resolution intervals higher than data set time intervals. As shown in 

section 5.1, the average of currents over higher time resolution intervals flattens the 

spikes in the customer demands and in the power flow models leads to the 

underestimation of voltage drops at each section of the network. The underestimation of 

voltage drop in turn will contribute to the overestimation of minimum voltage levels.  

Given the fact that this model network is not particularly overloaded and the network 

capacity is not pushed to the limits, the underestimation of voltage drops estimation can 

pose some major challenges to the DNOs, who have the statutory duty to keep the 

voltage variations on their network within acceptable limits. Also the overestimation of 

these minimum voltage levels can lead to the misestimating of embedded generation 

and low carbon technology capacity of each network branch since the DNOs will be 

likely to allow for less overvoltage expected from embedded generation and more under 

voltage expected from low carbon technologies installed in that particular section of the 

network. 

 

5.5 Impact of Varying Smart Meter Time Resolutions on Estimation of 

Voltage Levels in an Unbalanced Low Voltage Network 

This section presents the results from estimation of minimum voltage levels at various 

smart meter time resolution intervals in the unbalanced low voltage network setting 

described in section 5.2. In this model, the ratio of the 100 customers on the three 

phases of red, yellow, and blue was changed from 33:33:34 to 40:30:30 to create an 

unbalanced low voltage network model with more loads being allocated to the red 

phase.  

The minimum voltage levels at the end of the network were calculated for all of the 

three phases. Figure 5-11 and 5-12 show the minimum voltage levels recorded on the 

red phase for the 8 sample dates from the Loughborough data set and the CLNR data set 

no.8. The results from the yellow and the blue phase which experience a lower voltage 

drop percentage can be found in Appendix D. 
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Figure 5-11: Minimum voltage levels on the red phase estimated using various smart meter time 

resolution intervals in an unbalanced network (Loughborough data set) 

 

 

 

Figure 5-12: Minimum voltage levels on the red phase estimated using various smart meter time 

resolution intervals in an unbalanced network (CLNR data set no.8) 
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As Figures 5-11 and 5-12 show, the relationship between the estimated voltage levels 

and the time resolution intervals of smart meter data in unbalanced networks follow a 

similar trend to balanced networks. Clearly, as the time resolution of smart meter data 

decreases, the estimated minimum voltage figures on the red phase increase for all the 8 

sample dates from both data sets. Table 5-5 below shows how the overestimation in this 

model compares to those of the balanced model presented in section 5.4. 

 

Table 5-5: Comparison of mean voltage overestimation percentages between the balanced and the 

unbalanced models 

 

Time Resolution 

(minutes) 

Mean Overestimation 

Percentage (%)  

Loughborough Sample 

Dates-Balanced Model 

Mean Overestimation 

Percentage (%) 

Loughborough Sample Dates-

Unbalanced Model 

5 0.065 1.112 

10 0.125 1.180 

15 0.139 1.209 

30 0.170 1.243 

60 0.210 1.290 

120 0.248 1.334 

 

Time Resolution 

(minutes) 

Mean Overestimation 

Percentage (%)  

CLNR Sample Dates no.8 

Balanced Model 

Mean Overestimation 

Percentage (%)  

CLNR Sample Dates no.8 

Unbalanced Model 

5 0.063 0.961 

10 0.128 1.020 

15 0.150 1.059 

30 0.184 1.116 

60 0.239 1.155 

120 0.260 1.165 

 

As Table 5-5 shows, the overestimation of minimum voltage levels is the highest when 

the data set times resolution is averaged over 15 minute time intervals and the trend 

slows down from 15 minute time resolution intervals to 120 minute time intervals. 

Significantly, in the unbalanced model with higher loads on the red phase the 

overestimation percentages rise compared to the balanced model. For example, in the 

case of the Loughborough data set, the mean overestimation percentage going from 1 to 

15 minute averages rises from 0.065% to 1.112%. In the case of the CLNR data set 

no.8, the mean overestimation percentage increases from 0.063% to 0.961% as the time 
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resolution decreases from 1 to 15 minutes.  

 

5.6 Impact of Varying Smart Meter Time Resolutions on Estimation of Low 

Voltage Cable Current Capacities 

Knowledge of the capacity of low voltage underground cables to accommodate 

additional loads is becoming increasingly important as Smart Grid management 

solutions such as load shifting and Demand-Side Management (DSM) at community 

levels are becoming more widespread. The question is whether the real-time demand on 

each phase of the low voltage cables can be monitored using smart meter data and to 

what extent the information are improved or distorted as the granularity of smart meter 

data is decreased from data set to 120 minute averages. This knowledge will then 

determine the headroom that is available on each phase which can potentially facilitate 

more proactive load management of the low voltage network by the DNOs. 

In this section, initially the maximum loads capacities of the low voltage cables A, B 

and C in the balanced model (Figure 3-8) are calculated using the cable specifications in 

Appendix B. Secondly, the model is populated with smart meter data recorded on the 

sample dates and the ratio of currents on each phase of the cable to the maximum 

capacity of the cables, is expressed in percentages over 24 hours on the sample dates. A 

similar procedure is then repeated using lower time resolutions of smart meter data up 

to 120 minute. This is only carried out for the balanced network model, because the 

cable capacities are calculated at the starting point of the cable and the imbalance in 

phases does not affect the relationship between the time resolution intervals and the 

cable capacity percentage estimates. 

Figures 5-13 to 5-15 show the load curve for the 24 hour period on the sample date of 

16/01/2008 from the Loughborough data set. The graphs show the load percentages on 

the red, yellow and blue phases of cable A, which experiences the highest load 

proportion compared to cables B and C, as the percentage of the red phase load capacity 

at time resolution ranging from data set to 120 minute intervals. The capacity of loading 

percentages of cables B and C are shown in Appendix E.  
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Figure 5-13: Red phase cable loading percentages on cable A (16/01/2008) 
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Figure 5-14: Yellow phase cable loading percentages on cable A (16/01/2008) 

 

 

 



155 

 

 

Figure 5-15: Blue phase cable loading percentages on cable A (16/01/2008) 
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Studying the above graphs of cable loading percentages on the underground low voltage 

cables show that although decreasing the granularity of data from data set to 120 

eliminates much of the noise and clutter in the data, crucial information such as 

maximum load percentages at peak times are underestimated. This reconfirms the 

results found in sections 5.1 to 5.5 in that it shows to the extent to which averaging the 

time resolution intervals underestimates the peak customer loads.  

The figures above show that while moving away from 30-minute data to 60 minute and 

then to 120 minute does not result in a sharp underestimation of peak loads, it still leads 

to some peak points being neglected. A very similar trend is also observed in the 

following graphs in Figure 5-16 to 5-18. These figures show the density plots of 

occurrence of each percentage point in the whole sample of data points for a particular 

time resolution interval.  

The reason why these density plots were chosen was due to the fact that the data models 

of different granularities of smart meter data contain different numbers of data points. 

Therefore, a histogram would not be suitable for these data sets. This sample reflects all 

the data points recorded on all the representative dates from both data sets.  

The Figure 5-16 to 5-18 show the density of various loading percentages at each time 

resolution interval. The (x) axis of the density plots show the low voltage cable loading 

percentages (0-100%) and the (y) axis show the fraction of data points in the overall 

data sample that represent a specific loading percentage. The 7 density plots in each 

figure represent the 7 time resolutions of the smart meter data from 1 to 120 minute 

averages of customer demands. The time resolutions are shown on top axis of each of 

the 7 plots.  
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Figure 5-16: Density plots of loading percentages frequency at each time resolution interval on 

cable A (Red phase) 
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Figure 5-17: Density plots of loading percentages frequency at each time resolution on cable A 

(Yellow phase) 
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Figure 5-18: Density plots of loading percentages frequency at each time resolution on cable A 

(Blue phase) 

 

Figure 5-16 to 5-18 show that as the time resolution of data decreases from 1 to 120 

minute averages, the density of peak loading percentages decreases. This can be 

observed where the columns of higher percentages of cable loadings are eliminated in 

density plots for lower time resolution of data and the columns of lower percentages 

rise, which confirms the flattening of loads as the data are averaged to lower granularity.  
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As the granularity of data decreases from data set to 120 minutes, the frequency of 

middle data points such as 10-20% loading increases and the peak loading percentages 

such as 50-60% are neglected. This trend is also observed in Appendix F, but the effects 

are less dramatic on cables B and C, because they are less heavily loaded compared to 

cable A, so they experience less variety in peak demands.  

 

5.7 Summary 

In this chapter, the relationships between having smart meter data at various time 

resolution intervals and the estimation accuracy of critical low voltage network 

performance indicators such as losses, voltage levels, and cable capacity percentages are 

investigated. The main driver behind carrying out this analysis is that the smart meter 

data are transmitted to the DNOs at half-hourly averages, so it is very important to 

examine how accurate analysis driven from these half-hourly averages are compared to 

having high resolution data set smart meter data in providing the DNOs with 

appropriate levels of visibility and information.  

In the first place, the effects of varying the smart meter time resolution intervals from 1 

to 120 minutes on technical loss estimates are examined in a balanced and an 

unbalanced low voltage network model using readings from 100 customers on 8 

different sample dates and from two different sets of data. Secondly, a model is devised 

to predict the data set losses when having loss estimated at time resolution intervals of 

30 minutes and lower. This is carried out for 52 different sample dates from the CLNR 

data set no.8. 

Thirdly, the impact of varying the smart meter time resolution intervals from 1 to 120 

minutes on minimum voltage estimates on each phase are examined in the balanced and 

the unbalanced low voltage network models using the data from the 8 samples dates 

obtained from the two different data sets. 

Finally, the effects of varying the smart meter time resolution intervals from 1 to 120 

minutes on the cable capacity percentages of each phase of the balanced low voltage 

network model are examined.  
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5.8 Conclusions 

These series of analyses in sections 5.1 and 5.2 demonstrated that as the time resolution 

intervals of smart meter data is decreased from 1 minute to half-hourly and 120 minute 

averages, the network loss estimations become less accurate with the sharpest decrease 

in accuracy occurring from data set to 15 minute intervals (Poursharif et al. 2017). In 

the balanced model the mean underestimation percentage when moving away from data 

set to 15 minute time resolutions is about 11% in the balanced model and this changes 

to 26% and 29% in the unbalanced model for the samples dates from the Loughborough 

data set and the CLNR data set no.8, respectively. The underestimation trend can also 

be seen when moving away from 15 minute time resolution intervals to 30 minutes. 

However, this trend slightly decreases compared to the first 15 minutes. The mean 

underestimation percentage in the balanced model is just under 20%, but this changes to 

approximately 30% and 35% underestimation, in the unbalanced model, for the sample 

dates from the Loughborough data set and the CLNR data set no.8, respectively.  

This was an improvement on methods used in Oliveira and Padilha-Feltrin (2009) and 

Quiroz et al. (2012) that use loss load factors to estimate losses on model low voltage 

networks. It also improved on the work carried out by Brandauer et al. (2013) that 

highlight the effects of short-term high demands on loss estimates. Our studies were 

also improvements on top-bottom loss predictive methods in the absence of detailed 

data used in Dashtaki and Haghifam (2013) at medium voltage levels. More 

importantly, our studies improved the model used by Urquhart and Thompson (2015) by 

highlighting the impact of smart meter time resolution intervals from 1 minute to 120 

minutes on the estimation accuracy of losses in a balanced and an unbalanced 100 house 

three phase network models.  

The analysis in section 5.3 showed that a regression model to fit the best curve to the 

estimated losses at 30, 60, and 120 time resolution intervals can be used in predicting 

the actual data set estimated losses. Fitting this model to the losses calculated on the 

sample dates, produced MAPE of just under 10% which indicates a 50% improvement 

instead of having loss estimates at 30 minute time resolution intervals that on average 

underestimate the data set losses by just under 20%. This was a novel approach that has 

encouraged the DNOs to invest in load forecasting models to overcome the information 

gap resulting from having lower time resolution of smart meter data (Northern 

Powergrid 2016). 
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The series of analyses in sections 5.4 and 5.5 were never done before and demonstrated 

that as the time resolution interval of smart meter data decreases from 1 to 120 minutes, 

the minimum voltage levels experienced on each phase of the balanced and the 

unbalanced low voltage network is overestimated. Similar to the estimation of losses, 

the most severe overestimation occurs in the first 15 minutes. Our analysis show that 

moving from 1 to 15 minute averages overestimates the minimum voltage levels on the 

red phase in the balanced network by about 0.15%. While this underestimation 

percentage might not see significant, the unbalanced network shows that this figure 

changes to just over 1% when the load on the red phase become heavier in the 

unbalanced low voltage network model.  

The results from sections 5.1 to 5.5 show that as the time resolution of smart meter data 

is decreased from data set to 120 minutes, the demand peaks are flattened, hence the 

network losses are underestimated and voltage levels are overestimated. This is clearly 

observed in section 5.6. In the case of cable loading percentages, it was demonstrated 

that with the decrease of the smart meter data granularity major demand peaks are 

flattened, which both hides great benefits of the smart meter data and also contributes to 

the underestimation of losses and overestimation of voltage levels.  

The results in this chapter show that half-hourly smart meter data do not provide the 

DNOs with accurate estimates of critical low voltage network information such as 

losses, voltage levels, and cable loading percentages. Our analysis also shows that even 

having higher resolution of smart meter at 15 minute intervals fail to provide accurate 

low voltage network information to the DNOs. Regression models can be used to 

predict 1 minute losses and improve the half-hourly estimates by approximately 50%, 

but previous studies by Urquhart and Thompson (2015) and Urquhart et al. (2017) show 

that even 1 minute smart meter data underestimate the estimated losses compared to 

having smart meter data at 1 second time resolution intervals or when the losses are 

calculated using the difference between output and input power on transmitted through 

the low voltage network.  

The lack of inaccuracy in the estimation of critical low voltage information resulted 

from having lower time resolution of data can affect a number of different operation 

applications. The underestimation of losses can hide the areas of the low voltage 

network that require reconfiguration or reinforcement. It also fails to pinpoint the areas 
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of the network that are inefficient. The overestimation of minimum voltage levels can 

misestimate the capacity of the network to host embedded generation or low carbon 

technologies and can also fail to identify the areas of the network in which the power 

quality delivered to the customers is affected. It can also fail to identify the areas of the 

low voltage network which are likely to experience faults. The underestimation of peak 

demands in the low voltage cables can also adversely affect the ability of the network 

operators to carry out applications such as Demand-Side Management and Active 

Network Management.   
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Chapter 6 Studying the Relationship Between Smart Meter Data 

Aggregation and Important Low Voltage Network Performance 

Indicators 

This chapter investigates the effects of aggregating customer loads at the low voltage 

network level on the accuracy of important low voltage network estimates such as 

losses and voltage levels. The approaches employed in this thesis are based on the 

requirement for the DNOs to anonymise the individual customer data as soon as they 

receive them from the DCC. It is believed that aggregation of customer demands is the 

most efficient and cost effective method of preserving individual consumer lifestyle 

information at low voltage levels, compared to methods such as using encryption 

methods and data aggregators at higher levels of the network (EA Technology 2015a).   

Aggregation studies in this chapter is carried out by grouping the half-hourly smart 

meter data from customers at 2, 4, 6, 8, and 10 houses and comparing the loss and 

minimum voltage estimates with the loss and minimum voltage estimates at 30 minute 

intervals when no aggregation takes place. In the UK, the DNOs receive the smart meter 

data of individual customers at half-hourly intervals. The customers are grouped 

together based on the phasing and proximity, i.e. half-hourly loads from 2 customers 

that are closest and are on the same phase are added together to form new demand 

points on the low voltage network model. The aggregation points are presented in 

Figure 3-9. The aggregation studies are carried out in a balanced network model and an 

unbalanced network model using smart meter data on 4 sample dates from the 

Loughborough data sets and 4 sample dates from the CLNR data set no.8. The sample 

dates are presented in Table 6-1.  

 

Table 6-1: The 8 sample dates from the two data sets used in the aggregation studies. 

Sample Day Loughborough Data Set CLNR Data Set no.8 

Day 1 Wednesday 16/01/2008 Saturday 12/01/2013 

Day 2 Wednesday 02/07/2008 Wednesday 12/02/2013 

Day 3 Wednesday 09/04/2008 Wednesday 10/04/2013 

Day 4 Saturday 06/09/2008 Wednesday 20/02/2013 
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The various levels of aggregation are also tested in two different network topologies. 

Initially, the network topology presented in Figure 3.8, which has three cables with two 

branches, is employed for comparison of loss and voltage estimates. Secondly, the 

network topology is changed to the network model arrangement in Figure 3.10 where 

all the 100 customers are connected to a single main cable with specifications of cable 

A.  

 

6.1 Effects of Varying Customer Aggregation Levels on Loss 

Estimation in Balanced Low Voltage Networks 

In this section, the results of network loss estimates using 30 minute time resolution 

intervals at each aggregation level are compared with zero aggregation (1-house) results 

using scatter plots in the following Figures 6-1 and 6-2, which represent the values of 

losses for each aggregation level on the sample dates. Figure 6-1 shows the loss 

estimates at 1, 2, 4, 6, 8, and 10 house aggregation levels on 4 sample dates from the 

Loughborough data set. Figure 6-2 shows the loss estimates at similar aggregation 

levels on the 4 sample dates from the CLNR data set no.8. These figures show the 

estimated losses at each aggregation level as a ratio of losses estimated at half-hourly 

intervals with no aggregation (1-house). 

 

 

Figure 6-1: Fraction of  estimated losses for different aggregation levels (Loughborough data set) 
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Figure 6-2: Fraction of  estimated losses for different aggregation levels (CLNR data set no.8) 

 

Figures 6-1 and 6-2 show that that as the customer loads are aggregated, the network 

loss estimate values also increase. For both data sets, there is a significant rise in loss 

estimates when the loads from 2 customers are added together. In the case of the sample 

dates from Loughborough data set, the increase in loss estimates at 2-house aggregation 

level ranges from just under 30% to approximately 50% and in the case of the sample 

dates from the CLNR data set no.8 it ranges from just under 40% to approximately 

50%. The rate overestimation in losses then slows down from 2-house aggregation to  

4-house aggregation level on all 8 sample dates. Moving from 4-house to 6-house 

aggregation causes another large increase in loss estimates of about under 100% and 

this trend is then slows down when the data from more houses are added together in 8 

and 10 house aggregation scenarios.  

The average of overestimation percentage for each aggregation level across the 8 

sample dates are presented in Table 6-2. 
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Table 6-2: Average overestimation in loss estimates at different aggregation levels 

Aggregation 

Level 

Average Overestimation 

% Loughborough Data Set 

Average Overestimation % 

CLNR Data Set no.8 

2-house 44.9 44.2 

4-house 58.5 61.3 

6-house 121.3 130.3 

8-house 134.5 146.9 

10-house 153.4 167.2 

 

Table 6-2 shows that on average there is just under 45% loss overestimation at the first 

stage of aggregation from no aggregation to 2-house level. This trend then slows down 

to a steadier level as more customers are aggregated with another large increase of just 

under 70% overestimation between 4-house to 6-house levels of aggregation. The 

overestimation trend slows down again from this point to the 10-house aggregation 

level. It can be observed from the figures and tables above that as more customer 

demand data are added together the network loss estimation increase. The sharpest rise 

in levels occur between no aggregation and 2-house aggregation and 4-house and  

6-house aggregation levels. 

This is due to the fact that in the network models with no customer data aggregation, the 

network losses on the main three phase low voltage cables are calculated by using the 

load of a single customer on each phase and 5 meter section lengths of the low voltage 

cable where that load is connected to leading to the next customer connection, which 

means that the losses at each section are then added together to calculate the total loss of 

the network (see section 3.3). However, when aggregation points are placed on the 

network model (as in Figure 3-9), the customer demands from two neighbouring houses 

on a similar phase are added together at the middle point between the two houses. The 

changes in cable lengths in the aggregation models and aggregated loads contribute to 

higher loss estimate values. For example, Figure 6-3 shows a representation of how the 

losses on the main cable are calculated for customers on the red phase in Figure 3-8 (no 

aggregation) and 3-8 (with aggregation points).  

Using the formula for calculation of losses in a load flow model that uses I
2

 (square of 

the current) and the resistance on the main cables, the losses on the red phase is 

calculated by: 
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L = I
2
 × r 

Resistance (r) is calculated using the length of the cable that a demand point is 

connected to and the impedance of the cable. This equates to 0.0002 Ω per meter of 

main cable length.  

Figure 6-3 shows the cable length and the demand points in a network model with no 

aggregation and a network model with 2-house aggregation demand points for 

customers on the red phase.  

 

 

Figure 6-3: A representation of the placement of demand points and the changes in cable lengths in 

2-house aggregation scenarios 

 

Let us assume that all the customers in Figure 6-3 have the current of 2amps in one of 

the 48 half-hours on one of the sample dates. Using the customer currents and the cable 

resistance and cable lengths, the losses calculated for the 4 customers on the red phase 
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in the two scenarios can be calculated as follows, where L0 and L2 denote estimated 

half-hourly losses with zero and 2-house aggregation, respectively: 

 

L0 = (4×5×0.0002) + (4×25×0.0002) + (4×5×0.0002) + (4×25×0.0002) = 0.047 

L2 = (16×17.5×0.0002) + (16×30×0.0002) = 1.511 

 

As can be seen in the example above, despite the decrease in the cable lengths and 

therefore the resistance in the aggregation model, the fact that the square of the 

aggregated currents are used in the load flow loss calculation models contributes to the 

overestimation of losses. This overestimation trend is then continued as more customer 

demands are added together as observed in Figures 6-1, 6-2, and Table 6-1. One of the 

main reasons for the higher increase in network estimates at 6-house aggregation and 

beyond is that in the case of 6-house, 8-house, and 10-house some of the aggregation 

points are placed on cables B and C which are low voltage cables with smaller 

diameters compared to cable A and therefore in these aggregation scenarios there is 

higher demands on cables with higher resistance which contribute to higher rate of loss 

estimate values. 

Alternative Network Topology 

In order to further investigate the impact of the placement of aggregation points on the 

loss estimate values, the network model represented in Figure 3-8, which is a 100-house 

balanced three phase low voltage network with three cables and two branches, is 

changed to a 100-house balanced three phase low voltage network with only one main 

cable and no branches. This new model is presented in Figure 3-10. In theory, this 

should minimise the influence of aggregation point placements on the accuracy of loss 

estimates.  

Figures 6-4 and 6-5 below show the loss estimates at various aggregation levels for the 

sample dates from the Loughborough and CLNR data set no.8 data sets. The loss 

estimates are expressed as the fraction of loss estimates when there is no smart meter 

data aggregation of the customers.  
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Figure 6-4: Fraction of  estimated losses for different aggregation levels-alternative topology 

(Loughborough data set) 

 

 

Figure 6-5: Fraction of  estimated losses for different aggregation levels-alternative topology 

(CLNR data set no.8) 
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estimated losses at 2-house aggregation level ranges between 25-50% across the 8 

sample dates. Table 6-2 below shows the average overestimation percentages at each 

level of aggregation for the sample dates from the two data sets.  

 

Table 6-3: Average overestimation in loss estimates at different aggregation levels-alternative 

topology 

Aggregation 

Level 

Average Overestimation % 

Loughborough Data Set 

Average Overestimation % 

CLNR Data Set no.8 

2-house 36.55 40.80 

4-house 37.75 42.00 

6-house 38.72 42.97 

8-house 39.46 44.21 

10-house 46.00 47.25 

 

 

The overestimation percentages in losses now follow a more logical pattern compared to 

the earlier model. The highest overestimation of the percentage of losses occur when 

customer data from two customers are added together with the average of 36.55% and 

40.80% increase in loss estimates for the sample dates from the Loughborough data set 

and the CLNR data set no.8, respectively.  

After this point, when customer data from 4, 6, 8, and 10 customers are added together, 

the overestimation percentage only rises marginally by about 2% for each level of 

aggregation on average, up to the 8-house aggregation level and between 3% to 7% rise 

in the estimate values on average from 8-house to 10-house aggregation levels. This 

shows that if all the households are served by a low voltage cable network or with 

similar cables with similar impedance characteristics, the aggregation of customers 

produces a more predictable trend in the results.  

The difference in results is mainly due to the placement of the aggregation points and 

the topologies of the low voltage network models. Once the customer demands are 

added together on the various aggregation levels, the sum of demands is the same, so 

the only contributing factor to the changes in loss estimates of the low voltage network 

are the square of load values and different the cable section lengths used in network loss 

estimation based on the new aggregation points.  
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6.2 Effects of Varying Customer Aggregation Levels on Loss 

Estimation in Unbalanced Low Voltage Networks 

In order to study the effects of customer data aggregation on the accuracy of loss 

estimates, the balanced low voltage network presented in Figure 3-8 was changed to an 

unbalanced low voltage network with a higher number of customers connected to the 

red phase. On the unbalanced low voltage model, the ratio of customers on the three 

phases has been changed from 33:33:34 to 40:30:30 on the three phases of red, yellow, 

and blue respectively. The smart meter data from all the 8 sample dates that were used 

in section 6.1 are also used in this unbalanced model.  

Figures 6-6 and 6-7 below show the estimated losses at various levels of aggregation in 

the unbalanced low voltage network model, using smart meter data recorded on the 8 

sample dates from the Loughborough data set and the CLNR data set no.8. The losses 

are expressed as a fraction of estimated losses with no aggregation (1-house).  

 

 

Figure 6-6: Fraction of estimated losses for different aggregation levels-unbalanced model 

(Loughborough data set) 
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Figure 6-7: Fraction of estimated losses for different aggregation levels-unbalanced model (CLNR 

data set no.8) 

 

Figures 6-6 and 6-7 show that a similar trend to the balanced network model occurs as 

the smart meter data are aggregated in the unbalanced low voltage network with the 

highest rates of increase in the loss estimates taking places at 2-house and 6-house 

aggregation levels. However, as Table 6-4 indicates the overestimation percentages are 

further increased in the unbalanced model compared to the balanced low voltage 

network model. Table 6-5 compares the average overestimation percentages between 

the balanced and the unbalanced model at each aggregation level. 
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Table 6-4: Comparison of overestimation percentages at various aggregation levels  

Aggregation 

Level 

Average Overestimation % 

Loughborough Data Set-

balanced 

Average Overestimation % 

Loughborough Data Set-

unbalanced 

2-house 44.93 72.69 

4-house 58.53 88.86 

6-house 121.39 151.72 

8-house 134.52 165.97 

10-house 153.40 177.30 

Aggregation 

Level 

Average Overestimation % 

CLNR Data Set no.8-balanced 

Average Overestimation % 

CLNR Data Set no.8-

unbalanced 

2-house 44.20 71.32 

4-house 61.38 95.00 

6-house 130.34 181.92 

8-house 146.92 206.63 

10-house 167.24 219.08 

 

As Table 6-4 demonstrates, in the unbalanced low voltage network model the average 

overestimation percentage at 2-house level increases by just under 30% compared to the 

balanced model for the sample dates from both data sets. This figure changes to just 

over 30% for the sample dates from the Loughborough data set and about 60% for the 

sample dates from the CLNR data set no.8 when data from 6 customers are added 

together. The overestimation trend is consistent with the trend observed in section 6.1, 

where the largest overestimation percentages of loss estimates take place at 2-house and 

6-house aggregation levels. However, the overestimation percentages are more severe in 

the unbalanced network model. This is caused by the extra load inserted by the 

customers on the red phase in the unbalanced network model compared to the balanced 

network model, while the length of the cable remains unchanged.  

Alternative Network Topology 

A similar trend is also seen when the network topology is changed and all the 100 

customers are connected to one main cable in the alternative network model. Figures  

6-8 and 6-9 below show the estimated losses at various aggregation levels, for the 8 

sample dates, as a fraction of estimated losses with no aggregation. 
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Figure 6-8: Fraction of estimated losses for different aggregation levels-unbalanced model–

alternative topology (Loughborough data set) 

 

 

 

Figure 6-9: : Fraction of estimated losses for different aggregation levels-unbalanced model–

alternative topology (CLNR data set no.8) 
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the balanced network setting. 

 

Table 6-5: Comparison of overestimation percentages at various aggregation levels-alternative 

topology 

Aggregation 

Level 

Average Overestimation % 

Loughborough Data Set-

balanced 

Average Overestimation % 

Loughborough Data Set-

unbalanced 

2-house 36.55 63.92 

4-house 37.75 67.44 

6-house 38.72 68.99 

8-house 39.46 72.98 

10-house 46.00 75.34 

Aggregation 

Level 

Average Overestimation % 

CLNR Data Set no.8-

balanced model 

Average Overestimation % 

CLNR Data Set no.8-

unbalanced model 

2-house 40.80 65.80 

4-house 42.00 69.25 

6-house 42.97 72.22 

8-house 44.21 74.46 

10-house 47.25 77.75 

 

Table 6-5 shows that on average the loss estimates in the unbalanced network with an 

alternative topology also increase as the aggregation level increases. Although the trend 

in the balanced network is similar to the unbalanced network with the largest rise in the 

loss estimates occurring at 2-house aggregation level, the results in Table 6-5 show that 

this increase is more severe when the low voltage network is unbalanced. For example, 

compared to the balanced network, in the unbalanced network the loss estimates for the 

2-house aggregation level rise by just under 30% and just above 25% for Loughborough 

and CLNR data sets, respectively. 

 

6.3 Effects of Varying Customer Aggregation Levels on Estimation of 

Voltage Levels in Balanced Low Voltage Networks 

In this section of the thesis, maximum voltage drops along the low voltage network 

models are calculated on each phase in different aggregation levels. The maximum 
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voltage drops, which are calculated at each section of the network models, are 

subtracted from the starting voltage at the substation. This provides the minimum 

voltage levels that is experienced by the customers at the end of the network on each 

phase. The minimum voltage levels are important to the DNOs in maintaining the 

statutory limits of 230V +6% -10% and also in determining the capacity of various 

phases of the low voltage network to host embedded generation and low carbon 

technologies units.  

Previous studies in sections 5.4 and 5.5 showed that as the time resolution of smart 

meter data is decreased from 1 minute to 120 minute intervals, the minimum voltage 

estimates are overestimated (Poursharif et al. 2017). In this section, the effect of 

customer data aggregation on the accuracy of minimum voltage level estimates is 

investigated by comparing the minimum voltage level estimates on each phase of the 

low voltage network at 2, 4, 6, and 8 house aggregation level to 1 house level (no 

aggregation).  

Figures 6-10 and 6-11 below show the minimum voltage levels experienced at the end 

of cable C on the red phase at various aggregation levels. The results for the yellow and 

blue phases can be found in Appendix G. 

 

 

Figure 6-10: Minimum voltage levels at various aggregation levels (Loughborough data set) 
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Figure 6-11: Minimum voltage levels at various aggregation levels (CLNR data set no.8) 

 

Figures 6-10 and 6-11 show that as the customer loads are aggregated, the minimum 

voltage estimations are underestimated. The 2-house and the 4-house aggregation levels 

provide the closest estimations to the actual voltage drops along the low voltage 

network. Table 6-6 below shows the average underestimation percentages at each level 

of aggregation across the 8 samples dates from both data sets. 

 

Table 6-6: Average underestimation percentages at various aggregation levels 

Aggregation 

Level 

Average Underestimation % 

Loughborough Data Set 

Average Underestimation % 

CLNR Data Set no.8 

2-house 0.76 0.14 

4-house 0.84 0.25 

6-house 1.05 0.45 

8-house 1.18 0.68 

10-house 1.39 0.85 

 

It can be observed from Table 6-6 that the highest underestimation percentages at  

2-house and 6-house aggregation points with the averages of 0.76% and 0.14% at  

2-house and 19% and 20% at 6-house aggregation levels for the sample dates from the  

Loughborough data set and the CLNR data set no.8, respectively. The trend then slows 

down to a steadier underestimation trend as customer aggregation levels increase to 10.  
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While the underestimation of voltage levels at 2-house aggregation can be justified by 

the fact that larger loads are experienced at the sections of the low voltage network as a 

result of placing the aggregation points mid-way between the two neighbouring 

customers on the same phase, the large voltage drop experienced at 6-house aggregation 

level can be explained by the fact that some of loads that were previously on cable A 

with lower resistance are now shifted to cable B or C as a result of aggregation and this 

causes another large decrease in the voltages.  

In order to validate this, an alternative network model (see Figure 3-10) was created, 

where all the 100 customers are connected to a main cable with the specifications of 

cable A.  

 

Alternative low voltage network model: 

This section presents the results of minimum voltage levels estimated at various 

aggregation levels on the red phase of the low voltage network shown in Figure 3-10. 

Figures 6-12 and 6-13 below shows the results using the smart meter data on the sample 

dates from the Loughborough and CLNR data sets, respectively.  

 

 

Figure 6-12: Minimum voltage levels estimated for different aggregation levels-alternative topology 

(Loughborough data set) 
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Figure 6-13: Minimum voltage levels estimated for different aggregation levels-alternative topology 

(CLNR data set no.8) 

 

As Figures 6-12 and 6-13 show as data from more numbers of customers are aggregated 

together, the minimum voltage levels estimates are decreased. The largest 

underestimation occurs when data from 2 customers are aggregated. Table 6-7 below 

shows the average underestimation percentage at different levels of aggregation across 

the 8 sample dates from both data sets. 

 

Table 6-7: Average underestimation percentages at various aggregation levels-alternative topology 

Aggregation 

Level 

Average Underestimation % 

Loughborough Data Set 

Average Underestimation % 

CLNR Data Set no.8 

2-house 1.73 1.33 

4-house 1.94 1.38 

6-house 1.97 1.45 

8-house 2.01 1.51 

10-house 2.02 1.56 

 

As Table 6-7 above shows, now that all customers are connected to one main cable the 

largest share of underestimation in voltage estimates only take place at 2-house 

aggregation level with 1.73% and 1.33% for the Loughborough and CLNR data sets, 

respectively. Further aggregation from 2-house level to 10-house level only introduces 
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marginal underestimation percentages. 

 

6.4 Effects of Varying Customer Aggregation Levels on Estimation of 

Voltage Levels in Unbalanced Low Voltage Networks 

In this section, the effect of customer data aggregation on the accuracy of voltage 

estimated is investigated in an unbalanced network arrangement. In this network model, 

there are more customers on the red phase and the allocation ratio of customers to 

phases has been changed from 33:33:34 to 40:30:30 for customers on the red, yellow, 

and blue phases, respectively.  

Figures 6-14 and 6-15 below show the changes in minimum voltage levels estimated for 

the customers on the red phase as smart meter data from customers are aggregated from 

no aggregation to 10-house aggregation level. 

 

 

Figure 6-14: Estimated minimum voltage levels on the red phase at various aggregation levels-

unbalanced network (Loughborough data set) 
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Figure 6-15: Estimated minimum voltage levels on the red phase at various aggregation levels-

unbalanced network (CLNR data set no.8) 
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Table 6-8: Comparison of average underestimation percentages of minimum voltage levels in the 

balanced and unbalanced models 

Aggregation 

Level 

Average Underestimation 

% Loughborough Data Set- 

balanced 

Average Underestimation % 

Loughborough Data Set-

unbalanced 

2-house 0.76 0.98 

4-house 0.84 1.13 

6-house 1.05 1.45 

8-house 1.18 1.59 

10-house 1.39 1.71 

Aggregation 

Level 

Average Underestimation 

% CLNR Data Set no.8-

balanced 

Average Underestimation % 

CLNR Data Set no.8-unbalanced 

2-house 0.14 0.54 

4-house 0.25 0.66 

6-house 0.45 0.90 

8-house 0.68 0.97 

10-house 0.85 1.10 

 

This trend is also observed at other aggregation levels, especially at 6-house aggregation 

level that experiences about 0.45% higher underestimation in the unbalanced network 

model compared to the balanced network model. 

Alternative Low Voltage Network Model 

Similar results are also found when the network arrangement is changed to the 

alternative low voltage network model with all 100 customers connected to one main 

cable. Figures 6-16 and 6-17 below show that similar to the alternative balanced low 

voltage network model, in the unbalanced network model the highest underestimation 

of minimum voltage levels take place at 2-house level aggregation and further 

aggregation only causes relatively minor underestimation. 
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Figure 6-16: Minimum voltage levels estimated for different aggregation levels-alternative 

topology-unbalanced model (Loughborough data set) 

 

 

 

Figure 6-17: Minimum voltage levels estimated for different aggregation levels-alternative 

topology-unbalanced model (CLNR data set no.8) 
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Table 6-9: Comparison of average underestimation percentages of minimum voltage levels in the 

balanced and unbalanced models-alternative model 

Aggregation 

Level 

Average Underestimation 

% Loughborough Data Set- 

balanced 

Average Underestimation % 

Loughborough Data Set- 

unbalanced 

2-house 1.73 1.93 

4-house 1.94 2.03 

6-house 1.97 2.18 

8-house 2.01 2.38 

10-house 2.02 2.51 

Aggregation 

Level 

Average Underestimation 

% CLNR Data Set no.8- 

balanced 

Average Underestimation % 

CLNR Data Set no.8- 

unbalanced 

2-house 1.33 2.29 

4-house 1.38 2.38 

6-house 1.45 2.58 

8-house 1.51 2.69 

10-house 1.56 2.76 

 

The results in Table 6-9 confirm the results previously seen in section 6-3 where the 

highest underestimation rate is observed at 2-house aggregation level. However, this 

rate of underestimation is higher in the unbalanced model. For example, in the case of 

the Loughborough data set, the average underestimation percentage rises from 1.73% to 

1.93% at 2-house aggregation level in the unbalanced network and in the case of the 

CLNR data set no.8 it rises from 1.33% to 2.29%. The minimum voltage levels 

estimated on the yellow and the blue phase can be found in the Appendix H. 

 

6.5 Summary 

In this chapter, the relationship between low voltage aggregation of customer loads on a 

similar phase and the accuracy of half-hourly loss and voltage estimates were 

investigated. Aggregation levels are defined as no aggregation, 2, 4, 6, 8, and 10 house 

aggregation levels. In each aggregation scenario, neighbouring customers on the same 

phase are grouped together and an aggregation point between the neighbouring meters 

replaces the single household demand points. Examples of the aggregation point 

placements can be seen in Figure 3-0.  

Additionally, an alternative low voltage network model is created as shown in Figure  

3-10, where 100 customers are connected to a single long main cable with the 
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specification of cable A in the previous model. This model is referred to as the 

alternative low voltage model. Load flow analysis is carried out on both models in a 

balanced and unbalanced setting and the losses and minimum voltage levels are 

estimated for 8 sample dates from the two data sets. 

In the first place, the impact of aggregation levels on the accuracy of loss estimates is 

examined in a balanced low voltage network model on the sample dates. This is also 

tested in the alternative low voltage network model to investigate the effects of 

aggregation point placement and network topology on the accuracy of loss estimates. 

These steps are also repeated on an unbalanced low voltage network model that has 

more loads connected to the red phase.  

Secondly, the minimum voltage levels on the various phases of the network models are 

estimated in each aggregation scenario. This analysis is carried out in the balanced and 

the unbalanced network setting. Also, in both cases the impact of aggregation point 

placement and network topology is tested in the alternative network model. The results 

from of the minimum voltage level estimates for the customers on the red phase are 

presented in this chapter and the results of the analysis carries out on the yellow and 

blue phases can be found in Appendices G and H. 

 

6.6 Conclusions 

Our analysis in section 6.1 showed that in the balanced network models as the customer 

loads are aggregated, the loss estimates are overestimated. In the network with two 

branches the highest overestimation percentages occur at 2-house and 6-house 

aggregation levels with the average overestimation percentages of 44.6 % and 125.9% 

across the 8 sample dates, respectively. The results in the alternative model that contains 

100 customers connected to one main cable and no branches show that the largest 

overestimation percentage takes place only at 2-house level of aggregation with the 

average overestimation percentage of about 38%. This demonstrates that the large 

overestimation at 6-house level aggregation is due to the placement of aggregation 

points as a result of the network topology. A similar result is also seen in the unbalanced 

network model in section 6.2. The findings in section 6-3 shows that a similar trend to 

the balanced network can be seen in unbalanced networks with higher percentages of 
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overestimation as customer data are aggregated compared to the balanced network 

model. 

Analysis in sections 6.3 and 6.4 showed that as the number of customers grouped 

together increases the estimates of voltage drops on the low voltage networks rise. This 

leads to the underestimation of minimum voltage levels on each of the phases. Similar 

to the loss estimates, the highest underestimation percentages in the low voltage 

network with two branches take place at 2-house and 6-house levels. The average 

underestimation percentages at 2-house and 6-house aggregation levels across the 8 

sample dates are 0.45% and 0.75%, respectively. The alternative low voltage model 

shows that in a different topology the effect of 6-house aggregation level is minimised. 

The results in the unbalanced network setting also indicate that the rate of 

underestimation increases from no aggregation to 2-house aggregation as the loads on 

the phases are unbalanced.  

Our studies are novel in that for the first time the effects of aggregation of customer data 

on the low voltage network estimates are investigated. Previous studies in EA 

Technology (2015a) and EA Technology (2015b) show that aggregation of data from 

two customers can preserve the privacy of the consumers to highest degree while being 

the most cost effective aggregation level in terms of the costs involved to disaggregate 

the aggregated data. Our research contextualises the impacts on the accuracy of 

important low voltage network performance indicators such as loss and voltage 

estimates. Our findings also show factors such as low voltage network topology and 

placement of the aggregation points are also very important factors when aggregating 

customer smart meter data. This is particularly important due to the fact that each DNO 

owns and operates thousands of different low voltage networks with different topologies 

and characteristics.  
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Chapter 7 Conclusions 

The nature of electricity distribution network operation in the UK and throughout the 

rest of the World is changing. This is mainly due to the fact that the distribution grid 

operators need to ensure swift accommodation of the rising amounts of embedded 

generation in the electricity network, especially at lower voltage levels.  

A great many of the new sources of energy generation are being installed in the 

electricity distribution grid either at consumer premises or at small generation sites. This 

requires the low voltage side of the network, which has traditionally been designed only 

to transmit energy to consumers, to be transformed to host embedded generation units.  

As a result, the conventional uni-directional flows of information and energy in the 

traditional distribution grid set ups is changing to bi-directional flows of energy and 

information, which in turn will transform the existing passive distribution grid to an 

intelligent grid. The proactive distribution network operation requires great 

understanding of voltage levels and customer demands on the low voltage side of the 

network. To this end, information systems and various sources of monitoring such as 

smart meters and Advanced Metering Infrastructure (AMI) are being widely 

implemented in the UK and various different countries to enable these changes as they 

can provide the required information from the low voltage side of the network to DNOs.  

By 2025, half-hourly smart meter data from most domestic households and businesses 

in the UK will be available and can potentially provide the DNOs with more detailed 

information about the low voltage network. However, as our extensive study of the 

documents and literature in chapters 1 and 2 showed there is a significant gap in 

knowledge in both fields of academic and industrial research about the extent to which 

the smart meter data in the UK can provide accurate information about the low voltage 

network to the DNOs.  

Based on the research aims and objectives of this research, the following aspects of 

smart meter data were investigated in this thesis: 

 the effectiveness of historical half-hourly smart meter data from a group of smart 

meters in predicting the customer demands from unavailable smart meters on the 

same low voltage network (chapter 4). 
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 the impact of smart meter time resolutions on the estimation accuracy of critical 

low voltage network information such as losses, voltage levels, and cable 

loading capacity (chapter 5).  

 the impact of customer smart meter data aggregation on the estimation accuracy 

of losses and voltage levels (chapter 6). 

The following sections highlight the main findings and conclusions learned from the 

analysis carried out in chapters 4, 5, and 6 and the ways in which the DNO applications 

are affected by these results.  

7.1 The Use of Historical Smart Meter Data to Predict Missing Low 

Voltage Loads 

Knowledge of the customer currents on the low voltage network is a key foundation for 

smart grid applications. However, knowledge of low voltage currents is generally poor. 

Accurate knowledge of the currents is a key element of Advanced Distribution 

Management Systems. Traditionally, the DNOs were interested in peak demands from 

clusters of customers, but with the transition to smarter grid applications, details of 

customer demand and generation patterns on specific low voltage networks are 

necessary in order for the DNOs to be able to monitor power flows and voltage levels at 

critical points on the network (Lees 2014). However, research into various methods of 

load prediction has been mainly focused on the higher levels of the electricity network. 

In chapter 2, we looked at some of the major methods of load allocation which are used 

in state estimation methods at higher levels of distribution networks, followed by 

investigating demand prediction methods that are used by the DNOs on the low voltage 

levels such as:  

 After Diversity Maximum Demand (ADMD) (McQueen et al. 2004)  

 Customer demand curves (Carson and Cornfield 1973; McQueen et al. 2004; 

Vélez et al. 2014)  

 Transformer kVA allocation (Kersting and Philips; Arritt et al. 2012)  

 Monthly usage allocation (Kersting and Philips; Arritt et al. 2012).  

We then selected and examined 5 methods of customer load prediction in chapter 4 that 

were based on historical smart meter data and k-nearest weighted averages. Methods 1 

and 4 were based on a combination of transformer kVA and monthly usage allocation 
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approaches used in conjunction with smart meter data sets. Method 5 (k-nearest 

weighted averages) was based on a statistical approach used in a new context to find the 

closest historical half-hourly values to the missing values. The situation investigated 

was where not all the smart meters are reporting their values in real-time. 

The 5 devised methods of customer load prediction were as follows: 

1. Prediction of missing customer loads on the date based on real-time smart meter 

data from the neighbouring meters on the sample date and the historical data 

from a week earlier on a similar day. 

 

2. Prediction of missing customer loads on the date based on real-time smart meter 

data from the neighbouring meters on the sample date and the historical data 

from a month earlier on a similar day. 

 

3. Prediction of missing customer loads on the sample date based on real-time 

smart meter data from the neighbouring meters on the sample date and of 

average of historical data from four weeks before on a similar day. 

 

4. Prediction of missing customer loads on the sample date based on real-time 

smart meter data from the neighbouring meters on the sample date and the 

historical data from a similar type day from a year before on a similar day. 

 

5. Prediction of missing customer loads at peak times on the sample date based on 

real time smart meter data from the neighbouring meters on the sample date and 

the k-nearest weighted averages of the closest historical data values from the 

neighbouring smart meters. 

These methods were initially tested on a 20-house network model (models A-1 and A-2) 

and the best two methods were then applied to a larger network model with 50 meters 

(model B).   

7.1.1 Key Findings 

Our analysis showed that methods 1 and 4 produce the best results, based on the Mean 

Absolute Percentage Error (MAPE) of the predictions for 48 half-hours on the sample 

dates. The results indicated that the best performing predictions take place when the 
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prediction are either based on measured data from one week earlier or the average of 

customer loads from four weeks earlier. It was also found that in the absence of  

half-hourly temperature data, method 5 performs worse than methods 1 and 4, but only 

slightly.  

When comparing the MAPE results from the three daily peak times on the sample dates 

in model A-1 (model with 20 meters from Loughborough data set), the MAPE values 

for methods 1, 4, and 5 were 43.61%, 42.31%, and 48.80%, respectively. These figures 

for model A-2 (model with 20 meter from CLNR data set no.1) were, 30.31%, 35.91%, 

36.51%. These results showed that methods 1 and 4 that use historical smart meter data 

from 1 week earlier and the average of 4 weeks earlier perform better in predicting the 

peak loads, compared to method 5 that uses k-nearest weighted averages.  

Applying methods 1 and 4 to a larger sample of meters in model B showed that 

increasing the size of the smart meters with real time data does not significantly 

improve the load estimates of the missing meters. In both models (A and B), 10% of the 

meters were assumed not to be communicating the customer currents to the DNOs in 

real time, which is the worst case scenario predicted by the OFGEM. In this model, the 

average MAPE does not significantly change for method 1, but in the case of method 4, 

MAPE results improved from just over 36% to just above 28%. However, applying 

methods 1 and 4 to predict loads from 50 different individual households in model B 

showed a greater range of errors as a result of volatility in individual lifestyle of 

consumers.  

7.1.2 Conclusions 

The focus of this chapter of the thesis was to investigate how the estimation of the 

customer demands at any time of the day and year, can be improved by using data from 

distribution substation monitoring along with either annual consumptions or historical 

smart meter data. Our approaches considered how smart meter data can be used to 

improve on these methods and how effective are simple approaches, which assume 

demands from “similar times and situation” are effective indictors of missing demands, 

based on smart meter data?   

It was found that on average, using smart meter data from a week prior and the average 

of half-hourly values from 4 weeks earlier on a similar day type, performed the best 

with the k-nearest weighted average method performing slightly worse than the two 
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methods mentioned (methods 1 and 4). These methods can successfully predict the load 

shapes of the missing customer currents, but in some instances peak demands are 

misplaced by an hour or are underestimated. Also, the consistency in the results from 

the two data sets show that apart from the natural differences in every data set, the 

methods can be used in other data sets as well. 

The approaches presented in chapter 4 improve the current practices in the field and are 

easy to implement by the DNOs. The fact that methods 1 and 4 are simpler and 

computationally less demanding than complex prediction methods mean that this could 

well be the choice of network operators in practice, especially in applications such as 

asset management network planning and design by providing a more detailed load flow 

analysis models to the DNOs. Also, installing network meters by DNOs on various node 

points on the low voltage network can rectify the inaccuracies in predicting the peak 

demands from the customers with missing smart meter data.  

Besides the accuracy of the estimates, in practice it is desirable that an approach is: 

a) Straightforward to implement.  

b) Computationally inexpensive as the objective is to estimate the real-time 

power flows on the low voltage network. 

Methods 1 and 4 are very simple approaches to implement. Hence they are the 

approaches that seem the most suitable for use in practice. Additionally, these methods 

improve the previous approaches in Kersting and Philips (2008); Arritt et al. (2012); 

Vélez et al. (2014) by using actual smart meter data and similar historical times and 

situations. Extra information such as the half-hourly temperatures can also in theory 

improve method 5 estimates based on k-nearest weighted average more accurate and 

more attractive in practice.  

 

7.2 Impact of Smart Meter Time Resolution Intervals on the 

Estimation of Critical Low Voltage Indicators 

Understanding of critical low voltage network indicators such as losses, voltage levels, 

and cable loading percentages are highly important to the DNOs. A greater 

understanding of these indicators will enable the DNOs to: 
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 deliver power to customers and run the low voltage network more efficiently 

and cost effectively. 

 identify the areas of network that need reinforcement. 

 identify the network capacities for new connections. 

 identify the areas of the network with power quality problems. 

 maintain voltage levels within the statutory limits. 

 accommodate and manage the integration of embedded generation and low 

carbon technologies without compromising the quality of power delivered to the 

customers. 

 reconfigure the network arrangements to balance the loads on different phases of 

the network. 

 actively manage the network and smart grid applications such as Demand Side 

Management.  

To this end, smart meter data are deemed to be the most cost effective facilitators of 

creating bottom-up load flow analysis models that provide the DNOs with a clear 

picture of their low voltage networks. However, the ability of smart meters to provide 

accurate information to the DNOs in the UK can be limited due to the fact that the 

DNOs are only provided with half-hourly averages of customer loads. Therefore, the 

studies in chapter 5 were designed to investigate the effects of smart meter time 

resolution intervals on the accuracy of critical low voltage estimates such as losses, 

voltages, and cable loading percentages.  

Initially, fundamental low voltage network information such as network losses, voltage 

levels, and cable loading percentages and the current practices on estimating such 

information were discussed in chapter 2. After that the three phase low voltage network 

model that was created to be populated with smart meter data was described in chapter 

3. The sources and characteristics of the data were also described in chapter 3. The time 

resolution studies in chapter 5 were then carried out using smart meter data from 8 

sample dates from two different data sets. The smart meter data time resolutions were 

averaged from the highest resolution of 1 minute to lower resolutions of 5, 10, 15, 30, 

60, and 120 minutes. The data were then added to a balanced and an unbalanced three 

phase low voltage network model with 100 houses. The total network losses, the 

minimum voltage levels, and the cable loading percentages are then estimated on the 
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sample dates using the various time resolution intervals mentioned earlier. The loss 

estimates and voltage levels were also calculated in an unbalanced low voltage network 

with more customers on the red phases of the network. The importance of the 

unbalanced network was to represent the unbalanced low voltage networks that are 

found in real networks. The difference between having 1 minute smart meter data or 

lower resolution of smart meter data is then expressed in the context of these estimates. 

The results of our analysis were presented in chapter 5 of this work. 

7.2.1 Key Findings 

Our analysis showed that as the granularity of smart meter data decreases from 1 minute 

to 120 minutes, the network loss estimates also drop. The greatest underestimation takes 

place between 1 minute and half-hourly average time resolution intervals with most of 

the underestimation occurring between 1 and 15 minute time resolutions. Our sample 

dates showed that, the underestimation in losses between 1 minute to half-hourly 

averages range from just under 20% to just above 25%. Our analysis showed that the 

underestimation of network losses is more severe in unbalanced low voltage networks 

with a similar correlation between the time resolution of smart meter data and the loss 

estimates as seen in balanced low voltage models. In the unbalanced network model, the 

average loss underestimation percentages from 1 minute to half-hourly smart meter time 

resolution intervals range from just under 30% to just under 35%, which showed about 

10% more underestimation compared to the balanced model.   

In section 5.3, we examined two methods of predicting the 1 minute loss values based 

on either half-hourly losses which showed that if the slope of the curves of network loss 

estimations based on various time granularities of data for weekends and weekdays of a 

specific month of the year were analysed and a constant for those day types was 

calculated (α), this constant then can be applied to half-hourly loss estimates to calculate 

the 1 minute loss values across 52 sample dates. Our analysis showed that using 

regression models to fit the bust curve to the 120 minute to half-hourly losses in 

combination with the constant value of ͞α led to fairly accurate estimation of 1 minute 

losses with interquartile range of the APE values between just under 5% and just under 

15%.  

In terms of voltage levels, our analysis showed that as the time resolution of smart 

meter data decreases from 1 minute to 120 minutes, the minimum voltage level 



195 

 

estimates on the low voltage network rise. The greatest overestimation takes place 

between 1 minute and half-hourly average intervals, with the highest percentage of 

underestimation occurring between 1 to 15 minute intervals. Our examples showed that, 

the average overestimation of minimum voltage estimates between 1 minute to  

half-hourly averages range from just under 0.17% to just above 0.18%. This 

underestimation is more severe in the unbalanced network with the average model 

ranging between 1.12% to 1.24%. This is important when considering the statutory 

voltage limits of 230V +10%-6%. 

The main reason behind these trends is that major peak demand points in data are 

neglected when the smart meter data are averaged over longer intervals of time. This is 

confirmed when the estimates of loading percentages of low voltage cables at various 

time resolutions were analysed in section 5.6. Our analysis in section 5.6 showed that 

there is a significant underestimation of peak demands on each phase of the low voltage 

cables as the time resolution of data decreases from 1 minute to 120 minute intervals.  

7.2.2 Conclusions 

Our analysis shows that having half-hourly smart meter data does not provide the DNOs 

with accurate low voltage network information and this lack of accuracy can hinder the 

ability of the DNOs to improve their smart grid applications. The underestimation of 

losses and the overestimation of minimum voltage levels at half-hourly time resolution 

intervals can directly and indirectly impact a number of DNO applications in the UK. 

The underestimation of losses can lead to the neglect of the areas of the network that 

need reinforcement and the distortion of the network capacity to accept new 

connections. It can hide the low voltage networks that need to be reconfigured and 

balanced. It can also impair the decision making process of the DNOs to design the 

networks in the most cost effective and efficient way. 

The overestimation of minimum voltage levels can mislead the operators and the 

regulators in determining whether a particular low voltage network is operating within 

the statutory limits or not. It can also lead to a lack of understanding of the areas of the 

network where the quality of power is being affected and are likely to cause consumer 

complaints or experience faults. The overestimation of minimum voltage levels can also 

affect the low voltage network’s capacity to host embedded generation and low carbon 

technologies which are closely related.  
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The underestimation of peak cable capacity percentages can also hinder the ability of 

the DNOs to effectively reconfigure the existing connections and assign new 

connections to maintain the network balance. It also affects the ability of the DNOs to 

run applications such as Active Network Management (ANM) and Demand Side 

Management (DSM) effectively. 

Our analysis used smart meter data from various sample dates and two different data 

sets and the consistency in the results mean that the findings can be applicable to other 

similar types of smart meter data time resolution studies. Our models are also 

improvement on previous studies by Oliveira and Padilha-Feltrin (2009); McKenna et 

al. (2012); Quiroz et al. (2012); Brandauer et al. (2013); Dashtaki and Haghifam (2013); 

and Urquhart and Thompson (2015) in a number of ways: 

 The number of customers, sample dates, and data sets used. 

 The use of a three-phase model instead of a single phase model. 

 The time resolution intervals ranging from 1 to 120 minutes. 

 The placement of the impact of varying time resolution intervals in the context 

of the accuracy of three major low voltage network indicators. 

 The investigation of the effects on in both a balanced and an unbalanced 

network model. 

 The prediction of 1 minute losses based on lower resolution of smart meter time 

resolution intervals. 

Our analysis in section 5.3 shows that using regression models can to some extent 

compensate the lack of loss estimate accuracy at half-hourly levels. However, the DNOs 

and the policy makers need to make a decision to whether it is more effective to have 

access to higher resolution of smart meter data based on the findings. As highlighted in 

Northern Powergrid (2016), our findings are one of the main reasons that have led to the 

Norther Powergrid’s decision to invest in installing higher resolution network meters in 

a number of low voltage substations around the network as well investigating the use of 

loss forecasting models based on regression models used in section 5.3 (Northern 

Powergrid 2016). Our findings have also been conveyed to the policy makers such as 

BEIS and OFGEM. Our work also received a lot of interest from network operators and 

researchers in the field from different countries when presented at CIRED 2017 in 

Glasgow. 
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7.3 Impact of Smart Meter Data Aggregation on the Estimation of 

Critical Low Voltage Indicators 

Another aspect of smart meter implementation programme in the UK that can 

potentially reduce the smart meter data benefits that can be gained by the DNOs is that 

the network operators are required to anonymise the customer data as soon as they are 

received from the DCC. Aggregation of customer data by the DNOs has been 

recognised to be the most cost effective way of dissociating the individual customer 

data from the consumers at the low voltage level (OFGEM 2017b). It is also the most 

appropriate way for the UK electricity market setup that is owned and operated or 

serviced by various entities such as the DNOs and the suppliers. The optimum level of 

aggregation is not decided by the regulators to date. Therefore, it is important to 

quantify the effects of low voltage customer data aggregation by demonstrating the 

impact on major low voltage network information areas such as estimates of losses and 

voltage levels. Our study in chapter 6 aimed to achieve this objective. 

In the first place, the three phase 100-house low voltage network model was changed to 

a low voltage network model where the customers on the same phase are grouped 

together at aggregation points across the low voltage network. The model that consisted 

of three cables and two branches was also altered to represent an alternative low voltage 

network model with all the 100 customers on a single straight low voltage cable. In the 

next step, 5 aggregation levels of 2, 4, 6, 8 and 10 house levels were defined and the 

models were populated with half-hourly smart meter data, which is the time resolution 

of the smart meter data transmitted to the DNOs. After that, losses and minimum 

voltage levels were estimated and compared to the estimates in the balanced and the 

unbalanced low voltage network models with no aggregation. The effects of aggregation 

levels on the accuracy of loss and voltage estimates were then expressed compared to 

the estimates when there was no aggregation.  

7.3.1 Key Findings 

Our analysis showed that as the aggregation level of smart meter data increases from  

1-house to 10-house level, the network loss estimates rise. In the model with two 

branches, the highest overestimation percentages occurred at 2-house and 6-house levels 

and the overestimation percentages were more severe in the unbalanced model of the 

low voltage network. In the balanced model, the average overestimation percentages at 
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2-house level range from 44.2% to 44.9% and these percentages at 6-house level range 

from 121.3% to 130.3%. In the unbalanced network model, the average overestimation 

percentages at 2-house aggregation level increase by approximately 30% and the 

average overestimation percentage at 6-house aggregation level rises by 30-50%. In the 

alternative model with no branches however, the highest overestimation percentage 

takes places at 2-house aggregation level.  

In terms of voltage levels, our analysis showed that as the aggregation level of smart 

meter data increases from 1-house to 10-house level, the minimum voltage level 

estimates at the end of cables B and C of the network drop. This underestimation was 

more dramatic on cable C where there are more customer connections. The 

underestimation of minimum voltage levels was more sever on the red phase in the 

unbalanced models. In the balanced model, the average underestimation percentages at 

2-house level range from 0.14% to  0.76% and the underestimation percentages at  

6-house level range from 0.45% to 1.05%. In the unbalanced network model, the 

average underestimation percentages at each level of aggregation increased compared to 

similar aggregation level in the balanced network. However, In the alternative model 

with no branches, the highest underestimation percentage took place at 2-house 

aggregation level. 

7.3.2 Conclusions 

The aggregation of customer loads will lead to the provision of less accurate low 

voltage network information to the DNOs compared to having non-aggregated smart 

meter data. The use of aggregated customer loads in the load flow models used by the 

DNOs can cause the overestimation of losses and underestimation of minimum voltage 

levels as our models demonstrated. 

This can be problematic in a number of DNO application areas. Overestimation of 

losses can falsely identify the areas of the network that are operating efficiently as 

inefficient and/or faulty. This can lead to the allocation of resources to the wrong areas 

of the network. The overestimation of losses can also affect the decisions to host new 

connections, embedded generation, or low carbon technologies. The Overestimation of 

minimum voltages can also directly impair the judgement of the network operators in 

managing the embedded generation and low carbon technologies installed at various 

areas of the low voltage network.  
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However, maintaining the privacy of customers are also of utmost importance and as 

EA Technology (2015a) and EA Technology (2015b) have highlighted, the best 

aggregation level in terms of costs of disaggregation of the customer profiles is the  

2-house level. Our studies also proved that the best aggregation level is the 2-house 

level. However, our studies were carried out in a novel way. The studies by the EA 

Technology only focus on the costs that the DNOs will incur in disaggregating the 

customer data aggregated. However, our study is a unique study that shows the effects 

of 5 data aggregation levels at the low voltage scale on the accuracy of important low 

voltage network parameters such as loss and voltage level estimates. Also, our models 

highlighted the importance of the low voltage network topology in the accuracy the 

estimates at various aggregation levels. Our studies showed that in both network 

topology models, the best performing aggregation level is the 2-house level. The 

comparison of results from the network model with two branches and the alternative 

model with no branches showed that the impact of aggregation on the estimation 

accuracy of critical low voltage networks is highly related to the placement of 

aggregation points and the topology of the networks. Our findings in chapter 6 is of 

huge interest to both the DNOs, the researchers in the field, and the policy makers as the 

debate over the most appropriate smart meter data aggregation level is still ongoing.   

 

7.4 Limitations and Further Research 

Our first set of analyses in chapter 4, was carried out on half-hourly smart meter data to 

examine two methods of predicting missing or unavailable customer demands half-

hourly readings from smart meters using historical smart meter data from neighbouring 

smart meters. Although our results showed that this can be achieved with a high degree 

of success in large samples, the absence of more smart meter data with at least 13 

months of consumption data limited our sample sizes to only 50. It would be interesting 

to investigate how the scaling can be improved when the sample of neighbouring smart 

meters is increased beyond 50 meter. Also, the availability of half-hourly temperature 

data can potentially improve the statistical methods such as k-nearest weighted 

averages.  

Our studies in chapter 5, investigated the relationship between varying smart meter time 

resolutions and the estimation accuracy of some of the major low voltage network 
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performance indicators such as network losses, voltage levels, and cable loading 

percentages. For our analysis, the number of available meters was limited to 150 meters. 

This limited the possibility of creating larger low voltage network models. It would be 

interesting to investigate the results on a bigger piece of low voltage network with 

various cable sizes, branches, more smart meters, and higher penetration of embedded 

generation. Also, the smart meter data that were used in these models were not 

accompanied by exact geographical data. This made the substation measurement data 

that were initially acquired at the beginning of this research redundant, because the 

smart meter data were not from the connections that are served by that specific low 

voltage substation data. 

Additionally, the inaccuracies in the 1 minute PV generation data restricted our analysis 

in that the low voltage test models were only populated with net consumption data. It 

would be interesting to examine the ways in which the addition of Embedded 

Generation at various points on the network would affect the results. 

In the case of the analysis of the effects of smart meter customer aggregation in chapter 

6, the network topology dictated the type of analysis that was carried out. It would be 

interesting to investigate the result on different low voltage models with different 

network arrangements and characteristics. However, every low voltage network is 

different and this would be a very difficult task without having a real network model 

and more information about customer phases. 

Also more research should be carried out to identify the ways in which customer smart 

meter data, low voltage substation data, and performance indicator data such as network 

loss estimates can be utilised to identify the phases that each customer is connected to. 

As our results have highlighted the knowledge of customers’ will be very important to 

the DNOs. The effects of having a better picture of the customer connections and the 

phases on the accuracy of customer aggregation scenarios should also be researched in 

the future. 

Putting it all together, a major research direction that will be of enormous value can be 

carried out in integrating geographical and weather data with smart meter data to 

improve the methods of customer load predictions, low voltage network voltage levels 

and cable loading estimations and the ways in which the results of should be visualised 

and integrated into the DNOs GIS databases to enhance low voltage network 
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operational applications. Unfortunately, these types of data are usually collected for 

different purposes by various entities and this limits the possibilities of working with 

such data sources to conduct practical experiments and studies. For example, smart 

meter data sets are usually collected by the electricity suppliers in the UK and do not 

contain any information about the parts of the low voltage network that they come from. 

Therefore, relating them to appropriate GIS records is not possible. Also, weather data 

are usually collected at low resolutions, which as we saw earlier is not very helpful. If 

all these data sources from the same low voltage network area is available studies can 

be carried out to investigate the ways in which such data can be combined and 

visualised to inform the network operators and enhance the decision making process of 

the DNOs. For example, can this data be used to inform the operators the areas of the 

low voltage that are experiencing high voltage variations or high losses on the GIS map 

and why? Or where are the areas of the network with high capacity for hosting new 

connection, embedded generation, or low carbon technologies? 
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Appendix A: Python Code for Extraction of the CLNR Data Files 

The code in this section can used in Python to extract the smart meter data for each 

meter ID as CSV separate files. 

 

 

# Start of code  

 

# CLNR_filename = "zati.txt" 

CLNR_filenameA = "TrialMonitoringDataT5.csv" 

 

OutputFilestem = "chunk_" 

 

MaximumNumberOfFiles = 200  

 

MaximumNumberOfCustomersPerFile = 1 

 

# ####################################################### 

 

     

CLNR_file = open(CLNR_filenameA,"r") 

try: 

    print("Opened file ", CLNR_filenameA) 

    # Get rid of header line 
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    CLNR_file.readline()  

 

    OLD_CustomerID = "Empty" 

    NumberOfCustomers = 0 

    OutputFileNumber = 1 

    OutputFilename = OutputFilestem + str(OutputFileNumber) + ".csv" 

    Output_file = open(OutputFilename,"w") 

    try: 

        ContinueReading = True 

    except: 

        ContinueReading = False 

        print("FAILED to open ", OutputFilename) 

         

    while ContinueReading == True: 

        CLNR_row = CLNR_file.readline() 

        try: 

            CustomerID = CLNR_row.split(",", 4) 

            # 

            ReadingType = " " 

            if CustomerID[1] == "solar power": 

                ReadingType = "s" 

            if CustomerID[1] == "whole home power import": 

                ReadingType = "w" 
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            # Date is followed by time with only a space as separator  

            old_date_time = CustomerID[3].split(" ", 2) 

            new_date_time = old_date_time[0] + "," + old_date_time[1] 

            if OLD_CustomerID == CustomerID[0]: 

                new_CLNR_row = CustomerID[0] + "," + ReadingType + "," + 

new_date_time + "," + CustomerID[4] 

                Output_file.write(new_CLNR_row) 

                # Output_file.write(CLNR_row) 

            else: 

                NumberOfCustomers = NumberOfCustomers + 1 

                if NumberOfCustomers > MaximumNumberOfCustomersPerFile: 

                    NumberOfCustomers = 1 

                    OutputFileNumber = OutputFileNumber + 1 

                    if OutputFileNumber > MaximumNumberOfFiles: 

                        ContinueReading = False 

                    else: 

                        Output_file.close() 

                        OutputFilename = OutputFilestem + str(OutputFileNumber) + ".csv" 

                        Output_file = open(OutputFilename,"w") 

                        new_CLNR_row = CustomerID[0] + "," + ReadingType + "," + 

new_date_time + "," + CustomerID[4] 

                        Output_file.write(new_CLNR_row) 

                else: 



228 

 

                    new_CLNR_row = CustomerID[0] + "," + ReadingType + "," + 

new_date_time + "," + CustomerID[4] 

                    Output_file.write(new_CLNR_row) 

            OLD_CustomerID = CustomerID[0] 

        except: 

            ContinueReading = False 

             

    Output_file.close()     

    CLNR_file.close() 

except: 

    print("FAILED to open ", CLNR_filename) 

 

# Tidy up  
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Appendix B: Characteristics of Northern PowerGrid Low Voltage 

Cables 

 

 

Figure B-1: Characteristics of 185 mm
2
 LV cable (cables B and C) 
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Figure B-2: Characteristics of 300 mm2 LV cable (cable A) 
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Appendix C: Minimum Voltage Level Estimates on the Yellow and 

Blue Phases at Various Time Resolution Intervals-Balanced Network 

 

 

Figure C-1: Minimum voltage levels on the yellow phase estimated using various smart meter time 

resolution intervals (Loughborough data set) 
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Figure C-2: Minimum voltage levels on the yellow phase estimated using various smart meter time 

resolution intervals (CLNR data set no.8) 

 

 

 

 

Figure C-3: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals (Loughborough data set) 
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Figure C-4: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals (CLNR data set no.8) 
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Appendix D: Minimum Voltage Level Estimates on the Yellow and 

Blue Phases at Various Time Resolution Intervals-Unbalanced 

Network 

 

 

Figure D-1: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals in an unbalanced network (Loughborough data set) 

 

 

Figure D-2: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals in an unbalanced network (CLNR data set no.8) 
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Figure D-3: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals in an unbalanced network (Loughborough data set) 

 

 

 

 

Figure D-4: Minimum voltage levels on the blue phase estimated using various smart meter time 

resolution intervals in an unbalanced network (CLNR data set no.8) 
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Appendix E: Cable Capacity Percentage Estimation on Various Phases 

of Cables B and C at Different Time Resolutions 

 

Figure E-1: Red phase cable loading percentages on cable B (16/01/2008) 
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Figure E-2: Yellow phase cable loading percentages on cable B (16/01/2008) 
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Figure E-3: Blue phase cable loading percentages on cable B (16/01/2008) 
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Figure E-4: Red phase cable loading percentages on cable C (16/01/2008) 
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Figure E-5: Yellow phase cable loading percentages on cable C (16/01/2008) 
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Figure E-6: Blue phase cable loading percentages on cable C (16/01/2008) 
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Appendix F: Density of Load Percentage Estimates on Cables B and C 

at Various Time Resolutions 

 

Figure F-1: Density plots of loading percentages frequency at each time resolution interval on cable 

B (Red phase) 
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Figure F-2: Density plots of loading percentages frequency at each time resolution interval on cable 

B (Yellow phase) 
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Figure F-3: Density plots of loading percentages frequency at each time resolution interval on cable 

B (Blue phase) 
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Figure F-4: Density plots of loading percentages frequency at each time resolution interval on cable 

C (Red phase) 
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Figure F-5: Density plots of loading percentages frequency at each time resolution interval on cable 

C (Yellow phase) 
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Figure F-6: Density plots of loading percentages frequency at each time resolution interval on cable 

C (Blue phase) 
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Appendix G: Minimum Voltage Level Estimates on the Yellow and 

Blue Phases at Various Aggregation Levels-Balanced Network 

 

 

Figure G-1: Minimum voltage levels at various aggregation levels on the yellow phase estimated at 

various aggregation levels (Loughborough data set) 

 

 

 

 

Figure G-2: Minimum voltage levels at various aggregation levels on the yellow phase estimated at 

various aggregation levels (CLNR data set no.8) 
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Figure G-3: Minimum voltage levels at various aggregation levels on the blue phase estimated at 

various aggregation levels (Loughborough data set) 

 

 

 

 

Figure G-4: Minimum voltage levels at various aggregation levels on the blue phase estimated at various 

aggregation levels (CLNR data set no.8) 
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Alternative Model 

 

 

Figure G-5: Minimum voltage levels at various aggregation levels on the yellow phase estimated at 

various aggregation levels-alternative topology (Loughborough data set) 

 

 

 

 

Figure G-6: Minimum voltage levels at various aggregation levels on the yellow phase estimated at 

various aggregation levels-alternative topology (CLNR data set no.8) 
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Figure G-7: Minimum voltage levels at various aggregation levels on the blue phase estimated at 

various aggregation levels-alternative topology (Loughborough data set) 

 

 

 

 

Figure G-8: Minimum voltage levels at various aggregation levels on the blue phase estimated at 

various aggregation levels-alternative topology (CLNR data set no.8) 
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Appendix H: Minimum Voltage Level Estimates on the Yellow and 

Blue Phases at Various Aggregation Levels-Unbalanced Network 

 

 

Figure H-1: Estimated minimum voltage levels on the yellow phase at various aggregation levels-

unbalanced network (Loughborough data set) 

 

 

 

 

Figure H-2: Estimated minimum voltage levels on the yellow phase at various aggregation levels-

unbalanced network (CLNR data set no.8) 
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Figure H-3: Estimated minimum voltage levels on the blue phase at various aggregation levels-

unbalanced network (Loughborough data set) 

 

 

 

 

Figure H-4: Estimated minimum voltage levels on the blue phase at various aggregation levels-

unbalanced network (CLNR data set no.8) 
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Alternative Modelling  

 

 

Figure H-5: Estimated minimum voltage levels on the yellow phase at various aggregation levels-

unbalanced network-alternative topology (Loughborough data set) 

 

 

 

 

Figure H-6: Estimated minimum voltage levels on the yellow phase at various aggregation levels-

unbalanced network-alternative topology (CLNR data set no.8) 
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Figure H-7: Estimated minimum voltage levels on the blue phase at various aggregation levels-

unbalanced network-alternative topology (Loughborough data set) 

 

 

 

 

Figure H-8: Estimated minimum voltage levels on the blue phase at various aggregation levels-

unbalanced network-alternative topology (CLNR data set no.8) 
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