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Abstract

Low back pain is a major cause of disability and requires the development
of new devices to treat pathologies and improve prognosis following surgery.
The development of new devices requires the evaluation of new design, pro-
totyping and mechanical testing. Finite Element (FE) Methods represent an
appealing solution to provide mechanical evaluations of new devices speed-
ing up the design process, as well as evaluating several anatomical scenar-
ios. Particularly, new implants can be developed following subject-specific
geometries and/or using material properties optimized for the particular
subject. The overall aim of this thesis was to develop an accurate FE of the
lumbar spine and the evaluation of the variability introduced by morpholog-
ical and material parameters and evaluate the mechanics of two devices: the
BDyn, a posterior stabilization device developed by S14 Implants (Pessac,
France) and the GsDyn a device for the paediatric scoliosis developed as
part of the Spinal Implant Design (SID) project.

Morphological studies were conducted to evaluate the average dimen-
sions of the lumbar spine and correlation analyses available in literature
were compared with subject-specific data-sets. A parametric and scalable
geometrical model of the lumbar spine has been developed and the dimen-
sions can be scaled according to either correlation studies or subject-specific
measurements from data-scan. The generation of the geometrical model
were implemented in a toolbox, the LMG (Lumbar Model Generator) de-
veloped in Matlab. It allows the automatic preparation of the FE model,
performing the mesh generation and evaluation, assigning material proper-
ties, boundary conditions and analysing the results. The model generation
and pre-processing are performed in less than five minutes, obtaining then
a tool with potential clinical and industrial applications. A L1-L5 model
has been generated as proof-of-concept and a functional unit (L1-L2) was
analysed and the results were in agreement with experimental and compu-
tational results available in literature. One of the advantage of the LMG
is the generation and pre-processing of population of models, allowing the
evaluation of anatomical variations and material properties of the bodies in-
volved. Thus, preliminary sensitivity analyses on the L1-L2 functional unit
were performed, varying morphological parameters and material properties,
to identify the most influential parameters in the biomechanics of the spine.
A non-linear, dynamic FE model of the BDyn was developed and validated
with experimental results. The BDyn was modelled in combination with the
GsDyn to evaluate the effects of elastomeric components on the device. The
results showed a fourfold reduction of the peak stress on the locking system
of the GsDyn which could improve the durability of the device.
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Chapter 1

Introduction

Back pain is one of the main musculoskeletal disorders with major disability
effects on the population worldwide [1]. In England, Low Back Pain (LBP)
is one of the first causes of activity limitation, sick leave, and hospitalisation.
The related economic effects burden governments, individuals and the soci-
ety more widely [2] and in the USA, from 1998 to 2008, the healthcare costs
increased from 4.3 to 33.9 billion [3]. In between the pathological diseases
causing the LBP, the IVD degeneration causes disc bulging, and herniation
with consequent compression on the spinal nerve. At the early stage of
the back pain, non-surgical treatments represent a solution for early stage
pathological cases. In these cases, it is still possible to reduce the pain and
restore a normal quality of life, re-establishing good postural habits and im-
proving the muscular tone through muscle relaxation and anti-inflammatory
medications, steroid injections, physical therapy and spinal manipulations
[4]. Surgical intervention is the last resort, with the most common inter-
vention being spinal fusion [5]. In the USA, the number of spinal fusion
increased from 174,223 to 413,171 between 1998 and 2008 [3]. Spinal fusion
is associated with prolonged recuperation time, loss of mobility at the fused
level and has been shown to increase stress at the adjacent unfused levels
[6, 7] potentially resulting in degeneration and pseudarthrosis [8]. Indeed,
the development of alternatives to the fusion system are needed.

The development of new devices requires the evaluation of new design,
prototyping and mechanical testing. Mechanical test can be used to evalu-
ate the mechanical behaviour of a device [9, 10], however a limited number
of samples and experimental scenarios can be evaluated and it is not easily
possible to predict the stress distribution on the biological structures. In
vitro studies have been conducted with cadaver specimens, but the storage
conditions and the missing active soft-tissues (i.e. muscles) affect the re-
sults.

Finite Element (FE) Models represent an appealing alternative to experi-
mental test. Particularly, in the development of spinal implants, they could
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help in the development of new design, following subject-specific geometries
and/or using material properties optimized for the particular subject [11].
The geometry of the spine presents a high level of complexity [12], charac-
terized by different features at each level of the trunk. The reconstruction of
accurate geometrical model of the spine is a key factor in the evaluation of
accurate FE models [13, 14, 15]. At the same time, in order to obtain results
valid for a wide population, a high number of subject-specific models, able
to cover the anatomical variability inter- and intra-subjects, have to be anal-
ysed. However, reconstructing and pre-processing subject-specific models is
a time consuming process, which introduce a massive gap between the idea
of analyse multiple models and the aim of evaluate several designs iteratively
in a reduced amount of time than the classic design process (i.e.: concept,
design, prototyping, testing, which is subjected to several re-iterations to
match the design and regulation criteria), and the possible evaluation of
these results for clinical cases. The Food and Drug Administration (FDA)
and the Medical Device Innovation Consortium (MDIC) recently underlined
the necessity of speeding up the regulatory system providing a methodology
to follow in the development of new devices through the use of computa-
tional models and simulations [16, 17]. In order to take advantage of these
methodologies, accurate models have to be developed.

A solution to these limitations has been proposed in this thesis with the
development of a parametric and scalable model, where a baseline model is
scaled according to geometric correlations with the height and age of a pa-
tient with a given ethnic group or subject-specific dimensions obtained from
data-scans. Moreover, the entire pre-processing is completely automatised,
allowing the evaluation of several models in a reduced amount of time. The
power of such a method can be transferred in clinical application, where
the subject-specific variability (i.e. geometry, material properties) would be
included in the models (importing the subject-specific dimensions). Poten-
tially, in the future this method could lead clinicians to choose the most
appropriate treatment according with the FE analyses.

The development of new devices and the improvements of previous de-
vices already on the market was the focus the Spinal Implant Design (SID)
group of the University of Birmingham. These studies were possible also to
the collaboration with the S14 Implants (Pessac, France). In this scenario,
this PhD thesis was conducted with the goal of supporting and improving
the design process through the use of FE models.

The aim of this thesis was to develop an accurate FE of the lumbar spine
and the evaluation of the variability introduced by morphological and ma-
terial parameters and evaluate the mechanics of two devices: the BDyn and
GsDyn. The BDyn is a posterior stabilization device developed by 514
Implants (Pessac, France) and already on the market. The GsDyn is a
device developed as part of the Spinal Implant Design (SID) project [18] to
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overcome the actual limitations in the treatment of paediatric scoliosis.
These objectives were pursued as follows:

e morphometrical studies were evaluated for developing of parametric

models and evaluating anatomical variations (chapter 3);

e a parametric and scalable geometrical model of the lumbar spine was
developed and embedded in a Matlab toolbox (Lumbar Model Gener-

ation (LMG), chapter 4);

e the pre- and post-processing of the lumbar model are automatically
performed in the LMG toolbox (chapter 5). The model of the entire
lumbar spine was developed and the validation of a FE model of a

spinal functional unit (L1-L2) was performed;

e a sensitivity analyses on the morphological parameters and material
properties was evaluated to identify the most influential parameters

on the biomechanics of the spine (chapter 6);

e a non-linear FE model of the BDyn was developed and validated with
experimental Dynamic Mechanical Analyses (DMA). The BDyn was
modelled in combination with the GsDyn and the mechanics of the

combined device were assessed (chapter 7).



Chapter 2

Background

The necessity of developing new implants, requires more innovative methods
to study the design and optimize the structure and material properties. In
this chapter, the theoretical background to understand the spine anatomy,
its biomechanics and the devices currently on the market is introduced.
The Finite Element (FE) Method has been identified as a possible solution
to this research request and an overview of the models developed in the
last decades is provided, along with a description of the material properties
previously used. The validation of the developed FE models is a key point
and experimental test have been described in order to compare experimental
and computational results.

2.1 The lumbar spine: anatomy

The spine has a primary function to support the human body during its
daily activity [19] and it can be seen as an open chain (Figure 2.1) where
vertebral bodies alternate with intervertebral discs (IVD), kept together by
ligaments, cartilaginous tissues and muscles. These structures are involved
in the movements of the spine, while ligaments and muscles are responsible
for limiting the movements and avoid damage.

The vertebral column has thirty-three separate vertebrae, which are cat-
egorized in five main areas: cervical, thoracic, lumbar, sacrum and coccyx,
and in each of them the structural units have peculiar geometrical features
(Figure 2.2). Regardless of the geometrical differences at each level, two
areas can be identified: the vertebral body and the posterior elements [12].
The vertebral body has a kidney shaped section in the transverse plane.
The external layer is composed of cortical bone and the internal core of
cancellous bone, a heterogeneous and anisotropic porous structure of in-
terconnected trabeculae [20]. The posterior elements can be described as
follows and illustrated in Figure 2.3:

e the pedicles are rod-like structures which connect the transverse pro-

4
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Cervical

Thoracic

Lumbar

Sacral
Coccyx

Figure 2.1: Spine anatomy. The main areas (Cervical, Thoracic, Lumbar
Sacral and Coccyz) are identified.

cesses and the vertebral body;
e the transverse processes are bony masses extending laterally;
e the lamina which extends from the pedicles posteriorly.

e the inferior and superior articular processes which extend the lamina
superiorly and inferiorly. These structures create with the adjacent
vertebrae, the zygapophysial joint, a synovial joint which allows the
articulation between the vertebrae;

The vertebral foramen is the inner space in between the posterior elements
and the vertebral body and the spinal cord pass by inside this space for
almost the entire spine length before to split in the cauda equina at the
lumbar level.

Cervical

Thoracic

Lumbar g
Sacral
Coccyx v
Figure 2.2: Vertebral bodies at each spine level: cervical, thoracic, lumbar,
sacral and overview of the vertebrae geometry at each level.
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Superior Articular Facet Vertebral body Pedicle

Spinous process

Inferior Articular Facet Spinal canal

Transverse process

Figure 2.3: Lumbar vertebral body.

2.1.1 Intervertebral Disc

The vertebrae are spaced along the vertebral coloum by intervertebral joints,
named Intervertebral Discs (IVD). The body weight, muscle contraction and
external loads contribute to load the IVDs [21], which are responsible for
the movement between the vertebrae (Figure 2.4). The internal region, the
nucleus pulposus (NP), acts like a fluid cushion, which it is confined by the
Annulus Fibrosus (AF) and the endplates. The Annulus Fibrosus (AF), has
an external structure where layers of collagen fibers, arranged in a criss-
crossed pattern, are embedded in a ground substance, a gel-like substance
composed by proteoglycans and glycosaminoglycans. The collagen fibers
(both type I and type II [12, 22]) are aligned with an angle which varies
at each successive layer. Type I, mainly found in tissues which experience
more tensile and compressive loading, is more concentrated in the external
layer. The collagen content is estimated to be in between 50% to 70% of the
dry weight and it varies radially from the outer layer to the inner layer [23,
12, 24, 25].
The internal region of the IVD, the NP, is a gel-like structure composed, in
healthy conditions, by 70-90% of water [12], and the dry weight is composed
by 30-50% proteoglycans and around 20% of collagen.

The cartilaginous endplates (CEP) are thin layers of cartilage which con-
nect the superior and inferior surfaces of the IVD to the adjacent vertebrae.
They allow the passage of nutrients and fluid from the vertebrae to the IVD.

2.1.2 Ligaments

The ligaments connect the vertebral bones together and support the spinal
motion preventing over-flexion and over-extension. The spinal longitudinal
ligaments responsible for these functions are illustrated in Figure 2.5 and
described as follows:

e the Anterior Longitudinal Ligaments (ALL) and the Posterior Longi-
tudinal Ligaments (PLL), which cover the vertebrae and IVDs on the
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Nucleus Pulposus Anulus Fibrosus

Fiber
Lamellae

Fibers

Figure 2.4: Lumbar spine functional unit, composed by two vertebrae and
an IVD (a) and the IVD (b) where the AF and NP are shown.

entire length of the spine;

e Inter-transverse Ligaments (ITL) which connect the transverse pro-
cesses of adjacent vertebrae;

e Inter-Spinous Ligaments (ISL) connecting the spinous processes of the
vertebrae;

e Supra-Spinous Ligaments (SSL) which connect the posterior side of
the spinous processes.

e Ligamentum Flavum (LF) which connect the vertebrae in the posterior
side of the spinal canal.

2.1.3 Average morphometric dimensions

The identification of mean dimensions of the vertebrae structures are neces-
sary to describe the geometry of the spine. Morphological dimensions and
their intra- (at different level of the spine) and inter-variability (between sub-
jects) is fundamental in the evaluation of statistical studies for workspace
dimensions during surgeries, in the development of new surgery tools and
implants [26, 27, 28, 29, 30].

The studies of Panjabi et al. [31, 32, 33, 34] have built the bases for the
study of the morphology of the spine and they have been a reference point
for research, evaluating the morphometry and its variation [35, 36|, as well
as the biomechanics of the spine [37, 38]. In particular, the morphomet-
ric studies of Panjabi [31] used 12 fresh autopsy, which were prepared and
the vertebrae (at all the levels [31, 32, 33]) were separated from all the
soft tissues. The anatomical dimensions were measured with a special mor-
phometer, constituted by one linear variable (Linear Variable Displacement
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Figure 2.5: Sagittal section of a lumbar spine FU, showing the ligaments
acting during the movements.

Trasducer (LVDT)) and two rotational variable (Rotational Variable Dis-
placement Trasducer (RVDT)) displacement transducers which provided a
spherical coordinate system to evaluate the dimensions. In these studies,
male and female dimensions were collected together, without focusing on
the gender differences.

Several studies [39, 40, 41, 42], evaluated the complexity of single anatomi-
cal part of the vertebrae, in particular the pedicles, while only a few studies
focused on a complete dataset of measurements. Alam et al. [43] and Wolf et
al. [26], collected more exhaustive measurements, evaluating a wider group
of subjects: respectively 49 Pakistani and 55 Israeli patients and the dimen-
sions were measured from CT scans.

Alam et al. [43] have based their study on CT scans of 49 Pakistani patients,
divided in male and female measurements and evaluated the differences with
previous studies based on their ethnicity. The measurements are reported
in chapter 3, where the two datasets of values, male and female, are listed.
Wolf et al. [26] studied the morphometry of the lumbar spine to evaluate the
dimensions interested in the surgical workspace of the lumbar spine, aiming
to use statistical analysis on those dimensions for implants design and mod-
elling. The dimensions of 55 CT data scans (25 female and 30 male) have
been collected and reported in chapter 3, although not divided by gender.
The methods to collect the dimensions are different, lacking on details
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and not exhaustive about all the dimensions characterizing the vertebral
anatomy. For example, Panjabi et al. [31] measured the dimensions on
fresh autopsy, while the other mentioned studies evaluated the dimensions
from data scans. The first method could be affected by measurement errors,
while the precision of the second one relies on the resolution of the scans
acquired. The dimensions taken in consideration are not the same in all the
studies, often lacking in anatomical details and the reference points are not
defined, then not allowing the reproduction of the same measurements. The
dimensions measured in the mentioned studies are shown in Figure 2.6, and
the acronyms explained in Table 3.1. Moreover, as previously introduced,
the measurements are not always divided between male and female subjects
and the ethnicity is not always mentioned.

VBHp

Panjabi et al

Alam et al
VBHp

Wolf et al

Figure 2.6: Comparison of all the dimensions evaluated in each study with
the correspondent symbols. The suffixes s,i,l,r used in the tables of this
chapter refer to superior, inferior, left and right dimensions and are not
shown in this figure.
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Table 2.1: Dimensions identified in the lumbar vertebrae.

Body Structure Acronym Description

EPW End Plate Width
Vertebral Body EPD End Plate Depth

VBHp Vertebral Body Height posterior
Spinal Canal SCW Spinal Canal Width

SCD Spinal Canal Depth

PDH Pedicle Height
Pedicle PDW Pedicle Width

PDIt Pedicle Inclination-transverse plane

PDIs Pedicle Inclination-sagittal plane
Spinous process length SPL Spinous Process Length
Transverse Process TPW Transverse Process Width

2.1.4 Correlation analyses

Correlation analyses of the spine dimensions have been investigated by
Kunkel et al. [44] and D.P.Breglia [36]. They independently worked on the
development of a parametric model of the spine, based on their correlation
studies starting from Panjabi’s datasets [31, 32, 33, 34].

The correlation analysis implemented by D.P.Breglia [36], is based on
Panjabi’s dataset. The dimensions of twelve spines, of representative healthy
subjects, were used. In this study, the dimensions of the vertebrae were cor-
related with the posterior height of the vertebrae, using a linear correlation
analysis developed by G.L.Tibbetts [45] and described in chapter 4. The
results of this analysis are summarized in chapter 3.

Kunkel et al. [44] based their study on the thoracic and lumbar data
obtained from Panjabi [31]. Linear and non-linear regression were evaluated
(linear, polynomial, exponential and logarithmic) between the morphological
dimensions of the vertebrae against the posterior body height (VBHp). The
third-order polynomial function was chosen according to an Anova test for
the correlation of one parameter (EPWs) and the coefficients are reported
in chapter 3. The correlation analyses are further described in chapter 4.
However, 3"¢ order polynomials are characterised by changes of their cur-
vature, and the validity of the estimations depends on the range of VBHp
considered.

2.1.5 Structure of the Intervertebral Disc in degenerated
conditions

The degeneration of the IVD is a complex mechanism, which is a result of
changes affecting cells, biological structures and mechanical properties of the
spinal bodies [46]. The origin of the degeneration, whether it starts from
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Figure 2.7: The graph describes the changes in transport and disc height.
In the non-degenerated condition (A), there is an optimal range of trans-
port; B. The degeneration of the disc, with an increasing amount of long
chains molecules in the IVD, affects the transport; C. in advanced degener-
ated conditions, the disc height is substantially reduced while the transport
is enhanced. Graph adapted from DeLucca et al. [49].

ageing processes or degeneration of the biological structures, it is not easy to
identify. Degeneration evidences can be found in the lamellae organization,
a decrease in disc height, and damages of the NP structure characterized by
a decreased water content and more fibrosus structure [47].
The degeneration of the CEP has been correlated with a reduced content
of water, proteoglycan and collagen, and calcification [48], which result in
a reduced permeability for the nutrients towards the disc [49, 50, 21]. As
stated by [49], disc height transport of nutrients and degeneration are cor-
related (see Figure 2.7) and all these factors affect the spine biomechanics.
A study, conducted by Adams et al. [51], showed the different stages of disc
degenerations, which focused on the effects on the AF and NP (Figure 2.8).
The discogram technique has been adopted to reveal a radio opaque liquid
injected in the NP and how it flows in the disc. Five types of structures of the
IVD have been identified and related to different degeneration stages. In the
degenerated stages, the radio opaque fluid was found in the AF structure,
and in the most degenerated case (corresponding to the NP with herniation),
the AF has fissures which allow the fluid to escape from the disc. The NP is
more fibrotic, with a reduced content of proteoglycans which are responsible
of the osmotic gradient. It results in a decreased water content and colla-
gen fibers trapped inside the NP, which results in a less gel-like structure
[52]. The AF is characterised by a change in the structure of the lamel-
lae, which have a less regular structure, with the collagen and elastin fibers
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I1

II1

IV

Figure 2.8: Representative illustration of the IVD degeneration stages
[51](on the left) and photographs of IVD sections representing real condi-
tions (on the right): (A) Healthy young IVD; (B) disc from a middle-aged
adult where structural variations are shown; (C,D) degenerated disc [51].
Pictures adapted from Adams et al. [51] [53]

less organized (as shown in Figure 2.8)[52]. Then, a degenerated disc has
a disrupted structure, where lamellae do not have their initial organization
and often present defects, the disc height is reduced and the morphometry
presents important changes due to radial bulging. These modifications of
the structure lead to a reduced length of the spine, more stiff and less mobile
[54]. Moreover, the load distribution has a different pattern in degenerated
conditions, where the load in the posterior part of the vertebrae and the
neural arch increases (around 30%) compared with the healthy condition
(around 20%) [55].

2.2 Kinematics of the lumbar spine

The spine supports the human body, provides a safe transport channel for
the nervous system, as well as providing flexibility during the physiological
movements. During daily activities the spine is subjected by a combination
of loads and moments and their magnitude and directions vary in between
subjects and are not fully identified [56, 57, 58]. However, the loads and
movements applied to the spine can be described as combinations of com-
pression and tension loads and bending and torsional moments Figure 2.9.

In the body, all these loadings are applied simultaneously to the spine
and as for all the human system, the structure determines the function:
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Figure 2.9: Simplified view of the loading cases acting on the spine, repre-
sented as example on a lumbar FU: a. compression, b. flexion/extension, c.
lateral bending, d. azial rotation.

the inclination of the AF collagen fibers helps in supporting tension loads
during bending activities and allowing AF bulging due to an increased NP
pressure; longitudinal ligaments, as well supporting only tension loads, allow
the spinal mobility yet limiting the range of motion to prevent injuries [59].
Extension and flexion movements cause an increased pressure to the NP and
the IVD is subjected, in different regions, to both compression and tension
loads. For example, during the flexion of the trunk, the anterior side of the
IVD experiences compression load, while the posterior side of the vertebrae
and the PLL, ISL, ITL ligaments are in tension [60].

During compression loading, the intradiscal pressure increases in the NP,
while the hoop stress is supported by the inner AF layers, where the inclina-
tion of the collagen fibers are an answer to the direction of principal strains
[25]. Furthermore, the inner and outer layer of the AF bulge outwards [25,
61, 62].

2.3 IVD medical devices

Several solutions are proposed following clinical diagnosis of pathological
conditions. LBP at the early-stage is usually treated with conservative
treatments. Non-surgical treatments include rest, physiotherapy, activity
modification and pharmacological treatments. However, severe cases (10-
15% [63]) require surgical interventions, that can affect the bone structure
or the IVD. Structural deformity of the vertebral structure, induced by
trauma or pathological conditions (e.g.: osteoporosis), can lead to excessive
deformations and fractures of the vertebrae [64]. In this case, the treatment
usually adopted is the vertebral body replacement.

If pathological conditions, due to IVD degeneration [5], are present fusion
system is the actual gold standard treatment [65, 66]. It represents the
solution commonly adopted in the past decades, which restore stability at
the functional level, fixing two or more vertebrae together. Several studies
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evaluated the follow-ups [67, 68] and the clinical data agreed on the issues
induced by this type of device: reduced range of motion and degeneration
at the adjacent levels [69, 70].

Nucleus pulposus replacement device represented a successful alternative to
fusion in early stage degenerated discs [71, 72] where only the inner portion
of the IVD is replaced. Intervertebral disc replacement devices interest the
whole IVD and they are designed to substitute the degenerated disc and
restore the natural biomechanics. The recovery from this surgery is faster
than in the case of fusion systems [73, 74]. Nucleus pulposus and interverte-
bral disc replacement represent a valid alternative to fusion system, however,
they require an invasive surgical procedure and an alteration of the natural
biomechanics due the interaction between natural tissues and the device.
Dynamic stabilization devices represent an alternative to fusion systems in
young patients who are in the early stage of disc degeneration. They can be
divided as follows:

e Pedicle screws and artificial ligaments: Dynesys device (Zimmer Biomet,
Warsaw, Indiana, United States), and graft ligament;

e Interspinous devices: Wallis system (Zimmer Biomet, Warsaw, Indi-
ana, United States), X Stop (Medtronic, Inc., Minneapolis, Minnesota,
United States), indicated in case of spinal stenosis and neurogenic
claudication [75], have the function of reducing the hypermobility of
pathological spine segment [76];

e Posterior stabilization devices: BDyn (S14 Implants, Pessac, France),
Isobar TTL (Scient’x USA, Maitland, Florida, United States).

The aim of these devices is to better distribute and share the load between
the posterior structure and the IVD. Moreover, the range of motion is pre-
served. The surgical procedure can be performed with a minimally invasive
surgery, then limiting the damage on adjacent tissues and facilitating the
recovery [77].

2.4 Computational modelling

2.4.1 Introduction to the Finite Element Method

The biomechanics of the human body has been the focus of several stud-
ies [78, 79, 80, 81, 82], investigating the mechanics of the movements, load
and stresses applied and affecting the organs at all the level. The musculo-
skeletal apparatus and its functionalities, considering the macro-scale per-
spective, can be described through a mechanistic approach [83]. The move-
ments and the loads acting to the body, can be described through free body
diagrams, however, giving a simplified view of the whole system.
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The Finite Element Method, widely used in mechanical and aerospacial ap-
plications, offer the advantage to describe the mechanics of a system where
an accurate description of the geometry and the material properties is given.
The discretization process allows the subdivision of complex systems in a
finite number of domains or better defined elements. These elements, are
interconnected at vertices, which are the nodes used to define the contin-
uum and the entities used to calculate the unknown variables of the entire
system (i.e. nodal displacements). Given the element shown in Figure 2.10,
the points n; are the nodes and the equation:

KU=F (2.1)

describes the relationship between displacement (U) and the force at the
node (F) where K define the stiffness characteristic of the material. In
particular, this equation is valid in case of static equilibrium, while in a
more complete form it can be described as

MU + DU + KU = F (2.2)

where where M is the mass matrix, D is the damping coefficients matrix
and U and U the velocity and acceleration respectively. Developing more
the static case, when a force is applied to a body, the stress applied on the
surfaces of it can be expressed as:

5ty

0= 5A (23)
ot
= i 7 2

where ¢ and 7 are the normal and shear stresses in result of normal (f)
and tangential forces (t) and A the surface area. Moreover, € is the strain
evaluated as the displacement (u) of a node in respect of its initial position

(2): 5
. du
‘= 61:3210 ox (25)

In 3D space (Figure 2.10), stress and strain informations can be summarized
in the matricial forms:

Oxx Oxzy Ozz
Ozx Ozy Ozz
€xx €Exy €xz

€zx €zy €zz
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v

Figure 2.10: The stresses in the Cartesian system, where substiituing 1,2,3
to x,y and z it refers to the matricial formulation above.

and the stress elements are illustrated in Figure 2.10 and the relation be-
tween stress and strain is reported in Equation 2.8.

Considering discretized elements in the static equilibrium case, the for-
mulation can be further developed as:

o= Ke (2.8)

The stiffness matrix is a matrix (Equation 2.10) the elements of which are
dependent on the material properties of the structures involved:

Ky Ko Kiz Ky Kis Kig
Ko Ki Koz Koy Ko Kag
K31 K32 K33 K34 K3zs Kse
Ky Ky Kyz Ka Kys Kyge
K51 Ks» K3 Ksy Kss Kse
Ke¢1 Koz K¢z Koo Koz Koo

(2.9)

defining symmetry planes the previous matrix can be simplified. For an
elastic and isotropic material, the mechanical behaviour is the same in the
three directions (x,y,z) and only nine parameters are needed to describe
the stress-strain relationship and all of them are function of the Young’s
modulus (E) and Poisson’s ratio (p):

r1l—v) v v 0 0 0 7
v 1-v) v 0 0 0
v v 1-v) 0 0 0
_ E 0 0 0 (1-2) 0 0
= 0= 5 (1) (2.10)
0 0 0 0 5 0
0 0 0 0 0 (1=2)
L 2 4
where the shear modulus of elasticity is defined as:
E
G=—— 2.11
2(1+v) (2.11)

Then, the complex system is described through assembling the equations
at each node and the condition of equilibrium and displacement continuity
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between the nodes have to be satisfied. In particular, the equilibrium con-
dition is based on the virtual work principle [84], where defining o a stress
system, with body forces and surface tractions (fj and t), and € and u re-
spectively the strains and displacements, it can be defined as:

/5eadV—/5utdS—/ dufpdV =0 (2.12)
1% s v

This formulation states the equilibrium of the internal and external work,
made by the internal and external forces, on each element of the FE model.
The solution is obtained iteratively, considering small time increments. Al-
gorithms have been developed for the linearisation and evaluation of the
unknown variables (i.e.: Newton’s method, quasi-Newton method), and di-
rectly implemented in FE software. Extensive description of the FE method
and the solution algorithms are reported elsewhere [84].

2.4.2 Finite Element models of the lumbar spine

The Finite Element method has been widely used to describe the mechan-
ical behaviour of the anatomical structure in the past decades. As stated
by Maas et al. [85], FE modelling in biomechanics is a widely recognised
methodology to either assess and interpret experimental results and as a
methodology to adventure in investigation otherwise not possible with the
experimental techniques. The first application in the investigation of loads
and mechanics of the body has been recorded in Belytschko et al. [86], and
since then more studies have been developed and the methodologies have
been improved.

The use of Finite Element Models in the study of spinal biomechanics have
several advantages. The loading conditions applied to the spinal unit are
controlled by the user, defining the type of load and the magnitude applied
and no-side effects, related to the loading machine and the setup would
affect the results. Also the internal state of stress of the IVD can be accu-
rately evaluated and healthy and degenerated conditions can be simulated,
assigning different material properties and/or varying the morphometry of
the involved structures. However, several assumptions are applied in the
simulations, regarding the loading conditions and the material properties
assigned to the bodies. Then, further investigations are required to validate
FE models.

Finite Element analyses have been carried out following the setups of ex-
perimental studies on single [87, 88, 89] and multilevel FSU [90, 91, 92, 93].
Previous studies analysed the range of motion, Intervertebral Disc Pres-
sure (IDP), Facet Joint Forces (FJF) when compression loads, torque and
bending moments were applied singularly or combined [94, 95] to simulate
the physiological movements. Healthy and degenerated IVD material prop-
erties were evaluated to understand how they affect the biomechanics of
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the lumbar spine [96, 97, 98]. In general, the material properties of all the
bodies involved in the lumbar spine can widely vary (according to health sta-
tus, age, gender, and inter-specimen variability) and several combinations
of these formulations are possible. Subsequently, probabilistic studies have
been carried out, evaluating realistic distribution of the input values and
the combination of them has been evaluated through probabilistic methods
(i.e. Monte Carlo simulations) [99, 87, 100, 101, 102].

The validity of the FE models presented in the literature is assessed through
comparison with the results of experimental tests, providing a proof for the
acceptance of this tool. Then, FE models of the spine provide a tool for
the evaluation of: (i) biomechanical functionalities; (ii) effects of using im-
plants; (iii) developing new implants; (iv) customize treatments according
to the subject-specific geometry [103, 104, 105, 106].

The FE models currently available are subjbect-specific or they represent
simplified geometry of the spine, requiring long time to be reconstructed
and represent an approximation of the real physiological system. In order
to obtain generalized results, parametric and scalable models, which can be
quickly reconstructed to represent population of models, are required [17].
In this section, an outline of the fundamental modules to build a FE model
is described.

2.4.3 Geometry

Currently, the FE models available are either subject-specific, where the
geometry matches a particular specimen, or averaged geometrical models,
using approximated anatomy based on average dimensions.
Subject-specific models are reconstructed starting from datascans obained
from Computer-Tomographic scans (CT) or Magnetic Resonance Images
(MRI), and those are characterized by accurate anatomy, where all the de-
tails are well reproduced [107]. However, a level of error in the geometry
reconstruction is associated with this method. The quality of the scans de-
pends on the resolution of the instrument used (varying between 0.6 mm to
2.5 mm) and on the segmentation process. The last one is affected by errors
due to the operator expertise (RMS errors ranging between 0.39 to 1.22 mm
for an expert technician) and/or the technique used (mean RMS errors of
around 1 mm) [108, 109].

Generic models of the lumbar spine anatomy, are reconstructed with simple
geometrical shapes [15] or developed with a parametrised model [110, 111,
112]. Parametrization functions can be assigned to the geometrical shapes
reproduced, so the dimensions of the vertebrae can be changed according to
the user needs or the patient dimensions. Morphological studies have been
conducted in the past decades, to obtain average dimensions of the vertebrae
in the lumbar spine (as described in subsection 2.1.3). The dimensions have
been used to investigate the relationships between the dimensions charac-
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terizing the vertebral bodies and the IVD.

Models based on medical images precisely represent the subject-specific ge-
ometry, however, the process to generate these models is both time consum-
ing and depending on the availability of data-scans. Moreover, to provide
wider understanding, beyond a single individual, subject-specific models re-
quire a number of models to be solved, for statistical power [113]. However,
idealized models based on average dimensions often lack the anatomical de-
tail that is necessary to be of clinical value, with their geometries typically
too simplistic. Further, several studies have highlighted the importance of
anatomically representative geometry in simulations of the spine [114, 14]
due to its effects on the intradiscal pressure, the range of motion and facet
joint contact forces.

The ideal scenario for the FE modelling would be the generation of pre-
cise anatomical models generated in a reduced amount of time and where
the model is not affected by the user-dependent expertise. Semi- and fully-
automated procedures to reconstruct FE geometries have been implemented
[115, 116, 117, 118], based on statistical shape model and/or landmarks
identification, to speed up the segmentation process and generate the lum-
bar model. These procedures generate accurate geometries, however they
require the availability of subject-specific data-scans.

A reference model of the geometry of the human body is the VHP (Visi-
ble Human Project), which consists in cryosection photographs of a 38 year
old man of height 180.34 cm from a cadaver, where sections were taken at
intervals of 1 mm. Considering the acquisition of the VHP model, that is
not affected by errors of the acquisition method used, it is considered the
gold-standard for human models. The geometry of the lumbar vertebrae
and IVDs were segmented from the visible human male dataset into two-
dimensional (2D) axial images by professional clinicians [119]. These seg-
mented 2D axial images were then processed in Matlab and were imported
into Mimics v. 17.0v. 19.0 (Materialise, Leuven, Belgium) for reconstruc-
tion of three-dimensional (3D) geometry of the lumbar vertebrae and IVDs.
The lumbar model of the VHP is widely used in this thesis to evaluate the
morphological studies (described in the chapter 3) and the parametric model
of the lumbar spine (chapter 4).

2.4.4 Material properties

The mechanical behaviour of biological tissues has been extensively studied
in the recent decades [120, 121, 122, 123, 124]. Their mechanical proper-
ties are of interest to understand the loading effects and also to understand
how they influence the physiological and biological functionalities. How-
ever, the characterization of biological materials is complicated due to their
anisotropic and heterogenous features [125, 126].
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Soft-tissue material properties are usually described by non-linear strain en-
ergy formulations, where the anisotropic behaviour is defined. Most of the
biological tissues have a high fiber content (i.e.: blood vessel, cartilaginous
tissues, AF'), described by exponential strain density function [127, 128].
Other materials (i.e.: ligaments) are characterized by strain-dependent be-
haviour, which requires the definition of bilinear or non-linear constitutive
laws [129]. In this section the material properties assigned in previous stud-
ies have been discussed, while the matematical formulations of the non-linear
material properties have been reported in Appendix A.

Vertebra

Studies developed from data-scans adopted the material properties eval-
uated from the grey-scale level [130]. Several mathematical formulations
have been developed, using the Hounsfield values to quantify the CT-scan
attenuations, according to the localization and the type of bone [130], where
the grey level of each voxel, which is correlated to the density of the mate-
rial, is used to assign the correspondent material properties.

In other studies [53, 131, 132, 133], the material properties have been as-
signed following the different bone formation (cortical or cancellous). The
external layer of the vertebrae has cortical material properties while the in-
ner core is composed by cancellous material. Different material properties
have been assigned to the posterior vertebral structure (lamina, posterior
processes and pedicles). In Table 2.2, a range of linear isotropic values
assigned in previous studies has been reported.

Table 2.2: Vertebral material properties used in previous studies.

Cancellous bone | Cortical bone | Posterior elements

E [MPa] v E [MPa] | v | E [MPa] v Ref
100 0.2 12000 | 0.3 3500 0.25 [90]
140 0.2 11300 | 0.2 Rigid - [134]
100 0.2 12000 | 0.3 3500 0.25 [94]

IVD

Following the anatomical description of the IVD, different material prop-
erties can be assigned to the AF and NP (Table 2.3). Several material
formulations have been evaluated for the AF, considering the anisotropic
nature of this material. The ground substance is modelled separately from
the fibers which are modelled as separate 1D elements or membrane elements
[135, 136], included in a homogenized formulation [137, 138] or included in
a continuum approach [139, 127]. A material law formulation, implemented
by Holazpfel-Gasser-Odgen [127], initially developed to model blood vessels,
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has been widely adopted to describe the AF properties.

In the case of the NP, two different strategies have been used: using solid ele-
ments [37, 140], or fluid-like elements[141, 142] Using solid elements the IDP
distribution was not constant all over the NP, and the IDP was evaluated
in different regions.

Table 2.3: Material properties used in previous studies for the AF and NP

Material AF ground AF fibers NP ref

formulation c1 Co

Mooney-Rivlin 0.18 0.045 Non-linear, Fluid [90]
depending on the layer

Mooney-Rivlin 0.7 0.2 Tension only elements Fluid [134]

Mooney-Rivlin | 0.3448 0.3 Non-linear Fluid [94]

depending on the layer
Neo-Hookean | 0.3448 0.3 | Fibre-reinforced continuum, Fluid [143]
depending on the layer

Hyperelastic 4.2 0.45 | Fibre-reinforced continuum, Fluid [131]
depending on the layer
Hyperelastic c190 =0.0146 | Fibre-reinforced continuum, Linear [131]
Yeoh co0 =0.0189, two families of fibers E=1MPa, | [11]
C30 =0.041 v =0.49

Cartilaginous Endplates

Two approaches have been used in the literature to model the CEP: mod-
elling them as separate bodies [98, 144, 145], or including their material
formulation with the IVD [49, 146]. The CEP have been modelled following
different mathematical formulations: linear isotropic [145, 138, 147, 98, 132,
86], hyperelastic [148], fiber reinforced and biphasic [49]. A summary of the
material properties assigned in the mentioned studies is given in Table 2.4.

Ligaments

In the literature, spine ligaments are modelled as tensile only elements, to re-
produce their physiological functionalities. The elements usually used were
either beam or truss where the cross-section area and the Young’s modulus
is defined [90, 153, 154], or as spring elements defining the ligament stiffness
[155, 96]. The latter solution is used in case of applying non-linear stiffness.
The geometrical features assigned to these elements have been evaluated in
previous in vitro studies. The length and cross-section area of the ligaments
were evaluated by Pintar et al. [156] from cadaveric specimens, and the re-
sults are reported in Table 2.5. The material properties of the ligaments
have typically been evaluated by in vitro studies [157, 158, 132, 156, 147]
and they are affected by several factors (age, gender, body height, genetics
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Table 2.4: Material properties assigned to the CEP in previous studies. ky,
M and ey are the coefficients related to the poroelastic material properties,
initial permeability, an empirical coefficient M and the initial value for the
tissue deformation, respectively. The strain dependent permeability function
is reported in Appendiz A [152].

Material Material properties ref
formulation E v ko €o M

[MPa] [m*/Ns] -
Linear isotropic | 23.8 MPa 0.4 - - - [145]
Linear isotropic | 24.0 MPa 0.4 - - - | [138, 149]
Linear isotropic | 600.0 MPa 0.3 - - - [150]
Linear isotropic | 5.0 MPa 0.4 7x107' 4.0 10.0 [146]

C10 D1 ko €0 M

Hyperelastic, 0.3448 0.3 - - - [151]
Neo-Hookean

Table 2.5: Geometrical features for the lumbar ligaments, evaluated between
the T12 and S1 by Pintar et al. [156].

Ligament Cross-sectional area [mm?] Length [mm)]
Range Mean (sd) Range Mean (sd)
ALL 10.6-52.5  32.4 (10.9) 30.0-48.5 37.1 (5.0)
PLL 1.6-8.0 5.3 (2.4) 27.8-36.7 33.3 (2.3)
LF 19.0-93.6  43.8 (28.3) 12.8-21.5 16.4 (2.9)
JC 57.2-114.0 84.2 (17.9) 13.0-18.0 15.2 (1.3)
ISL 13.8-60.0  35.1 (15.0) 6.7-20.0  16.0 (3.2)
SSL 6.0-59.8 25.2 (14.0) 17.0-33.5 25.2 (5.6)
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and healthy conditions), showing a large variation in between different spec-
imens. The mechanical properties have a non-linear, strain dependent be-
haviour and different mechanical characteristic for each ligament, as shown
in Figure 2.11. Linear, non-linear and piecewise formulation have been used
in previous studies and an overview of the material properties and their ef-
fects is here given.

Momeni Shahraki et al. [89] modelled the ligaments as tension only truss ele-
ments, assigning strain dependent hypoelastic (Appendix A) material prop-
erties (Table 2.6). Their study focused on the evaluation of the IVD material
properties, not investigating the ligaments material formulations, and their
results were in agreement with previous experimental data and FE analyses.
Naserkhaki et al. [159] modelled the ligaments as tensile-only uniaxial spring

Table 2.6: Hypoelastic material properties assigned by Momeni Shahraki et
al. [89].

Ligament Elastic modulus [MPa]

ALL 8 (<12%) 20.0 (>12%)
PLL 10 0 (<11%)  20.0 (>11%)
LF 15.0 (<6.2%) 19.5 (>6.2%)
ITS 10.0 (<18%)  59.7 (>18%)
TL 10 0 (<14%) 11.6 (>14%)
SSL 0 (<20%) 15.0 (>20%)
JC 5 (<25%) 32.9 (>25%)

elements and linear piecewise material properties were assigned. The ma-
terial properties were evaluated from eight studies, reported in Figure 2.12,
with fixed length and orientation for each ligament and the cross-section
obtained from the reference studies. The effect of the different formulations
were analysed and compared with in vitro studies. Naserkhaki et al. [159]
demonstrated the wide variability of the results in terms of range of mo-
tion, IDP, centre of rotation and ligament force/strain, varying the material
properties. Moreover, they hypothesized possible intra-subject variations,
when different length and cross-section area were considered.

Lan et al. [96] modelled the ligaments with only tension truss elements. The
material properties were implemented through a user-defined subroutine to
simulate either linear and non-linear behaviour of the ligaments, and the
mechanical features are described in Table 2.7. Their results showed that
non-linear constitutive formulations lead the spine to be more flexible then
in the linear case and the activity of each ligament in the different loading
cases were evaluated.
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Figure 2.11: Ligaments mechanical behaviour of the ALL, PLL, ISL, ITL
and SSL.

Table 2.7: Material properties of the longitudinal ligament used by Lan et al.

[96].

Ligament ALL PLL LF ISL SSL TL
Elastic modulus (small strain) [MPa] 7.8 10 15 10 8 10
Transition strain (%) 12 11 6.2 14 20 18
Elastic modulus (large strain) [MPa)] 20 20 195 11.6 15 58.7
Cross-sectional area [mm?] 53 16 67 26 23 1.8
Length [mm] 13 11 19 13 11 22
Max. failure load [N] 510 384 340 130 200 70
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evaluated by Naserkhaki et al. [159].
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2.5 Mesh

Central to FE models is the mesh generation, the process of subdividing the
whole volume into a series of smaller volumes, namely mesh elements. Mesh
elements can be in 1D, 2D or 3D and the entities where the solutions are
calculated are the nodes. In first order elements, the nodes are the vertices
of the considered shape, while in superior order elements, the unknown
variables are evaluated at different points on the edges of an element. The
following geometrical features of these elements are described in Figure 2.13.

e Nodes

W Elements
wa Boundary face \ \

<\ Face

Figure 2.13: Basic features characterizing a FE elements.

The classification of the elements (in 2D and 3D elements) depends on
their surface geometry, which can be quadrilateral or triangular (quad- and
tri-elements or hexahedral and tetrahedral elements), and an overview of
the possible geometries is reported in Figure 2.14.

1D —

3D

2b A I:]
Figure 2.14: 1D, 2D and 3D first order elements.

In FE models reconstructed from subject-specific scans, the mesh gener-
ation of the vertebrae is obtained through the generation of voxel volumes
based on the grey-scale of the scans and then converted in hexahedral el-
ements [160, 161]. Other studies, dedicated mesh software assigned shell
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elements to the outermost layer of the vertebra, to simulate the cortical cor-
tex [162]. A different approach is used for the IVDs, which result opaque in
the scans, and the volume between two adjacent vertebrae is recreated by
expert users and then meshed [162].

FE models based on averaged dimensions have been developed, these studies
typically present semi- and fully-automated procedures for the mesh gener-
ation [163, 15, 117]. In between these models, statistical shape models have
been generated, in which a morphing procedure is applied to adapt the
mesh to new geometries [164]. Other models, presented a mesh developed
ad-hoc for those models [14]. These procedures, aim on speeding up the
pre-processing of the FE models, by generating hexahedral mesh elements
for the IVD and vertebrae. However, as stated in subsection 2.4.3, these
models either lack of anatomical accuracy and their generation is based on
the availability of data-scans.

2.6 Previous FE Analyses

Finite Element models have the advantages to predict measurements that
can not be accurately evaluated in vivo studies. The effects of high loads,
combined physiological movements, degenerated conditions on the biome-
chanics have been of interest to several research groups [165, 37, 148, 166,
14, 167, 93, 168, 169, 87]. These models provide reliable results if boundary
and loading physiological conditions are applied. However, the physiological
loading conditions are still not entirely identified [170].

In literature, either force-control or displacement-control [171, 170] simula-
tions have been developed. In reality, the loading path follows the lumbar
arch and it is affected by the action of the muscles. These effects are gen-
erally simulated through the implementation of a follower load [170, 172]
or in musculoskeletal models the muscles are explicitly included [56, 173,
174, 59]. The follower loads can be simulated through the application of
punctual loads at each vertebral level or via a path of unidirectional con-
nector elements. The location of the follower load path has been evaluated
in several studies and it is still a point of debate [38, 175]. Thus, another
approach has been proposed by Noailly et al. [171], applying pressure load
at the surface of each vertebrae.

The loading conditions applied to the FEM of the lumbar spine are pure
moments to simulate flexion, extension, lateral bending and axial rotation
and combined loadings with compression loads to simulate daily activities.
In Table 2.8 and Table 2.9 a brief overview of the loading conditions applied
in previous studies is reported. The main outcomes usually evaluated in
the FE studies include (i) Range of Motion (RoM), (ii) Intradiscal Pressure
IDP and (iii) Facet Joint Forces (FJF). The RoM has been reported as ro-
tational and axial displacements, however, much interest has been shown on
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Table 2.8: Loading cases applied on the model when pure moments were
singularly applied.

Extension  Flexion Lateral bending  Axial rotation ref
N [Nm] [Nn] [Nim]
7.5 7.5 7.5 7.5 (176, 11]
10 10 10 10 [87]

Table 2.9: Loading cases applied on the model when combined loads were
applied.

Extension Flexion Lateral bending Axial rotation ref
FINJ M[Nm] F[N] M[Nm] F[N] M[Nm] F[N] M [Nm] ref
500 7.5 1175 7.5 700 7.8 720 5.5 (151, 177]

Table 2.10: FEwvaluation of the RoM, reported as rotational displacement
(Deg), when pure moments were applied. These results were obtained from a
comparative study conducted by Dreischarf et al. [165], were the same bound-
ary and loading conditions were applied to eight models [165, 90, 178, 80,
179, 180]. * median values of the FE analyses evaluated.

- Extension/Flexion Lateral bending Axial rotation
L1-L5 24°-41° 25°-41° 11°-22°
FJF* 32N/0N 12N 87 N

complex movements which involve several spinal structures (extension, flex-
ion, lateral bending and axial rotation) and not many studies reported the
results for the simple compression [92]. The RoM and the FJF of the entire
lumbar arch, have been estimated in eight models, where similar loading
and boundary conditions were applied, and compared by Dreischarf et al.

[165], are given in Table 2.10. The IDP at each vertebral level and the RoM
are reported in Figure 2.15 and Figure 2.16. These results showed the ef-
fects on the biomechanics of the spine of different geometries and material
properties.

Sensitivities analyses, varying material and morphological parameters, have
been studied [87, 114, 13, 182]. Coombs et al. [87] performed a probabilis-
tic study on a single FSU, based on the Monte Carlo simulation method,
to evaluate the effect of varying the material properties of the soft tissues
of the spine. Zander et al. [13] and Niemeyer et al. [114] varied material
properties and morphological parameters of a L1-L5 segment and a single
FSU respectively and evaluated their impact in the RoM, FJF and IDP.
These studies covered a wide variability of material properties, providing
data about the effects on the biomechanics. The study of Niemeyer et
al. [114] reported the most influential geometrical parameters for the spine
biomechanics, however their model is not geometrically accurate, represent-
ing an approximate anatomy. In between the morphological variations, the
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Figure 2.15: IDP compared by Dreischarf et al. [165] from eight FE models
[90, 178, 80, 179, 180, 181]. Image from Dreischarf et al. [165].

volumetric ratio of the IVD as well as combined morphological and material
properties variations have not been included in these studies. However, to
the best knowledge of the author, the models developed in the literature
allow the evaluation of material sensitivity analyses [87, 183, 98] or of the
geometrical features [14, 182, 114]. Most of these studies required the ex-
tensive pre-processing of models while the other based on semi-automated
or automated solutions are characterised by a simplified geometry. Under-
standing the effects on the biomechanics of degenerated conditions, could
lead to new treatments and the development of new devices [149], through
the design and material optimization.

Healthy and degenerated cases

Degenerated cases have been simulated in FE studies, varying the material
properties and the morphologies of the IVD. Different strategies have been
followed to simulate the degeneration of the IVD. Kim et al. [184] simu-
lated the degenerated effect removing the hydrostatic behaviour of the NP
and increasing the stiffness of the IVD. Kumaresan et al. [150] evaluated
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Figure 2.16: RoM between L1-L5 of the lumbar spine. The green area iden-
tifies the range of values reported by [165] from eight FE models [90, 178,
80, 179, 180, 181], and the red bad is the in vivo median. Image adapted
from Dreischarf et al. [165].

the effects on the biomechanics of the cervical spine, evaluating four grade
of degeneration varying with the progression of the degeneration, the disc
height, the material properties and the fibers content of the IVD. Rohlmann
et al. [142] modelled a single FU evaluating the effects of degenerated IVD
conditions, varying the NP compressibility and decreasing the disc height,
which resulted in a reduced fiber length. Malandrino et al. [50] evaluated
the effects of patient and degeneration specific geometrical and mechanical
factors for the IVD. Inoue et al. [185] and Natarajan et al. [186] reported a
review of previous studies on the disc degeneration. The first one reported
the changes in the viscoelastic properties of the disc of previous studies,
while Natarajan et al. [186] reported a review of poroelastic material prop-
erties used and the effects under cycling load. In fact, in the degeneration
process, the water content reduces and the IVD becomes stiffer, with possi-
ble effects on the fluid phase and the supply of nutrients to the inner IVD.
They evaluated the effect of cycling loads on healthy and degenerated disc,
which resulted in a higher disc loss height at peak load in the healthy disc,
demonstrating a larger amount of fluid flow. Cegonino et al. [187] replicated
the experimental test conducted by latridis et al. [188] in an FE model. An
osmo-hyperelastic constitutive law was assigned to the IVD and the mate-
rial properties were varied in healthy and degenerated conditions according
with Iatridis et al. [188]. Park et al. [90] implemented different stage of IVD
degeneration varying the IVD height, the NP compressibility and the mate-
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rial properties of the AF fibers and ligaments. These features were assigned
in a range of values to evaluate mild, moderate and severe degeneration to
compare with a healthy case. The range of motion, IDP and facet forces
were analysed when flexion, extension, lateral bending and axial rotation
were applied. The inter-segmental rotation and IDP showed a decreasing
pattern with the progression of degeneration, while the facet joints force at
the degenerated level increased.

2.7 Experimental tests on the lumbar spine

The experimental results are needed to validate FE models [189]. In vivo
tests have been conducted since the early 1960s [21], but since then have
been limited due to the invasiveness of the measurements. The in vivo
studies were conducted using a discometry system [21] which consisted in a
needle transducer inserted in the IVD. The discometry method has been im-
proved in the following studies [190, 191, 192, 193] and the results obtained
increased linearly with the compressive load applied (Figure 2.17).

A wide range of IDP has been reported in the literature and the variability
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Figure 2.17: IDP compared by Dreischarf et al. [165] from eight FE models
[90, 178, 80, 179, 180, 181], where the green area identify the range of
variation of the FE results, the red dotted line the experimental results with
the bars identifying the standard deviation. Image adapted from Dreischarf
et al. [165].

of the results is mainly due to the differences between the subjects, different
instrumentations and disc level and subject-specific conditions. Considering
the standing position, the IDP values measured in vivo have a decreasing
trend from the thoracic level (~ 1 MPa at the T6-T8 levels) to the middle
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lumbar level (~ 0.3 MPa at L3-14 level) and increasing again at the last
functional unit (~ 0.5 MPa at the L4-L5 level) [190, 191, 194, 195]. Differ-
ent values have been recorded in sitting and lying positions [193, 196]. In
vitro experimental test were evaluated either on Functional Unit of the spine
(FSU) [197, 198] and on the single components (IVD, specimens extracted
from the AF, lamellar structures and ligaments) [199, 200]. Gonzalez-Blohm
et al. [198] presented a review of the experimental test evaluated on single
[201, 9, 202, 203, 204, 205, 206, 207] or multilevel FSU [208, 209, 210, 211,
212, 213, 214, 215, 216]. Static and dynamic loading conditions were ap-
plied, the results usually evaluated included the Range of Motion (RoM), the
intradiscal pressure (IDP), the neutral zone and the stiffness of the spinal
unit considered.

In wvitro studies have been carried out on cadaveric specimens to identify
the mechanical behaviour of the individual structure of the IVD. Mechan-
ical tests on volumes extracted from the AF showed that the mechanical
behaviour of the AF is region specific and the tensile response differ radially
and circumferentially [188, 217, 218, 219, 220].

In order to validate FE models, the setup of the experimental model has to
be accurately simulated. The boundary and loading conditions have to be
recreated, and the measurement system clearly defined (i.e.: strain gauge
positions).

2.8 Summary

In this chapter, the background for the following chapters has been intro-
duced. The topics evaluated can be summarized as follows:

e The anatomy of the spine has been described, focusing on the lumbar
segment;

e The morphological studies on the anthropomorphic dimensions have
been introduced. Furthermore, the vertebrae dimensions can be corre-
lated with the posterior vertebral height and with the height and age
of a person.

e Finite Elements Models can be used to estimate intradiscal pressure
(IDP), facet joint forces (FJF) and the range of motion (RoM) of the
entire spine or the simple functional unit. This method could lead
to the estimation of biomechanics entities that are not measurable
through experimental test.

e An overview of previous FE models and the effects of the material
properties and morphological features have been discussed.
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Morphometric measurements

3.1 Introduction

The anatomy of the lumbar spine is characterized by a complex geometry
which differs with the stature, sex and ethnicity of the subject. Finite Ele-
ments (FE) models have been used in the literature to evaluate the load and
stress acting on the lumbar spine. These models are mainly subject-specific
models which are based on medical images that represent a subject-specific
anatomy, whose reconstruction is time consuming and based on the avail-
ability of data-scans (chapter 2). However, to obtain a statistical relevance
of a clinical study the implementation and solution of several models is re-
quired.

Parametric and anatomically accurate models represent an alternative to
evaluate the variety of clinical cases, where the anatomical variability be-
tween subjects due to different stature, gender and ethnicity can be imple-
mented. A reference geometry can be morphed and scaled accordingly to
the dimensions reported from morphological studies and the specific features
of the anatomy can be altered according to an anatomical deformity or a
degeneration of the bodies involved.

The development of parametric and scalable models rely on anthropomor-
phic measurements and correlation analyses collected from the literature.
The number of datasets evaluated is important, as it allows the inclusion
of anatomical variability in the statistical analyses, obtaining correlation
functions which reflect the average dimensions. The dimensions should be
collected and classified according to the mentioned criteria (ethnicity, gen-
der, etc.). Further, a method to measure the dimensions, defining reference
points to collect the dimensions and allowing the reproduction of the same
measurements, is required (chapter 2). The dimensions, often reported in
the literature, are rarely in agreement with other studies available and the
measurements are typically incomplete as regards the description of the full
anatomical features. Moreover, the measurements have to be divided accord-

33
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ing to gender and ethnicity of the subjects, which would affect correlation
studies [43].

Currently, there is no defined method described in the literature to identify
the key dimensions of interest of the spine. The dimensions measured in
previous studies pursued the aim of each individual study (e.g. to identify
the workspace for surgical instruments [26]) but no over-riding rationale for
measurements is currently available. For the sake of clarity, a brief recap of
the dimensions evaluated in this study is given in Figure 3.3, Figure 3.2 and
the acronyms are described in Table 3.1 and described elsewhere (chapter 2,
subsection 2.4.3).

Studies by Panjabi and colleagues have provided the basis for the study of
the anatomy and biomechanics of the spine [31, 221, 33]. The morphome-
tric study by Panjabi assessed 12 fresh cadaveric spines at autopsy, from
which the vertebrae (at all the levels [31, 221, 33] ) were separated from the
soft tissues. The anatomical dimensions were measured with a morphome-
ter, composed of one linear variable (LVDT) and two rotational variable
(RVDT) displacement transducers which provided a spherical coordinate
system to evaluate the dimensions. In these studies, dimensions from both
male and female cadavers were collected, without distinguishing according
to gender.

Correlation studies have been published based in Panjabi’s studies [31, 221,
32, 33, 44, 26]. These correlation analyses [44, 36](previously described in
chapter 2, subsection 2.1.4), have limited validity due to the low number of
specimens, mixed gender and the unknown ethnicity.

Datasets published by Alam et al. [43] and Wolf et al. [26] are based on
more numerous datasets (n = 49 and n = 55). These two studies present
two ethnic groups and in the case of Alam et al the dimensions have been
collected separately for females and male subjects. Therefore, there is the
potential to develop more robust, and targeted, correlation studies based
on these data-sets which are greater in number than that of Panjabi and
colleagues. However, these value of using correlation analyses from morpho-
metric studies is limited if they can not be used to predict anatomy /geometry
and dimensions which represent an individual. The accuracy of correlation
analyses therefore, require some form of subject-specific validation. This is
feasible to do using the dimensions of the Visible Human Project (VHP)
dataset, and through comparison to dimensions obtained from the scans of
new individuals. The former is of value as it is the most accurate dataset
available at present, while the latter enables more cases to be compared.
The aim of this chapter was to evaluate the correlation analyses currently
available in the literature, and evaluate new correlations based on datasets
present in literature with a wider number of specimens (n = 55 and n = 49).
The effect of the number of specimens and gender has been investigated
and the validity of the correlation functions has been studied by compar-
ing predictions using correlation analyses, with the VHP data-set and with
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subject-specific measurements. Scans of individuals were obtained from Im-
perial College of London. The workflow of this chapter is represented in

Figure 3.1.
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Figure 3.1: Workflow of the chapter.
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Figure 3.2: Anatomical dimensions to describe the lumbar spine features.
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Figure 3.3: Anatomical dimensions to describe the lumbar spine features.
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Table 3.1: Dimensions evaluated in previous studies and list of acronyms
used in this Chapter. The suffizes, s,i,7,l, usually assigned to some of these
dimensions refer to superior, inferior, right and left.

Body Structure Acronym Description

EPW End Plate Width
Vertebral Body EPD End Plate Depth

VBHp Vertebral Body Height posterior
Spinal Canal SCW Spinal Canal Width

SCD Spinal Canal Depth

PDH Pedicle Height
Pedicle PDW Pedicle Width

PDIt Pedicle Inclination-transverse plane

PDlIs Pedicle Inclination-sagittal plane
Spinous process length SPL Spinous Process Lenght
Transverse Process TPW Transverse Process Width

3.2 Morphometric data collections

Several studies have focused on the collection of vertebral measurements.
Studies have been published on the dimensions of cervical [221] thoracic
[222, 223, 34] and lumbar spine [32, 43, 26, 224], as well as on the dimen-
sions of specific areas of the vertebrae: the articular facets [33] and pedicles
[41, 42, 39, 225]. However, only Alam et al. [43],Wolf et al. [26] and Pan-
jabi et al. [32] reported the data collected from the measurements identified
on the full lumbar spine. In particular, the studies of Panjabi et al. have
been extensively used in previous analyses [44, 226, 36] (See section 3.1 and
chapter 2).

In this section, the morphometric data, collected by Alam et al. [43] and
Wolf et al. [26] have been analysed. Moreover, new measurements have
been collected from a new dataset of data-scans supplied by Imperial Col-
lege London, then used to verify the predictions for subject-specific use. In
Figure 3.4, the dimensions evaluated in each study are graphically described.

3.2.1 Datasets from literature: Alam et al. and Wolf et al.

The dataset collected by Alam et al. [43] and Wolf et al. [26], were collected
from Israeli [26] and Pakistani [43] subjects, respectively, moreover Alam
et al. [43] divided the results between male and female.

Alam et al. [43] have based their study on CT scans of 49 Pakistani pa-
tients, divided into male and female measurements and evaluated the dif-
ferences with previous studies based on other ethnic origins. The results
were described in terms of mean values for the two genders for each lumbar
vertebrae and here reported in Table 3.2. Wolf et al. [26] studied the mor-
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Figure 8.4: Comparison of all the dimensions evaluated in each study with
the correspondent symbols. The suffixes s,i,l,v used in the tables of this
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Table 3.2: Dimensions (in [mm]) collected by Alam et al. [{3]. The dimen-
stons have been divided between male and female at each level of the lumbar
spine.

L1 L2 L3 L4 L5

Acronyms m f m f m f m f m f

VBHa 24.5 23.9 | 26.65 | 25.6 27.3 | 27.05 | 27.46 | 26.92 | 27.6 26.7
VBHp 28.2 25.6 29.23 | 26.69 | 28.55 | 27.47 27.1 26.21 | 24.84 23.9
EPWs 41.7 384 | 4344 | 39.5 | 45.45 | 40.88 | 47.08 | 43.43 | 48.95 | 46.24
EPWi 42.5 38.9 | 44.69 | 40.7 | 45.39 | 42.35 | 46.91 | 43.51 | 47.04 | 44.9
EPDs 30.4 27.7 32.47 29.6 32.85 30 33.85 30 33.71 31.5
EPDi 31.7 29 32.99 | 29.86 | 33.01 | 30.01 | 33.85 | 31.77 | 33.03 | 31.91
PWr 6.4 5.6 7.29 6.38 | 10.54 | 9.56 | 10.54 | 9.56 | 13.53 | 12.19
PHr 13.5 12.8 13.4 12.31 | 12.03 | 11.71 | 12.03 | 11.71 | 11.53 | 10.94
PWI 6.1 5.9 7.29 6.37 | 10.64 | 9.67 | 10.64 | 9.67 | 13.53 | 12.71
PHI 13.2 12.6 | 13.46 | 11.9 | 12.38 | 11.36 | 12.38 | 11.36 | 10.26 | 10.84
PSr 3.7 4.4 3.95 4.61 4.68 4.9 4.68 4.9 4.06 4.21
PTr 13.11 | 14.13 | 13.86 | 13.94 | 16.15 | 17.55 | 16.15 | 17.55 | 22.47 | 20.13
PSt 3.8 4 4.21 4.28 4.52 4.81 4.52 4.81 3.84 4.79
PTt 13.2 14.8 | 13.91 | 144 | 16.77 | 17.37 | 16.77 | 17.37 | 23.08 | 21.77
SCD 17.7 16.7 16.26 | 16.28 | 15.48 | 15.31 | 14.77 | 14.28 | 15.25 | 13.76
SCW 24.2 23.5 24.34 | 23.46 | 24.13 | 22.36 | 24.48 | 23.81 | 28.43 | 25.96

phometry of the lumbar spine to evaluate the dimensions of interest in the
surgical workspace in the case of lumbar pathologies, aiming to use statisti-
cal analysis on those dimensions also for implant design and modelling. The
dimensions of 55 CT data scans (25 female and 30 male) were collected and
the mean values and standard deviations were reported. The dimensions
(Figure 3.5), stated in Table 3.3, were reported with another set of symbols
and for clarity have been related to the acronyms used in this study.

e
| e )

J A

Figure 3.5: Dimensions measured by Wolf et al. [26]. The letters used in
their paper and the acronyms of this Chapter are in Table 3.3. Some di-
mensions have not direct correspondence (A, D, K, J) while others can be

evaluated like: SCD = J-C.

3.2.2 Subject-specific dataset (SSD)

The data-scans from new specimens were obtained from Imperial College
London. The cadavers were obtained as part of another study, and scanned
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Table 3.3: In the first column the symbols used in Wolf et al. [26] have been
reported and referred to the acronyms used overall this chapter. The mean
values, in [mm/], and standard deviation are reported.

L1 L2 L3 L4 L5
ymbol | acronyms | mean | sd | mean | sd | mean | sd | mean | sd | mean | sd

n

- 44.8 2.8 46.9 3.6 47.6 3.7 47.6 4.4 46.6 5.3
EPDs 28.9 2.3 29.8 2.3 32.3 1.3 31.7 2.1 32.5 2.1
SPL 30 3.7 31.5 4.6 33.5 5.7 32.8 5.3 26 5.7
na 5 1.1 4.3 1.3 4.7 1.2 5.3 1.4 5.8 1.4
Pdi 11.8 1.3 11 1.7 12.8 2.2 14.1 2.1 18.5 3.9
PDW 5.6 1.3 7.7 1.5 8.9 1.9 11.4 1.8 13.7 2.2

TPW 81.8 5.1 80.4 4.6 89.4 5.5 90.5 5.7 93.7 | 5.9
EPWs 40.7 3.8 39.8 4.6 43.1 3.8 44.1 4.6 48.1 3.8
- 76 9 79.1 7 80.1 6.7 79.6 5 77.1 6.7
- 49.4 7.2 48.5 7 48.9 5.7 | 47.2 5 43.6 7.4
TPWs 37.5 5.5 36.9 2.9 39.8 2.7 | 439 3.6 53.5 5.3
VBH 24.9 2.4 25.4 1.1 25.6 1.6 26.5 0.6 28.6 1.3
- 11.5 2.5 10.8 3.2 11.8 2.8 11.4 3.5 11.2 3.7
- 22.4 2.5 21.6 3.4 19.4 5.4 23.2 7.6 21.6 4.9
PDH 15.1 1.9 14.8 1.6 14.5 1.9 14.8 2.1 15.6 2.3

TzgzgoRe"ZIQHEEOQW >

with an IVIS SpectrumCT Imagining System (Caliper Life Sciences, Hopkin-
ton, MA, USA, voxel size 0.15x 0.15x0.15 mm) at Imperial College London
(supplied by N. Newell, ethical approval obtained from the Tissue Man-
agement Committee of the Imperial College Tissue Bank ethics committee:
12/WA/0196).

Scans from four specimens were provided (male subjects, between 22 to 58
years of age) of which one was excluded due to the low quality of the scan
where the external surfaces were not well defined, not allowing measure-
ments. Thus, in total three new specimens have been evaluated. To obtain
coherent data, only male data scans were used, belonging to the same ethnic
group (Caucasian). Moreover, no pathologies were reported on the lumbar
spine and the cause of death was not linked to related pathologies.

The measurements were evaluated using 3D-Slicer (https://www.slicer.org/,[227])
from the scans (Figure 3.6), and the mean and standard deviation values
are reported in Table 3.4. The dedicated measurement tool of 3D-Slicer was
used to evaluate the dimensions stated in Table 3.4, according to a method
identified elsewhere [228] to evaluate the vertebral body height and endplate
width. A schematic of the dimensions evaluated is given in Figure 3.6. The
number of specimens included in this study has not been used to evaluate
any statistical analyses or obtain accurate correlation analyses. Instead, this
dataset has been used only to evaluate the accuracy of the correlation anal-
yses, obtained from the other studies, when compared to ’patient-specific’
measurements; in essence, they are being used to answer the question: do
generalised correlations hold true for an individual?
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Figure 3.6: Evaluation of the subject-specific model from Slicer 3D.

Table 3.4: Dimensions (in [mm]) evaluated from the new specimens obtained
from Imperial College London .

Dimension L1 L2 L3 L4 L5
mean std mean std mean std mean std mean std
VBHp 31.33 | 1.57 | 30.90 | 1.66 29.53 4.66 | 31.67 | 1.69 | 28.90 | 3.11
EPWs 47.57 | 4.23 | 50.80 | 4.53 51.80 3.15 | 52.80 | 3.85 | 55.43 | 4.95
EPWi 48.67 | 3.79 | 48.90 | 2.11 53.90 3.15 | 56.10 | 4.56 | 53.77 | 9.12
EPDs 34.47 | 1.82 | 36.17 | 2.00 38.27 1.80 | 39.27 | 3.51 | 37.20 | 2.91
EPDi 35.33 | 1.72 | 38.03 | 1.97 38.50 3.29 | 38.70 | 4.76 | 36.80 | 1.15
PDHI 20.27 | 3.40 | 20.67 | 4.72 21.37 5.94 | 20.73 | 3.87 | 20.97 | 3.98
PDWI 7.47 1.61 9.13 1.36 11.67 1.70 | 12.60 | 0.87 | 15.57 | 1.58
PDHr 21.07 | 5.73 | 21.03 | 5.11 20.63 4.76 | 17.80 | 3.06 | 18.27 | 3.44
PDWr 7.47 2.11 8.95 0.91 11.77 1.72 | 13.03 | 2.06 | 16.77 | 1.72
SCD 17.60 | 2.36 | 16.03 | 1.15 14.17 1.70 | 13.30 | 0.26 | 15.23 | 3.45
SCW 25.33 | 0.91 | 25.43 | 2.96 24.27 2.68 | 24.30 | 2.26 | 28.23 | 0.90
TPW 78.10 | 2.82 | 91.80 | 0.95 | 104.67 | 4.73 | 97.17 | 4.13 | 97.83 | 4.48
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3.3 Correlation analyses

In the studies by Kunkel et al. [44] and Breglia [36], the correlations between
the VBHp and the other dimensions characterising the vertebrae were eval-
uated. In this study, the same correlation analysis was performed on the
datasets of Wolf et al. [26] and Alam et al. [43]. Linear and non-linear
correlation analyses were implemented in Matlab, using the least-square op-
timization method, on the measurements of these two studies. Thus, estab-
lishing two sets of correlation functions for Israeli and Pakistani data-sets.
Moreover, in the case of the dataset of Alam et al. [43], the analyses have
been performed separately for male and female subjects. As evaluated by
Kunkel et al. [44], polynomial curves of first (Equation 3.1), second (Equa-
tion 3.2) and third (Equation 3.3) order were assessed to fit each parameter
in function of the posterior vertebral body height VBHp:

y=cy+ciz (3.1)
Yy =c3+cox+ crz? (3.2)
Y= cq4+c3x + cox® + c1a® (3.3)

where y is the dimensions being evaluated, x the VBHp and c;1, ¢2, c3, and
cy4 are the coeflicients estimated for each equation, reported in Table 3.5 and
Table 3.6. To assess the goodness of fit, minimum, maximum and mean
values of R? for each study have been listed in Table 3.8.

3.3.1 Accuracy of the correlation analyses

The correlation analyses obtained in this study, based on Wolf et al. [26]
and Alam et al. [43] section 3.3, and those of Kunkel et al. [44] and Breglia
[36] have been compared. The results were also compared with the subject-
specific datasets: the VHP model (introduced in chapter 2), whose dimen-
sions were evaluated as in subsection 3.2.2, and the data collected from data
scans SSD. The values of the VBHp obtained from the VHP, have been used
to predict its anatomy from the correlation studies available (Alam, Wolf
and SSD). In Table 3.7 the dimensions evaluated in each study are listed,
and only the dimensions in common in all the studies (EPDs, EPWs, PDH
and PDW) were compared. In the study of Kunkel et al. [44] and Alam
et al. [43], the PDH and PDW dimensions were evaluated on the left and
right side. Then, the average values for those measurements have been used
to compare with the other studies, in which the axial-symmetry hypothesis
has been adopted.

3.4 Results

The results are presented as follows:
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Table 3.5: Correlation analysis evaluated on male and female subjects of
the Alam et al. [43] dataset. The correlations have been performed with a
34 order polynomial (Equation 3.3), 2% order polynomial (Equation 3.2)
and 1% order polynomial (Equation 3.1) where ci, ca, c3 and c4 are the
coefficients of the equations and R? is the metrics to evaluate the goodness

of fit.

Male Female
Parameter cy co c3 cq R2 cy co c3 cq RZ
EPWu 0.42 -33.99 918.75 -8201.44 0.73 -1.05 82.26 -2141.00 18596.97 0.68
EPWi 0.51 -41.22 1115.93 -9997.95 0.64 -0.94 73.73 -1919.55 16677.12 0.62
EPDu 0.42 -34.51 933.83 -8368.88 0.56 -0.74 58.20 -1513.58 13129.49 0.88
EPDi 0.31 -25.62 695.42 -6243.99 0.58 -0.64 49.51 -1279.94 11045.92 0.52
. PWr 0.05 -4.17 109.09 -924.69 0.68 -0.47 37.83 -1004.06 8874.87 0.67
S PHr 0.10 -7.75 205.95 -1796.81 0.64 -0.40 31.80 -849.95 7564.80 0.70
5 PWI1 -0.01 0.59 -16.86 168.33 0.56 0.22 -17.56 460.09 -4000.39 0.76
s PHI 0.09 -7.43 204.64 -1868.79 0.92 0.28 -21.81 568.95 -4928.51 0.73
& PDIsr 0.06 -4.62 127.60 -1168.01 0.24 -0.03 2.55 -65.29 559.81 0.75
PDItr -0.07 5.93 -175.04 1741.11 0.90 -0.15 12.48 -349.97 3265.92 0.64
PSt 0.08 -6.30 172.27 -1563.84 0.41 -0.10 8.02 -210.26 1838.70 0.47
PTt -0.07 6.05 -177.18 1752.07 0.87 -0.18 15.03 -418.36 3880.05 0.81
SCD -0.31 25.36 -688.33 6226.49 0.45 0.38 -30.10 784.19 -6785.67 0.50
SCW -0.05 4.19 -124.38 1251.57 1.00 -0.38 29.37 -758.78 6556.56 1.00
Male Female
Parameter cy [} c3 R2 cy co c3 RZ
EPWu 0.04 -3.57 112.47 0.66 0.91 -47.96 673.65 0.58
EPWi 0.01 -1.36 73.47 0.41 0.86 -44.75 622.69 0.47
EPDu 0.04 -2.32 69.72 0.28 0.61 -31.80 440.57 0.60
EPDi -0.04 2.23 4.55 0.07 0.22 -11.63 185.06 0.29
o PWr 0.10 -6.72 119.22 0.68 1.17 -60.98 799.02 0.64
3 PHr 0.10 -6.92 122.07 0.64 1.21 -62.75 823.78 0.68
3 PWI1 0.05 -2.12 35.53 0.56 -0.32 16.48 -201.64 0.67
o] PHI -0.10 6.07 -78.80 0.91 -0.30 15.72 -191.04 0.57
& PSr -0.09 5.02 -63.06 0.20 0.00 0.31 -1.87 0.74
PTr 0.47 -27.09 407.48 0.90 1.10 -57.03 757.42 0.64
PSt -0.06 3.19 -39.76 0.26 0.16 -7.96 106.32 0.40
PTt 0.42 -24.78 378.32 0.87 1.18 -62.11 829.33 0.81
SCD 0.05 -2.34 42.89 0.22 -0.36 18.98 -232.89 0.41
SCW 0.37 -20.75 317.43 1.00 0.09 -5.40 105.11 0.92
Male Female
Parameter c1 co RZ cy co R2
EPWu -1.36 82.80 0.66 -1.46 79.59 0.39
EPWi -0.70 64.49 0.41 -0.68 59.65 0.15
EPDu -0.42 44.31 0.27 -0.35 38.85 0.12
EPDi -0.11 35.96 0.06 -0.45 42.17 0.22
. PWr -1.37 47.35 0.67 -0.86 31.06 0.19
g PHr -1.38 47.65 0.64 -1.00 34.87 0.23
B PWI 0.38 1.89 0.55 0.22 6.09 0.18
- PHI 0.69 -6.62 0.88 0.14 8.02 0.08
= PSr -0.01 4.46 0.00 0.19 -0.45 0.74
PTr -1.95 70.14 0.83 -0.92 40.52 0.22
PSt 0.08 2.04 0.14 0.00 4.66 0.00
PTt -2.06 73.44 0.82 -1.42 54.02 0.42
SCD 0.31 7.41 0.21 0.43 3.99 0.22
SCW -0.98 52.22 0.82 -0.93 48.05 0.91
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Table 3.6: Correlation analysis evaluated on the female subjects of Wolf et
al. [26]. The correlations have been performed with 3¢ order polynomial
(Equation 3.3), 2% order polynomial (Equation 3.2) and 1°t order poly-
nomial (Equation 3.1), where ci, ca, c3 and ¢4 are the coefficients of the
equations and R? is the metrics to evaluate the goodness of fit.

Parameter c1 c2 c3 c4 R?
B | EPDs 0.52 | -42.05 1132.24 | -10122.91 | 0.799
C | SPL 0.39 | -32.25 894.95 -8214.94 0.969
- | E | PDi -0.33 | 26.69 -712.10 6322.39 0.965
'§ F | PDW 0.07 -6.62 197.19 -1942.70 0.998
°| G | TPW -0.29 | 21.80 -542.15 4520.71 0.772
N;Q H | EPWs | -0.25 | 20.20 -531.86 4684.29 0.903
J - 0.05 -4.18 112.64 -950.49 0.990
K |- -0.76 | 60.84 | -1617.70 14321.21 0.987
P | PDH -0.14 11.32 -305.50 2758.22 0.962
Parameter c1 co c3 R? Parameter c1 c2 R?
B | EPDs -0.51 | 28.14 | -355.61 | 0.72 B | EPDs 0.79 10.42 | 0.51
C | SPL -1.45 | 76.46 | -974.21 | 0.96 C | SPL -1.41 67.76 | 0.48
5 E | PDi 0.18 -7.59 89.92 0.96 .| E | PDi 1.97 | -37.93 | 0.95
© | F | PDW -0.71 | 40.02 | -552.27 | 1.00 —E F | PDW 2.05 | -44.29 | 0.90
°c | G| TPW -1.26 | 70.78 | -901.54 | 0.77 o | G| TPW 3.25 2.09 0.68
E H | EPWs | -0.11 8.12 -92.55 0.90 E H | EPWs | 2,11 | -12.25 | 0.90
J - -0.12 4.83 3.26 0.99 J - -1.59 | 89.12 | 0.98
K |- 0.20 -5.99 63.28 0.98 K |- 4.62 | -78.62 | 0.98
P | PDH 0.18 -9.53 139.89 | 0.88 P | PDH 0.20 9.71 0.49

Table 3.7: Comparison between the parameters evaluated in Kunkel et al.
[44], Breglia [36], Wolf et al. [26] and Alam et al. [43]. The values not
evaluated in each study are identified as - and with x a value that can be
evaluated from the others. Only four mutual dimensions can be identified,

EPWs, EPDs, PDH and PDW.

Dimension | Kunkel [44] | Breglia [36] | Wolf [26] | Alam [43]
EPWs
EPWi
EPDs
EPDi
PDH
PDHI
PDHr
PDW
PDWI
PDWr
PS
PSl1
PSr
PT
PTI
PTr
TPW
SCW
SCD
SPL
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1. evaluation of the correlation analyses ( subsection 3.4.1);
2. comparison of the dimensions estimated from the correlation analyses
with subject-specific datasets (SSD and VHP, subsection 3.4.2).
3.4.1 Correlation analyses evaluations

The range of goodness of fit of the linear and non-linear regression analyses,
of the datasets of Alam et al. [43] and Wolf et al. [26], are reported in terms
of minimum, maximum values and overall mean values (Table 3.8). In Alam

Table 3.8: Range of R? wvalues for all the dimensions evaluated in the two
datasets.

. Alam Wolf
Polynomial order R2 male | female

min | 0.245 | 0.471 | 0.772

3rd max | 1.000 | 0.995 | 0.998

mean | 0.657 | 0.695 | 0.910
min | 0.075 | 0.295 | 0.717
gnd max | 0.998 | 0.919 | 0.998
mean | 0.547 | 0.602 | 0.882
min | 0.001 | 0.000 | 0.480
15t max | 0.880 | 0.909 | 0.948
mean | 0.498 | 0.291 | 0.701

et al. [43], there is a noticeable difference between the R? obtained from male
and female subjects. This difference is explained by a high variability in the
VBHp of the original dataset in the male subjects (Figure 3.7), evaluated
as the percentage difference in VBHp between the vertebrae taking the L1
vertebra as a reference, evaluated as:

L1-L;

% (3.4)

where L; represents the other vertebrae levels (L2, L3, L4, L5) and the
results are reported in Table 3.9. The correlation analyses were used to

Table 3.9: Variability in the VHBp in the male and female datasets. The
variations are evaluated as the percentage difference with the L1 vertebrae
as i Equation 3.4.

Dataset | d(L1,L2)% | d(L1,L3)% | d(L1,L4)% | d(L1, L5)%
Male -3.65 -1.24 3.90 11.91
Female -4.26 -7.30 -2.38 6.64

evaluate the vertebral dimensions, estimated with the different orders of
polynomial curves. The dimensions were evaluated for the datasets of Alam
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Figure 3.7: Values of the VHBp at each level of the lumbar spine for male
and female datasets in the Alam et al. [43]’s dataset.

et al. [43] and Wolf et al. [26] (Figure 3.8 and Figure 3.9), and compared
with the subject-specific datasets (VHP and the SSD). From the overall
results, the R? values reported in Table 3.8, the 3" order polynomials fit
best the initial dataset, but it is evident in Figure 3.8 and Figure 3.9, that
274 and 1%¢ order polynomials best follow the subject-specific trends. The
37 order polynomials are characterized by high changes in their curvatures,
which vary between positive and negative values. This factor can strongly
affect the estimation of the vertebral parameters, that would be valid only
in the range of values in which the fitting has been done, then not obtaining
a correlation able to fit a wide population.

The correlation analyses results obtained from Alam’s dataset reported
a mean R?, varying from the 1%* to the 3" order polynomials, between
0.498 and 0.657, for male subjects, and between 0.291 and 0.695, for female
subjects. In the case of Wolf, the R? values ranged from 1st to 3rd order
polynomials between 0.701 and 0.910. The results can be described when
evaluating the fitting as low, moderately and well correlated, when R? <0.5,
R? >0.5 and R? <0.8 and R? >0.8, respectively.

Using such criteria for the male datasets [43], on a 3¢ order polynomial,
only the dimensions related to the spinal canal and the sagittal inclina-
tion of the pedicles (SCD, PDIsl and PDIsr) resulted in a low correlation
(R% <0.5). All the other dimensions were moderately correlated (EPWs,
EPDs, EPWi, EPDi, PDWI and PDWr, PDHr, with R? >0.5 and R? <0.8)
or well correlated (PDHI, SCW, PDItl and PDItr with R? >0.8). Using
27 and 1% order polynomials, the correlation of EPDs, EPWi, EPDi had a
reduced R? value leading to a poor correlation. Evaluating the correlation
analyses based on Wolf’s dataset, using either the 3" and 2"¢ order poly-
nomials, most of the vertebral dimensions resulted well correlated (EPWs,
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Table 3.10: R? obtained for all the correlation analyses on each dataset,
where for Alam only the male dataset was reported.

R2 Kunkel [44] | Breglia [36] Wolf [26] Alam [43]

3rd 15t 3'rd 2nd 15¢ 3rd 2nd 15¢
EPWs 0.982 0.953 0.903 | 0.898 | 0.896 | 0.727 | 0.661 | 0.661
EPDs 0.981 0.923 0.799 | 0.717 | 0.515 | 0.563 | 0.276 | 0.273
EPWi 0.976 0.937 - - - 0.640 | 0.412 | 0.412
EPDi 0.981 0.887 - - - 0.584 | 0.075 | 0.060
PDW - 0.461 0.998 | 0.998 | 0.897 - - -
PWI 0.590 - - - - 0.558 | 0.558 | 0.546
PWr 0.537 - - - - 0.678 | 0.677 | 0.672
PDH - 0.767 0.962 | 0.875 | 0.495 - - -
PDI 0.853 - - - - 0.924 | 0.908 | 0.880
PDr 0.879 - - - - 0.645 | 0.641 | 0.636
SCW 0.964 0.104 - - - 0.999 | 0.998 | 0.824
SCD 0.811 0.024 - - - 0.447 | 0.221 | 0.213
SPL 0.882 0.774 0.969 | 0.956 | 0.480 - - -
TPW 0.616 0.400 0.772 | 0.770 | 0.675 - -
PTI - 0.001 - - - - - -
PDItl 0.693 - - - - 0.873 | 0.872 | 0.820
PDItr 0.524 - - - - 0.899 | 0.898 | 0.826
PDIs - 0.440 0.965 | 0.956 | 0.948 - - -
PDIsl 0.524 - - - - 0.411 | 0.264 | 0.143
PDIsr 0.669 - - - - 0.245 | 0.197 | 0.001
mean 0.779 0.556 0.910 | 0.882 | 0.701 | 0.657 | 0.547 | 0.498
max 0.982 0.953 0.998 | 0.998 | 0.948 | 0.999 | 0.997 | 0.880
min 0.524 0.001 0.772 | 0.717 | 0.480 | 0.245 | 0.075 | 0.001

PDW, PDH, SPL, PDIs with R? >0.8) or moderately correlated (EPDs,
TPW with R? <0.5, R? >0.5), while in the 1st order fitting the fitness
quality decreased for the PDH and SPL measurements. Evaluating the 37
order fittings (Group a: Alam, Wolf and Kunkel), the correlation analysis on
Wolf dataset had the highest overall R? mean value (Kunkel mean R2=0.779,
Wolf mean R?=0.910 and Alam mean R?= 0.657). The same trend is shown
for Group b (Alam, Wolf and Breglia) (Breglia mean R?=0.556, Wolf mean
R2=0.710 and Alam mean R?= 0.498). If considering only the dimensions,
for Group a, the R? on the analysis of Wolf are higher than the Kunkel’s,
except for the EPDs (Kunkel R2=0.981, Wolf R?=0.799 ). In the Group b,
the highest R? for the PDW, TPW and PDIs was found in the correlation
analysis of Wolf, while in the same analysis EPDs, EPWs, SPL and PD are
lower than in Breglia. In all the compared dimensions, the correlation based
on the dataset of Alam had the lowest R
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3.4.2 Correlation analyses accuracy

In Figure 3.10, the dimensions obtained from the correlation studies of
Kunkel et al. [44] and Breglia [36] were compared with the results of the
1%t order polynomial fitting obtained from the datasets of Alam et al. [43]
and Wolf et al. [26]. Furthermore, the analyses have been compared with
the dimensions of the VHP and the new measurements described in subsec-
tion 3.2.2.

Error values have been evaluated, comparing the dimensions obtained with
the correlations of Alam et al. [43], Wolf et al. [26], Breglia [36] and Kunkel
et al.[44], against the subject-specific dimensions of the VHP and the new
dataset considered in this study. The differences, reported in Table 3.11,
have been evaluated as

dimss — dimeory

diff = (3.5)

dimgs
where dimss are the subject specific measurements (VHP or SSD) and
dimeorr are the dimensions obtained with the correlation analyses (Kunkel,
Breglia, Wolf or Alam).

In the range of VBHp considered, the correlation of Kunkel (obtained with
37 order polynomials) predicted values outside the standard deviation of
the subject-specific measurements and with high errors from the VHP as
reported in Table 3.11. Moreover, in the case of PDH and PDW, the val-
ues estimated are negative, then predicting solutions not physically accept-
able. The percentage differences, evaluated versus both the subject-specific
datasets, confirmed these findings, which were included in the ranges 1-20%
for the EPWs, 32-59% for the EPDs, 82-215% for the PDH and 80-240% for
the PDW.

The linear estimations of Wolf et al. [26] and Breglia [36] follow similar
trends to each other. The EPWs estimated values are included in the range
of variation of the subject-specific measurements for the vertebrae L1, L2,
L3 and L4, while at the L5 level the predictions are less accurate. Alam et
al’s [43] correlation follow the same trend, however, the estimations showed
a higher difference from the subject-specific values. The percentage differ-
ences confirmed these results, with error values for Breglia [36] included in
the range 1%-15% against both the subject specific datasets; Wolf et al. [26]
led to differences such as between 2%-10% against the VHP and 2%-12%
against the subject-specific dataset; measurements from Alam et al. [43]
showed differences between 8% and 20% against VHP and 10%-22% against
the subject-specific measurements.

The EPDs values estimated with Breglia’s correlations follow the same trend
as the VHP measures with error values less than 8%, and are included in the
range of variability of the subject-specific measurements at the level L4 and
L5 (differences <4%) and included in the range 6-16% at the other levels.
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The values predicted with Wolf’s [26] correlation, showed a similar trend,
with errors less than 19% with the VHP dataset and less than 12% with
the other subject-specific dataset. The evaluations based on the Alam et al.
[43] correlations showed high error values with the VHP (between 12% and
29%), while improved results (7%-20%) were obtained from the comparison
with the subject-specific dataset.

The evaluation of the PDH estimation, showed for Breglia et al’s correlation
analyses errors in the ranges 4%-16%, versus the VHP, and 3%-11%, versus
the subject-specific dataset. Wolf’s correlation analyses showed errors in the
ranges 1%-10%, versus the VHP, and 18%-25%, versus the subject-specific
dataset, and Alam et al’s correlation analyses had errors in the ranges 34%-
44% versus the VHP and 46%-54% versus the subject-specific dataset.

The highest error values, were obtained for the PDW for all the correla-
tion analyses. The comparison of D.P.Breglia’s correlation analyses with
the VHP, showed an overestimation at the level L1 and L2, (47% and 39%
respectively), a minimum error value at L3 (8%) and then underestimated
at L4-L5 levels (18%-42%). Similar trends have been recorded in the com-
parison with the subject-specific dataset, where the errors are included in
the range of -61% to 26%. Using estimates based on Wolf et al’s data, the
PDW is overestimated from the L1 to L4 levels, and underestimated at L5
with error values ranging between -122% and 27% versus the VHP and -
115% to 6% versus the subject-specific dataset. As similar trend is shown in
Alam et al. [43] estimations, with an initial overestimation of the PDW at
the L1 level, and then underestimation at the other levels, with error values
included in the ranges -24% to 50% versus the VHP and -36% to 36% versus
the subject-specific dimensions.

Table 3.11: Error values evaluated as Equation 3.5 between the dimensions
obtained with the correlation analyses and the subject specific dimensions
(VHP and SSD)

Corr | Par vs VHP vs subjest-specific
L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
< EPWU | -3% -1% 2% % | 13% | 1% 2% 3% % 15%
'gn EPDU | -8% 4% 4% 1% 2% | -13% | -16% | -6% 2% | -4%
& PDH -16% | -20% | -9% | -4% | -5% | 11% 6% 9% 3% 8%
PDW | -47% | -39% 8% 18% | 42% | -61% | -42% | -7% 1% | 26%
= EPWU | 20% | -21% | 20% | 9% | -1% | -18% | -19% | -14% | -9% 1%
< EPDU | -45% | -32% | -30% | -34% | -36% | -52% | -59% | -45% | -38% | -39%
2 PDH 92% | 215% | 157% | 127% | 82% | 94% | 190% | 147% | 125% | 84%
PDW 84% | 236% | 145% | 116% | 84% | 82% | 240% | 152% | 119% | 80%
EPWU | 8% 20% 16% | 21% | 20% | 10% 22% | 21% | 21% | 22%
g EPDU | 12% | 29% | 26% | 21% | 15% | 7% 14% | 18% | 20% | 14%
= PDH 34% 41% 43% 44% | 39% 50% 54% 53% | 48% | 46%
PDW | -24% | 2% 30% | 34% | 50% | -36% | -1% 19% | 23% | 36%
N EPWU | 7% | -10% | 8% 2% | 10% | -5% -8% 2% 3% 12%
= EPDU | 7% 19% 19% | 15% | 12% 3% 2% 10% | 13% | 11%
= PDH 1% 1% 9% | 13% | 10% | 25% | 23% | 24% | 18% | 21%
PDW | -96% | -122% | -38% | -17% | 27% | -115% | -128% | -60% | -37% | 6%
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3.5 Discussion

The correlations between the posterior vertebral height and the dimensions
characterizing the vertebrae have been analysed using the datasets available
in the literature. The relationships between those parameters have been
evaluated with first, second and third order polynomials, and the R? values
have been reported to assess the goodness of fit. The correlation analy-
ses have been used to estimate the dimensions of a person with the VBHp
measured from the VHP dataset. The parameters in common in all the
studies were compared (EPDs, EPWs, PDH and PDW) and the differences
have been evaluated with the VHP measurements and the subject-specific
dimensions.

It has been shown that a 3" order polynomial is a poor predictor of the di-
mensions of the lumbar spine. Even though, this fitting curve led to the best
R? values, the characteristic variability of the 3" order polynomial curves
lead to values which vary over an wide range and in some cases simply not
physiological (e.g. negative dimensions). Moreover, in some cases such as
for the pedicle depth and width, the range of validity of Kunkel’s correla-
tion analysis do not cover the possible variation of the VBHp (Figure 3.11).
In fact, the 3" order polynomials are characterized by a change in their
curvature for values around 30 mm, which do lead to negative dimension
(simply not a true physical representation). The same considerations are
made for second order polynomials, in which the change of curvature can
lead to non-valid values. Therefore, Kunkel et al’s [44] correlation is valid
for a narrow range of VBHp due to the nature of the fitting used (37 or-
der polynomials), limiting the application of its formulation, and overall it
showed the highest error values (despite the better R? values). 1% order
polynomials resulted more accurate and better followed the subject-specific
trends. This emphasizes the need to compare generalised correlations with
actual trends seen per individuals, to ensure that the two are comparable.
The predictions, obtained from all the correlation functions, were compared
with subject-specific dimensions (VHP and SSD). The results showed that
the evaluations based on Breglia [36] and Wolf et al. [26] functions are accu-
rate (<20%) for the EPWs, EPDs and PDH. Focusing on the linear fitting
results evaluated in this study (Group b), the dimensions based on Alam et
al. [43] and Wolf et al. [26] correlations followed the subject-specific trends
and the error values were higher against the VHP dataset, than the new
dataset. It is worth noting that the VHP dimensions are for only one sub-
ject, whereas in the SSD the number of specimens was n=3 (i.e.: this new
dataset includes anatomical variability between subjects for each dimen-
sion).

The main factors influencing the accuracy of the correlations are the eth-
nicity of the datasets evaluated, the number of subjects included in the
subject-specific dataset and the gender.
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Figure 3.11: Variability of the 3rd order polynomial obtained from the corre-
lations of Kunkel et al. [{4], where the EPWs, PDWr and PDHr are plotted
on varying the VBHp.

The ethnicity of the dataset included in this study are not consistent (cau-
casian, Israeli, Pakistani and unknown in the case of Panjabi [31]) and as
stated by Alam et al. [43] there is an important difference on the morphology
of subjects from different origins. Therefore, the error values are affected
by the different ethnicity of the datasets evaluated which were compared
with caucasian datasets (new dimensions) and Panjabi et al’s [31] dataset,
where the ethnicity was not specified. In order to obtain a more consistent
study, the datasets should be categorized by ethnicity and the accuracy test
should be evaluated with a control group with the same characteristics (gen-
der, ethnicity).

The gender of the specimens affects the dimensions of the vertebrae, as de-
mostrated from the Alam et al’s [43] correlations, where different trends and
variability between the lumbar levels are reported. Even though the gender
of the study of Alam et al. [43] and the new subject-specific measurements
were stated, it is not stated in the study of Panjabi [31] and Wolf et al. [26].
Thus, the correlations previously evaluated from Breglia [36] and Kunkel
[44], and those of Wolf [26], are characterised by a range of variability due
to the mixed gender of the datasets and the influence of the gender in those
studies can not be estimated a priori. Hence, none of these studies evaluated
sexual dimorphism, which would affect the shape of vertebrae [229, 27, 230].
The number of subjects affects considerably the statistics about the subject-
specific dataset. Evaluating a numerous amount of specimens, more vari-
ability of the anatomical dimensions would be included in the study, and
subsequently the correlation analyses would take in consideration a wide
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anatomical description obtaining realistic and representative functions of
the individuals. For this reason, the new dimensions have been used only
to evaluate the accuracy of the correlation analyses obtained from the pre-
vious studies [43, 26, 36, 44]. Future studies would require the collection of
high number of data-scans, dividing the dataset according to the following
criteria:

e known sex, to differentiate the measurements according to the gender;
e ethnicity of the specimens to obtain coherent measurements;

e no pathologies to the lumbar spine reported for the subjects.

3.6 Conclusions

The linear correlation analyses evaluated in this study follow similar trends
of the subject-specific datasets (VHP and new measurements). In particu-
lar, the correlation analyses evaluated by Breglia and those estimated from
Wolf’s datasets described well the parameters evaluated, obtaining error val-
ues less than 20% when compared with subject-specific datasets. However,
more numerous datasets are required, to take into account the anatomical
variability between subjects. Critically, collecting measurements including
the gender of the specimens and the ethnicity, would be considerably bene-
ficial as they influence the anatomical dimensions.

Currently, the dimensions collected in literature are reported accordingly
with the final aim of each specific study and not all the dimensions which
characterize the anatomy of the vertebrae are stated. The dimensions listed
in Panjabi’s dataset describe exhaustively the vertebral geometry and it
should be followed when collecting new measurements. However, the de-
scription of method used in each study, in term of reference points adopted
to furnish a repeatable strategy is required to identify and measure the char-
acteristic dimensions.

In the development of a parametric and scalable model, that has been the
focus of chapter 4, only Breglia et al’s [36] dataset can be used (using the
1% order polynomial). It is currently the most accurate between the studies
considered and, critically, contains the most complete set of dimensions to
describe the vertebrae anatomy.



CHAPTER 3. MORPHOMETRIC MEASUREMENTS 55

POPULATION OF

{ GEOMETRICAL MODELS
AGE-HEIGHT H ]

Morphometric study

»“5”@“ GENDER

ETHNICITY

Geometrical model .

“fl

@ o
a.

[ R

C sy, e s e e e €.

SUBJECT-SPECIFIC SUBJECT-SPECIFIC
i GEOMETRICAL MODEL

-

Figure 3.12: Future implementation of morphological studies in the LMG
toolbox where a baseline model of the vertebrae and IVD (a) is parametrised
based on dimensions evaluated through correlation analyses (b), based on
the age and height of a patient, or on subject-specific dimensions measured
from data scans (c). The parameterization creates either a population of
geometrical model (f) or a subject-specific model (e) according to the initial
input (respectively b and c). The FE model is the generated from the toolbox
and solved in FEBio (g). Further explanations are given in chapter 4.



Chapter 4

The Lumbar Model
Generator

4.1 Introduction

The development of new devices and the improvement of treatment tech-
niques are needed in the care of LBP diseases. To meet design and regulatory
requirements, a medical device is subjected to a review between each phase
of the product design [231]. Each of these reviews introduces additional
costs to the device development delaying its final release. New technologies,
such as 3D printing, have assisted with this iterative design process, allowing
for the rapid production of cost-effective prototypes. However, the design
process of a medical device has to be evaluated in relation with the bodies
and tissues with which it interfaces. These interactions can be simulated
using finite element (FE) models and can be combined with iterative opti-
mization of the design topology and mechanical properties.

Lumbar spine models available in literature are mostly subject-specific mod-
els based on magnetic resonance (MR) or computed tomography (CT) imag-
ing [136, 96], or models based on averaged approximated dimensions which
use relatively simplified geometries [232, 44, 36, 233, 234]. While models
based on medical images precisely represent the subject-specific geometry,
the process to generate these models is both time consuming and expen-
sive. Moreover, to provide wider understanding, beyond a single individual,
subject-specific models require a number of models to be solved, for statis-
tical power [113]. However, idealised models based on average dimensions
often lack the anatomical detail that is necessary to be of clinical value,
with their geometries typically too simplistic. Further, several studies have
highlighted the importance of anatomically representative geometry in sim-
ulations of the spine [114, 14] due to its effects on the intradiscal pressure,
the range of motion and facet joint contact forces. Clearly, this is of rele-
vance to any spinal device developed which use such geometry for the spine.

o6



CHAPTER 4. THE LUMBAR MODEL GENERATOR 57

Recently, the Food and Drug Administration (FDA) and the Medical Device
Innovation Consortium (MDIC) focused on the necessity of improving the
regulatory system delivering new devices more quickly through the use of
computer modelling and simulations [17, 14]. Accordingly, parametric and
anatomically accurate models are needed to implement the range of com-
binations of geometrical features necessary to evaluate the huge variety of
clinical cases that can be addressed using the designed device. This method-
ology would speed up the acceptance of new devices, reducing the risk of
failure of the device.

The aim of this study was to develop an automated technique to obtain
a population of anatomically representative models, which can be used to
evaluate the effects of spinal implants on distinct anatomical features of the
spine. In this study, a software toolbox named the Lumbar Model Gen-
erator (LMG) was developed and implemented using MATLAB. Using a
parameterized baseline model, the LMG can be used to create a population
of geometric models of the lumbar spine (from the L1 to L5 including the
intervertebral discs), whose surfaces and solid regions are meshed allowing
for direct use in FE models.

The parametric model generated by LMG, has an anatomically accurate
geometry, as evaluated through a comparison with the male dataset of the
Visible Human Project (VHP) [119], described in Section 4. The models
can be reconstructed through the definition of 17 parameters. The parame-
ter set is either determined directly from subject-specific measurements, or
can be estimated from correlation analyses based on subject age and height
(described in Section 3). Thus, geometric models are fully parametrized and
scalable, so a range of anatomical geometries can be easily generated and
replicated.

In this chapter the capabilities of the LMG toolbox are described, which
includes: (i) the methodology for developing the geometry, (ii) the correla-
tion analyses implemented to evaluate the anatomical dimensions, (iii) the
process to obtain the meshed solid model ready to use in FE software. The
innovative functionality, here introduced but object of further publications,
is the automatic pre-processing of the solid meshed model and FE simula-
tions. The material properties, boundary conditions and contact properties
can be defined by the user and the simulation can be directly run from
MATLAB, using FEBio (FEBio Software Suite). As far as the authors
know, the LMG is the first toolbox which allows the accomplishment of the
entire workflow (described in Figure 1) from the generation of a geometrical
model, the pre-processing of the FE model and then obtaining the solution
of the analysis. This chapter is based on the paper published on Interface,
the Royal Society [110].
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4.2 The Lumbar Model Generator (LMG) toolbox

4.2.1 General features of the toolbox

A LMG software toolbox that can generate the geometry for biomechanical
models of the lumbar spine was developed and implemented in MATLAB
(MATLAB, R2017a, 9.2.0.538062, The MathWorks Inc., Natick, MA, USA).
The workflow of the toolbox is shown in Figure 4.1. The toolbox generates a
complete lumbar spine model, including the five vertebral bodies (L1 to L5)
and the four intervertebral discs (IVD) interposed between them. The main
geometric features of the vertebrae and IVD follow recommendations from
previous studies [44, 32]reported as linear and angular parameters used in
the generated model (Figure 4.2). Models are parameterized such that they
can be generated using two alternative techniques: (i) based on subject-
specific dimensions (which can be directly inputted by the user) directly
measured from subject-specific data (e.g. image data and scans), or (ii) us-
ing average dimensions derived from correlation analysis based on subject
height and age (described further in section 4.3). Once the geometrical data
has been generated, the triangulated surface geometries can be exported
to a stereolithography (STL) file, which is compatible with computer aided
design and finite element analysis software packages. Further, the surface
model can be meshed and exported to FE software. Using FEBio to run
the FE analysis, the meshed model can be pre-processed. Defining mate-
rials, boundary conditions and contact properties through MATLAB, the
simulations can be requested as an output of the LMG.

4.2.2 Geometrical model
Vertebrae model

An STL file of a lumbar spine (50th percentile) was supplied by an indus-
trial partner (S14 Implants, Pessac, France), used in a previous study [235].
This model was used as a template to reproduce the geometry of the lumbar
vertebrae and the intervertebral discs. The two key assumptions were: (i)
the geometry of the healthy spine is reproduced and (ii) the lateral symme-
try, across the mid-sagittal plane, applies to both the vertebrae and IVD
[233]. Each vertebra was divided into four regions: the vertebral body, the
pedicles, the transverse processes and the spinous process (Figure 4.1B).
The surfaces characterizing each region were identified and the best fitting
polynomial curves were selected to be used to build an accurate and scalable
model of the vertebrae. The solid model was parametrised, identifying the
dimensions reported in literature for each region, to obtain a scalable model.
The parameters identified (listed in Figure 4.2) can be independently scaled
according to the dimensions obtained from the subject-specific scans or from
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Figure 4.1: Workflow of the lumbar model generator, from the generation of
the geometrical model to the solution of the FE simulation. The FE model
is shown for the purpose of description and will be described in details in
chapter 5. A. The inputs of the LMG are the baseline model previously
generated and the dimensions, measured on subject-specific scans or average
dimensions based on the height, age and gender of a patient. B. Parame-
terization of the geometrical model. The anatomical dimensions have been
identified in each region of the vertebrae and IVD and then independently
scaled. Accordingly with the input, the output of this step can be a popu-
lation of geometrical models or a subject-specific model. C. Generation of
a triangulated surface model and output of STL files. D. Solid meshing
of the vertebrae (tetrahedral elements) and the IVD (hexahedral elements).
The output of this step can be exported to commercial software. E. Pre-
processing of the meshed model, defining the material properties, boundary
conditions, contact properties and then run the simulations in FEBio.
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Figure 4.2: The picture shows the input requested in the toolbox, in the first
and simplest case only body height, age and gender are requested. In the
second case, the dimensions identified have to be added as input.

the correlation analysis (described further in section 4.3). The following ver-
tebral dimensions have been implemented:

e width of the upper and inferior endplates (EPWu, EPWi);

depth of the upper and inferior endplates (EPDu, EPDi);

e pedicle height and width (PDH, PDW);

e spinal canal depth and width (SCD, SCW);

e width of the upper and inferior transverse process (TPWu, TPWi);
e spinous process length (SPL);

e vertebral posterior body height (VBHp);

e pedicle sagittal inclination (PDIs);

e pedicle transverse inclination (PDIt);

e intervertebral disc width and depth (IVDw, IVDd);

e intervertebral disc height (IVDh);

e lumbar curvature («)
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Intervertebral disc model

The key variable to describe the disc geometry is the IVD height [114, 14],
thus only the superior and inferior surfaces have been reconstructed with
the best fitting polynomial curves. The height is not constant throughout
all the geometry, but it is characterized by different heights in the posterior
and anterior aspects [236, 226]. However, the average height for the IVD
has been used for the LMG, consistent with literature [237], and the anterior
and posterior aspect were linearly scaled. Moreover, the perimeter of each
endplate was simplified to be kidney-bean shaped [32, 235, 236]. The IVD
was exported as composed of two different parts, the annulus fibrosus (AF)
and the nucleus pulpous (NP). The volumetric percentage of the two bodies
has been reported in the literature [235, 236, 44] and a proportion of 44%
NP and 56% AF, corresponding to a healthy spine, was used to guide the
model [235]. However, these values can be altered to simulate different
pathologies. Disc degeneration affects the mechanical behaviour of the IVD,
with changes in the composition of the AF and NP, and through structural
changes of the disc. Thus, by implementing the volumetric fraction and the
height and width of the disc as variables (further discussed in chapter 6), it
is feasible to use the model developed to simulate the mechanical behaviour
of degenerated discs [237].

4.2.3 3D orientation

The IVDs and vertebral bodies generated from the lumbar generator (Sec-
tion 4.2) were arranged in 3D space (Figure 4.3 ). The lumbar section follows
an arc of circumference [238] and in this study the value of 43.39° was used
[239] listed as « in Figure 4.2. The centroid of each vertebral body and IVD
bodies were evaluated and used to distribute the bodies in 3D space. The
vertebrae have been rotated to follow the lumbar angle («), aligned over
the lumbar curvature and spaced using the IVD height at each level. The
lumbar curvature is a further input parameter («) which can be varied by
the user if required for instance, to simulate pathological conditions.

4.3 Correlation analysis and evaluation of dimen-
sions

The LMG includes a function which enables the automated generation of full
vertebrae and discs based on the stature and age of a subject. This follows
previous studies which have correlated these two parameters to vertebral
dimensions [44, 36, 32, 237, 223, 45, 240]. According to Jason et al. [240],
the combined length of the cervical, thoracic and lumbar spine (C-T-L) can
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Figure 4.3: Lumbar spine model. (a. lateral, b. anterior posterior views)
generated from subject-specific measurements obtained from the VHP and
listed in Table 4.5 and Table 4.6.

be correlated with the stature of a subject according to Equation 4.1:
h=alcrr, +b (4.1)

where a and b are the correlation coefficients, listed in 4.1, between the
stature (h) of a person and the length of the cervical-thoracic-lumbar seg-
ments (lo7r) of the spine (where CTL refers to cervical-thoracic-lumbar).
Then, the posterior height for each vertebral body of the lumbar spine can
be evaluated as a percentage of the total length, o7y (Table 4.2) [45].
Likewise, the IVD height is correlated with the age of the subject according
to the Equation 4.2

hrvp = cngge + d (4.2)

where hyyp is the height of the IVD, n44. the age of a person and ¢ and
d the correlation coefficients listed in Table 4.3 (35).

The dimensions of the vertebra, described in Figure 4.2 have been cor-
related in previous studies to the vertebral posterior height (Vps,) [44, 36]
based on datasets originally published by Panjabi [32]. Due to the axial sym-
metry hypotheses and to the more complete description of the anatomical
features, as discussed in chapter 3, the correlation analysis used by Breglia
[36] has been implemented in the LMG according to Equation 4.3

Vpar = fVepHp + 9 (4.3)
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Table 4.1: Correlation analysis between the stature of a person and the spine
segments, reported in Jason & Taylor 1995 [240]. The parameters a and b
are the coefficients of the regression Equation 4.1, where a has no units and
b is in [mm)].

Segment a b [mm]
White males C-T-L  2.069 47.258
Lumbar 4.058 95.562
White females C-T-L.  2.334 29.735
Lumbar 4.375 82.367
Black males C-T-L  2.420 29.395
Lumbar 4.696 85.723
Black females C-T-L  1.661 70.336
Lumbar 3.926 91.507

Table 4.2: Percentage of the posterior height of the lumbar vertebrae, relative
to the full length of the vertebral column [45].

Vertebrae Male Female

L1 5.55 5.59
L2 5.60 5.77
L3 5.66 5.89
L4 5.63 5.87
L5 5.71 5.91

where Vpppp is the vertebral body posterior height, V), identify the pa-
rameters identified in Figure 4.2, f and g are correlation coefficients shown
in Equation 4.3. The entire sets of equations based on correlation analyses
from literature, described above, were used to generate a full lumbar spine
model. Once the age and the height of a patient were defined, these val-
ues were automatically evaluated in the script and sent as input parameters
ready for use in the LMG (subsection 4.2.3).

4.4 Accuracy

The accuracy of the model generated through the LMG was assessed through
comparison with the male dataset of the Visible Human Project (VHP) [119].
The male dataset was segmented from the axial cryosection photographs
of a 38 year-old man, of height 180.34 cm. Two models were generated,
importing the dimensions with the two procedures described above (section
section 4.2):

1. The vertebral dimensions were generated following correlation analy-
ses, importing only the age (38 years old) and height (180.34 cm) of
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Table 4.3: Correlation coefficients (¢ and d) describing the relationship be-
tween height and age (see Equation 4.2). These equations are valid for male
and female subjects between 20 and 69 years

IVD level Male Female
¢ [mm] d[mm] c¢[mm] d[mm]
T12-L1  0.04903 5.19 0.04840 4.33
L1-L2 0.06201 6.80 0.04771 6.27
L2-L3 0.06687 8.32 0.04982 8.17
L3-1L4 0.05455 11.05  0.05052 9.85
L4-L5  0.06952 10.76  0.05979  10.51
L5-S1 0.08630 9.73 0.08170 9.26

the VHP dataset

2. The vertebral dimensions were directly measured from a 3D recon-
struction of the VHP (Table 4.5 and Table 4.6), and implemented
directly into the LMG (i.e. following case-2 in section 4.2.

The accuracy of the generated vertebrae and IVD models were evaluated
against the VHP model using CloudCompare (version 2.9, GPL software,
retrieved from http://www.cloudcompare.org/). The Iterative Closest Point
265 algorithm was used to register the STL models and assess the RMS (Root
Mean Square) error values. Moreover, the accuracy of the 3D orientation
of the generated model, using the VHP dimensions, and the VH model has
been examined, evaluating the RMS errors.

4.5 FE model pre-processing

4.5.1 Solid tetrahedral meshing

The geometrical model produced by the LMG is in the form of a point cloud
and this section outlines the steps required to import the model into FEA
software. In this section, the meshing procedures are described. Once a
model has been created and meshed, the LMG allows the user to choose to
work either with commercial or open source software in the model implemen-
tation. Alternatively the model can be prepared using the LMG toolbox and
solved directly with FEBio. The pre-processing of the geometry developed
(defined in section 4.2.2 and 5.2.2) for FEA was performed in two separate
steps for the vertebrae and the IVD.

Vertebral bodies

The point cloud of each vertebra was meshed in MATLAB, using the GIB-
BON toolbox [241], and Tetgen [242]. In order to simulate the cortical shell
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Table 4.4: Correlation coefficients of the lumbar vertebra with the posterior
height of the vertebra

Linear parameters

Parameters fl-] g [mm]
EPWu Upper endplate width 1.684 -1.598
EPWi Inferior endplate width 1.762  -0.765
EPDu Upper endplate depth 1.233 2.838
EPDi  Inferior endplate depth 1.135 5.391
SPL Spinous process length 2.002 13.823
PDH Pedicle height 0.553 2.049
PDW  Pedicle width 0.368 1.218
TPW  Transvers process width 1.407  36.851
SCW  Spinal canal width 0.090 16.553
SCD Spinal canal depth 0.121  17.777
SPL Spinous process length 2.0017 13.823

Angular Parameters

Parameters f [mm] g

PDIs Pedicle sagittal inclination -1.246  46.075

PDIt Pedicle transverse inclination  0.042 4.683

Table 4.5: Vertebral dimensions measured from the VHP.

Vertebrae Dimensions [mm] L1 L2 L3 L4 L5

EPWu 46.60 49.74 48.97 52.69 54.50
EPDu 36.16 43.51 42.53 40.23 37.94
EPWi 48.85 50.47 52.19 53.44 54.19
EPDi 37.72 4475 39.04 38.73 36.13
VBHp 29.40 31.63 30.72 30.13 28.98
PDH 15.72 16.28 17.42 18.05 17.26
PDW 819 9.29 13.60 14.96 15.00
SPL 36.06 38.58 42.63 36.72 36.00
PDIs 15.02 14.74 14.40 14.57 14.12
PDIt 5.73 5.74 575 574 5.76
SCD 18.00 16.90 16.04 17.00 17.00
SCW 22.27 2224 2256 24.00 25.00
TPWu 74.21 88.84 96.89 96.79 97.45
TPWi 2497 2243 26.80 31.25 42.14

in the vertebral bodies, during the meshing procedure, the internal can-
cellous core was selected and specific element indexes were assigned. The
thickness of the cortical shell is either defined by the user or left at its default
value and then different material properties can be assigned (Figure 4.4).
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Table 4.6: Dimensions of the IVD measured from the VHP.

IVD dimensions [mm] L1-L2 L2-L3 L3-L4 L4-L5

IVDh 9.0r 11.11 1291 11.07
IVDd 36.16  43.51 42,50 40.23
IVDw 46.60 49.74  48.97 52.50

Table 4.7: RMS error values of the accuracy test between the VHP model
and the models obtained with the LMG toolbox using the two procedures:
evaluating the dimensions on the VHP model and using the measurements
obtained from the correlation analyses.

VHP Age and height | IVD  VHP dimensions Age and height
dimensions correlation correlation
RMS [mm] RMS [mm] RMS [mm] RMS [mm]

L1 1.51 1.68 L1-L2 1.11 3.19
L2 1.54 1.59 L2-L3 1.18 3.90
L3 2.13 2.39 L3-L4 1.31 3.38
L4 1.82 2.54 L4-L5 1.57 3.72
L5 2.94 4.30

Figure 4.4: The vertebral body was divided into cancellous and cortical bone.
The thickness of the cortical bone can be defined by the user in the toolbox

Intervertebral discs

The high complexity of the IVD microstructure, where collagen fibres are
embedded in the ground substance, required the definition of a structured
mesh. A custom algorithm was developed in MATLAB, using the Gibbon
toolbox, to mesh the AF and the NP. The parameters to define the mesh
size are the perimeter points of the AF (pp), the volumetric percentage
(VP) of the IVD, the number of layers (nl) which will be implemented in
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the AF and the number of elements in the axial direction (nz) (Figure 4.5).
Initially, a 2D mesh structure was defined, which combined the concentric

Figure 4.5: IVD mesh. (a) Representation of the surface, meshed by quad-
rangular elements, where in the AF they follow the external perimeter, ar-
ranged in nl layers. (b) Division between NP and AF, and the volumetric
ratio (VP) is an input of the toolbox. (c) The number of elements nz can be
defined to obtain a finer mesh.

alignment of the elements and an internal rectangular grid, subsequently
smoothed with an elliptical perimeter to improve the mesh quality. The
positions of the perimeter points are concentrically scaled and replicated
nl times to reproduce the concentric alignment of the collagen fibres. The
mesh element size depends on the VP, on the number of layers and on the
number of points taken on the perimeter (Figure 4.6). The elements in the
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Figure 4.6: Mesh convergence test on varying the geometrical parameters
(nl, pp, nz) for the IVD mesh.

AF were oriented following the perimeter and arranged in concentric layers,
in order to mimic the layers of fibres of collagen and assign their material
properties so as to represent fibre-orientation.
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Mesh quality

In order to check the mesh quality in the generation of several models, the
mesh quality was evaluated through a sensitivity analysis. In the case of the
vertebral bodies, two cases were evaluated: 1. Different mesh dimensions
were considered (1.2 to 2.2 mm); 2. Three models were generated based on
different person heights (1.75 m, 1.80 m, and 1.82 m). The mesh quality
criteria evaluated from TetGen included the aspect ratio, the face angles and
the dihedral angles (the definitions are reported in Si [242]). The evaluation
of the mesh quality does not have a unique definition, but it depends on the
application [242, 243]. Consistent with previous studies, the mesh quality
was judged satisfactory when at least 95% of the elements had an aspect ratio
less than 4, and face angle less than 100° and dihedral angles were less than
130° , consistent with existing literature [243, 244, 245, 246, 50]. A mesh
convergence test was performed in FEBio for the L1 vertebra at different
mesh sizes (1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm), applying 1 MPa
pressure over the superior surface. The difference in the stress between the
model with the finest mesh and the others was evaluated and the results
led to the selection of 1.6 mm with an error of less than 5% (as compared
to subsequent mesh refinement). The frequency distribution of the quality
criteria of the L1 vertebrae was then compared either with the distribution
of the other vertebrae (L2 to L5) or the distribution of the models based on
different body dimensions, through a quantile-quantile plot (QQ-plot).
The IVD mesh was evaluated through a sensitivity study on varying the
parameters which influence the mesh size pp (64, 72, 80, 88, 96), nl (8, 9,
10, 11, 12) and nz (6, 8, 10, 12, 14), described above. A pressure of 0.5 MPa
was applied to the upper surface with the lower surface fully constrained,
further, neo-hookean material properties were assigned to both the AF and
NP (Earp =5 MPa, 4r = 0.3; Exyp = 3 MPa, yp = 0.3 , where E4p and
Enp are the Young's moduli and v4r and vyp the Poisson's ratio for the
AF and NP [96]).

4.6 Model evaluation

4.6.1 Comparison between the LM G generated and the VHP

A comparison between the VHP spine and the generated models are shown
in Figure 4.7, and the RMS values are reported in Table 4.7. The quantita-
tive analysis highlighted the areas of the model which differ most from the
VHP model. In particular, the largest differences have been identified in the
posterior vertebral structures, where the superior and the inferior articular
facets, lamina and pedicles of the generated geometry are less detailed. For
all the vertebrae, the maximum RMS error for the models generated with
the correlation analysis were higher than for the models generated using
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Figure 4.7: Accuracy evaluation. Qualitative evaluation of the accuracy
between the VHP model in black and the generated model in orange a. IVD,
b. wvertebrae; c. quantitative evaluation of the accuracy through the RMS
error values for the vertebrae.

the VHP dimensions. In both cases, the L5 vertebrae geometry showed the
highest RMS values. Lower RMS values are shown when the dimensions are
directly measured on the subject specific model and then imported into the
algorithm. In fact, using the correlation analysis method based on previous
studies [44, 36], the model is affected by the grade of correlation between
the variables. High and moderate errors have been shown in the dimen-
sions, which had low (R? less than 0.5: PDW, SCW, SCD, TPW, PDIt,
PDIs) and moderate correlation coefficients (R? between 0.5 and 0.8: SPL,
PDH), provided by [36]. Figure 4.8 shows the accuracy of the 3D orientation
between the generated model and the VH model. Due to the supine position
of the cadaveric specimen during the image acquisition, the curvature of the
lumbar curve is reduced as compared to an upright position. Nevertheless,
using CloudCompare a best fit registration has been performed, obtaining
a mean RMS value of 2.73 mm.

4.6.2 Mesh quality evaluation

Assessment, of mesh convergence demonstrated a suitable compromise be-
tween a mesh size (which preserves geometric precision) and variation in
predicted results. In the case of vertebral bodies, the differences in stress
from the finer model are less than 5%, where the fine model has a mesh
size of 1.2 mm. The mesh convergence study on the IVD found that the
differences in the stress values were less than 6% varying the nl, nz and pp
parameters (Figure 4.6). A sensitivity analysis was performed to evaluate
potential differences in the mesh quality throughout the vertebrae (L1-L5) or
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Figure 4.8: Accuracy on the whole model. The VH model (black) has been
overlapped on the model generated (orange), using the best fit registration
in Cloudcompare. Due to the supine position of the cadaveric specimen, the
lumbar curvature is lost in the VH model.

on varying the dimensions selecting different body heights of a patient. The
mesh quality obtained in both approaches was checked through a QQ-plot
where the vertebra L1 with element size of 1.6 mm, generated as average
model based on a person of 1.75 m height, was taken as reference. The QQ-
plots in Figure 4.9 demonstrate that there were no differences between the
distributions on varying either the vertebrae considered (Figure 4.9a) and
the dimensions of the specimens (Figure 4.9b). The sensitivity analysis on
varying the geometrical dimensions, in both the IVD and vertebrae bodies,
showed that there were no effects on the mesh quality. The mesh quality
reported that more than 95% of elements had an aspect ratio of less than 4,
more than 98% of elements had a face angle less than 100° and more than
95% of elements had a dihedral angle less than 130°, consistent with other



. -Q plot aspect ratio
a 110000— Q-Qpl P!
O o — *
LT
T e
S 5000 g T
3 I :
>
o ] | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 aC
X Quantiles
a.2 4 210 Q-Q plot face angle
B3
€
821
&
> 10
o | | | | |
0 0.5 1 1.5 2 2.5 :
X Quantiles #10*
a3 ¢ Q-Q plot dihedral angle
TS
€
821
&
> 10
o | | | | |
0 0.5 1 1.5 2 2.5 :
X Quantiles #10*
. Q-Q plot aspect ratio
15000—
g _*
T 10000 L -
J s000- [ g TI T
op———T | ! ! ! ! | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
X Quantiles
b.2 4 #10° Q-Q plot face angle
TR
83 R
2 e T
(%27 /1/’/’4/7 ri T T
— S
T e
’,:fk‘—/ ‘ ‘ ‘ ‘ |
o
0 0.5 1 1.5 2 2.5 3
X Quantiles #10
b.3 4 #10 Q-Q plot dihedral angle
o+
" I
3+ -
£ e -
c i
S 2 ey
15 T -+
> 1 -
' %ﬁ:‘;‘ﬁ‘
0 = ! | | I | |
0 0.5 1 1.5 2 2.5 3
X Quantiles #10
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studies [247]. Quantitative results of the distribution of the dihedral angle
are shown in Figure 5.5, where the two histograms show the distribution of
the maximum and minimum dihedral on the total number of elements.

o] 1 1.5 X102
Minimum dihedral angle [deg] Maximum dihedral angle [deg]

Figure 4.10: Qualitative analyses of the dihedral angles for the tetrahedral el-
ements of the vertebral bodies. The minimum (a) and mazximum (b) dihedral
angles are shown and the colormaps refer to the histograms below.

4.7 Discussion

The Lumbar Model Generator (LMG) is a toolbox which allows the genera-
tion and simulation of finite element models (further described in chapter 5
and chapter 6) for the lumbar segment. It is possible to obtain averaged
models, imported using as input only the height, age and gender of a pa-
tient, where the dimensions are evaluated from a subroutine based on the
correlation analysis described above. Another option is to input the data
evaluated from subject specific scans, or alternatively opting for a hybrid use
of the tool, changing the dimensions desired from the averaged model. In
the case of the former, it is not necessary to have clinical data available, and
a population of models can be generated based on the gender, age and height
of patients. The output can then be pre-processed in commercial software
able to read STL file or input file for commercial software can be requested
(e.g. Abaqus, Hyperworks). The main novelty is the possibility to obtain
from the LMG, using as input a set of dimensions: 1. a geometrical model,
based on dimensions obtained from subject-specific scans or on correlation
analysis; 2. obtain a solid meshed model; 3. pre-process the model directly in
MATLAB; 4. run the simulations using FEBio. The LMG could be seen as
having two end-user applications: (i) clinical/industrial applications where



CHAPTER 4. THE LUMBAR MODEL GENERATOR 73

a device is assessed using FEA on a range of models; (ii) engineering science
applications where multiple variables are assessed to determine the sensi-
tivity of whole spine mechanics to these variables. Pathological conditions
can be evaluated implementing models with different lumbar curvatures to
compare to the averaged lumbar curvature, or changing the volumetric ratio
between the NP and AF or varying their material properties [50].

Considering that the LMG was intended as an averaged model, which
does not take into account the subject-specific anatomical variations, the
models generated through the LMG toolbox are anatomically realistic. More-
over, subject-specific models are affected by errors due to the segmentation
procedure. In fact, the accuracy of the geometry obtained from scans de-
pends on the type of scan used (CT or MR), their respective resolutions
(inter-slice resolution ranging between 0.6 mm to 2.5 mm), the technique
used for the segmentation (mean RMS errors of around 1 mm) and the op-
erator expertise (RMS errors ranging between 0.39 to 1.22 mm) [109][108].
Hence, the RMS errors obtained in this study are comparable to the range
of accuracy of subject-specific models and is thus considered acceptable.
The highest differences between the VPH model and the generated one have
been highlighted in the accuracy test and they are principally localised in the
posterior area of the vertebrae. The effect of the geometry of the spinous
processes on the biomechanics of the spine has been evaluated [114, 14],
however, no direct influence has been identified. Future studies would inves-
tigate the limitations due to the simplified geometry of spinous processes.
The RMS error values, showed good agreement with the subject-specific
model: the RMS values were less than 2.94 mm when the model was based
on the VHP dimensions, and RMS values less than 4.30 mm when generated
with correlation functions. In particular, greater difference has been high-
lighted at the L5 level (RMS values between L1 and L4 less than 2.54 mm
while it is 4.30 mm at the L5 level). This is justified by assessing previous
studies [44, 248, 249], which did not consider the L5 vertebrae in morphome-
tric studies due to the high variability of its geometry. Moreover, the higher
RMS values are related to the lumbar vertebrae obtained from the corre-
lation analysis, which are affected by uncertainties, as reported in chapter 3.

Unfortunately, the measurements between the different correlation and
morphometric studies could not be merged since those studies did not con-
sider the same anatomical parameters, gender or ethnic group, which would
affect the whole correlation analysis [43, 250]. Further studies are required
to obtain more complete datasets of morphological measurements and to
evaluate new correlation analyses, as described in chapter 3. Moreover, the
fitting of the posterior part of the vertebrae shall be improved and further
parameters (i.e.: thickness and height of the spinous processes) will be added
to better describe their geometry.
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The results on the mesh quality and its reproducibility on different geome-
tries showed that the automated generation leads to valid meshed models.
Using a fixed mesh size, according to the mesh convergence test, demon-
strated that the mesh quality of the vertebrae was not sensitive to the vari-
ation of the vertebral dimensions. Hence, the FE model can be directly set
up to run the simulations without further time-consuming actions.

Several models have been developed based on subject specific datasets
[165, 178, 251, 252]. Subject specific models have the advantage to repro-
duce the anatomy of the patient accurately, with the possibility to include
soft and hard tissue with high resolution. However, they reproduce the
anatomy of an individual subject and reconstructing these individual mod-
els is time consuming. Further, they require extensive pre-processing. This
final point is actually a barrier to clinical implementation because of the need
to have someone dedicated to develop and solve the models. The LMG offers
an anatomically representative alternative to such models, as it is scalable
to average human dimensions, it does not require an extensive segmenta-
tion processes. Moreover, the pre-processing is accelerated further since the
models can be directly meshed and the material properties, boundary and
loading conditions can be imported in order to obtain a ready-to-solve FE
model (described in chapter 5).

In the last decades several models have been created using average di-
mensions [253, 233, 234, 114] obtaining models to get quantitative analysis
over the biomechanics of the lumbar spine. However, all of them have used
approximations in the anatomy of the vertebrae. Campbell et al. [116] devel-
oped an automatic tool to reconstruct models from data scans without user
intervention and with low computational cost. This enables highly detailed
models from subject specific data. However, the limitation is that it requires
having data from clinical studies. As far as the author knows, this current
study is the first parametric model which generates a full finite element
model and includes the potential for anatomical variability and the flexibil-
ity to input the dimensions of an individual subject. This model has been
used to perform a preliminary sensitivity analysis (descibed in chapter 6),
varying morphological parameters and material properties, and further stud-
ies will be performed varying the dimensions most subjected to change in
the population. These models could be used in the design process of new
devices, or to develop custom made implants and assess their performance,
as recently recommended by the FDA and MDIC [17]. The biomechanics
of the spine has been identified as being sensitive to parameters such as the
lumbar curvature, the vertebral body height, IVD height and the width of
transverse processes [182, 134]. Therefore, the evaluation of the functionali-
ties of new devices and how they influence the biomechanics of the spine, in
several anatomical configurations, will lead to the design optimization and
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customization of new implants. The intention is to implement the lumbar
model to assess the validity of devices such as BDyn (chapter 7), a poste-
rior stabilization device produced by S14 Implants and described elsewhere
[254], to assess the performance of the device and its effect on the spine.
Further optimisation of posterior stabilization devices is of value because,
unlike fusion, such devices retain motion at the spinal segment of interest.

The current study has focused on the concept of developing an anatom-
ically accurate but automated model. Future releases of the toolbox would
include the definition of the 1-D non-linear spring elements to simulate the
action of ligaments [165, 80|, which are placed in the corresponding anatom-
ical location. The facet cartilage will be included, defined as a 1D element
in between the anatomical location. In future development, facet joints and
the definition of the facet contact properties, and the attachment points for
the ligaments will be automatically implemented. The toolbox has been
released on Zenodo [255] and the development version is freely available on
GitHub.

4.8 Conclusion

The LMG toolbox has been developed with the intent of helping in the de-
sign optimization of spinal devices such as posterior stabilization devices as
well as the development of custom devices. The developed toolbox enables
an automated workflow which is user independent and fully compatible with
open-source software (Octave, FEBio, Calculix). It constitutes a tool that
can be used in clinical studies to improve the decision making process to
select the best intervention. The clinicians, supported by engineers, using
the GUI would be able to simulate and understand the effect on the biome-
chanics of the specific patient taking in to account the anatomical variation.
In fact, it will enable the use of average dimensions or importing the di-
mensions measured from data-scans or evaluating a hybrid model where the
dimensions of a desired structure can be altered, then evaluating the spe-
cific case to treat. This toolbox was released on an on-line platform with a
user-friendly GUI, and chapter 5 describes the development and evaluation
of a FE model. It can then be used to aid clinicians practice when assessing
the biomechanics of the spine of their patients, and it could lead to improve
the decision making process to select the best intervention.



Chapter 5

Automatic pre-processing of
the lumbar model

5.1 Introduction

The Lumbar Model Generator (LMG) toolbox allows the generation of an
accurate and parametric model of the lumbar spine. The geometry is gen-
erated according to subject-specific dimensions or dimensions based on cor-
relation analysis (chapter 4, chapter 3) and the mesh is then generated for
the vertebrae and the intervertertebral discs (IVD). The innovation of the
LMG is the automation of the entire workflow, from the geometry gener-
ation to the meshed model and ready for pre-processing and FE analysis
through a direct link to FEBio (FEBio Software Suite). The whole process
is performed in Matlab (MATLAB, R2017a, 9.2.0.538062, The MathWorks
Inc., Natick, MA, USA), where a Graphical User Interface (GUI) guides the
user to assign the requested parameters.

Several FE models of the lumbar spine have been developed in the literature
[165, 256, 257, 131], which are based on the reconstruction of the geometry
from data-scans. The pre-processing of each model is done individually on
those models, material properties are assigned, the mesh size is defined af-
ter a mesh convergence analysis, surfaces are manually identified and then
loading and boundary conditions assigned to the model. However, pre-
processing of the model is time consuming (it could require weeks between
the segmentation and model setup) and a major obstacle in the translation
of FE models to clinical practice. Automation of the pre-processing stage,
would allow a real-time evaluation of spine biomechanics and the effect of
different implants on a specific anatomy, could help clinicians in deciding the
best treatment. At the same time, this process can be used in the evaluation
and optimization of a new device on a population of anatomical models and
eventually implementing custom features. In order to facilitate the use of
lumbar spine models to investigate eventual treatments or, potentially, im-
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plant design, and to evaluate the biomechanics of the spine, an automated
pre-processing of the FE models has been implemented with the LMG tool-
box.

In the previous chapter (chapter 4) the solid body and mesh generation was
described, focusing on the entire workflow of the toolbox. In this chap-
ter, instead, the automatic pre-processing of the Finite Element Model is
presented. Once the geometry has been generated, the number of bodies
required in the simulation can be selected, using one or more level lumbar
spine units (two vertebrae and an IVD, referred as Functional Unit, FU)
or the entire lumbar spine. The LMG toolbox generates scalable vertebrae
and IVD bodies, and according to the anatomical dimensions considered, a
mesh convergence analysis has to be performed, which is a time-consuming
task. An innovative feature of this toolbox is the automated sensitivity
analysis on the mesh size that is directly performed with the size chosen
according to user’s criteria (for the vertebrae and IVD). Subsequently, the
material properties are assigned to the bodies involved in the model, and
the geometrical features which define the boundary and loading conditions
are identified. Once the loading features and the simulation control param-
eters have been defined and imported, the input file is directly written and
exported to FEBio to run the simulations.

The aim of this study was to develop the automatic pre-processing for the
lumbar spine, from the definition of the mesh size according to the conver-
gence test, the material properties assignment and estabilishing the bound-
ary and loading conditions. As proof-of-concept, a model of the entire lum-
bar spine was generated, demonstrating the functionalities of the toolbox.
Then, a preliminary analysis of an LL1-L.2 FU was performed and the results
compared with the state of the art as available in literature. Figure 5.1
provides an overview of the steps described in this chapter.

5.2 Automatic FE pre-processing

The LMG toolbox allows the pre-processing of vertebrae and IVD bodies to
obtain a model ready to be run in FE software. Once the geometrical model
has been generated, it is possible to define:

e the number of bodies to use for the FE simulation;

the desired mesh size accordingly with a mesh convergence test (sub-
section 5.2.1);

the material properties (subsection 5.2.2);

the contact surfaces and properties (subsection 5.2.3);

the boundary conditions, such as load to be applied (subsection 5.2.4).
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Figure 5.1: Starting from the model generation (a), described in chapter 4,
in this chapter the automatic pre-processing is explained (b). An entire lum-
bar spine segment has been generated and pre-processed (c), while a Finite
FElement Model of the L1-L2 FU has been analysed(d).

These features are directly implemented in Matlab, and selected through a
user-friendly GUI (Figure 5.2), where step by step the information required
are added as inputs (Figure 5.1b). In this section, the inputs required to
define the model and the default values are described.

5.2.1 Mesh definition and convergence test

The LMG toolbox is able to automatically mesh the vertebrae and IVD as
shown in the previous chapter (chapter 4). A novel feature introduced in this
toolbox is the possibility to automatically run a mesh sensitivity analysis
of the model generated with the dimensions imported. The input required
are related to the size of the mesh elements. In the case of the vertebrae,
meshed with tetrahedral elements, the range of dimensions for the tetrahe-
dral elements is required. In the case of the IVD, as described in chapter 4,
dimensions of the hexahedral elements are described by three parameters:
the number of layers of the AF nl, the number of points on the perimeter
np, and the number of elements nz characterizing the height of the IVD.
These parameters are linked to the IVD height and volumetric ratio and are
displayed in Figure 5.3.

Along with the element dimensions, the material properties, boundary and
loading conditions are required to evaluate the mesh convergence analysis.
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Figure 5.2: Sample of the graphic-user interface used to collect the required
inputs: a. number of vertebrae involved in the model; b. mesh size for
the vertebrae and IVD; c,d. Material properties to assign for individual
components; e. Contacts conditions; f. type of loading condition.

Subsequently, an FEBio input file was written in Matlab through the Gib-
bon toolbox [241], to perform the simulations. There are no standardised
methods for mesh convergence analysis, therefore, the default metrics im-
plemented in the toolbox are based on a local evaluation of the maximum
stress on a group of elements in the upper part of the body (vertebrae or
IVD). Alternatively, the user can adopt the desired metrics, adding custom
scripts or evaluating the results through the FEBio post-processing interface
(PostView, FEBio Software suite). The described procedure is represented
in Figure 5.4 taking the vertebrae as an example. The mesh quality of the
bodies generated can be graphically evaluated in Pre-View (FEBio, Software
suite), the standard pre-processing software associated with the FEBio pack-
age. This software includes the tools to evaluate the tetrahedral quality and
the dihedral angle distributions for tetrahedral elements, and Jacobian value
distribution for hexahedral elements (Figure 5.5) have already been imple-
mented. Alternatively, during the mesh generation process, the user can
request (chapter 4) the dihedral angle and aspect ratio distributions for the
vertebral bodies. These parameters are retrieved from Tetgen and evaluated
in Matlab through a dedicated script.

5.2.2 Material properties

The material properties of the bodies involved can be assigned to the model
according to the regional material properties identified in previous studies
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[1]e]

Figure 5.8: Parameters to define the IVD mesh convergence, where np is
the number of points on the AF perimeter, nl is the number of layers on the
AF and nz the number of elements on the height of the IVD.

[14, 95, 258, 259]. In the following sections the inputs required in the LMG
toolbox, for the IVD and vertebrae, are described.

Vertebrae

The spine can be modelled as having vertebrae consisting of an inner can-
cellous core and a thin layer of cortical bone (see Figure 5.6) [95, 79, 14,
260, 261]. In the LMG model, the mechanical behaviour of the vertebrae is
mimicked by assigning different material properties to the vertebrae in each
area. To assign material properties to the corresponding elements, during
the meshing procedure (chapter 4, subsection 4.5.1), the element indexes
were identified according to their locations. In literature, linear isotropic
and orthotropic material properties have been applied to the vertebrae [90,
262, 261], and the user can decide the preferred formulation in agreement
with the FEBio User manual [263]. In the LMG, linear isotropic material
properties are defined, and the user can add the coefficients as stated in
Table 5.1, where E and v are the Young’s modulus and the Poisson’s ratio
respectively.
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Figure 5.4: Workflow for the mesh convergence analysis. a. Definition
of the anatomical dimensions; b. L1 vertebrae meshed with different mesh
density; c. Definition of boundary and loading conditions, in red the upper
vertices and in green the lower vertices; d. Mesh convergence results.

Table 5.1: Default material properties assigned to the vertebrae.

Material Constitutive law | Coeflicients
Cancellous bone linear isotropic E,v
Cortical bone linear isotropic E,v
Posterior elements | linear isotropic E,v

Intervertebral disc

In the IVD, two main volumes can be identified: the annulus fibrosus (AF),
and the nucleus pulposus (NP). The structure of the AF can be described
as a composite material, where concentric layers of collagen fibres are em-
bedded in a ground substance (chapter 2, chapter 4). The IVD has been
previously modelled as both time-independent or time-dependent in terms
of its mechanical behaviour [137]. Several methods have been followed to
assign the mechanical properties to the AF [14, 252, 168]: concentric layers
have been identified and the ground substance material properties have been
assigned either homogeneous over the entire AF or assigned by dividing the
AF in to anterior, posterior and lateral regions. The IVD models generated
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Figure 5.5: Mesh quality evaluation in Pre-View. The criteria evaluated for
tetrahedral (tetrahedral qulity, maximum and minumum dihedral angle) and
hexahedral (Jacobian value) elements are shown.

from the LMG, have the hexahedral elements arranged in concentric layers
(see Figure 5.7), as described in Table 5.2.2.

The element indexes are first of all differentiated for the elements belonging
to the NP and the AF. Subsequently, two approaches to assign the material
elements to the AF can be followed, so the user can decide to emulate meth-
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Figure 5.6: The colours identify the regions where different material prop-
erties are assigned, including: a cancellous core (green), the cortical layer
(red) and the posterior elements (blue).

Figure 5.7: IVD geometry and mesh. The hexahedral elements are arranged
in concentric layers.

ods described in the literature: i. different element indexes are assigned to
each layer; ii. different element indexes assigned to each region of the AF
(anterior, posterior, anterior-lateral, posterior-lateral). Local axis of coor-
dinates for the elements of the AF have been defined (Figure 5.8), so fibers
orientations can be assigned as shown in Figure 5.9.

To allow users to follow the preferred approach modelling the IVD, as well
as allowing sensitivity analyses on varying the material properties formula-
tions, the following combinations can be implemented in the LMG:

e same material properties for the ground substance and fibres for every
layer (Figure 5.10 a);
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Figure 5.8: IVD geometry and mesh. The coordinate system of each of the
elements is evaluated to define the fibre orientation.

——

Figure 5.9: Disc with the fibers embedded in the AF layers

e same material properties for the ground substance and different fibres
orientations at each layer;

e same material properties for the ground substance and different orien-
tation and material properties for the fibres at each layer (Figure 5.10

b);

e different material properties according to the area of the IVD: an-
terior, posterior, anterior-lateral, and posterior-lateral, as shown in
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Figure 5.10c .

The default material constitutive laws have been implemented in the LMG,
and the fibre material properties have been assigned using the anisotropic
formulation implemented by Holazpfel-Odgen-Gassen [127]; the default co-
efficients are described in Table 5.2.

Figure 5.10: Possible combination of material properties to use in the AF:
a. same material properties for all the layers; b. different material prop-
erty for each layer; c. different material properties according to the region
(anterior, posterior, anterior-lateral, posterior-lateral). Independently from
these formulations, the fibre orientations can be defined, and a double layer
of fibres is implemented for each lamella. In correspondence of the NP two
layers of elements are identified, showed with different colours in each figure,
and selected as cartilaginous material.

Cartilaginous endplates

The cartilaginous endplates (CEP) are cartilaginous cushions in-between the
vertebrae bodies and the IVD (chapter 2), usually modelled with a thickness
of 0.7 mm [264]. In the LMG toolbox, different material indices are assigned
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to the upper and lower elements of the IVD which correspond to the NP
[168] as shown in Figure 5.11. By default, the cartilaginous endplates have
been modelled as linear isotropic materials and the coefficients required in
the toolbox are listed in Table 5.2. However, the user can assign other con-
stitutive laws, assigning for example biphasic material properties following
the FEBio user’s manual.

Figure 5.11: The CEP are selected as one layer of elements in corresponding
to the upper and lower surfaces of the NP.

Table 5.2: Formulation of material properties for the AF and NP, available
in the LMG toolbox for the FEBio pre-processing and described elsewhere
Appendiz A. The coefficients stated in the last column are related to the
formulations described in the Maas et al. [263] for each material law formu-
lation.

Material ‘ Consitutive law ‘ coefficients

AF Ground

Neo-Hookean E v

Mooney-Rivlin c1,c1,k
AF fibers

‘ Holazpfel-Odgen ‘ & a,8,0,p

NP

Isotropic elastic E,v

Mooney-Rivlin c1,c1, k
CEP

| Isotropic elastic | E,v
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Ligaments

In the LMG, four set of ligaments (anterior ALL, posterior PLL, inter-
spinous ISL, inter-transverse ITL ligaments) are defined. The attachment
points are selected by a custom algorithm, freely accessible with the LMG
toolbox, which evaluates the anatomical attachment points on each verte-
brae. The points selected are displayed in Figure 5.12 and coupled with those
of the adjacent vertebrae to simulate the ligament connections. The liga-

ALL

Figure 5.12: Attachment points for the ALL, PLL, ITL, ISL ligaments.

ments are defined as 1D springs, and their mechanical properties (described
in chapter 2, subsection 2.1.2) can be described with a force-elongation curve
which has an initial non-linear behaviour and then a high stiffness material
response (chapter 2, Figure 5.13). The tension only behaviour of the lig-
aments can be simulated assigning the material as linear, thus, simulating
only the stretching phase of the fibrils, or implementing non-linear material
properties in which the stiffness is a function of the stretch level.

5.2.3 Identification of geometrical features

Once the number of bodies involved in the FE simulation are chosen, and
the morphological and material features are defined, the final step to prepare
the FE input file is the definition of the boundary and loading conditions.
This step requires the identification of the surfaces involved in the contacts
and boundary definitions and the related nodes. The upper and lower sur-
faces of the vertebrae and IVD are automatically selected by the algorithm,
identifying the faces in correspondence of the upper and lower surfaces of
the bodies. The external faces are identified using the indices of the bound-
ary faces (section 2.5), then evaluating the normal versors at each face. In
the case of the IVD, the faces on the external surfaces (superior, inferior,
lateral) are almost aligned in each region. The normal versors have similar
orientations, which are identified according to the versors components in
the 3D space. Then the faces are selected evaluating a range of values, for
each surface, for the versors’ components. In the case of the vertebrae, the
geometry is more complex. The surfaces are characterized by several vari-
ation of inclinations and the identification of the upper and lower surfaces,
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Figure 5.13: Force-elongation curves for Anterior Longitudinal Ligaments
(ALL), Posterior Longitudinal Ligaments (PLL), Inter-Spinous Ligaments
(ISL), Inter-Transverse Ligaments (ITL) and Super-Spinous Ligaments

(SSL).
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Figure 5.14: Model of the double level FU (L1-L3) where the IVD have been
hidden and the vertebrae are vertically aligned. The ALL, PLL, ITL, ISL
ligaments have been included.

based on the normals at each face, lead to the identification of surfaces not
belonging to the upper and lower endplates (Figure 5.15). For example, the
selection of the upper surface of the first vertebrae to assign the loading con-
dition, would also select elements belonging to the transverse process and
lamina. Hence, it would lead to simulate different loading conditions than
the requested ones (Figure 5.16). The information of the fitting parameters,
described in chapter 4, have been used to identify the nodes and faces of
the requested surfaces. The nodes obtained from the fitting equations of
the surfaces, have been used to find the correspondent nodes on the meshed
model and the connected faces. Using this method, the detection of the geo-
metrical features leads to an accurate definition of the surfaces of interest as
shown in Figure 5.16. In the toolbox, the information linked to the surfaces
of interest are saved and subsequently used as follows:

e the nodes associated to the described surfaces are used in case of ap-
plying prescribed displacements to the model;

e the surfaces are used to define the boundary conditions and to assign
the contact properties (Figure 5.17).

5.2.4 Boundary and loading conditions

The boundary conditions are meant to identify similar conditions of the body
or to follow an experimental setup. The boundary conditions are defined
selecting the surfaces or nodes to fix and those in which a degree of motion
has to be applied (prescribed displacements, nodal forces or pressure forces).
The loading conditions, applied to the upper surface of the first body, can
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Figure 5.15: Normals on the external surfaces of the vertebrae and IVD.

a b

Figure 5.16: Surface recognition based on the mormal orientations at each
face (a), the blue and black dots are identified selecting the nodes attached
to the selected faces. Faces not included in the upper and lower endplates
are selected. Evaluating the fitting surface equations (b) only the upper and
lower endplate surfaces are identified.
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a

Figure 5.17: Surfaces identification on the L1-L2 model (a) and on L1-L5
FU (c), and nodes identification on the L1-L2-L3 FU (b). The upper and
lower surfaces are showed in red. The boundary conditions are applied on
the upper and lower surfaces of the first and last bodies involved in the FE
model (ie: applying a load on the L1 upper surface and fixing the bottom
surface of the L2).

be chosen between: i. prescribed displacement; ii. prescribed rotation; iii.
pressure. In FEBio, it is not possible to apply pure moments on deformable
bodies, but a rigid body can be connected by means of rigid constraints
(with high stiffness) and then the moments are applied to the rigid body (as
shown in Figure 5.18). In this first version of the LM G, the vertebrae are
defined as deformable bodies and the application of a pure moment has not
been implemented.

5.2.5 Contact properties

The boundary surfaces, previously identified in subsection 5.2.4, are used to
define the contacts. The surfaces are classified as slave or master surfaces:
master properties were assigned to the less deformable bodies and slave to
the opposing surface. Thus, slave surfaces have been assigned to the IVD
and master surfaces to the contacting vertebrae ([263, 265]). In this first
release of the LMG, only the endplates of the vertebrae and IVD are selected,
and the contacts for the facets are not included.

The vertebrae and the IVD were meshed with non-conforming meshes, for
which only tied contacts can be used in FEBio. In FEBio, two parameters
have to be defined for tied contacts: penalty and tolerance coefficients. The
contact parameters reported in Table 5.3 are the adopted default values,
which were evaluated through a sensitivity analysis. These values have to
lie in a specific range to obtain a repulsion force which would allow contact
to occur and avoid the penetration between the bodies. However, a range
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a b

Figure 5.18: Definition of a rigid box in Preview. a. The selection of the
surface to connect to the rigid body in Preview. b. Preliminary test on the
L1-L2 FU, applying a prescribed displacement.

of combinations of tolerance and penalty factor could potentially lead to a
valid physical solution.

Table 5.3: Contact formulation available for the LMG toolbox and parame-
ters requested as input.

Contact formulation Parameters Default values
Tied interface Penalty factor 10
Tolerance 0.5

5.2.6 Control properties and output variables

The control parameters required by FEBio can be selected in the GUI and
are reported in Table 5.4, and described elsewhere [263]. The output files
requested in the LMG are listed in Table 5.4, and further outputs can be
requested from the user. The solution of the FE model is achieved with an
incremental-iterative approach, based on a quasi-Newton method (Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [266]), as described in detail in
the FEBio Theory manual [263] and introduced in chapter 2.

5.2.7 Post-processing

The LMG toolbox requests, as default, the evaluation of the displacements,
deformation gradient tensor and stress components on the whole model. The
evaluation of the outputs is distinct for each study, it depends on the features
which the users wants to evaluate (i.e. displacements on the IVD, intradiscal
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Table 5.4: Control parameters and output requested for the FEBio simula-
tions from the LMG.

Control parameters Numbers

Analysis type Static, Steady-static, Dynamic
Step Total number of steps
Auto-step Enable the step-time adjustment
Time Total time

Cauchy stress matrix
Output variables Nodal displacements
Deformation gradient

pressure IDP in the inner elements of the NP or the average IDP through the
whole NP). The displacements on the model are an automatic output from
the LMG. Therefore, post-processing is left to the user given their specific
needs, with the user able to either implement a custom script or evaluate
the results using Post-View, the post-processing software to visualise the
results obtained from FEBio.

Table 5.5: Default parameters

Hexaedral nl, pp, nz
Mesh Tetrahedral Mesh size range
Cortical bone Linear isotropic
. . Cancellous bone Linear isotropic
Material properties . . . .
Posterior bone Linear isotropic
CEP Linear isotropic
AF HGO
NP Linear isotropic
Tolerance 0.5
Contact Penalty 10
Boundary condition | L5 fixed bottom surface
Loading condition L1 Pressure on upper surface
Output Node dataset Displacements
Element dataset Cauchy stress matrix

5.3 L1-L5 model: proof of concept

An L1-L5 geometrical model has been developed to test the full model gen-
eration and the functionalities of the LMG toolbox (Figure 5.19). It has
been developed using the correlation analysis method (described in chap-
ter 4) for a 30 year old male, 180 cm in height and with a lumbar curvature
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of 43.3°. These inputs have been arbitrarily selected to demonstrate that
the model work and the arbitrary does not represent a limiting factor in de-
mostrating proof-of-concept. The initial pre-processing was set up adopting

Figure 5.19: a. Model of the entire lumbar spine. b. Section view of the
model

the default parameters provided in Table 5.5. The model was meshed with
hexahedral elements for the IVD and tetrahedral elements for the vertebrae,
and quality checked in Pre-view as described in chapter 4 and the results are
shown in Figure 5.20. The boundary and contact surfaces are displayed in
Figure 5.21, while the final steps (assigning loading conditions and control
properties) of the pre-processing and the analysis of the model are left for
future studies. In the next section, the full functionalities of the toolbox are
shown for a single-level functional unit (L1-L2).

5.4 L1-L2 functional unit FE analysis

A FE model of a functional unit of the lumbar spine has been developed and
solved. The geometry was based on the same dimensions used to develop
the L1-L5 model (Section 5.3), with the VP used for the healthy disc case
(46%,54% [238, 140]), and only the first FU (L1-L2) has been used to build
the FE model (Figure 5.22), in which the ligaments have not been imple-
mented. In this study a single FU was in depth analysed and compare the
results with the data in the literature.
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Figure 5.20: Mesh quality evaluated in Preview
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Figure 5.21: The lumbar spine model, including the vertebrae L1 to L.
a.The inferior and superior surfaces of the vertebrae are highlighted (red
superior, green inferior). b. a solution of the entire lumbar spine is provided,
showing the total displacements. The solution is shown as proof-of-concept
and the detail of this model are not described because further analysis are
required.
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Figure 5.22: Model of the L1-L2 functional unit.

Tetrahedral and hexahedral mesh elements were used, respectively, for
the vertebrae and IVD. The mesh sizes were chosen accordingly to the mesh
convergence subroutine, as described in subsection 5.2.1. The mesh sizes
for the vertebrae and the IVD were the results of a compromise between
the computational time required and the precision of the results obtained.
The sensitivity analysis on the mesh size was undertaken by applying fully
constrained boundary conditions to the inferior surfaces of the IVD and ver-
tebrae. A distributed load, corresponding to applying a pressure of 1 MPa,
was applied on the upper surface. The results, shown in Figure 5.23, were
considered accurate if the maximum axial stress did not differ by more than
5% from the model with the finer mesh. Tetrahedral elements of 1.6 mm
and hexahedral elements characterized by nl =9, pp = 72, and nz = 8 were
used, obtaining a model with a total of 190,222 elements.

The material properties were assigned to the bodies (Figure 5.24) in agree-
ment with the studies in the literature, and the values are listed in Table 5.6
and Table 5.7. The IVD has been modelled considering its non-linear and
anisotropic features: the Holazpfel-Gassen-Odgen [127] formulation was im-
plemented, where the hyperelastic material property of the ground substance
was combined with non-linear properties and 3D orientations were assigned
to a double layer of fibers. In this study, the ground substance was modelled
with Neo-Hookean material properties, eight layers of fibers are embedded.
In each layer, the fibres are arranged in a criss-cross pattern, with an incli-
nation of £30° respect to the horizontal axis [267]. The NP was modelled
as a isotropic linear elastic material [268] and the material properties are
reported in Table 5.7.

The boundary surfaces have been selected ( Figure 5.25) from the algo-
rithm and tied contacts have been defined between the vertebrae and IVD
surfaces. Default values were used as described in Subsection 5.2.5 in Ta-
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Figure 5.23: Mesh convergence result for the IVD and vertebrae. The pa-
rameters nl, pp and nz have been changed one at time.

ble 5.3. The inferior surface of the L2 vertebrae has been fully constrained
(Figure 5.25) and consistent with the literature. A distributed load, which
increased linearly to 1000 N [95], was applied on the faces of the upper end-
plate of the L1. Finally, an FE static analysis was solved in FEBio. The
axial displacement on the anterior-posterior cross-section (Figure 5.26) were
evaluated. Moreover, the IDP was estimated in different areas of the IVD,

as shown in Figure 6.7.

Table 5.6: Material properties for the vertebrae.

Bone material properties | Constitutive law | E[MPa] | v ref
Cancellous bone linear isotropic 100 0.2 | [90]
Cortical bone linear isotropic | 12000 | 0.3 | [90]
Posterior elements linear isotropic 3500 | 0.25 | [269]
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Table 5.7: Material properties for the IVD.

IVD material properties | Constitutive law | coefficients ref
Anulus Fibrosus
AF ground Neo-Hookean E v

4.2 MPa 0.3 [150]
AF fibres HOG ksi « B 0 )

28 MPa 90 2 430 90 | [259]
Nucleus Pulposus Linear isotropic E v

2 MPa 0.4 [89]

Cartilagineus Endplates Linear isotropic E v

23.8 MPa 0.4 [79]

5.5 Results: functional unit

The axial deformations on the anterior-posterior cross-section (Figure 5.26)
of the IVD were evaluated in Matlab. The mean values have been evaluated
identifying adjacent volumes of elements along the defined cross-section.
These results were considered an estimation of the deformations over the
volume of the cross-section, subsequently compared with experimental re-
sults. The axial deformations have been plotted in Figure 5.27, where the
horizontal axis represents the y position (as in Figure 5.26a) on the cross-
section (posterior to anterior). The results, reported at 500 N, 750 N and
1000 N showed a mean deformations, in correspondence of the centre of the
NP, respectively of 1.28 mm, 1.57 mm and 1.75 mm.

The intervertebral disc pressure (IDP) was evaluated in Equation 5.1 as
reported in Schmidt et al. [256]:

tro
P=—— 5.1
- (5.1)

. Cortical bone
-Cancellous bone
.Posterior bone
Nucleus Polposus
Cartilagineus endplates
Annulus Fibrosus

Figure 5.24: Model of the L1-L2 functional unit.
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Figure 5.25: L1-L2 functional unit where the superior faces of the L1 are
selected (red) to apply the distributed load (a) and the inferior points of the
L2 are identified to be constrained (b).
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Figure 5.26: (a) Reference system and stress directions identified; (b)
Anterior-posterior cross-section.

where tr is the trace of the Cauchy stress matrix (o). The IDP was evaluated
in volumes, identified around the mean height of the IVD, in the centre, an-
terior, posterior and lateral regions of the NP (Figure 6.7) and the anterior
and posterior areas of the AF. All the results for the NP were reported for
the posterior volume, where the standard deviation was always less than 0.1
but not reported in the graphs presented (e.g. Figure 5.29). In this region,
the IDP was found to be 0.38 MPa, 0.60 MPa and 0.78 MPa respectively at
500 N, 750 N and 1000 N. In the AF, higher values were found on the pos-
terior region (0.45 MPa, 0.70 MPa and 0.90 MPa) than in the anterior side
(0.38 MPa, 0.62 MPa and 0.82 MPa), while in the whole AF average values
between the anterior and posterior regions were found. In the AF, due to
a bulging effect, the different material properties and fibers orientations at
each layer, the stress and pressure values predicted include higher standard
deviations. The mean values reflect an averaged mechanical behaviour, only
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Figure 5.27: Axial deformations evaluated on the anterior-posterior cross-
section at 500 N, 750 N and 1000 N.
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Figure 5.28: Volumes identified in the NP and AF to evaluate the pressure.

if small volumes of elements are considered. Thus, to obtain an overview
of the AF behaviour, stress and pressure distribution were extracted from
PostView (Figure 5.30). The pressure distributions on the AF at the differ-
ent loads shows the same trend described above and reported in the bar plot
Figure 5.29. The axial stress plots demonstrated an increasing compressive
stress as the load increased. Due to the bulging effect the most external
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Figure 5.29: Pressure evaluated on the AF and NP at 500 N (a), 750 N (b)
and 1000 N (c).

layer of the AF had a positive axial stress.

5.6 Discussion

The automatic pre-processing of the lumbar spine (L1-L5) has been pre-
sented, describing all the steps involved in the preparation of the FE model.
The entire workflow, from the generation of the L1-L5 geometric model to
the FE model ready to be solved, takes less than five minutes in the LMG
toolbox. This toolbox has the potential to be used in clinical assessment
as well as in the implant design optimization process, where population of
anatomical models can be generated and evaluated in a reasonable amount
of time.

The L1-L5 lumbar model has been implemented in section 5.3 to show
the functionalities of the LMG toolbox. The geometrical model was gen-
erated and the pre-processing performed, using the default features earlier
described. Furthermore, a L1-L.2 FU was generated and the FE model solved
and analysed.

The results of the L1-L2 have been analysed and the average axial deforma-
tions across the AP cross-section is shown in Figure 5.27. In the transition
between NP to AF in both the posterior and anterior side, there is a drop of
this value, due to the change of material properties. The axial deformations
obtained for the IVD have been compared with experimental and computa-
tional results available in the literature (reported in Table 5.8). The average
values, in correspondence of the NP region, obtained in the FE simulation
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Figure 5.30: Qualitative evaluation of pressure and axial stress distributions
on the AF.

are in agreement with the experimental data.

The IDP values obtained in the NP increased linearly from 0.38 MPa
to 0.78 MPa at the different load considered according with Adams et al.
[273]. The results have been compared with the results in the literature
and are shown in Figure 5.31. Moreover, the results are compared with
the exhaustive review of FE models of Dreischarf et al. [95] and the experi-
mental results of Brinckmann et al. [274]. The IDP values obtained in this
study (highlighted with orange dots in Figure 5.31), are in agreement with
the previous experimental studies and FE analyses. The range of results
obtained in previous FEA are included in the green area, while the median
of the experimental results are illustrated with a red dotted line and the
bars identify the range of variability of the results at the compression load
considered [274]. These comparisons demonstrated the validity of the model
used, paving the way for further improvements and applications.

There are several factors which influence the differences in the output of ex-
perimental tests [275]. The collection and storage of samples, the test setup,
the preconditioning and loading conditions, healthy conditions of the disc
and the lumbar level considered, all affect the test results. Furthermore, the
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Table 5.8: Mazimum load and displacement evaluated in previous experi-
mental studies on cadaver specimens (EXP) and FE models (FEM). The
displacements of the experimental results were obtained as the average on
the specimens evaluated in each study.

Study Max load [kN] | Displacement [mm] | Study
Hirsch et al. [270] 1.0 1.8 EXP
Markolf et al. [271] 44 1.6 EXP
Simon et al. [272] 0.5 1.5 FEM
Adams et al. [157] 1.3 1.7 EXP
Marini et al. [258] 1.0 0.9 FEM
0.5 1.28
Current study 0.75 1.57
1 1.75
1.50
1.25 Experimental result
T [®] L1-L2 FEA current study
= 1.00 ] FEA from previous studies
% 075 /,/”//
é 0.50 /,/”//
E )25 g -
0 ool
0 500 750 1000

Compressive force [N]

Figure 5.31: The results of the IDP has been evaluated in several studies
and the green area identifies the range of values obtained [165] which have
been compared with the the median of in-vitro results (red dashed line) and
their variability (red bar)[274, 273]. The orange dots identify the results of
the current study at 500 N, 750 N and 1000 N.

variability between the geometry and material properties of the FE mod-
els have to be taken into account. Recent studies using statistical methods
(i.e.: Monte Carlo sampling, Taguchi method and factorial analysis), have
evidenced the most influential set of parameters, or combination of parame-
ters for FE models, which are the IVD height and the facets geometry [276,
87, 13, 100]. In the following chapter (chapter 6), a preliminary sensitivity
study on anatomical and material variability is described, with the intention
of identify influential parameters for the spine biomechanics.

Schmidt et al. [256] evaluated the effect of different loading conditions, and
in particular the effect of the follower load on the IDP. The IDP ranged
between 0.14 MPa to 0.35 MPa, applying pure moments in flexion, exten-
sion, axial rotation and lateral bending, and it increased by an average value
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of 0.34 MPa when applying a follower load. It is reasonable to hypothesise
that the offset obtained in the other loading modes could be addressed to the
compression case, placing the current results in the range of values found
in the literature. Ultimately, a follower load is applied to distribute the
load along the lumbar curvature, and give more stability to the simulations
miming the muscles effects. Toumanidou T. [141] evaluated muscles and
swelling effects on the IDP, in flexion, lying and standing positions. In the
standing position, without considering the effects of muscles and swelling of
the IVD, the IDP at the L1-S1 levels ranged between 0.24 MPa and 0.31
MPa. A variation of the 25%-29% at all the levels when the muscles were
not simulated was reported, thus strengthening the mentioned hypothesis
for the compressive load.

The stress distribution along the layers of the IVD follow a similar trend to
those identified in the literature [277, 278], with an increased tensile stress
in the outermost layer, as shown in Figure 5.30. Furthermore, the pressure
distributions have been evaluated in different regions (nucleus, anulus, AF
anterior, AF posterior) for each loading step considered. The average value
on the AF does not reflect the differences on its behaviour according to the
different region. In fact, the posterior side of the AF is affected by higher
pressure than the anterior side (Figure 5.30), which is in agreement with the
results reported in literature [273][278].

It has been suggested [13] that more studies are needed to investigate
the effect of morphometric variation and how it affects subsequent stress
distribution. In fact, it is shown in Figure 5.32 that the contact surfaces are
not plane, but characterized by the curvatures of the endplates. This feature
could affect the stress and pressure distribution in the IVD particularly in
the case of different volumetric ratio and height of the disc. The results here
compared are in the range of variability of the experimental results and the
FE analyses reported in the literature. In this study the ligaments and facet
joints and follower loads have not been modelled, which affect the biome-
chanics of the FU [107]. Their influences have been investigated mainly
applying pure moments, but it is expected that they exert an influence on
the biomechanics (i.e.: higher IDP, as in case of facetomy [279]) also in pure
compression [97]. In fact, load sharing between the anterior and posterior
structures of the FU is affected by the action of facet joints and ligaments
[280, 279] .

Future studies would implement a more complete set of loading conditions
directly applied from the LMG toolbox. As stated in subsection 5.2.4, only
compression and prescribed rotations are automatically implemented, lim-
iting the evaluation of the FU biomechanics in this study.

The LMG toolbox represents a step forward to develop and evaluate FE
models overcoming the time-consuming issue of subject-specific models, which
enables intra-subjects variations to be considered. In fact, anatomical vari-
ations can be assessed (described in chapter 4) and the FEA workflow is
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Figure 5.32: Morphometry of the bone endplates in contact with the IVD
with an overview on the contact surfaces (a). The displacement (b) and first
principal stress (c) distributions are displayed with vector plots, where the
vector colors are referred to the orientation and the length is normalized. In
the bottom figures the cortical bones and some of the AF layers have been
hidden to show the vectors.

fastened by the automatic pre-processing. Moreover, the LMG generates
the geometrical model in 20 s and the FE model is pre-processed and ready
to perform the simulations in less than 5 minutes. Considering a longer-term
aim of using this tool in clinical studies, this result represents an important
achievement, as it provides a first major step in enabling quick evaluation for
the decision making of treatments to adopt or to improve the design of de-
vices. This parametric tool is particularly of interest given recent reports by
international authorities and consortia (FDA and MDIC) [17]. To speed up
the development of new devices, they suggest developing parametric mod-
els to evaluate variety of anatomy and pathological conditions, through the
use of validated tools. The LMG requires the implementation of further
structures (ligaments, facet joint contacts and follower loads) and functions
to enable a wider range of biomechanical assessment. At the present it
represents a first step toward the use in clinical studies.
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5.7 Chapter summary

In this chapter the automatic pre-processing of the lumbar FE model has
been described and a preliminary study on the L1-L2 FU has been evalu-
ated.

The automatic pre-processing of the LMG toolbox (described in chapter 4)
included: i. the mesh size assessment; ii. identifying the geometrical fea-
tures to define boundary and contact surfaces; iii. assigning the material
properties of all the structures involved in the FE model; iv. defining the
required loading conditions. Currently, the LMG does not include all the
possible conditions, only few loading conditions (compression, prescribed
displacements and rotations) are directly applied. The definition of liga-
ments and facet joint surfaces is already implemented, but it has not been
included in the preliminary model generated. In future studies, further load-
ing conditions will be included in the toolbox, and rigid elements (i.e.: beam
or spring) to simulate follower loads acting through the lumbar arch, will be
included.

The whole toolbox, from the geometry generation to the FE model simu-
lation, represents a novel approach to the computational modelling of the
lumbar spine and has the potential to speed up its biomechanical evaluation.
In particular, this process would be useful in the evaluation of the effects
of implants on the range of motion of the spine and how the stress are dis-
tributed, assessing the effects with different anatomical features. Sensitivity
analysis could be evaluated varying the geometrical features, the material
constitutive laws of the structures involved in the lumbar spine, emulating
healthy and degenerated conditions, as well as optimization of the design
and materials properties of the devices.

The described workflow can be pursued with the methods already adopted
in the literature [261], starting from the segmentation of subject-specific
datasets and developing the FE model. The development of these models
has a high computational cost, some stages are affected by inter-user variabil-
ity and it does not allow the evaluation of sensitivity analysis on varying the
anatomical morphology. This toolbox offers the generation of an accurate
geometrical model, with a highly reduced computational time (the geome-
try is generated in less than 20 s), with the possibility to evaluate several
morphological variations, anatomical deformity or degenerated conditions
(chapter 4). Evaluating the same sensitivity analysis on subject-specific
models would require weeks/months of extensive work for expert users: col-
lecting and segmenting the subject-specific scans and then pre-process the
obtained geometrical models. In which case, the model generations would
rely on the availability of subject-specific scans which restrict the evaluation
and optimization of the implants design to few particular cases.

The potentiality of the LMG toolbox is introduced in the preliminary study
of the L1-L2 FU and the improvements required to obtain a more complete,
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accurate FE model has been described in the dedicated discussion (Section
5.6). Focus of further studies would be the validation of complete osteo-
ligamentous FE models with experimental results. Moreover, the automatic
insertion of devices will be described and added in the toolbox, where a
dedicated GUI allows the selection of the desired level.

In the next chapter, sensitivity analyses on the L1-L2 FU is presented, where
the results of twenty-one models are compared. In particular, the effects of
different morphologies and material properties are evaluated, considering
the L1-L2 FU discussed in this chapter as reference.



Chapter 6

Sensitivity study

6.1 Introduction

Finite Element models are well recognized to predict the mechanical be-
haviour of biological structures [281, 282, 283]. However, the geometry (i.e.
their anatomy) and material property of biological structures varies more
than would be expected of standard mechanical systems, therefore, this
variability requires assessment [100]. This chapter combines the generation
of a scalable and parametric model of the spine (chapter 4) and the auto-
matic pre-processing of the FE Model (chapter 5), to assess the variability
of morphological and material properties to estimate the biomechanics of
the spine under compression.

The material properties and the constitutive laws of soft connective tissues
are not well known and they are affected by several factors such as the loca-
tion within the body and pathological status [171, 284, 285]. Regarding FE
models, variability associated with each component of the overall structure
complicate the evaluation and estimation of biological structures. In litera-
ture, there is a huge variety of lumbar spine FE models differing in terms of
constitutive laws and coefficients assigned to the bodies, and how the regions
are identified when assigning material properties (chapter 2). The effects of
the material properties used and their combinations has been evaluated pre-
viously, using statistical modelling techniques [102, 100], so as to quantify
their role on the predicted biomechanics [13, 87]. For a functional unit of the
lumbar spine, the disc morphology (disc height and the anatomical division
between NP and AF) and material properties, have the greatest effects on
the subsequent biomechanics of the spine, while less significant effects have
been identified by varying the ligament material properties [13, 14]. While
variability of material properties can be easily assessed in the models previ-
ously evaluated in the literature, assessing these for a range of morphologies
require the availability of multiple anatomical models as well as the evalua-
tion of mesh convergence. The LMG toolbox, described in chapter 4, allows

108
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the generation of models varying the morphologies of the spinal bodies, and
the automatic assignment of material properties as described in chapter 5.

The aim of this chapter was to evaluate the effects of the morphological
variations and material properties on the L1-L2 FU. An overview of the
variations evaluated is given in Figure 6.1. A reduced NP volume and disc
height as well as a less organized structure of the lamellae in the AF, have
been noted in degenerated conditions, resulting in a decreased range of mo-
tion. In this study, pathological conditions of the IVD have been evaluated,
through assessing variations of the volumetric percentage (VP), material
properties of the annulus fibrosus (AF), nucleus pulposus (NP) and carti-
laginous endplates (CEP).

Morphometry Material Properties

VP AF NP CEP

FEA

Figure 6.1: QOwverview of the sensitivity analyses evaluated in this study.
Morphological and material properties variations were investigated through
FE analyses.

The VP morphological variations have been simulated, obtaining eight
different anatomical models, with a AF volume varying from 30% to 60%
of the entire IVD volume. The AF has been modelled consistent with the
previous simulations (chapter 5), with criss-crossed fibers embedded in each
layer and the thickness of the layers is altered with the VP. The reinforcing
fibers allow the transmission of the load from the IVD to the vertebral
cortex [170]. As seen in chapter 2, the fibers arrangement and strength,
as well as the material properties of the ground substance, vary between
healthy and degenerated cases. Thus, the material properties of the fibers,
their orientations and ground substance constitutive laws have been varied
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in this analysis to evaluate the subsequent effects on the biomechanics of an
FU.

The NP and CEP material properties are affected by degenerated conditions,
due to a decreased water content, resulting stiffer in pathological conditions
or due to ageing [49, 286, 21, 47]. These variations were implemented by
evaluating the effects of different constitutive laws, and how the degenerate
conditions affect (simulated with high Young’s modulus) the biomechanics.
These modifications jointly interest the conditions of the lumbar spine, and
the degenerated /pathological status are a result of a mixture of these effects.
In this study, the effects of each alteration to geometric components and
material composition have been investigated independently, to determine
relative contribution of each factor without considering the cross-dependence
between the parameters.

6.2 Materials and methods

6.2.1 Model geometry and material properties

An FE model of the L1-L2 functional unit has been generated from the LMG
toolbox using the average model generation method (chapter 5, section 4.3)
for a male subject of 30 years, 1.80 m height and with a lumbar curvature
of 43°. The vertebrae and IVD were meshed respectively by tetrahedral and
hexahedral elements and the details of the mesh, its size and convergence
have been explained in chapter 5, where a preliminary analysis has been
evaluated.

The material properties assigned to the vertebral bodies (Table 6.1), have
not been varied since they are subject to substantially lower strains than
the soft tissues [87].

Table 6.1: Material properties assigned to the vertebrae in all the simula-
tions.

Vertebral bodies Constitutive law | E[MPa] | v ref
Cancellous bone linear isotropic 100 0.2 | [90]
Cortical bone linear isotropic | 12000 | 0.3 | [90]
Posterior elements | linear isotropic 3500 | 0.25 | [269]

The effects of ligaments have been investigated extensively [87, 13], and
have, therefore, not been a focus of this study. This decision was taken:
a. to reduce redundancy in terms of results already well established within
literature, and b. to simplify the clarity of assessment of the results. Hence
in this chapter, the focus is on evaluating only the effects of the altered
morphological features of the IVD and the material properties of the IVD
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and CEP, as follows:

1. morphological parameters of the IVD, varying the volumetric ratio
between NP and AF between 30% to 60% in eight models;

2. eight different material properties of the AF, varying the stiffness and
orientation of the fibers, the constitutive law and the material proper-
ties assigned to the ground substance;

3. three models with different material properties of the NP;
4. two models with different material properties of the CEP.

The range of variability of the morphological features and material proper-
ties for each component have been chosen accordingly to previous studies
and described in the following sections.

Sensitivity analysis: volume percentage ratio

In this study, the volumetric percentage (VP) corresponds to the AF volu-
metric percentage (i.e. the 30% VP refers to 30% of AF and 70% of NP).
Eight meshed models of the IVD were generated and included in the FU
model, obtained with the following values of VP: 30%, 35%, 40%, 43%,
46%, 50%, 55%, 60% as shown in Figure 6.2, considering 46% as the aver-
age healthy model [238, 140] and previously used in chapter 5. The two outer
limits values represent exaggerations to mimic degeneration, with higher AF
volume (60%), and the intact AF (30%) [273]. Only morphometric changes

VP 30 VP 35 VP 40 VP 43
VP 46 VP 50 VP55 VP 60

Figure 6.2: IVD models generated with different volumetric ratio.

have been implemented, using fixed material properties in all the cases (Ta-
ble 6.2). The AF has been modelled following the Holazpfel-Gasser-Odgen
(HGO) formulation (described in chapter 2) [127] of criss-crossed fibers, em-
bedded in a ground substance.
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Table 6.2: AF, NP and CEP material properties used in the VP sensitiv-
ity analysis. The Neo-Hookean material properties is reported in terms of

Young’s modulus and Poisson’s ratio and directly converted into Lamé coef-
ficient in FEBio.

Body Constitutive law | coefficients ref
AF ground Neo-Hookean E v

4.2 MPa 0.3 [150]
AF fibres HGO ksi a B 0 ¢

2.8 MPa 90 2 4+30 90 | [258, 287]
NP Isotropic elastic E v

2 MPa 0.499 [89]

CEP Isotropic elastic E v

23.8 MPa 0.4 [79]

Sensitivity analysis: material properties of the AF

The IVD model with a VP of 46% has been taken as the reference model as
it is considered to be a healthy condition [238, 140]. The material properties
of the other bodies were not varied (Table 6.1 and Table 6.3). Eight models
have been implemented, assigning the material properties of the AF as stated
in Table 6.4 and here described in detail:

e AF-Case 1: Mooney-Rivlin material properties and criss-crossed fibers
at 30 ° (regards to the orizontal plane of the IVD) in each layer;

e AF-Case 2: Neo-Hookean material properties and criss-crossed fibers
at £30 ° in each layer, which is the same model discussed in chapter 5;

e AF-Case 3: Neo-Hookean ground substance and fibers oriented at
+46° to simulate a degenerated condition;

e AF-Case 4: fibers strength (identified as ksi) multiplied for a weight
factor w increasing from the inner (w = 0.65) to the outer layer (w =

1);

e AF-Case 5: fibers strength ksi multiplied for the lowest w value in all
the layers;

e AF-Case 6: fibers strength assigned following the anterior, posterior,
lateral (posterior and anterior) regions (Figure 6.3). In this evaluaton
all the layers have the same fiber material properties and orientations;

e AF-Case 7: fiber orientations varying from 4+46° in the outer layer to
+30° in the inner layer;

e AF-Case 8: fiber strength properties and orientations varying across
the AF from the inner to the outer layer.
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Figure 6.3: IVD models generated with a. different material properties as-
signed to each layer and b. for each region: anterior, posterior, anterior
and posterior lateral (left and right).

Table 6.3: Material properties not varied in the AF sensitivity analysis.

Body Constitutive law | coefficients | Ref

NP Isotropic elastic Ev
2 MPa 0.499 | [89]
CEP  Isotropic elastic Ev

23.8 MPa 0.4 | [37]

Sensitivity analysis: material properties of the NP

The material properties of the NP were varied accordingly to constitutive
laws (Neo-Hookean and Mooney-Rivlin) and values from the literature [252,
131]. Three different cases were implemented, varying the material proper-
ties as reported in Table 6.6. These variations were implemented to evaluate
the effects of different constitutive laws, and how the degenerate conditions
affect (simulated with high Young’s modulus in NP-case 1) the biomechan-
ics. The NP-case 1 represents the material properties used in the L1-L.2 FU
in chapter 5. The material properties of the AF and CEP were assigned as
in the VP sensitivity analyses and are stated in Table 6.5.

Sensitivity analysis: material properties of the CEP

The material properties assigned to the CEP in previous studies [289][50]
were evaluated. Two extreme values, which simulate the degenerate and
healthy material properties, have been implemented as listed in Table 6.8.
The CEP-case 1 has already been presented in chapter 5 and it has been used
as a reference model for comparison. The AF and NP material properties,
not varied in these simulations, are listed in Table 6.7.
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Table 6.4: Material properties varied for the AF sensitivity analysis. The
symbol * identify the parameter varied in each simulation. The Neo-Hookean
material properties is reported in term of Young’s modulus and Poisson’s
ratio and directly converted into Lamé coefficients in FEBio

Annulus Fibrosus

AF cases Property varied coefficients ref
AF-Case 1 AF Ground cl,c2 0.82,0 [287]
Mooney-Rivlin* ksi 2.8 MPa [287]
a 90
B 2
0 +30°
é 90
AF-Case 2 AF Ground E,v 4.2 MPa,0.3 [150]
Neo-Hookean™ ksi 2.8 MPa
a 90
B 2
0 +30°
9} 90
AF-Case 3 Fibres orientation E,v 4.2 MPa, 0.3 | [150]
0 = +46° ksi 2.8 MPa
a 90
8 2
0 * +46°
é 90
AF-Case 4 ksi weighted E, v 4.2 MPa, 0.3 | [150]
layer 1 —2w =1 ksi* 2.8 MPa [256]
layer 3 —4 w = 0.9 « 90
layer 5 — 6 w = 0.75 B 2
layer 7 — 8 w = 0.65 0 +30°
é 90
AF-Case 5 ksi weighted E, v 4.2 MPa, 0.3 | [150]
w = 0.65 ksi* 2.8 MPa
«a 90
B 2
0 +30°
é 90
AF-Case 6 ksi regionally weighted E, v 4.2 MPa, 0.3 [150]
A, AL, L, PL, P ksi* 2.8 MPa [252)
w = [1,0.71,0.5,0.68,0.7] o 90
8 2
0 +30°
19} 90
AF-Case 7 0 weighted E, v 4.2 MPa, 0.3 | [150]
25° — 46° ksi 2.8 MPa [252)
a 90
8 2
0+ +(25° — 46 °)
é 90
AF-Case 8 Oandksi weighted E, v 4.2 MPa, 0.3 | [150]
0 = 25° — 46° ksi* 2.8 MPa [252]
w=1-0.65 a 90
B 2
0 * £(25° — 46 °)
é 90
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Table 6.5: AF and CEP material properties assigned in the NP sensitiv-
ity analysis. The Neo-Hookean material properties is reported in terms of
Young’s modulus and Poisson ratio and directly converted into Lamé coeffi-

cients in FEBio.

Body Constitutive law coeflicients ref
AF Ground | Neo-Hookean | E, v 4.2 MPa, 0.3 | [288]
AF fibres HGO ksi 2.8 MPa [252]
o 90
6] 2
0 +30 °
& 90
CEP Isotropic elastic | E, v 23.8 MPa 0.4 | [79]

Table 6.6: NP material properties assigned in the NP sensitivity analysis.

Nucleus Pulposus | Constitutive law coefficients ref
NP-case 1 Isotropic elastic | E,v 2 MPa,0.499 [89]
NP-case 2 Isotropic elastic | E,v 1 MPa,0.499 | [131, 135]
NP-case 3 Mooney-Rivlin | c1,c2 0.12,0.03 [131]

Table 6.7: Material properties not varied in the CEP sensitivity analysis.
The Neo-Hookean material properties is reported in term of Young’s modulus
and Poisson’s ratio and directly converted in Lamé coefficient in FEBio.

Body Constitutive law coeflicients ref
AF Ground | Neo-Hookean | E, v 4.2 MPa, 0.3 | [288]
AF fibres HGO ksi 2.8 MPa | [252]
« 90
6] 2
0 +30 °
& 90
NP Isotropic elastic | Ev 2 MPa 0.499 | [89]
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Table 6.8: Material properties for the CEP sensitivity analysis.

CEP Constitutive law coefficients ref
CEP-case 1 | Isotropic elastic | E, 5 MPa,0.4 | [289, 290]
CEP-case 2 | Isotropic elastic | E 23.8 MPa,0.4 [79]

v
, V

6.2.2 FE models and analyses

Twenty-one models have been defined with the material properties described
in subsection 6.2.1. To compare these results, the same boundary and load-
ing conditions were applied to all the models. The FU has been fully con-
strained at the lower surface of the L2 and pure compression and pure mo-
ments (around the three axis) have been applied on the upper surface of
the L1 (see Figure 6.4). A compressive load of 500 N was applied as a dis-
tributed load on the upper surface of the L1, and extension, lateral bending
and axial rotation have been applied as prescribed displacements, where
the displacement in the three directions (z,y, z) are evaluated according to
the rotation applied (described below). In the last loading case, an initial
axial displacement of 1 mm was applied to enforce the contacts and 3D
displacement are applied to simulate extension, lateral bending and axial
rotation. The axial-symmetry hypothesis has been adopted and only left
lateral bending and axial rotation with a positive angle around the z-axis
(as shown in Figure 6.4) have been considered. Coombs et al. [87] showed
that the rotation values corresponding to 10 N m is equal to apply a rotation
of 8.66° in flexion, 5.92° in extension, 6.01° for lateral bending and 1.75°
for axial rotation. The displacement d to apply in the three dimensions, to
obtain the final position after imposing the described rotation, have been
calculated through Equation 6.1 and Equation 6.2,

d = coord,,, , — coordy, . (6.1)
coord,, , . = coordy . R (6.2)

where coord and coord' are, respectively, the initial and final coordinates of
the nodes of the L1 vertebrae and R is the rotation matrix R ( Equation 6.3),
evaluated as a combination of the rotation matrices around the three axes
(Equation 6.4).

R=R,RyR, (6.3)
1 0 0 cosBp 0 sing cosy —siny 0
R, = |0 cosa —sina|;R, = 0 1 0 |;R,=|siny cosy O
0 sina cosa —sinB 0 cosp 0 0 1

(6.4)
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Figure 6.4: Loading conditions: a. compression; b. extension; c. lateral
bending; d. axial rotation.

In each group of simulations (varying the VP, AF, NP or CEP material
properties) a reference model has been used, which corresponds with the
model described in chapter 5.

The results of the sensitivity analyses simulations were reported in terms
of displacements, pressure on the NP (Intradiscal Pressure IDP) and axial
stress. The post-processing has been performed in Matlab, importing the
output files obtained from FEBio.

In order to evaluate the displacement on the IVD, the Anterior-Posterior
(AP) cross-section was taken in consideration (Figure 6.5). Then, the mean
values of the axial displacement on the IVD elements (excluding the carti-
laginous endplates elements) were evaluated.

The IDP was evaluated as in Equation 6.5 [37], in volumes identified around
the mean height of the IVD in the centre, anterior, posterior and lateral
regions of the NP and anterior and posterior side of the AF (Figure 6.7).

p- —%tr(c) (6.5)
where tr is the trace of the Cauchy stress matrix ¢. The NP was modelled
with solid elements, which differs from other studies in the literature [90, 291,
134] where fluid-like elements were used and the pressure did not vary within
its volume. Using solid elements, the pressure distribution was not constant
throughout the NP, and it was evaluated at different regions. All the results
were reported for the posterior volume, where the standard deviation was
always within 0.1 but for simplicity it has not been reported in the results
plotted. Moreover, the results followed the similar trend in all the volumes,
as shown in Figure 6.6 for the VP sensitivity, with an increasing IDP in
the models with higher values of AF volumetric percentage. In the AF,
the stress and pressure values were affected by higher standard deviations
and the mean values reflect an average behaviour within the small volume
of elements considered (Figure 6.7). This greater variation is due to the



CHAPTER 6. SENSITIVITY STUDY 118

Szz.
A P
SzX
S
2 Sxz
Syz T *’Sxx
I Syx é
>
% Syy X

Figure 6.5: The picture shows the reference coordinate axes and the direction
of the Cauchy stresses (a) and the Anterior-Posterior (AP) cross-section
where the results have been evaluated (b).
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Figure 6.6: Pressure on varying the VP in the different volumes (posterior,
anterior, centre, lateral). It is shown that in the posterior side the standard
deviation is lower than in the other case, but a common trend is evident in
all the volumes.
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bulging effect, the different material properties and fiber orientation within
each layer. In order to obtain an overview of the AF behaviour, stress
and pressure distribution were extracted from PostView, a post-processing
FEBio tool.

NP

AF

Anterior NP/AF
Posterior NP/AF

l Central NP
Lateral NP

Figure 6.7: Volumes identified in the NP and AF to evaluate the pressure.

6.3 Results

The results are reported according with the sensitivity studies described in
the previous sections: morphological variations (VP), and material proper-
ties of NP, AF and CEP.

Sensitivity: on varying the VP

The effect on the displacement under compression, varying the VP (30%,
35%, 40%, 43%, 46%, 50%, 55%, 60%), over the AP cross-section, is shown
in Figure 6.8. The displacement increases with increasing NP volume. Dis-
placement ranged from 1.2 mm to 1.4 mm, where the maximum values are
related to higher NP volumes, in correspondence of the simulated healthy
model. In Figure 6.9 the pressure distributions on the IVD along the AP
cross-section (Figure 6.9a) and the cross-section passing by the mid-line of
the IVD (Figure 6.9b) are displayed. From these figures, a decrease in pres-
sure is observed as the AF volume increases. The same trend is evident in
Figure 6.10, where the pressure on the NP and AF has been reported for
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Figure 6.8: Displacements on the IVD evaluated along an anterior-posterior
cross-section. The results are reported at different VP (30%, 35%, 40%,
43%, 46%, 50%, 55%, 60% ) and the z-axis reports the positions of the IVD,
from the posterior to the anterior side.

a small volume of elements. With a decreasing AF volume, the pressure in
the NP increases, however, an opposite trend is observed for the pressure in
the AF. The overall pressure on the AF increments when the NP volume de-
creases, and it is evident that there is an increasing pressure on the posterior
side of the AF. The stress on the axial direction (S, as shown in Figure 6.5)
and the pressure distributions on the AF are shown in Figure 6.11 for a VP
of 30%, 46% and 60%, which represent extreme conditions (thin AF, and
degenerated condition) and an average healthy condition. It is evident that
in the case of high VP values, the axial stress and pressure distributions
affect more the AF volume. It is noticeable that for a VP of 30% on the
posterior side and anterior outer surface there is a higher pressure as com-
pared to a VP of 60%. The axial stress present the same features, with a
more distributed stress over all the AF and low stress values on the outer
layers increasing the VP.

The 60% model, which represents the degenerated condition, should expe-
rience higher stress and pressure than the other VP cases. However, in this
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Figure 6.9: Pressure distribution on the AP cross-section (a) and on the
transverse plane at the average height of the IVD (b). The results are shown
for three VP (30%, 46%, 60% ), representing the two extreme conditions and
the average healthy conditions.
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simulation the change of material properties in the degenerated conditions
have not been taken into consideration, then the VP 60% has a thicker AF
structure than the VP 30%, which better bear the loads. The results of

Pressure [MPa] Pressure NP [MPa] Z-stress [MPa]
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Figure 6.11: Stress distributions along z-direction and pressure distributions
on the AF for the model at 30%, 46% and 60% VP. The pressure and stress
in both AF and NP are higher in the model with thinner AF.

applying the lateral bending, axial rotation and extension movements on
the FU are shown in Figure 6.12. The results follow the same trend as the
compression simulations, the load is better distributed on the AF volume as
this volume is increased. This is a result of a better load sharing due to a
wider area with higher material properties, and lower pressure in the NP.

Sensitivity: on varying the AF

The displacements, over the AP cross-section identified above (Figure 6.13),
do not show high variations on varying the fiber properties which showed
a mean value on the NP of around 1.2 mm. When varying the material
properties of the AF ground substance (AF-case 1), the mean value of the
axial displacement was around 1.6 mm in correspondence of the NP, and it
was around 1.35 mm when the fibre strength was assigned according to the
different region of the AF (AF-case 6). Thus, higher axial displacement was
recorded when the material properties of the ground substance were varied
(see Figure 6.3) as compared to the other cases (AF-case 2,3,4,5,7,8). The
results from varying the material properties of the ground substance are
confirmed by Figure 6.14 where the stress and pressure distributions on the
AF are displayed. In Figure 6.15 the mean values on the volumes identified
in the NP, AF and on the anterior and posterior side of the AF have been
compared. In compression, it has been shown that AF-case 1 predicts the
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Figure 6.12: Pressure distribution on the IVD for different VP (30%, 46%,
60%) for the different loading conditions: lateral bending, axial rotation and
extension.

lowest value of stress and pressure on the AF, but as confirmed by the high
displacements in the NP, there is a peak value of pressure in the NP (-0.68
MPa). This results in a more even distribution of pressure across the NP
(Figure 6.14). In the other cases, the IDP in the NP is around -0.45 MPa
while differences are better shown in Figure 6.14. Higher stress concentra-
tions are observable on the external layers of the AF, particularly in cases 3
and 4. From varying the fiber orientations between the two extreme values
evaluated (£30 © and +46 °) reported in AF-Case 2 and AF-Case 3 (respec-
tively), it is evident that this leads to a higher stress and pressure on the
AF outer layer of the model with a high fiber angle (Figure 6.14).

Predictions following the application of moments over the three axes
(lateral bending, axial rotation, extension) are shown in Figure 6.17 and
Figure 6.16. In all the cases a non-symmetric pattern of the results (both in
stress and pressure distributions) is noted, during these loading conditions.
The key-results can be evaluated by comparing the following cases:

e AF-case 1 and AF-case 2, which differ in the AF ground substance:
there are not major differences in pressure or stress distributions in
the NP, while higher pressure and stress are visible on the outermost
layer of AF-case 2;

e AF-case 2 and AF-case 3, where the same material properties are
implemented, and the fibers are arranged respectively at £30 ° and
+46 °: a slightly higher IDP is recorded for the AF-case 3 in the lateral
bending loading condition: -0.22 MPa versus -0.13 MPa in AF-case 2,
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Figure 6.13: Displacements on the anterior-posterior cross-section.

as well as increasing pressure and stress in the AF external layer;

e AF-case 4 and AF-case 5, where the difference is linked to the fiber
stiffness (ksi), differences can be noted for extension and axial rotation.
For instance, AF-case 4 has fiber stiffness varied per layers, and leads
to a higher IDP (-0.39 MPa AF-case 4) when compared to AF-case 5
(-0.34 MPa) in extension; in axial rotation higher IDP was recorded
for AF-case 5 (-0.18 MPa) than AF-case 4 (-0.11 MPa);

e AF-case 6 predicts the highest value of IDP in extension (-0.55 MPa),
due to the different fiber properties of the AF;

e AF-case 7 and AF-case 8 have the same material properties for the
AF ground substance, but a lower IDP is predicted under extension
loading mode in AF-case 8 (-0.35 MPa vs -0.46 MPa) due the variation
of the fibers strength in between the layers. In fact, in AF-case 8 the
fibers have a variable strength, with the lowest value in the inner layer
and the highest in the outer one.
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Figure 6.14: Stress on the vertical direction and pressure distributions for
all the cases listed in Table 6.4. The letters A and P correspond to Anterior
and Posterior.
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Figure 6.15: Pressure evaluated on the entire AF and on the volumes defined
in the anterior-posterior cross-section in correspondence of the anterior and
posterior AF and in inner volume of the NP.
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Sensitivity: on varying the CEP

The displacements over the two cross-sections were reported in Figure 6.18.
In correspondence of the highest Young’s modulus (CEP-Case 2), the axial
displacement on the two cross-sections has a mean value around 1.4 mm in
correspondence of the NP, while in CEP-Case 1 it was around 1.23 mm.

In Figure 6.19 the pressure and stress distribution are displayed and the
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Figure 6.18: Displacements on varying the CEP material properties

mean values on the AF and NP are reported in the histogram in Figure 6.20.
It is particularly evident that in CEP-Case 2, the NP is subjected to a higher
pressure (-0.39 MPa) than in the CEP-case 1 (-0.29 MPa). The pressure and
stress distributions following the application of moments about all the three
axes, are displayed in Figure 6.22. From this figure, it can be observed that
there is higher stress and pressure on both the AF external layer and NP
under all the loading conditions. The mean IDP in the volume selected in
the NP is shown in Figure 6.21.

Sensitivity: on varying the NP

The displacement on the AP cross-section is shown in Figure 6.23. Both
cases 1 and 2, were evaluated with Neo-Hookean material properties. Higher
displacements are shown for the NP region with a low Young’s modulus.
This behaviour is confirmed by a higher pressure on the NP-Case 1 as shown
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Figure 6.19: Pressure and stress distribution on the AF and NP on varying
the CEP material properties
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Figure 6.20: Pressure on the IVD wvarying the CEP material properties
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Figure 6.21: Pressure on the NP wvarying the CEP material properties in
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Figure 6.22: Pressure and stress distributions on the NP and AF when ex-
tension, lateral bending and axial rotation are applied.
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in Figure 6.24. However, in NP-Case 1, higher pressure is reported in the
posterior side of the AF (Figure 6.24). In NP-Case 3, stress and pressure
have inferior values than the previous cases, but the displacement are com-
parable with those of the NP-Case 2.
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Figure 6.23: Displacement on the Anterior-Posterior cross-section.
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Figure 6.24: Pressure on the whole AF and the selected volumes, and on the
NP internal volume.
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Figure 6.25: Pressure and stress distribution on the AF and VP.

6.4 Discussion

This chapter has identified the material and morphological parameters which
influence the biomechanics of the spine the most. Considering the numer-
ous variables involved in the anatomy of the spine, singular variations have
been evaluated, to identify the most influential parameters and implement
further studies in the future with statistical methods (i.e.: Taguchi, Monte
Carlo). In this study the functionalities of the LMG toolbox have been
demonstrated, showing the possible combinations that can be implemented
and the further improvements required to develop more accurate models.
To develop a toolbox which can be used in clinics, all these aspects have
to be taken into account and validated with subject-specific datasets. The
sensitivity analyses performed in this chapter, focused on determining the
effects of each parameter varied. The most influential parameters which af-
fect the stress distributions and the range of motion of the lumbar spine,
are:

e the volumetric ratio in the IVD affects the axial displacements and
IDP and stress distribution. However, further studies are required to
combine morphological and material properties effects.

e The constitutive law assigned to the AF ground substance and how
the material properties are assigned. In compression, Mooney Rivlin
and Neo-Hookean material properties showed the highest and lowest
axial displacement, respectively.

e The fiber stiffness and orientations and their distribution on the AF
affect the IDP and stress distribution when moments are applied.
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e High Young’s modulus of the CEP causes an increase of the axial
displacement and IDP in the NP;

e Low Young’s modulus of the NP caused an increase of the axial dis-
placement and IDP in the NP. Moreover, assigning a hyperelastic for-
mulation the IDP showed a more even distribution in the NP.

The physical meaning of these parameters have been described previously
(section 6.1), and the effects of each variation are discussed further below.
The results on the sensitivity analyses on varying the VP showed that hav-
ing thicker (60% VP) or thinner (30%) AF influences the FE biomechanics,
where a thinner annulus corresponds to a healthy situation, and a thicker
AF corresponds to a degenerated disc [273, 292, 293]. Degenerated models
are characterized by less mobility, due to a limited NP volume, which al-
lows the movements of the FU and the spine, with high Young’s modulus
and decreasing the Poisson’s ratio [294, 90, 155]. The results obtained con-
firmed these findings, in fact higher displacements were measured for thin
AF. In the case of these simulations, the findings were due to the increased
volume of AF with stiffer material properties than the NP. In previous stud-
ies [155, 90], the degenerated conditions have been simulated reducing the
disc heights of 20%, 40% and 60% respectively obtaining mildly, moder-
ated and highly degenerated disc and varying the compressibility of the NP
from 0.0005 mm?2/N to 0.15 mm?2 /N, where the stiffer material properties
corresponds to the degenerated NP. It has been assumed that the AF ma-
terial properties remained unvaried [295], even though the lamellae become
irregular with the fibers disorganized [52]. In previous studies [50, 286,
296], a variation of the material properties has been considered, with more
compliant material properties and different disc heights in the degenerated
condition. These two factors would result in an increasing stress and pres-
sure distribution on the AF, which could lead to posterior bulging. In the
current study, the effects of each factor have been explored, and further in-
vestigations are required to evaluate their joint effects on the biomechanics
of the spine. In future studies, degenerated conditions would be simulated
assigning, along with VP variations, different material properties to the NP,
as well as varying the height of the disc. Moreover, degenerated conditions
in the fiber distributions can be simulated, varying their orientation accord-
ing to the region or varying the density of fibers.

The IDP decreased with an increasing VP, in agreement with experimental
studies [273, 278, 293]. Moreover, the results obtained are in the range of the
computational and experimental results reported by Dreischarf et al. [165],
as also shown in chapter 5, where a VP of 46 % has been evaluated. The
results in compression on varying the material properties of the AF, showed
notable differences on varying the constitutive law of the ground substance
and on varying the way of assigning the material properties to the AF.
The effect of varying the fiber orientations is more evident applying the pure
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Figure 6.26: The IDP at VP = 46% was compared with previous FE results
and experimental results. The red bars identify the standard deviation of the
experimental study [165].

moments. The model with fibers uniformly oriented with high angles (+46
°, AF-Case 3) showed higher IDP values than the one at +30 ° (AF-Case
2). The stiffness of the fibers plays another important role, in fact in the
model with low stiffness (AF-Case 5) the IDP was less than in the one with
stiffness varied at each layer (AF-Case 4). Another difference is shown when
the fiber orientations are varied on each layer with a constant strength all
over the AF layers (AF-Case 7) or varying the strength at each layer (AF-
Case 8), which results in a lower IDP in the second case, due to a more
deformable structure around the IVD.

Experimental studies have demonstrated the differences on the fiber orien-
tations and strength at each layer of the AF [297, 298, 299], and this study
has highlighted the effects on the biomechanics and on the simulation results
of these variations.

In literature, the NP has been modelled mainly with fluid-elements [90, 134,
154, 131, 142] which are characterized by hydrostatic pressure, not varying
with the direction or location inside the NP. However, other studies have
implemented it with solid elements, applying linear elastic or hyperelastic
material properties [300, 238, 140]. In the former, the IDP is usually evalu-
ated in an inner volume of the NP, but it is not stated where this volume is
taken and if there is a variation with the surrounding areas. In this study,
several volumes have been evaluated (anterior, central, left-lateral, right-
lateral and posterior regions). The results of the mean value of the IDP
showed a high standard deviation, due to the distribution of the pressure.
This finding depends on the elements used as well as the loading conditions
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and particularly the morphology of the vertebrae. In many studies this
morphology is highly simplified, not taking into account the concavity of
the vertebral endplates. The contact surfaces are not plane (Figure 6.27),
further, varying the VP reducing the AF, which plays a structural role, in-
fluence the load distributions and the pressure distribution inside the NP.

Varying the CEP material properties affect the pressure on the NP. In par-

Figure 6.27: Morphometry of the bone endplates in contact with the IVD
with an overview on the contact surfaces.

ticular, stiffer CEP material properties resulted in an increased IDP. The
evaluation of a model with a higher Young’s modulus for the CEP corre-
sponds to a material with a low water content, thus, degenerated. Therefore,
it would result in a higher pressure on the NP [49]. In this model, linear elas-
tic material properties were assigned to the CEP, omitting their viscoelastic
and porous characteristic which could affect the biomechanics of the spine
[290, 301].

Previous studies have evaluated the effect of several material properties of
the AF. Such studies have varied the material formulations or evaluated the
effects of changing the incompressibility of the AF [290, 98, 87], which could
affect the sensitivity of the AF fibers [107, 302]. As stated by Zander et
al. [13], the sensitivity to morphological parameters has not been evaluated
yet. The main reason is the mesh convergence and the pre-processing of sev-
eral models which is time consuming. The LMG toolbox is able to provide
a population of models where the material properties and morphological
parameters can be varied and a mesh convergence directly run, avoiding
time-consuming actions around setting up multiple independent models.

6.4.1 Limitations and Future Work

In this study, a simplified functional model of the lumbar spine has been
evaluated. The ligaments and the facet joints cartilagineus surfaces have
not been modelled, reducing the range of validity of this model. However,
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this study evaluated the effects on the spine biomechanics of varying each
material property and the morphological features of the IVD individually.
The aforementioned soft tissues have not been implemented to reduce the
complexity of the results, nonetheless, this provides limitations for the evalu-
ation of the range of motion. These anatomical structures can be included in
further studies, in order to obtain a more complete evaluation of the effects
on the biomechanics. However, the current study has reported an evaluation
which is not addressed in depth in literature, unlike the ligaments and soft
tissues material properties [87, 13]. In fact, this is the first study where the
effect of volume percentage variations have been investigated.

In the evaluated models, the NP occupied the same relative position with
the AF, but it has been shown that it is slightly displaced in the posterior
side than the central area [292], with a resulting thinner posterior AF. This
factor would be useful to investigate and include in degenerated models. In
future studies the NP position would be varied to evaluate the effects on the
stress distribution on the AF, then evaluating the correspondent bulging
which in the posterior side is one of the causes of back pain.

Pure moments have been applied as prescribed displacements in this study,
by applying the range of motions calculated in previous studies. Usually,
the range of motion is one of the outputs from FE analysis of the spine,
which is also used for the validation with experimental results. However, in
this study the range of motion has been applied as prescribed displacement;
thus, it could not be considered as an output of the model. In future studies,
pure moments would be applied as described in chapter 5 to evaluate how
the range of motion is affected by variation in material properties.

Further future developements include making material properties available
in the LMG toolbox, to evaluate time-dependent effects such as viscoelastic
and biphasic properties assigned to CEP, NP and AF. It would increase
the toolbox functionality, covering a wider range of effects to evaluate, and
investigate the time-dependent effects on loading the spine biomechanics
[137], obtaining a more accurate model for the evaluation of the biome-
chanics. However, the geometry obtained from the LMG toolbox represents
an average geometry of the spine, which can not take in consideration the
subject-specific anatomical details. Then, the evaluation of pathological
cases affecting the anatomy of the vertebrae and eventual anatomical defor-
mity need further studies. This is the first application of the LMG toolbox
and static analyses have been performed, comparing them with previous
studies and place this model at the state of the art level. Further studies
would investigate combinations of material properties and loading condi-
tions to explore new frontiers.

Statistical, more structured studies with a high number of models to evalu-
ate cross-variations between the parameters identified in this study (ie. mor-
phological features along with degenerated material properties) are needed.
Future work would focus in the generation of an accessory GUI where the
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level of degeneration can be chosen, evaluating a combination of the previ-
ous conditions. For example, assigning a grade of degeneration (0 to 5), the
height and VP of the IVD would be automatically setup and the material
properties of the AF, NP and CEP assigned according to the range found
in the literature Figure 6.28.

Healthy Degenerated

|

Y\

Figure 6.28: The degeneration level can be chosen varying: a. IVD height,
b. wolumetric ratio, c. fiber orientations, d. AF, NP and CEP material
properties.

6.5 Conclusion

The IVD volumetric percentage and the material properties of its structures
(NP, AF, CEP) affect the biomechanics of the FSU. All these parameters
resulted in having important effects on the range of motion, in terms of axial
displacements, and stress and pressure distribution. The VP and the consti-
tutive law assigned to the AF ground substance, NP and CEP affect the IDP
and axial displacement, while the effect of fiber stiffness and orientation are
more evident when moments are applied. These properties are connected
with subject-specific pathological conditions which should be considered and
implemented in the evaluation of the biomechanics and evaluated according
with the purpose of the study (e.g. evaluate the effects of fiber orientation
when bending moments are applied).

The variation of material and morphometric parameters have focused on
a healthy range of values (low VP, low NP and CEP material properties
and AF with compliant fibers) and degenerated conditions (high VP, high
NP and CEP material conditions and stiffer fibers in the AF). Mapping the
effect of each parameter of the IVD, would lead to the estimation of the
unknown material properties between healthy and degenerated conditions.
An exhaustive description of the IVD material properties, and the devel-
opment, in the LMG toolbox, of a dedicated subroutine to implement the
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variety of anatomical and possible pathological conditions, would be bene-
ficial in the optimization of new implants and their assessment over a range

of pathological states.



Chapter 7

Dynamic posterior
stabilization device: Finite

Element Modelling,
validation and application

7.1 Introduction

Fusion is the current gold standard, for pain related discopathy. However,
several studies have asserted that fusion, due to load-bearing effects, induces
the degeneration of the adjacent level intervertebral discs [6, 7, 8]. Moreover,
the fusion system, fixes two adjacent vertebrae, which reduces the range of
motion of the spine (chapter 2, section 2.3).

Many studies have focused on the development of new devices to overcome
the disadvantages of fusion. One possible alternative is represented by dy-
namic stabilization devices, previously described in Chapter 2,section 2.3.
Posterior stabilization devices (PSD) are designed to enable some form of
motion, unlike fusion. There is some initial evidence that PSDs also re-
duce and better distribute the stresses on the IVD and preserve the inter-
segmental range of motion [303, 304, 305]. In between this category of
devices, this study focused on the BDyn, a bilateral pedicle screw device,
developed by S14 Implants (Pessac, Bordeaux).

The BDyn is a dynamic device, where a mobile rod has a relative mo-
tion with respect to the other components; two elastomer components allow
higher displacements, than the titanium rod, due to their greater compli-
ance. The BDyn device was designed to treat back pain diseases (further
described in chapter 2); however, its design and the elastomer components,
are well suited to be used in combination with other devices. For instance,
it is expected that the BDyn device would improve the range of motion,
and give more flexibility to implants. One possible application, in the spinal

139
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surgery, would be the combination with a GsDyn device. This is a growing-
rod device designed for the Early On-set Scoliosis in paediatric patients.
Currently, treating severe cases of scoliosis in paediatric patients is chal-
lenging, since the devices must be used during the growth of the patients.
The target is improved quality of life through minimally invasive surgery.
Moreover, two issues have been reported in the growing-rod devices on the
market: wear and breakage [306, 307, 308].
The performance evaluation of the BDyn was required to understand how
it affects the behaviour of the Functional Spinal Unit (FSU). The studies
performed on the BDyn so far, included experimental tests on the device
[254] and in-vitro studies with cadaveric spines [309] with ez-vivo studies
under way on devices ex-planted from patients [310]. However, these stud-
ies do not allow the evaluation of the effects on the biomechanics of the
spine with distinct pathological conditions or anatomical features. Finite
Element analyses could be implemented to evaluate the different setups,
varying the anatomy and studying the worst loading condition scenarios, as
a direct application of the LMG toolbox chapter 4. FE models would enable
assessment of its mechanical behaviour which could not be undertaken in
vivo. The results of such analyses can be directly used for the optimization
of the design and material properties that could lead to the development of
improved devices, as well as assessing stress distribution following use of the
BDyn device.
The aim of this chapter was to develop a dynamic FE model of the BDyn
which could be applied to a range of future studies on the performance of
the device, and on its influence on an FSU. Dynamic simulations have been
compared with experimental tests, with FE model predictions further com-
pared, qualitatively, with deformations of ez-vivo devices. A preliminary
evaluation of the mechanics of the combined device, BDyn and GsDyn, has
been carried out, assessing whether there would be any potential benefits in
combining the BDyn device with this scoliotic device (GsDyn).
In this chapter, the development of a BDyn Finite Element (FE) model,
along with validation with dynamic data, is presented (Figure 7.1). Two
separate mechanical tests were carried out; a compression test (subsec-
tion 7.3.1) and Dynamic Mechanical Analysis (DMA) (Figure 7.3.1), per-
formed as part of a separate study [311]. The results from the first set of
tests were used to obtain the constitutive laws describing the mechanical be-
haviour of the elastomeric components. Subsequently, FEA was performed
using Abaqus (Abaqus CAE /Implicit, version 6.14, Dassault Systmes, Prov-
idence, RI, USA) with the same DMA boundary conditions subsection 7.3.2.
The ensuing results were compared with experimental data from the second
set of tests to validate the FE model. The evaluation of the BDyn through
the experimental DMA and the dynamic FE analysis, is essential due to its
dynamic features and applications in the human body.

A qualitative comparison of the plastic deformation on the explanted de-
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Figure 7.1: Qutline of this chapter. Two separate experimental tests were
performed. The results of the compression test was used to evaluate the mate-
rial properties of the BDyn components. Then a dynamic non-linear analysis
was simulate in the FE software, applying the same boundary and loading
conditions, and the results were compared with the experimental ones. The
deformations obtained from static analyses were compared with the plastic
deformations found on explanted devices. An application of the BDyn has
been evaluated coupling the device with the GsDyn, a device to treat the
scoliosis.

vices and the deformation on the FE models has been performed. Static FE
simulations have been performed, applying compressive and tensile load-
ing conditions. The results have been compared qualitatively to ex-planted
BDyn devices evaluated as part of a separate study [310]. Those devices
were removed due to clinical complications/failure of the implants, and pre-
sented plastic deformation of the elastomer components.

In this study, an initial evaluation of the effects of the combined use of BDyn
and GsDyn was performed in section 7.5. Two FE models have been de-
veloped and analysed: the GsDyn as single device, and a combined BDyn-
GsDyn device. The FE analyses have been performed to understand the
differences in terms of range of motion and stress distributions, and to eval-
uate the effect of the elastomer components in the device.
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7.2 BDyn device

The BDyn, a posterior stabilization device (PSD) developed by S14 Im-
plants (Pessac, France), was designed to reduce the intradiscal pressure and
the loading on the facet joints. This device also allows the relative motion
between the components and the preservation of the intersegmental range
of motion. The BDyn device is inserted bilaterally, on both the sides of the
vertebrae, on one spinal unit, which consist of two vertebrae and an inter-
vertebral disc, or on multiple levels. The BDyn is attached to the vertebrae
through two titanium alloy (Ti6Al4V) pedicle screws, which are connected
to the mobile rod and a fixed rod (as shown in Figure 7.2). Two elastomeric
components are embedded in the BDyn, silicone MED-4770 and Thermo-
plastic Polycarbonate Polyurethane (PCU) DSM Biomedical Bionate 80A
PCU.

Figure 7.2: a. Overview of the BDyn device; b. the titanium cover has been
hidden and the internal elastomer components are visible.

7.3 BDyn: material properties and Finite Element
Models

The development of the FE model of the BDyn device required the evalua-
tion of the material formulation of its elastomer components, starting from
the results of experimental tests. The model was then validated against in-
dependent experimental data. The mechanical tests used in this study have
been performed by a collaborator and described elsewhere [254, 311]. This
section is divided as follows:

1. Experimental test (subsection 7.3.1)

e Compression tests on the elastomers (subsection 7.3.1);
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e Dynamic Mechanical Analysis on the BDyn (Figure 7.3.1).
2. Computational modelling (subsection 7.3.2)

e cvaluation of the material formulations to characterize the elas-
tomer components (subsection 7.3.2);

e FE dynamic analyses and validation of the BDyn device (Fig-
ure 7.3.2);

e FE static analyses and qualitative comparison with ez-vivo de-
vices (Figure 7.3.2).

7.3.1 Experimental tests on the BDyn

The experimental tests were performed by Lawless and described in detail
elsewhere [254]. These tests have been used to evaluate the material prop-
erties for the FE model and to validate their results, and for this reason, a
brief outline, only, of the mechanical setup is presented.

Compression test

Three BDyn single level devices were supplied by S14 Implants (Pessac,
France). The devices were tested using a MTS Landmark Servo-Hydraulic
Test System with FlexTest 40 Station Manager Version 5.3B software (MTS
Corp., MN, USA). A custom procedure was developed with the MTS Multi-
Purpose Testware (MPT) to perform compressive and tensile loadings. The
devices were clamped in the machine through MTS 647 hydraulic wedge
grips and MTS 647.02B jaws to fix the moveable and fixed rods (Figure 7.3).
The tests were performed in air, at room temperature, and the following
steps were implemented in the custom routine:

e a compressive ramp load until -1250 N was applied at a displacement
rate of 0.02 mm/s;

e the actuator was moved to -1 mm at a rate of 0.5 mm/s;

e a tension ramp load until 1750 N at a displacement rate of 0.02 mm/s
was applied;

e the actuator was repositioned to 0 mm at 0.5 mm/s, ending the test.

The data available of these tests regarded only the loading phases of the two
elastomers, and no data were obtained during the unloading phases.
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Figure 7.3: BDyn experimental test setup in the MTS Landmark Servo-

Hydraulic Test System. The fized and mobile rods were clamped through
custom-designed grips.

Dynamic Mechanical Analysis (DMA)

A Bose ElectroForce 3200 testing machine, running BoseWinTest4.1 DMA
software (Bose Corporation,Electroforce Systems Group,Minnesota,USA) was
used to estimate the viscoelastic properties of the BDyn. This method has
been used extensively in literature to evaluate the mechanical behaviour of
biological tissues and polymers [312, 313, 314].

Customized grips were used to clamp the mobile and fixed rods of the BDyn
device as shown in (Figure 7.4) and were used to load the device axially. Six
BDyn devices were tested with the following procedure: sinusoidal loads,
with an amplitude of 20 N for twenty frequencies (from 0.01 Hz to 30 Hz),
were applied to the mobile rod. The range of load chosen, allowed the evalu-
ation of the two elastomers, performing both tension and compression tests.
The experimental test was performed with a temperature controlled cham-
ber, to keep the device at body temperature (37 °C). Further information
regarding the experimental tests are available in Lawless et al. [254].

7.3.2 Computational modelling
Materials evaluation

The evaluation of the material properties to use in the FE model, were
obtained using the material evaluation tool in Abaqus. This tool deter-
mines the coefficients for a given material definition from the stress-strain
curves obtained from the following mechanical testing: uniaxial, equibiax-
ial, planar and volumetric compression test (Abaqus 6.14 Documentation,
Dassault Systémes, Providence, RI, USA). In this study, the evaluation was
based on the uniaxial compression test only, obtaining an initial estimation
of the material properties valid only under these loading conditions. In the
case of defining the hyperelastic behaviour of a viscoelastic material, further
information is required to define the strain-rate dependent behaviour and
the loading-unloading characteristics. If the loading-unloading data are not
fully provided, in Abaqus a linear behaviour is followed in the unloading
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Figure 7.4: BDyn DMA experimental test setup. The fized and mobile rods
were clamped through custom-designed grips.

phase (Figure 7.5). In this study, only the data of the loading phases (PCU

Displacements [mm]
S
N

025
031
: 035

: -0.4
ter 0 002 004 006 008 01 012 014 016 018 02

Time [s]

Figure 7.5: Example of a loading-unloading simulation of a hyperelastic ma-
terial, where the unloading behaviour of the material is not defined. The
displacement in the loading and unloading phases followed a different slope.

and silicone) were available. The stress and strain curves obtained from the
compression tests were used to evaluate the constitutive laws which best
simulate the material properties of the PCU and silicone in each loading
phase. Two assumptions were made: (i) the materials were not strain-rate
dependent (time-dependent effects were not implemented), (ii) the materials
were incompressible. Thus, the viscoelastic material properties were ignored
and volumetric changes neglected.

The material evaluation tool of Abaqus has been used only to obtain an
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initial evaluation, for polynomial, Mooney-Rivlin and Neo-Hookean descrip-
tions for the silicone and Neo-Hookean and Mooney-Rivlin for the PCU.
Once the best material model was identified from this initial evaluation, an
optimization subroutine was implemented to better define the coefficients of
the best fitting constitutive laws.

The material characterisation was performed using a simple geometric model:
a cube of unit height and the same boundary conditions as the compres-
sion test (subsection 7.3.1) were simulated: the lower surface was fully con-
strained and a ramp load, with the same maximum load of the experimental
test, was applied on the upper surface. The coefficients used for the polyno-

—

Material evaluation
[ o
I
b < = ==

Material formulation P A—

FE Simulation

Experimental vs FE results
Stress-strain curves

Figure 7.6: Calibration workflow. In the first material evaluation, performed
in Abaqus, the constitutive laws have been selected, then the parameters have
been varied and the simulations performed again until the stress-strain curves
from the experimental test and simulations reached a good fit (evaluated
through the R?).

mial, Neo-Hookean and Mooney-Rivlin hyperelastic constitutive laws were
iteratively changed in between the ranges reported in Table 7.1 and the
stress-strain curves obtained from the FE analysis are shown in Figure 7.7
and Figure 7.8. The implemented optimization sub-routine to evaluate the
material properties which obtained the best fit stress-strain curve to the
experimental data is shown in Figure 7.6.

The stress-strain curves obtained from the FEA are shown in Figure 7.9a
and Figure 7.9b and the constitutive laws were chosen according to the R?
with the experimental stress-strain curves. Mooney-Rivlin (R? = 0.998) and
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polynomial (R? = 0.997) constitutive law were chosen respectively for the
PCU and silicone and the coefficients are reported in Table 7.2.

Table 7.1: Ranges of values evaluated for the coefficients of the constitutive

laws.
Component | Constitutive law | Coefficient | Range
PCU Mooney-Rivlin C10 0.7-4
Neo-Hookean C10 0.5-8
Mooney-Rivlin C10 1-6
Neo-Hookean C10 0.5-9
Silicone C10 0.1-6
Polynomial C11 0-1
C20 0-2
30, J—
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Figure 7.7: PCU material properties evaluations: a. Mooney-Rivlin, b. Neo-

Hookean.

Table 7.2: Material properties

of the BDyn components.

Component | Constitutive law Coefficients

Titanium Linear Elastic E =105 GPa, v =10.3

PCU Mooney-Rivlin C10=1,C01 =0.6030,D1 =0
Sil 2nd order Polynomial | C'10 =3,C01 =1,C11 =1,

C02=0,020=2,D1 =D2=0
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Figure 7.8: Silicone material properties evaluations: a. Mooney-Rivlin, b.
Neo-Hookean, c¢. Polynomial.

BDyn FE model

The FE model, based on the CAD file supplied by S14 Implants, was pre-
processed in Abaqus. The material properties identified, following the pro-
cedure described in subsection 7.3.2, were assigned to the elastomer com-
ponents, and the complete material properties are listed in Table 7.2. Fur-
thermore, the density was assigned to each material (Titanium 4.43 g/cm?,
PCU 1.19 g/em?3, silicone 1.10g/em? ), according to their datasheets.

To reduce the computational time of the simulation, and in agreement with
the experimental setup, a simplified geometry of the BDyn was used. The
fixed titanium rod, which was fully constrained in the mechanical test, was
removed from the geometry in the FE model (Figure 7.10). Hexahedral el-
ements were used to mesh each component of the device. The mesh size of
the components were evaluated through a convergence test, where each com-
ponent was evaluated applying loads accordingly to the loading conditions
of the simulation. The model with mesh density which showed a difference
on the stress within the 5%, with the finer model, was chosen for each com-
ponent. Mesh sizes were optimised for each individual component to reduce
the computational time. The meshed device is shown in Figure 7.11. A
total of 60042 hexahedral elements have been used to mesh the model and
the number of elements for each component are listed in Table 7.3.

Surface-to-surface frictionless contacts were defined between the surfaces,
enabling only normal movements between the components and, therefore,
tangential sliding was neglected. In the normal direction, separation between
the PCU and silicone from the mobile rod was enabled through a dedicated
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Figure 7.9: Material evaluation of the PCU (Figure 7.9a) and silicone (Fig-
ure 7.9b). The stress-strain curves obtained from the experimental test (in
red), the Abaqus evaluation tool (in blue) and the material optimization
(green) sub-routine are shown.

option in Abaqus to emulate the real conditions.

BDyn dynamic FE analysis

The inferior surface of the device was fully constrained and a sinusoidal
distributed force varying between 20 N and -20 N, was applied at six fre-
quencies (1, 3, 5, 10, 15 and 20 Hz) corresponding to the range of vibration
of the human body [315, 316], to the upper surface of the mobile titanium
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C

Figure 7.10: a. BDyn original geometry, including the screw to connect to
the FSU; b. BDyn geometry used in the experimental study; c. simplified ge-
ometry of the BDyn. The inferior rod, of the BDyn is fized in the mechanical
test and it has been removed in the FE model to reduce the computational
time, as well as some design details such as external fillets.

Table 7.3: Number of elements and mesh size of the BDyn components.

Component | Number of elements | Mesh size [mm]
Mobile rod 13488 0.28
Base 11516 0.28
Cover 1976 0.8
Silicone 23000 0.2
PCU 10062 0.28

Figure 7.11: a. BDyn model simplified, b. model meshed, c. model meshed
with the titanium cover remowved.
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rod.

Implicit dynamic simulations were run in Abaqus, with the time-step vary-
ing per frequency. Small time-steps were required for high frequencies to
sample the displacement results, obtaining the same resolution of displace-
ment data per loading cycle. The displacement of the device were measured
from the upper surface of the mobile rod and compared with those obtained
from the DMA tests on six specimens.

BDyn static FE analysis

A static analysis was performed to evaluate the effect of high loading con-
ditions in compression and tension. The same boundary conditions of Fig-
ure 7.3.2 were applied, fully constraining the inferior surface. Distributed
compressive and tensile loads, corresponding to applying pressure of 1 MPa,
10 MPa and 15 MPa have been applied on the upper surface of the mobile
rod. These results have been used to qualitatively evaluate the deformation
effects on the materials and compare the results with those of the explanted
devices.

7.4 BDyn FEA outcomes

The material properties of the elastomer components of the BDyn device
were evaluated in subsection 7.3.2. Mooney-Rivlin and 2"¢ order polyno-
mial formulations were chosen for PCU and Sil respectively. The material
coefficients have been evaluated and selected according with the best R2,
which in both cases were around 0.99.

The displacements of the upper nodes of the mobile rod were evaluated and
reported in Figure 7.12, where either the single curves and the average mean
values were shown. The differences peak to peak, represented in Figure 7.13,
were evaluated as in Equation 7.1 and Equation 7.2:

(minFga — mingxp)

dszmm - N (7-1)
MINEFEA

(marppas — margpxp)
MarreA

diffmax =

where minpp4, maxppa and mingxp and maxgxp are the average peak
values on the FEA results and on the experimental data, respectively. The
percentage differences are listed in Table 7.4. A decreasing trend has been
shown on the percentage differences with increasing frequency. The results
showed that this model replicated the dynamic response of the BDyn in be-
tween the range 10 Hz to 20 Hz with an error less than 10% (Figure 7.14).
The percentage differences were 13% at 5 Hz (both PCU and Sil), and >
15% for low frequencies (1 Hz, 3 Hz).

(7.2)
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Figure 7.12: Comparison between the displacement curves obtained from the FE analyses (in red), the experimental DMA for
the sixz specimens (in black) and the mean values of them (in light blue) at the frequencies evaluated (1 Hz, 3 Hz, 5 Hz, 10
Hz, 15 Hz, 20 Hz), plotted at different time scales.
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Table 7.4: The table shows the percentage differences between the mean peak
values of the experimental and FEA curves, evaluated as in Equation 7.2
and Equation 7.1. The differences have been evaluated between the curves
in correspondences of the PCU and silicone peaks has shown in Figure 7.13.

% Differences Frequencies
1Hz 3Hz 5Hz 10Hz 15 Hz 20 Hz
Silicone 20.0 15.0 13.0 7.0 4.0 1.2
PCU 50.0 17.0 13.0 4.0 2.0 1.0
' ' ' Silicone
0.15 PCU

— 0.1
S
g
— 0.05

Displacement

-0.1

-0.15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time [s]

Figure 7.13: The peak to peak differences (illustrated with the black arrows)
have been evaluated in correspondence of the compression silicone and ten-

sion (PCU) phases.

The static compression analyses on the PCU and Sil have been analysed
through qualitative evaluations of the resulting deformations on the elas-
tomer components. In Figure 7.15, an overview is given on the effects on
the shape of the PCU, loaded in compression with an applied pressure of 1
MPa, 10 MPa and 15 MPa (20 N, 200 N and 300 N respectively). The dis-
placement distributions on the PCU and silicone are reported in Figure 7.16
and Figure 7.17. In Figure 7.18 and Figure 7.19, the plastic deformations of
the Silicone and PCU are directly compared with the results of the FE mod-
els. The silicone, deformed at the superior surface, where there is contact
with the mobile titanium rod. The PCU, plastically deformed around the
open side of the titanium cover when a tensile load is applied to the BDyn.
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The explants, coated in gold to perform further studies not evaluated in this
thesis, presented plastic deformations in the same area highlighted above
and seen in the FE models.
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Figure 7.14: Displacements curves represented in time windows of 0.25 s (a)
and 2 s (b). The curves with the continuous lines refer to the FE results,
while the dotted lines refer to the mean value of the experimental results.
The positive displacements refer to the compression loading phase, then the
compression of the silicone, while the negative parts refer to the PCU com-
pression.
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Figure 7.15: Undeformed model (a), deformed model on the right respectively
at 1 MPa (b), 10 MPa (c) and 15 MPa (d).
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Figure 7.16: Displacement magnitude (in [mm]) at 1 MPa (a), 10 MPa (b)
and 15 MPa.
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Figure 7.17: Displacement magnitude (in [mm]) on the PCU (in [MPa]) at
1 MPa (a), 10 MPa (b) and 15 MPa.
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Figure 7.18: Silicone explanted and compared to the FE model.

Figure 7.19: PCU explanted and compared to the FE model.

7.5 BDyn application in combination with a new
GsDyn scoliotic device

As stated in section 7.2, the BDyn device has been designed to restore the
original range of motion in degenerated spinal unit and reduce the load
applied to the IVD and facet joints. The BDyn range of motion can be
used in combined applications with other devices. The BDyn device has
been combined with the GsDyn (a device to treat the Early Onset Scoliosis
(EOS)) device in an FE model, to investigate the effects on the mechanics of
the GsDyn when a dynamic device is connected to it. Two FE models, pre-
processed in Abaqus, are presented in this section: (i) a model of the GsDyn
and (ii) a FE model of the combined device (BDyn-GsDyn). Subsequently,
the results are analysed and compared to evaluate the effects introduced by
these elastomeric components.

7.5.1 GsDyn

The GsDyn device, has been designed for the EOS treatment, based on sur-
gical requirements by Gonzalez and the design concept details can be found
elsewhere [18]. This type of device to treat the EOS, requires continuous
follow-up surgery to adapt to the child growth and spinal curvature correc-
tion.

The GsDyn is an extendible device, composed of following parts (Figure 7.20):
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i lower rod, attached by a screw to a lumbar verterbae;

ii body, it represents the fixed component of the device, with an hollow
cavity to accomodate the mobile rack;

iii mobile rack, with toothed surface to move against the gear;
iv gear mechanism to allow the elongation of the device;

v lock system which keeps the device in the designed position chosen by
the surgeon;

vi cover cases, which cover the gear and locking mechanism.

The elongation of the device during the surgery is allowed by the gear-rack
system, and then fixed in a static condition with the locking mechanism.
More details about this device, the design concept and evaluations of its
functionality can be found elsewhere [18].

In this study, an initial evaluation of the GsDyn device was performed, then
the FE model of the coupled device BDyn-GsDyn have been developed and
analysed to study the influence on the mechanics of the elastomer compo-
nents.

Case

Eack

ésdy

Gear

Lock

Figure 7.20: GsDyn components.

7.5.2 GsDyn FE model

The FE model of the GsDyn has been developed starting from the geometry
shown in Figure 7.20, where the gear was not included. This simplification
on the geometry has been used since the static condition was considered as
the worst case scenario: the rack fully elongated with the locking pin in con-
tact to the rack to avoid movement. The GsDyn components are composed
of a Titanium alloy (Ti6Al4V), with Young’s modulus and Poisson’s ratio
of 105000 MPa and 0.3 respectively.
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The Gsdyn device has been meshed with tetrahedral elements, and in
the area subjected to high stress concentration (locking pin and rack con-
tact surfaces) the mesh was refined. Mesh convergence analyses have been
performed on the components of the GsDyn, evaluating the mesh density of
the single components, applying the loads correspondingly with the loading
conditions subsequently applied in the FE simulation.

The mesh size was chosen by evaluating the differences on the stress
varying the mesh size and evaluating the computational time required. The
mesh size selected demonstrated less than 5% of difference in the stress as
compared to a finer mesh model. To reduce the computational cost, larger
mesh sizes (which resulted in error values >5%) were accepted for the body
and rack components. The body is not directly involved in the contact
between the locking pin and the rack, while in the rack component mesh
refinement was implemented in the contact area to increase the resolution
of the model. In Table 7.5 the mesh size and number of elements used are
listed for each part.

Table 7.5: Number of elements and mesh size of the GsDyn components.

Component | Number of elements Mesh size [mm]
Body 3713 1.5
Lower case 9 498 0.9
Upper case 9 919 0.9
Lock 46 463 0.25
Rack 21 794 1.0

The contact properties between the GsDyn parts have been defined as
follows:

e tied contact properties between the welded parts: upper and lower
cases, lower rod and bodys;

o tied contact properties between the body and the rack, considering the
rack in a fixed position and not allowing motion, as well as for case
and locking pin;

e sliding contact properties between the locking pin and the correspon-
dent rack tooth.

Boundary and loading conditions have been applied to replicate the im-
planted condition as shown in Figure 7.21, where the two extremities are
connected by screws or hooks to the rib cage and the vertebrae. The device,
which is meant to correct the excessive curvature of the spine, is inserted
inclined with respect to the coronal plane (Figure 7.22). Thus, the load
is applied with a variable angle. The angle of application depends on the
stage of the treatment and on how it has been connected in the body. The
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Figure 7.21: Load and boundary conditions applied to the GsDyn.

opposite side the device has been fixed, at the bottom surface, with a fully
constrained boundary conditions. The nodes of the inferior surface of the
rod were fully constrained, and 100 N load was applied to the rack in cor-
respondence of the reference point shown in Figure 7.21 with the described
direction (along the z-axis, as defined in the figure). A static simulation has
been solved and the displacement and stress distribution evaluated.

0508 R8EI000 8 5 gamg

=
=2
==
==
[ma)
3
s

0gpoo

Figure 7.22: The inclination of the device changes accordingly with the pa-
tient growth and the treatment of the scoliosis.

The BDyn-GsDyn device was obtained connecting the BDyn at the in-
ferior surface of the GsDyn, where the lower rod has been substituted by
the mobile rod of the BDyn; further, the welding contacts between the two
devices have been replicated by means of a tied contact. The pre-processing
(mesh size, material and contact properties) described above in the previous
sections (Figure 7.3.2) have been applied in this simulation.
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The inferior surface of the BDyn has been fully constrained and the loading
condition applied on the GsDyn FE model (100 N subsection 7.5.2) has been
applied. A static simulation has been run and the displacements and stresses
were analysed and compared with the results of the GsDyn simulation (solo
device).

Figure 7.23: Boundary and loading conditions for the GsDyn and the com-
bined BDyn-GsDyn device.

7.5.3 GsDyn & BDyn-GsDyn FE results

The displacements over the GsDyn and the combined device (BDyn-GsDyn)
have been evaluated and the results are shown in Figure 7.24. For the
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Figure 7.24: Displacements on the GsDyn (a) and the combined device
BDyn-GsDyn (b). The magnitude of the displacements is shown (in mm,).
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GsDyn device, the displacements on the structure are limited, due to the
high stiffness of the device. The elastomer components of the BDyn device
gave more freedom to the structure, leading to a maximum displacement of
0.39 mm.

The stress distributions, evaluated as Von Mises distribution in Figure 7.26a

s, Max, Principal

(Avg: 75%)
+6.000e+01
+5.357+01
+4,7156+01
+4,0728+01
+3,4298+01

-1.713e+01

Figure 7.25: Stress distributions on the locking pin and rack in the GsDyn
model (a and c¢) and in the combined device (b and d). The mazimum
principal stress are shown (MPa).

and Figure 7.26b, showed in both cases a peak value on the locking system,
in correspondence of the contact area with the rack. The maximum stress
values were 238.4 MPa in the case of the GsDyn device (Figure 7.26a), and
62.9 MPa for the combined device (Figure 7.26b); a four-fold reduction in
peak stress.

7.6 Discussion

In this study, the material property formulations for the elastomer compo-
nents have been determined and used for FE modelling of the BDyn device.
The BDyn FE model has been validated against data from dynamic loading
conditions. The model predictions were particularly accurate in the range
between 10 and 20 Hz (percentage differences with the mean value of the
experimental results were <10%), and at 5 Hz (percentage difference was
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Figure 7.26: Stress distribution on the locking pin of the GsDyn. On the
first row, the Von Mises stress is shown and in the second the mazrimum
principal stress in MPa.

<15%) which includes the physiological range of vibrations [315, 316]. The
percentage differences for the PCU and silicone were less accurate at 1 and
3 Hz (15%, 20% for the silicone, 17%, 50% PCU, respectively). Despite
these differences, particularly accentuated for the PCU at 1 Hz, the FEA
displacement results are included in the range of variability covered by the
experimental test.

Critically, though, the stress distributions on the static models predicted
high-stress in correspondence to the regions of failure on explanted devices.
The simulation was performed in only compression, yet it has made some
excellent predictions for explants loaded in the body and subjected to dif-
ferent loading conditions. Moreover, an application of the BDyn device as
applied to a new device to help correct scoliosis (the GsDyn device) has been
evaluated, with the key finding that inclusion of the BDyn device on to this
novel scoliotic device reduces peak stresses by a factor of around 4.

The results of the dynamic analyses agreed with Lawless et al. [254], at high
frequencies the material properties of the BDyn are characterized by higher
stiffness, while at low frequencies (1 Hz, 3 Hz) the materials showed higher
displacements. However, in the FE analyses, the viscoelastic properties have
not been implemented, therefore, the time-dependency is not included in the
model. Thus, the FE results did not include differences in the displacement
amplitude under sinusoidal loading; unlike the experimental results. It is
expected that discrepancies at lower frequencies may be a result of a greater
energy dissipating capability of the components of the BDyn device, which
is the component not modelled in this study. Differences in the loading and
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unloading slopes were evident in the FE model at lower frequencies (1, 3,
5 Hz), where the mass of the bodies have more influence on the dynamics
of the device as explained from the dynamics formulation, while it is not so
evident at higher frequencies. This is likely due to the undefined unloading
properties (subsection 7.3.1), a change in the slope of the sinusoids (both in
the negative and positive parts of the sinusoids) were expected in correspon-
dence of the unloading phase. In Figure 7.12, it is noticeable a change in the
slope of the sinusoid in the PCU loading phase, which increases at low fre-
quencies (ie.:1,3 Hz). These results are justified by the difference in density
of the two materials and further emphasized at low frequencies according to
the formulation of the dynamics (Equation 7.3):

2
m% + cill—j + kx = Fsin(wt) (7.3)
Equation 7.3, describes the motion of a system where m is the mass of the
body, k the elastic constant, ¢ the damping coefficient, I’ the external force
applied to the system at a frequency w. Its solution, in the forced and
undamped condition, lead to the following displacement functions:
case 1. w # wy

x(t) = Reos(wot — 6) + —5——cos(wt)) (7.4)
wO — W
case 2. w = wy
F
x(t) = Reos(wot — d) + ———cos(wt)) (7.5)
2muwg

where R is a coefficient of the specific solution of the differential equation
and wq the natural frequency, defined as:

wo = \/E (7.6)

As stated by Lawless et al. [254], in the range of frequencies simulated there
are not resonant peaks. In both the loading phases (PCU and silicone),
at low frequencies the density of the bodies has a dominant effect. In Ta-
ble 7.4, the percentage differences between the experimental tests and com-
putational simulations are >10% at low frequencies in correspondence of
both the PCU and silicone peaks, where the FE results are more affected
by its inertial properties (Figure 7.14). In particular, the differences were
more accentuated in correspondence of the PCU loading phase, which has
higher density than the silicone. These results showed that the FE model
is able to accurately replicate the behaviour of the BDyn device only in the
range of frequencies between 5 Hz and 20 Hz, where the errors between the
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displacements is less than 10%. Nevertheless, despite the described limita-
tions, this model is able to simulate the device behaviour across a range of
frequencies which correspond with the physiological range [315, 316], as well
as replicate the device behaviour under static loading.

The stress distributions and displacement, obtained from the FE simula-
tions, were qualitatively coherent with the deformation of ex-vivo implants.
High displacement is registered in the PCU around the surfaces in contact
with the mobile rod. In particular, the upper internal corners are charac-
terized by the highest values for displacement. In the silicone, the upper
surface in contact with the titanium rod is affected by the highest deforma-
tion.

The combination of the BDyn device with the GsDyn implant resulted in
a four-fold reduction in peak-stresses predicted, which would likely result
in improved durability of the device. The stress distribution analyses have
been principally focused on the contact between the locking system and the
rack, which is anticipated as the weakest part of the device, and could lead
to failure. The combined device resulted more compliant, with more flexibil-
ity given to the patient, and reducing the stress concentration in the locking
mechanism. This coupled device represents one possible application of the
BDyn. In fact, its design concept could be used in other devices to reduce
the failure risk and obtain more flexible devices.

7.6.1 Limitations and future work

The material properties of the PCU and silicone have been evaluated as
hyperelastic materials. To obtain an accurate estimation of the material
formulations, more than one experimental test is recommended, particularly
in case of non-linear materials properties. Although, the evaluation is also
possible with only one experimental dataset, it provides an estimation valid
only under those same loading condition. The materials have been hypothe-
sised as incompressible, due to the lack of volumetric test and this hypothesis
is widely accepted in case of elastomers [317, 318, 319, 320]. Another lim-
itation from this estimate is the lack of the data related to the unloading
phases of the mechanical tests. In fact, elastomers are characterized by dif-
ferent behaviours during different loading conditions and loading/unloading
phases, and if the unloading formulation is not stated in Abaqus, it follows
a linear behaviour. For this reason, a change on the sinusoid slopes was
expected in the results. However, in this range of loads the obtained strains
are in the initial part of the material’s stress-strain curves, approximately
linear. To obtain more complete characterization of the elastomers and a
mechanical estimation valid for a wide range of load, more experimental
test are required. In future studies, further experimental tests are required
to fully characterize the mechanical behaviour of the elastomers, either as
time-independent and time-dependent. Particularly, in the last case, the



CHAPTER 7. DYNAMIC POSTERIOR STABILIZATION DEVICE 165

description of the viscoelastic features needs creep test data and at least
one between shear or volumetric test data.

A preliminary study [304, 305], on a generic lumbar model of the L4-L5 has
been developed (Figure 7.27), obtaining as expected a decreasing pressure
on the intervertebral disc and increasing the range of motion. Further stud-
ies would investigate the mechanics of the BDyn and its effects on the spine,
using different morphologies, various degenerated conditions and loadings.
These studies will be developed using the Lumbar Model Generator toolbox,
described in chapter 4, where anatomical differences as well as healthy and
degenerate conditions can be implemented to evaluate the effect of the Bdyn
on the biomechanics of the spine.

Figure 7.27: Functional unit obtained from previous studies [305] with an
embedded BDyn device.

7.7 Conclusions

An FE model of the BDyn has been implemented and validated against
experimental data and the model resulted accurate in the range between 5
and 20 Hz. The validated model could be used in combination with spinal
models to predict the effects of the BDyn device on the spinal biomechanics,
in particular under degenerated conditions.

Further, the BDyn model predicted deformations which qualitatively matched
those of a retrieved implant, this level of agreement is impressive given that
the BDyn device was simply modelled under compression, as opposed to an
implant undergoing the full range of loading experienced within true physi-
ological conditions. Coupling the Bdyn device with the GsDyn, resulted in
four-fold reduction in induced stresses within the locking system. Thus, a
reduced failure risk could be expected in that area of the device. Further,
this demonstrated that the functionalities and design concept of the BDyn
can be used in the development of new devices, reducing the risk of failure
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of existing and new spinal implants.



Chapter 8

Overall discussion and
conclusions

The aim of this thesis was to provide a Finite Element model of the lumbar
spine to assess the design and the effects of implants in the biomechanics of
the spine as well as providing a tool for the clinical evaluation of treatments
in degenerated conditions. In order to fulfil this objective, the FE model has
to provide generalised solutions valid for a population of subjects, as well as
evaluate subject-specific conditions.

Anatomical dimensions of the lumbar spine were collected from literature
and subject-specific datasets and subsequently used to evaluate correlation
analyses available in literature. The morphological study which showed the
best correlation with subject-specific datasets has been implemented in the
development of the parametric and scalable geometrical model of the lum-
bar spine. The geometrical model can be generated either following the
correlation analyses implemented, based on the age, height and gender of
a subject, or importing the subject-specific measurements from data-scan.
The generation of the geometry and the development of the FE model,
performing the mesh generation and evaluation, pre-processing the meshed
model, assigning material properties and defining contacts boundary and
loading conditions, is implemented in a toolbox, the LMG (Lumbar Model
Generator), developed in Matlab. Finally, the FE model is sent to solve to
FEBio, an open-source software, through the LMG toolbox. The LMG per-
forms all the steps, from the geometry generation to the preparation of the
FE model, connecting internally to the FE solutor and analysing the results,
avoiding time-consuming actions and transferring files from one software to
another. An entire lumbar model has been generated as proof-of-concept,
and a FE model of a LL1-1.2 functional unit has been analysed. The inter-
vertebral disc pressure and the displacement on the nucleus pulposus (NP)
were investigated at different compressive loads (500 N, 750 N, 1000 N) and
were compared with experimental results and computational studies avail-

167
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able in literature [273, 165]. The results were in agreement with the previous
studies, thus showing the validity of the model generated.

The automation of the entire process allows the evaluation of different ge-
ometries and/or eventual anatomical deformity, as well as evaluating the
effects of different material properties. Sensitivity analyses have been per-
formed, evaluating scenarios (i.e.: morphological variation in the IVD) that
usual model generation methods would require the use of several models and
a considerable amount of time for the setup of the models. The sensitiv-
ity analyses showed that combined morphological and material properties
variations are required to evaluate degenerated conditions. The constitutive
material properties of the annulus fibrosus affect the displacement and IDP
on the NP under compressive loads, while fiber orientations and stiffness
influence the biomechanics when bending moments are applied. Moreover,
the effects of sensitivity analyses on the NP and cartilaginous endplates ma-
terial properties have been evaluated, demonstrating the effects on the axial
displacement and IDP.

A dynamic, non-linear FE-model of the Bdyn was developed and validated
against experimental results. Subsequently, the BDyn has been included in
the design of a device for the treatment of scoliosis in paediatric patients
(GsDyn) to evaluate the effects of deformable components. In the combined
device, the stress on the locking system of the GsDyn resulted four-fold re-
duced, which would improve the durability of the device.

Correlation analyses evaluated in the literature have been assessed [226,
36] and compared with correlation analyses performed in this thesis, based
on morphometric studies available in the literature [43, 26]. The complex
anatomy of the vertebrae requires the measurements of several dimensions
on each vertebrae, however general method to measure them has not been
defined and the mentioned studies reported a different list of dimensions,
allowing the comparison only on four dimensions (Endplate Depth EPD,
Endplate Width EPW, Pedicle Height PDH, Pedicle Width PDW). A study
by Alam et al. [43], demonstrated the importance of evaluating correlation
studies from consistent groups, accounting for ethnicity and gender. Divid-
ing correlation analyses according to the ethnicity and gender would allow
the development of accurate correlation analyses and a dedicated section of
the LMG toolbox (chapter 4).

The application of FE model of the lumbar spine in the development of
new devices and in the evaluation of the possible clinical treatments is not
yet a routine process and it is due to:

e Issues with solving subject-specific FE model in real-time;

e Uncertainty in material properties;
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e A lack of validated protocols.

Subject-specific models are affected by a high computational cost, related
to the acquisition of a scan, segmentation and pre-processing; all these steps
require an expert and skilled technician, and long hours of work. Material
properties remain unknown, and are affected by high variability between
subjects and even intra-subject variability depending on the pathological
conditions. A real-time procedure, requires the validation against an exten-
sive data-set, in order to prove the reliability of that system; and, thus, the
predictions of the model.

The LMG toolbox represents a possible solution to the underlined issues. It
allows the generation of the geometry of a lumbar spine (given the dimen-
sions from either subject-specific dimensions and correlation analyses) and
the pre-processing of a FE model in less than 20 seconds. The accuracy of
the LMG geometry has been ascertained against the Visual Human Project
model, reproducing this subject-specific anatomy. Moreover, the material
proprieties can be selected and assigned according to the pathological status
or a range of values can be assigned. Potentially, enabling the evaluation
of the possible effects of an implant on patients with different tissue de-
generations. Further studies would map the combination of material and
morphological changes to identify different degenerated status and directly
select these using a GUI. However, the LMG toolbox generates average
models and the subject-specific anatomical details can not be automatically
included. Even evaluating an extensive data-set to map morphological and
material properties variations between healthy and degenerated conditions,
they would result as an approximation of the real morphologies and material
properties.

The LMG toolbox allows the pre-processing of the generated lumbar ge-
ometry. All the bodies are meshed according to the automated convergence
analyses, and the material properties are assigned. The geometrical features
(i.e.: surfaces) are selected and contact properties and boundary conditions
directly applied. The functionalities and potentiality of the toolbox are de-
scribed in this thesis, as well as two applications, the generation of a L1-L5
FE model and the generation and analysis of a L1-L2 FE model. Further
studies are required to improve the toolbox, adding a wide range of loading
conditions to simulate the physiological range of motion, and adding the ef-
fects of ligaments and the follower load. Despite the mentioned limitations,
the results of the L1-L2 model were in agreement with available experimen-
tal and computational studies, demonstrating the validity of the toolbox.

One of the advantages of a parametrised and scalable model, embed-
ded in an automatic toolbox for the FE model generation, is that it allows
the evaluation of sensitivity studies on either morphological parameters and
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material properties. In the study presented in chapter 6, a range of volu-
metric ratio between the Anulus Fibrosus (AF) and Nucleus Pulposus (NP)
and various material properties for the AF, NP, and cartilagineus endplates
(CEP) have been evaluated. These variations represent the alteration of the
mechanical properties in case of degenerated conditions. The VP sensitivity
study showed how the mechanics change, in terms of IDP and axial dis-
placements, on varying the thickness of the AF. However, in this study the
morphological variations have not been paired with the respective material
property changes, which is demanded to obtain realistic estimations. The
material properties of the CEP, VP and AF have important effects on the
biomechanics of the FU in both compressive and bending loadings. Instead,
the effects of varying fiber orientations and fiber strengths were more influ-
ential only in bending loading conditions.

The evaluation of the effects of an implant on the biomechanics of the
spine requires the use of an accurate and validate model of the device itself.
Hence, a FE model of the BDyn was developed, where the material proper-
ties of the deformable bodies (PCU and Sil) were obtained from mechanical
tests. Hyperelastic formulations have been evaluated and the best-fit consti-
tutive laws assigned to the PCU and Sil. The model was evaluated under dy-
namic conditions, implementing a sinusoidal load across a frequency-sweep.
The model was validated with data obtained from Dynamic Mechanical
Analysis. The model was particularly accurate in the range of frequencies
between 10 and 20 Hz, which correspond to a physiological range of vibra-
tion of the human body. The model was further validated comparing the
deformations, obtained in static analyses at different load, with the defor-
mations found on explanted devices. This qualitative comparison showed
similar deformations between the simulations and experimental tests. This
result provides further research paths that can be followed to optimize the
material used and the design of the components. In fact, FE models allow
evaluations that in reality are not possible to assess on the inner components
of the device when implanted in a spine, unless explanted and opened up.
The FE model of the BDyn device in combination with the GsDyn pre-
dicted a factor of 4 reduction in the peak stresses of the locking system.
The combined device resulted in a more compliant and less constrained de-
vice, demonstrating the functionalities of the BDyn and in general of its
concept. In fact, this design concept, of coupling elastomeric components
with stiff materials (i.e.: Titanium) can be used in other applications de-
veloping more flexible devices and reducing the stress distribution in points
where there is high risk of failure.

Finally, the LMG toolbox allows the generation and evaluation of ac-
curate anatomical model of the lumbar spine, in a reduced time compared
with previous studies. At the current stage, the toolbox can already be
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used in the design of new implants, evaluating the effects either on different
anatomies and different pathological stages, which can be simulated with
material properties and morphological variations. Further developments are
required to use it in clinical applications. A more user-friendly and intuitive
graphical interface can be developed as well as simulating automatically the
application of devices at different levels. These features can help the de-
cision of the best treatment for a particular degenerated condition during
the clinical assessment: assigning the stage of degeneration at each level of
the spine and/or adding information about anatomical deformity, a subject-
specific condition can be evaluated and the effects of each device analysed.
According to this last application, the BDyn device is validated and ready
to be imported in the toolbox.

8.0.1 Conclusions

Correlation analyses available in literature have been evaluated and com-
pared with others obtained in this study, based on data from morphological
studies. Above all, first order polynomial correlations have been found to
better describe the geometrical relationship of the spine and further studies
are required on a wide range of specimens.

A parametric and scalable geometrical model of the lumbar spine has been
developed and implemented in a toolbox, the LMG (Lumbar Model Gener-
ator) developed in Matlab. This toolbox has been implemented to gener-
ate averaged models, where the anatomical dimensions are based on either
subject-specific dimensions obtained from data-scans or correlation analy-
ses. The correlation analysis chosen has been implemented in the LMG to
reproduce the lumbar spine anatomy based on the age, height and gender
of a subject. The toolbox allows the automatic preparation of FE models,
performing the mesh generation and evaluation, assigning material proper-
ties, boundary conditions and analysing the results. The LMG generates
models with a geometrical accuracy to within the tolerances of techniques
used for generating subject-specific models, but within a timeframe orders of
magnitude faster and compatible with translation into clinical practice (i.e.
20 seconds to generate the geometrical model and less than five minutes to
obtain the pre-processed model).

A L1-L5 model has been generated as proof-of-concept and a functional unit
(L1-L2) has been analysed and the results are in agreement with experimen-
tal studies and previous FE analyses.

One advantages of the LMG is the generation and pre-processing of pop-
ulation of models, allowing the evaluation of morphological and material
properties variations of the bodies involved. Hence, sensitivity analyses were
performed on morphological parameters and material properties, identifying
how they influence the biomechanics. This preliminary study highlighted the
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parameters to further investigate.

The FE model of a posterior stabilization device (BDyn) was developed and
validated with experimental data. It can be integrated in the FE model of
the lumbar spine to evaluate the effects on the biomechanics and eventually
improving the design. Furthermore, the combination of the BDyn with the
GsDyn, a device designed for Early Onset Scoliosis (EOS) treatment, has
been implemented to evaluate the effects of elastomeric component on the
device. Coupling these devices resulted in a reduction of the peak stresses
within the locking system and it could reduce the failure risk of the GsDyn.



Appendix A

Material properties
description

In this appendix, the constitutive laws of the materials used in this thesis
are reported. In case of hyperelastic materials, the stress tensor can be
obtained relating the free energy of a material to the deformation gradient
or the three invariants of the strain tensor [321]:

W = U(I4, I, Is) (A.1)

where I,I> are the strain invariants, defined as:

I = Xgo + Ay + Az (A.2)
]2 = )\m:/\yy + )\yy)\zz + /\zz)‘a:x - A?yy - )‘zz - )‘g:r (A‘B)
I3 = Moo dyyAez + 2AayAyzdea — Az s — Agy A2, — Az A2, (A.4)

where \;; are the stretch/extension ratios in the 3D dimensions.

A.1 Linear elasticity

In the linear elasticity theory, the stress o is a linear function of the strain
€. This theory is valid for small strain and the constitutive equation is
described by the Hooke’s law:

0ij = Djjriekl (A.5)

where D is the elastic stiffness tensor.
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A.2 Hyperelasticity

A.2.1 Neo-Hookean

W =Cy(I; —3—2InJ)+ Di(InJ)? (A.6)
_Hp A
Cr=5;D1=73 (A7)

In case of incompressible materials, it can be simplified as:
_For
W = 5(11 -3) (A.8)

where p and A are the Lamé constants from linear elasticity and I; is
the invariant of the deviatoric part of the right Chauchy-Green deformation
tensor.

A.2.2 Mooney-Rivlin

The hyperelastic formulation of Mooney-Rivlin is described through the fol-
lowing strain energy equation (W):

chl(jl —3)+Cg(f2—3) (A9)

where ¢; and co are the Mooney-Rivlin material properties, Iy and Iy are
the invariant of the deviatoric part of the right Cauchy-Green deformation
tensor.

A.2.3 Polynomial

N
W= Y Cy(L—3)(I—3) (A.10)
it+j=1
where Cj; are the material property coefficients, I; and Iy are the invariant
of the deviatoric part of the right Cauchy-Green deformation tensor.

A.2.4 Odgen
N - - —
W= BE T 4 A 4 A5 - 3) (A.11)
k=1

where A\1,Ao and A3 are the deviatoric principal streches and py and oy, the
material property coeflicients.
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A.2.5 Holazpfel-Gassen-Odgen

Winatrie = Cio(Tr — 3) + %(J g (A.12)
K & )

W tiber = 2K, ;(efﬂp(Kz(Ea - 1)) (A.13)

where E,, ) ) B
Eo = r(l1 = 3) + (1 = 3r)(L4aa)-1) (A.14)

The entire strain energy equation is:
_ K < _

W =Cio(hh —3) + 2K, ;(BCEP(IQ(EC% - 1)) (A.15)

A.3 Hypoelasticity

Hypoelastic materials are characterized by linear elasticity, with the ability
of return to the original shape when deformed, and non-linear stress strain
behaviour for small strains. It is described through the tangent to the stress-
strain curve [170]

do = D : de* (A.16)

where d is the tangent elasticity matrix and do and de are the rate of
change of stress and strain respectively.

Permeability

Permeability characteristics have been assigned in previous studies to spine
materials [322][290]. The mechanical formulation adopted is [146, 152]:

1+e
1)

e(1+eg)) 1+eo (A7)

M(
%e
eo(1+e)

)

K = kKol

where « is the strain-dependent permeability, with k¢ the initial permeabil-
ity, e the void ratio dependent on the tissue deformation and its initial value
ep, and M is an empirical material constant.
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