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The introduction of Quality by Design in the pharmaceutical industry stimulates practitioners to better understand the rela-
tionship of materials, processes and products. One way to achieve this is through the use of targeted experimentation. In this
study, an optimization framework to design experiments that effectively leverage parameterized process models is presented
to maximize the space covered in the output variables while also obtaining an orthogonal bracketing study in the process
input factors. The framework considers both multi-objective and bilevel optimization methods for relating the two maximiza-
tion objectives. Results are presented for two case studies—a spray coating process and a continuously stirred reactor
cascade—demonstrating the ability to generate and identify efficient designs with fit-for-purpose trade-offs between brack-
eted orthogonality in the input factors and volume explored in the process output space. The proposed approach allows a
more complete understanding of the process to emerge from a small set of experiments. © 2018 The Authors. AIChE Journal
published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. AIChE J, 64: 3944–3957, 2018
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Introduction

The acquisition of increased process understanding is an
important step in drug product development. It is typically
approached by carrying out extensive experimental studies.
However, the benefits of such studies must be weighed against
the time necessary to conduct them, which is a major cost
driver1-3 and therefore impediment to developing better pro-
cesses. The ability to gain process understanding more quickly
through systematic model-based experimental design can thus
be a competitive advantage. Placed in the context of recent
regulatory changes in the pharmaceutical industry, such as
Quality by Design (QbD), knowledge-driven time-saving tech-
niques such as modeling and optimization technology open up
new opportunities for a better understanding of the process
and product relationships, and increase the benefits that can be
derived from this newly acquired understanding.4 QbD allows
the operation of the process in a flexible manner within an

approved design space, lessening the burden on both the man-
ufacturer and the regulator. This change implies a shift away
from the traditional approach of a single target for process
conditions to operation within robust regions. To enable this
shift, the relationships between materials, process and products
need to be well-understood. This entails a need not only to
develop adequate models, but also to use these models in the
exploration of the process operational space.

Significant work has gone into the development of optimal
experiment design to properly parameterize a model of a given
system.5-11 Generally speaking these approaches are based on
optimizing a metric of the Fisher information matrix to
improve the statistical properties of the estimated parameters.
Other researchers have focused on developing techniques to
design optimal experiments to discriminate competing model
structures.5 Although both avenues are variants of “experiment
design,” the underlying objectives in model discrimination and
model parametrization are completely different.

In our work, we introduce a third class of experiment design
techniques where we seek to design experiments to gain addi-
tional process understanding and communicate this knowledge
effectively to regulatory bodies in the pharmaceutical industry.
This process understanding has to be derived in two spaces:
that of inputs to the process and that of process outputs. In
undertaking such an investigation, it is assumed that a suitable
model with appropriately estimated parameters is already
available. The use of traditional design of experiments (DoE)
approaches for the exploration of the design space has so far
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been focused on bracketing the input factors to a given process
using linear experiment design methods. As a result, regulators
are accustomed to reviewing and approving process operation
(submissions) based on orthogonal bracketing-based studies
where the process inputs are varied at selected corners of a
design, with popular approaches such as full factorial design,
fractional or composite design in common use.6,7,12,13

However, there has been less work on using parameterized
models to gain additional understanding of the process outputs
and communicate this knowledge effectively to regulatory bod-
ies in the pharmaceutical industry. To save time and resources,
it is desirable to maximize the amount of process information
obtained from a fixed number of experiments by carefully and
systematically selecting experimental measurements, simulta-
neously obtaining information on both the process input and
output spaces. The application of DoE methods to the input
space has so far not explicitly considered the implications of
the chosen design on the exploration and understanding of the
space of process outputs. For example, in the selection of atom-
ization parameters in spray coater design, the typical industrial
approach to identifying the output space is “a combination of
trial-and-error and previous experience.”14 Thus, Ref. 7 chose
design points for scale-up on the basis of their match to an out-
put region that had already been determined, perhaps heuristi-
cally. However, the critical quality attributes of the process are
usually found in the output space.15 It is therefore advanta-
geous for manufacturers to properly explore the space of pro-
cess outputs while also seeking to maintain orthogonality in the
input space, by exploiting the strong interplay between the
input and output spaces.
In our work, we present a new class of model-based design of

experiments and propose two strategies to solve the resulting
optimization problem which is bilevel/multiobjective in nature
and thus requires orthogonal exploration in the input space (also
referred to as bracketing) as well as the identification of points
that are widely distributed in the output space. First, multiobjec-
tive optimization (MOO) provides a way to systematically con-
sider both objectives. MOO has been applied by several authors
to the design of experiments.8-10 These examples demonstrate
the potential for MOO to help process engineers design experi-
ments that balance multiple criteria, in this case improving cov-
erage in the output space with orthogonal input factor values. A
second way to represent the relationship between the input and
output space objectives is using bilevel optimization (BLO),
which represents the interaction as a hierarchical system with
two decision-makers, the leader and the follower. Such an
approach has been used in the context of min-max economic
experiment design.11 Here, the objectives of the two decision-
makers correspond to the previously mentioned output and input
space objectives, respectively.
We develop an optimization framework considering objec-

tives in both the process input space and the output operating
space. To relate the input and output spaces, we rely on a
deterministic process model, which is assumed to have been
previously derived. We investigate the suitability of MOO and
BLO to provide valuable insights and experimental designs.
Both approaches have different strengths: the multiobjective
approach allows several good designs to be visualized on a
trade-off curve and the bilevel optimization approach identifies
a suitable compromise point without the need to locate multi-
ple trade-off points. By maximizing the information value of
each experiment, we find efficient designs that reduce the total
number of experiments necessary to extract maximum under-
standing of the input and output spaces and the time required

for conducting them. The effectiveness of this framework in
relation to the traditional design approach is demonstrated on
two case studies: a spray coating process and a system of two
continuous reactors.

The rest of this article is organized as follows. First, a moti-
vating example based on tablet spray coating is introduced. This
is followed by the presentation of the mathematical formulations
that underpin our approach. Next, the results of the framework
when applied to two process development case studies, includ-
ing the motivating example, are discussed. Finally, conclusions
and further thoughts are given in the Conclusions section.

Motivating Example

As a motivating example, we examine a spray coating pro-
cess. Tablet coating is typically one of the final steps in the
manufacture of a pharmaceutical product, applied for both
functional and/or aesthetic considerations.7,16 Systematic DoE
for this processing step would give process engineers better
insight into the regions of safe operation while helping them
communicate their process knowledge to regulators. Thus, it is
advantageous to design experiments during model verification
that simultaneously maximize information on the input factors
and maximize understanding of the output space.

The tablet film coating process involves the spraying of an
atomized solution (or suspension) of polymers onto a tablet
bed, diagrammed in Figure 1. Energy for the evaporation of
the spray is provided by a warm air stream. Ebey17 developed
a thermodynamic model for tablet coating with aqueous solu-
tions based on material and energy balances around the coater
unit. This model was later extended to represent the use of
organic solvents and to capture energy requirements better
with the inclusion of a heat loss adjustment factor.18 The pro-
cess inputs include the inlet temperature and volumetric flow
rate of the drying air stream and the mass flow rate of the
coating solution. The relevant output conditions are the outlet
temperature of the drying air stream and its outlet humidity.

To motivate the need for new ways to design experimental
investigations, we consider a film coating process for which
the input factors are defined in the following ranges:
Tair, in ð�CÞ� ½20,85�,Mcoat ðg=minÞ� ½10,80� and Qair (ft3/min)
� [150, 450]. Two four-point experimental designs that are based

Figure 1. Schematic of a tablet coater, adapted from
Ref. 18.
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on achieving a high D-criterion in the space of input factors, with-
out regard to the space of output variables, are given in Table 1.
Both designs are based on similar input choices and are highly
orthogonal in the input space: the D-criterion for Design 1 has the
maximum value that can be achieved, and that of Design 2 is 1%
smaller. However, the two designs result in very different values
of the output variables, as seen in Figure 2.Whereas Design 1 leads
to the exploration of only a small sliver in the output space, the
measurements of Design 2 map out a much larger range of possi-
ble outputs. Even with Design 2, a large fraction of the feasible
output space (as approximated by the convex region delimited by
dotted lines in Figure 2) remains unexplored. Furthermore, one of
the experimental points in Design 2 does not contribute to increas-
ing the explored range. This shows that an experiment design
derived by examining the input space only does not always corre-
spond to a good design in terms of coverage of the output space.
There is therefore a need to consider both criteria in the course of
experiment design, to try and maximize the value that can be
extracted from the experiments.

Methodology
Design criteria and optimization formulations

In this section, we describe a new framework based on mul-
tiobjective and bilevel optimization that considers simulta-
neously the spaces of process inputs and outputs in generating
experiment designs that are optimal from both perspectives.
To determine an optimal design, we first define quantitative
criteria for the input and output space objectives. Then, we
present details of the mathematical formulations of the rele-
vant multiobjective and bilevel optimization problems and
describe the solution strategies utilized for obtaining results.
Criteria and Formulation for the Input Space. In the input

space, the primary objective is to explore each input factor as
independently as possible, leading to an orthogonal design.
One way to quantify this objective is by adopting a modified
D-optimality criterion and applying it to the input factors. D-
optimality is one of several design criteria commonly used for
model parameterization.19 Geometrically, this criterion can be
interpreted as minimizing the volume of the confidence ellip-
soid of the parameter estimates.20 The use of D-optimality
confers several advantages, such as the ability to scale the
model to avoid ill-conditioned information matrices21 and the
ability to accommodate feasible spaces of varying shapes,
allowing for operating constraints to be imposed on the pro-
cess model.5 Crucially, applying D-optimality to a linear
response model yields an orthogonal design in the parameter
space. In this work, we apply D-optimality to the input factors
rather than to the parameters, obtaining an orthogonal design
in the space of input factors. To avoid confusion between
parameter-based criteria and input factor-based criteria, we
will refer to D-optimality applied to the input factors as input

space optimality or DI-optimality, and to the D-criterion
applied to the input factors as the DI-criterion.

Finding a design that is DI-optimal involves maximizing the
DI-criterion, which is defined as the determinant of the Fisher
information matrix M. To represent the calculation of this deter-
minant within an algebraic optimization problem, we exploit
the fact that the Fisher information matrix is symmetric and
positive semidefinite19 to express the determinant calculation as
a set of equality constraints using LDL decomposition,22 where
M = LDLT , L is a lower-triangular matrix and D is a diagonal
matrix. L and D are recursively defined by Eqs. 1 and 2

Dpq =
Mpq−

Xp−1
r = 1

L2prDrr , p= q

0, p 6¼ q

for p= 1, … ,ϕ, q= 1, …, ϕ

8><
>:

ð1Þ

Lpq =

1
Dqq

�
Mpq−

Xq−1
r = 1

LprLqrDrr

�
, p> q

0, p< q
1, p= q

for p= 1, …, ϕ, q= 1, … ,ϕ

8>><
>>:

ð2Þ
Here, p, q, and r are indices on the ordered set of ϕ process

input factors and Xpq defines the element in row p, column
q of matrix X. Using this notation, the input space objective
function finðuÞ to be maximized can therefore be expressed as
the DI-criterion value

finðuÞ =
Yϕ
p= 1

Dpp, ð3Þ

where u are the input variables and Dpp is given by the LDL
decomposition of Eqs. 1 and 2.

In some cases, the use of such an objective function can
lead to degenerate designs in which all experiments have the
same value for one or more factors, without an adverse effect
on the DI-criterion. To exclude such undesirable solutions
from the feasible space of designs, a constraint is introduced
to ensure a minimum variance for each input factor. Given a
set of input factors ûi,p, i= 1, … ,n, p= 1, … ,ϕ, where
i denotes the experiment number, p the input variable number,
n the total number of experiments, and ϕ the total number of
input factors, it is possible to define a centroid of measure-
ments up

up =
1
n

Xn
i = 1

ûi,p, p= 1, … ,ϕ: ð4Þ

From this, the variance of input factor p, σ2ûp , can be calcu-

lated as

σ2ûp =
1

n−1

Xn
i= 1

ðûi,p−upÞ2, p= 1, … ,ϕ: ð5Þ

By constraining the variance of an input factor across all experi-
ments to be greater than some small value (σ2ûp ≥ ϵσ2 ), degenerate
solutions can be avoided. The choice of a value for ϵσ2
depends on the range of the variables. In our work, the input
factors are scaled and a default value of ϵσ2 = 1× 10−3 is used.

As experimental trials are indistinguishable by ordering, the
same solution may have multiple symmetric representations.
To reduce the number of redundant solutions, linear

Table 1. Comparison of Input Values for Two Highly
Orthogonal Four-Experiment Designs Derived from DoE

Design 1 Design 2

Tair, in Mcoat Qair Tair, in Mcoat Qair

Exp [�C] [g/min] [ft3/min] [�C] [g/min] [ft3/min]

1 20 10 450 20 10 150
2 85 10 150 85 10 150
3 85 10 450 85 10 450
4 85 80 450 85 80 158

Differences between the two designs are highlighted in bold.
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symmetry-breaking constraints are introduced. Two types
of symmetry-breaking constraints are used: Eq. 6, which
enforces an ordering for one of the input factors p (e.g., p= 1),
and a lexicographic ordering in Eq. 7:

up, i ≤ up, i+ 1, i= 1, … ,n−1 ð6Þ
Xϕ
p= 1

10pðûi,p− ûi+ 1,pÞ ≤ 0, i= 1, … ,n−1 ð7Þ

Collectively, Eqs. 6 and 7 are denoted by Ainu ≤ 0 in subse-
quent optimization formulations.
The overall input space optimization formulation is thus

given by

max
u,y

finðuÞ =
Yϕ
p= 1

Dpp

s:t: M =LDLT

Dpq =
Mpq−

Xp−1
r = 1

L2prDrr, p = q

0, p 6¼ q

8><
>:

for p= 1, … ,ϕ, q= 1, … ,ϕ

Lpq =

1
Dqq

�
Mpq−

Xq−1
r = 1

LprLqrDrr

�
, p> q

0, p< q
1, p= q

8>><
>>:

for p = 1, … ,ϕ, q= 1, … ,ϕ

up =
1
n

Xn
i= 1

ûi,p, p= 1, … ,ϕ

σûp
2 =

1
n−1

Xn
i= 1

ðûi,p−upÞ2, p= 1, … ,ϕ

σûp
2 ≥ ϵσ2 , p= 1, … ,ϕ

gðu,yÞ ≤ 0
Ainu ≤ 0

ulb ≤ u ≤ uub, ylb ≤ y ≤ yub ð8Þ

where ulb and uub are lower and upper bounds, respectively,
on the values of the input factors u, and ylb and yub are the
bounds on the values of the output variables. gðu,yÞ ≤ 0 repre-
sents the process model, ensuring that selected input factor
values are feasible. For simplicity, the first six constraints in
Problem (8) are denoted by ginðuÞ ≤ 0 in the remainder of the
paper so that the input space problem is written more con-
cisely as

max
u,y

finðuÞ
s:t: ginðuÞ ≤ 0

gðu,yÞ ≤ 0
Ainu ≤ 0
ulb ≤ u ≤ uub

ylb ≤ y ≤ yub

ð9Þ

For a given number of input factors, the maximum value of
the DI-criterion that can be attained depends on the number of
experiments designed. Given an optimal value of the DI-crite-
rion, finðu*Þ, at the solution u* of Problem (8), it is thus desir-
able to calculate the DI-optimality of design u*, which makes
it possible to compare the suitability of two designs that are
based on different numbers of experiments. Let M?

n correspond
to the Fisher information matrix with the largest possible DI-
criterion value for a model with ϕ factors and a given number
of experiments n. Let MnðuÞ be the Fisher information matrix
for another design u with n experiments. The DI-optimality of
design u is given by

DI,opt =
det ðMnðuÞÞ
det ðM?

nÞ
� �1

ϕ

: ð10Þ

This value then indicates the fraction of input space informa-
tion obtained relative to the best possible design, for the given
number of experiments: two repetitions of a design with DI-
optimality of 50% are equivalent to one at 100%. An example
calculation is included in Supporting Information Section 1.

Criteria and Formulation for the Output Space. In the
space of process outputs, the objective of the experimental
investigation is to explore the largest volume possible within
the feasible limits of operation of the process. Determining the

Figure 2. Comparison of output space coverage (in gray) for two similar input designs. Measurements are given by
stars, with the outer boundary indicating the convex feasible region approximation generated by input
domain and operating constraints. (a) Design 1 output space with 10% coverage. (b) Design 2 output space
with 63% coverage.
[Color figure can be viewed at wileyonlinelibrary.com]
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size of the region explored with a finite set of points is a nontri-
vial problem and several approaches can be deployed; here, we
investigate a convex hull interpretation and an ellipsoid approxi-
mation. If the feasible output region is convex or nearly so, then
the volume of the convex hull of the image of the set of input
points in the output space provides a good approximation of the
size of the region explored. However, it is difficult to derive the
convex hull of a set of points analytically23,24 and indeed all
existing polynomial-time approximations of the convex hull are
nonanalytical.25-27 This makes it challenging to embed the cal-
culation of the volume of the convex hull within an optimiza-
tion framework.28 Therefore, the convex hull representation is
reserved for the interpretation of the results of the optimization,
where its intuitiveness is beneficial.
In its place, an ellipsoid approximation is used within the

optimization formulation. The ellipsoid volume is given by the
determinant of the covariance matrix of the output points. Given
a matrix of process output points ŷic, i = 1, … ,n, c = 1, … ,ψ
with i the index of each experimental point, c the index of
each output variable, n the total number of experiments in the
design, and ψ the total number of output variables, an output
centroid yc can be computed as

yc =
1
n

Xn
i = 1

ŷic, c= 1, … ,ψ : ð11Þ

This is used to calculate the covariance matrix M with ele-
ments Mcd where c and d denote two output variables

Mcd =
1

n−1

Xn
i= 1

ðŷic−ycÞðŷid −ydÞ, c= 1, … ,ψ , d = 1, … ,ψ :

ð12Þ
The volume of the ellipsoid is then

V =
4
3
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p
: ð13Þ

Due to numerical issues that may arise from the square root
operator, the square of the volume and a scaling factor β are
used to define an alternative metric, which serves as objective
function, Vobj

Vobj = β detðMÞ ð14Þ

where β is chosen to be equal to 1000.
As with the input space optimization, a determinant calcula-

tion is required. The covariance matrix is also symmetric and
positive semidefinite, so the LDL decomposition is used again
here. The relevant equations are

M=LDLT ð15Þ

Dcd =
Mcd −

Xc−1
r = 1

L2
crDrr , c= d

0, c 6¼ d

8><
>:

forc= 1, … ,ψ ,d = 1, … ,ψ

(16)

Lcd =

1
Ddd

�
Mcd−

Xd−1
r = 1

LcrLdrDrr

�
, c > d

0, c < d
1, c = d

8>><
>>:

for c = 1, … ,ψ ,d = 1, … ,ψ

(17)

A key assumption in using the ellipsoid approximation is
that the volume of the ellipsoid varies monotonically with the
equivalent convex hull volume. However, this is not always
the case. Due to degeneracies in certain geometries, the ellip-
soid approximation sometimes leads to duplicate points in the
output space, which are not beneficial under the convex hull
interpretation. Therefore, a penalty function based on the
Euclidean norm between two output vectors is introduced to
discourage clustering. A minimum squared distance, δmin,
between any two vectors of output variables ŷi and ŷi0 , where
i, i0 are indices corresponding to two experimental designs
(i.e., two different sets of input factors), is given by

δmin = min
i = 1,… ,n−1, i0 > i

δi, i0 = min
i = 1,… ,n−1, i0 > i

Xψ
c= 1

ðŷi,c− ŷi0,cÞ2:

ð18Þ
Thus, δmin is bounded by a set of n2 −n

2 constraints

Xψ
c= 1

ðŷi,c− ŷi0,cÞ2 ≥ δmin 8i0 > i: ð19Þ

A logarithmic penalty function, similar to barrier
functions,29 is adopted to favor larger values of δmin

fout =Vobj + μlnðδmin + ϵlogÞ−μlnðϵlogÞ ð20Þ
The logarithmic form of function ensures that the penalty is

most severe when the minimum squared distance approaches
zero, and moderate elsewhere. The adjustable penalty parameter
μ allows for tuning of the penalty magnitude according to the
situation, with values typically ranging between 1 and 10, and a
default value of μ = 3 used here. A small value of ϵlog helps to
avoid numerical issues near the logarithm of zero; a default
value of 10−10 is used. The approximate penalized volume fout
is then used as the output space objective to be maximized.

Finally, as the aim is to design a set of experiments in the
input space, a process model relating input and output vari-
ables is needed (e.g., mass and energy balances), as well as
constraints on the feasibility of process (e.g., a maximum out-
let air temperature). This is given by a constraint vector,
gðu,yÞ ≤ 0, represented here as a set of inequalities without loss
of generality. The final formulation of the output space maxi-
mization problem is thus

max
u,y

Vobj + μ lnðδmin + ϵlogÞ−μ lnðϵlogÞ
s:t: Vobj = βdM

dM =
Yψ
c= 1

Dcc

Dcd =
Mcd −

Xc−1
r = 1

L2
crDrr , c= d

0, c 6¼ d

8><
>:

forc = 1, … ,ψ ,d = 1, … ,ψ

Lcd =

1
Ddd

�
Mcd −

Xd−1
r = 1

LcrLdrDrr

�
, c> d

0, c< d
1, c= d

8>><
>>:

forc= 1, … ,ψ ,d = 1, … ,ψ

Xψ
c = 1

ðŷi,c− ŷi0 ,cÞ2 ≥ δmin 8i0 > i

gðu,yÞ ≤ 0
ulb ≤ u ≤ uub, ylb ≤ y ≤ yub ð21Þ

3948 DOI 10.1002/aic Published on behalf of the AIChE November 2018 Vol. 64, No. 11 AIChE Journal



where ylb and yub denote lower and upper bounds on y, respec-
tively, and dM denotes the determinant of M. For simplicity,
the set of constraints in problem (21), excluding the vector
g and the bound constraints on the inputs, is denoted by Gout

in the remainder of the paper, i.e., the output space problem is

max
u,y

foutðyÞ

s:t: GoutðyÞ ≤ 0
gðu,yÞ ≤ 0
ulb ≤ u ≤ uub

ylb ≤ y ≤ yub

ð22Þ

Multiobjective formulation

Multiobjective optimization (MOO) permits the simulta-
neous consideration of both input and output space objectives.
MOO enables the generation of a Pareto-optimal front, a set of
trade-off points where improvement in one objective is not
possible without a worsening in the value of other objectives.
The Pareto-points are thus efficient designs, among which the
decision-maker can choose based on business needs. Many
alternative formulations are available for multiobjective
optimization,30 including the widely used Lp-norm formula-
tion, Eq. 23, originally proposed by Lightner and Director31

max
x

�XK
i= 1

�
wifiðxÞ

�q�1=q

s:t: x � S

ð23Þ

where the fi’s are the K objective functions, x is the vector of
all the variables used to evaluate the objective functions, and
defined over a feasible set S, wi is a weight for function fi, and
q is a user-defined parameter that defines the norm to be used.
The variables x are thus adjusted to maximize a norm of the
weighted sum of the objective functions.
In our work, we utilize both the L1- and L∞ -norm variants,

which have complementary advantages and are easy to imple-
ment. For q = 1, the weighted sum formulation is obtained

max
u,y

winfinðuÞ +woutfoutðyÞ

s:t: gðu,yÞ ≤ 0
ginðuÞ ≤ 0
Ainu ≤ 0

GoutðyÞ ≤ 0
u � ½ulb,uub�
y � ½ylb,yub�

ð24Þ

The maximization of the input and output space objectives
finðuÞ and foutðyÞ with weights win and wout takes place with
respect to the process input and state variables u and the out-
put space variables y. The process model and operation con-
straints, gðu,yÞ ≤ 0, link these two variable vectors together.
Global solutions to Problem (24) for the case of positive
weights are guaranteed to be Pareto-optimal32; however, this
formulation cannot be used to generate points along noncon-
vex portions of the Pareto-front.33,34 Therefore, the infinity
norm, the limit of Eq. 23 where q! ∞ , is also used to gener-
ate trade-off solutions. The algebraic interpretation of the
L∞ -norm is the weighted Tchebycheff formulation, Eq. (25)

max
x�S

min
i= 1,… ,K

½αi fiðxÞ� ð25Þ

which is commonly expressed as the following equivalent problem

max
x�S,γ

γ

s:t: αifiðxÞ ≥ γ 8i = 1, … ,K
ð26Þ

Though this approach only guarantees weak Pareto-optimal-
ity, the formulation allows the identification of all Pareto-
optimal points by varying the objective weights. The weights
in this formulation, αi, can also be set as the reciprocal of the
desired values for each objective.34 We use a slight modifica-
tion of this formulation, where the weights are expressed as
αin and αout, with αi = 1

wi
, i� in;outf g

max
u,y,γ

γ

s:t: finðuÞ ≥ γwin

foutðyÞ ≥ γwout

gðu,yÞ ≤ 0
ginðuÞ ≤ 0
Ainu ≤ 0

GoutðyÞ ≤ 0
u � ½ulb,uub�
y � ½ylb,yub�
γ � R

ð27Þ

Bilevel formulation

Bilevel optimization (BLO) provides a different approach to
relate the input and output space objectives. Whereas with MOO a
range of possible trade-offs between the two objectives is sought,
BLO delivers a single solution that features the best possible value
of the objective function for one of the optimization problems,
with the other optimization problem serving as a constraint. With
BLO, two separate decision makers— the leader and the follower
— each optimize one of the objectives, with the leader selecting a
decision first, then the follower. Two formulations of the two-
space design of experiments problem are possible with BLO. The
first is given in Problem (28), where the leader is focused on the
maximization of the output space objective

max
u,y

foutðyÞ output space objective

s:t: GoutðyÞ ≤ 0 output space objective calculation

max
u

finðuÞ input space objective

s:t: gðu,yÞ ≤ 0 process model

ginðuÞ ≤ 0 input space objective calculation

Ainu ≤ 0 2D symmetry-breaking constraints

u � ½ulb,uub�
y � ½ylb,yub�

ð28Þ

In this formulation, the process model, operating constraints
and symmetry-breaking constraints are embedded within the
inner optimization problem. In the case of the process model and
operating constraints, this is because the constraints must be sat-
isfied for both the leader (outer problem) and the follower (inner
problem) to identify a physically realizable solution. As
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previously, the intent of the symmetry-breaking constraints is to
limit the number of redundant solutions for both problems.
An optimistic BLO formulation35 is assumed, which implies

that, when the follower is indifferent to several solutions among
a set, the leader has the ability to choose the best solution from
its perspective. In this formulation, the manufacturer, as leader,
selects process output variables that maximize coverage of the
process output space, and then identifies the set of input factors
that match the outputs, while maximizing input space orthogo-
nality, which can be seen as the regulator’s objective.
The other possible BLO formulation is based on optimizing

the input space (regulator’s) objective as the outer problem, with
output space coverage as the inner objective. This is well-suited
to the case of a regulator setting policy and the manufacturer
responding to it, or when the manufacturer wants to emphasize
regulatory approval over output space exploration. Formulation
(29) can be generated by interchanging the input and output
space objectives and some of the constraints from (28)

max
u,y

finðuÞ input space objective

s:t: ginðuÞ ≤ 0 inputs objective calculation

Ainu ≤ 0 symmetry breaking cuts

max
y

foutðyÞ output space objective

s:t: gðu,yÞ ≤ 0 process model

GoutðyÞ ≤ 0 outputs objective calculation

y � ½ylb,yub�
u � ½ulb,uub�

ð29Þ

Due to the special structure of Problems (28) and (29), in which
the inner variables do not appear in the outer constraints or in the
outer objective function, each bilevel problem can be reformulated
as a pair of connected optimization problems as described in Ref.
36. In the case of Problem (28), in which the input space maximi-
zation is the inner (follower) problem, this is given by

max
u,y

finðuÞ

s:t: foutðyÞ ≥ ξ
GoutðyÞ ≤ 0
gðu,yÞ ≤ 0
ginðuÞ ≤ 0
Ainu ≤ 0

u � ½ulb,uub�
y � ½ylb,yub�

ð30Þ

where ξ is given by the solution of

ξ= max
u0,y0

foutðy0Þ

s:t: Goutðy0Þ ≤ 0
gðu0,y0Þ ≤ 0
ginðu0Þ ≤ 0
Ainu0 ≤ 0

u0�½u0, lb,u0,ub�
y0�½y0, lb,u0,ub�

ð31Þ

The solution of Problem (31), followed by that of Problem
(30), gives the same result as solving Problem (28). Observe
that Problem (31) is a relaxation of Problem (28), where maxi-
mization of the inner objective is no longer enforced as a con-
straint. Therefore, its optimal value ξ is an upper bound on
Problem (28). Also note that the set of all feasible solutions of
Problem (30) corresponds to the set of global optima for Prob-
lem (31) if ξ is set to the optimal value of Problem (31). Thus,
the solution of Problem (30) corresponds to the point with the
best possible value of the input space objective among the opti-
mal solutions of the output space maximization. This implies
that the constraint foutðyÞ ≥ ξ is active at the solution of Problem
(30). A similar strategy can be adopted for Problem (29).

Interestingly, as a result of the nature of this formulation,
the solution of the bilevel problem is also Pareto-optimal. This
can be understood based on the fact that at a Pareto point, an
improvement in one objective must result in a worsening of
the other objective. Consider the global solution ðu?,y?Þ of
Problem (28). As discussed, foutðu?,y?Þ = ξ, where ξ is the
solution of Problem (31), must hold. Therefore, there can be
no ðu,yÞ�½ulb,uub�× ½ylb,yub� such that foutðu,yÞ > foutðu?,y?Þ
and an improvement in the outer problem is not possible. The
question remains of whether an improvement in finðuÞ can
result in an improvement in fout. To explore this, consider any
point ðu†,y†Þ that satisfies Goutðy†Þ ≤ 0, gðu†,y†Þ ≤ 0, ginðu†Þ ≤ 0
and Ainu† ≤ 0 and that provides an improvement in fin:
finðu†Þ > finðu?Þ. To obtain a simultaneous improvement in fout,
we need foutðu†,y†Þ > foutðu?,y?Þ= ξ. However, this is impossi-
ble as ξ is the global optimal function value for Problem
(31) and ðu†,y†Þ is a feasible point in Problem (31). Therefore,
the solution of bilevel problem (28) is Pareto-optimal. Again,
a similar approach can be used to show that the solution of
bilevel problem (29) is another Pareto-optimal point.

Solution strategy

The multiobjective and bilevel formulations are solved
using the BARON global optimization software (version
12.7.7) 37 via the GAMS 24.2.3 modeling environment,38 with
the default optimality tolerance. To generate the Pareto front,
the weights win and wout are first varied in the interval ½0,1� in
increments of 0.1, with wout = 1−win and Problems (24) and
(27) are solved for each combination of weights. Intermediate
weights are then added to fill any significant gaps along the
Pareto-front. All GAMS files have been made available on
zenodo.org (see Data Statement at the end of this article).

In certain runs, convergence to the desired tolerance was
not attained with BARON, so some of the Pareto-optimal
points presented in this work may be local optima. However,
all obtained points are feasible, so they provide at least a pes-
simistic bound for the true Pareto-optimal value. In many of
the problems for which convergence is not reached, increasing
the available CPU resource does not lead to better local solu-
tions. In view of the inherent approximation introduced by the
use of the ellipsoid surrogate objective, the failure to guarantee
the Pareto-optimality of all points does not in practice hinder
the ability to provide valuable information to the decision
maker.

Case Studies

The framework is applied to two case studies from pharma-
ceutical process development — one from drug product
manufacturing and one from drug substance manufacturing.
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Development of a tablet film coating process

Analysis Based on Two Output Variables. The proposed
approach is first applied to the tablet coater presented as a
motivating example, to illustrate how the framework can
support better decision making by process engineers. The
same ranges are used for the three input factors (ϕ = 3):
Tair, in ð�CÞ� ½20,85�,Mcoat ðg=minÞ� ½10,80� and Qair (ft3/min)
� [150,450]. The process model with two output variables
(ψ = 2), the outlet air temperature, Tair;out, and the outlet rela-
tive humidity, %RHout, is given by gðu,yÞ ≤ 0, representing the
equations in Supporting Information Section 2.1.
The results of the Pareto and bilevel optimizations are

shown in Figure 3. The two axes correspond to the two differ-
ent objectives: the regulator’s objective, DI-optimality for a
design with four experiments (n = 4), appears on the x-axis;
the manufacturer’s objective, the output space area, lies on the
y-axis. It is shown as a scaled value relative to the maximum
area that can be achieved for a four-experiment design, where
the maximum area corresponds to the optimal value of Vobj in
Problem (22) with wout = 1 and μ = 0. Both the ellipsoid
approximation (EA) and the convex hull (CH) approximation
of the output space objective are presented in the figure. A
comparison of the two Pareto fronts indicates that the EA area
results in a small overestimation of the CH area, but is never-
theless a good approximation overall in this case.
The results in Figure 3 highlight the benefits of using two

objectives. It is clear that the input space and output space cri-
teria are competing objectives and that focusing on one objec-
tive only, to the exclusion of the other, can in fact lead to a
poor experiment design. To illustrate this, consider the two
trade-off points highlighted in Figure 3 and their single-
objective counterparts are listed in Table 2. The trade-off
points offer much better options for process development than
the single-objective ones.
This can be seen by comparing trade-off point 1 to the

design obtained when maximizing the volume of the output
space only (“Output Only” in the table). Both designs perform
equally well in the output space, but the single-objective

solution has a DI-optimality of only 8% whereas the trade-off
solution achieves a 72% DI-optimality. This stark difference is
due to the fact that, in the single-objective case, the solution is
indifferent to the outcome in the input space; this is as likely
to lead to a poor (input space) design from the perspective of
the regulator as it is to lead to a good design. In this case
study, a very poor design is achieved. Conversely, the trade-
off point combines the desire for a large output area with the
need to find a design with the best possible DI-optimality
value. The solution found, which corresponds to the bilevel
solution, is much better as the proposed approach ensures that
both objectives are taken into account.

Comparison of trade-off point 2 with the single-objective
input space problem also shows the benefits of using two
objectives to ensure that as much information as possible is
derived from a single set of experiments. The trade-off design
provides a nearly-maximal value of the DI-criterion (over
99%) while maintaining a reasonable coverage of the output
space, as seen in Table 2 (63% of the potential feasible area,
as calculated with the convex hull approximation). In contrast,
the single-objective case (“Input Only”) is focused exclusively
on optimizing the input-space information content. Such an
approach is similar to the factorial design techniques that are
commonly applied in industrial settings today, but it is found
to lead to a poor exploration of the process output space.
Indeed, while the single-objective design has a DI-optimality
of 100%, it covers only 10% of the entire feasible output
region, as calculated with the convex hull approximation. Con-
sequently, little process understanding is gained as the output
space remains largely unexplored and this design may incur
more expense and experiments in the future. Trade-off point
2, which covers over six times more output area at a cost of
only a 1% decrease in DI-optimality, is clearly superior to the
single-objective design. This result further illustrates that fail-
ure to consider both spaces can lead to a missed opportunity
in terms of the neglected objective.

Beyond these useful trade-off points, the proposed frame-
work also allows the decision maker to visualize the impact of
increasing or decreasing the number of experimental trials to
perform. By increasing the number of experiments and hence
the degrees of freedom for the experimental design, it may be
possible to cover more of the output operating space while
achieving a high DI-optimality. However, this comes with
increased costs for the time, equipment, and materials to per-
form additional experiments; these costs are not considered
explicitly here. The process engineer must then decide whether
each successive experiment and its corresponding gains in out-
put space coverage and input space information are worth the
additional expense.

These trade-offs are illustrated in Figure 4, which shows
how the Pareto-front approximation changes as the number of
experiments per design increases from three to eight. Here, the
x-axis denotes the number of equivalent fully DI-optimal
experiments, a measure of total input space information con-
tent. Thus, a five-experiment design that has a DI-optimality
of 0.6 would be equivalent to a three-experiment fully DI-
optimal design (see the designs indicated by label A in the fig-
ure). Displaying the data in this way allows the decision maker
to easily see what types of trade-offs are possible with differ-
ing numbers of experiments. For example, in deciding whether
to do four or five experiments, one can see that with five trials,
it is possible, using design B in the figure, to cover more than
90% of the output space, as indicated by the convex hull cov-
erage fraction, without much loss of information in the input
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Figure 3. Pareto-front approximation for four-experiment
coater design with two outputs, expressed as
the scaled output space area vs. the DI-
optimality criterion.
Triangles denote the value of the scaled output space area
in terms of the ellipsoid approximation, and the diamonds
in terms of the convex hull approximation. [Color figure
can be viewed at wileyonlinelibrary.com]
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space (DI,opt = 5). Conversely, achieving a coverage of 90% or
more with a four-experiment design requires losing about half
of an experiment’s worth of information in the input space.
This is indicated by design C in the figure, where DI,opt≈3:5.
Moreover, there is not much room for improvement in the

output objective beyond five trials. Indeed, for five trials and
more, one can achieve essentially the maximum DI-optimality
while exploring a reasonable fraction of the output space. The
proposed approach gives the decision-maker additional
insights on the number of experiments to perform in addition
to the best measurement points to use for each experiment.
A promising five-experiment design (the “compromise”

design) is compared to the four-experiment trade-off designs
previously presented, as an illustration of how the Pareto-
curve approximations in Figure 4 can be used to suggest alter-
natives not just between the two objectives, but also between
carrying out more or fewer experiments. The details for this
new five-trial design are given in Table 3, with an

accompanying visualization of the measurements in terms of
the output space in Figure 5. This new design yields a DI-
optimality of 98%, with an output space area coverage of
96%. Compared to trade-off point 1 from the four-experiment
case, this new compromise solution results in a small 1% sac-
rifice in the coverage (which remains high) and an increase in
DI-optimality by 26 percentage points. This makes the new
DI-optimality just 1% less than in the four-experiment trade-
off design 2. Therefore, the Pareto-curve shows how the addi-
tion of one more experiment can yield large gains in either
information efficiency or coverage fraction, helping the
decision-maker to choose how many experiments to conduct.

It is also clear from Figure 4 why using the proposed frame-
work provides better results than using a combination of two
single-objective designs. In the single-objective four-
experiment cases, the maximization of the input space objec-
tive yielded a perfect DI-optimality but with only 10% output
coverage and the output space maximization resulted in a

Table 2. Results for Selected Four-Trial Spray Coater Experimental Designs

Case D-Opt.
Input
Space

Output
Coverage

Output
Space

Trade-off Point 1 (Bilevel) 72% 97%

Output Only 8% 97%

Trade-off Point 2 99% 63%

Input Only 100% 10%

Lines in the input space Kiviat diagrams illustrate scaled inlet temperature (T), coating solution mass flow rate (M), and inlet air volumetric flow rate (Q) values for
each trial of a design. The output space diagrams illustrate the convex hull coverage (shaded region) of the total feasible space in the output variables, denoted by
the outer thin red line. Each triangle in the input space Kiviat diagram corresponds to a proposed experimental trial and thus also to one of the blue stars in the output
space diagrams. [Color figure can be viewed at wileyonlinelibrary.com]
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coverage of 99% of the output space with a very low DI-opti-
mality. As both designs had two points in common, it might
reasonably be concluded that those two experiments could be
shared between the designs, leading to a total of six experi-
ments to achieve high performance in both objectives. In this
composite design, the six points would cover 99% of the
design space, providing a total information content slightly
above four DI-optimal experiment equivalents. Using the pro-
posed framework, however, it can be seen that on the six-point
Pareto-curve, designs exist with 99% coverage and an infor-
mation content above five DI-optimal experiment equivalents.
Therefore, this example shows how the proposed framework
provides value in decision making that would not be easily
accessible by considering only single-space optimal designs.
Extension to Include Atomization Phenomena. Having

demonstrated the utility of the proposed algorithm with a coater
model that accounts for two output variables and three input fac-
tors, additional equations describing atomization properties of the
coating spray are now appended to form an extended coater
model. The Sauter Mean Diameter (SMD)39 is added as a model
output to characterize droplet size distribution. In the input space,
the atomizing gas flow rate is added as the key metric.6 The model
now has four input and three output dimensions and includes the
equations given in Supporting Information Section 2.2.
Because the information matrix would be rank-deficient for

three-experiment designs, the model is investigated only for
four- to eight-experiment designs.

Despite the increased computational complexity arising
from the increased dimensionality of the model, the results
provide actionable insights. Examining the Pareto-front
approximations in Figure 6 shows that the trade-off between
the two objectives still stands. It has become harder to achieve
high performance in both objectives. As with the simplified
coater model, it is possible to examine the benefits of deploy-
ing differing numbers of experiments using the framework.
Increasing the number of experiments in the extended model
appears to lend additional flexibility to the trade-off with the
output space objective, although the extent of the improve-
ment diminishes as the number of experiments becomes larger.
With one additional variable in each problem, at least seven
experiments are now needed to achieve a coverage of the out-
put space volume of over 80%. Under the proposed frame-
work, the value of additional and expensive physical
experiments can be assessed computationally before undertak-
ing such an investment.
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Figure 4. Pareto-front approximation for the tablet coat-
ing process with two outputs, demonstrating
the compromise between output space cover-
age, as expressed by the convex hull coverage
fraction, and input space optimality, expressed
in terms of the number of equivalent DI-optimal
experiments.
Each symbol corresponds to a different number of
designed experiments as indicated in the legend
(e.g., “5pt” refers to a design with five experiments).

Table 3. A Five-Experiment Design for the Simple Tablet
Coater Example with Two Output Variables

Tair,in Mcoat Qair Tair,out %RHout

Exp [�C] [g/min] [ft3/min] [�C] [%]

1 20 10.5 150 16.3 33.7
2 20 10 450 18.8 20.1
3 23.7 80 450 14.2 71.0
4 85 10 450 83.4 16.2
5 85 80 157.6 50.2 87.4

DI-optimality (% relative to maximum) = 98%. Output space area (% relative
to maximum) = 96%.

Figure 5. Output space covered by the five-experiment
compromise design in Table 3 for the coater
example.
The stars denote the two outputs for the five experiments,
the shaded area is the corresponding convex hull and the
outer lines denote the largest possible output space.
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 6. Pareto-front approximation demonstrating the
compromise between output space coverage,
input space optimality, and experimental
effort for the extended coater model.
Each symbol corresponds to a different number of
designed experiments as indicated in the legend
(e.g., “5pt” refers to a design with five experiments).
[Color figure can be viewed at wileyonlinelibrary.com]
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The extended coater model offers a test of the framework in
higher dimensional spaces. It is found that the surrogate output
objective function has some limitations due to the maximum
possible value of the determinant in Eq. 10 scaling exponen-
tially with the number of experiments. Nevertheless, insights
on the trade-offs inherent in experiment design are achieved.
The visualization tools presented in this work are also shown
to scale to higher dimensions, and to be of even greater rele-
vance as the additional flexibility derived from a greater num-
ber of input variables is found to elicit a greater impact when
changing the number of experiments in a design.

CSTR case study

Having demonstrated the applicability and limitations of the
proposed framework to pharmaceutical spray coater develop-
ment, it is applied to investigate the design of experiments for
a system of two continuously stirred tank reactors (CSTRs) in
series. This case study makes it possible to examine how the
proposed framework performs with even greater dimensional-
ity in the input space. It also provides an opportunity to inves-
tigate the benefits of the proposed experiment design
methodology on the development of new continuous pharma-
ceutical processes, a context where the CSTR assumption has
been used previously to investigate process development
options. A model system of two reactions is examined: the for-
mation of product B through the reaction of A and D and the
degradation of B into waste product C. The reactions take
place across two well-insulated CSTRs, as shown in Figure 7.
In this system, pure reactants A and D are fed into the first

CSTR and allowed to react. The effluent stream is then fed
into the second reactor to react further before being removed
for more processing downstream. The system is assumed to
operate at steady state with perfect mixing. The desired reac-
tion (formation of B) is kinetically more favorable than the
degradation of B and is exothermic.

Six inputs are included among the important factors. These
include the inlet concentration of reactant A, [A]0, the inlet
feed ratio of the concentration of A to that of D, [A]0/[D]0, the
feed flow rate, q, the reactor volumes V1 and V2 and the inlet
feed temperature T0. The choice of feed flow rate and reactor
volumes effectively sets the residence times for the lower tem-
perature (first) and higher temperature (second) reactors. These
factors are explored with the DI-optimality objective.

In the output space, there are three critical quality attributes:
the exit mole fraction of impurity C, xC2, the exit mole fraction
of reactant A, xA2, and the exit temperature, T2. The impurity
mole fraction in the product stream must be kept under 0.002
to remain within specifications. As a measure of reaction com-
pleteness, the exit mole fraction of reactant A must remain
below 0.02 because there is no recycle in the system. Finally,
the exit temperature must be kept under 85�C to prevent deg-
radation of reactant D. Within these constraints, the feasible
output space should be explored to as great an extent as
possible.

The penalty parameter (μ in Eq. 20) also needs to be
adjusted based on the number of experiments to avoid degen-
erate results in which clustering of the outputs occurs as a
result of the convex hull approximation used. This issue is
illustrated in Table 4 for an eight-experiment design. While
the outputs of the first two experiments have reasonable sepa-
ration, the next six points are arranged in three clusters,
denoted by groups C through E in the table, for which the
values of xC2, xA2, and T2 are very similar to each other.

This clustering can be better visualized in Figure 8. The use
of the surrogate ellipsoid objective function with the default
value of μ = 3 results in the placement of all output points at
extremities of the space to increase the variance of the distribu-
tion, but regions of the feasible space are missed in doing so.

Although the default penalty multiplier value of 3 prevents
the cluster points from overlapping, it is not sufficient to correct
the behavior for all the instances of this case study, in particular
for the seven- and eight-experiment problems. A number of
tests are therefore conducted by varying the penalty multiplier
for the seven- and eight-experiment reactor model designs, as
listed in Supporting Information Section 3. The lowest penalty
multiplier values that mitigate the clustering behavior are
selected for further investigation: μ = 5 in the seven-experiment
case and μ = 8 for the eight-experiment case.

Using these penalty multiplier values, we obtain the approx-
imate Pareto curves in Figure 9. The relative positions of the
trade-off curves indicate that there is limited value in making
small increments to the number of experiments for the purpose
of mapping out more of the output space. The main benefits
of such increments are felt in the input space. Conversely, try-
ing to achieve a coverage of the output space very close to

Figure 7. Schematic of the two reactors in series con-
sidered in the second case study, showing the
reactions and flows involved.

Table 4. Inputs and Outputs for an Eight-Experiment Design for the Reactor Case Study

Exp #

½A�0 ½A�0=½D�0 q0 V1 V2 T0 xC2 xA2 T2

[Group][M] [–] [L/h] [L] [L] [�C] [-] [-] [�C]

1 0.800 0. ð−Þ800 0.025 0.729 2.000 22.0 0.0020 0.020 67.9 A
2 0.800 0.800 0.036 1.743 1.826 22.0 0.0018 0.020 67.9 B
3 1.079 0.800 0.029 0.880 0.901 22.0 0.0020 0.015 84.3 C
4 1.085 0.800 0.040 1.944 0.500 22.0 0.0020 0.020 84.2 D
5 1.092 0.800 0.019 0.556 0.569 22.0 0.0020 0.015 85.0 C
6 1.099 0.800 0.020 0.500 0.501 22.0 0.0016 0.020 85.0 E
7 1.099 0.806 0.037 1.698 0.500 22.0 0.0020 0.020 85.0 D
8 1.099 0.800 0.021 0.500 0.501 22.0 0.0016 0.020 85.0 E

The “Group” column indicates clusters in the outputs.
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100% may require significant experimental effort. It can be
seen that achieving a high coverage percentage (above 80%)
involves the loss of approximately one DI-optimal experiment
equivalent of information.
From a computational perspective, the increased dimen-

sionality of this case study presents some challenges. The
DI-optimality calculation involves the computation of the
determinant of the information matrix, as explained in
the Methodology section. When all experimental measure-
ments are scaled to ½−1,1�, the information matrix values are
bounded by ½−n,n�, where n is the number of experimental tri-
als in the design. The information matrix determinant is then
bounded by ½0,nϕ�, where ϕ is the number of input factors. This
leads to numerical difficulties: as ϕ increases, the DI-criterion scal-
ing becomes progressively worse. This may contribute to the gaps
observed in the Pareto-front approximation at higher DI-optimality
weightings, such as for the seven-experiment case seen in Figure 9,
as the increased value of the determinant may cause scaling issues.
In fact, scaling issues also make it much more difficult for

the DI-criterion optimization problem to converge, even when

considering the input space only. The theoretical maximum
DI-criterion values that can be achieved for systems of six
input factors and six through eight experiments are shown
Table 5. They are given by n6, where n is the number of
experiments in the design and 6 is the number of input vari-
ables in the reactor case study, based on assuming the best
possible realization of the information matrix, which may or
may not be achievable in reality given problem constraints.
Also reported in the table are the results of runs to find the
global optima of the DI-criterion value. Due to the difficulty
of bounding the multilinear determinant calculation, the calcu-
lated upper bounds obtained with BARON were not improved
significantly from their theoretical maximum values by the
solver, even after three days of CPU time (see Table 5). Nev-
ertheless, feasible points were found for all the cases, provid-
ing a lower bound on the achievable DI-optimality.

The inability to prove convergence to the global solution
does not deter from the usefulness of the proposed approach.
For a given point in Figure 9, failure to prove global optimal-
ity implies there may exist another point with the same DI-
optimality and a better coverage of the output space. However,
even in such a case, the solution obtained is a valid design —

the point represents a feasible set of experiments and the cor-
responding values of DI-optimality and output coverage are
evaluated correctly regardless of whether full convergence has
been achieved. As an example of the usefulness of the points
obtained, consider the eight-experiment designs in Figure 9. It
is clear that the point with the third highest number of equiva-
lent D-optimal experiments (slightly below 8) is a very good
compromise point, which enables a significant increase in the
output coverage relative to the case where only DI-optimality
is taken into account. The set of valid designs identified thus
allows the decision maker to choose between prioritization of
input space information or output space exploration, while
maintaining good performance from both perspectives.

Conclusions

Model-based experiment design enables research and devel-
opment organizations to leverage the information already
encoded into a mathematical model to direct experimental
efforts. Enhancing the extent of process understanding
obtained from each experiment allows for a reduction in the
number of experiments necessary during process development,
saving resources and potentially accelerating time-to-market.
In a resource-constrained environment, it is desirable to coor-
dinate the objectives of an experimental campaign. In this arti-
cle, we have demonstrated the value of designing experiments
that will result in an optimal bracketing study for the process
parameters (input space objective), while also maximizing the
understanding or exploration of the output space (output space
objective). We have put forward a framework for optimal
design of experiments based on multiobjective and bilevel
optimization. It has been found to be a useful tool to identify
an experiment design that achieves an optimal trade-off
between the two objectives. The presented method has been
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Figure 9. Pareto-front approximation for the reactor
case study, illustrating the trade-offs between
output space coverage, input space optimal-
ity, and experimental effort for the reactor
model.
Each symbol corresponds to a different number of
designed experiments as indicated in the legend
(e.g., “7pt” refers to a design with seven experiments).

Figure 8. Convex hull (thick lines connecting the circles,
lighter shading) formed by eight measurement
points (circles) in the output space compared
to the total feasible region (all lines, all
shading).
[Color figure can be viewed at wileyonlinelibrary.com]

Table 5. Input Space DI-Optimality Runs for the
Reactor Model

# Exps DI-Criterion Upper Bound Theoretical Max Run Time

6 683 46,635 46,656 3 days
7 2182 117,619 117,649 3 days
8 4331 262,124 262,144 3 days
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illustrated with two examples, one from drug product
manufacturing (tablet coating) and one from drug substance
manufacturing (use of two continuous reactors in series). An
investigation of the space of Pareto-optimal designs in both
cases has shown that focusing on only one of the two objec-
tives results in poor performance in the other and that much
better trade-off or compromise solutions exist on the Pareto
curve. While global optimization software has been used to
find Pareto points, it is found that for larger dimensions, it is
not always possible to guarantee global optimality. This can
be partly attributed to the deterioration of problem scaling as
the number of input parameters increases. Despite this chal-
lenge, the experiment designs obtained provide a significant
improvement over a single-objective approach. Further exten-
sions of the proposed framework could include the use of dif-
ferent optimization algorithms to increase the likelihood of
finding global solutions and the quantification of the impact of
uncertainty in the model parameters on the output space objec-
tive. This latter consideration could enable the robust design
of optimal experiments. Even in the deterministic case consid-
ered here, the outcome of the experiments as designed yields
significant value without increasing the experimental cost: it
expands the knowledge of the process output space and simul-
taneously provides a bracketing study to complement the pro-
cess development section of a common technical document.
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