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Abstract

Nonparametric series estimation often involves specification search over the different number

of series terms due to the unknown smoothness of underlying function. This paper considers

pointwise inference in the nonparametric series regression for the conditional mean and intro-

duces test based on the supremum of t-statistics over different series terms. I show that proposed

test has correct asymptotic size and it can be used to construct confidence intervals that have

correct asymptotic coverage probability uniform in the number of series terms. With possibly

large bias in this setup, I also consider infimum of the t-statistics which is shown to reduce

size distortions in such case. Asymptotic distribution of the test statistics, asymptotic size, and

local power results are derived. I investigate the performance of the proposed tests and CIs in

various simulation setups as well as an illustrative example, nonparametric estimation of wage

elasticity of the expected labor supply from Blomquist and Newey (2002). I also extend our

inference methods to the partially linear model setup.

Keywords: Nonparametric series regression, Pointwise confidence interval, Smoothing pa-

rameter choice, Specification search, Undersmoothing.
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1 Introduction

I consider the following nonparametric regression model;

yi = g0(xi) + εi,

E(εi|xi) = 0
(1.1)

where {yi, xi}ni=1 is i.i.d. with scalar response variable yi, vector of covariates xi ∈ Rdx , and

g0(x) = E(yi|xi = x) is the conditional mean function. Theory of estimation and inference is well

developed for nonparametric series (sieves) methods in large econometrics and statistics literature,1

and series estimation has also received attention in applied economics as it can easily impose

shape restrictions such as additive separability or monotonicity. However, implementation requires

a choice of smoothing parameter, the number of series terms K = Kn, and this often involves

specification searches, i.e., search over different series terms K ∈ Kn = [K, K̄]. Existing theory for

the asymptotic normality and valid inference imposes so-called undersmoothing (i.e., overfitting)

condition that is a faster rate of K than the mean-squared error (MSE) optimal convergence

rates, however, to achieve undersmoothing one has to know the smoothness of g0(x) which is

usually unknown in practice. Specification searches seem necessary in such case, but it may lead

to misleading inference without taking into account the first step specification search.

This paper provides inference methods in nonparametric series regression given the range of the

different number of series terms. I consider the testing problem for a regression function at a point,

and I show that (1) test based on the absolute value of supremum of the studentized t-statistics over

different series terms and its asymptotic critical value control the asymptotic size; (2) this test can

be used to construct asymptotically valid confidence intervals (CI) which are uniform in K ∈ Kn;

(3) in consequence, CI with any K̂ ∈ Kn has a correct asymptotic coverage for g0(x) by adjusting

the conventional normal critical value to the critical value from supremum of the t-statistics.

The main contribution of this paper is to derive a uniform asymptotic distribution theory

for the entire sequences of t-statistics over a range of the number of series terms K. Existing

asymptotic normality of the t-statistic in the literature holds under a deterministic sequence of

K →∞ as n→∞. First, I develop an asymptotic distribution of t-statistics over the set Kn that

includes a finite number of sequences allowing a broad range of K from oversmoothing rates to

undersmoothing rates as well as optimal MSE rates. In addition, I provide an empirical process

theory for the t-statistics indexed by continuous parameter π, a fraction of the largest series terms

K̄, by considering different Kn; although this set assumption only allow same rates of K (put it

differently, Kn can be small), it is sufficient to show the weak convergence of the empirical process.

I also show that, in the special case, limiting Gaussian process coincides with the scaled Brownian

motion process so that the asymptotic critical value of the test statistics can be tabulated easily as

it is only a function of π = K/K̄ with the smallest K and the largest K̄, and this can be viewed

1For examples, Andrews (1991a), Newey (1997), Huang (2003a), Chen (2007), Belloni, Chernozhukov, Chetverikov,
and Kato (2015), and Chen and Christensen (2015b), among many others.
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as an analogous result developed in the kernel estimation literature (for example, Armstrong and

Kolesár (2015)).

With an asymptotic distribution theory established in the paper, I also consider tests based

on infimum of the t-statistics, and searching for “small” t-statistics in this setup has a similar

motivation with the undersmoothing assumption; using “large” K (or faster rates of K than the

optimal MSE rate) which has a small bias and large variance, thus lead to “small” t-statistics.

For valid inference, many papers in nonparametric series estimation literature typically suggested

to increase the number of series terms and include additional terms than that cross-validation

chooses (for example, see Newey, Powell, and Vella (1999), Newey (2013)), mainly due to the lack

of an explicit asymptotic bias formula and bias-corrections for the series estimator. I formally

justify this conventional wisdom by introducing the infimum test statistic over Kn and provide an

inference method based on its asymptotic distribution. We can, in principle, consider other “small”

t-statistics (e.g., 2nd smallest or median), but a valid pointwise CI can be constructed easily by

inverting infimum t-statistics; it is obtained as the union of all CIs by replacing the standard normal

critical value with the critical value from the infimum t-statistic.

This paper also establishes asymptotic local power results for a particular sequence of slower

than n−1/2-local alternatives and show the size-power trade-off between supremum and infimum

test statistics; similar to using undersmoothing rates, the test based on the infimum t-statistics

can reduce size distortion, but may also reduce the power of the tests. Formally, I show that the

test based on the supremum test statistics is consistent against some sequences of local alternatives

while infimum test statistic is consistent only against a limited range of local alternatives. However,

the test based on infimum t-statistics controls the asymptotic size even allowing large asymptotic

bias, and it has nontrivial power against some local alternatives, and has better power than the test

based on single t-statistic using normal critical value with “large” K that is faster than or equal to

the optimal MSE rates.

I also provide a construction of valid CIs by test statistic inversion and show coverage results

of the proposed CIs. The critical values can be easily implemented using the asymptotic Gaussian

distribution. I investigate finite sample coverage and length properties of the proposed CIs in various

simulation setups. As an illustrative example, I revisit nonparametric estimation of labor supply

function using entire individual piecewise-linear budget set as in Blomquist and Newey (2002).

Imposing additive separability, derived by economic theory, Blomquist and Newey (2002) estimate

conditional mean of labor supply function using series estimation and report wage elasticity of the

expected labor supply as well as other welfare measures with various specifications of the different

number of series terms.

Finally, I provide inference methods in partially linear model setup focusing on the common

parametric part. Unlike the nonparametric object of interest that has a slower convergence rate

than n1/2 (e.g., regression function or regression derivative), t-statistics for the parametric object

of interest are asymptotically equivalent for all sequences of K under standard rate conditions

K/n→ 0 as n→∞. To account the dependency of the t-statistics with the different sequences of
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Ks in this setup, I develop an asymptotic distribution of the studentized t-statistics over K ∈ Kn
using the results of Cattaneo, Jansson, and Newey (2015a) under the faster rate of K that grows

as fast as the sample size n. I also discuss methods to construct CIs that are similar to the

nonparametric regression setup and provide coverage properties.

The supremum t-statistics has been used as a correction for the multiple testing problems or to

construct simultaneous confidence bands, and the importance of multiple testing problems (data

mining or data snooping) has long been alerted in various other contexts (see Leamer (1983),

White (2000), Romano and Wolf (2005), Hansen (2005)). While considering infimum t-statistics is

closely related to the undersmoothing assumption that conceptually requires increasing K until t-

statistic is “small enough” in our nonparametric setup, it is also related to the “stepup” procedures

in the multiple testing literature (see, for example, Romano and Shaikh (2006)) which start by

considering smallest test statistics (the least significant hypotheses) and then move up to the larger

test statistics. Furthermore, inference methods using the union of confidence intervals also has

been used in various contexts, for examples, instrumental variable (IV) setup without imposing

instrument exclusion restriction as in Conley, Hansen, and Rossi (2012), sensitivity analysis in

parametric setup as in Levine and Renelt (1992) following Leamer (1983). With the bias-variance

trade-off of nonparametric estimators in our different setup, we provide less conservative inference

methods from our asymptotic distribution results of the infimum test statistic with the critical

values smaller than the standard normal critical values.

Several important papers have investigated the asymptotic properties of series (and sieves)

estimators, including papers by Andrews (1991a), Eastwood and Gallant (1991), Newey (1997),

Chen and Shen (1998), Huang (2003a), Chen (2007), Chen and Liao (2014), Chen, Liao, and Sun

(2014), Belloni et al. (2015), and Chen and Christensen (2015b), among many others. This paper

extends the asymptotic normality of the t-statistic under a single sequence of K to the uniform

central limit theorem of the t-statistic for the sequences of K over a set Kn, and focuses on a

pointwise inference on g0(x) which is an irregular (i.e., slower than n1/2 rate) and linear functional

under i.i.d. setup.

There is also a growing literature on data-dependent series term selection and its impact on

estimation and inference in econometrics and statistics. Asymptotic optimality results of cross-

validation have been developed, including papers by Li (1987), Andrews (1991b), Hansen (2015).

Recent papers by Horowitz (2014), Chen and Christensen (2015a) develop data-driven methods

for choosing sieve dimension in the nonparametric instrumental variables (NPIV) estimation so

that resulting NPIV estimators attain the optimal sup-norm or L2 norm rates adaptive to the

unknown smoothness of g0(x). Although we do not pursue adaptive inference in this paper, there

is also a large statistics literature on adaptive inference (see Giné and Nickl (2015, Section 8) for

comprehensive lists of references). For example, Giné and Nickl (2010), Chernozhukov, Chetverikov,

and Kato (2014a) construct adaptive confidence bands in density estimation problem. For regression

setup, similar techniques developed in Chernozhukov et al. (2014a) can be used to approximate

distributions of suprema of empirical processes with Gaussian multiplier bootstrap, but obtaining

4



asymptotic distributions in this paper can be useful to consider other test statistics, such as infimum

t-statistic, in pointwise inference. Furthermore, once data-driven choice is obtained for adaptive

estimation (e.g., Lepski (1990)-type procedures), one still require undersmoothing condition for

inference to eliminate asymptotic bias terms (see Theorem 1 of Giné and Nickl (2010), and Corollary

3.1 of Chernozhukov et al. (2014a)), and this may come up with similar specification search issues

to choose sufficiently “large” K in practice.

We can, in principle, consider kernel-based estimation where several data-dependent bandwidth

selections or explicit bias-corrections have been proposed,2 however, there exist many examples

estimating g0(x) using series estimation with imposing shape constraints easily (such as additive

separability) and also interested in pointwise inference (see Section 7 for the example as in Blomquist

and Newey (2002)). Unlike the kernel-based methods, little is known about the statistical properties

of data-dependent selection rules or an asymptotic theory for the bias-correction due to the lack of

an explicit asymptotic bias formula for the series estimator.3 With the issues of specification search,

this paper is closely related to a recent paper by Armstrong and Kolesár (2015) which considers

similar inference methods for g0(x) using kernel estimation with bandwidth snooping. We provide

coverage results that are uniform in series terms, as well as analogous limiting distributions for the

supremum of Gaussian processes as in Armstrong and Kolesár (2015).

The rest of the paper is organized as follows. I introduce basic nonparametric series regression

setup and the asymptotic distribution in Section 2 and the asymptotic size and power properties of

the test statistics in Section 3. In Section 4, I introduce CIs, implementation of the critical values

and provide coverage results. Section 5 extends our inference methods to the partially linear model

setup. Section 6 summarizes Monte Carlo experiments in various setups, and Section 7 illustrates

empirical example as in Blomquist and Newey (2002), then Section 8 concludes. Appendix A

includes all proofs, and Appendix B includes figures and tables.

1.1 Notation

I introduce some notation will be used in the following sections. I use ||A|| =
√
tr(A′A) for

the Euclidean norm. Let λmin(A), λmax(A) denote the minimum and maximum eigenvalues of

a symmetric matrix A, respectively. op(·) and Op(·) denote the usual stochastic order symbols,

convergence in probability and bounded in probability.
d−→ denotes convergence in distribution

and ⇒ denotes weak convergence. I use the notation a ∧ b = min{a, b}, a ∨ b = max{a, b}, and

denote bac as the largest integer less than the real number a. For two sequences of positive real

numbers an and bn, an . bn denotes an ≤ cbn for all n sufficiently large with some constant c > 0

that is independent of n. an � bn denotes an . bn and bn . an. For a given random variable {Xi}
and 1 ≤ p <∞, Lp(X) is the space of all Lp norm bounded functions with ||f ||Lp = [E||f(Xi)||p]1/p

and `∞(X) denotes the space of all bounded functions under sup-norm, ||f ||∞ = supx∈X |f(x)| for

2See Härdle and Linton (1994), Li and Racine (2007) for references. See also Hall and Horowitz (2013), Calonico,
Cattaneo and Farrell (2015), Schennach (2015) and references therein for various recent works on related bias issues
and inference for the kernel estimator.

3Zhou, Shen, and Wolfe (1998) and Huang (2003b) for exceptions with some specific sieves.
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the bounded real-valued functions f on the support X . Let also R[±∞] = R ∪ {+∞} ∪ {−∞}.

2 Model framework and asymptotic distribution

I first introduce the nonparametric series regression setup in the model (1.1). Given a random

sample {yi, xi}ni=1, we are interested in the conditional mean g0(x) = E(yi|xi = x) at a point

x ∈ X ⊂ Rdx . All the results derived in this paper are the pointwise inference in x, and I will omit

the dependence on x if there is no confusion.

Let ĝn(K,x) be an estimator of g0(x) using the first K = Kn ≥ 1 series terms PK(x) =

(p1(x), · · · , pK(x))′ from basis functions p(x) = (p1(x), p2(x), · · · )′. Standard examples for the basis

functions are power series, Fourier series, orthogonal polynomials (e.g., Hermite polynomials), or

splines with evenly sequentially spaced knots. Series estimator is then obtained by standard least

square (LS) estimation of yi on regressors PK(xi)

ĝn(K,x) = PK(x)′β̂K , β̂K = (PK
′
PK)−1PK

′
Y (2.1)

where PK = [PK1, · · · , PKn]′, PKi ≡ PK(xi) = (p1(xi), p2(xi), · · · , pK(xi))
′, Y = (y1, · · · yn)′. For

simplicity of notation, I define the true regression function at a point as θ0 ≡ g0(x) and let θ̂n(K) ≡
ĝn(K,x). Define the series variance

Vn(K) ≡ Vn(K,x) = PK(x)′Q−1
K ΩKQ

−1
K PK(x),

QK = E(PKiP
′
Ki), ΩK = E(PKiP

′
Kiε

2
i )

(2.2)

where Q−1
K ΩKQ

−1
K is the conventional asymptotic variance formula for the LS estimator β̂K .

We use the notion of testing setup and consider two-sided testing for θ

H0 : θ = θ0, H1 : θ 6= θ0. (2.3)

The studentized t-statistic for H0 is

Tn(K, θ0) ≡
√
n(ĝn(K,x)− g0(x))

Vn(K,x)1/2
=

√
n(θ̂n(K)− θ0)

Vn(K)1/2
. (2.4)

Under standard regularity conditions (will be discussed below in Assumption 2.2), t-statistic under

H0 can be decomposed as follows

Tn(K, θ0) =
1√
n

n∑
i=1

PK(x)′Q−1
K PKiεi

Vn(K)1/2
− rn(K)√

Vn(K)/n
+ op(1) (2.5)

where the first term converges to a standard normal distribution for deterministic sequence K →
∞ as n → ∞, and the second term does not necessarily converge to 0 due to approximation

errors, rn(K) ≡ rn(K,x) = g0(x)− PK(x)′βK with the best linear L2 projection coefficients βK ≡
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(E[PKiP
′
Ki])

−1E[PKiyi]. With undersmoothing assumption, the asymptotic distribution of the t-

statistic, Tn(K, θ0)
d−→ N(0, 1), is well known in the literature (See, for example, Andrews (1991a),

Newey (1997), Belloni et al. (2015), Chen and Christensen (2015b) among many others), and the

confidence interval for the nonparametric regression function can be constructed.

Here, I develop an asymptotic distribution theory of Tn(K, θ0) over a set Kn. The following set

assumption is constructed to allow a broad range of Ks so that Kn can allow (unknown) optimal

mean squared error rate of K as well as oversmoothing rate which increases slower than the optimal

MSE rate.

Assumption 2.1. (Set of number of series terms) Let Kn as

Kn = {K = K1, · · · ,Km, · · · , K̄ = KM} where Km ≡ bτnφmc for constant τ > 0, 0 <

φ1 < φ2 < · · · < φM , and fixed M . Define asymptotic bias for the m-th model as ν(m) ≡
− lim
n→∞

√
nVn(Km)−1/2rn(Km). Assume that infm |ν(m)| = O(1).

Remark 2.1. Suppose g0(x) belongs to the Hölder space of smoothness s > 0, Σ(s,X ), then we

obtain optimal L2 convergence rates Op(n
−s/(2s+dx)) with K � ndx/(dx+2s). Due to the unknown

smoothness of g0(x), Kn may include small Ks corresponding to oversmoothing rates. If the

unknown optimal MSE rates satisfy φp < dx/(dx + 2s) ≤ φp+1 for some p ∈ {1, · · · ,M − 1}, then

Assumption 2.1 contains oversmoothing rates of K (|ν(m)| = +∞ for all m = 1, · · · , p), as well as

optimal MSE rate and undersmoothing rates (|ν(p+1)| < +∞, |ν(m)| = 0 for all m = p+2, · · · ,M).

Also note that infm |ν(m)| = O(1) excludes the possibility of |ν(m)| = +∞ for all m = 1, · · · ,M .4

We may consider growing set of the possible number of series terms with Kn = [K, K̄]∩N (similar

assumption is used in the literature, for example, Newey (1994a, 1994b)), but this complicates the

derivation of the limiting distribution. We can use the general results of Chernozhukov, Chetverikov,

and Kato (2013) in this case, however, obtaining asymptotic distributions over K ∈ Kn is useful

in our pointwise inference setup to consider other test statistics. We also consider different Kn
including infinite sequences of K in Section 2.1 to establish weak convergence results.

Next, I impose mild regularity conditions that are standard in nonparametric series regres-

sion literature and are satisfied by well-known basis functions. For each K ∈ Kn, define ζK ≡
supx∈X ||PK(x)|| as the largest normalized length of the regressor vector and λK ≡ (λmin(QK))−1/2

for K ×K design matrix QK = E(PKiP
′
Ki).

Assumption 2.2. (Regularity conditions)

(i) {yi, xi}ni=1 are i.i.d random variables satisfying the model (1.1).

4Assumption 2.1 allows to have optimal L2 rates of K in a large set of classes of functions; by setting φm =
dx/(dx + 2sm) for all sm ∈ S = {s = s1, · · · , s̄ = sM}, Assumption 2.1 contains the number of series terms which
obtain optimal L2 rate of convergence for every g0(x) ∈

⋃
s∈S Σ(s,X ). A similar assumption is used in the literature

on adaptive inference, although we do not pursue this direction and we only consider finite sequences of smoothing
parameters.
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(ii) supx∈X E(ε2
i |xi = x) <∞, infx∈X E(ε2

i |xi = x) > 0, and supx∈X E(ε2
i {|εi| > c(n)}|xi = x)→

0 for any sequence c(n)→∞ as n→∞.

(iii) For each K ∈ Kn, as K →∞, there exists η and cK , `K such that

sup
x∈X
|g0(x)− PK(x)′η| ≤ `KcK , E[(g0(xi)− PK(xi)

′η)2]1/2 ≤ cK .

(iv) supK∈Kn λK . 1.

(v) supK∈Kn ζK
√

(logK)/n(1 +
√
K`KcK) + `KcK → 0 as n→∞.

Assumption 2.2(ii) imposes moment conditions and standard uniform integrability conditions.

Assumption 2.2(iii)-(v) are similar to those imposed in Belloni et al. (2015), Chen and Christensen

(2015b) except that we impose rate conditions of K uniformly over Kn. Other standard regularity

conditions in the literature (e.g., Newey (1997), Chen (2007)) can also be used here, so ζK , cK , `K

in Assumption 2.2(iii)-(v) are satisfied with various sieve bases and all the discussions made there

also apply here.5

Next theorem provides an asymptotic distribution under Assumption 2.1 with a broad range

of K. Allowing supm |ν(m)| = +∞ in the result will be useful for considering the effect of bias

on the asymptotic size of the test, as well as for obtaining asymptotic distributions of the test

statistics under the wide range of local alternatives. For this, we define the continuous function on

the extended real space as follows; S : A → B is continuous at t ∈ A if t′ → t for t ∈ A implies

S(t′)→ S(t) for any set A.

Theorem 2.1. Under Assumptions 2.1 and 2.2, following holds for any continuous function S(t)

at all t ∈ T ⊂ RM[±∞],

S(Tn(θ0))
d−→ S(ZΣ + ν)

where Tn(θ) = (Tn(K1, θ), · · · , Tn(KM , θ))
′, ZΣ = (Z1, · · · , ZM )′ ∼ N(0,Σ), ν = (ν(1), · · · , ν(M))′

are M × 1 vectors provided that Σ exists and is a finite positive definite matrix with Σ(j, l) =

limn→∞Σn(j, l), and

Σn(j, l) =
PKj (x)′E(PKjiP

′
Kji

)−1E(PKjiP
′
Kli
ε2
i )E(PKliP

′
Kli

)−1PKl(x)

Vn(Kj)1/2Vn(Kl)1/2
.

5For example, if the support X is a cartesian product of compact connected intervals (e.g. X = [0, 1]dx) and the
probability density of xi is bounded below zero, then ζK . K for power series and other orthogonal polynomial series,
and ζK .

√
K for regression splines, Fourier series, and wavelet series. Moreover, cK and `K can be replaced by series

specific bounds. If g0(x) ∈ Σ(s,X ), s > 0, then cK . K−s/dx , `K . K for power series, cK . K−(s∧s0)/dx , `K . 1 for
spline and wavelet series of order s0. Furthermore, when the probability density function of xi is uniformly bounded
above and bounded away from zero over the compact support X and orthonormal basis is used, then λK . 1 (see, for
example, Proposition 2.1 in Belloni et al. (2015) and Remark 2.2 in Chen and Christensen (2015b)). Then, the rate
conditions in Assumption 2.2(v) can be replaced by the specific bounds of ζK , cK , `K . For example, for the power
series, Assumption 2.2(v) reduced to supK∈Kn

√
K2(logK)/n(1 +K3/2−s/dx) +K1−s/dx → 0.
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If ν(m) = ±∞, then the corresponding element of ZΣ + ν equals ±∞.

This is an asymptotic theory for the entire sequence of t-statistics Tn(K, θ0),K ∈ Kn. Note

that standard inference methods in nonparametric regression setup typically consider a singleton

set Kn = {K} with K →∞ as n→∞.

Remark 2.2. We note that Theorem 2.1 does not require either undersmoothing assumption for

all K ∈ Kn or supm |ν(m)| < ∞. The t-statistics may not converge in distribution to a bounded

random vector if |ν(m)| = +∞ for some m; corresponding t-statistic Tn(Km, θ0) diverges in proba-

bility to ±∞. This matters when we obtain the asymptotic distribution of the test statistic because

continuous mapping theorem cannot be directly applied. To obtain the asymptotic distribution un-

der supm |ν(m)| = +∞, we provide formal proofs which combine arguments in inference on CIs for

the parameters in moment inequality literature as in Andrews and Guggenberger (2009).6 Theorem

2.1 coincides with standard continuous mapping theorem when we control maximum asymptotic

bias or impose uniform undersmoothing assumption (i.e., supm |ν(m)| = 0), and thus useful to

analyze the effect of large bias on the size of the tests, and to compare the power of asymptotic

level α tests under wide range of local alternatives (see Section 3.1 and 3.2 for details).

Remark 2.3 (Variance-covariance matrix). Under conditional homoskedasticity, E(ε2
i |xi = x) =

σ2, variance-covariance matrix Σ reduces to the simple form as Σ(j, l) = limn→∞
Vn(Kj∧Kl)1/2
Vn(Kj∨Kl)1/2

,

i.e., the limit of the ratio of standard deviations. If we assume Vn(K)1/2 � Kη at some point x

with η > 0, then for any j < l, Σn(j, l) ≤ C
Vn(Kj)

1/2

Vn(Kl)1/2
for some constant C > 0 by Assumption

2.2(ii) and the upper bound converges to 0 as n → 0 by Assumption 2.1, thus Σn(j, l) → 0 and

variance-covariance matrix also reduces to Σ = IM .

Remark 2.4 (Other functionals). Here, we focus on the leading example, where θ0 = g0(x) for some

fixed point x ∈ X , but we can consider other linear functionals θ0 = a(g0(·)), such as the regression

derivates a(g0(x)) = d
dxg0(x). All the results in this paper can be applied to irregular (slower than

n1/2 rate) linear functionals using estimators θ̂n(K) = a(ĝn(K,x)) = aK(x)′β̂K and appropriate

transformation of basis aK(x) = (a(p1(x), · · · , a(pK(x)))′ with proper smoothness condition on the

functional and continuity conditions on the derivative as in Newey (1997). While verification of

previous results for regular (n1/2 rate) functionals, such as integrals and weighted average derivative,

is beyond the scope of this paper, I examine similar results for the partially linear model setup in

Section 5.

Remark 2.5 (LargestK). Although there exist rate restrictions for K̄ to be used for the asymptotic

normal approximation, formal guidance or data-dependent results for the range of Kn = [K, K̄] are

beyond the scope of this paper. Together with Assumption 2.2, there exist explicit rate restrictions

on φm in the Assumption 2.1 uniformly over m to guarantee asymptotic normality of single t-

statistic. For example, under supK∈Kn K
2 logK/n→ 0 for the power series, rates are allowed only

6This technical difficulty does not arise when we consider t-statistics centered at the pseudo-true value θ(K) =
PK(x)′βK (or θ0 − rn(K)). But we do not pursue this approach because (1) we are mainly interested in conditional
mean function (θ0); (2) it is difficult to implement bias-correction in this setup.
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if φM < 1/2. Some formal data-dependent methods to obtain optimal L2 norm or sup-norm rates,

such as cross-validation can be useful guidelines for Kn, and it would be of interest to extend all

inference results developed in this paper with data-dependent Kn.

2.1 Weak convergence of t-statistic process

In this section, I consider different set assumption Kn to construct empirical process theory of the

t-statistics over K ∈ Kn which I shall call ‘t-statistic process’. The t-statistic process is indexed by

the continuous and fixed parameter π, which is a fraction of the largest series term K̄.

Assumption 2.3. (Same Rates of K) Let Kn as

Kn = {K : K ∈ [πK̄, K̄]}

where K = πK̄ with a fixed constant π ∈ Π = [π, π̄], 0 < π < π̄ = 1, and K̄ ≡ K̄(n) → ∞ as

n→∞.

Assumption 2.3 considers a range of the number of series terms and considers an infinite sequence

of approximations indexed by π ∈ Π. By imposing the rate conditions for the largest series term

K̄ with the Assumption 2.2, set Kn considers the sequence of models that has the same rate of K,

i.e., K � K ′ for any K,K ′ ∈ Kn.

Next, define the following empirical process, T ∗n(π, θ), as

T ∗n(π, θ) ≡ Tn(bπK̄c, θ), π ∈ Π, (2.6)

where Tn(K, θ) is defined in (2.4), i.e., T ∗n(π, θ) is a t-statistic evaluated at the parameter θ using

bπK̄c number of series terms. Note that T ∗n(π, θ) is indexed by π ∈ Π and is a step function of π.

This empirical process has a covariance kernel

Σn(π1, π2) ≡
Pπ1(x)′Q−1

π1 E(Pπ1iP
′
π2i
ε2
i )Q

−1
π2 Pπ2(x)

Vn(π1)1/2Vn(π2)1/2
, π1, π2 ∈ Π, (2.7)

where Pπ(x) ≡ PbK̄πc(x), Pπi ≡ Pπ(xi) = PbK̄πci, and the series variance Vn(π) ≡ Vn(bπK̄c,
x) = ||Ω1/2

π Q−1
π Pπ(x)||2, Ωπ = E(PπiP

′
πiε

2
i ), Qπ = E(PπiP

′
πi). We expect that the limiting Gaussian

process has a covariance function as a limit of the sequence of covariance functions Σn(π1, π2), which

is assumed to exist by the following assumption. To establish weak convergence of the empirical

process {T ∗n(π, θ0) : π ∈ Π}, I also impose rate restrictions on series variances.

Assumption 2.4.

(i) Σ(π1, π2) = limn→∞Σn(π1, π2) exists and Σ(π1, π2) < 1 for any π1, π2 ∈ Π.

(ii) limn→∞ Vn(π)1/2(K̄π)−η = c uniformly in π ∈ Π for some constants c, η > 0.
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Assumption 2.4(i) guarantees well-defined covariance function for the tight Gaussian process in

`∞(Π) and a positive definite variance-covariance matrix for its finite-dimensional limit distribu-

tions. Assumption 2.4(ii) is a high-level assumption but required to prove weak convergence of the

t-statistic process. Assumption 2.4(ii) requires that series variance is increasing in K at some rates

uniformly in K ∈ Kn under Assumption 2.3, i.e., limn→∞ Vn(K)1/2K−η = c. This assumption holds

with η = 1/2 when we consider a point x ∈ X where Vn(K)1/2 ∝ K1/2. Moreover, Assumption

2.4(ii) is a sufficient condition for Assumption 2.4(i) under homoskedasticity. Under conditional

homoskedasticity, E(ε2
i |xi = x) = σ2, the limit of the covariance kernel Σ(π1, π2) reduces to the

Σ(π1, π2) = lim
n→∞

Vn(π1 ∧ π2)1/2

Vn(π1 ∨ π2)1/2
(2.8)

for any π1, π2 ∈ Π. If we further assume Assumption 2.4(ii), then Σ(π1, π2) = (π1∧π2π1∨π2 )η. With

η = 1/2, this coincides with the covariance kernel of a scaled Brownian motion process Z(π)/
√
π,

π ∈ Π.

Next, we define the asymptotic bias as ν(π) ≡ limn→∞−
√
nVn(π)−1/2rn(π) for π ∈ Π, where

rn(π) ≡ rn(bπK̄c, x) and consider undersmoothing assumption. Under Assumption 2.5, ν(π) = 0

for all π ∈ Π.7

Assumption 2.5. (Undersmoothing) sup
K∈Kn

|
√
nVn(K)−1/2rn(K)| → 0 as n→∞.

Next theorem provides uniform central limit theorem of the t-statistic process for nonparametric

LS series estimation.

Theorem 2.2. Under Assumptions 2.2, 2.3, 2.4 and supπ |ν(π)| <∞,

T ∗n(π, θ0)⇒ T(π) + ν(π), π ∈ Π, (2.9)

where T(π) is a mean zero Gaussian process on `∞(Π) with covariance kernel, E(T(π1)T(π2)) =

Σ(π1, π2) for any π1, π2 ∈ Π, defined in Assumption 2.4. In addition, if Assumption 2.5 is satisfied,

then

T ∗n(π, θ0)⇒ T(π), π ∈ Π. (2.10)

Theorem 2.2 provides weak convergence of the t-statistic process T ∗n(π, θ0), π ∈ Π. The t-

statistic process converges weakly to a mean zero Gaussian process T(π) plus the asymptotic bias

ν(π). Proof of Theorem 2.2 needs to verify a uniform-entropy condition and apply empirical process

theory in van der Vaart and Wellner (1996, Theorem 2.11.22).

7When we use explicit bounds `KcK . K−s/dx for spline or wavelet series, sufficient condition for Assumption 2.5
is sup
K∈Kn

√
nVn(K)−1/2K−s/dx = o(1). When we further consider Vn(K)1/2 ∝ K1/2, Assumption 2.3 and 2.5 together

imply that Assumption 2.5 is provided by
√
nK̄1/2−s/dx → 0 for power series.
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Remark 2.6 (Rate conditions). Theorem 2.2 requires supπ |ν(π)| < ∞ so that t-statistics has

either zero asymptotic bias for all K ∈ Kn or non-zero bounded asymptotic bias for all K ∈ Kn.

A set Kn in Assumption 2.3 allows narrower ranges of K than the Assumption 2.1 because it only

considers sequences of K with the same rates which only differ in constant π. However, these

are the class of sequences to be able to provide uniform central limit theorem of the t-statistic

process; as discussed in Remark 2.3, studentized t-statistic can be asymptotically independent with

different rates of K. Moreover, weak convergence results can be used for tabulating critical value

(see Remark 4.1 for more details).

3 Test statistic

In this section, I introduce test statistics and analyze its asymptotic null distribution based on

Theorem 2.1. Then, I provide an asymptotic size result of the tests and consider local power

analysis (I restrict attention to Assumption 2.1 which considers a more general range of Kn than

Assumption 2.3, and thus power results under Theorem 2.2 are omitted for brevity).

I consider following supremum and infimum test statistics,

SupTn(θ) = sup
K∈Kn

|Tn(K, θ)|,

Inf Tn(θ) ≡ inf
K∈Kn

|Tn(K, θ)|.
(3.1)

As I denoted in the introduction, considering SupTn(θ) is appropriate in the context of multiple

testing and is known to control the size of the simultaneous tests over Kn. There are also several

reasons to consider Inf Tn(θ) in the series regression context; small t-statistic centered at the true

θ0 corresponds to the approximation that has a small bias and large variance, similar to under-

smoothing assumption. Using similar ideas of some rule-of-thumb methods suggested to choose

undersmoothed series terms, I provide formal inference methods based on asymptotic distribution

results of the infimum test statistic with appropriate critical values smaller than the standard

normal critical values.8 Using infimum t-statistics is also related to certain sensitivity analysis in

the parametric setup, such as Levine and Renelt (1992) following Leamer (1983)’s idea, which is

so-called Leamer’s “Extreme Bounds Analysis.”9

Asymptotic null limiting distribution of the test statistic follows immediately from Theorem

2.1.

8For example, among many others, Newey (2013) suggested increasing K until standard errors are large relative
to small changes in objects of interest, Newey, Powell, and Vella (1999) suggested using more terms than that
cross-validation chooses, and Horowitz and Lee (2012) suggested increasing K until the integrated variance suddenly
increases and then adding an additional term.

9In the parametric setup, a variable is defined as “robust” when 0 is not included in the lower and upper extremes
of θ̂n(m) ± 1.96s(θ̂n(m)) over different specifications m = 1, · · · ,M , otherwise “fragile”. This is easily shown to be

equivalent to testing Inf Tn(0) = infm | θ̂n(m)

s(θ̂n(m))
| > 1.96.
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Corollary 3.1. Under Assumptions 2.1, 2.2 and, supm |ν(m)| <∞ , then

SupTn(θ0)
d−→ ξsup(Σ, ν) ≡ sup

m=1,···,M
|Zm + ν(m)|, (3.2)

where Zm is an element of M ×1 normal vector ZΣ ∼ N(0,Σ) and ν = (ν(1), · · · , ν(M))′ is defined

in Theorem 2.1. Under Assumptions 2.1, 2.2,

Inf Tn(θ0)
d−→ ξinf(Σ, ν) ≡ inf

m=1,···,M
|Zm + ν(m)|. (3.3)

Corollary 3.1 gives the asymptotic distribution of our test statistics, SupTn(θ) and Inf Tn(θ).

In addition, if Assumption 2.5 holds, then the limiting distributions ξsup(Σ, 0M ) and ξinf(Σ, 0M )

do not contain bias components. Allowing supm |ν(m)| = +∞ for some m, Inf Tn(θ0) converges in

distribution to the bounded random variable, while SupTn(θ0) converges in probability to infinity.

Using Inf Tn(θ) can reduce size distortions, however, it may have low power; similar to the size and

power trade-off using (deterministic) undersmoothing rates compare with slower than or equal to

the optimal MSE rates. We investigate this trade-off between size and power of the test in the

following sections.

3.1 Asymptotic size

I start by defining critical value csup
1−α(ν), cinf

1−α(ν) for 0 < α < 1/2,

csup
1−α(ν) = F−1

ξsup(Σ,ν)(1− α), cinf
1−α(ν) = F−1

ξinf(Σ,ν)(1− α) (3.4)

where F−1
X (1 − α) denotes the (1 − α) quantile of the random variable X. I also define z1−α/2 as

(1 − α/2) quantile of the standard normal random variable, which solves P (|Z| > z1−α/2) = α,

Z ∼ N(0, 1).

Next Corollary provides the asymptotic size of the test based on SupTn(θ) with the critical

value csup
1−α(ν).

Corollary 3.2. Under Assumptions 2.1, 2.2, and supm |ν(m)| <∞, following holds

lim
n→∞

P (SupTn(θ0) > csup
1−α(ν)) = α. (3.5)

Moreover,

lim sup
n→∞

P (Tn(K̂, θ0) > csup
1−α(ν)) ≤ α (3.6)

for any K̂ ∈ Kn.

Corollary 3.2 shows that the tests based on SupTn(θ) asymptotically control size, and the tests

based on |Tn(K̂, θ0)| for any K̂ ∈ Kn with adjusting standard normal critical value to the critical
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value from supremum test statistics will also be valid, but conservative.

Next Corollary provides the asymptotic size of the tests based on Inf Tn(θ).

Corollary 3.3. Under Assumptions 2.1 and 2.2, following holds,

lim
n→∞

P (Inf Tn(θ0) > cinf
1−α(ν)) = α. (3.7)

Corollary 3.3 shows that the tests based on Inf Tn(θ) asymptotically control size without as-

suming supm |ν(m)| < ∞. Even when we allow “large” asymptotic bias (|ν(m)| = ∞) for several

Ks in Kn, size of the test is asymptotically level α.

Remark 3.1. Note that Inf Tn(θ0) ≤ |Tn(Km, θ0)| and |Tn(Km, θ0)| d→ |N(ν(m), 1)| for any

single Km ∈ Kn, thus we can also show that the test based on Inf Tn(θ) using critical value

infm F
−1
|N(ν(m),1)|(1−α) controls the asymptotic size, but conservative. Note that infm F

−1
|N(ν(m),1)(1−

α)| = F−1
|N(ν(m̂),1)(1−α) with m̂ such that |ν(m̂)| = infm |ν(m)| and this coincides with normal crit-

ical value z1−α/2 when infm |ν(m)| = 0, which implies that the test based on Inf Tn(θ0) with normal

critical value controls size asymptotically if the smallest asymptotic bias is 0, which is the case

when Kn includes at least one undersmoothing sequence.

3.2 Asymptotic local power properties

In this section, we investigate the local asymptotic power of the tests based on SupTn(θ) and

Inf Tn(θ).10

In order to establish the power properties of our test, we impose following assumptions.

Assumption 3.1.

(i) Let θn = θ0 + µ̄n−γ for some µ̄ ∈ R and γ > 0.

(ii)
√
n/Vn(Km) � nδm for all Km ∈ Kn defined in Assumption 2.1 such that 1/2 > δ1 > δ2 >

· · · > δM > 0.

The local alternatives are defined in 3.1(i) and high-level assumption 3.1(ii) is used to charac-

terize the asymptotic distribution under local alternatives. Since nonparametric estimator θ̂n(K)

is converging at a rate
√
n/Vn(K), we need rate restrictions on series variance Vn(K) similar to

Assumption 2.4(ii) to compare rates of
√
n/Vn(K) and n−γ , as well as asymptotic bias term.

Under Assumptions 2.1, 2.2 and 3.1, limiting distribution of the test statistics under local

alternatives are as follows;

S(Tn(θn))
d−→ S(ZΣ + ν + µ) (3.8)

10Both tests are consistent against all fixed alternatives, so we focus on the local power analysis.
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for any continuous function S(t) at all t ∈ T ⊂ RM[±∞], where Tn(θ) = (Tn(K1, θ), · · · , Tn(KM , θ))
′,

ZΣ = (Z1, · · · , ZM )′ ∼ N(0,Σ), ν = (ν(1), · · · , ν(M))′ are defined in Theorem 2.1, and µ = (µ(1),

· · · , µ(M))′, µ(m) ≡ − lim
n→∞

√
nVn(Km)−1/2µ̄n−γ .

The following Corollary shows the consistency of the test based on SupTn(θ) against all n−γ-

local alternatives such that γ < δ1. The test also has nontrivial power against n−γ-local alternative

with γ = δ1, but not against alternatives that converges faster.

Corollary 3.4. Suppose Assumptions 2.1, 2.2, 3.1 and supm |ν(m)| < ∞ holds. Then, following

holds for all γ < δ1,

lim
n→∞

P (SupTn(θn) > csup
1−α(ν)) = 1. (3.9)

For γ = δ1,

SupTn(θn)
d−→ sup

m=1,···,M
|Zm + ν(m) + µ(m)|, (3.10)

where ZΣ = (Z1, · · · , ZM )′ ∼ N(0,Σ) and ν = (ν(1), · · · , ν(M))′ are defined in Theorem 2.1, and

µ = (µ(1), · · · , µ(M))′ = (µ(1), 0′M−1)′.

Local asymptotic power results for the test based on Inf Tn(θ) and the critical value cinf
1−α(ν)

are as follows.

Corollary 3.5. Suppose Assumptions 2.1, 2.2, and 3.1 holds. For some fixed p ∈ {0, 1, · · · ,M−1},
assume that |ν(m)| = +∞ for all m < p + 1 and |ν(m)| < +∞ otherwise (p = 0 denotes the case

sup |ν(m)| < +∞). Then, following holds for all γ < δM ,

lim
n→∞

P (Inf Tn(θn) > cinf
1−α(ν)) = 1. (3.11)

Moreover, for all γ ∈ [δM , δp+1],

lim
n→∞

P (Inf Tn(θn) > cinf
1−α(ν)) ≥ α (3.12)

with strict inequality holds for γ = {δp+1, · · · , δM}.

Corollary 3.5 show the consistency of the test based on infimum statistics against all n−γ-local

alternatives such that γ < δM and asymptotic unbiasedness of the test for all γ ∈ [δM , δp+1] when

the first p elements of |ν| = (|ν(1)|, · · · , |ν(M)|)′ is +∞. The test has nontrivial power against some

n−γ-local alternatives with γ ∈ {δp+1, · · · , δM}, but has no power against γ > δp+1.

Remark 3.2 (Power comparisons of SupTn(θ) and Inf Tn(θ)). When sup |ν(m)| < +∞, results

from Corollary 3.2 and 3.3 reveal that the test based on SupTn(θ) and Inf Tn(θ) both control size

asymptotically. Thus, we can compare the power of two asymptotic level α tests from Corollary 3.4

and Corollary 3.5 with p = 0. We conclude that the test based on SupTn(θ) has better asymptotic
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power than the test based on Inf Tn(θ) as the former test is consistent for all n−γ-local alternatives

γ < δ1, but the latter is consistent only against γ < δM (< δ1) although its power is no less than

the size α for γ ∈ [δM , δ1].11

Remark 3.3 (Power of Inf Tn(θ)). Although Inf Tn(θ) leads to the test that has lower power

property of the test compare with SupTn(θ), the test controls the asymptotic size even when

sup |ν(m)| = +∞, in which SupTn(θ) can suffer from size distortions. Furthermore, the test based

on Inf Tn(θ) with its asymptotic critical value cinf
1−α(ν) still has nontrivial power against γ ∈ {δp+1,

· · · , δM}, and power is no less than the size for all γ ∈ [δM , δp+1]. Moreover, it has better power than

the test based on single t-statistic Tn(K, θ) using normal critical value with K that is faster than or

equal to the optimal MSE rates. It can be shown (in the proof of Corollary 3.4 with Kn = {Km})
that the single t-statistic Tn(Km, θ) only has nontrivial power against n−γ-local alternatives with

γ = δm, and has no power against strictly slower. Since Inf Tn(θ) has nontrivial power for all

γ ∈ {δp+1, · · · , δM}, it has better power properties over single t-statistic with Km for all m = p+ 1,

· · ·M . Intuitively, suppose that Inf Tn(θn) = |Tn(K̃, θn)| for some K̃ under the alternative, then

the power of the test based on Inf Tn(θ) is no less than the power of the test using |Tn(K̃, θn)|
because cinf

1−α(ν) ≤ z1−α/2.

4 Confidence interval

In this section, I introduce confidence intervals for θ0 = g0(x) and provide their coverage properties

as well as methods to obtain critical values.

We consider a confidence interval based on inverting a test statistic for H0 : θ = θ0 against

H1 : θ 6= θ0. Let T
n,V̂

(K, θ) =

√
n/V̂n(K)(θ̂n(K)− θ) as a t-statistic replacing Vn(K) with V̂n(K),

and s(θ̂n(K)) ≡
√
V̂n(K)/n as a standard error of series estimator θ̂n(K). First, we consider

following standard CI using the normal critical value z1−α/2,

CINaive ≡ {θ : |T
n,V̂

(K̂, θ)| ≤ z1−α/2} = [θ̂n(K̂)− z1−α/2s(θ̂n(K̂)), θ̂n(K̂) + z1−α/2s(θ̂n(K̂))] (4.1)

where K̂ is a possibly data-dependent rule chosen from Kn. Conventional CI using normal critical

values in (4.1) comes from the asymptotic normality of the t-statistic under deterministic sequence,

i.e., when Kn = {K}. However, it is not clear whether CINaive has correct coverage probability; (1)

Tn(K̂, θ0)
d→ N(0, 1) may not hold with a random sequence of K̂, even if we assume the asymptotic

bias is negligible; (2) K̂ with some data-dependent rules (e.g., cross-validation) may not satisfy the

undersmoothing rate conditions which ensure the asymptotic normality without bias terms.

Next, I consider the following robust CI using the critical value ĉsup
1−α rather than the normal

11We may also consider other test statistics, for example, average or median of the t-statistics, and we can provide
similar size and power results from (3.8). Investigating some optimal property of the test (e.g., optimal weighted
average power of the test as in Andrews and Ploberger (1994)) in this nonparametric regression setup will be of
interest, but this is beyond the scope of this paper.
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critical value z1−α/2 compare to CINaive,

CIRobustsup ≡ [θ̂n(K̂)− ĉsup
1−αs(θ̂n(K̂)), θ̂n(K̂) + ĉsup

1−αs(θ̂n(K̂))], K̂ ∈ Kn. (4.2)

where ĉsup
1−α is the critical value from 1 − α quantile of ξsup(Σ̂, 0M ) defined in Corollary 3.1 with

Assumption 2.5 (see Remark 4.2 for general cases without Assumption 2.5). We can obtain critical

values by using Monte Carlo simulation based method which will be discussed later in this section.

Finally, I define CIRobustinf as the nominal level 1− α CI for θ based on infimum test statistics,

CIRobustinf ≡ {θ : inf
K∈Kn

|T
n,V̂

(K, θ)| ≤ ĉinf
1−α} =

⋃
K∈Kn

{θ : |T
n,V̂

(K, θ)| ≤ ĉinf
1−α}

= [inf
K

(θ̂n(K)− ĉinf
1−αs(θ̂n(K))), sup

K
(θ̂n(K) + ĉinf

1−αs(θ̂n(K)))]
(4.3)

where ĉinf
1−α is the critical value from 1−α quantile of ξinf(Σ̂, 0M ). Note that CIRobustinf can be easily

obtained by using estimates θ̂n(K), standard errors s(θ̂n(K)), and a critical value ĉinf
1−α; it is the

lower and the upper-end point of confidence intervals for all K ∈ Kn using ĉinf
1−α.

Next, I discuss detail implementations to obtain critical values using simple simulation methods.

This requires estimators of the variance Vn(K) that are consistent uniformly over K ∈ Kn. Define

least square residuals as ε̂Ki = yi−P ′Kiβ̂K , and let V̂n(K) as the simple plug-in estimator for Vn(K)

V̂n(K) = PK(x)′Q̂−1
K Ω̂KQ̂

−1
K PK(x),

Q̂K =
1

n

n∑
i=1

PKiP
′
Ki, Ω̂K =

1

n

n∑
i=1

PKiP
′
Kiε̂

2
Ki.

(4.4)

We also define V̂n(Kj ,Kl) as a sample analog estimator of Vn(Kj ,Kl) ≡ PKj (x)′Q−1
Kj

ΩKj ,KlQ
−1
Kl
PKl(x),

ΩKj ,Kl = E(PKjiP
′
Kli
ε2
i ),

V̂n(Kj ,Kl) = PKj (x)′Q̂−1
Kj

Ω̂Kj ,KlQ̂
−1
Kl
PKl(x),

Ω̂Kj ,Kl =
1

n

n∑
i=1

PKjiP
′
Kli
ε̂Kjiε̂Kli.

Then, I define ĉsup
1−α based on the asymptotic null distribution of SupTn(θ0) as follows,

ĉsup
1−α ≡ (1− α) quantile of ξsup(Σ̂, 0M ) = sup

m=1,···,M
|Z
m,Σ̂
|,

where Z
Σ̂

= (Z
1,Σ̂
, · · · , Z

M,Σ̂
)′ ∼ N(0, Σ̂),

Σ̂(j, j) = 1, Σ̂(j, l) =
V̂n(Kj ,Kl)

V̂n(Kj)1/2V̂n(Kl)1/2

(4.5)

where Σ̂ is a consistent estimator of variance-covariance matrix Σ defined in Theorem 2.1. To

make implementation procedures even simpler, we can construct variance-covariance matrix using
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conditional homoskedasticity assumption by replacing Σ̂(j, l) = V̂n(Kj)
1/2/V̂n(Kl)

1/2; this only

requires standard error V̂n(K)1/2 for each K ∈ Kn. One can compute ĉsup
1−α by simulating B

(typically B = 1000 or 5000) i.i.d. random vectors Zb
Σ̂
∼ N(0, Σ̂) and by taking (1 − α) sample

quantile of {sup
m
|Zb
m,Σ̂
| : b = 1, · · · , B}.

Similarly, I define ĉinf
1−α as follows

ĉinf
1−α ≡ (1− α) quantile of inf

m=1,···,M
|Z
m,Σ̂
|, (4.6)

where Z
Σ̂

= (Z
1,Σ̂
, · · · , Z

M,Σ̂
)′ ∼ N(0, Σ̂) and Σ̂ are defined in (4.5).

Remark 4.1 (Tabulating critical values). Alternatively, we can use the weak convergence of empir-

ical process in Theorem 2.2 to tabulate critical values. Under the same assumptions as in Theorem

2.2,

sup
K∈Kn

|Tn(bKc, θ)| = sup
π∈Π
|T ∗n(π, θ)| d−→ sup

π∈Π
|T(π)| (4.7)

where T(π) is the mean zero Gaussian process defined in Theorem 2.2. The asymptotic null

distribution can be completely defined by covariance kernel of the limiting Gaussian process T(π).

In general, the limiting Gaussian process cannot be written as some transformation of Brownian

motion, so that the asymptotic critical value cannot be tabulated. However, in the special case

where Assumption 2.4(ii) holds with η = 1/2 under homoskedasticity (as discussed below the

equation (2.8)), supπ∈[π,1] |T(π)| can be approximated by supπ∈[π,1] |Z(π)/
√
π| with a Brownian

motion process Z(π). Then the critical value can be tabulated easily as it is only a function of

π = K/K̄ with the smallest K and the largest K̄, which can be viewed as an analogous result

in kernel estimation literature (See Section 2 of Armstrong and Kolesár (2015) with the uniform

Kernel and other references therein).12

I impose following assumption to provide consistency of the variance-covariance matrix Σ̂ and

the validity of critical values ĉsup
1−α, ĉinf

1−α.

Assumption 4.1. sup
(Kj ,Kl)∈Kn×Kn

| V̂n(Kj ,Kl)
Vn(Kj ,Kl)

− 1| = op(1) as n,K →∞.

Assumption 4.1 not only impose the consistency of variance estimator V̂n(K) uniformly in

K ∈ Kn, but also impose consistent covariance term V̂n(Kj ,Kl) uniformly in Kn×Kn. Assumption

4.1 is satisfied under the regularity conditions (Assumption 2.2) with an additional assumption.

For example, if we further assume sup
(Kj ,Kl)∈Kn×Kn

||
∑n

i=1 P̃KjiP̃
′
Kli
ε2
i −E[P̃KjiP̃

′
Kli
ε2
i ]|| = op(1) with

12Using Table 1 from Armstrong and Kolesár (2015) with a uniform kernel, we can use ĉsup1−α = 1.96, 2.24, 2.48, 2.60,
2.80 when K̄/K = 1, 1.2, 2, 3, 10, respectively. Results in Armstrong and Kolesár (2015) not only depend on the ratio
of the maximum and minimum bandwidths but also depends on the kernel to be used. Unlike Kernel estimation,
basis functions play no specific roles in our theory as we only impose assumption on rates of Vn(K).
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an orthonormalized vector of basis functions P̃K(x) ≡ Q
−1/2
K PK(x), then Assumption 4.1 holds.

See Lemma 5.1 of Belloni et al. (2015), and also Lemma 3.1 and 3.2 of Chen and Christensen

(2015b) for different sufficient conditions under mild rate restrictions and unconditional moment of

the error terms.

Following Corollary provides valid coverage property of the CIs considered, and it immediately

follows from Corollary 3.2 and 3.3.

Corollary 4.1. Under the Assumptions 2.1, 2.2, 2.5, and 4.1, ĉsup
1−α

p−→ csup
1−α(0M ) and ĉinf

1−α
p−→

cinf
1−α(0M ) holds where ĉsup

1−α, ĉ
inf
1−α are defined in (4.5), (4.6) and csup

1−α(ν), cinf
1−α(ν) are defined in

(3.4). Moreover, following coverage properties holds

lim
n→∞

P (θ0 ∈ [θ̂n(K)± ĉsup
1−αs(θ̂n(K))] ∀K ∈ Kn) = 1− α, (4.8)

lim inf
n→∞

P (θ0 ∈ CIRobustsup ) = lim inf
n→∞

P (θ0 ∈ [θ̂n(K̂)± ĉsup
1−αs(θ̂n(K̂))]) ≥ 1− α (4.9)

for K̂ ∈ Kn. Furthermore,

lim
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α. (4.10)

By using an appropriate critical value from the distribution of SupTn(θ), (4.8) gives asymptotic

coverage of the uniform confidence intervals over K ∈ Kn for the true regression function θ0.

Corollary also shows that the CIRobustsup guarantees the asymptotic coverage as 1 − α for K̂ ∈ Kn,

as well as the validity of CIRobustinf .

Remark 4.2 (Undersmoothing assumption). Note that the Corollary 4.1 requires undersmooth-

ing assumption. Without Assumption 2.5, coverage in (4.8) can be understood as the uniform

confidence intervals for the pseudo-true value θ(K) = PK(x)′βK , i.e.,

lim
n→∞

P (θ(K) ∈ [θ̂n(K)± ĉsup
1−αs(θ̂n(K))] ∀K ∈ Kn) = 1− α. (4.11)

Furthermore, imposing undersmoothing assumption does not undermine coverage results estab-

lished here because an asymptotic distribution of supremum test statistic is only valid under

supm |ν(m)| < +∞ in Corollary 3.1. Only case where Assumption 2.5 fails but still supm |ν(m)| <
∞ is that when K satisfies MSE rates, and other K ∈ Kn satisfy undersmoothing, i.e., ν = (ν(1),

0′M−1)′. Although asymptotic bias terms ν(1) cannot be consistently estimated, we can use following

conservative critical values,

sup
|ν(1)|∈[0,ν̄]

F−1

ξsup(Σ̂,ν)
(1− α)

where ν = (ν(1), 0′M−1)′ with some upper bound of the asymptotic bias ν̄. Similarly, under the same

assumptions as in Corollary 3.5 and allowing supm |ν(m)| = +∞ we have Inf Tn(θ0)
d−→ ξinf(Σ,

ν) = inf
m=p+1,···,M

|Zm + ν(m)|, thus we can use sup
|ν(p+1)|∈[0,ν̄]

F−1

ξinf(Σ̂,ν)
(1− α) where ν = (0′p, ν(p+ 1),
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0′M−p−1)′ (or F−1

ξinf(Σ̂,0M )
(1−α) if |ν(p+ 1)| = 0) for CIRobustinf without undersmoothing assumption.

The validity of these critical values without Assumption 2.5 (so that optimal MSE rates are allowed)

can be shown, but additional efforts do not add neither new insights nor practical takeaway, so it

is omitted for brevity.13

Remark 4.3 (Length of the interval). Note that the last equality from the definition of CIRobustinf

in (4.3) holds only when there is no dislocated CI, i.e., the intersection is nonempty at least for

some two CIs using ĉinf
1−α.14 Otherwise, using the superset widens the length of CI. Potential large

length of the CIRobustinf is related to the possible low power property of the test in Section 3.2, and

this can be avoidable if K is reasonably large. Also note that increasing K̄ does not necessarily

increase the length of CIRobustinf as it can decrease critical values ĉinf
1−α, although theory in this paper

does not consider the data-dependent Kn.

5 Extension: partially linear model setup

In this section, I provide inference methods for the partially linear model (PLM) setup. For

notational simplicity, I use the similar notation defined in nonparametric regression setup. Suppose

we observe random samples {yi, wi, xi}ni=1, where yi is scalar response variable, wi ∈ W ⊂ R is

treatment/policy variable of interest, and xi ∈ X ⊂ Rdx is a set of explanatory variables. For

simplicity, we shall assume wi is a scalar. I consider following partially linear model

yi = θ0wi + g0(xi) + εi, E(εi|wi, xi) = 0. (5.1)

We are interested in inference on θ0 after approximating unknown function g0(x) by series

terms/regressors p(xi) among a set of potential control variables. Specification searches can be

done for the number of different approximating terms or the number of covariates in estimating the

nonparametric part.

Series estimator θ̂n(K) for θ0 using the firstK = Kn terms is obtained by standard LS estimation

of yi on wi and PKi, and has the usual “partialling out” formula

θ̂n(K) =
(
W ′MKW

)−1
W ′MKY (5.2)

where W = (w1, · · · , wn)′,MK = IK−PK(PK
′
PK)−1PK

′
, PK = [PK1, · · · , PKn]′, Y = (y1, · · · , yn)′.

The asymptotic normality and valid inference for θ̂n(K) have been developed in the literature.15

13Similar to the discussion in Remark 3.1, using standard normal critical value for CIRobustinf achieve nominal coverage
probability 1 − α. In an earlier version of the paper, allowing supm |ν(m)| = +∞, we also show that the coverage
probability of CIRobustinf using critical value ĉinf1−α is bounded below by P (|Zm| < cinf1−α(0)), which is the coverage of
single CI with the smallest asymptotic bias. For example, this lower bound is 0.87 when cinf1−α(0) = 1.5 for α = 0.05.

14As the variance of series estimator increases with K, we expect that the union of all confidence intervals using
ĉinf1−α may only be determined by some large Ks, so that there is no dislocated CI. Although dislocated confidence
interval may show evidence of significant bias for some specific models, there is no guarantee to exclude those Ks a
priori.

15See also Robinson (1988), Linton (1995) and references therein for the results of the kernel estimators.
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Donald and Newey (1994) derived the asymptotic normality of θ̂n(K) under standard rate conditions

where K/n → 0. Belloni, Chernozukhov, and Hansen (2014) analyzed asymptotic normality and

uniformly valid inference for the post-double-selection estimator even when K is much larger than

n. A recent paper by Cattaneo, Jansson, and Newey (2015a) provided a valid approximation theory

for θ̂n(K) even when K grows at the same rate of n.

Different approximation theory using faster rate of K (K/n → c > 0) than the standard rate

conditions (K/n → 0) is particularly useful for our purpose to establish asymptotic distribution

of t-statistics over K ∈ Kn. From the results in Cattaneo, Jansson, and Newey (2015a), we have

following decomposition for any K,

√
n(θ̂n(K)− θ0) = (

1

n
W ′MKW )−1 1√

n
W ′MKY

= Γ̂−1
K (

1√
n

∑
i

viM
K
ii εi +

1√
n

n∑
i=1

n∑
j=1,j 6=i

viM
K
ij εj) + op(1)

(5.3)

where Γ̂K = W ′MKW/n. Under E[ε2
i |wi, xi] = σ2

ε ,
√
n(θ̂n(K)− θ0) is asymptotically normal with

variance V = σ2
εE[v2

i ]
−1 with any deterministic sequence K → ∞ satisfying the standard rate

conditions K/n→ 0. Unlike the nonparametric object of interest in the fully nonparametric model

where variance term increases with K, θ̂n(K) in (5.3) has parametric (n1/2) convergence rate and

asymptotic variance V coincides with the semiparametric efficiency bound for all sequences under

K/n→ 0, i.e., all estimators θ̂n(K) with different sequences of K are asymptotically equivalent.16

However, under the faster rate conditions K/n → c for c > 0, the second term in (5.3) is not

negligible and converges to bounded random variables. Cattaneo, Jansson, and Newey (2015a)

apply the central limit theorem of degenerate U-statistics for the second term, similar to the many

instrument asymptotics analyzed in Chao, Swanson, Hausman, Newey and Woutersen (2012). The

limiting normal distribution under K/n→ c > 0 has a larger variance than the standard first-order

asymptotic variance, and the adjusted variances depend on the number of terms K so that I can

provide an asymptotic distribution of the t-statistics with the different sequence of K over Kn.

Following assumption on Kn is considered similar to Assumption 2.3. I also impose regularity

conditions that are used in Cattaneo, Jansson, and Newey (2015a, Assumption PLM) uniformly

over K ∈ Kn. Let vi ≡ wi − gw0(xi) where gw0(xi) ≡ E[wi|xi].

Assumption 5.1. (Set of finite number of series terms)

Kn = {K ≡ K1, · · · ,Km, · · · , K̄ ≡ KM} where Km = πmK̄ for constant πm, 0 < π = π1 <

π2 < · · · < πM = 1, fixed M , and K̄ = K̄(n)→∞ as n→∞.

Assumption 5.2. (Regularity conditions for Partially Linear Model)

(i) {yi, wi, xi} are i.i.d random variables satisfying the model (5.1).

16This is also related to the well-known results of the two-step semiparametric estimation; asymptotic variance of
two-step semiparametric estimators does not depend on the type of the first-step estimator and smoothing parameter
sequences under certain conditions (see Newey (1994b)).
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(ii) There exists constant 0 < c ≤ C < ∞ such that E[ε2
i |wi, xi] ≥ c and E[v2

i |xi] ≥ c, E[ε4
i |wi,

xi] ≤ C and E[v4
i |xi] ≤ C.

(iii) rank(PK) = K(a.s.) and Mii,K ≥ C for C > 0 for all K ∈ Kn.

(iv) For all K ∈ Kn, there exists γg, γgw ,

min
ηg

E[(g0(xi)− η′gPKi)2] = O(K−2γg), min
ηgw

E[(gw0(xi)− η′gwPKi)
2] = O(K−2γgw ).

Assumption 5.2 does not require K/n→ 0 which is required to get asymptotic normality in the

literature (e.g., Donald and Newey (1994)). Similar to the Assumption 2.2(iii) in nonparametric

setup, Assumption 5.2(iv) holds for the polynomials and splines basis. For example, 5.2(iv) holds

with γg = sg/dx, γgw = sw/dx when X is compact and unknown functions g0(x), gw0(x) has sg, sw

continuous derivates, respectively.

Under Assumptions 5.1, 5.2 and undersmoothing condition (nK−2(γg+γgw ) → 0), we have follow-

ing asymptotic distributions of t-statistics Tn(K, θ) over K ∈ Kn assuming conditional homoskedas-

ticity;

Tn(K, θ0) =
√
nVn(K)−1/2(θ̂n(K)− θ0)

d−→ N(0, 1),

Vn(K) = (1−K/n)−1V, V = σ2
εE[v2

i ]
−1,

where Vn(K) coincides with standard first-order asymptotic variance under K/n → 0. Allowing

K/n need not converge to zero requires “correction” term, (1−K/n)−1 taking into account for the

remainder terms in (5.3) that are assumed “small” with the classical condition K/n → 0. Note

that the adjusted variance Vn(K) is always greater than V when K/n 9 0 and is an increasing

function of K.

Next theorem is the main result of the partially linear model setup, analogous to nonparametric

setup. Theorem 5.1 provides joint asymptotic distribution of the t-statistics Tn(K, θ0) over K ∈ Kn.

It also provides the asymptotic coverage results of the CIs that are similarly defined as in Section

4.

Theorem 5.1. Suppose Assumptions 5.1 and 5.2 hold. Also, nK̄−2(γg+γgw ) → 0 as K̄ → ∞.

Assume K̄/n→ c (0 < c < 1) and E[ε2
i |wi, xi] = σ2

ε , E[v2
i |xi] = E[v2

i ]. Then the joint null limiting

distribution is given by

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ ZΣ = (Z1, · · ·ZM )′ ∼ N(0,Σ)

with variance-covariance matrix Σ where Σ(j, l) ≡ limn→∞ Vn(Kj∧l)
1/2/Vn(Kj∨l)

1/2 for j 6= l, and
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Σ(j, l) = 1 for j = l. In addition, if sup
K∈Kn

| V̂n(K)
Vn(K) − 1| = op(1) as n,K →∞, then

lim
n→∞

P (θ0 ∈ [θ̂n(K)± ĉsup
1−αs(θ̂n(K))] ∀K ∈ Kn) = 1− α, (5.4)

lim inf
n→∞

P (θ0 ∈ CIRobustsup ) ≥ 1− α for K̂ ∈ Kn, (5.5)

lim
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α (5.6)

where CIRobustinf and CIRobustsup are similarly defined as in Section 4 with PLM estimator θ̂n(K) and

variance estimator V̂n(K), and the critical values ĉinf
1−α, ĉ

sup
1−α.

Theorem 5.1 derives the joint asymptotic distribution of the Tn(K, θ0) over K ∈ Kn for the

parametric part in the partially linear model. Note that the variance-covariance matrix Σ is same

as in nonparametric model setup under homoskedasticity, and it can be reduced under the condition

K̄/n→ c,

Σ(j, l) = lim
n→∞

Vn(Kj∧l)
1/2

Vn(Kj∨l)1/2
= lim

n→∞

(1− πj∧lK̄/n)−1/2

(1− πj∨lK̄/n)−1/2
= (

1− cπj∨l
1− cπj∧l

)1/2

for any j 6= l.

Remark 5.1. Note that construction of CIs also requires consistent variance estimators V̂n(K),

V̂n(K) = s2Γ̂−1
K , s2 =

1

n− 1−K
(Y −Wθ̂K)′MK(Y −Wθ̂K).

For consistent variance estimation results under K/n→ c > 0 and more discussions, see Theorem

2 of Cattaneo, Jansson, and Newey (2015a) and also Cattaneo, Jansson, and Newey (2015b) even

under conditional heteroskedastic error terms.

6 Simulations

This section investigates the small sample performance of the proposed inference methods. I report

empirical coverage, and the length of CIs considered in Section 4 with various simulation setups. I

also report the power comparison of the tests considered in Section 3.

I consider the following data generating process

yi = g(xi) + εi,

xi = Φ(x∗i ),

(
x∗i
εi

)
∼ N

((
0

0

)
,

(
1 0

0 σ2

))
(6.1)

where Φ(·) is the standard normal cumulative distribution function need to ensure compact support.

I investigate following four functions for g(x): g1(x) = 4x− 1, g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2),

g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)

, g4(x) = x − 1/2 + 5φ(10(x − 1/2)), where φ(·) is the standard normal
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probability density function, and sgn(·) is the sign function. g1(x) and g2(x) are used in Newey

and Powell (2003), Chen and Christensen (2015a) and we label these functions as “linear” and

“nonlinear” designs. g3(x) and g4(x) are rescaled versions used in Hall and Horowitz (2013), and

we denote these as “highly nonlinear” designs. Also, I set σ2 = 1 for all simulations results below.

Results for σ2 = 0.5, 0.1 show similar patterns, thus omitted.

I generate 5000 simulation replications for each different design with sample size n = 200. Then,

I implement nonparametric series estimators using power series bases and quadratic splines with

evenly placed knots. In either case, K denotes the total number of estimated coefficients. I set

Kn = {3, 4, 5, 6} for the polynomials and Kn = {6, 7, · · · , 11, 12} for the splines by setting K = n1/5

and K̄ = n1/3 (or K = 2n1/5 and K̄ = 2n1/3 for splines) rounded up to the nearest integer. Then,

I calculate a pointwise coverage of various CIs for all 40 grid points of x on the support X = [0, 1].

To calculate critical values, 1000 additional Monte Carlo replications are also performed on each

simulation iteration. Results for different sample sizes n = 100, 500, 1000 and results for the cubic

spline regressions show similar patterns, thus omitted for brevity.

As a benchmark, I consider CINaive in (4.1), standard CI with K̂cv ∈ Kn selected to minimize

leave-one-out cross-validation. Then, I consider coverage of proposed CIs in this paper; (1) CIRobustsup,cv

defined in (4.2) using K̂cv; (2) CIRobustsup,cv+ using K̂cv + 2; (3) CIRobustinf based on Inf Tn(θ) defined in

(4.3). Finally, I examine CImaxK = [θ̂n(K̄) − z1−α/2s(θ̂n(K̄)), θ̂n(K̄) + z1−α/2s(θ̂n(K̄))] using the

largest number of series terms K̄.17 The critical values, ĉinf
1−α and ĉsup

1−α are constructed using the

Monte Carlo methods.

Figure 1 reports nominal 95% coverage probability and the length of CIs for “linear” and

“nonlinear” designs (g1(x) and g2(x)) using polynomials. Figure 2 displays results for “highly

nonlinear” designs (g3(x) and g4(x)) using quadratic splines with a different number of knots.

Overall, we find (1) coverage of CIs based on the K̂ (e.g., selected by cross-validation or using more

terms than the cross-validation) using larger critical value ĉsup
1−α(CIRobustsup,cv and CIRobustsup,cv+) is close to

or above 95%; (2) coverage of CI based on the infimum t-statistic (CIRobustinf ) is close to the nominal

95% level and performs well across the different simulation designs. In terms of length, CIRobustinf

and CIRobustsup,cv are quite similar and are narrower than CImaxK (standard CI with undersmoothed K)

over the support. CINaive (using optimal MSE rate) has shortest length, but its coverage is far less

than 95% in many cases. Also note that CIRobustsup,cv+ is robust to specification search as well as bias

because it uses undersmoothed K, and thus length of CIRobustsup,cv+ seems wide. However, coverage of

CIRobustsup,cv+ is no less than 95% at almost all points in different setups.

For the linear function g1(x), finite sample bias is expected to be small over K ∈ Kn as polyno-

mials approximate unknown function well for all K. In this case, as theory predicted in Corollary

4.1, Figure 1 shows that coverage of CIRobustinf , CImaxK are close to the nominal 95% and coverage of

CIRobustsup,cv , CI
Robust
sup,cv+ are slightly above 95% for many points of the support. Given the small sample

size, coverage of CIRobustinf performs well even at the boundary and length is narrower than CImaxK.

17I also consider coverage of CI using the smallest number of series terms K, but it is omitted as its coverage is far
below 95% at most points in nonlinear designs. In terms of coverage, CIRobustinf using standard normal critical value
performs well, but it can be quite conservative, thus also omitted here for brevity.
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When there exists bias for some K for the nonlinear function g2(x), Figure 1 also shows that cover-

age of all CIs except CIRobustsup,cv+ is slightly less than 95% at some points. As we can see from Figure

2, using splines works well for highly nonlinear designs and coverage of CIRobustsup,cv , CIRobustsup,cv+, and

CIRobustinf are also close to or above 95% at most points except boundary.18

In addition to the length of CIs, I provide the power of the different test statistics considered

in Section 3. Figure 3 reports power functions of the five different tests for H0 : θ = θ0 against

H1 : θ = θ0 + δ where θ0 = g2(x). As the power depends on the different point of interest x,

I consider two cases where (1) bias of series estimator for g2(x) is small (x = 0.5); (2) and bias

is relatively large (x = 0.4). I plot the following rejection probability as a function of δ: (1)

P (SupTn(θ0 + δ) > ĉsup
1−α); (2) P (Inf Tn(θ0 + δ) > ĉinf

1−α); (3) P (|Tn(K̂cv, θ0 + δ)| > ĉsup
1−α) with K̂cv

selected by cross-validation; (4) P (|Tn(K̂cv + 2, θ0 + δ)| > ĉsup
1−α); (5) P (|Tn(K̄, θ0 + δ)| > z1−α/2).

Figure 3 shows the size and power trade-off of SupTn(θ) and Inf Tn(θ); the tests based on SupTn(θ)

seems to have better power, but the size distortions can be substantial when there are large bias

for some K (Figure 3-(b)) while the test based on Inf Tn(θ) control size or bound the size in such

cases. Inf Tn(θ) has similar power to the test with Tn(K̂cv) and ĉsup
1−α, and it has slightly better

power than the standard test based on Tn(K̄) in Figure 3-(a), but does not uniformly dominate as

in Figure 3-(b).

7 Empirical application

In this section, I illustrate our inference procedures by revisiting a paper by Blomquist and Newey

(2002). Understanding how tax policy affects individual labor supply has been central issues in

labor economics (see Hausman (1985) and Blundell and MaCurdy (1999), among many others).

Blomquist and Newey (2002) estimate conditional mean of hours of work given the individual non-

linear budget sets using nonparametric series estimation. They also estimate wage elasticity of the

expected labor supply and find some evidence of possible misspecification of the usual parametric

model such as maximum likelihood estimation (MLE).

Specifically, Blomquist and Newey (2002) consider the following model by exploiting additive

structure from the utility maximization with piecewise linear budget sets. I use the similar notations

on their paper,

hi = g(xi) + εi, E(εi|xi) = 0, (7.1)

g(xi) = g1(yJ , wJ) +
J−1∑
j=1

[g2(yj , wj , `j)− g2(yj+1, wj+1, `j)], (7.2)

where hi is the hours of ith individual worked and xi = (y1, · · · , yJ , w1, · · · , wJ , `1, · · · , `J , J) is the

budget set that can be represented by the intercept yj (non-labor income), slope wj (marginal wage

rates) and the end point `j of the jth segment in a piecewise linear budget with J segments. Here,

18Possible poor coverage property of standard kernel based CIs for g4(x) at single peak (x = 0.5) was described in
Hall and Horowitz (2013, Figure 3).
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equation (7.2) for the conditional mean function follows from Theorem 2.1 of Blomquist and Newey

(2002), and this additive structure substantially reduces the dimensionality issues. They consider

following power series for g(x),

pk(x) = (y
p1(k)
J w

q1(k)
J ,

J−1∑
j=1

`
m(k)
j (y

p2(k)
j w

q2(k)
j − yp2(k)

j+1 w
q2(k)
j+1 )), p2(k) + q2(k) ≥ 1. (7.3)

From the Swedish “Level of Living” survey in 1973, 1980 and 1990, they pool the data from

three waves and use the data for married or cohabiting men of ages 20-60. Changes in tax system

over three different time periods gives a large variation in the budget sets. Sample size is n = 2321.

See Section 5 of Blomquist and Newey (2002) for more detail descriptions. They estimate wage

elasticity of the expected labor supply

Ew = w̄/h̄[
∂g(w, · · · , w, ȳ, · · · , ȳ)

∂w
]|w=w̄, (7.4)

which is the regression derivative of g(x) evaluated at the mean of the net wage rates w̄, virtual

income ȳ and level of hours h̄.

Table 1 is the same table as in Blomquist and Newey (2002, Table 1). They report estimates Êw

and standard errors SE
Êw

with a different number of series terms by adding additional series terms.

For example, estimates in the second raw use the term in the first row (1, yJ , wJ) with the additional

terms (∆y,∆w). Here, `m∆ypwq denotes approximating term
∑

j `
m
j (ypjw

q
j −y

p
j+1w

q
j+1). Blomquist

and Newey (2002) also report cross-validation criteria, CV , for each specification. In their formula,

series terms are chosen to maximize CV, which minimizes asymptotic MSE. In addition to their

original table, I add the standard 95% CI for each specification, i.e., Êw ± 1.96SE
Êw

. From the

table, it is ambiguous which large model (K) can be used for the inference, and we do not have

compelling data-dependent methods to select one of the large K for the confidence interval to be

reported. We also want to construct CIs that are robust to specification searches.

To construct proposed CIs, I exploit the covariance structure using the asymptotic distribu-

tion of the t-statistics under the homoskedastic error in pointwise inference setup: the variance-

covariance matrix is only a function of the variance of series estimators. Therefore, construction

of the critical values only requires estimated variances for different specifications that are already

reported in the table of Blomquist and Newey (2002), and it is straightforward to construct pro-

posed CIs without replication of the data sets. Based on 10000 simulation repetitions, we have

ĉsup
1−α = 2.4764, ĉinf

1−α = 0.9668, respectively.

In Table 1, I report proposed robust confidence intervals CIRobustsup, cv with K̂cv as well as CIRobustinf .

Figure 4 also displays pointwise 95% uniform confidence interval CIRobustsup for Km ∈ {K1,K2, · · · ,
K11} where Km corresponds to each specification in Table 1 with increasing order of series term,

along with the point estimates and standard 95% confidence interval using normal critical value.

CIRobustsup,cv = [0.0169, 0.0916] widens CINaive = [0.0247, 0.0839], the standard CI with K̂cv, by using

ĉsup
1−α. From Figure 4, we can also reject a zero wage elasticity of the labor supply for almost all
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models except K̄. Moreover, given the table in Blomquist and Newey (2002), CIRobustinf = [0.0271,

0.1111] is tighter than the standard CI with the largest number of series terms as well as close

to the standard CI with some “large” K. For example, CIRobustinf is substantially tighter than

CImaxK = [0.0148, 0.1280] that uses the largest K̄ as well as those based on the second largest series

terms, [0.0214, 0.1336].

8 Conclusion

This paper considers the inference methods given the specification searches over a range of the

different number of series terms in the nonparametric series regression model. I provide methods of

constructing uniform CIs by adjusting the conventional normal critical value to the critical value

based on the supremum of the t-statistics. Then, I introduce tests based on the infimum of the

t-statistics over different series terms and show that the tests control the asymptotic size or bound

the size distortions with possibly large bias in our setup.

For this, I develop an asymptotic distribution of the t-statistics over the set of the number of

series term, and I also provide an empirical process theory for the t-statistics in series estimation.

Asymptotic local power results are also established to show the size-power trade-off of the tests.

Pointwise confidence interval for the true regression function is obtained by test statistic inversion,

and the critical values can be constructed using a simple Monte Carlo simulation method. I illustrate

proposed CIs by revisiting empirical example of Blomquist and Newey (2002). Finally, I provide

an extension of the proposed CIs in the partially linear model setup.

There are some potential directions to extend results established here. First, it would be of

interest to develop confidence bands for g0(x) over all x ∈ X . Recent results of Chernozukhov,

Chetverikov, and Kato (2014b) can be used to construct confidence bands which are uniform in

K ∈ Kn. Second, an extension of the current theory for the NPIV setup would be desirable to

deal with endogeneity issues. For example, pointwise CIs (or uniform confidence bands) that are

uniform in pairs of (Kn, Jn) ∈ Kn × Jn with an additional dimension of the instrument sieve and

the number of instruments J = Jn. This is a difficult problem, and it would require a distinct

theory to deal with the ill-posed inverse problem as well as two-dimensional choices. Thus we leave

it for future research.
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Giné, E. and R. Nickl (2010): “Confidence bands in density estimation,” The Annals of Statis-

tics, 38, 1122-1170.

Giné, E. and R. Nickl (2015): Mathematical Foundations of Infinite-Dimensional Statistical

Models, Cambridge University Press .

Hall, P. and J. Horowitz (2013): “A Simple Bootstrap Method for Constructing Nonpara-

metric Confidence Bands for Functions,” The Annals of Statistics, 41, 1892-1921.

29



Hansen B. E. (2015): “The Integrated Mean Squared Error of Series Regression and a Rosenthal

Hilbert-Space Inequality,” Econometric Theory , 31, 337-361.

Hansen, P.R. (2005): “A Test for Superior Predictive Ability,”Journal of Business and Economic

Statistics, 23, 365-380.
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Appendix A Proofs

A.1 Preliminaries and Useful Lemmas

In the Appendix, we define additional notations for the empirical process theory used in the proof

of Theorem 2.2. Given measurable space (S,S), let F as a class of measurable functions f : S → R.

For any probability measure Q on (S,S), we define N(ε,F , L2(Q)) as covering numbers, which is the

minimal number of the L2(Q) balls of radius ε to cover F with L2(Q) norms ||f ||Q,2 = (
∫
|f |2dQ)1/2.

Uniform entropy numbers relative to the L2(Q) norms are defined as supQ logN(ε||F ||Q,2,F , L2(Q))

where the supremum is over all discrete probability measures with an envelope function F .

Let the data zi = (εi, xi) be i.i.d. random vectors defined on probability space (Z = E ×
X ,A, P ) with common probability distribution P ≡ Pε,x. We think of (ε1, x1), · · · (εn, xn) as

the coordinates of the infinite product probability space. For notational convenience, we avoid

discussing nonmeasurability issues and outer expectations (for the related issues, see van der Vaart

and Wellner (1996)). Throughout the proofs, we denote c, C > 0 as a universal constant that does

not depend on n.

For any sequence {K = Kn : n ≥ 1} ∈
∏∞
n=1Kn, either under Assumption 2.1 or 2.3, we first

define the orthonormalized vector of basis functions

P̃K(x) ≡ Q−1/2
K PK(x) = E[PKiP

′
Ki]
−1/2PK(x),

P̃Ki = P̃K(xi), P̃
K = [P̃K1, · · · , P̃Kn]′.

We observe that

ĝK(x) = PK(x)′(PK
′
PK)−1PK

′
Y = P̃K(x)′(P̃K

′
P̃K)−1P̃K

′
Y,

Vn(K) = PK(x)′Q−1
K ΩKQ

−1
K PK(x) = P̃K(x)′Ω̃K P̃K(x),

Ω̃K = E(P̃KiP̃
′
Kiε

2
i ).

Without loss of generality, we may impose normalization of QK̄ = IK̄ or QK = E(PKiP
′
Ki) = IK

uniformly over K ∈ Kn, since ĝK(x) is invariant to nonsingular linear transformations of PK(x).

However, we shall treat QK as unknown and deal with non-orthonormalized series terms here.

Next, we re-define pseudo-true value βK , with abuse of notation, using orthonormalized series

terms P̃Ki. That is, yi = P̃ ′KiβK + εKi, E[P̃KiεKi] = 0 where εKi = rKi + εi, rn(K) = rn(K,

x) = g0(x)− P̃K(x)′βK , rKi = rn(K,xi), and rK ≡ (rK1, · · · rKn)′. We also define Q̂K ≡ 1
n P̃

K′P̃K ,

σ2 ≡ infxE[ε2
i |xi = x], σ̄2 ≡ supxE[ε2

i |xi = x]. We first provide useful lemmas which will be used

in the proof of Theorem 2.1 and 2.2. Versions of proof of Lemma 1 are available in the literature,

such as Belloni et al. (2015) and Chen and Christensen (2015b), among others. For completeness,

we provide the results of Lemma 1. Note that different rate conditions of K = Kn can be used in

Assumption 2.2, such as Newey (1997), but lead to different bounds (A.1)-(A.3) in the following

Lemma 1.

32



Lemma 1. Suppose either Assumption 2.1 or Assumption 2.3 holds. Under the Assumption 2.2,

following holds for any K ∈ Kn,

||Q̂K − IK || = Op(

√
λ2
Kζ

2
K logK

n
), (A.1)

R1(K) ≡

√
1

nVn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
(ε+ rK) = Op(

√
λ2
Kζ

2
K logK

n
(1 + `KcK

√
K)), (A.2)

R2(K) ≡

√
1

nVn(K)
P̃K(x)′P̃K

′
rK = Op(`KcK). (A.3)

To provide (A.1) in Lemma 1, we first introduce matrix Bernstein inequality in Tropp (2015).

Lemma 2 (Theorem 6.1.1 of Tropp (2015)). Consider a finite sequence {Si} of independent, ran-

dom matrices with common dimension d1 × d2. Assume that ESi = 0, ||Si|| ≤ L for each i. Let

Z =
∑

i Si, and define v(Z) = max{||E(ZZ ′)||, ||E(Z ′Z)||}. Then,

P (||Z|| ≥ t) ≤ (d1 + d2) exp(
−t2/2

v(Z)Lt/3
), ∀t ≥ 0,

E||Z|| ≤
√

2v(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Proof of Lemma 1.

To provide bound in (A.1), we apply Lemma 2 by setting Si = 1
n(P̃KiP̃

′
Ki−E(P̃KiP̃

′
Ki)). Note that

ESi = 0, ||Si|| ≤ L = 1
n(λ2

Kζ
2
K + 1), and v(Z) = 1

n ||E(P̃KiP̃
′
KiP̃KiP̃

′
Ki)−E(P̃KiP̃

′
Ki)E(P̃KiP̃

′
Ki)|| ≤

1
n(λ2

Kζ
2
K + 1) by definition of λK , ζK and E(P̃KiP̃

′
Ki) = IK . By Lemma 2, we have

E||Q̂K − IK || = E||
∑
i

1

n
(P̃KiP̃

′
Ki − IK)|| ≤ C(

√
λ2
Kζ

2
K log(K)/n+ λ2

Kζ
2
K log(K)/n).

Then we have ||Q̂K − IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by Markov inequality. For (A.2), we first look

at the terms
√

1
nVn(K) P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
ε. Conditional on the sample X = [x1, · · · , xn], this

term has mean zero and variance,

1

nVn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
E(εε′|X)P̃K

(
Q̂−1
K − IK

)
P̃K(x)

≤ σ̄2

Vn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
Q̂K

(
Q̂−1
K − IK

)
P̃K(x)

=
σ̄2

Vn(K)
P̃K(x)′

(
Q̂K − IK

)
Q̂−1
K

(
Q̂K − IK

)
P̃K(x)

≤ σ̄2P̃K(x)
′
P̃K(x)

Vn(K)
λmax(Q̂−1

K )||
(
Q̂K − IK

)
||2 = OP (λ2

Kζ
2
K log(K)/n)

where the first and the last inequality uses Vn(K) ≤ σ̄2P̃K(x)
′
P̃K(x), Vn(K) ≥ σ2P̃K(x)

′
P̃K(x) by
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Assumption 2.2(ii), ||Q̂K−IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by (A.1) and λmax(Q̂−1

K ) = (λmax(Q̂K))−1 =

Op(1) since all eigenvalues of Q̂K are bounded away from zero as |λmin(Q̂K)− 1| ≤ ||Q̂K − IK || =
op(1) by (A.1) and Assumption 2.2(iv)-(v). Then, by Chebyshev’s inequality, we have that√

1

nVn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
ε = OP (

√
λ2
Kζ

2
K log(K)/n).

Next, consider the terms
√

1
nVn(K) P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
rK . Observe that || 1√

n

∑n
i=1 P̃KirKi|| =

Op(`KcK
√
K) since

E[|| 1√
n

n∑
i=1

P̃KirKi]||2] = E[

K∑
j=1

P̃ 2
jir

2
Ki] ≤ `2Kc2

KE[||P̃Ki||2] = `2Kc
2
KK. (A.4)

Combining (A.1) and (A.4) yields the results

|

√
1

nVn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
rK | ≤ C||Q̂−1

K || · ||
(
Q̂K − IK

)
|||| 1√

n

n∑
i=1

P̃KirKi||

= Op(

√
λ2
Kζ

2
K log(K)

n
`KcK

√
K)

by || P̃K(x)

Vn(K)1/2
|| � 1 and ||Q̂−1

K || = Op(1).

We now prove (A.3). Consider
√

1
nVn(K) P̃K(x)′P̃K

′
rK ,

E[(

√
1

nVn(K)
P̃K(x)′P̃K

′
rK)2] = E[(

P̃K(x)′P̃Ki

Vn(K)1/2
rKi)

2] ≤ (cK`K)2

since E[( P̃K(x)′P̃Ki
Vn(K)1/2

)2] � 1 by Assumption 2.2(ii) and E(rKi)
2 ≤ (`KcK)2 by Assumption 2.2(iii).

Therefore, we have (A.3) by Chebyshev’s inequality and using E[P̃KirKi] = 0 from the projection

model. This completes the proof. �
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A.2 Proofs of the Main Results

A.2.1 Proof of Theorem 2.1

Proof. For any K ∈ Kn, we first show the decomposition of the t-statistic in equation (2.5)

Tn(K, θ0) =

√
n

Vn(K)
P̃K(x)′(β̂K − βK)−

√
n

Vn(K)
rn(K)

=

√
1

nVn(K)
P̃K(x)′P̃K

′
(ε+ rK)

+

√
1

nVn(K)
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K

′
(ε+ rK)−

√
n

Vn(K)
rn(K)

=
1√
n

n∑
i=1

P̃K(x)′P̃Kiεi

Vn(K)1/2
+R1(K) +R2(K)−

√
nVn(K)−1/2rn(K)

whereR1(K), R2(K) are defined in (A.2), (A.3). By Lemma 1, we haveR1(K) = Op(

√
λ2Kζ

2
K logK
n (1+

`KcK
√
K)) = op(1), R2(K) = Op(`KcK) = op(1) for any K ∈ Kn under Assumptions 2.2, thus we

have following decompositions for any m = 1, 2, · · ·M ,

Tn(Km, θ0) = tn(m) + νn(m) + op(1),

where tn(m) = 1√
n

∑n
i=1

P̃Km (x)′P̃Kmiεi
Vn(Km)1/2

and νn(m) = −
√
nVn(Km)−1/2rn(Km). If some elements of

ν(m) = − lim
n→∞

νn(m) = ∞ under oversmoothing sequences, joint distribution of (Tn(K1, θ0), · · · ,
Tn(KM , θ0))′ does not converge in distribution to a bounded random vector. To circumvent the

issue, remaining proof use the same type of argument as in Theorem 1 of Andrews and Guggenberger

(2009) in the moment inequality literature.

To obtain a joint asymptotic distribution of tn(m), by the Cramér-Wold device, it suffices to

show that

δ′tn
d−→ N(0, δ′Σδ), ∀δ ∈ RM (A.5)

where tn = (tn(1), ..., tn(M))′,Σ(j, l) = limn→∞Σn(j, l), Σn(j, l) ≡
P̃Kj (x)′E(P̃KjiP̃

′
Kli

ε2i )P̃Kl (x)

Vn(Kj)1/2Vn(Kl)1/2
. To

show (A.5) we will verify Lindberg’s condition of the CLT for 1√
n

∑n
i=1 ωni

d−→ N(0, 1), where

ωni = (δ′Σnδ)
−1/2

∑M
j=1 δj

P̃Kj (x)′P̃Kjiεi

Vn(Kj)1/2
. Observe that Eωni = 0, and 1

n

∑n
i=1E[ω2

ni] = 1, and

||
M∑
j=1

P̃Kj (x)′P̃Kj

Vn(Kj)
1/2
||∞ .

M∑
j=1

ζKjλKj . ζK̄λK̄
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by Assumptions 2.1 and 2.2. Moreover, (δ′Σnδ)
−1 . 1. Therefore, for any a > 0,

1

n

n∑
i=1

E(|ωni|21{|ωni| > a
√
n})

.M
M∑
j=1

E[|
P̃Kj (x)′P̃Kjiεi

Vn(Kj)1/2
|21{|

M∑
j=1

δj
P̃Kj (x)′P̃Kji

Vn(Kj)1/2
εi| > a

√
n}]

≤M
M∑
j=1

E(|
P̃Kj (x)′P̃Kji

Vn(Kj)1/2
|2) sup

x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|xi = x],

where the last term goes to 0 under n → ∞ by Assumption 2.2(ii), since E[( P̃K(x)′P̃Ki
Vn(K)1/2

)2] � 1 and

(ζK̄λK̄)/
√
n = o(1) by Assumption 2.2(iv). Thus, Lindberg condition is verified and therefore (A.5)

holds by Lindberg-Feller CLT and Slutzky’s Theorem.

Next, we let G(·) be a strictly increasing continuous distribution function on R, for example,

standard normal CDF Φ(·). For any m,

Gn,m = G(Tn(Km, θ0)) = G(tn(m) + νn(m) + op(1)).

If |ν(m)| <∞, then we have

Gn,m
d−→ G(Zm + ν(m)) (A.6)

by finite dimensional CLT and the continuous mapping theorem. If ν(m) = +∞,

Gn,m
p−→ 1 (A.7)

since tn(m) = Op(1), and G(x)→ 1 as x→∞, and by CLT. Moreover, if ν(m) = −∞

Gn,m
p−→ 0 (A.8)

as G(x) → 0 as x → −∞. Since (A.6), (A.7), and (A.8) holds jointly, following holds for any

strictly increasing continuous distribution function on R, G(·),

Gn ≡ (Gn,1, · · · , Gn,M )′
d−→ G∞ ≡ (G(Z1 + ν(1)), · · · , G(ZM + ν(M)))′ (A.9)

where Gn,m = G(Tn(Km, θ0)), and G(Zm + ν(m)) denotes G(+∞) = 1 when ν(m) = +∞, and

G(−∞) = 0 when ν(m) = −∞.

Next, we define G−1(·) as the inverse of G(·). For t = (t1, · · · , tM )′ ∈ T ⊂ RM[±∞], define

G(M)(t) ≡ (G(t1), · · · , G(tM ))′ ∈ Y = Y(T ) ⊂ [0, 1]M . For y = (y1, · · · , yM )′ ∈ Y, define G−1
(M)(y) ≡

(G−1(y1), · · · , G−1(yM ))′ ∈ T . Define also S∗(y) for y ∈ Y ⊂ [0, 1]M , S∗(y) ≡ S(G−1
(M)(y)). Note
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that S∗(y) is continuous at all y ∈ Y since S(t) is continuous at all t ∈ T . Then, we have

S(Tn(θ0)) = S(G−1
(M)(Gn))

= S∗(Gn)

d→ S∗(G∞)

= S(G−1
(M)(G∞)) = S(ZΣ + ν)

where the first equality holds by the definition of G−1
(M)(·), the second equality uses the definition

of S∗. Convergence in the third line holds by (A.9), and the fourth and fifth equality uses the

definition of S∗. �

A.2.2 Proof of Theorem 2.2

Proof. Using similar arguments to those used in the proof of Theorem 2.1, we have following

decomposition of the t-statistic for any π ∈ Π = [π, 1] under Assumptions 2.2 and 2.3,

T ∗n(π, θ0) = Tn(bπK̄c, θ0) = t∗n(π)−
√
nVn(π)−1/2rn(π) + op(1), (A.10)

where

t∗n(π) ≡ 1√
n

n∑
i=1

P̃π(x)′P̃π(xi)εi

Vn(π)1/2
. (A.11)

Define fn,π : (E × X ) 7→ R for given n ≥ 1, π ∈ Π,

fn,π(ε, t) =
P̃π(x)′P̃π(t)ε

Vn(π)1/2
=
P̃bK̄πc(x)′P̃bK̄πc(t)ε

Vn(bK̄πc, x)1/2
, (ε, t) ∈ E × X . (A.12)

Consider the class of measurable functions Fn = {fn,π : π ∈ Π}. Then, we consider following

empirical process {
t∗n(π) : π ∈ Π

}
=
{
n−1/2

n∑
i=1

fn,π(εi, xi) : π ∈ Π
}

which is indexed by classes of functions Fn.

We want to show weak convergence of the empirical process {t∗n(·) : n ≥ 1} to a centered Gaus-

sian process, T(·) defined in the Theorem 2.2, in the space `∞(Π) with totally bounded semimetric

space (Π, ρ), where ρ is defined as ρ(π1, π2) = |π1 − π2|. Weak convergence results follow from

marginal convergence to a multivariate normal distribution and asymptotic tightness. We closely

follow Section 2.11.3 in van der Vaart and Wellner (1996) and verify conditions for the asymptotic

tightness as in Theorem 2.11.22.
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Note that the covariance kernel can be derived as follows

Efn,π1fn,π2 − Efn,π1Efn,π2 =
P̃π1(x)′E(P̃π1(xi)P̃π2(xi)

′ε2
i )P̃π2(x)

Vn(π1)1/2Vn(π2)1/2
, (A.13)

for any π ≤ π1 ≤ π2 ≤ π̄ = 1. This term converges to the claimed covariance kernel Σ(π1, π2)

under Assumption 2.4(i). This covariance kernel can be bounded below and above some constants

0 < C1, C2 <∞ for all n,

0 < C1 ≤ σ2Vn(π1)1/2

Vn(π2)1/2
≤ P̃π1(x)′E(P̃π1(xi)P̃π2(xi)

′ε2
i )P̃π2(x)

Vn(π1)1/2Vn(π2)1/2
≤ σ̄2Vn(π1)1/2

Vn(π2)1/2
≤ C2 (A.14)

by using σ2P̃π(x)′P̃π(x) ≤ Vn(π) ≤ σ̄2P̃π(x)′P̃π(x) from Assumption 2.2(ii). We also use Vn(π1)1/2 �
Vn(π2)1/2 � ||P̃π̄(x)|| for any π1, π2 ∈ Π under Assumption 2.4(ii).

We prove the finite dimensional convergence using similar arguments to those used in the proof

of Theorem 2.1, but we repeat this here as Theorem 2.2 imposes assumption on Kn. To show the

finite dimensional convergence, it suffices to show that for any 0 < π ≤ π1 < · · · < πM ≤ 1,

δ′t∗n
d−→ N(0, δ′Σδ) ∀δ ∈ RM (A.15)

where t∗n = (t∗n(π1), ..., t∗n(πM ))′,Σ(j, l) = limn→∞Σn(j, l), Σn(j, l) ≡
P̃πj (x)′E(P̃πjiP̃

′
πli
ε2i )P̃πl (x)

Vn(πj)1/2Vn(πl)1/2
. Sim-

ilar to the proof of Theorem 2.1, we define ωni = (δ′Σnδ)
−1/2

∑M
j=1 δj

P̃πj (x)′P̃πjiεi

Vn(πj)1/2
. Note that

Eωni = 0, and 1
n

∑n
i=1E[ω2

ni] = 1, since E[ω2
ni] = (δ′Σnδ)

−1δ′V ar(fn(εi, xi))δ = 1, where fn(εi,

xi) = (fn,π1(εi, xi), ..., fn,πM (εi, xi))
′. By Assumption 2.2, we have ||

∑M
j=1 δj

P̃πj (x)′P̃πji

Vn(πj)1/2
||∞ . ζK̄λK̄ .

Lindberg’s condition can be verified similarly as in the proof of Theorem 2.1, and finite-dimensional

convergence holds by Lindberg-Feller CLT and Slutzky’s Theorem.

Now, we only need to show stochastic equicontinuity. Define α(x, π) ≡ P̃π(x)/Vn(π)1/2 =

P̃π(x)/||Ω1/2
π P̃π(x)||. Note that |fn,π(ε, t)| = |α(x, π)′Pπ(t)ε| ≤ C|fn,π̄(ε, t)| ≤ C|ε|ζK̄λK̄ . We

define envelope function Fn(ε, t) ≡ |fn,π̄(ε, t)| ∨ 1. Without loss of generality, we assume that

Fn ≥ 1. Note that Ef2
n,π = 1 for any π, thus EF 2

n = O(1). Moreover, Lindeberg conditions can be

verified easily as follows. For any a > 0,

E(F 2
n1{Fn > a

√
n}) = E[(

P̃π̄(x)′P̃π̄(xi)

Vn(π)1/2
εi)

21{|εi| > a(
√
n/(ζK̄λK̄)}] (A.16)

≤ sup
x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|Xi = x] = o(1) (A.17)

since (ζK̄λK̄)/
√
n = o(1) and Assumption 2.2(ii). Moreover, for every δn → 0,

sup
ρ(π1,π2)<δn

E(fn,π1 − fn,π2)2 → 0 (A.18)

since Efn,π1fn,π2 → 1 as ρ(π1, π2)→ 0.
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Define κ1,n ≡ supπ 6=π′
||P̃π′−π(x)||
||π′−π|| where P̃π′−π(x) = (p̃bK̄πc+1(x), ..., p̃bK̄π′c(x))′. For sufficiently

large n, κ1,n . ||P̃π′−π(x)|| . Vn(π′ − π)1/2 under Assumption 2.2 and 2.4(ii). Also define κ2,n ≡
supπ 6=π′

|Vn(π′)−Vn(π)|
||π′−π|| . Then, for any π, π′ ∈ Π such that π < π′, following holds for sufficiently

large n,

|α(x, π′)′Pπ′(t)− α(x, π)′Pπ(t)| = | P̃π
′(x)′P̃π′(t)

Vn(π′)1/2
− P̃π(x)′P̃π(t)

Vn(π)1/2
|

≤ | P̃π
′(x)′P̃π′(t)− P̃π(x)′P̃π(t)

Vn(π′)1/2
|+ |P̃π(x)′P̃π(t)(

1

Vn(π′)1/2
− 1

Vn(π)1/2
)|

≤ (sup
π

1

|Vn(π)1/2|
)|P̃π′−π(x)′P̃π′−π(t)|+ | P̃π(x)′P̃π(t)

Vn(π)1/2
(

Vn(π′)− Vn(π)

Vn(π′)1/2(Vn(π)1/2 + Vn(π′)1/2)
)|

≤ C1(sup
π

1

|Vn(π)1/2|
)κ1,nζK̄λK̄ ||π′ − π||+ C2ζK̄λK̄

1

infπ |Vn(π)|
κ2,n||π′ − π||

≤ C3ζK̄λK̄ ||π′ − π||+ C4ζK̄λK̄ ||π′ − π|| = AζK̄λK̄ ||π′ − π||

where C1, C2, C3, C4, A are some constants do not depend on n. The third inequality uses the

definition of κ1,n, κ2,n, |P̃π′−π(t)| . ζK̄λK̄ and | P̃π(x)′P̃π(t)

Vn(π)1/2
| . ζK̄λK̄ under Assumption 2.2 and

2.3. The last inequality uses κ1,n . Vn(π′ − π)1/2, κ2,n . supπ Vn(π), and Vn(π) � Vn(π′) for any

π, π′ ∈ Π under Assumption 2.4(ii).

From this, we have

|fn,π′ − fn,π| = |εα(x, π′)′Pπ′(t)− εα(x, π)′Pπ(t)| ≤ |ε|AζK̄λK̄ ||π′ − π||. (A.19)

Therefore, the class of functions Fn = {fn,π : π ∈ Π} satisfies Lipschitz conditions for each n, and

this implies that there are constants A, V > 0 such that

sup
Q
N(ε||Fn||L2(Q),Fn, L2(Q)) ≤ (A/ε)V , 0 < ∀ε ≤ 1 (A.20)

for each n. Then, following uniform-entropy condition holds for every δn → 0.

J(δn,Fn, L2(Q)) =

∫ δn

0

√
log sup

Q
N(ε||Fn||L2(Q),Fn, L2(Q)) −→ 0. (A.21)

Thus, by the Theorem 2.11.22 in van der Vaart and Wellner (1996), we have shown that the

sequence {t∗n(π) : π ∈ Π} is asymptotically tight in `∞(Π). Together with the definition of

ν(π) = limn→∞−
√
nVn(π)−1/2rn(π), we have T ∗n(π, θ0)⇒ T(π)+ν(π) for π ∈ Π. In addition, if As-

sumption 2.5 holds, then |
√
nVn(π)−1/2rn(π)| = o(1) for any π ∈ Π. Therefore, T ∗n(π, θ0) ⇒ T(π).

This completes the proof. �

39



A.2.3 Proof of Corollary 3.1

Proof. First consider S(t) = supm |tm| for t = (t1, · · · , tM ) ∈ RM . Since S(t) is continuous at all

t ∈ T = RM under supm |ν(m)| < +∞, SupTn(θ0) = supKm∈Kn |Tn(Km, θ0)| = S(Tn(θ0))
d−→

S(ZΣ + ν) = supm |Zm + ν(m)| follows from Theorem 2.1. If |ν(m)| = +∞ for some m, |Tn(Km,

θ0)| p−→ +∞ and thus SupTn(θ0)
p−→ +∞.

For the second part of Corollary, we consider S(t) ≡ infm |tm| for t = (t1, · · · , tM ) ∈ T =

RM−1
[±∞] × R. Note that S(t) is continuous at all t ∈ T = RM−1

[±∞] × R under Assumption 2.1 by

inf |ν(m)| = O(1). Then, we have

Inf Tn(θ0) = S(Tn(θ0))
d→ S(ZΣ + ν) = inf

m
|Zm + ν(m)| (A.22)

by Theorem 2.1. This completes the proof of Corollary 3.1. �

A.2.4 Proof of Corollary 3.2

Proof. From Corollary 3.1, we have

lim
n→∞

P (SupTn(θ0) > csup
1−α(ν)) = P (ξsup(Σ, ν) > csup

1−α(ν)) = α

by the definition of csup
1−α(ν) in (3.4). For the second part of Corollary, we have

lim sup
n→∞

P (|Tn(K̂, θ0)| > csup
1−α(ν)) ≤ lim sup

n→∞
P (SupTn(θ0) > csup

1−α(ν))

= lim
n→∞

P (SupTn(θ0) > csup
1−α(ν)) = α

where the first inequality uses |Tn(K̂, θ)| ≤ SupTn(θ) for any K̂ ∈ Kn and the second equality

holds holds under subsequence {un} of {n} by the definition of lim sup. �

A.2.5 Proof of Corollary 3.3

Proof. This follows from Corollary 3.1 and using the similar arguments as in the proof of Corollary

3.2. �

A.2.6 Proof of Corollary 3.4

Proof. Using the same decomposition of the t-statistic as in the proof of Theorem 2.1, for any

m = 1, 2, · · ·M , we have

Tn(Km, θn) =

√
n

Vn(Km)
(θ̂n(Km)− θn) = Tn(Km, θ0)−

√
n

Vn(Km)

µ̄

nγ

= tn(m) + νn(m) + µn(m) + op(1),

where tn(m) = 1√
n

∑n
i=1

P̃Km (x)′P̃Kmiεi
Vn(Km)1/2

, νn(m) = −
√
n rn(Km)

Vn(Km)1/2
, and µn(m) = −

√
n µ̄n−γ

Vn(Km)1/2
.
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Under Assumption 3.1 and supm |ν(m)| < +∞, SupTn(θn)
p→ +∞ for any γ < δ1 as µn(m) �

nδm−γ . From the null limiting distribution in Corollary 3.1, csup
1−α(ν) is bounded in probability, thus

we conclude that the test based on SupTn(θ) is consistent against all n−γ-local alternatives γ < δ1.

For γ = δ1,

SupTn(θn)
d−→ sup

m=1,···,M
|Zm + ν(m) + µ(m)|, (A.23)

where µ = (µ(1), · · · , µ(M))′ = (µ(1), 0′M−1)′ since µn(m) = o(1) for all m 6= 1, and µn(1) = O(1).

From Corollary 3.1, we also conclude that the test based on SupTn(θ) has nontrivial asymptotic

local power against local alternatives γ = δ1, but not against γ > δ1. �

A.2.7 Proof of Corollary 3.5

Proof. Under Assumption 3.1, for any γ < δM , Inf Tn(θn)
p→ +∞ because infm |µn(m)| → +∞ as

n→∞. From the Corollary 3.1, cinf
1−α(ν) is bounded in probability, thus

lim
n→∞

P (Inf Tn(θn) > cinf
1−α(ν)) = 1

for any γ < δM .

From Corollary 3.1 and the assumption |ν(m)| = +∞ for all m < p+ 1, we have the behavior

of the test statistic under the null,

Inf Tn(θ0)
d−→ inf

m=p+1,···,M
|Zm + ν(m)| (A.24)

since corresponding elements of |Zm + ν(m)| = +∞ for m < p+ 1.

Using the same arguments in the proof of Theorem 2.1, we can show that for any γ ≥ δM and

any continuous function S(t) at all t ∈ T ⊂ RM−1
[±∞] × R

S(Tn(θn))
d−→ S(ZΣ + ν + µ). (A.25)

Therefore, following holds for any γ ∈ [δM , δp+1],

Inf Tn(θn)
d−→ inf

m=p+1,···,M
|Zm + ν(m) + µ(m)| (A.26)

where ZΣ = (Z1, · · · , ZM )′ ∼ N(0,Σ) and ν = (ν(1), · · · , ν(M))′ are defined in Theorem 2.1,

and µ = (µ(1), · · · , µ(M))′ is defined in (3.8). Note that if either ν(m) = ±∞ or µ(m) = ±∞,

then the corresponding element of ZΣ + ν + µ equals ±∞. Technically, we exclude the possibility

|ν(m)| = +∞ and |µ(m)| = +∞, but |ν(m) + µ(m)| = 0. This may not be restrictive, as we only

impose rate conditions νn(m) � nδmrn(Km) and µn(m) � nδm−γ .

To show the test based on the Inf Tn(θn) has nontrivial local power against some alternatives

γ ∈ {δp+1, · · · , δM} and has power no less than the size, we need to consider different cases. For
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the first case γ = δp+1, we have |µ(m)| = 0 for all m > p + 1 and 0 < |µ(p + 1)| < +∞, thus the

test has nontrivial asymptotic local power and the power is an monotonically increasing function

in |µ(p+ 1)|.
For the next case, δp+2 < γ < δp+1, following holds

Inf Tn(θn)
d−→ inf

m=p+2,···,M
|Zm + ν(m)| (A.27)

as |µ(p + 1)| = +∞ and |µ(m)| = 0 for all m > p + 1. Note that infm=p+2,···,M |Zm + ν(m)| ≥
infm=p+1,···,M |Zm+ν(m)| holds for the null limiting distribution in (A.24). Thus, lim

n→∞
P (Inf Tn(θn) >

cinf
1−α(ν)) ≥ α. Using the similar arguments, we can show that the test based on Inf Tn(θ) has

nontrivial local power against γ ∈ {δp+1, · · · , δM} and has power no less than α for all other

γ ∈ [δM , δp+1], but does not have power against γ > δp+1 as |µ(m)| = 0 for all m ≥ p+ 1. �

A.2.8 Proof of Corollary 4.1

Proof. Under the Assumptions 2.1, 2.2, 2.5, and 4.1, following holds

(T
n,V̂

(K1, θ0), · · · , T
n,V̂

(KM , θ0))′ = ATn(θ)
d−→ ZΣ ∼ N(0,Σ) (A.28)

where T
n,V̂

(K, θ) =
√
n(θ̂n(K)−θ0)

V̂n(K)1/2
= Vn(K)1/2

V̂n(K)1/2
Tn(K, θ), A ≡ diag{Vn(K1)1/2

V̂n(K1)1/2
, · · · , Vn(KM )1/2

V̂n(KM )1/2
} by Theo-

rem 2.1, A
p−→ IM and Slutzky Theorem.

Next consider ĉsup
1−α, which is (1− α) quantile of sup

m=1,···,M
|Z
m,Σ̂
| defined in (4.5),

ĉsup
1−α = inf{x ∈ R : P ( sup

m=1,···,M
|Z
m,Σ̂
| ≤ x) ≥ 1− α}

where Z
Σ̂

= (Z
1,Σ̂
, · · · , Z

M,Σ̂
)′ ∼ N(0, Σ̂), Σ̂(j, j) = 1, Σ̂(j, l) = V̂n(Kj ,Kl)/V̂n(Kj)

1/2V̂n(Kl)
1/2.

Note that for any j, l ∈ {1, 2, · · · ,M},

Σ̂(j, l) =
V̂n(Kj ,Kl)

V̂n(Kj)1/2V̂n(Kl)1/2
=
V̂n(Kj ,Kl)

Vn(Kj ,Kl)

Vn(Kj ,Kl)

Vn(Kj)1/2Vn(Kl)1/2

Vn(Kj)
1/2

V̂n(Kj)1/2

Vn(Kl)
1/2

V̂n(Kl)1/2

p−→ Σ(j, l)

(A.29)

by Assumption 4.1. Therefore, Σ̂
p−→ Σ, Z

Σ̂

d−→ ZΣ, and sup
m=1,···,M

|Z
m,Σ̂
| d−→ sup

m=1,···,M
|Zm| hold,

and thus, ĉsup
1−α

p−→ csup
1−α(0M ). Similarly, we can show ĉinf

1−α
p−→ cinf

1−α(0M ).

Then we have,

lim
n→∞

P (θ0 ∈ [θ̂n(K)± ĉsup
1−αs(θ̂n(K))] ∀K ∈ Kn) = lim

n→∞
P ( sup

Km∈Kn
|T
n,V̂

(Km, θ0)| ≤ csup1−α(0M ) + op(1))

= P (sup
m
|Zm| ≤ csup1−α(0M )) = 1− α.
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Coverage property of the CI, [θ̂n(K̂) ± ĉsup
1−αs(θ̂n(K̂))] for K̂ ∈ Kn immediately follows from the

above equation and the coverage of CIRobustinf can be similarly derived. �

A.2.9 Proof of Theorem 5.1

Proof. Conditional on X = [x1, · · · , xn]′, following decomposition holds for any single sequence

K ∈ Kn

√
n(θ̂n(K)− θ0) = Γ̂−1

K SK ,

Γ̂K =
1

n
(W ′MKW ), SK =

1√
n
W ′MK(g + ε)

where g = [g1, · · · , gn]′, gi = g0(xi), gw = [gw1, · · · , gwn]′, gwi = gw0(xi) = E[wi|xi], v = [v1, · · · , vn].

All remaining proofs contain conditional expectations (conditioning on X) hold almost surely (a.s.).

Under Assumption 5.2 and E[v2
i |xi] = E[v2

i ],

Γ̂K = ΓK + op(1), ΓK = (1−K/n)E[v2
i ] (A.30)

by Lemma 1 of Cattaneo, Jansson, and Newey (2015a). Moreover,

SK =
1√
n
v′MKε+

1√
n
g′wMKg +

1√
n

(v′MKg + g′wMKε) (A.31)

=
1√
n

n∑
i=1

MK,iiviεi −
1√
n

n∑
i=1

n∑
j=1,j<i

PK,ij(viεj + vjεi) + op(1) (A.32)

since MK,ij = −PK,ij for j < i, 1√
n
g′wMKg = Op(

√
nK̄−γg−γgw ) = op(1), 1√

n
(v′MKg + g′wMKε) =

Op(K̄
−γg+K̄−γgw ) = op(1) by Lemma 2 of Cattaneo, Jansson and Newey (2015a) under Assumption

5.2. Under E[ε2
i |wi, xi] = σ2

ε following holds

Tn(K, θ0) =
√
nVn(K)−1/2(θ̂n(K)− θ0) = Vn(K)−1/2Γ−1

K

1√
n
v′MKε+ op(1)

d−→ N(0, 1)

by Theorem 1 of Cattaneo, Jansson and Newey (2015a) which follows from Lemma A2 in Chao,

Swanson, Hausman, Newey and Woutersen (2012).

For simplicity, here we only show the joint convergence of bivariate t-statistics, but the proof

can be easily extended to multivariate case. For any K1 < K2 in Kn, we show

δ1Tn(K1, θ0) + δ2Tn(K2, θ0)
d−→ N(0, (δ2

1 + δ2
2 + 2δ1δ2v12)), ∀(δ1, δ2) ∈ R2 (A.33)

where v12 = limn→∞ Vn(K1)1/2/Vn(K2)1/2. We closely follows the proof of Lemma A2 in Chao et
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al. (2012). Define Yn, Y1,n and Y2,n as follows

Yn = δ1Y1,n + δ2Y2,n, (A.34)

Y1,n = ω1,1n +

n∑
i=2

y1,in, y1,in = ω1,in + ȳ1,in, (A.35)

Y2,n = ω2,1n +

n∑
i=2

y2,in, y2,in = ω2,in + ȳ2,in, (A.36)

where ω1,in = Vn(K1)−1/2Γ−1
K1
MK1,ii/

√
n, ȳ1,in =

∑
j<i(u1,jPK1,ijεi + u1,iPK1,ijεj)/

√
n, u1,i =

Vn(K1)−1/2Γ−1
K1
vi and ω2,in, ȳ2,in are similarly defined with appropriate terms PK2 , Vn(K2),ΓK2

with K2. Similar to the proof of Lemma A2 in Chao et al. (2012), ω1,1n = op(1), ω2,1n = op(1).

Thus, we only need to show that following holds conditional on X with probability one

n∑
i=2

(δ1y1,in + δ2y2,in)
d−→ N(0, δ2

1 + δ2
2 + 2δ1δ2v12). (A.37)

It remains to provide Lindeberg-Feller condition.

E[(
n∑
i=2

δ1y1,in + δ2y2,in)2|X] = δ2
1E[(

n∑
i=2

y1,in)2|X] + δ2
2E[(

n∑
i=2

y2,in)2|X]

+2δ1δ2E[
n∑
i=2

n∑
j=2

y1,iny2,in|X], (A.38)

where the first and second terms in (A.38) goes to δ2
1 , δ

2
2 a.s., respectively, as in the proof of Lemma

A.2 in Chao et al. (2012). Note that E[ω1,inȳ2,in|X] = 0, E[ω2,inȳ1,in|X] = 0, and E[ω1,1nω2,in|X] =

0, E[ω2,1nω1,in|X] = 0 for any i > 1. Followings are the key calculations for the asymptotic variance

of leading terms in Yn.

E[Y1,nY2,n|X] =
1

n
Vn(K1)−1/2Γ−1

K1
E[v′MK1εε

′MK2v|X]Γ−1
K2
Vn(K2)−1/2 (A.39)

=
1

n
Vn(K1)−1/2Γ−1

K1
σ2
εE[v′MK2v|X]Γ−1

K2
Vn(K2)−1/2 (A.40)

= Vn(K1)−1/2Γ−1
K1
σ2
εΓK2Γ−1

K2
Vn(K2)−1/2 (A.41)

= Vn(K1)1/2/Vn(K2)1/2 (A.42)

where the second equality uses conditional homoskedasticity E[εε′|X,W ] = σ2
εI and MK1MK2 =

MK2 , the third equality uses tr(MK2) = n −K2 and E[v2|X] = E[v2], and the last equality uses
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Vn(K1) = σ2
εΓ
−1
K1

. Therefore, we calculate components of last terms in (A.38) as follows

E[
n∑
i=2

n∑
j=2

y1,iny2,in|X] = E[Y1,nY2,n|X]−
n∑
i=2

E[ω1,1ny2,in|X]

−
n∑
i=2

E[ω2,1ny1,in|X]− E[ω1,1nω2,1n|X] (A.43)

= Vn(K1)1/2/Vn(K2)1/2 − E[ω1,1nω2,1n|X]→ v12 a.s. (A.44)

As in the proof of Lemma A.2 of Chao et al. (2012), we have

n∑
i=2

E[(δ1y1,in + δ2y2,in)4|X] .
n∑
i=2

E[(y1,in)4|X] +
n∑
i=2

E[(y2,in)4|X]→ 0 a.s. (A.45)

Thus, by similar arguments following the proof of Lemma A.2 in Chao et al. (2012), we can apply

the martingale central limit theorem. Then, by Slutzky theorem, joint convergence holds with the

claimed covariance. In addition, if sup
K∈Kn

| V̂n(K)
Vn(K) − 1| = op(1) as n,K → ∞ holds, we can show the

coverage results using similar arguments to those used in the proof of Corollary 4.1. This completes

the proof. �
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Appendix B Figures and Tables

Figure 1: Coverage and Length of CIs - Polynomials
Coverage and average length of nominal 95% CIs for g(x):

(1) CINaive with K̂cv (2) CIRobustsup with K̂cv (3) CIRobustsup with K̂cv + 2 (4) CImaxK with K̄ (5)
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Figure 2: Coverage and Length of CIs - Quadratic Splines
Coverage and average length of nominal 95% CIs for g(x):

(1) CINaive with K̂cv (2) CIRobustsup with K̂cv (3) CIRobustsup with K̂cv + 2 (4) CImaxK with K̄ (5)
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Figure 3: Power function against fixed alternatives.
H0 : θ = θ0 vs H1 : θ = θ0 + δ, where θ0 = g2(x) at x = 0.5 for figure (a) and x = 0.4 for figure

(b). g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2).

θ0 = g2(x), x = 0.5
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Table 1: Nonparametric Wage Elasticity of Hours of Work Estimates
in Blomquist and Newey (Table 1, 2002). Wage elasticity evaluated

at the mean net wage rates, virtual income, and level of hours.

Additional Terms1 CV 2 Êw SE
Êw

CI
Êw

1, yJ , wJ 0.00472 0.0372 0.0104 [0.0168, 0.0576]
∆y∆w 0.0313 0.0761 0.0128 [0.0510, 0.1012]
`∆y 0.0305 0.0760 0.0127 [0.0511, 0.1009]
y2
J , w

2
J 0.0323 0.0763 0.0129 [0.0510, 0.1016]

∆y2,∆w2 0.0369 0.0543 0.0151 [0.0247, 0.0839]
yJwJ 0.0364 0.0659 0.0197 [0.0273, 0.1045]
∆yw 0.0350 0.0628 0.0223 [0.0191, 0.1065]
`2∆y 0.0364 0.0636 0.0223 [0.0199, 0.1073]
y3
J , w

3
J 0.0331 0.0845 0.0275 [0.0306, 0.1384]

`∆y2, `∆w2, `∆yw 0.0263 0.0775 0.0286 [0.0214, 0.1336]
y2
JwJ , yJw

2
J 0.0252 0.0714 0.0289 [0.0148, 0.1280]

MLE estimates 0.123 0.0137

critical values: ĉinf
1−α = 0.9668, ĉsup

1−α = 2.4764
CIRobustinf = [0.0271, 0.1111] CIRobustsup, cv = [0.0169, 0.0916]

1 y : non-labor income, w : marginal wage rates, `: the end point
of the segment in a piecewise linear budget set. `m∆ypwq denotes∑
j `
m
j (ypjw

q
j − y

p
j+1w

q
j+1).

2 CV denotes cross-validation criteria defined in Blomquist and Newey
(2002, p.2464).
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Figure 4: Nonparametric Wage Elasticity of Hours of Work Estimates in Blomquist and Newey
(Table 1, 2002).
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Figure plots wage elasticity estimates of the expected labor supply same as in Table 1,

with standard pointwise 95% CIs as well as uniform (in Km ∈ Kn) CIs constructed by

using critical value ĉsup1−α.
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