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Abstract 

Object-based classification, commonly referred to as object-based image analysis 

(OBIA), is now commonly regarded as able to produce more appealing classification 

maps, often of greater accuracy, than pixel-based classification and its application is 

now widespread. Therefore, improvement of OBIA using spatial techniques is of great 

interest. In this paper, multiple-point statistics (MPS) is proposed for object-based 

classification enhancement in the form of a new multiple-point k-nearest neighbour 

(k-NN) classification method (MPk-NN). The proposed method first utilises a training 

image derived from a pre-classified map to characterise the spatial correlation 

between multiple points of land cover classes. The MPS borrows spatial structures 

from other parts of the training image, and then incorporates this spatial information, 

in the form of multiple-point probabilities, into the k-NN classifier. Two satellite 

sensor images with a fine spatial resolution were selected to evaluate the new method. 

One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 

image of the Wolong mountainous area, in China. The images were object-based 

classified using the MPk-NN method and several alternatives, including the k-NN, the 

geostatistically weighted k-NN, the Bayesian method, the decision tree classifier 

(DTC), and the support vector machine classifier (SVM). It was demonstrated that the 

new spatial weighting based on MPS can achieve greater classification accuracy 

relative to the alternatives and it is, thus, recommended as appropriate for 

object-based classification. 
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1 Introduction 

Classification using fine spatial resolution imagery is a widespread goal in remote 

sensing, and one that is not straightforward to solve with high accuracy (Wang et al., 

2013). It is generally agreed that object-based image analysis (OBIA) has several 

advantages compared to pixel-based analysis for processing fine spatial resolution 

remotely sensed data (Blaschke and Strobl, 2001; Myint et al., 2011). In object-based 

classification, segmentation is first applied to images, decomposing the image scene 

into relatively homogeneous objects (or segments) based on the arrangement of pixel 

values across the image, which should reflect the set of real-world objects of interest 

(Newman et al., 2011). Then, instead of classifying based on the spectra of each pixel, 

classification is undertaken based on the spectral information of each resulting 

segment.  

Object properties and spatial context are important for OBIA classification in remote 

sensing. Information on the classes of neighbouring objects can be used to either 

increase classification accuracy or to identify land use or function that is otherwise 

challenging. An example of the latter is the ability to identify a railway station from 

the character of the objects that comprise it (e.g., long thin platforms, long thin roofs) 

and the set of objects that surround it (e.g., railway lines, car park and multiple roads). 

Commonly, a spatial weighting is incorporated into the classifier to increase the 

accuracy of the classification result. Classifiers that use spatial information combined 

with spectral information are known as contextual classifiers (Jensen, 1979). It has 

been suggested that such contextual classifiers can reduce noise and achieve greater 

accuracy than non-contextual classifiers (Park et al., 2003; Pasolli et al., 2014). 

Geostatistical techniques have been applied to pixel-based classifiers as a contextual 

classification method (Atkinson and Lewis, 2000), although all the spatial weighting 

schemes investigated in this case were based on two-point statistics (i.e., the 

relationship between the central pixel and its neighbours).  

Recently, advances in multiple-point statistics (MPS) have shown that two-point 

statistics are limited. Instead of two-point-based functions such as the variogram, 

MPS borrows structures from training images, from which higher-order local patterns 

of the target field can be captured. Thus, spatial structures can potentially be 

characterised more completely using MPS. Recently, a few studies applied MPS to the 

classification of remotely sensing data. For example, Boucher (2009) realised 

super-resolution mapping with MPS. Ge and Bai (2011) extracted linear objects from 

satellite sensor imagery using MPS. Tang et al. (2013) proposed a post-classification 

method using MPS and compared it with contextual classification based on the 
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Markov random field model. Nevertheless, MPS for the classification of fine spatial 

resolution imagery remains under-explored. 

Previous studies have demonstrated the advantages of contextual classification and 

MPS, independently. Thus, the overall aim of this paper, given the popularity and 

already high accuracies achievable with OBIA and the potential of MPS relative to 

two-point statistics, is to explore the utility of incorporating an MPS-based spatial 

weighting into the OBIA approach. Specifically, a new MPS spatial weighting for 

incorporation into the k-NN method is proposed for object-based classification. The 

proposed method utilises a training image as prior knowledge to characterise the 

spatial correlation between multiple points of land cover class, an approach used 

widely in MPS. The MPS borrows spatial structures from multiple parts of the 

training image and then incorporates this spatial information, in the form of 

multiple-point probabilities, into the k-NN classifier. The hypothesis is that a MPS 

weighting scheme has the potential to increase the accuracy of the k-NN classifier 

relative to two-point-based spatial weighting schemes. The specific goals of the paper 

were, therefore: (i) the development of a new MPS spatial weighting for remotely 

sensed contextual classification, and (ii) evaluation of the applicability of the new 

method for handling objects (c.f., the previous pixel-based implementation).  

 

2 Methods 

2.1 The MPS approach 

MPS characterises spatial dependence from a training image, which is required to 

depict the types of structures that the target image and, thus, the expected realisations 

should exhibit (Boucher, 2009). A training image substitutes for the variogram or 

covariance function in traditional geostatistics and provides prior knowledge for 

spatial correlation modelling. A data template with a central node u is defined as T(u) 

= {h1, …, hn}, which is composed of n locations ui (i = 1, …, n), where hi is a 

distance vector between ui and u. The data template T(u) is used to scan the training 

image. To capture multiple-point statistical information, a data event consists of 

categorical values and is obtained by the same shape of template that is used to scan 

the training image. A data event can be expressed as dev(u) = {c(u1), …, c(un)}, where 

c(ui) (i = 1, …, n) is the categorical value at location ui within the template (Okabe 

and Blunt, 2005).  

The frequency of a data event can be calculated when the training image is scanned 

by a template. Figure 1 gives a binary example, in which the cross-shaped data 

template consists of three black nodes and one white node (Figure 1a), and the central 

node is unknown. This template is used to scan the training image in Figure 1b. 

Sixteen data events are extracted, and three matched data events are found in the 

training image (Figure 1c). As can be seen, two of the three matched data events have 
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a white central node and one has a black central node. Therefore, the frequency with 

which the data event occurs in the training image is 3/16, and the central node of this 

data event has a probability of 2/3 to be white and 1/3 to be black.  

The multi-grid simulation approach can be adopted in MPS to capture structures of 

different sizes in the training image (Tran, 1994). The multi-grid approach expands 

the size of the simulated grid while not increasing the number of nodes. It is assumed 

that the data template T(u) has L multi-grid levels. The new geometrical template is 

constructed by rescaling the original template:  1 1

1( ) 2 , ,2L L L

nT u   h h . 

2.2 Distance and geostatistically weighted k-NN 

In the k-NN method, the classifier allocates pixels to the neighbours to which it is 

closest in feature space. An inverse distance weighting (IDW) function can be 

incorporated into the k-NN classifier to give more weight to a neighbour closer to the 

unclassified observation than to a more distant neighbour (Dudani, 1976). IDW can be 

expressed as: 

   
1

uk p

ukd
                               (1) 

where duk measures the distance between the current pixel u and its neighbouring 

training pixel k in feature space, ωuk is the weight based on an inverse distance, and 

the exponent p is an integer that determines the magnitude of the weight. The 

abbreviation wk-NN is used to refer to the IDW-based k-NN. 

In the geostatistically weighted k-NN (gk-NN) method, the probability that a pixel u 

belongs to class m can be evaluated as follows (Atkinson and Naser, 2010): 
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where the subscript uk of h indicates the lag between pixel u and its neighbour k. K 

refers to the total number of neighbours in feature space.  ,m m ukp h  and  ,m m ukp  h  

are the fitted models of the spatial cross-covariance, which also refers to the 

class-conditional probability. Term m' is a class index for m' = 1, …, M classes, and m 

is the class of interest. Sg is a proportional weight between 0 and 1. The 

class-conditional probability  ,m m ukp  h  of a pixel u belonging to class m, given a 

neighbour k in class m' at a given lag h, is estimated by: 
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where N is the number of training pixels in the image, and c(h) represents the class 

value at lag h (i.e., the class at the neighbouring pixel location k). The 

class-conditional probability  ,m m ukp h  can be inferred similarly. The indicator 

function I takes a value of one if the condition is satisfied, otherwise zero. The 

spherical, exponential and Gaussian models are usually fitted to the class-conditional 

probability plot (Armstrong, 1998). The k-NN and gk-NN methods were used in the 

experiments as benchmark methods, while the wk-NN method was implemented to 

provide additional information on the proposed method.  

2.3 Multiple-point weighted k-NN  

The standard k-NN classifier retains the location information of the K neighbours in 

feature space and, thus, the geographical weighting is readily integrated into the k-NN 

classifier. In the MPS-based k-NN approach (MPk-NN), instead of using two-point 

statistics, the conditional probability representing the spatial information is provided 

by multiple point analysis of the training image. For an unknown location u, K nearest 

neighbour training pixels uk can be found. Thus, the data template at location u can be 

defined as T(u) = {h1, …, hK}, where hk is the lag between uk and u. So the template 

centred at u consists of the same separation lag (for both distance and direction) and 

classes as the neighbouring K pixels in the prediction data. This template is used to 

scan the training image and derive the multiple-point probability for pixel u by 

counting the replicates of the data event dev(u), where dev(u) = {c(u1), …, c(uK)}. The 

probability of pixel u with class m equals the proportion of the number of dev(u) that 

possesses class m at the central node to the total number of dev(u). For a different 

location, a different template is applied to estimate another probability from the 

training image. The multiple-point probability of a pixel u belonging to class m is, 

thus, expressed as: 
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Note that dev(u) = 1 means that the data event dev(u) is found in the training image, 

indicating that all the K pixels at location uk should match exactly the corresponding 

classes (i.e., c(uk) = mk (k = 1, …, K)). If the multi-grid concept is applied, the 

multiple-point probability consists of L probability levels.  
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l indicates that a data event is searched at the lth multi-grid level. Here, instead of 

expanding the data template, the template is rescaled by condensing the original 

template. A compact data template is more suited to capturing spatial dependence 

since near things tend to be similar. Also, the template can sometimes be spatially 

extensive, such that expanding the template may fail to capture data events inside the 

training image. Thus, the data template was formed as: 

 1 1

1( ) 2 , , 2L L L

nT u   h h . For example, if L is taken as 3, the data template was 

1/2 and 1/4 of the original template for L = 2 and 3, respectively. Figure 2 displays an 

example of data template construction and the data templates with a multi-grid level 

of 3. Thus, the multiple-point enhanced k-NN classifier (MPk-NN) can be written as: 
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Similar to Sg, SMP is a multiple-point spatial weighting added to the k-NN classifier, 

ranging from 0 to 1.  

To apply the MPk-NN method for object-based classification, the central point of each 

segment is first extracted. The central locations are recorded, so that the distance 

between any two segments can be inferred. Since a pre-classified image of the same 

area can guarantee a similar spatial distribution of land covers, the training image is 

derived from an initial classification result. The flowchart of the MPk-NN 

classification is shown in Figure 3. It should be noted that, here, the k-NNs are 

segments, and the distances from the current segment to the k-NNs are measures of 

the relations between the centres of the segments. However, the scanning process is 

pixel-based, from top to bottom and left to right of the whole training image. The 

replicates of the data events are recorded according to the class type of the central 

node. This information is then converted to a conditional probability for each class 

and incorporated into the gk-NN classifier, as shown in Equation (6).  
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3 Experiments  

3.1 Study area 

To evaluate the new method, two experiments were defined. The experiments were 

selected to cover two very different environments, one a highly structured 

anthropogenic urban environment and the other a relatively untouched natural 

environment. These different environments were chosen because the land cover-land 

use (LCLU) objects of interest are quite different spatially, thus, providing a more 

extensive test of the new approach. In the urban environment, the objects are 

generally artificial, including a complex and dense arrangement of buildings 

interwoven with roads, on a vegetated background. In the natural environment, the 

objects arise as a mosaic of different vegetation types, with the objects themselves 

having more heterogeneous boundaries compared to the objects in the urban 

environment.  

The proposed MPk-NN method was first applied to classify LCLU objects in an urban 

scene in Beijing, China. Identifying urban objects from fine spatial resolution imagery 

in urban areas is a common and important objective (Johnson and Xie, 2013). The 

typical urban area can be classified generally into four high-level classes: buildings, 

vegetation, road/bare land and shadow. The challenge here is to distinguish the 

building class from road/bare land. Because these two classes have similar spectral 

responses, but different spatial distributions their separation is challenging using 

traditional spectral-only classifiers. For this task, we selected an IKONOS image 

(39°57ʹ55ʺ–39°58ʹ28ʺN, 116°24ʹ5ʺ–116°24ʹ49ʺE) with a spatial resolution of 4 m and 

size 256  256 pixels over the Beijing urban area (Figure 4a), acquired in May 2000 

(4-band bundle, processing level: standard 2A). This image was chosen because of its 

fine spatial resolution, but alternatives with a similar spatial resolution would be 

equally applicable for this experiment.  

The second experiment was defined at Dengsheng Ditch in Wolong region, Sichuan 

Province, China (Figure 5a). A few wild giant pandas live in this area and, thus, 

knowledge of the spatial distribution of bamboo, which is the main source of food for 

giant pandas, is required as part of identifying suitable habitat for giant pandas. 

However, the vegetation types in this area are similar spectrally meaning that 

traditional spectral-only classifiers may struggle to achieve sufficient accuracy. As 

stated above, it is also of interest to evaluate how the proposed method performs when 

applied to a natural scene in which the individual objects have heterogeneous 

boundaries. For this experiment, we chose a WorldView-2 image subscene 

(30°50ʹ19ʺ–30°50ʹ51ʺN, 102°57ʹ35ʺ–102°57ʹ48ʺE) with a spatial resolution of 2 m 

and size 493  161 pixels, acquired on 28th May 2014 (8-band bundle, processing 

level: standard 2A). Again, the image was chosen because of its fine spatial resolution, 

which was required to resolve the forest patches of interest. The images used in both 

experiments are processed at the standard 2A level, which means that they are 

radiometrically corrected, sensor corrected, and a coarse digital elevation model 
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(DEM) is applied in the geometric correction. This product is sufficient to support the 

experiments in the present case.  

3.2 Data pre-processing 

Image segmentation was first applied to derive homogeneous objects in the images. 

Only multispectral bands were used in the following processes. 1348 image objects 

were delineated in the IKONOS image with a mean size of 48.6 pixels, and 5975 

image objects were derived in the WorldView-2 image with a mean size of 13.3 

pixels. 

Training samples were used for two objectives. One was to train the classifier, and the 

other was to estimate the class-conditional probability for geostatistical modelling. 

The environment is complex in Wolong, so the procedure for the selection of training 

and reference data for experiment II was different to that for experiment I.  

Reference data were provided to test the classification result. In the first experiment, 

the training and reference data were labelled manually by inspection of the image 

since the four classes in the IKONOS image could be identified readily by visual 

inspection. The IKONOS product does not require further geometric correction when 

selecting samples manually. Thus, 276 points were selected as the reference data for 

validating the classification (Figure 4a), and 35 training sample segments were 

selected manually from the 1348 possible segments (Figure 4b). These training 

segments were used to train the k-NN classifier. Although the size of training set (35 

segments relative to the total number of 1348) was appropriate for classification, 

geostatistical modelling requires more sample data. Furthermore, the training 

segments are not suitable for geostatistical modelling as the model of spatial 

covariance is a function of lag. Each segment accounts for an area, so the distance 

measured between segments varies. Therefore, instead of segments, sample points 

(i.e., pixels) were used for geostatistical modelling. A stratified sampling scheme was 

applied to the 35 training segments. 50 sample points were selected for each class and, 

thus, 200 points were selected in total for geostatistical modelling (Figure 4c).  

In the second experiment, it was difficult to identify forest cover types directly from 

the image. Therefore, two field visits were carried out at Dengsheng Ditch, on 13th 

June 2014 and 12th September 2014. Since the geometric accuracy required is higher 

in experiment II than in experiment I (where the reference data were chosen directly 

from the image), the WorldView-2 image required further geometric correction. The 

first visit aimed to measure feature points for image geometric correction and the 

collection of training samples, and the second field visit was undertaken to collect 

reference data.  

A Trimble
○R GeoXHTM 6000 handheld GPS with an antenna was used to collect 

location points in the field. The four forest cover types in the classification are defined 

as bamboo, coniferous, broadleaved and mixed woodland. Two further categories 

were included: bare land and shadow. The four types of woodland cover were 
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recorded when collecting sample points in the field. Training samples for the other 

two classes were chosen manually from the image, since they were easily identified in 

the WorldView-2 image. In total, 312 sample segments were used for training and 223 

sample points were used for testing, which are shown in Figure 5b and 5c, 

respectively. Here, 312 training samples were sufficient to fit the geostatistical models, 

so the samples for modelling were the same as those used for classification. 

The training image is necessary in MPS to characterise spatial structure, which is 

provided as prior knowledge to the classification task. In both experiments, the 

training images were produced from pre-classified images using the wk-NN method. 

3.3 Classification 

The classification process was the same for both experiments. To test the effectiveness 

of the proposed method, different benchmark classification methods were applied to 

compare with the MPk-NN classifier. The k-NN method is based on spectral 

information only, while the geostatistical weighting is added in the gk-NN method, so 

these two benchmarks were used to deduce directly the influence of the MPS 

weighting. The k-NN classifier was first applied based on the mean value of the 

spectral bands of each segment and with K = 5. For the gk-NN method, 

class-conditional probability plots were first estimated from the selected sample 

points for geostatistical modelling and then fitted with covariance-type models. Then 

the gk-NN method was applied using Equation (2). To provide other benchmarks 

against which to assess performance, three popular classification methods were 

applied: the Bayesian, decision tree classifier (DTC) and support vector machine 

(SVM) methods. The aim was to determine if the MPS-based method can outperform 

these other state-of-the-art classifiers. Finally, the MPk-NN method was applied. The 

classification map derived from wk-NN was used as the training image, which itself 

was not used as a benchmark method. The data template for each pixel consisted of 

k-NN nodes (K = 5). The multi-grid level L was taken as 3.  

3.4 Results and analysis 

The classification results obtained using the above six methods are displayed in 

Figures 6 and 7 for both experiments. Tables 1 and 2 summarise the accuracies 

achieved using the six classification methods. The overall accuracy, user’s accuracy, 

producer’s accuracy, and Kappa coefficient are reported.  

In the first experiment, some shadows were misclassified as buildings in the Bayesian 

result. The accuracies of the building class are low (around 50%), and the producer’s 

accuracy (65.96%) of the shadow class was the lowest using the Bayesian method. 

The accuracies of the vegetation class are rather high (all above 95%) except for the 

DTC method. The decision tree confused some trees with shadows in the upper left of 

the image. For the classes of buildings and road/bare land, MPk-NN produced the 

greatest accuracies, whereas the SVM method produced the lowest accuracies. Most 

buildings in the SVM result were misclassified. These three methods (Bayesian, DTC, 
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and SVM) produced limited accuracies because only spectral information was used 

for classification.  

The k-NN method, although also based on spectral information only, is more suited to 

classifying the large segments and, thus, resulted in greater accuracy than the other 

three methods. The k-NN and gk-NN methods produced the same overall accuracy, 

but more buildings are shown in the upper right part of the image for the gk-NN and 

MPk-NN results than for the k-NN result. The buildings increased in coverage using 

the gk-NN and MPk-NN methods, which was caused by the spatial weightings. The 

MPk-NN method produced the greatest overall accuracy and Kappa coefficient 

relative to the other methods. Therefore, the decrease in the prevalence of the roads 

and bare land class arises because the previously misclassified road and bare land 

features were corrected to the buildings class. For the main road near the bottom of 

the image, there are only a few trees along the road. However, shadows and buildings 

appear in the main road in the gk-NN results, that is, they were misclassified. The 

MPk-NN method produced an appropriate classification in this area. This indicates 

that the MPS spatial weighting derived from the training image is more beneficial 

than the weighting in the gk-NN method.  

An analysis of variance (ANOVA) for the classification accuracy was performed 

using the F-test. The F-test statistic is compared to the critical value of the F 

distribution at a particular confidence level to test whether the expected values of any 

two results are significantly different. All the classification results were first 

compared to the reference data to produce a set of indicator values. Then the indicator 

values were compared with the MPk-NN results, in turn. As shown in Table 3, the 

F-ratios are quite large for all the classification results. The MPk-NN result shows 

significant increases in accuracy with respect to all the other results at the 90% 

confidence level. Therefore, the MPS spatial weighting greatly increased the 

classification accuracy compared to the benchmark methods. 

It is necessary to analyse the influence of the weight SMP on the classification 

accuracy. A sensitivity analysis was performed in experiment I, in which the overall 

accuracy, together with the user’s and producer’s accuracies of the classes of 

buildings and road/bare land, was calculated while varying the weight SMP from 0.1 to 

0.9 (Figure 8). As revealed in the error matrix, although the MPk-NN method does not 

yield the greatest accuracy consistently for each class, the overall accuracy is larger 

than for the other methods when SMP varies from 0.3 to 0.9. The accuracy decreases 

when SMP reaches a certain value. Therefore, SMP was taken as 0.8 because it resulted 

in the greatest overall accuracy.  

In the second experiment, the complex environment makes mapping of the 

distribution of the bamboo class challenging. As can be seen, the overall accuracy of 

the MPk-NN method is the greatest, whereas the Bayesian method produced the 

lowest overall accuracy. Bamboos appear more in the DTC result since the bamboo 

class has the most training samples and this may affect the classification. Although 

the DTC method resulted in a greater producer’s accuracy than the other methods due 
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to more bamboos being classified, it produced the lowest user’s accuracy. The 

Bayesian and SVM methods allocate fewer objects to the bamboo class than the 

others. The producer’s accuracies of the bamboo class are rather low, but the user’s 

accuracy is 61.29% using the SVM method, which is greater than for most methods. It 

indicates that most locations identified as bamboo using the SVM method are correct, 

but high omission errors occur, most probably missed in the coniferous area.  

The k-NN method, interestingly, does not produce a greater accuracy than the other 

non-contextual classification methods (in contrast to the first experiment). The gk-NN 

and MPk-NN methods increased the accuracy of the bamboo class compared to the 

k-NN method due to the introduced spatial weightings. For the MPk-NN method, the 

user’s accuracy of bamboo is above 65%, which is greater than for the other methods. 

However, the producer’s accuracies for coniferous woodland are lower using the three 

k-NN methods than for the Bayesian, DTC, and SVM methods. More bamboos are 

mixed with the large patch of coniferous woodland in the lower right part of the 

image in the three k-NN results and this may be one reason for the lower coniferous 

woodland accuracy. The average accuracies of the broadleaved class are all above 

80%, and the three k-NN methods produced a greater accuracy for mixed woodland 

than the other methods. MPk-NN produced the greatest accuracies for bare land and 

shadows. The spatial distributions of the bamboo, bare land and shadows classes are 

sparse and isolated, whereas the coniferous, broadleaved and mixed woodland classes 

have more connected distributions. Generally, the MPk-NN method increased the 

accuracy of the k-NN classifier targeted to those sparsely distributed classes. This is 

because the spatial weighting derived using MPS can work effectively for small areas, 

and strengthen the available spatial information by counting replicates of the observed 

spatial patterns. 

 

4 Discussion 

4.1 Choosing appropriate datasets  

The technique proposed here is a general LCLU classification scheme based on the 

OBIA approach, and it is applicable to the same scenarios to which one would apply 

the standard OBIA approach. The prime requirement for the OBIA approach is that 

the LCLU objects of interest are resolvable given the spatial resolution of the imagery. 

Specifically, the relationship between the object sizes and the spatial resolution 

dictates whether the technique is appropriate for a given LCLU classification task. 

The actual spatial resolution of the imagery is important only in relation to the objects 

of interest, and in this sense, the technique is applicable to a broad range of LCLU 

applications and types of imagery with different spatial resolutions.  

In the two examples in this paper the technique was demonstrated on images with a 

very fine spatial resolution. In one case, the objective was to classify an urban area in 

Beijing in which the classification of building objects was a component of the task, 
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and in the other case the objective was to classify a vegetated area in Sichuan 

Province, China in which the classification of areas of bamboo (as spatial objects) was 

a component of the task. In both cases, the spatial resolution was chosen to be 

sufficiently fine to resolve the (multiple) objects of interest.  

The benefits of undertaking two different experiments are that the new approach is 

tested in two very different contexts, with different land cover types and using images 

with different spatial resolutions. However, the technique would be equally applicable 

to classification where the objects of interest were much larger and, thus, the 

appropriate spatial resolution was much coarser. For example, the classification of 

tropical rainforest across the whole of the Amazon Basin, including the identification 

of deforested areas, would require a coarser spatial resolution depending on the 

specific requirements, for example, the 250 m spatial resolution of the Moderate 

Resolution Imaging Spectrometer (MODIS). Thus, although the two specific 

examples required fine spatial resolution imagery, this need not be the case in 

alternative applications. In this sense, the MPS-based OBIA approach proposed here 

is as general as the popular OBIA approach and should be of utility in a wide variety 

of applications that require LCLU mapping.  

4.2 Training image analysis 

An open question in MPS is how best to select the training image. Here, a 

pre-classified map produced using the wk-NN method was selected as the training 

image. Using a pre-classified map as a training image is not a common choice in MPS. 

However, it should be noted that the MPk-NN method does not use this pre-classified 

map as a starting point for further updating. It only borrows spatial structure 

information, at varying spatial resolutions, from the pre-classified map to update the 

gk-NN classified map. Therefore, extraction of spatial structures from the training 

image is similar to a post-processing operation. In this sense, which classifier is used 

to produce the map for training is of little concern. In fact, training images produced 

manually or from different sources have been used in many studies related to MPS. 

Here, we used a previously classified image as the training image to avoid introducing 

new data. This has the advantages of providing a fair comparison with the benchmark 

methods and, at the same time, increasing the interpretability of the results.  

A test was performed to show the effects of the training image on the MPk-NN result. 

Only experiment I was tested since it involved more reference data. In the worst 

situation, a training image with the simplest spatial pattern was used, which honours 

only the proportions of the four classes, but does not reflect the spatial distribution 

(Figure 9a). Another training image used is a subscene of the IKONOS image. It was 

classified and revised manually to represent a similar class distribution to that of the 

study area (Figure 9b). The accuracy of the corresponding MPk-NN result using the 

first training image is 80.07%, equalling the accuracy of the gk-NN method, which 

means that no additional useful information was provided by this training image. The 

second training image led to an accuracy of 86.58% for the MPk-NN result. Here, the 

increased accuracy arises from the spatial structure of the training image representing 
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a new area, rather than from a pre-classified image of the same area.  

4.3 Multiple-point probability 

The data event determined by the shape of the template and the k-NN classes 

represents a certain type of spatial distribution. The frequency of the data event is then 

converted to spatial information that affects the k-NN classifier combined with 

spectral information. The spatial information of MPS is, thus, different from the 

spatial covariance provided by traditional geostatistics in three ways. Firstly, the 

multiple-point probability is not estimated as a function of distance. Thus, data values 

may have a large effect via the spatial weighting, even if the k-NN nodes are far from 

the central segment in geographical space. Secondly, the spatial covariance measures 

the spatial correlation between the central segment and one of its k-NN nodes at one 

time; MPS summarises the correlation of the central segment and all of its k-NN 

nodes. Finally, the weight factor SMP accounts for more weight than Sg; so if SMP is too 

large it may reduce the accuracy.  

It is of interest to explore the patterns captured using the data template. Figure 10 

shows the categorical maps in experiment I, in which the classes correspond to the 

maximum multiple-point probabilities, with multi-grid level L equal to 1, 2 and 3. 

Since the image used for training is of the same area, one potential problem is that 

scanning the training image leads to a high frequency of matches within the spatial 

extent of the object where the data template is defined. In this case, replicates of the 

data event can be found only using the original data template (Figure 10a). Thus, the 

multi-grid template was used to check if spatial information can be captured when 

changing the shape (size) of the data template. It can be seen that although replicates 

of data events were not found in some places, the pattern generally shows a similar 

distribution to that of the classification maps. Most places without matched data 

events are shadows in Figure 10b and c. This is because shadows are isolated and 

account for only a small proportion of the total area and, thus, can easily be missed by 

a smaller template. This problem is avoided when applying MPk-NN at the pixel level. 

Another alternative to this problem is to reduce the K value for the data template to 

relax the matching conditioning. 

 

5 Conclusion 

The research presented here explored the potential of MPS for spatially weighting a 

remote sensing classifier generally and, in the present case for the first time, for the 

highly popular OBIA classification. A multiple-point statistical k-NN classification 

method was tested on remote sensing images of an urban area and a mountainous area. 

The MPk-NN classifier borrows spatial structure from multiple parts of a training 

image to condition the classification of an input image. The proposed method can 

account for spatial correlation at multiple points simultaneously, in contrast to 

common spatial weighting schemes, which are limited to two-point statistics. The 



14 

 

experiments demonstrated the advantage of the MPS approach compared to a 

geostatistical weighting. Specifically, the results demonstrate that greater 

classification accuracy can be achieved using the proposed new weighting scheme 

compared to five alternative methods. Future research should be directed towards: (i) 

analysis of the choice and nature of training image; (ii) the method of conversion from 

objects to points to support location- and distance-based spatial weighting and (iii) 

development of a self-adaptive method for parameter estimation. 
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Figures and Tables 

 

Figure 1. A cross-shaped data template extracts data events from a training image. 

  

(a) Template and data event     (b) Training image            (c) Matched data event 
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Figure 2. Data template construction and multi-grid data template (L = 3). 
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Figure 3. Flowchart representing object-based MPk-NN classification. 
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Figure 4. Image of study area and sample points in Beijing: (a) IKONOS image (true 

colour composite) and reference data, (b) training segments selected for classification, 

(c) training points for geostatistical modelling (unit: pixel).  
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Figure 5. Image of study area and sample points in Wolong: (a) WorldView-2 image 

of Dengsheng Ditch (true colour composite), (b) training sample segments, and (c) 

reference data. 
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Figure 6. Classification in Beijing using six methods: (a) Bayesian, (b) DTC, (c) SVM, 

(d) k-NN, (e) gk-NN, and (f) MPk-NN. 
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Figure 7. Classification in Wolong using six methods: (a) Bayesian, (b) DTC, (c) 

SVM, (d) k-NN, (e) gk-NN, and (f) MPk-NN. 
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Figure 8. Plots of accuracies against SMP weighting between 0.1 and 0.9 for the 

classification in Beijing. 
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Figure 9. Different training images: (a) the simplest pattern, and (b) a classified subset 

of the IKONOS image. 
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Figure 10. Categorical maps corresponding to the maximum multiple-point 

probability in Beijing, with different multi-grid levels: (a) L = 1, (b) L = 2 and (c) L = 

3. 

 

 

  



27 

 

Table 1. Classification accuracies of the Bayesian, DTC, SVM, k-NN, gk-NN and 

MPk-NN methods in Beijing. Class name: 1-buildings, 2-vegetation, 3-road/bare land, 

4-shadow. 

Method Class 
User’s 

accuracy (%) 

Producer’s 

accuracy (%) 

Overall 

accuracy (%) 

Kappa 

coefficient 

Bayes 

1 51.85 53.85 

70.65 0.599 
2 95.65 100 

3 58.95 65.88 

4 100 65.96 

DTC 

1 70.51 70.51 

75.72 0.671 
2 96.08 74.24 

3 66.67 72.94 

4 79.63 91.49 

SVM 

1 31.82 8.97 

67.03 0.550 
2 96.97 96.97 

3 48.25 81.18 

4 100 95.74 

k-NN 

1 65.59 78.21 

80.07 0.731 
2 98.44 95.45 

3 71.23 61.18 

4 97.83 95.74 

gk-NN 

1 62.39 87.18 

80.07 0.731 
2 98.46 96.97 

3 77.19 51.76 

4 100 95.74 

MPk-NN 

1 93.42 91.03 

94.93 0.931 
2 94.29 100 

3 93.98 91.76 

4 100 100 

  



28 

 

Table 2. Classification accuracies of the Bayesian, DTC, SVM, k-NN, gk-NN and 

MPk-NN methods in Wolong (Class name: 1-bamboo, 2-coniferous, 3-broadleaved, 

4-mixed woodland, 5-bare land, 6-shadow). 

Method Class 
User’s 

accuracy (%) 

Producer’s 

accuracy (%) 

Overall 

accuracy (%) 

Kappa 

coefficient 

Bayes 

1 46.67 33.33 

75.34 0.699 

2 75.86 81.48 

3 85.00 94.44 

4 76.09 77.78 

5 81.82 94.74 

6 85.19 85.19 

DTC 

1 52.17 57.14 

76.23 0.709 

2 76.67 85.19 

3 80.95 94.44 

4 79.41 60.00 

5 90.00 94.74 

6 100 77.78 

SVM 

1 61.29 46.34 

78.90 0.743 

2 73.21 82.00 

3 81.40 97.22 

4 87.18 75.56 

5 88.89 84.21 

6 87.10 100 

k-NN 

1 53.49 54.76 

77.58 0.727 

2 74.51 70.37 

3 81.40 97.22 

4 94.29 73.33 

5 94.44 89.47 

6 81.82 100 

gk-NN 

1 56.10 54.76 

78.92 0.743 

2 76.47 72.22 

3 83.33 97.22 

4 87.50 77.78 

5 89.47 89.47 

6 90.00 100 

MPk-NN 

1 65.71 54.76 

80.72 0.764 

2 80.00 81.48 

3 77.78 97.22 

4 85.37 77.78 

5 94.12 84.21 

6 90.00 100 
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Table 3. ANOVA for the classification methods in Beijing with respect to the 

MPk-NN method using F-test. 

Method F-ratio 
Significant at 90% level 

F-value 2.71 

Bayes 63.43 Yes 

DTC 43.71 Yes 

SVM 79.52 Yes 

k-NN 29.22 Yes 

gk-NN 29.22 Yes 

 


