
 

 

Spatial variation in cancer incidence and survival over time across Queensland, 

Australia 

 

Abstract 

 

Interpreting changes over time in small-area variation in cancer survival, in light of changes 

in cancer incidence, aids understanding progress in cancer control, yet few space-time 

analyses have considered both measures. Bayesian space-time hierarchical models were applied to 

Queensland Cancer Registry data to examine geographical changes in cancer incidence and relative 

survival over time for the five most common cancers (colorectal, melanoma, lung, breast, prostate) 

diagnosed during 1997-2004 and 2005-2012 across 516 Queensland residential small-areas. Large 

variation in both cancer incidence and survival was observed. Survival improvements were 

fairly consistent across the state, although small for lung cancer. Incidence changes varied by 

location and cancer type, ranging from lung and colorectal cancers remaining relatively 

constant over time, to prostate cancer dramatically increasing across the entire state. 

Reducing disparities in cancer-related outcomes remains a health priority, and space-time 

modelling of different measures provides an important mechanism by which to monitor 

progress. 
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1. Introduction 

With an estimated 14.1 million cancer cases diagnosed globally in 2012,1 the impact of 

cancer is felt worldwide. With wide variation in cancer incidence and survival not only 

between countries,1,2 but also within countries,3,4 there are important disparities depending on 

where people live. 

Quantifying and understanding the extent of small-area variation in cancer incidence and 

survival is becoming increasingly important, with government and other policy makers 

needing to make evidence-based decisions on resource allocation and planning interventions 

to address any known disparities. Consistent with this, an increasing number of small-area 

cancer atlases have been published, including those in Australia,5-7 USA8 and the UK.9   

There is great variation in the statistical approaches used in these Atlases. These methods 

range from direct estimation of area-specific age-standardised incidence rates5 through to 

modelling approaches incorporating smoothing such as Poisson kriging,10 empirical Bayes11 

or fully Bayesian methods.7 While each method has various benefits and disadvantages, some 

form of smoothing is often preferred to reduce spurious variation associated with very small 

area-specific counts.12 

We have previously demonstrated the extent of small area variation  in incidence and survival 

across the state of Queensland, Australia for around 20 of the most commonly diagnosed 

cancers.6 This cancer atlas highlighted  the extent of the geographical variability in incidence 

across Queensland, and how the survival outcomes were poorer in many of the more remote 

areas of the state. 

However, it was unclear how these geographical patterns in cancer incidence and survival 

have changed over time. Since the ability to understand whether the spatial patterns are 

changing over time and in what direction is critical to guide efforts to reduce existing 

disparities, we have examined how the geographical variation in cancer incidence and 

survival in Queensland has changed over time for the five most commonly diagnosed 

cancers. 

2. Methods 

Ethical approval to conduct this study was obtained from the Darling Downs Hospital and 

Health Service Human Research Ethics Committee (HREC/15/QTDD/57). 

2.1 Data and Analysis 

De-identified data on all cases of colorectal (ICD-O-313 C18-C20, C218), lung (ICD-O-3 

C33-C34), melanoma (ICD-O-3 C44 M872-M879), breast (ICD-O-3 C50) and prostate (ICD-

O-3 C61) diagnosed in Queensland during 1997 to 2012 was obtained from the population-
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based Queensland Cancer Registry (QCR). All non-keratinocytic cancers diagnosed are 

notifiable by law.  

The patient’s address at diagnosis was geocoded within the QCR, and assigned to one of 516 

residential Statistical Area 2s (SA2s) based on the 2011 Australian Statistical Geography 

Standard (ASGS) boundaries.14 SA2s with an average population below 5 during 1997-2012 

were considered to be non-residential and were excluded (n=10). In 2011, the median 

population of a residential SA2 was 7996 (range:7 to 29,641). Cases with insufficient 

information to determine the SA2 at diagnosis were excluded. 

The study cohort included those diagnosed with an invasive cancer and aged 15-89 years at 

diagnosis. Cases diagnosed through death or autopsy were excluded. Year of diagnosis was 

split into two diagnostic time periods: 1997-2004 and 2005-2012. 

The QCR routinely conducts data linkage with the Australian National Death Index to 

determine the survival status of all cancer patients. Survival time (in days) was provided by 

the QCR, with follow-up of all patients to 2013. For the survival analyses, cases were 

censored at the earliest of five years from diagnosis or the specified censoring date, which 

was 31 December 2005 for the 1997-2004 cohort and 31 December 2013 for the 2005-2012 

cohort.  

As is the case for most population-based cancer survival studies, we used relative survival to 

estimate net survival. Since it compares the cohort mortality against the population mortality, 

relative survival has the advantage over cause-specific survival in not requiring cause of 

death information.15  

To calculate the SA2-specific population mortality rates, unit record file death data were 

obtained from the Australian Bureau of Statistics (ABS) (for deaths from 1997 to 2005)16 and 

the Australian Coordinating Registry (2006-2013).17 Corresponding population data for each 

SA2, 5-year age group and sex was obtained from the Australian Bureau of Statistics (ABS) 

for 1997-2013. Concordance files provided by the ABS were used to adjust all the 

geographical information to the 2011 ASGS SA2 boundaries. To account for the low 

numbers of deaths in some SA2, single year age, sex and year categories, a smoothing 

process was used to increase the stability of the expected mortality. Briefly, population and 

mortality data for each SA2 were aggregated into strata comprising three time periods (1997-

2002, 2003-2008, 2009-2013), by 5-year age group (to 90+ years) and sex.  Neighbouring 

SA2s were identified based mainly on shared boundaries, although islands included nearby 

mainland areas. “Smoothed” population mortality rate estimates for specific SA2s by strata 

group were then calculated by combining the SA2-specific mortality and population with the 

corresponding data from all neighbouring areas. These smoothed estimates were then 

expanded so the same mortality rate was assigned to each single year age, single calendar 
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year, sex and SA2 within any given 5-year age group, 5-year or 6-year calendar time period, 

sex and SA2. These smoothed estimates were used in both the non-Bayesian and Bayesian 

relative survival models. 

 

2.2 Incidence models 

To examine changes in cancer incidence over time, a Bayesian space-time model based on 

that introduced by Bernardinelli et al.18 was used. A Poisson distribution:  

𝑂𝑖𝑗~Poisson(𝜃𝑖𝑗𝐸𝑖𝑗) 

forms the foundation of this model, where 𝑂𝑖𝑗 are the observed new cancer cases in 

i=1,2…516 areas and j=1,2 time periods (representing 1997-2004 and 2005-2012), 𝜃𝑖𝑗 is the 

corresponding modelled standardised incidence ratio (SIR) and 𝐸𝑖𝑗  represents the age- and 

sex-standardised expected counts. The log of the modelled SIR can then be written as: 

log(𝜃𝑖𝑗) = 𝛼 + 𝜆𝛿𝑗 + 𝑠𝑖𝛿𝑗 + 𝑢𝑖 + 𝑣𝑖 

and each of these parameters were given prior distributions. The intercept term 𝛼 and 

coefficients 𝜆 for the jth time period indicator 𝛿 have vague normal priors, 𝑢𝑖 (structured 

spatial variation) and 𝑠𝑖 (the differential trend) are assumed to follow an intrinsic conditional 

autogressive (CAR) prior with neighbours assigned based largely on geographically adjacent 

boundaries (since islands included the closest mainland areas as neighbours), and 𝑣𝑖 

represents unstructured spatial variation, with a vague normal distribution for each of 𝑖 areas. 

Additional details on the prior distributions are provided in Supplementary Table S1.   

Since the expected counts were standardised by age and sex, these variables were not 

included in this model. 

 

2.3 Relative survival models 

Recently, we introduced a Bayesian space-time flexible parametric relative survival model.19 

This approach had many advantages over Poisson-piecewise based models, including the 

feasibility of including individual-level data, time-varying components and complex 

interactions.20  

Consider that the dth individual (d=1,…D) with covariate 𝑥𝑑 lives in area i (represented as 

i[d], similar to Gelman and Hill21), then the space-time relative survival model can be written 

as: 

ln(− ln 𝑅𝑖𝑗(𝑡)) = ln(Λ(𝑡)) =  ln(Λ0(𝑡)) + x𝑑β + 𝜆𝛿𝑗 + 𝑠𝑖[𝑑]𝛿𝑗 + 𝑢𝑖[𝑑] + 𝑣𝑖[𝑑] 
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where 𝑅𝑖𝑗(𝑡) is the relative survival function for the ith area (i=1,…516), and jth time period 

(1,2 representing cases diagnosed in 1997-2004 and 2005-2012, respectively), Λ(t) is the 

cumulative excess hazard, Λ0(t) is the cumulative baseline excess hazard (the cumulative 

excess hazard when all covariates are 0) and β= [𝛽1, … , 𝛽𝐾] and represents the vector of 

coefficients relating to covariates x𝑑 = [x𝑑1
, … , x𝑑𝐾

]. The indicator variable for the jth time 

period is 𝛿𝑗, the overall temporal change is represented by 𝜆, and 𝑠𝑖[𝑑] is the difference in 

excess mortality between the overall time change and the ith area. 

Note that the cumulative excess hazard is composed of two terms,  

Λ(𝑡) = H(t) − H∗(t) 

where H(t) is the overall cumulative hazard, based on all deaths within the cohort, and H∗(t) 

is the cumulative expected hazard, obtained from the population mortality estimates.  

This model is based on the Weibull distribution, but the cumulative excess baseline hazard 

Λ0(t) is flexibly modelled using restricted cubic splines as a function of log time. The spline 

component enables flexible parametric models to fit the data better than parametric models.22 

Provided at least one interior knot is specified, the spline includes a constant term (𝛾0), a 

parameter with a linear function of log time (𝛾1), and, for each subsequent interior knot 

m=1,…,M, a basis function (𝑧𝑚(𝑡)) with associated parameter(𝛾𝑚+1). The model can thus be 

written as: 

ln(− ln 𝑅𝑖𝑗(𝑡)) = 𝛾0 + 𝛾1 ln(𝑡) . . , +𝛾𝑀+1𝑧𝑀(𝑡) + x𝑑β + 𝜆𝛿𝑗 + 𝑠𝑖[𝑑]𝛿𝑗 + 𝑢𝑖[𝑑] + 𝑣𝑖[𝑑] 

The covariates included in the model were age (centred continuous spline terms) and sex 

(males, females) for lung, colorectal, and melanoma.  

 

Each model parameter was given a prior distribution, with vague normal distributions 

assumed for 𝛾𝑚, β, 𝜆 and 𝑣𝑖[𝑑], while 𝑢𝑖[𝑑] and 𝑠𝑖[𝑑] were each given an intrinsic CAR prior with 

neighbours again based largely on shared boundaries (see Supplementary Table S1 for details on 

prior distributions).   

 

2.4 Model assessment 

All incidence and survival models were run as single chain Markov chain Monte Carlo 

(MCMC) in WinBUGS v1.4.3 interfaced with Stata v14.2. Running a single chain for an 

extended time adequately enables convergence assessment, and has theoretical justification.23  

Incidence and survival models discarded the first 70,000 iterations and monitored a further 

50,000 iterations, keeping every 10th iteration to reduce the autocorrelation. 
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Convergence of the MCMC estimates was assessed graphically via trace plots and segment 

histograms for a subsample of areas with low populations (𝑠𝑖 , 𝑢𝑖 , 𝑣𝑖), as well as all 𝛼, β, 𝜆 and 

𝛾𝑚 terms. Autocorrelation was also graphically assessed. The Geweke diagnostic24 was used 

to monitor convergence on all parameters, and is calculated as the difference between the 

means for the first 10% of iterations and the final 50% of iterations, divided by the 

asymptotic standard error of the difference. An estimate with a Geweke p-value below 0.01 

was considered unlikely to have converged. Convergence diagnostics for colorectal cancer 

are available in Supplementary Figures S1 to S2. 

Relative survival models were first run in Stata using the stpm2 command with just the fixed 

effects (𝛾𝑚, β, 𝜆) to enable determination of model components, before running the full 

Bayesian model in WinBUGS. Since these initial models required population mortality data, 

the ‘smoothing’ was carried out prior to running the full Bayesian model. Likelihood ratio-

tests and plots of predicted hazard components were used to determine which variables to 

include as time-varying components. The preferred number of knots for the restricted cubic 

splines (for centred continuous age, the baseline hazard, and any time-varying components) 

was selected based on Bayesian information criterion (BIC) values, as well as plotting the 

predicted hazard function. Details on the final model specifications are shown in 

Supplementary Table S2. Estimates for the 𝛾𝑚, β, and 𝜆 terms from WinBUGS were checked 

against the estimates using the corresponding survival model in Stata and found to be similar 

for all five types of cancer. 

 

Sensitivity analyses considered two vague distributions on the hyperprior variance 

component 𝜎2 for 𝑣𝑖[𝑑], 𝑢𝑖[𝑑] and 𝑠𝑖[𝑑] by comparing their impact on the final estimates. 

Models were run for the following options: 

1. Gamma distribution (shape, scale) on the precision, 
1

𝜎2 ~Γ(0.1,100) 

i. CAR distribution on 𝑠𝑖 and 𝑠𝑖[𝑑] 

ii. Vague normal distribution on 𝑠𝑖  and 𝑠𝑖[𝑑] 

2. Uniform distribution (minimum, maximum) on the standard deviation, 

𝜎~U(0 ,20) 

i. CAR distribution on 𝑠𝑖 and 𝑠𝑖[𝑑] 

ii. Vague normal distribution on 𝑠𝑖  and 𝑠𝑖[𝑑] 

Although similar estimates were obtained under both distributions, option 1.i with the CAR 

distribution on the differential trend component was selected since it improved convergence 

of estimates (see Supplementary Figures S1-S2).  

 

2.5 Visualisation 
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Maps were generated using MapInfo Pro v15.0. As the majority of SA2s are located in the 

urbanised south-east corner, this region is magnified on maps using an oval inset. The 

estimates used in the maps were the median of the posterior distributions calculated as 

follows: 

 SIR for 1997-2004: exp(𝛼 + 𝑢𝑖 + 𝑣𝑖) 

 SIR for 2005-2012: exp(𝛼 + 𝜆𝛿𝑗 + 𝑠𝑖𝛿𝑗 + 𝑢𝑖 + 𝑣𝑖) 

 Change in SIR between 1997-2004 and 2005-2012: exp(𝜆𝛿𝑗 + 𝑠𝑖𝛿𝑗). 

Likewise, the adjusted relative survival estimates were calculated as excess hazard ratios 

(EHRs) as follows: 

 EHR for 1997-2004: exp(𝑢𝑖[𝑑] + 𝑣𝑖[𝑑]) 

 EHR for 2005-2012: exp(𝜆𝛿𝑗 + 𝑠𝑖[𝑑]𝛿𝑗 + 𝑢𝑖[𝑑] + 𝑣𝑖[𝑑]) 

 Change in EHR between 1997-2004 and 2005-2012: exp(𝜆𝛿𝑗 + 𝑠𝑖[𝑑]𝛿𝑗) 

For the second time period of 2005-2012, the baseline reference for the SIR and EHR was the 

1997-2004 Queensland average. This meant that any of the maps with an average value (set 

to 1) had a similar incidence/excess risk of death within five years of diagnosis as the 

Queensland average during 1997-2004. 

The same five categories were used across all maps to enable meaningful comparisons 

between the maps. These were deliberately selected to be wide, to reduce the likelihood of 

detecting spurious changes. Cut-points of 10% and 30% above the average (=1) estimate 

were selected (1.1 and 1.3 respectively), while the corresponding lower cut-offs were the 

inverse of these values (0.91 and 0.77). 

The 80% credible intervals (CrIs) typically provide sufficient coverage of the posterior 

distributions generated from a well-fitting Bayesian model,25 so are generally considered to 

correspond to the standard 95% confidence intervals reported in non-Bayesian analyses. 

Graphs of the 80% CrIs with the interval shading demonstrating the mapped colour of the 

median SIR/EHR estimate for each SA2 are provided in Supplementary Figures S3-S7. The 

graphs for 2005-2012 estimates also show the median SIR/EHR estimate for each SA2 during 

1997-2004 as a grey dot, showing changes in the median estimate for each SA2. 

Maps showing ‘convincing’ changes over time were also generated, and these were based on 

the 80% credible intervals for exp(𝜆𝛿𝑗 + 𝑠𝑖𝛿𝑗) or exp(𝜆𝛿𝑗 + 𝑠𝑖[𝑑]𝛿𝑗) being above one 

(increase), below one (decrease), or, if it included one it was considered equivocal. These 

maps in Figure 2 show which areas are likely to have experienced change between the time 

periods, while the maps of median estimates (Figures 1 and 3) focus on the magnitude of 

changes. 
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3. Results 

 

3.1 Incidence 

During 2005-2012, there were almost 112,000 new diagnoses of the five most common 

cancers among our study cohort (Table 1). This was an increase of almost 31,000 new cases 

diagnosed compared to 1997-2004. Across total Queensland, incidence rates were lower for 

colorectal cancer in the later time period but higher for prostate cancer (Table 1). The age-

standardised incidence rates for breast, lung and melanoma remained reasonably similar over 

the two time periods, with overlapping 95% confidence intervals. These findings were also 

reflected in the overall modelled time trends, although the small increase in breast cancer 

incidence was considered convincing in the modelled results with the 80% credible interval 

not including one (Table 1). Details on all modelled parameter estimates are available in 

Supplementary Table S3. 

There was marked variation in cancer incidence across residential areas in both time periods 

for the five cancer types (Figure 1). The incidence of most cancer types was lower in the 

more rural and remote areas further away from the east coastline, particularly between 1997 

and 2004. The exception was lung cancer, in which the incidence was generally higher in 

more remote areas, although some urban areas in the south-east corner of the state also had 

higher incidence in both time periods.  

The patterns of change over time differed by cancer type and geographic location (Figures 1 

and 2).  In the majority of areas, colorectal cancer was relatively stable. Only 5 areas showed 

a convincing increase between the two time periods in colorectal cancer incidence, while 67 

areas decreased (Figure 2). While more areas changed over time for melanoma incidence (67 

areas increased, 62 areas decreased), these patterns depended on broad location with 

melanoma incidence rates tending to decrease in more remote areas, but increase in south-

eastern and coastal northern Queensland areas. There was more stability in lung cancer 

incidence rates between the two time periods, with only 15 areas showing a decrease and 13 

areas an increase. In contrast, the predominant pattern for breast (100 areas increased, 4 

decreased) and prostate cancer (477 increased, 0 decreased) was for the incidence rates to 

increase between the two time periods. Again, this pattern varied by geographic location, 

with the increase in breast cancer incidence being predominately around northern and western 

Queensland, while the increases for prostate cancer incidence were larger and more 

widespread. 

3.2 Survival 

The five-year relative survival for cancers diagnosed during 2005-2012 ranged from 16.5% 

(lung) to 94.6% (prostate) (Table 1). For all cancers except melanoma, this represented an 
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increase in survival from those diagnosed during 1997-2004. After adjustment for age and 

sex (where applicable), the increase in survival across total Queensland for all five cancers 

was statistically convincing (Table 1). Prostate cancer showed the greatest change, with the 

risk of death within 5 years almost halving, while the reduction for lung cancer (8% decrease) 

was smallest. Details on all modelled parameter estimates are available in Supplementary 

Table S3. 

For each individual cancer type diagnosed in 1997-2004, there was wide geographical 

variation in the median risk of dying from that cancer within 5 years of diagnosis (Figure 3). 

However, the pattern of geographical variation was consistent across the cancer types, with 

the excess risk of death within 5 years of diagnosis being lower in the south-east corner of the 

state, and higher in the other western and northern areas. 

Between 1997-2004 and 2005-2012, the predominant pattern was for the median survival to 

increase across most areas (Figures 2 and 3). This meant that many areas with cancers 

diagnosed during 2005-2012 had a reduced excess risk of death within 5 years of diagnosis 

(Figure 3).  

Every SA2 showed a convincingly decreased risk of death within 5 years for breast cancer, 

and almost every area for prostate and colorectal cancers (Figure 2). Even lung cancer had 

convincing decreases (albeit generally small) in 342 areas. Of these, the change ranged from 

5% to 15% lower risk of death than during 1997-2004, so many were not noticeable when 

reporting the median risk estimates in Figure 3. Melanoma likewise had widespread 

decreases across the state (Figure 3), but only 266 areas were considered to have convincing 

decreases (Figure 2).  In comparison, the large changes in prostate cancer over time, ranging 

from 28% to 60% lower excess risk of death within 5 years compared to those diagnosed 

during 1997-2004, meant that there was no inconsistency between the different maps.  

4. Discussion 

In Queensland, the risk of a cancer diagnosis or cancer-related death varies by residential 

location. This is true for all five of the most commonly diagnosed cancers, whether diagnosed 

during 1997-2004, or during 2005-2012. The general improvement in survival over most 

areas between the two time periods means that geographical disparities have remained. This 

suggests that it is not sufficient to just ensure that diagnostic and management strategies are 

equivalent across the state, rather reasons for the disparities need to be understood to develop 

geographically focused strategies to ensure that the cancer-related outcomes are equivalent 

across the state. 

Of the five cancer types examined, prostate cancer showed the greatest and most consistent 

improvement in survival across all areas of the state between the two time periods, coinciding 

with similar consistent increases in incidence. This pattern supports the hypothesis of an 
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impact of prostate specific antigen (PSA) testing, in that the subsequent overdiagnosis of 

localised prostate cancers leads to increased incidence and artificially increased survival due 

to lead-time bias. While it has been shown that the use of PSA testing is higher in capital 

cities of Australia compared to the rest of the country,26 the testing rate increased in both 

areas. However, the recent  release of guidelines recommending a reduction in the use of 

PSA27 may impact future spatial and temporal patterns. 

Breast cancer also showed large survival improvements, with incidence generally increasing, 

particularly in more remote areas. All women aged between 50-69 years were eligible for 

publicly-funded mammography screening every 2 years throughout the time period 

examined, and nationally participation remained around 55% consistently, with variation by 

remoteness (lowest participation in very remote areas, highest participation in outer regional 

areas).28 Breast cancer treatment has also improved29 and the rural mobile mammography 

services went digital in 2009.30 

Melanoma likewise showed large, albeit rather uncertain, improvements in survival, with 

incidence increasing only among certain regions in northeastern and southeastern 

Queensland, and decreasing elsewhere. As regular skin checks can assist in early detection, 

the lower diagnosis rate of melanoma in more remote areas suggests the availability of skin 

checking services might be influencing incidence patterns. It is possible the survival 

improvements are driven more by improved therapies. For advanced melanoma, there have 

been recent advances in targeted therapies and immunotherapies.31  

In contrast, the decrease in colorectal cancer incidence was observed over most areas of 

Queensland, yet survival improvements were consistent over the state. In contrast to prostate 

cancer, screening for colorectal cancer through FOBT testing is designed to detect pre-

cancerous polyps, which, if found and removed, would result in lower incidence. However, 

the participation in the national colorectal cancer screening program since it was introduced 

in 2006 has been low, particularly among remote areas,32 so it is unlikely to have impacted on 

the observed results. Targeted therapies have also become available for advanced colorectal 

cancer,33 and it is possible they may be influencing the improved survival. 

The almost negligible change in lung cancer incidence over the two time periods is likely a 

result of combing both males and females with their contrasting incidence trends.34 Survival 

improvements, although often convincing, were small in magnitude, reflecting that lung 

cancer is often diagnosed at a later stage and there have been limited improvements in 

treatment during the time periods examined.35 

Other Bayesian space-time models have been developed and applied to cancer incidence data, 

including age-period-cohort,36,37 dynamic38,39 and mixture models.40 Age-period-cohort 

models can be useful when strong cohort effects are expected, such as for lung cancer, but 
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assume minimal migration between areas. In contrast, mixture models are focused on 

detecting disparate areas which will not be smoothed over, while dynamic models are more 

useful when there are many time periods involved. In this analysis, we expected neighbouring 

regions to have similar outcomes, so did not use a model that allowed for disparate changes. 

Others have examined different forms of interactions between spatial and temporal 

components,41,42 but as we only had two time components, this was not investigated. 

However, when several time periods are available, some form of correlation across time 

should be considered. 

The choice of intervals for maps requires careful consideration, since different intervals can 

lead to different interpretation. For this reason we presented maps showing the median 

estimates for each SA2 (categorised into five groups), as well as those areas with a 

convincing difference to the Queensland average (based on 80% credible intervals). Both 

maps have different but complementary purposes. The median captures the magnitude of the 

difference, although ignores the level of uncertainty, while the statistically convincing 

changes captures areas we are confident do differ to some extent from the average, without 

quantifying the magnitude of that difference. We acknowledge that there are many other 

ways of defining and visualising the magnitude, significance and uncertainty of spatial 

estimates, and the optimal methods of presenting static and dynamic disease maps continues 

to be an active field of research.43  

Within the Bayesian framework, convergence, sensitivity and identifiability of model 

parameters need to be considered. We divided the residual component into three terms: 𝑠𝑖, 𝑢𝑖 

and 𝑣𝑖. It is recognised that spatial models are often unable to identify even two separate 

terms (𝑢𝑖 and 𝑣𝑖),
44 and given our specific interest in the differential trend component 𝑠𝑖, we 

chose to place a stronger hyperprior distribution on the variance for these three terms to aid in 

identifiability.  

Interpreting the driving factors behind geographical variation and changes in incidence and 

survival is difficult without information about tumour stage at diagnosis. Currently the 

Queensland Cancer Registry does not record stage at diagnosis for all cancers, although a 

broad measure of spread of disease is available for breast cancer45 and stage for colorectal 

cancer estimated using pathology forms.46 For consistency across cancers, the impact of stage 

was not examined in this study. However, our previous work has found that differences in 

stage at diagnosis was the key driver of poorer breast cancer survival among more remote 

areas, while for colorectal cancer, factors related to the time after diagnosis played a greater 

role in the survival disparities.20 

Other limitations included the lack of treatment information, and the substantial computation 

time involved in running the models through WinBUGS, especially for the more complex 

relative survival models which ranged from 11.5 hours for breast cancer to 20.5 hours for 
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prostate cancer on a dual CPU Quad Core Xeon E5520 computer. The use of emerging 

approximation methods, such as integrated nested Laplace approximation (INLA), is 

increasing within the spatial field, and offers much potential to reduce computation times 

although it does not have the flexibility of likelihood specification available in WinBUGS. 

 Strengths of this study include a high quality population-based cancer registry with full 

coverage of the cancers diagnosed among Queensland residents, the use of an innovative 

relative survival methodology that appropriately captures both spatial variation and temporal 

changes in that variation, and a population dispersed over areas of varying remoteness. 

In conclusion, our space-time analyses have provided unique insights into how the 

geographical patterns in cancer incidence and survival have changed over time in 

Queensland. While the improvements in survival are encouraging, the lack of reduction in the 

spatial variation between the two time periods means that cancer patients who live in specific 

geographical areas continue to experience poorer survival outcomes than those living in other 

areas. To reduce these disparities in outcomes, greater focus needs to be placed on 

understanding why these disparities occur, and then implementing appropriate interventions 

to address the barriers to equal outcomes.  

 

References 
1. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and 

Mortality Worldwide: IARC CancerBase No. 11 (http://globocan.iarc.fr). Lyon, France: International 

Agency for Research on Cancer, 2013. 

2. Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995-2009: 

analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 

countries (CONCORD-2). The Lancet 2015; 385(9972): 977-1010. 

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: A Cancer Journal for Clinicians 

2016; 66(1): 7-30. 

4. Australian Institute of Health and Welfare. Cancer in Australia: an overview, 2014. Canberra: 

AIHW, 2014. 

5. Public Health Information Development Unit. An Atlas of cancer in South Australia: a review 

of the literature and South Australian evidence of differences in cancer outcomes between 

metropolitan and country residents, and factors that might underlie such differences. Produced for 

Cancer Council SA. Adelaide: PHIDU, The University of Adelaide, 2012. 

6. Cramb SM, Mengersen KL, Baade PD. Atlas of Cancer in Queensland: geographical variation 

in incidence and survival, 1998 to 2007. Brisbane: Viertel Centre for Research in Cancer Control, 

Cancer Council Queensland, 2011. 

7. Bois JP, Clements MS, Yu XQ, et al. Cancer maps for New South Wales 1998 to 2002. 

Sydney: The Cancer Council NSW, 2007. 

8. National Cancer Institute. NCI GeoViewer. Rockville: NCI, Geographic Information Systems 

& Science for Cancer Control; 2015. p. https://gis.cancer.gov/geoviewer/. 

9. Quinn M, Wood H, Cooper N, Rowan S, editors. Cancer Atlas of the United Kingdom and 

Ireland 1991-2000. London: Office for National Statistics; 2005. 

10. Goovaerts P. Geostatistical analysis of disease data: estimation of cancer mortality risk from 

empirical frequencies using Poisson kriging. International Journal of Health Geographics 2005; 4: 

31-. 

http://globocan.iarc.fr/
https://gis.cancer.gov/geoviewer/


 

13 
 

11. Benach J, Yasui Y, Borrell C, et al. Atlas of mortality in small areas in Spain (1987-1995). 

Barcelona, Spain UPF/MSD, 2001. 

12. Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease 

mapping. Statistical Methods in Medical Research 2005; 14(1): 35-59. 

13. Fritz A, Percy C, Jack A, et al., editors. International Classification of Diseases for Oncology, 

third edition. Geneva: World Health Organization; 2000. 

14. Australian Bureau of Statistics. Australian Statistical Geography Standard (ASGS): Volume 1 

- Main structure and greater capital city statistical areas, July 2011. Canberra: ABS, 2011. 

15. Sarfati D, Blakely T, Pearce N. Measuring cancer survival in populations: relative survival vs 

cancer-specific survival. International Journal of Epidemiology 2010; 39(2): 598-610. 

16. Australian Bureau of Statistics. Unit record mortality data for Queensland by State of usual 

residence, 1982-2005. Canberra: ABS; 2007. 

17. Registries of Births, Deaths and Marriages, the Coroners and the National Coronial 

Information System. Unit record mortality data for Australia by State of usual residence, 2006-2011. 

Brisbane: Australian Coordinating Registry; 2014. 

18. Bernardinelli L, Clayton D, Pascutto C, Montomoli C, Ghislandi M, Songini M. Bayesian 

analysis of space-time variation in disease risk. Stat Med 1995; 14(21-22): 2433-43. 

19. Cramb SM, Mengersen KL, Baade PD. Spatio-temporal relative survival of breast and 

colorectal cancer in Queensland, Australia 2001–2011. Spatial and Spatio-temporal Epidemiology. 

20. Cramb SM, Mengersen KL, Lambert P, Ryan L, Baade PD. A flexible parametric approach to 

examining spatial variation in relative survival. Stat Med 2016: Epub ahead of print doi: 

10.1002/sim.7071. 

21. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models  

Cambridge: Cambridge University Press; 2007. 

22. Royston P, Lambert PC. Flexible parametric survival analysis using Stata: beyond the Cox 

model. College Station, Texas: StataCorp LP; 2011. 

23. Raftery AE, Lewis SM. [Practical Markov Chain Monte Carlo]: Comment: One Long Run 

with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo. Statistical Science 1992; 

7(4): 493-7. 

24. Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of 

posterior moments. In: Bernardo JM, Berger J, Dawid AP, Smith AFM, eds. Bayesian Statistics 4. 

Oxford: Oxford University Press; 1992: 169-93. 

25. Richardson S, Thomson A, Best N, Elliott P. Interpreting posterior relative risk estimates in 

disease-mapping studies. Environmental Health Perspectives 2004; 112(9): 1016-25. 

26. Baade PD, Youlden DR, Coory MD, Gardiner RA, Chambers SK. Urban-rural differences in 

prostate cancer outcomes in Australia: what has changed? Med J Aust 2011; 194(6): 293-6. 

27. Prostate Cancer Foundation of Australia & Cancer Council Australia. Clinical practice 

guidelines PSA Testing and Early Management of Test-Detected Prostate Cancer. Sydney: Cancer 

Council Australia, 2016. 

28. Australian Institute of Health and Welfare. BreastScreen Australia monitoring report 2013–

2014. Canberra: AIHW, 2016. 

29. Anampa J, Makower D, Sparano JA. Progress in adjuvant chemotherapy for breast cancer: an 

overview. BMC Med 2015; 13(1): 195. 

30. Russell B, Taylor A. Mobile digital breast screening: an evaluation of the Queensland 

experience. electronic Journal of Health Informatics 2012; 7(1): e3. 

31. Gavioli S, Bell J, editors. Understanding melanoma: a guide for people with cancer, their 

families and friends. Brisbane: Cancer Council Australia; 2015. 

32. Australian Institute of Health and Welfare. National Bowel Cancer Screening Program: 

monitoring report 2016. Cancer series no. 98. Cat. no. CAN 97. Canberra: AIHW, 2016. 

33. Bruce J, editor. Understanding bowel cancer: a guide for people with cancer, their families 

and friends. Sydney: Cancer Council Australia; 2015. 

34. Queensland Cancer Statistics On-Line. Viertel Cancer Research Centre, Cancer Council 

Queensland (qcsol.cancerqld.org.au/): Based on data released by the Queensland Cancer Registry 

(1982-2013; released December 2015), 2016. 



 

14 
 

35. Cheng TY, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The International 

Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J Thorac Oncol 

2016; 11(10): 1653-71. 

36. Lagazio C, Biggeri A, Dreassi E. Age-period-cohort models and disease mapping. 

Environmetrics 2003; 14(5): 475-90. 

37. Schmid V, Held L. Bayesian extrapolation of space-time trends in cancer registry data. 

Biometrics 2004; 60(4): 1034-42. 

38. Kim H, Oleson JJ. A Bayesian dynamic spatio-temporal interaction model: An application to 

prostate cancer incidence. Geographical Analysis 2008; 40(1): 77-96. 

39. Knorr-Held L, Besag J. Modelling risk from a disease in time and space. Stat Med 1998; 

17(18): 2045-60. 

40. Bohning D, Dietz E, Schlattmann P. Space-time mixture modelling of public health data. Stat 

Med 2000; 19(17-18): 2333-44. 

41. Abellan JJ, Richardson S, Best N. Use of space-time models to investigate the stability of 

patterns of disease. Environmental Health Perspectives 2008; 116(8): 1111-9. 

42. Musio M, Sauleau EA, Buemi A. Bayesian semi-parametric ZIP models with space–time 

interactions: an application to cancer registry data. Math Med Biol 2010; 27(2): 181-94. 

43. Kinkeldey C, MacEachren AM, Riveiro M, Schiewe J. Evaluating the effect of visually 

represented geodata uncertainty on decision-making: systematic review, lessons learned, and 

recommendations. Cartography and Geographic Information Science 2017; 44(1): 1-21. 

44. Eberly LE, Carlin BP. Identifiability and convergence issues for Markov chain Monte Carlo 

fitting of spatial models. Stat Med 2000; 19(17-18): 2279-94. 

45. Baade PD, Turrell G, Aitken JF. Geographic remoteness, area-level socio-economic 

disadvantage and advanced breast cancer: a cross-sectional, multilevel study. J Epidemiol Community 

Health 2011; 65(11): 1037-43. 

46. Krnjacki LJ, Baade PD, Lynch BM, Aitken JF. Reliability of collecting colorectal cancer 

stage information from pathology reports and general practitioners in Queensland. Aust N Z J Public 

Health 2008; 32(4): 378-82. 

 

 



 

15 
 

 

Table 1: Cohort incidence, survival and time changes by cancer type, persons, aged 15-89 years, Queensland 

 Incidence 
  

5-year relative survival 
  

 1997-2004 2005-2012 
Modelled 

change in 

SIR [80% CrI] 

1997-2004 2005-2012 
Modelled 

change in 

EHR [80% CrI]  N cases ASR [95% CI] N cases ASR [95% CI] RS [95% CI] RS [95% CI] 

Colorectal 17,628  63.9 [63.0,64.9] 21,953  61.2 [60.4,62.1] 0.96 [0.95, 0.97]  64.6 [63.2, 66.0] 70.2 [68.9, 71.4] 0.80 [0.77, 0.82]  

Melanoma 18,025  71.9 [70.8,72.9] 23,062  71.5 [70.5,72.4] 1.00 [0.99, 1.02] 94.7 [93.8, 95.6] 94.2 [93.4, 95.0] 0.86 [0.80, 0.93]  

Lung 12,129  43.9 [43.1,44.7] 15,624  43.2 [42.5,43.9] 0.99 [0.97, 1.00]  14.2 [13.1, 15.3] 16.5 [15.5, 17.6] 0.92 [0.90, 0.93]  

Breast (females) 16,621  127.7 [125.8,129.7] 21,583  130.1 [128.4,131.9] 1.04 [1.02, 1.05] 88.5 [87.4, 89.5] 91.0 [90.2, 91.8] 0.75 [0.71, 0.79] 

Prostate 16,711  126.5 [124.6,128.5] 29,691  171.8 [169.9,173.8] 1.34 [1.33, 1.36]  84.7 [83.1, 86.2] 94.6 [93.8, 95.4] 0.53  [0.49, 0.56]  

N=number, ASR=age-standardised rate, CI=confidence interval, CrI=credible interval, RS=relative survival, SIR=standardised incidence ratio, EHR=excess hazard ratio. 

Note than an 80% CrI is considered equivalent coverage to a 95% CI. 

Rates age-standardised to the WHO world 2000 standard population as modified by SEER. 

Relative survival is calculated using an unadjusted cohort analysis of the lifetable method. 

Change in EHR estimates have been adjusted for age and sex (where applicable). 
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Figure 1: Spatial variation in risk of diagnosis by cancer type, Queensland 
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Changes between 1997-2004 

and 2005-2012b  

Breast cancer, females 
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SIR=Standardised incidence ratio.  

The median posterior estimate is mapped. 

a. Results are in comparison to the Queensland average incidence in 1997-2004 (set to 1).  

b. Results for changes between time periods are in comparison to each individual SA2, so 1=the same incidence in that SA2 

during 1997-2004.  
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Figure 2: Convincing changes between 1997-2004 and 2005-2012 by cancer type, 

Queensland 
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Risk of diagnosis Excess risk of death within five 

years of diagnosis 

Lung cancer, persons  

  
Breast cancer, females 

  
Prostate cancer, males 

  
Notes: Convincing is defined as the 80% credible interval not including one. These estimates are for the risk of 

diagnosis/excess risk of death in 2005-2012 in comparison to each individual SA2 in 1997-2004.  
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Figure 3: Spatial variation in excess risk of death within five years of diagnosis by cancer 

type, Queensland, 1997-2012 
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1997-2004a 

 

2005-2012a  Changes between 1997-2004 

and 2005-2012b 

Breast cancer, females 

   
Prostate cancer, males 

   
EHR=Excess hazard ratio.  

The median posterior estimate is mapped. 

a. Results are in comparison to the Queensland average excess risk of death in 1997-2004 (set to 1).  

b. Results for changes between time periods are in comparison to each individual SA2, so 1=the same excess risk of death in 

that SA2 during 1997-2004.  


