THE NUMERICAL SOLUTION OF NONLINEAR EQUATIONS REPRESENTING CHEMICAL PROCESSES

by

Jorge Ricardo PALOSCHI July 1982

A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Membership of the Imperial College.

Department of Chemical Engineering and Chemical Technology,

Imperial College of Science and Technology,
London SW7

To Dorita, Richi, Moncho and Diego.

ACKNOWLEDGEMENT

I would like to express my gratitude to Dr J Perkins for his invaluable help and encouragement during the present work.

I am very grateful to the following institutions for the financial support received:

- Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)
- Universidad Nacional del Sur (Bahia Blanca - Argentina)
- United Nations Industrial Development Organisation.

The assistance received from the SPEEDUP team at Imperial College as well as the discussions held with D Bogle are particularly appreciated.

Finally, a last word of gratefulness for all those who made possible my coming to Imperial College: Ing M J Urbicain, Dr E Rotstein, Prof J R A Pearson and all my colleagues at Planta Piloto.

The solution of systems of nonlinear algebraic equations is a fundamental mathematical problem in steady state process design and simulation in Chemical Engineering. This thesis is related to this problem.

Some new ideas for implementing Quasi-Newton methods are discussed. In particular, a modification to Bennett's algorithm (to obtain an LU factorization of Jacobian approximations) is proposed to avoid numerical singularities.

Conditions for having scale invariant Quasi-Newton methods are presented as well as the convergence properties. Four scale invariant methods are proposed.

The problem of the numerical conditioning of Quasi-Newton methods is discussed and some ideas to improve it are proposed. In particular, an internal scaling procedure is devised.

All our proposals are tested and compared with others. For this a wide standard set of mathematical examples is used as well as Chemical Engineering flowsheeting examples.

CONTENTS

Page
CHAPTER 1: INTRODUCTION7
1.1 THE SEQUENTIAL MODULAR APPROACH 8
1.2. THE EQUATION ORIENTED APPROACH 12
1.3 MIXED APPROACHES 14
1.4 SOLVING SYSTEMS OF NONLINEAR ALGEBRAIC 16 EQUATIONS
CHAPTER 2: THE IMPLEMENTATION OF OUASI-NEWTON METHODS 26
2.1 RANK-ONE QUASI-NEWTON METHOODS 26
2.2 INPLEMENTATION OF ALGORITHM 1 28
2.2.1 The initial approximation to the 28
2.2.2 Evaluation of the step p_{k} 30
2.2.3 Choosing a suitable λ_{k} 31
2.2.4 Bounds on the variables 33
2.3 AVOIDING NUMERICALLY SINGULAR APPROXIMATIONS TO THE JACOBIAN 34
2.3.1 Bennett's algorithm 34
2.3.2 Proposed modification 36
2.3.3 Implementation 41
2.3.4 Example of use 46
2.4 NUMERICAL RESULTS 48
2.5 CONCLUSIONS 49
CHAPTER 3: SCALING AND QUASI-NEWTON METHODS 51
3.1 THE CONDITIONS FOR SCALE INVARIANCE 51
3.2 SCALE INVARIANT QUASI-NEWTON METHODS 54
3.3 CONVERGENCE RESULTS 59
3.4 NUMERICAL RESULTS 62
3.5 CONCLUSIONS 64
CHAPTER 4: THE NUMERICAL CONDITIONING OF QUASI-NEWTON METHODS 67
4.1. THE CONDITION NUMBER 67
4.2 QUASI-NEWTON METHODS AND THE CONDITION NUMBER 69
4.2:1 Optimizing the condition number using 70 - different methods
4.2.2 Qptimizing the condition number using 76 sçaling
Page
4.3 NUMERICAL RESULTS 80
4.4 CONCLUSIONS 81
CHAPTER 5: CHEMICAL:ENGINEERING EXAMPLES 83
5.1 THE SIMULATION PACKAGE SPEEDUP 83
5.2 FLOWSHEETING PROBLEMS 85
5.2.1 Small networks involving heat 85 exchangers
5.2.2 Cavett's process 91
5.2.3 Benchmark problems from EFCE CHEMCOMP 82 93
5.2.4 Nitric acid plant 98
5.2.5 Crude preheat train 98
5.2.6 Simple ethylene plant 100
5.3 NUMERICAL RESULTS 104
5.4 CONCLUSIONS 110
CHAPTER 6: CONCLUSIONS AND FUTURE WORK 111
REFERENCES 113
APPENDICES
A: THE SETS OF MATHEMATICAL EXAMPLES 117
B: DESCRIPTION OF THE CHEMICAL ENGINEERING PROBLEMS 122
C: LIBRARY OF MODELS FOR CHEMCOI 132
D: DETAILED RESULTS AND DATA FILE FOR SPEEDUP (IN ENCLOSED MICROFICHE)

CHAPTER 1

INTRODUCTION

The solution of systems of non-linear algebraic equations is a fundamental mathematical problem in steady-state process design and simulation in Chemical Engineering.

While we can study the problem from a mathematical point of view, specialized approaches have been developed for solving flowsheeting problems.

We will use a very simple chemical process, shown in Fig 1.1, in order to help the presentation of our discussion.

Fig 1.1 A simple chemical process

If we consider only a mass balance for our example, we can establish an approximate mathematical model for the process. Assume there are m chemical components involved in this process, we can then use vectors a_{i} of m components to represent the molar flows for stream i. For the mixer we can write m equations as

$$
a_{2}=a_{1}+a_{5}
$$

using vector arithmetic \mathbb{R}^{m}.

To represent the reactor we need an additional vector $s \in \mathbb{R}^{m}$ containing the stoichiometric coefficients for the particular reaction taking place plus a scalar γ representing the conversion factor of the key component (which we will assume is the first). With this we can write for the reactor

$$
a_{3}=a_{2}+\gamma\left(e_{1}^{\top} a_{2}\right) s
$$

which gives us another m equations.

Finally, if we use a vector p of m components to represent the fraction of the feed to the separator going as product, we can write

$$
\begin{aligned}
& a_{5}=a_{3}-a_{4} \\
& a_{4}=p \cdot a_{3}
\end{aligned}
$$

where the vector operation $p \cdot a_{3}$ means the arithmetic product of the components, ie

$$
e_{i}^{T}\left(p \cdot a_{3}\right)=\left(e_{i}^{\top} p\right)\left(e_{i}^{T} a_{3}\right)
$$

Therefore we have $4 m$ equations involving $7 m+1$ variables which means our mathematical model has $3 \mathrm{~m}+1$ degrees of freedom.

In order to have a consistent model we will have to eliminate the $3 m+1$ degrees of freedom and then if we are doing a strictly simulation problem we will fix a_{1}, s, p and γ and find out a_{2}, a_{3}, a_{4} and a_{5} using equations 1.1 to 1.4 .

We can see that in fact we have a mathematical problem to solve, that is to solve a system of 4 m algebraic equations (which for our particular example happen to be linear, but it will not be so in general).

Even for our very simple example, we can see that if m is large then the size of the mathematical problem to be solyed becomes an important factor. Two decades ago, when computers began to be used for solving simulation problems, storage was a critical factor (as well as number of operations) and then specialised approaches were devised to tackle the simulation and design problem.

1.1 THE SEQUENTIAL MODULAR APPROACH

Since solving a flowsheeting problem by simultaneous solution of all the equations involved resources which were not available two decades ago (numerical methods, computer storage, speed of computations), the sequential modular approach was proposed. MOTARD, SHACHAM and ROSEN
(1975) reviewed the state of the art for this approach at the beginning of the 70's when several packages were available as well as a considerable amount of literature.

In this approach each unit is represented in the computer as a subroutine in such a way that the output streams are evaluated provided the input streams plus the equipment parameters are known.

For our particular example three subroutines should be available as:

$\left(a_{2}\right)$ MIXER $\left(a_{1}, a_{5}\right)$	1.6
$\left(a_{3}\right)$ REACTOR $\left(a_{2}, s, r\right)$	1.7
$\left(a_{4}, a_{5}\right)$ SEPARATOR $\left(a_{3}, p\right)$	1.8

where the arguments on the left of the name of the subroutine are the output parameters while the ones on the right are the input parameters.

Since the input parameters must be known in order to use each subroutine, due to the recycle stream 5 , it is not possible to use the subroutines since none of them has all its inputs known.

The key element for this approach was the introduction of a vector x and the replacement of 1.6 by

$$
\left(a_{2}\right) \operatorname{MIXER}\left(a_{1}, x\right)
$$

If we have a value for x we can, by going sequentially through. 1.9, 1.7 and 1.8 , obtain a value for a_{5}, ie we can define a function $g: \mathbb{R}^{m} \Rightarrow \mathbb{R}^{m}$ such that

$$
a_{5}=g(x)
$$

Now, if we can solve the mathematical problem

$$
x=g(x)
$$

we can solve the original flowsheeting problem since the solution of 1.11 coincides with the solution in the flowsheet.

The mathematical problem 1.11 is known as a fixed point problem and it has been well studied (see ORTEGA and RHEINBOLDT (1970), Chapter 5) from a theoretical point of view.

Sufficient conditions for existence of a solution to 1.11 are simple to enunciate. If $C \subseteq \mathbb{R}^{m}$ is a convex, compact set and $g(x)$ is continuous in C then 1.11 will have at least one solution in C provided

$$
g(x) \subset C, \forall x \in C
$$

Unfortunately, it is not simple to show that a general function g satisfies 1.12.

In solving flowsheeting problems the first method used to solve 1.11 was successive substitution in which a sequence $\left\{x_{n}\right\}$ is generated, given an initial estimate x_{0}, as

$$
x_{n+1}=g\left(x_{n}\right)
$$

It was found that the convergence of this method was generally slow (linear) and then acceleration methods were used. WEGSTEIN's (1958) method was first used. ORBACH and CROWE (1971) proposed an accelerating procedure, later modified by CROWE and NISHIO (1975), known as the dominant eigenvalue method which relies on the linear convergence of 1.13 to extrapolate a value for x_{∞} using it as a new approximation. These accelerating procedures can be applied not only to the successive substitution method but to any method having a linear rate of convergence.

While this approach succeeds in reducing considerably the size of the mathematical problem to be solved, it presents difficulties in solving design problems. Suppose that instead of fixing a_{j}, s, p and γ in our example, we want to fix a_{1}, s, p and $e_{1}^{\top} a_{4}$, ie we want a desired product rate for the first component and to find out what conversion we should have in the reactor (γ).

To handle this problem with this approach control blocks were introduced. An additional subroutine is available as

$$
\text { (r) CONTROL }\left(\alpha_{41}\right)
$$

where $\alpha_{41}=e_{1}^{\top} a_{4}$, which for a given α_{41} solves the previous simulation problem obtaining a value for γ. This allows us to define a new function $\psi\left(\alpha_{4}\right)$ for which the solution of our design problem will be

$$
\gamma=\psi\left(\alpha_{41}\right)
$$

The problem 1.15 is a general non-linear equation which can be solved with any method. The important point is that to obtain one value of 1.15 we must solve one problem like 1.11 and since a method for solving 1.15 will be in general iterative this means we are adding another level of iteration.

It has been proposed by JOHNS (1970) that 1.11 and 1.15 should be solved simultaneously in order to avoid nested iterations.

METCALFE and PERKINS (1978) and PERKINS (1979b) proposed the use of BROYDEN's (1965) method to converge simultaneously 1.11 and 1.15 . It was tried successfully solving flowsheeting problems using CHESS (MOTARD and LEE (1971)). More results were later obtained by MALATHRONAS and PERKINS (1980).

GROSSMANN and del ROSAL (1978) did a comparison of successive substitution; Wegstein, Broyden and the dominant eigenvalue method and found the best results for the last two.

In the last ten years there has been a considerable amount of work in finding methods for solving the mathematical problem 1.11 (see the text book by TODD (1976) and SAIGAL (1979)). There are not yet general codes available for testing them on flowsheeting problems but this offers an interesting field for research.

The limitations of the sequential modular approach in coping with design problems, plus the advance in computer hardware which has made it possible to solve problems faster and using considerable storage needs has encouraged the development of the equation oriented approach.

In this approach, each unit in a flowsheet is represented using equations, as we did at the beginning of this chapter, and then a system of non-linear algebraic equations must be solved.

In our particular example, the system to be solved will consist of the equations defined by 1.1 to 1.4. The important aspect of this approach is that there is no difference between a simulation or a design problem since the system of equations will always be the same. The difference will reside in which variables in the equations will be considered unknowns. In a simulation problem we will have as variables $a_{2}, a_{3} a_{4}$ and a_{5}; in a design problem we can have as variables, for instance, a_{2}, a_{3}, the last m-1 components of a_{4}, a_{5} and the conversion γ. The only restrictions are that the number of variables is the same as the number of equations and that the system is consistent (ie it has at least one solution).

KUBICEK, HLAVACEK and PROCHASKA (1976) proposed the use of the Newton-Raphson method in solving flowsheeting problems using a library automatically generating residual vectors (ie the equations representing each unit) and Jacobian matrices.

VANEK, HLAVACEK and KUBICEK (1977) solved separation problems using the equation oriented approach and a non-linear block successive relaxation method while SALGOVIC, HLAVACEK and ILAVSKY (1981) used parameter imbedding techniques to solve the simulation of counter current separation processes.

All these works implement the equation oriented approach based on automatic generation of equations and derivatives which, while being very convenient for particular cases, is very restrictive for general problems.

A quasi-linear approach has been proposed by GORCZYNSKI and HUTCHISON (1978) in which the equations representing the flowsheet are written as

$$
A(x) x=b(x)
$$

where the matrix $A(x)$ and the vector $b(x)$ are considered constants, solving 1.16 and then re-evaluating them. This technique has been tested by HILTON and STADTHERR (1981) in the SEQUEL equation oriented package.

When the system of equations to be solved is large, it will generally be sparse. If we define an occurrence matrix for the system as a matrix having as many rows as equationsand columns as variables, an entry being 1 if the corresponding variable appears in the corresponding equation 0 : otherwise. If the system is sparse then this occurrence matrix will have a low density of ones (say $O(n)$, where n is the number of equations). Sometimes, it will be possible to re-number the equations and variables such that it is possible to decompose the original system into smaller subsystems which can be solved sequentially.

A detailed discussion of this was given by SARGENT (1977).

Another important aspect of this approach is that we can add costing equations to the ones representing the units and then solve a more general optimization problem.

```
maximize }r(x
subject to f(x)=0
```

 and \(\quad g(x)=0\)
 where $f(x)$ will be our original system of equations representing the units and $\gamma(x)$ will be the objective function plus a set of restrictions given by $g(x)$.

1.3 MIXED APPROACHES

This approach is a blending of the two approaches we mentioned before using the best of each of them. ROSEN (1962) proposed to use a combination of simple linear models and the equation oriented approach plus rigorous models given as procedures. His algorithm could be briefly put as (see MAHALEC, KLUZIK and EVANS (1979)):

1 Assume properties for all streams (provides inputs for all process units).

2 Compute outputs of every unit using rigorous models given as procedures.

3 Develop linear models for each unit.
4 Based on 3 form a linear system of equations representing the entire process and solve it (this provides new values for all process streams).

5 Test for convergence and stop if achieved.
6 Substitute the linear solution for the stream variable (obtained in 4).

7 Go to 2.

Rosen proposed to use diagonal matrices for the linear models neglecting then interaction between variables. This causes instabilities according to MAHALEC, KLUZIK and EVANS (1979). They proposed to use diagonal matrices for those units in which the interaction between variables is small or nil (mixers, dividers, heat exchangers, pumps, distillation units, etc) and full matrices for those with interaction (such as reactors). These matrices were obtained by finite difference approximations.

The algorithm proposed in this latter case can be stated as:

1 Assume initial values for process variables.
2 Test for convergence and stop if achieved.
3 Solve the linearized systems of equations $B \Delta x=-f$
(where B is the linear approximation, f the function vector and Δx the current step for the variables vector).

4 If $\|f(x+\Delta x)\|<\|f(x)\|$ go to 7.
5 Define $f_{0}=\|f(x)\|, f_{1}=\|f(x+\Delta x)\|, f_{2}=\|f(x+0.5 \Delta x)\|$ fit a quadratic function through f_{0}, f_{1} and f_{2} and find the coefficient α such that the quadratic has an extreme value (ie, zero gradient).

6 If $\|f(x+\alpha \Delta x)\|>\|f(x)\|$ go to 8.
$7 x=x+\alpha \Delta x$, go to 2.
8 Abandon current linearization B. Make one sequential pass through the flowsheet, obtain new values for process variables, find the new linearization B and go to 2.
$9 x=x+\Delta x$, go to 2.

Thus this approach first uses the equation oriented approach with the simpler linear models and only switches to the procedures implementing the rigorous models when it is not making good progress.

We should put also in this section the idea of METCALFE and PERKINS (1978) to iterate simultaneously on stream and design variables (ie, eliminating the nested iterations of the control loop in the sequential modular approach). This was tested with general problems by PERKINS (1979b) and MALATHRONAS (1979) using the simulation package CHESS (MOTARD and LEE (1971)) and Broyden's method.

We should also mention here the idea of JOHNS (1970) of iterating simultaneously on recycle streams and internal iterations within units.

JOHNS and SHEPPARD (1975) implemented this idea to solve distillation column iterations simultaneously with flowsheet evaluations. This was later extended by LEE (1980) who solved simultaneously the set of torn streams, design equation and the internal equations of the distillation unit. For this he used CHESS plus the sparse Quasi-Newton method proposed by SCHUBERT (1970). The same was done by WONG (1981) for heat exchanger units using also CHESS and Broyden's method.

The simulation package SPEED-UP (SARGENT, PERKINS and THOMAS (1982)), developed at Imperial College, is another example of a mixed approach. By allowing the use of procedures, as well as equations, to represent the units, it is possible to describe a problem as a sequence of procedures (by having a procedure for each unit) or as an equation oriented problem (having all units represented by equations). In addition we have all possible intermediate steps.

This package makes possible the use of procedures written for sequential modular packages, allowing users to interface them to SPEEDUP very easily (all that is needed is to describe the parameter list). This is a very important aspect of a package since most industrial software for flowsheeting is written for sequential modular packages.

Whatever approach is chosen, the basic mathematical problem remains the same, ie solving a system of non-linear algebraic equations.

In particular, the requirements in this sense of the simulation package SPEED-UP have motivated the work presented in this thesis.

Our aim has been to obtain a code for solving the general problem.

$$
f(x)=0
$$

for a given function $f: \mathbb{R}^{n} \Rightarrow \mathbb{R}^{n}$ whose dependence on data that has to be provided(initial guesses, scaling)is minimized.There are intrinsic difficulties in Chemical Engineering problens which we would like to overcome such as singularities(due probably to poor initial data such as in a flash having a temperature below the bubble pointlor scaling(having to deal with values differing by orders of magnitude between theml. We will use mathematical examples in order to find out which methods of the ones we will propose give good performance. The reason for doing this is the cost involved in trying to test thoroughly different methods using examples arising from flowsheeting problems. Once the best methods are identified, we will test them on flowsheeting problems.

1.4 SOLVING SYSTEMS OF NONLINEAR ALGEBRAIC EQUATIONS

Methods for solving 1.18 are usually iterative. They generate a sequence $\left\{x_{k}\right\}, x_{k} \in \mathbb{R}^{n}$, which if the method converges satisfies

$$
\begin{align*}
& \lim _{k \rightarrow \infty} x_{k}=x_{*} \\
& f\left(x_{*}\right)=0
\end{align*}
$$

If we use the notation $F^{\prime}(x)$ for the Jacobian matrix of f evaluated at x it was observed that if f is a linear function, the solution x_{*} can be found as

$$
x_{*}=x+p^{N}
$$

where

$$
p^{N}=-F^{\prime}(x)^{-1} f(x)
$$

provided $F^{\prime}(x)^{-1}$ is well defined.
If f is not a linear function but x_{k} is a point sufficiently near x_{*}, we can expect that defining

$$
x_{k+1}=x_{k}+p_{k}^{N}
$$

will provide a better approximation to x_{*}, ie

$$
\left\|x_{k+1}-x_{\star}\right\|<\left\|x_{k}-x_{\star}\right\|
$$

The iteration process 1.23 is the Newton method and thus p_{k}^{N} is called the Newton step.

This method has been the basis for many successful methods developed in the past. The computation of $\mathrm{F}^{\prime}(x)$ is often expensive or even impossible, therefore methods have been devised for avoiding it.

Instead of $F^{\prime}\left(x_{k}\right)$ an approximation B_{k} to it has been used, giving then instead of 1.23

$$
\begin{align*}
p_{k} & =-B_{k}^{-1} f(x) \\
x_{k+1} & =x_{k}+p_{k}
\end{align*}
$$

A first method was devised by taking B_{k} as a finite difference approximation to $F^{\prime}\left(x_{k}\right)$. (Discrete Newton's method.)

BROWN (1966) proposed a method similar to the discrete Netwon's method but requiring less function evaluations and BRENT (1973) proposed a method with similar characteristics.

BROYDEN (1965) proposed a method in which B_{k}, while aiming to approximate $F^{\prime}\left(x_{k}\right)$, is not obtained by finite differences. This method is a particular case of a more general family which has received the name QuasiNewton methods. DENNIS and MORE (1977) have given a detailed study of this family. For the purpose of our discussion we will define three families of methods according to the sharing of similar characteristics.

D-family: discrete Newton's method, Newton-Raphson method (using 1.22 instead of 1.25).

B-family: Brown and Brent's methods.

Q-family: Broyden's method, all Quasi-Newton methods.

We will now analyse the three families according to the characteristics which are important to us.

Convergence: This is related to 1.19 and with the "speed" of the method to reach x_{\star}. Convergence properties are normally local, ie applicable to some open set containing the solution x_{*} (which means x_{0} must be in that open. set). The speed of convergence is often measured in terms of a sequence $\left\{\alpha_{k}\right\}$ and a scalar β such that

$$
\left\|x_{k+1}-x_{*}\right\| \leq \alpha_{k}\left\|x_{k}-x_{*}\right\|^{\beta}
$$

for a given norm.

Three rates of convergence are often used:
linear $\quad \alpha_{k}=\alpha, 0<\alpha<1, \forall_{k}, \beta=1$
superlinear: $\lim _{k \rightarrow \infty} \alpha_{k}=0, \beta=1$
quadratic: $\quad \alpha_{k}=\alpha, \forall_{k}, \beta=2$

Family D has quadratic convergence provided the finite difference steps are chosen carefully, (ORTEGA and RHEINBOLDT (1970)) as well as family B (MORE and COSNARD (1979)). Family Q satisfies superlinear convergence (DENNIS and MORE (1977)). Also 2 n - step quadratic convergence, ie

$$
\left\|x_{k+2 n}-x_{*}\right\|<\alpha\left\|x_{k}-x_{*}\right\|^{2}
$$

(see GAY (1979)) has been proved for Broyden's method.

Function evaluations: All methods will require the evaluation of 1.18 at a certain number of points. Some methods require the evaluation of each component of the vector'f separately and other the evaluation of all components simultaneously. This is of primary importance when solving flowsheeting problems in chemical engineering since the evaluation of 1.18 involves normally a considerable amount of work. When physical properties are used, the time used for the function evaluation will overtake considerably the overhead time used for iteration for the method. Families D and Q require the evaluation of the whole vector f while family B requires the evaluation of each component separately. This difference is very important since there is normally a fixed basic time which is shared by all the components if evaluated simultaneously (especially when physical properties are being used).

In order to compare the methods we will use component function evaluations. The requirements for each method per iteration are:

Family	Component function evaluations
D	$n^{2}+n$
B	$\left(n^{2}+3 n\right) / 2$
Q	n

The component function evaluations for family D are for the discrete Newton's method.

If the Jacobian is provided analytically then only n component function evaluations are needed.

Storage: This is related to the amount of computer storage used for implementing the method, the unit is the memory needed for storing one real number. Families D and Q require n^{2} storage locations while on family B Brown's method can be implemented using only ($n^{2} / 4$) and Brent's method using n^{2} (see COSNARD (1975)).. This storage is basically for storing the Jacobian, all methods use in addition $O(n)$ storage locations for auxiliary vectors.

Operations count: This is related to the number of arithmetic operations performed per iteration needed for implementing the method and it is directly related to the computer time to be used by the method.

The following is the operation count for each family.

Family	Number of arithmetic operations.
D	$0\left(n^{3}\right)$
B	$0\left(n^{3}\right)$
Q	$0\left(n^{2}\right)$

Linear subsystem: This is an important aspect in chemical engineering. If part of the function 1.18 is composed of linear functions then all methods will satisfy them (see MORE and COSNARD (1979) for families D and B, PERKINS (1979a) for family Q).

Since most mass balances will be represented by linear equations we can expect a significant part of 1.18 to be linear when solving flowsheeting problems. The linear subsystems property guarantees that every iterate generated satisfies these equations.

Scaling: An ideal code should be independent of the scaling used for the variables or the functions. We define a change of scale for the variables as

$$
\hat{f}(\hat{x})=f\left(D_{x}^{-1} \hat{x}\right)
$$

for a nonsingular matrix D_{x}, and a change of scale for the function as

$$
\hat{f}(x)=D_{f} f(x)
$$

And more generally, for both simultaneously

$$
\hat{f}(\hat{x})=D_{f} f\left(D_{x}^{-1} \hat{x}\right)
$$

We can define scale independence properily as

DEFINITION 1: Scale invariant methods.
An iterative method for solving 1.5 will be scale invariant if for nonsingular matrices D_{x} and D_{f} defining the change of scale 1.29 , the sequence $\left\{x_{k}\right\}$ generated by the method satisfies
$\hat{x}_{k}=D_{x} x_{k}$

Methods in family D are scale invariant, family B is not scale invariant (see MORE and COSNARD (1977)) and neither is family Q(MALATHRONAS and PERKINS(:980)).Having a seale invariant nethod is particularly important in Chemical Engineering since is not reasonable to ask a user to scale the original problem in order to present it in a suitable scale for the code.It is very common in Chemical Engineering to find values in a simulation differing by several orders of magnitude(as in flowrates for instance).
In addition to the theoretical aspects of the families we should also consider the numerical results available in the literature.

Authors have generally stressed efficiency when presenting numerical results, ie how fast does a method converge. A very important aspect to us is robustness, ie the ability of a method to converge from initial points far from the solution and in bad numerical conditions (which are often closely related). Our previous discussion on convergence is related to a neighbourhood of the solution and thus is not applicable in the first stage when we are far from the solution. This means that more important than having a different rate of convergence (say between superlinear and quadratic) will be having a better radius of conyergence(or being more robust), We are interested in robustness since while it is important to obtain the solution quickly it is even more important to obtain it at all(even if this is not a fast process). Tests for robustness are comparatively rare.

Three recent studies on robustness are available. BUS (1975) tested various codes finding the best results for the discrete-Newton, BROWN (1966) and BROYDEN (1965) method.

PALOSCHI (1980) obtained good results also for BROYDEN (1965), BROWN (1966) and for the implementation of GRAGG and STEWART (1974) of the secant method. (While results were very good regarding robustness for this latter method, it was found to be poor in efficiency and it requires $4 n^{2}$ storage locations.)

A method specially devised for robustness was proposed by BROYDEIN(1969) based on continuation methods.This was tested by PALOSCHI (1980) without obtaining satisfactory results.In appendix C ', numerical results obtained for this method using the same set of examples as in the next chapters are presented. These appear to confirm our earlier findings that the method it is not very robust.

The most comprehensive test was done by HIEBERT (1980). Eight codes implementing four different methods were tested. Two sets of problems were considered: a set of 57 "mathematical problems" and one consisting of 22 chemical equilibrium problems. Tests for the effect of scaling on the performance of the codes were designed for the mathematical problems. For testing the performance on badly scaled variables the oriqinal problems were modified to

$$
\hat{f}(\hat{x})=f\left(D^{-1} \hat{x}\right)
$$

and for badly scaled functions

$$
\hat{f}(x)=D f(x)
$$

with D being a diagonal matrix whose elements were between 10^{-5} and 10^{5}.

The Hybrid method tested by Hiebert can be described very briefly as follows;

Define the gradient step

$$
g_{k}=-B_{k}^{\top} f(x)
$$

This is the steepest descent direction and then a hybrid step p_{k}^{h} is obtained from

$$
p_{k}^{h}=\alpha_{k} p_{k}+\beta_{k} g_{k}
$$

where p_{k} is the Quasi-Newton step 1.25.

The parameters α_{k} and β_{k} are chosen according to the "progress" which the code is making, ie if the code is making good progress
(ie $\left\|f_{k+l}\right\|<\left\|f_{k}\right\|$) then $\beta_{k} \rightarrow 0$ and $\alpha_{k} \rightarrow 1, \beta_{k} \neq 0$ is only used when the code is not behaving very well. The idea is that the gradient step is more robust while the Quasi-Newton step is more efficient.

Regarding the theoretical properties of this method, they are the same as family Q for convergence, function evaluations and operations count. The storage required for this method is $\frac{3}{2} n^{2}$ for the implementation tested by Hiebert (but it can be implemented using only n^{2} as in family Q , see CHEN and STADTHERR (1981)). If in 1.32 $\beta_{k} \neq 0$ then the method will not satisfy linear subsystems as the following shows:

Consider the linear function

$$
f\left(x_{k}\right)=A x_{k}+b
$$

and take $B_{o}=A$ (ie, the exact Jacobian). Assume $\alpha_{k}=0, B_{k}=1$ in 1.32

$$
p_{0}^{h}=-A^{\top} f_{0}
$$

and then

$$
\begin{aligned}
& x_{1}=x_{0}-A^{\top} f_{0} \\
& f_{1}=f_{0}-A A^{\top} f_{0}=\left(I-A A^{\top}\right) f_{0}
\end{aligned}
$$

and then unless $f_{0}=0$ or $A^{-1}=A^{\top}, f_{1} \neq 0$ (while if we take $\alpha_{k}=1$ and $\beta_{k}=0$ then it is easy to see that $f_{1}=0$).

This method is also dependent on the scaling being used and in the code tested by Hiebert an internal scaling is provided which results in a scale invariant code but this option causes the performance of the code to deteriorate instead of improving it (this was found by HIEBERT (1980) and confirmed by CHEN and STADTHERR (1981)).

A summary of results is presented in Table 1.1.

Table 1.1: Summary of results obtained by Hiebert (1980)

| | | Percentage of problems solved
 Math problems | Chemical Engineering
 Problems |
| :--- | :--- | :---: | :---: | :---: |
| \quad Method | Implementation | scaled | scaled |

The main conclusion from the Hiebert study is that while there are very robust codes for well scaled problems, the performance for all codes is badly affected by poor scaling. This result is of interest to us since a flowsheeting problem involves quantities which differ by orders of magnitude (as do for instance, molar fractions and flowrates).

From the analysis of the three families we conclude that the most attractive for solving flowsheeting problems is family Q. It has good convergence rate, it is the least expensive in function evaluations and operations count (the difference with other families becoming dramatically different when n becomes large and/or f is expensive to evaluate); it requires reasonable storage and its only apparent disadvantages are the numerical results obtained by Hiebert for Broyden's method and its dependence on the scaling.

We will show in chapter 2 that the first disadvantage is due to a poor implementation of the method. We will propose some implementation details which will improve considerably the performance of Broyden's method as well as a modification to Bennett's algorithm for obtaining LU factors which avoids numerically singular approximations B_{k+1}. Numerical results will be presented showing that our implementation of Broyden's method has better overall performance than the best method tested by Hiebert (ie the hybrid method).

Regarding the second disadvantage, the dependence on the scaling, we will propose in chapter 3 a sub-family of family Q which is scale invariant. We will show that its convergence is superlinear and numerical examples will show that the methods we propose have equivalent behaviour to Broyden's method.

The numerical results in chapter 3 will show that implementations of theoretically scale invariant algorithms are not scale invariant. This is due to the numerical conditioning of the problem.

The numerical conditioning of family Q will be studied in chapter 4 and ways of improving it will be proposed. In particular an internal scaling procedure will be proposed and numerical results will show how the performance of the methods is improved with it.

Finally, in chapter 5, we will apply our best methods to flowsheeting problems using the simulation package SPEED-UP. The chemical engineering problems will show the behaviour of our code in coping with small but difficult to solve problems as well as large problems when physical properties are used (when the computer time becomes critical).

CHAPTER 2

THE IMPLEMENTATION OF QUASI-NEWTON METHODS

We will discuss in this chapter the development of an implementation of Quasi-Newton methods which, for Broyden's method , gives numerical results substantially better than those published so far.

We will first introduce the family of rank-one Quasi-Newton methods and an algorithm implementing it. Implementation details for this algorithm will then be discussed. They consist of how to choose the initial approximation B_{0} to the Jacobian and the convenience of its re-initialisation, the choosing of an LU factorization, how to find a suitable policy for the step reduction factor and how it is possible to avoid a numerically singular approximation B_{k} by using a modification of Bennett's algorithm for the updating of LU factors.

The chapter will end with the presentation of numerical results obtained for Broyden's method using the implementation discussed here.

2.1 RANK-ONE QUASI-NEWTON METHODS

Different methods have been proposed in the past based on how B_{k} in 1.25 is obtained. BROYDEN (1965) proposed a whole family of methods based on the following updating formula.

$$
B_{k+1}=B_{k}+a_{k} b_{k}^{\top}
$$

The two vectors a_{k} and b_{k} were chosen according to the following relation (secant relation)

$$
B_{k+1} p_{k}=f\left(x_{k+1}\right)-f\left(x_{k}\right)
$$

which arises from the fact that if f is a linear function then its Jacobian $F^{\prime}\left(x_{k+1}\right)$ will satisfy

$$
F^{\prime}\left(x_{k+1}\right) p_{k}=f\left(x_{k+1}\right)-f\left(x_{k}\right)
$$

Using the notation

$$
f_{k}=f\left(x_{k}\right)
$$

and by defining

$$
y_{k}=f_{k+1}-f_{k}
$$

we can see that in order to satisfy $2.2, a_{k}$ and b_{k} must be such that

$$
\begin{align*}
& a_{k}=y_{k}-B_{k} p_{k} \\
& b_{k}^{\top} p_{k}=1
\end{align*}
$$

It is then possible to characterize the family of rank-one Quasi-Newton methods with a sequence $\left\{v_{k}\right\}$ of vectors in \mathbb{R}^{n} using the update formula

$$
B_{k+1}=B_{k}+\left(y_{k}-B_{k} p_{k}\right) \frac{v_{k}^{\top}}{v_{k}^{\top} p_{k}}
$$

In particular. BROYDEN's(1965) method is a member of this family, in which $v_{k}=p_{k}$. More methods have been proposed in the past choosing different v_{k}.BARNES(1965) proposed to choose v_{k} orthogonal to the previous steps p_{k}. This assures that linear systems are solved in one iteration. This method was implemented and tested by GAY and SCHNABEL(1978) and by PALOSCHI(1980).

It has been proposed originally by BROYDEN (1965) that instead of using 1.26, the following equation should be used

$$
x_{k+1}=x_{k}+\lambda_{k} p_{k}
$$

where the parameter λ_{k} is chosen according to a particular policy. Broyden proposed to choose λ_{k} such that

$$
\left\|f_{k+1}\right\|<\left\|f_{k}\right\|
$$

We can formalize this family of methods with the following algorithm:

ALGORITHM 1: Rank-one Quasi-Newton methods.

1 Given $x_{0}, B_{0}, \varepsilon$
2 Set $k=0$

3 If $\left\|f\left(x_{k}\right)\right\|<\varepsilon$ then stop

4 Choose a suitable value for λ_{k}
$5 \quad p_{k}=-\lambda_{k} B_{k}^{-1} f\left(x_{k}\right)$
$6 \quad x_{k+1}=x_{k}+p_{k}$

7 $y_{k}=f\left(x_{k+1}\right)-f\left(x_{k}\right)$
$8 B_{k+1}=B_{k}+\left(y_{k}-B_{k} p_{k}\right) \frac{v_{k}^{\top}}{v_{k}^{\top} p_{k}}$
(v_{k} is determined by the particular method)
$9 \quad k=k+1$

10 Go to 3

2.2 IMPLEMENTATION OF ALGORITHM 1

2.2.1 The initial approximation to the jacobian

Two approaches have been proposed in the past for the selection of the initial approximation to the Jacobian, ie the matrix B_{0} in step 1 of algorithm 1. ROSEN (1966) proposed the use of $B_{0}=I$ and BROYDEN (1965) suggested the use of a finite difference approximation to $F^{\prime}\left(x_{0}\right)$ obtaining B_{0} as

$$
B_{o} e_{j}=\frac{f\left(x_{0}+\delta_{j} e_{j}\right)-f_{0}}{\delta_{j}}
$$

with

$$
\delta_{j}=0.01 \max \left\{\left|e_{j}^{\top} x_{0}\right|, \quad 10^{-6}\right\}
$$

We have chosen to implement Broyden's suggestion. This alternative has the disadvantage of requiring n additional function evaluations but is has been found to perform better than $B_{0}=I$ in the past by METCALFE and PERKINS (1978) for flowsheeting problems and by PALOSCHI (1979) for general non-linear equations. BOGLE (1979) found the use of $B_{0}=I$ to perform better, for some flowsheeting problems, regarding efficiency but 2.11 was found better for robustness. An important property of B_{0} obtained using 2.11 is that it will satisfy

$$
\hat{B}_{0}=D_{f} B_{0} D_{x}^{-1}
$$

for a change of scale of the form 1.29 provided x_{0} is such that all its components are not zero. This property is required to ensure scale invariance as will be discussed in the next chapter. Another important property obtained using 2.11 is that if the problem 1.18 involves any linear subsets then all linear equations belonging to that subset will be satisfied by the sequence x_{k} for $k>0$ (PERKINS(1979a)). While it is not necessary to have approximations B_{k} being close to $F^{\prime}\left(x_{k}\right)$ to ob tain convergence in practice (DENNIS and MORE(1977)), theoretically su perlinear convergence is guaranteed only if B_{0} is sufficiently close to $F^{\prime}\left(x_{*}\right)$, where x_{*} is the solution to 1.18 . This suggests that if the algorithm is not making any improvement (ie,the norm of the function is not being reduced) the behaviour could be improved by having B_{k} closer to $F^{\prime}\left(x_{*}\right)$. For this, a re-initialisation of B_{k} by finite differences could be made using some x_{k} being closer to x_{k} than was x_{0}. This has been used in the past by CHEN and STADTHERR(1981) using the following procedure.

Calculate a new jacobian if both of the following conditions hold:
(a) The norm of the function has been reduced by a factor of 2 since last jacobian evaluation
(b) $\frac{\left\|f_{k+1}\right\|^{2}}{\left\|f_{k-4}\right\|}>\frac{\left\|f_{k}-4\right\|}{\left\|f_{k-9}\right\|}$

We found the re-initialisation very useful but using instead the following procedure:

Calculate a new jacobian using the best point x_{k} available (ie, the one with minimum norm for f_{k}), if both the following conditions hold:
(a) After $10+n$ consecutive iterations, the norm of the function has not been reduced at least by a factor of 0.9
(b) Since the last re-initialisation, the norm of the function has, at least once, been reduced by a factor of 0.9 .

This re-initialisation is particularly suitable when solving flowsheeting problems because if the function is sufficiently sparse it is possible in 2.11 to perturb more than one variable simultaneously and thus reducing considerably the number of function evaluations needed to obtain B_{0} (see CURTIS, POWELL and REID (1974)).

2.2.2 Evaluation of the step pk_{k}

Step 5 of algorithm 1 involves the solution of a linear system for finding the step p_{k} as

$$
B_{k} p_{k}=-\lambda_{k} f\left(x_{k}\right)
$$

For this we have three alternatives:
(a) inver.t B_{k}
(b) have available B_{k}^{-1}
(c) have available a factorisation of B_{k}.

The first alternative is not practical. BROYDEN (1965) suggested the use of alternative b. For this the use of the SHERMAN -MORRISON (1949) formula was proposed for obtaining instead of 2.8

$$
H_{k+1}=H_{k}+\frac{\left(p_{k}-H_{k} y_{k}\right) v_{k}^{\top} H_{k}}{v_{k}^{\top} H_{k} y_{k}}
$$

where

$$
H_{k}=B_{k}^{-1}
$$

There are numerical problems related to the use of 2.14 ie, having small denominators or obtaining numerically singular approximations H_{k+1}. In addition, preliminary tests for this approach did not show promising results, and therefore it was abandoned. It is possible to have alternative (c) using operations of the same order as alternative (b).GILL and IUURRAY (1972) describe a method for having a factorisation

$$
B_{k}=Q_{k} R_{k}
$$

where Q_{k} is orthogonal and R_{k} is upper triangular. This approach has been used by MORE; GARBOW and HILLSTROM (1980). While this is a very safe procedure numerically it has the disadvantage of using $\frac{3}{2} n^{2}$ storage locations (opposed to n^{2} necessary for alternative (b)).

It is possible instead to use an LU factorisation

$$
B_{k}=L_{k} U_{k}
$$

by using the updating algorithm due to BENNETT (1965). This requires $O\left(n^{2}\right)$ operations(same as alternative (b)) and also n^{2} storage locations. It has been used by CHEN and STADTHERR (1981).

We have selected alternative (c) for our implementation.

In section 2.3 we will present a modification to Bennett's algorithm which will allow us to avoid numerically singular approximations B_{k+1}.

2.2.3 Choosing a suitable λ_{k}

Step 4 of algorithm 1 has been proposed in the past for improving the performance of the methods.

It has been shown that provided $\left\{\lambda_{k}\right\}$ converges to 1 then the superlinear convergence properties of the method remain unmodified (see DENNIS and MORE (1974)).

BROYDEN (1965) proposed to choose λ_{k} such that

$$
\left\|f_{k}+j\right\|<\left\|f_{k}\right\|
$$

METCALFE and PERKINS (1978), when implementing Broyden's method using 2.14, found that if

$$
\left\|f_{k+1}\right\| \gg f_{k} \|
$$

then the approximation $H_{k}+1$ becomes numerically singular. They then suggested the use of λ_{k} to ensure that

$$
\left\|f_{k+1}\right\| \leq 10\left\|f_{k}\right\|
$$

Numerical results have shown that 2.19 is better than 2.18 (see BOGLE (1979)). $\quad \therefore$ MORE and COSNARD (1979) suggested using λ_{k} in order to keep a control on $\left\|p_{k}\right\|$. They proposed to define

$$
\begin{aligned}
\delta_{0} & =\max \left(10,10\left\|x_{0}\right\|\right) \\
\delta_{k+1} & =\max \left(\delta_{k}, 10\left\|x_{k}\right\|\right), k>1
\end{aligned}
$$

and then to use λ_{k} to ensure that

$$
\left\|p_{k}\right\| \leq \delta_{k}
$$

Numerical results for various methods confirmed the value of this rule (PALOSCHI (1980)). We have used for our implementation modified versions of 2.19 and 2.21.

Define

$$
\begin{align*}
& x_{k}^{\top}=\left(\xi_{1 k}, \xi_{2 k}, \ldots, \xi_{n k}\right) \\
& p_{k}^{\top}=\left(\pi_{1 k}, \pi_{2 k}, \ldots, \pi_{n k}\right) \\
& \delta_{i k}=\left(\begin{array}{ll}
50 & \text { if } \xi_{i k}=0 \\
50\left|\xi_{i k}\right| & \text { if } \xi_{i k} \neq 0
\end{array}\right.
\end{align*}
$$

for $\bar{i}=1,2, \ldots, n$ and $k \geq 0$.

Our selection of λ_{k} is made to assure simultaneously

$$
\left|\pi_{i k}\right| \leq \delta_{i k}, \quad i=1,2, \ldots, n
$$

$$
\left\|f_{k+j}\right\| \leq 100\left\|f_{0}\right\|
$$

The reason for using 2.23 instead of 2.21 is that this choice is scale invariant for changes of the form 1.29 (when $\left.\xi_{i k} \neq 0\right)$.

Attempts were made to obtain, instead of 2.24 , a control being scale invariant but none was found to work as well as 2.24 . We should note that 2.24 will make the code fail if x_{0} is inside a region containing a non-zero local minimum of $\|f\|$.

2.2.4 Bounds on the variables

A facility has been provided in our code for allowing the variables to be bounded.

The iterates generated by the code satisfy the following relation.

$$
\alpha_{i} \leq \xi_{i} \leq B_{i}, \quad i=1,2, \ldots, n
$$

To ensure this, λ_{k} in 2.9 is used if possible. The reason for using λ_{k} is because we want to keep the direction of the Quasi-Newton step. In doing this we ensure that if x_{k} satisfies a linear subsystem then, since x_{k+1} (taken with the full Quasi-Newton step) also will satisfy the linear subsystem, any $x_{k}^{\prime}+1$ taken with $\lambda_{k} \neq 1$ will also satisfy the linear subsystem.

If the point x_{k} is already on the bound and x_{k+1} is predicted outside, no reduction of the step is possible and then we have no choice but to abandon the Quasi-Newton direction. In this case we project the step onto the boundary (see figs 2.1 and 2.2).

fig 2.1: Using λ_{k} to keep the Q-N diréction

fig 2.2: Projecting the step on the bound

2.3 AVOIDING NUMERICALLY SINGULAR APPROXIMATIONS TO THE JACOBIAN

We are interested in the LU factorization of B_{i}, that is, having

$$
B_{i}=L_{i} U_{i}
$$

where L_{i} is a lower triangular matrix while U_{i} is a unitary upper triangular matrix. ${ }^{-}$Two matrices L_{i+1} and U_{i+1} are obtained such that

$$
B_{i+1}=L_{i+1} U_{i+1}
$$

An algorithm for obtaining $L_{i}+1$ and $U_{i}+1$ from 2.8 has been presented by BENNETT (1965).

It may happen that $\mathrm{B}_{\mathrm{i}+1}$, as obtained using 2.8 is singular or its LU factorization has very small elements in the diagonal of the matrix L. In both cases the solution of 2.13 will be very difficult numerically or even impossible.

We propose here a modification of Bennett's algorithm which produces an updated factorization of the Jacobian approximation which satisfies the secant relation and is non-singular. In cases where the update 2.8 and the Bennett algorithm produce a non-singular matrix, our algorithm gives the same matrix. If 2.8 or the original Bennett algorithm gives a singular matrix, our algorithm gives a matrix which is in some sense close to that matrix, but which is non-singular.

In section 2.3.2 we describe very briefly Bennett's algorithm. The modification is proposed in section 2.3.3 with its theoretical justification. The implementation details are given in section 2.3.4 where we show how to choose between the different alternatives. An example of use of the modification is presented in section 2.3.5.

2.3.1 Bennett's algorithm

Suppose we have an LU factorization of a matrix A

$$
A=L U
$$

and a matrix B is obtained using the updating formula

$$
B=A+a b^{\top}
$$

where a and b are two given vectors.

If we are going to obtain the LU factors of B using a standard technique, without using the fact that B is obtained using 2.8, we need $O\left(n^{3}\right)$ operations. BENNETT (1965) proposed an algorithm to obtain the LU factors of B satisfying 2.8 using just $O\left(n^{2}\right)$ operations. We will very briefly describe the algorithm.

Define L_{i} as the unit matrix with the i th column replaced by the i th column of the matrix L and U_{i} in the same way, using U instead of L and interchanging the role of rows and columns.

These matrices will satisfy

$$
\begin{align*}
& L=\sum_{i=1}^{n} L_{i} \\
& U=\prod_{i=n}^{1} U_{i}
\end{align*}
$$

Define $A_{1}=A, B_{1}=B, a_{1}=a, b_{1}=b$ and for each $k, 1 \leq k<n$, define A_{k+1} such that

$$
A={\underset{i=1}{k} L_{i}\left(\begin{array}{ll}
I_{k} & 0 \\
0 & A_{k+1}
\end{array}\right) \quad \sum_{i=k}^{\pi} U_{i}, ~}_{\text {in }}
$$

A_{k+1} is of order $(n-k)$.

Then, at each stage k of the algorithm we will have obtained B_{k} such that

$$
B_{k}=A_{k}+a_{k} b_{k}^{\top}
$$

and then $i_{k^{*}}, U_{k^{*}}, a_{k}+1$ and b_{k+1} will be obtained such that

$$
B={\underset{i=1}{k} L_{i *}\left(\begin{array}{ll}
I_{k} & 0 \\
0 & B_{k+1}
\end{array}\right){ }_{i=k}^{1} U_{i \star} .}^{*}
$$

and

$$
B_{k+1}=A_{k+1}+a_{k+1} b_{k+1}^{\top}
$$

B_{k+1} is of order $(n-k)$.
When stage $n-1$ is finished, it is very easy to obtain $L_{n *}$ and $U_{n *}=I$. The factorization of B will then be

2.3.2 Proposed modification

In the special case of Quasi-Newton methods, the vector b in 2.28 is varied to give different methods. In fact, varying v_{k} in 2.8, we can obtain a family of rank-one updates for Quasi-Newton methods. In general, all Quasi-Newton methods satisfy the following secant relation

$$
B p=y
$$

where p and y are two given vectors.

Suppose we have obtained B for a particular method and it is singular. Since B will later be used to solve a linear system, this particular method will clearly fail in this case. When this problem arises, we propose to modify B to B^{\prime} such that

$$
B^{\prime} p=y
$$

We will require B^{\prime} to be non-singular and also not too different from B.

To achieve this, we propose a modification to Bennett's algorithm, to be added at stage k, the stage when singularity is detected.

The next theorem will show the only case when our proposed modification will not be applicable.

Theorem 2.1: If p and y are such that

$$
\begin{align*}
& p=\binom{p_{k}}{0} \\
& y=\binom{0}{y_{k}}
\end{align*}
$$

with p_{k} being of order k and y_{k} of order $n-k$ and $p \neq 0, y \neq 0$.

Then it is not possible to find L and U, L non-singular, such that

$$
L U p=y
$$

Proof: assume there exist L non-singular and U satisfying 2.40.

Define the following partitions

$$
\begin{aligned}
& L=\left(\begin{array}{ll}
L_{11} & 0 \\
C_{21} & L_{22}
\end{array}\right) \\
& U=\left(\begin{array}{ll}
U_{11} & c_{12} \\
0 & U_{22}
\end{array}\right)
\end{aligned}
$$

where L_{11}, U_{11} are of order k, L_{22} and U_{22} of order $n-k, C_{21}$ is $(n-k) \times k$ and C_{12} is $k \times(n-k)$.

From 2.40 it follows

$$
\begin{aligned}
& L_{11} U_{11} p_{k}=0 \\
& c_{21} U_{11} p_{k}=y_{k}
\end{aligned}
$$

Since L_{11} is non-singular then $U_{11} p_{k}=0$ and then $y_{k}=0$ which contradicts our hypothesis $y \neq 0$.

The following theorem shows that it is possible to modify the algorithm to achieve what we want and also how to.

Theorem 2.2: If at stage k of Bennett's algorithm we have

$$
\prod_{i=1}^{k-1} L_{i *} \text { is non-singular for } k>1
$$

2.38 and 2.39 are not true simultaneousily and

$$
\begin{align*}
& \left|e_{1}^{\top} B_{k} e_{1}\right|=0 \\
& \left|e_{1}^{T} A_{k} e_{1}\right| \geq \varepsilon
\end{align*}
$$

Then there exist $L_{i *}^{\prime}, i=1,2, \ldots, k-1$ for $k \cdot>1$ and B_{k} such that if

$$
B^{\prime}=\prod_{i=1}^{k-1} L_{i}^{\prime}{ }_{i}\left(\begin{array}{ll}
I_{k}-1 & 0 \\
0 & B_{k}^{\prime}
\end{array}\right) \sum_{i=k-1}^{\pi} U_{i *} \quad \text { if } \quad k>1
$$

or

$$
B^{\prime}=B_{1}^{\prime} \quad \text { if } k=1 \quad 2.44
$$

then

$$
B^{\prime} p=y
$$

and
and

$$
\left|e_{1}^{\top} B_{k}^{\prime} e_{1}\right|=\varepsilon
$$

Proof: Case (a). Assume first 2.38 is not true. We will show that it is possible to find b_{k}^{\prime} such that

$$
e_{1}^{\top}\left(A_{k}+a_{k} b_{k}^{T}\right) e_{1}=\varepsilon
$$

and

$$
b_{k}^{\prime} T_{p_{k 2}}=b_{k}^{T} p_{k 2}
$$

where $p_{k 2}$ is of order $n-k+1$ and such that

$$
\begin{array}{ll}
p=\binom{p_{k 1}}{p_{k 2}} & \text { if } k>1 \\
p=p_{k 2} & \text { if } k=1
\end{array}
$$

If we use the following notation

$$
\begin{aligned}
& a_{k}=\binom{a_{k}}{\bar{a}_{k}} \\
& b_{k}=\binom{\beta_{k}}{\bar{\sigma}_{k}}
\end{aligned}
$$

2.46 is satisfied if we take

$$
\beta_{k}^{\prime}=\left(\varepsilon-e_{1}^{\top} A_{k} e_{1}\right) / \alpha_{k}
$$

and $\alpha_{k} \neq 0$ because of $2.41,2.42$ and 2.32.

Since 2.38 is not true, it is possible to find a $\bar{\sigma}_{k}^{\prime}$ so that, with β_{k}^{\prime} from 2.50, a b_{k}^{\prime} satisfying 2.48 can be found.

If we now take $B_{k}^{\prime}=A_{k}+a_{k} b_{k}^{\prime \top}$ and $L_{i *}^{\prime}=L_{i *}, i=1,2, \ldots, k-1$ (if $k>1$) it is clear that 2.46 is satisfied.

It remains to show that 2.45 is satisfied and for this define the following partitions if $k>1$

$$
\begin{align*}
\prod_{i=1}^{k-1} L_{i *} & =\left(\begin{array}{ll}
L_{k 1} & 0 \\
c_{k 1} & I_{n-k-1}
\end{array}\right) \\
\frac{1}{i=k-1} U_{i^{*}} & =\left(\begin{array}{ll}
U_{k 1} & D_{k 1} \\
0 & I_{n-k+1}
\end{array}\right) \\
y & =\binom{y_{k 1}}{y_{k 2}}
\end{align*}
$$

where $y_{k l}, L_{k l}, U_{k l}$ are of order $k-1$ and $C_{k l}$ is $(n-k+1) \times(k-1)$, $D_{k 1}$ is of order $(k-1) \times(n-k+1)$. Since $B p=y$ it follows

$$
\begin{align*}
& L_{k 1}\left(U_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right)=y_{k 1} \\
& c_{k 1}\left(u_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right)+B_{k} p_{k 2}=y_{k 2}
\end{align*}
$$

Since 2.48 is true and

$$
B_{k}^{\prime}=A_{k}+a_{k} b_{k}^{\prime} T
$$

it follows

$$
B_{k}^{\prime} p_{k 2}=B_{k} p_{k 2}
$$

And then 2.45 is satisfied.

The case $k=1$ is straightforward.

Case (b). Assume now that 2.38 is true. Take β_{k}^{\prime} as defined by 2.50 and $\bar{b}_{k}^{\prime}=\bar{b}_{k}$. We will show that $y_{k l} \neq 0$ for $k>1$.

Assume $y_{k l}=0$, from 2.54 it follows

$$
\left(u_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right)=0
$$

because $L_{k l}$ is non-singular and then from 2.55 it follows

$$
B_{k} p_{k 2}=y_{k 2}
$$

and since 2.38 is true, using 2.41 we can obtain

$$
e_{1}^{\top} y_{k 2}=0
$$

but this implies with $y_{k l}=0$ that 2.39 is true and this is a contradiction.

It then follows

$$
\left(u_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right) \neq 0
$$

and then it is possible to find $C_{k 1}^{\prime}$ such that

$$
C_{k 1}^{\prime}\left(U_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right)+B_{k}^{\prime} p_{k 2}=y_{k 2}
$$

giving then that 2.45 is satisfied and also 2.46 .

The same reasoning is valid for $k=1$.

2.3.3 Implementation

We see from the last section that it is possible to update LU factors achieving two of our objectives, viz, to avoid singular Jacobian approximations while satisfying the secant relation. The necessary relations which the updating algorithm must satisfy are given in Theorem 2.2. In particular, they are equations (2.48) and (2.50) in Case (a) and equations (2.50), (2.56) and (2.61) in Case (b). A study of these conditions reveals that they define a whole family of algorithms. In this section, we make suggestions of reasonable choices from the family. These choices minimize in some sense the correction required to the original Quasi-Newton update to remove singularity.

Using partitions defined by 2.51 and 2.52 it follows

$$
B=\left(\begin{array}{ll}
L_{k 1} & 0 \\
C_{k 1} & I_{n-k+1}
\end{array}\right)\left(\begin{array}{ll}
I_{k-1} & 0 \\
0 & B_{k}
\end{array}\right)\left(\begin{array}{ll}
U_{k 1} & D_{k 1} \\
0 & I_{n-k+1}
\end{array}\right)
$$

or

$$
B=\left(\begin{array}{ll}
L_{k l} U_{k l} & L_{k l} D_{k l} \\
C_{k l} U_{k l} & C_{k l} D_{k l}+B_{k}
\end{array}\right)
$$

If we use Case (a) of theorem 2.2 then

$$
B^{\prime}=\left(\begin{array}{ll}
L_{k l} U_{k l} & L_{k 1} D_{k l} \\
C_{k 1} U_{k l} & C_{k 1} D_{k l}+B_{k}^{\prime}
\end{array}\right)
$$

and if Case (b) is used then

$$
B^{\prime}=\left(\begin{array}{ll}
L_{k 1} U_{k 1} & L_{k 1} D_{k 1} \\
C_{k 1}^{\prime} U_{k 1} & C_{k 1} D_{k 1}+B_{k}^{\prime}
\end{array}\right)
$$

Assume that B^{\prime} is defined by 2.64, it follows using 2.63

$$
\left\|B^{\prime}-B\right\|=\left\|B_{k}^{\prime}-B\right\|
$$

and from 2.32 and 2.56

$$
\left\|B^{\prime}-B\right\|=\left\|a_{k}\right\|\left\|b_{k}^{\prime}-b_{k}\right\|
$$

The first component of the vector b_{k}^{\prime} is uniquely defined by 2.50 but there is some freedom for the choice of \bar{b}_{k}^{\prime} (the remaining components).

We will make use of the following Lemma due to DENNIS and SCHNABEL (1978).

Lemma 2.1: Let $\alpha \varepsilon \mathbb{R}, v \varepsilon \mathbb{R}^{n}, v \neq 0$. Then the unique solution to

$$
\min _{x \in \mathbb{R}^{n}}\|x\| \text { subject to } v^{\top} x=\alpha
$$

is

$$
x=\frac{\alpha v}{v^{T} v}
$$

Since b_{k}^{\prime} has to satisfy 2.48 in addition to 2.50 it follows that by applying Lemma 2.1 with $x=\bar{b}_{k}^{\prime}-\bar{b}_{k}, v=\bar{p}_{k 2}$ and $\alpha=\left(\beta_{k}-\beta_{k}^{\prime}\right) e_{1}^{\top} p_{k 2}$ we can obtain B^{\prime} such that $\left\|B^{\prime}-B^{K}\right\|$ is a minimum. Thus, the following equation defines \bar{b}_{k}.

$$
\bar{b}_{k}^{\prime}=\bar{b}_{k}+\frac{\left(\beta_{k}-\beta_{k}^{\prime}\right)\left(e_{1}^{\top} p_{k 2}\right) \bar{p}_{k 2}}{\bar{p}_{k 2}^{\top} \bar{p}_{k 2}}
$$

Assume now that B^{\prime} is given by 2.65. In this case $k>1$ and

$$
\left\|B^{\prime}-B\right\|^{2}=\left\|\left(C_{k 1}^{\prime}-C_{k 1}\right) U_{k l}\right\|^{2}+\left\|\left(C_{k 1}^{\prime}-C_{k 1}\right) D_{k 1}+\left(B_{k}^{\prime}-B_{k}\right)\right\|^{2} 2.70
$$

where $C_{k 1}^{\prime}$ must satisfy 2.61 and B_{k}^{\prime} is defined by 2.56 with $\bar{b}_{k}^{\prime}=\bar{b}_{k}$ and β_{k}^{\prime} given by 2.50. We can see that B_{k}^{\prime} is uniquely defined but there are some degrees of freedom in choosing $\mathrm{C}_{\mathrm{k} 1}$ satisfying 2.51.

If we define

$$
X=C_{k 1}-C_{k 1}
$$

using ξ, μ, δ and β for referring to the elements of X, U, D and B and dropping the subscripts we can see that

$$
\begin{align*}
\|X U\|^{2} & \left.=\begin{array}{cc}
\sum_{i=1}^{n-k+1} & \sum_{j=1}^{k-1} \\
\left\|\times D+\left(B^{\prime}-B\right)\right\|^{2} & =\sum_{i=1}^{n-1} \sum_{i \ell}^{k-1} \\
\sum_{\ell=1}^{n-k+1}
\end{array} \sum_{\ell=1}^{k-1} \sum_{i \ell} \xi_{\ell j}+\left(\beta_{i j}^{\prime}-\beta_{i j}\right)\right)^{2}
\end{align*}
$$

Since $C_{k 1}$ satisfies 2.55 and $C_{k l}^{1}$ must satisfy 2.61 it follows that $\mathrm{C}_{\mathrm{k} 1}$ must satisfy

$$
\left(C_{k 1}^{\prime}-C_{k 1}\right)\left(U_{k 1} p_{k 1}+D_{k 1} p_{k 2}\right)+\left(B_{k}^{\prime}-B_{k}\right) p_{k 2}=0
$$

Dropping the subscript k and defining

$$
s=U_{k 1} p_{k 1}+D_{k 1} p_{k 2}
$$

2.74 becomes

$$
x s=\left(B_{k}-B_{k}^{\prime}\right) p_{k 2}
$$

In order to minimize 2.70 subject to 2.76 we define the Lagrangian

$$
g(x)=\left\|B^{\prime}-B\right\|^{2}+\sum_{i=1}^{n-k+1} \lambda_{i} e_{i}^{\top}\left(X_{s}-\left(B_{k}-B_{k}^{\prime}\right) p_{k 2}\right)
$$

where we have introduced Lagrange multipliers λ_{i} for the constraints 2.76.

We will now obtain the partial derivatives of 2.77.

$$
\begin{align*}
\frac{\partial}{\partial \xi_{r s}}\|X U\|^{2} & =\sum_{j=1}^{k-1} 2\left(\sum_{\ell=1}^{k-1} \xi_{r \ell} \mu_{\ell j}\right) \mu_{s j} \\
\frac{\partial}{\partial \xi_{r s}}\left\|X D+\left(B^{\prime}-B\right)\right\|^{2}= & \sum_{j=1}^{n-k+1} 2\left(\sum_{\ell=1}^{k-1} \xi_{r \ell} \delta_{\ell j}+\left(B_{r j}^{\prime}-\beta_{r j}\right)\right) \delta_{s j} 2.79 \\
\frac{\partial}{\partial \xi_{r s}}\left\|B^{\prime}-B\right\|^{2}= & \sum_{\ell=1}^{k-1} 2 \xi_{r \ell}\left(\sum_{j=1}^{k-1} \mu_{\ell j}^{\mu_{s j}}+\sum_{j=1}^{n-k+1} \delta_{\ell j} \delta_{s j}\right) \\
& +\sum_{j=1}^{n-k+1} 2\left(B_{r j}^{\prime}-\beta_{r j}\right) \delta_{s j}
\end{align*}
$$

If we define

$$
h(x)=\sum_{i=1}^{n-k+1} \lambda_{i} e_{i}^{\top}\left(x s-\left(B_{k}-B_{k}^{\prime}\right) p_{k 2}\right)
$$

and by naming the elements of $p_{k 2}$ as π_{j}, $i \leq j \leq n-k+1$

$$
h(x)=\sum_{i=1}^{n-k+1} \lambda_{i}\left(\sum_{j=1}^{k-1} \xi_{i j} r_{j}+\sum_{j=1}^{n-k+1}\left(\beta_{i j}^{\prime}-\beta_{i j}\right) \pi_{j}\right)
$$

where Γ_{j} are the elements of the vector s.

It follows

$$
\frac{\partial}{\partial \xi_{r s}} h(x)=\lambda_{r} r_{s}
$$

$$
\frac{\partial}{\partial \lambda_{r}} h(x)=\sum_{j=1}^{k-1} \xi_{r j} r_{j}^{\prime}+\sum_{j=1}^{n}\left(B_{r j}^{\prime}-\beta_{r j}\right) \pi_{j}
$$

and then

$$
\begin{align*}
\frac{\partial g(x)}{\partial \xi_{r s}}= & \sum_{\ell=1}^{k-1} 2 \xi_{r \ell}\left(\sum_{j=1}^{k-1}{ }_{l i j}^{\mu_{l j}}+\sum_{j=1}^{n-k+1} \delta_{\ell j} \delta_{s j}\right) \\
& +\sum_{j=1}^{n-k+1} 2\left(\beta_{r j}^{\prime}-\beta_{r j}\right) \delta_{s j}+\lambda_{r} \Gamma_{s} \\
\frac{\partial g(x)}{\partial \lambda_{r}} & =\sum_{j=1}^{k-1} \xi_{r j} r_{j}+\sum_{j=1}^{n-k+1}\left(\beta_{r j}^{\prime}-\beta_{r j}\right) \pi_{j}
\end{align*}
$$

In order to minimize 2.70 we should solve 2.85 and 2.86 equated to zero for all possible $\xi_{r s}$ and λ_{r}. This requires solving $n-k+1$ linear systems of order $k-1$ and is not practical. In order to simplify the problem, we restrict $C_{k l}^{1}$ such that it only differs from $C_{k l}$ in the p-column. In this case $C_{k 1}^{1}$ becomes uniquely defined from 2.61.

$$
\xi_{i p}=\left(\beta_{i 1}-\beta_{i 1}^{\prime}\right) \frac{\pi_{1}}{\Gamma_{p}} \quad i=1,2, \ldots, n-k+1
$$

We still have some freedom in the choice of p such that $r_{p} \neq 0$ and we will use it for minimizing 2.70.

With our choice of $C_{k l}^{1} 2.70$ becomes

$$
\left\|B^{\prime}-B\right\|^{2}=\sum_{i=1}^{n-k+1}\left(\sum_{j=1}^{k-1} \xi_{i p}^{2} \mu_{p j}^{2}+\sum_{j=1}^{n-k+1}\left(\xi_{i p}{ }^{\delta}{ }_{p j}+\beta_{i j}^{\prime}-B_{i j}\right)^{2}\right) 2.88
$$

since $\beta_{i j}^{\prime}=\beta_{i j}$ if $j>1$ and by defining

$$
\begin{align*}
& u_{p}=\sum_{j=1}^{k-1} \mu_{p j}^{2} \\
& \delta_{p}=\sum_{j=2}^{n-k+1} \delta_{p j}^{2}
\end{align*}
$$

$\left\|B^{\prime}-B\right\|^{2}=\underset{i=1}{n-k+1} \xi_{i p^{\mu} p}^{2}+\left(\xi_{i p} \delta_{p 1}+\beta_{i 1}^{1}-\beta_{i 1}\right)^{2}+\xi_{i p}^{2} \delta_{p}$
and 2.87 gives
$\left\|B^{\prime}-B\right\|^{2}=\sum_{i=1}^{n-k+1}\left(\beta_{i 1}-\beta_{i 1}^{\prime}\right)^{2}\left(\frac{\pi_{1}^{2} \dot{\eta}_{p}}{\Gamma_{p}^{2}}+\left(\frac{\pi_{1} \delta_{p 1}}{\Gamma_{p}}-1\right)^{2}+\frac{\pi_{1}^{2}}{\Gamma_{p}^{2}} \delta_{p}\right)$
and then the problem is reduced to finding
$\min \left(\frac{\pi_{1}^{2}}{\Gamma_{p}^{2}}\left(\mu_{p}+\delta_{p}+\delta_{p l}^{2}\right)-\frac{2 \pi_{1} \delta_{p l}}{\Gamma_{p}}+1\right) ; \quad \Gamma_{p} \neq 0, \quad 1 \leq p<k$

The use of equation 2.69 in obtaining $\bar{\sigma}_{k}^{\prime}$ is not safe numerically because ($\beta_{k}-\beta_{k}^{1}$) may be very small. We propose to use instead

$$
\bar{\sigma}_{k}^{\prime}=\sigma_{k}+\frac{\left(\beta_{11}-\varepsilon\right)\left(e_{1}^{\top} p_{k 2}\right) \bar{p}_{k 2}}{\alpha_{k} \bar{p}_{k 2}^{\top} \bar{p}_{k 2}}
$$

which can also be obtained from 2.32 and 2.50.

The same is valid also for equation 2.87 and we will use instead

$$
\xi_{i p}=\frac{\left(\beta_{11}-\varepsilon\right)}{\alpha_{k}}\left(e_{i}^{T} \bar{a}_{k}\right) \frac{\pi_{l}}{\Gamma_{p}}
$$

2.3.4 Example of use

We will show with one example how our proposed modification improves the performance of Quasi-Newton methods. Consider Broyden's (1965) good method $\left(v_{i}=p_{i}\right.$ in 2.8).

We will take the function

$$
f(x)=x
$$

As the initial point we take

$$
x_{0}=\binom{1}{1} \quad 2.97
$$

and as the initial approximation to the Jacobian

$$
B_{0}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

B_{0} is easily factorized as

$$
B_{0}=L_{0} U_{0}=\left(\begin{array}{ll}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Using Broyden's method we will obtain

$$
p_{0}=-B_{0}^{-1} f_{0}=\binom{1}{-1}
$$

and then

$$
x_{i}=x_{0}+p_{0}=\binom{2}{0}
$$

From 2.8 it follows

$$
B_{1}=B_{0}+\frac{f_{1} p_{0}^{\top}}{p_{0}^{\top} p_{0}}=\left(\begin{array}{ll}
0 & -1 \\
0 & 1
\end{array}\right)
$$

And then B_{1} is singular and Broyden's method will have to be aborted since we will not be able to solve 2.96 for $i=1$.

If instead of the original Bennett's algorithm, which will give us B_{1} as in 2.68, we apply our modification (Case al of Lemma 2.2 for any $\varepsilon>0$, we will obtain

$$
B_{i}^{\prime}=\left(\begin{array}{cc}
\varepsilon & \varepsilon-1 \\
0 & 1
\end{array}\right)
$$

and then

$$
\begin{aligned}
& x_{2}^{\top}=\left(\begin{array}{ll}
2-\frac{2}{\varepsilon} & 0
\end{array}\right) \\
& B_{2}=\left(\begin{array}{ll}
1 & \varepsilon-1 \\
0 & 1
\end{array}\right) \\
& x_{3}=\binom{0}{0}
\end{aligned}
$$

and then x_{3} is the solution, obtained with any $\varepsilon>0$.

2.4 NUMERICAL RESULTS

We will present in this section numerical results obtained with the implementation discussed in this chapter of Broyden's method (ie, $v_{k}=p_{k}$ in 2.8). We will use the same set of examples as the report by HIEBERT (1980). There are basically two sets of examples:a "general set" of mathematical examples and a "chemical equilibrium" set; they are described in Appendix A.

As was done by HIEBERT (1980), we will use a diagonal matrix $S_{m n}$ for testing the behaviour of the code under different scaling conditions.

The diagonal elements of the matrix $S_{m n}$ are defined by

$$
\log _{10} \sigma_{m i}=(m((2 i-n-1) /(n-1)))
$$

for $\mathbf{i}=1,2, \ldots, n$.

For creating a set with variables badly scaled we use

$$
\hat{f} \cdot(\hat{x})=f\left(S_{5 n} x\right)
$$

and for functions badly scaled

$$
\hat{f}(x)=s_{5 n} f(x)
$$

We will compare our implementation of Broyden's method against Powell's method (MINPACK (1980) implementation) which was the one with best results in the report by Hiebert.

In Table 2.1 we present results for the general set and in table 2.2 those for the chemical equilibrium set.

The chemical equilibrium problems are already badly scaled and thus no additional scaling is used for it.

In the tables we present the number of problems for which each code failed. The general set has 54 problems while the chemical equilibrium set has 22.

Table 2.1: Number of failures for the general set (54 problems) Broyden Hybrid
Original scale 125
Variable badly scaled 1321
Function badly scaled $15 \quad 22$

TOTAL 4048

Table 2.2: Number of failures for the chemical equilibrium set (12 problems)

Original scale
Broyden Hybrid
3
9

We present in table 2.3 a comparison for the implementation with and without the reinitialisation mentioned in 2.2.1.

Finally, table 2.4 shows a summary of results in percentage of success for the Broyden code tested by Hiebert, the hybrid code and our implementation.

Table 2.3: Number of failures for the general set showing the effect of reinitialisation (54 problems)

With Reinitialisation Without

Original scale	12	21
Variable badly scaled	13	23
Function badly scaled	15	26
TOTAL	40	70

Table 2.4: Percentages of success for both sets General Set Chemical Equilibrium
Hybrid code
70 25
Broyden (tested by Hiebert) 33
Broyden (our implementation) 7586

2.5 CONCLUSION

The numerical behaviour of a method is extremely dependent on its implementation.

Our implementation of Broyden's method provides a code which gives numerical results competitive with those published so far.

The implementation of Broyden's method can be greatly improved by using a reinitialisation procedure. This is particularly useful when solving flowsheeting problems since the cost of evaluating the initial Jacobian can be reduced considerably by making use of the sparsity of the problem.

We will discuss in this chapter the relation of scaling and QuasiNewton methods.

First, we will establish sufficient conditions for having scale invariant methods, then we will propose Quasi-Newton methods belonging to the rank-one update family which are scale invariant. We will show that three of the new methods are also least-change secant updates as defined by DENNIS and SCHNABEL (1978). It will also be shown that three of the proposed methods have similar local convergence properties to Broyden's method (ie, superlinear).

Finally, the new methods will be compared with Broyden's method (our implementation mentioned in chapter 2) and the hybrid method tested by Hiebert.

The same set of problems as in chapter 2 will be used plus another set specially selected to investigate the change in behaviour of the methods as the scale of the variables is made worse.

3.1 THE CONDITIONS FOR SCALE INVARIANCE

We have already defined the property of scale invariance in chapter 1.

One important property of Newton's method (the basic method from which most others have been derived) is its scale invariance for changes of scale of the form 1.29.

The basic property of Newton's method which provides scale invariance is the following relation satisfied by the Jacobian

$$
\hat{F}^{\prime}\left(\hat{x}_{k}\right)=D_{f} F^{\prime}\left(x_{k}\right) D_{x}^{-1}
$$

because since $\hat{x}_{0}=D_{x} x_{0}$ from 1.22 it follows that

$$
\hat{p}^{N}=D_{x} p^{N}
$$

and from 1.23

$$
\hat{x}_{k+1}=D_{x} x_{k+1}
$$

As we mentioned before, Newton's method is implemented normally (when derivatives are not available analytically) using an approximation B_{k} to $F^{\prime}\left(x_{k}\right)$ obtained using 2.11 and we can characterize a family of methods, from which Newton's method will be a member using the following relation for B_{k}

$$
B_{k}=Q_{k} P_{k}^{-1}
$$

where Q_{k} and P_{k} are obtained from n points $x_{k i}$ and n steps $p_{k i}$ and the corresponding function changes

$$
q_{k i}=f\left(x_{k i}+p_{k i}\right)-f\left(x_{k i}\right), i=1,2, \ldots, n \quad 3.5
$$

as

$$
\begin{align*}
& P_{k}=\left(p_{k 1}, p_{k 2}, \ldots, p_{k n}\right) \\
& Q_{k}=\left(q_{k 1}, q_{k 2}, \ldots, q_{k n}\right)
\end{align*}
$$

For Newton's method (the discrete version) $x_{k i}=x_{k}$ for all i and $p_{k i}=\lambda e_{\mathbf{i}}$ (λ being the length of the perturbation).

It can be easily verified that any method which corresponds to 3.4 will satisfy

$$
\hat{B}_{k}=D_{f} B_{k} D_{x}^{-1}
$$

and this will give us a sufficient condition for scale invariance as the following Lemma shows.

Lemma 3.1: Any method for solving 1.18 which is defined by the following iterative procedure, given x_{0} and B_{0},

$$
\begin{align*}
p_{k} & =-B_{k}^{-1} f_{k} \\
x_{k+1} & =x_{k}+p_{k}
\end{align*}
$$

with B_{k+1} obtained in such a way that for a given change of scale of the form 1.29 it satisfies 3.7 ,will be scale invariant.

Proof: from 3.8

$$
\begin{aligned}
\hat{p}_{k} & =-\hat{B}_{k}^{-1} \hat{f}_{k}=-\left(D_{x} B_{k}^{-1} D_{f}^{-1}\right) D_{f} f_{k} \\
& =D_{x} p_{k}
\end{aligned}
$$

and then from 3.9

$$
\hat{x}_{k+1}=D_{x} x_{k+1}
$$

And then the methods defined by 3.4 are scale invariant. They have been called secant methods.

We have mentioned already the inconvenience of Newton's method regarding its requirements for function evaluations. Methods of the form 3.4 have been proposed but comparisons are not available. PALOSCHI (1980) tested an implementation of a method of this form due to GRAGG and STEWART (1974) which gave good results regarding robustness but its storage requirement makes it unsuitable for solving large problems. (Its efficiency was also poor.) The method of successive substitutions for solving problems of the form 1.11 (fixed point problems) is also scale invariant (in this case $D_{x}=D_{f}$, see MALATHRONAS (1979)).

The BROWN (1966) and BRENT (1973) methods are not scale invariant (except in the trivial case $D_{x}=\alpha I$, see MORE and COSNARD (1979)).

The two Quasi-Newton methods proposed by BROYDEN (1965) are also not scale invariant. The one considered "good" requires D_{x} to be orthogonal (ie, $D_{x}^{\top}=D_{x}^{-1}$, this includes all possible permutations of the variables; see MALATHRONAS and PERKINS (1980)), while D_{f} should be orthogonal in the case of the "bad" method.

We will devise in the next section Quasi-Newton methods which are scale invariant if D_{x} is a diagonal matrix.

3.2 SCALE INVARIANT QUASI-NEWTON METHODS

We have already defined in chapter 2 the family of rank-one QuasiNewton methods. This family, in general, will not be scale invariant as the following analysis shows.

Consider the update formula 2.8 which characterizes this family. If we do a change of scale of the form 1.29 then the new update on the new scale will be

$$
\begin{aligned}
\hat{B}_{k+1} & =\hat{B}_{k}+\left(\hat{y}_{k}-\hat{B}_{k} \hat{p}_{k}\right) \frac{\hat{v}_{k}^{\top}}{\hat{v}_{k}^{\top} \hat{p}_{k}} \\
& =\hat{B}_{k}+D_{f}\left(y_{k}-B_{k} p_{k}\right) \frac{\hat{v}_{k}^{\top}}{\hat{v}_{k}^{\top} D_{x} p_{k}}
\end{aligned}
$$

and since according to lemma 3.1 , B_{k} must satisfy 3.7 for all k, it follows

$$
\begin{align*}
\hat{B}_{k+1} & =D_{f} B_{k} D_{x}^{-1}+D_{f}\left(y_{k}-B_{k} p_{k}\right) \frac{\hat{v}_{k}^{\top}}{\hat{v}_{k}^{\top} D_{x} p_{k}} \\
& =D_{f}\left(B_{k}+\left(y_{k}-B_{k} p_{k}\right) \frac{\hat{v}_{k}^{\top} D_{x}}{\hat{v}_{k}^{\top} D_{x} p_{k}}\right) D_{x}^{-1}
\end{align*}
$$

We can then see that unless v_{k} is a chosen properly, 3.7 will not be satisfied by B_{k+7}.

The following lemma will state sufficient conditions for rank-one Quasi-Newton methods to be scale invariant.

Lemma 3.2: A rank-one Quasi-Newton method defined with the update formula 2.8 will be scale invariant under changes of scale of the form 1.29 if the sequence of vectors $\left\{v_{k}\right\}$, which characterises the method, is such that

$$
\hat{v}_{k}=D_{x}^{-1} v_{k}
$$

provided that B_{0} is such that

$$
\hat{B}_{0}=D_{f} B_{o} D_{x}^{-1}
$$

and D_{x} is a diagonal matrix.
Proof: Using 3.10 it follows that if \dot{B}_{k} satisfies 3.7 then from 3.11 , B_{k+1} satisfies 3.7. Using 3.12 it follows by induction that 3.7 is satisfied for all k, and lemma 3.1 then applies.

We will now show the existence of methods satisfying lemma 3.2.

The following notation will be used.

$$
\begin{aligned}
& x_{k}=\left(\xi_{k 1}, \xi_{k 2}, \ldots, \xi_{k n}\right) \\
& p_{k}=\left(\pi_{k 1}, \pi_{k 2}, \ldots, \pi_{k n}\right) \\
& v_{k}^{i}=\left(v_{k 1}^{i}, v_{k 2}^{i}, \ldots, v_{k n}^{i}\right)
\end{aligned}
$$

Definition: Define the pseudoinverse α^{+}of a real number α as

$$
\alpha^{+}= \begin{cases}0 & \text { if } \alpha=0 \\ 1 / \alpha & \text { if } \alpha \neq 0\end{cases}
$$

Given the sequence $\left\{x_{k}\right\}$ define the sequences $\left\{v_{k}^{\}}\right\} ;\left\{v_{k}^{2}\right\},\left\{v_{k}^{3}\right\}$ and $\left\{v_{k}^{4}\right\}$ such that for each $i, i \leq i \leq n$

$$
\begin{align*}
& v_{k i}^{1}=\xi_{k+1}^{+} \\
& v_{k i}^{2}=\pi_{k i}\left(\xi_{k i}^{+}\right)^{2} \\
& v_{k i}^{3}=\pi_{k i}\left(\pi_{0 i}^{+}\right)^{2} \\
& v_{k i}^{4}=\pi_{k i}\left(\left(\xi_{k i}-\xi_{0 i}\right)^{+}\right)^{2}
\end{align*}
$$

Lemma 3.3: Each one of the sequences $\left\{v_{k}^{1}\right\} ;\left\{v_{k}^{2}\right\},\left\{v_{k}^{3}\right\}$ and $\left\{v_{k}^{4}\right\}$ satisfies 3.11.

Proof: If we denote by δ_{i} the i-th element in the diagonal of the matrix D_{x} we can see that

$$
\begin{aligned}
& \hat{\xi}_{k i}=\delta_{i} \xi_{k i} \\
& \hat{\pi}_{k i}=\delta_{i} \pi_{k i} \\
& \hat{\xi}_{k i}^{+}=\xi_{k i}^{+} / \delta_{i} \\
& \hat{\pi}_{0 i}^{+}=\pi_{o i}^{+} / \delta_{i} \\
& \left(\hat{\xi}_{k i}-\hat{\xi}_{0 i}\right)^{+}=\left(\xi_{k i}-\xi_{0 i}\right)^{+} / \delta_{i}
\end{aligned}
$$

and 3.11 follows.

DENNIS and SCHNABEL (1978) proposed the theory for least change secant updates for Quasi-Newton methods. We will show now how it is possible to relate some of the scale invariant methods we are proposing to this theory.

The Frobenius norm for matrices is defined as

$$
\|A\|_{F}=\left(\begin{array}{cc}
n & n \\
\sum_{i=1}^{n} & \left.\sum_{j=1}\left(e_{i}^{\top} A e_{j}\right)^{2}\right)^{\frac{1}{2}}, ~
\end{array}\right.
$$

for a matrix $A \in L\left(\mathbb{R}^{n}\right)$.

Quasi-Newton methods are basically characterized by the updating formula for obtaining the approximation B_{k+1} and, as we have mentioned in chapter 2, the basic relation which rules how to obtain B_{k+1} is the secant relation 2.2 .

We can define a set of matrices, for two given vectors y and s, as

$$
Q(y, s)=\left\{M \in L\left(\mathbb{R}^{n}\right): M s=y\right\}
$$

In particular, if $s=p_{k}$ and $y=y_{k}, Q(y, s)$ will be the set of matrices satisfying the secant relation, ie B_{k+1} must be taken from $Q\left(y_{k}, p_{k}\right)$. Dennis and Schnabel have shown that the Broyden update (ie, $\mathrm{v}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}$ in 2.8) is the solution to the problem

$$
B \in Q\left(\min _{k}, p_{k}\right)\left\|B-B_{k}\right\|_{F}
$$

They also have shown that if we extend the Frobenius norm by defining the weighted Frobenius norm as

$$
\|A\|_{W_{1}, W_{2}}=\left\|W_{1} A W_{2}\right\|_{F}
$$

for two given non-singular matrices W_{1} and W_{2}, then the solution to the problem

$$
\left.B \in \min _{Q\left(y_{k}\right.}, p_{k}\right)\left\|B-B_{k}\right\| \overline{\tilde{W}_{;}} w^{\prime \prime}
$$

is solved by taking $B=B_{k+1}$ with B_{k+1} given by 2.8 where

$$
v_{k}=W^{-\top} W^{-1} p_{k}
$$

We can then see that some rank-one updates can be obtained as least change updates (that is if it is possible to express v_{k} as 3.22).

The matrix W can also be changed at each iteration allowing then the more general equation

$$
v_{k}=W_{k}^{-\top} W_{k}^{-1} p_{k}
$$

We can now show that three of the methods we are proposing can be expressed as least change updates under the Dennis and Schnabel theory. For all of them we can find a diagonal matrix W_{k} such that v_{k} can be obtained using 3.23. If we express the diagonal elements of the matrix W_{k} as a vector then this is $\left\{x_{k}\right\}$ for $\left\{v_{k}^{2}\right\}, p_{0}$ for $\left\{v_{k}^{3}\right\}$ (we can in this case apply directly 3.22), and $\left\{x_{k}-x_{0}\right\}$ for $\left\{v_{k}^{4}\right\}$.

While we have proposed only four different scale invariant methods it is possible to find many more methods satisfying 3.11.

For instance, the family of methods defined by

$$
v_{k i}=\xi_{k i}^{+}\left|\pi_{k i} / \xi_{k i}^{+}\right|^{\alpha}
$$

with α being independent of the scaling (ie, $\hat{\alpha}=\alpha$) satisfies 3.11 , as well as

$$
\begin{align*}
& v_{k i}=\left(\xi_{k i}-\xi_{0 i}\right)^{+}\left|\pi_{k i} /\left(\xi_{k i}-\xi_{0 i}\right)^{+}\right|^{\alpha} \\
& v_{k i}=\pi_{o i}^{+}\left|\pi_{k i} / \pi_{o i}^{+}\right|^{\alpha}
\end{align*}
$$

The ones we have proposed are special cases of these families.
The two methods $\left\{v_{k}^{3}\right\}$ and $\left\{v_{k}^{4}\right\}$ are also invariant under affine changes of the more general form

$$
\hat{f}(\hat{x})=D_{f} f\left(D_{x}^{-1}(\hat{x}-b)\right)
$$

and so are the families 3.25 and 3.26 .

If we assume that W_{k} is a diagonal matrix then by defining the diagonal matrix D_{k} as

$$
D_{k}=W_{k}^{-T} W_{k}^{-1}
$$

we can use instead of 3.23

$$
v_{k}=D_{k} p_{k}
$$

The condition for scale invariance which D_{k} should satisfy can be deduced from 3.11.

A sufficient condition is

$$
\hat{D}_{k}=D_{x}^{-1} D_{k} D_{x}^{-1}
$$

We will show in the next section that rank-one Quasi-Newton methods satisfying our requirements for scale invariance have the same local convergence properties, ie superlinear, as Broyden's method.

3.3 CONVERGENCE RESULTS

In this section we will establish conditions for local superlinear convergence of scale invariant Quasi-Newton methods.

The following theorem, due to BROYDEN, DENNIS, MORE (1973), will be the basis for our convergence results.

Theorem 3.4: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be differentiable in the open, convex set D and assume that for some x_{*} in D, $f\left(x_{\star}\right)=0$ and $F^{\prime}\left(x_{\star}\right)$ is nonsingular, and for some $\beta>0$.
$\left\|F^{\prime}(x)-F^{\prime}\left(x_{\star}\right)\right\| \leq \beta\left\|x-x_{\star}\right\|$
for all $x \in D$.

Assume that there exist $\mu_{1} \geq 0$ and a nonsingular symmetric matrix M such that

$$
\left\|M v_{k}-M^{-1} p_{k}\right\| \leq \mu_{1}\left\|M^{-1} p_{k}\right\| \max \left(\left\|x_{k+1}-x_{\star}\right\|,\left\|x_{k}-x_{*}\right\|\right)
$$

for all $x_{k} \in D$ and B_{k} such that $\left\|B_{k}-F^{\prime}\left(x_{*}\right)\right\|<\varepsilon$ for some $\varepsilon>0$, where p_{k} is defined by 3.8 and x_{k+1} by 3.9.

Then the method defined by 2.8 is well defined in a neighbourhood of x_{*} and $F^{\prime}\left(x_{*}\right)$ and the sequence $\left\{x_{k}\right\}$ is locally and superlinearly convergent at x_{*}.

Based on our deductions in the previous section we will assume that v_{k} in 2.8 can be expressed as 3.29.

We can now state the following theorem.

Theorem 3.5: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfy the conditions of theorem 3.4 and let $\left\{D_{k}\right\}$ be a sequence of diagonal matrices such that for a fixed positive definite diagonal matrix D_{\star} the following relation is satisfied for all k.

$$
\left\|D_{k}-D_{*}\right\| \leq n \max \left(\left\|x_{k+1}-x_{*}\right\|,\left\|x_{k}-x_{*}\right\|\right)
$$

Then the method defined by $2.8,3.8,3.9$ and 3.29
is locally and superlinearly convergent provided, for a change of scale of the form $1.29, D_{k}$ is such that

$$
\hat{D}_{k}=D_{x}^{-1} D_{k} D_{x}^{-1}
$$

Proof: Define the change of scale

$$
\hat{x}_{k}=D_{*}^{\frac{1}{2}} x_{k}
$$

We can see that

$$
\left\|\hat{v}_{k}-\hat{p}_{k}\right\|=\left\|D_{*}^{-\frac{1}{2}} v_{k}-D_{\star}^{\frac{1}{2}} p_{k}\right\|=\left\|D_{*}^{-1}\left(D_{k}-D_{\star}\right) D_{*}^{\frac{1}{2}} p_{k}\right\|
$$

and then
$\left\|D_{*}^{-\frac{1}{2}} v_{k}-D_{*}^{\frac{1}{2}} p_{k}\right\| \leq\left\|D_{*}^{-1}\right\|\left\|D_{k}-D_{*}\right\|\left\|D_{*}^{\frac{1}{2}} p_{k}\right\|$
now defining

$$
\mu_{1}=n\left\|D_{*}^{-1}\right\|
$$

and from 3.33

$$
\left\|D_{*}^{-\frac{1}{2}} v_{k}-D_{*}^{\frac{1}{2}} p_{k}\right\| \leq \mu_{1} \max \left(\left\|x_{k+1}-x_{*}\right\|,\left\|x_{k}-x_{*}\right\|\right)\left\|D_{*}^{\frac{1}{2}} p_{k}\right\|
$$

We now apply theorem 3.4, identifying M and $D_{*}^{-\frac{1}{2}}$.

With the following lemma we will show that three of the scale invariant methods we are proposing satisfy the conditions of theorem 3.5.

Lemma 3.5: The sequences of vectors $\left\{v_{k}^{2}\right\},\left\{v_{k}^{3}\right\}$ and $\left\{v_{k}^{4}\right\}$ satisfy condition 3.33, provided for $\left\{v_{k}^{2}\right\} x_{*}$ has no zero components and for $\left\{v_{k}^{4}\right\} e_{j}^{\top}\left(x_{*}-x_{0}\right) \neq 0, i=1, n$.

Proof: We will use the notation $\delta_{k i}$ for i-th diagonal element of the matrix D_{k}.

For $\left\{v_{k}^{2}\right\}$ define D_{*} such that

$$
\delta_{* i}=\left(\xi_{* i}^{+}\right)^{2}
$$

In this case D_{k} is such that

$$
\delta_{k i}=\left(\xi_{k i}^{+}\right)^{2}
$$

and then

$$
\delta_{k i}-\delta_{* i}=\left(\xi_{* i}^{2}-\xi_{k i}^{2}\right)\left(\xi_{* j}^{+}\right)^{2}\left(\xi_{k i}^{+}\right)^{2}
$$

Since 2.27 must be satisfied only for an open set containing x_{*}, and since we are assuming x_{*} to have all its components away from the origin, then it is possible to show that there exists a constant γ_{1} such that

$$
\left(\xi_{* i}+\xi_{k i}\right)^{2}\left(\xi_{* i}^{+}\right)^{4}\left(\xi_{k i}^{+}\right)^{4} \leq \gamma_{1}
$$

and then

$$
\left(\delta_{k i}-\delta_{\star i}\right)^{2} \leq \gamma_{j}\left(\xi_{\star i}-\xi_{k i}\right)^{2}
$$

it now follows

$$
\left\|D_{k}-D_{\star}\right\| \leq \gamma_{1}^{\frac{1}{2}}\left\|x_{k}-x_{\star}\right\|
$$

and 3.33 is immediate.

For $\left\{v_{k}^{3}\right\}$ define D_{*} such that

$$
\delta_{* i}=\left(\pi_{0 i}^{+}\right)^{2}
$$

Since $D_{*}=D_{k}$ in this case the proof is trivial.
And finally for $\left\{v_{k}^{4}\right\}$ define D_{*} such that

$$
\delta_{* i}=\left(\left(\xi_{* i}-\xi_{0 i}\right)^{+}\right)^{2}
$$

D_{k} will in this case be such that

$$
\delta_{k i}=\left(\left(\xi_{k i}-\xi_{0 i}\right)^{+}\right)^{2}
$$

and again, as we did for $\left\{v_{k}^{2}\right\}$, we can find γ_{2} such that

$$
\left(\delta_{k i}-\delta_{* i}\right)^{2} \leq \gamma_{2}\left(\xi_{\star i}-\xi_{k i}\right)^{2}
$$

and 3.33 follows as before.

We have shown in 3.2 that least change secant updates, as defined by DENNIS and SCHNABEL (1978), can be expressed using

$$
v_{k}=W_{k}^{-T} W_{k}^{-1} p_{k}
$$

If the matrices W_{k} are such that

$$
D_{k}=W_{k}^{-T} W_{k}^{-1}
$$

is a diagonal matrix and if for a change of scale of the form 1.29 it satisfies

$$
\hat{D}_{k}=D_{x}^{-1} D_{k} D_{x}^{-1}
$$

then we can apply our convergence results for any least change secant update which can be expressed in this way.

3.4 NUMERICAL RESULTS

We will present in this section numerical results obtained testing the methods we have proposed in this chapter.

The new scale invariant methods will be compared against our implementation of Broyden's method presented in chapter 2 and the hybrid method tested by Hiebert.

We will use the same sets of mathematical examples as in chapter 2 plus an additional set which is described in Appendix A and which we have named "general subset".

This set has been constructed by taking from the general set those problems for which, with the standard initial point, all methods considered converged. For studying the behaviour of the different methods under a gradual deterioration of the scaling we will use the change of scale

$$
\hat{f}(\hat{x})=f\left(S_{m n} \hat{x}\right)
$$

for $m=0,4,8,12$, and $16 ;$ with $S_{m n}$ as defined in chapter 2 .
We will refer to the different methods using the following nomenclature.

BRO . Our implementation of Broyden's method (as in chapter 2)
HYB The hybrid method tested by Hiebert

To compare the methods regarding efficiency a number c_{j} is defined for each method on each problem as:

$$
c_{j}=\left[\begin{array}{l}
\text { not } \\
\text { defined }
\end{array}\right] \text { if the method has failed to converge }
$$

where j indicates the method, n_{j} is the number of function evaluation used for method j and n_{0} is the number of function evaluations used for the most efficient method of all on this particular problem.

The results obtained are condensed in tables 3.1 to 3.3 for the three considered sets, the general set, the general subset and the chemical equilibrium set.

The first half of the table shows the number of failures for each method while the second half gives the averages for the efficiency number c_{j}. Note that average is based on number of successes for particular methods.
Table 3.1: Summary of results for the GENERAL SET

Fails		SII	SI2	SI3	SI4	BRO	HYB
	Unscaled	14	12	13	14	12	5
	Var badly scaled	12	14	13	13	13	21
	Func	18	18	14	14	15	22
	TOTAL	44	44	40	41	40	48
Averages	Unscaled	1.49	2.10	1.71	1.73	1.84	1.33
of $\mathrm{c}_{\mathbf{j}}$	Var badly scaled	1.55	1.81	1.77	1.65	1.50	1.33
	Func "	1.77	1.26	1.27	1.50	1.44	1.41
	TOTAL	1.60	1.75	1.59	1.63	1.60	1.35

Table 3.2: Summary of results for the GENERAL SUBSET

Table 3.3: Summary of results for the CHEMICAL EQUILIBRIUM SET

	SI1	SI2	SI3	SI4	BRO	HYB
Fails	3	3	3	3	3	9
Averages of c_{j}	1.28	1.53	1.34	1.40	2.94	1.05

Finally, in table 3.4, we give a complete summary showing percentages of success for all methods on all sets.

Table 3.4: Percentage of success of all methods on all sets

	SII	SI2	SI3	SI4	BRO	HYB
GENERAL SET	73	73	75	75	75	70
GENERAL SUBSET	68	73	80	78	66	-
CHEM EQUILIB SET	75	75	75	75	75	25

The hybrid code was not tested with the general subset because it has shown already very bad behaviour when variables are badly scaled.

The results for the general set (table 3.1) show no significant difference between our scale invariant method SI3, SI4 and BRO (Broyden's method). The results for the remaining scale invariant methods do not differ too much. As before, all Quasi-Newton methods show better robustness (specially on the badly scaled cases) and slightly less efficiency than the hybrid code.

The results for the general subset show clearly the advantage of the scale invariant code, all of them failing in less cases. SI3 and SI4 give the best results in efficiency and robustness.

For the chemical equilibrium set all scale invariant methods fail on three cases as does BRO. There is an important difference in efficiency but it is caused by a particular problem for which Broyden's method takes many more iterations than the rest.

Finally, table 3.4 shows the global superiority of the scale invariant methods.

3.5 COACLUSIONS

We have presented in this chapter scale invariant Quasi-Newton methods which are competitive with Broyden's method. The results obtained for
the general subset (when the variables are gradually badly scaled) show clearly the advantage of using the theoretically scale-invariant methods. Scale invariance, in practice, is only achieved if infinite precision arithmetic is used. Since this is not the case different results are obtained with different scales as the tables show. There is still room for improvement in the numerical conditioning of the methods in order to minimize the effects of finite precision arithmetic being used. We will show in the next chapter possible ways to deal with this problem.

The scale invariant methods SI3 and SI4 are the best alternatives according to our numerical results.

THE NUMERICAL CONDITIONING OF QUASI-NEWTON METHODS

We will discuss in this chapter some ideas for optimizing the numerical conditioning of Quasi-Newton methods.

We will first present the concept of condition number for general matrices and its relation to the numerical conditioning of systems of non-linear equations.

Some ideas for optimizing the numerical conditioning will be proposed and tested.

First, an explicit expression for the condition number of the approximation to the Jacobian for general Quasi-Newton methods will be derived which will allow us to select Quasi-Newton methods with optimally conditioned updates. Secondly, an internal scaling procedure will be proposed for optimizing the condition number of both the problem and the approximation to the Jacobian.

Finally we will present numerical results obtained with the proposals of this chapter.

4.1 THE CONDITION NUMBER

The condition number has been introduced as a measure of the numerical conditioning for general matrices (see TODD (1966)).

For a non-singular matrix $A \in L\left(\mathbb{R}^{n}\right)$ the condition number $k(A)$ is defined as

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

for a given matrix norm || \|.

If A defines a system of linear equations in \mathbb{R}^{n}

$$
A x=b
$$

it is a well known result (ORTEGA RHEINBOLDT (1970)) that if $B \in L\left(\mathbb{R}^{n}\right)$ is close to A in the sense that

$$
\left\|A^{-1}\right\|\|B-A\|<1
$$

then B is also non-singular, and for $b \neq 0$ the solutions x_{\star} of 4.2 and y_{\star} of

$$
B x=c
$$

satisfy the estimate (see RHEINBOLDT(1974))
$\frac{\left\|x_{\star}-y_{\star}\right\|}{\left\|x_{\star}\right\|}=\frac{\kappa(A)}{1-k(A)\|B-A\| /\|A\|}\left(\frac{\|B-A\|}{\|A\|}+\frac{\|b-c\|}{\|b\|}\right)$

As an example of the use of this number let us assume that in solving numerically the equation 4.2 we have found an approximation y_{*} to x_{*} (the exact solution).

If $\kappa(A)$ is a large number then the fact that $A y_{*} \underline{\underline{ }} b$ does not mean that y_{*} is close to x_{*}; we can deduce this using 4.5 to obtain

$$
\frac{\left\|x_{\star}-y_{\star}\right\|}{\left\|x_{\star}\right\|} \leq k(A) \frac{\left\|b-A y_{\star}\right\|}{\|b\|}
$$

In general we can say that the smaller $k(A)$, the better the result obtained in solving numerically 4.2.

This important result has led to finding ways for transforming 4.2 into an equivalent linear system having the same solution but smaller condition number.

This concept of condition number for linear systems has been generalized to systems of non-linear equations by RHEINBOLDT (1974) as follows:

For a given function $f: D \subset \mathbb{R}^{n} \Rightarrow \mathbb{R}^{n}$, closed set $C \subset D$ and point $z \in C$ define

$$
\begin{aligned}
& u(f, c, z)=\sup \{t \in[0, \infty) ;\|f(x)-f(z)\| z t\|x-z\|, \forall x \in C\} \\
& v(f, c, z)=\inf \{t \in[0, \infty) ;\|f(x)-f(z)\| \leq t\|x-z\|, \forall x \in C\}
\end{aligned}
$$

and then, define the localized condition number

$$
\kappa(f, C, z)=\left(\begin{array}{ll}
\frac{v(f, C, z)}{\mu(f, C, z)} \text { if } 0<\mu(f, C, z), v(f, C, z)<\infty \\
\infty & \text { otherwise }
\end{array}\right.
$$

It can be shown that 4.7 reduces to 4.5 if f is a linear function.

REINBOLDT (1974) has shown that if f is a continuous function in D and if the Jacobian $F^{\prime}(x)$ of f is nonsingular in D then for any $\varepsilon>0$ there is a $\delta>0$ such that if

$$
C=\left\{x \in \mathbb{R}^{n},\|x-z\| \leq \delta\right\} c D
$$

then

$$
\begin{align*}
& \left|v(f, C, z)-\left\|F^{\prime}(z)\right\|\right| \leq \varepsilon \\
& \left|\mu(f, C, z)-\left\|F^{\prime}(z)^{-1}\right\|^{-1}\right| \leq \varepsilon
\end{align*}
$$

and then, asympotically near z, the conditioning of the non-linear function f and its Jacobian $F^{\prime}(z)$ are the same.

An equivalent formula to 4.5 is obtained for the non-linear case and then the condition number for systems of non-linear equations plays a similar role as it does for linear systems.

4.2 QUASI-NEWTON METHODS AND THE CONDITION NUMBER

The numerical performance of Algorithm 1 in chapter 2 is affected by the condition number in two different ways.
(a) The conditioning of the problem 1.18 itself, as explained in section 4.1.
(b) The conditioning of B_{k} since step 5 of the algorithm implies solving the linear system

$$
\begin{equation*}
B_{k} p_{k}=-\lambda_{k} f_{k} \tag{ון}
\end{equation*}
$$

We will propose in section 4.2 .1 a way of dealing with (b) and in section 4.2 .2 how to deal simultaneously with (a) and (b).

4.2.1 Optimizing the condition number using different methods

Step 5 in algorithm 1 involves the solution of a linear system. According to our discussion in section 4.1 we should try to optimize the condition number of B_{k} in order to obtain better numerical results. For this, we will make use of the degrees of freedom provided by v_{k} in step 8 of the algorithm, choosing it such that the condition number of B_{k+1} is minimized.

The following property will allow us to obtain an explicit expression for $k\left(B_{k+1}\right)$.

Property 1: For any $A \in L\left(\mathbb{R}^{n}\right), b \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}$, the Frobenious norm for matrices and the Euclidean norm for vectors.
$\left\|A+b c^{\top}\right\|_{F}^{2}=\|A\|_{F}^{2}+\|b\|_{2}^{2}\|c\|_{2}^{2}+2 b{ }^{\top} A c$

Proof:

$$
\begin{aligned}
\left\|A+b c^{\top}\right\|_{F}^{2}= & \sum_{i=1}^{n} \sum_{j=1}^{n}\left(e_{i} A e_{j}+e_{i}^{T} b c^{\top} e_{j}\right)^{2} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left(e_{i}^{\top} A e_{j}\right)^{2}+\left(e_{i}^{T} b\right)^{2}\left(e_{j}^{T} c\right)^{2}\right. \\
& \left.+2\left(e_{i}^{T} b\right)\left(e_{i}^{T} A e_{j}\right)\left(c^{T} e_{j}\right)\right) \\
= & \|A\|_{F}^{2}+\|b\|_{2}^{2}\|c\|_{2}^{2}+2 b^{\top} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(e_{i} e_{i}^{\top} A e_{j} e_{j}^{T}\right) c \\
= & \|A\|_{F}^{2}+\|b\|_{2}^{2}\|c\|_{2}^{2}+2 b^{\top} A c
\end{aligned}
$$

In what follows we will assume $\left\|\|_{F}\right.$ for matrices and $\| \|_{2}$ for vectors.

We can then evaluate from 2.8 and Property 1

$$
\begin{align*}
\left\|B_{k+1}\right\|^{2}= & \left\|B_{k}\right\|^{2}+\frac{\left\|y_{k}-B_{k} p_{k}\right\|^{2} \cdot\left\|v_{k}\right\|^{2}}{\left(v_{k}^{\top} p_{k}\right)^{2}} \\
& +\frac{2\left(y_{k}-B_{k} p_{k}\right)^{\top} B_{k} v_{k}}{v_{k}^{\top} p_{k}}
\end{align*}
$$

If we define $H_{k}=B_{k}^{-1} \forall_{k}$ and using the SHERMAN and MORRISON (1949) formula, we can obtain from 2.8.

$$
H_{k+1}=H_{k}+\frac{\left(p_{k}-H_{k} y_{k}\right) v_{k}^{\top} H_{k}}{v_{k}^{\top} H_{k} y_{k}}
$$

and then using again Property 1

$$
\begin{align*}
\left\|H_{k+1}\right\|^{2}= & \left\|H_{k}\right\|+\frac{\left\|p_{k}-H_{k} y_{k}\right\|^{2} \cdot\left\|v_{k}^{\top} H_{k}\right\|^{2}}{\left(v_{k}^{\top} H_{k} y_{k}\right)^{2}} \\
& +\frac{2\left(p_{k}-H_{k} y_{k}\right)^{\top} H_{k} H_{k}^{\top} v_{k}}{v_{k}^{\top} H_{k} y_{k}}
\end{align*}
$$

We can now evaluate, using 4.13 and 4.15,

$$
\kappa\left(B_{k+1}\right)^{2}=\left\|B_{k+1}\right\|^{2}\left\|H_{k+1}\right\|^{2}
$$

and thus we have found an explicit way of evaluating the condition number for the approximation to the Jacobian obtained using rank-one Quasi-Newton methods.

Define now

$$
\begin{aligned}
& \alpha_{1}=\left\|y_{k}-B_{k} p_{k}\right\|^{2} \\
& \beta_{3}=\left\|p_{k}-H_{k} y_{k}\right\|^{2} \\
& a_{1}^{\top}=\left(y_{k}-B_{k} p_{k}\right)^{\top} B_{k} \\
& b_{4}^{\top}=\left(\dot{p}_{k}-H_{k} y_{k}\right)^{\top} H_{k}
\end{aligned}
$$

$g_{1}: \mathbb{R}^{n} \Rightarrow \mathbb{R}^{\prime}$ as

$$
g_{j}(v)=\left\|B_{k}\right\|^{2}+\alpha_{1} \frac{v^{\top} v}{\left(v^{\top} p_{k}\right)^{2}}+2 \frac{a_{1}^{\top} v}{v^{\top} p_{k}}
$$

and $g_{2}: \mathbb{R}^{n} \Rightarrow \mathbb{R}^{\cdot}$ as

$$
g_{2}(v)=\left\|H_{k}\right\|^{2}+\beta_{3} \frac{v^{\top} H_{k} H_{k}^{\top} v}{\left(v^{\top} H_{k} y_{k}\right)^{2}}+2 \frac{b_{4}^{\top} H_{k}^{\top} v}{v^{\top} H_{k} y_{k}}
$$

If we define $g: \mathbb{R}^{n} \Rightarrow \mathbb{R}$ as

$$
g(v)=g_{1}(v) g_{2}(v)
$$

then it follows

$$
k\left(B_{k+1}\right)=g\left(v_{k}\right)
$$

If we are interested in minimizing the condition number of B_{k+1} using v_{k} we should solve:

$$
\min _{v \in \mathbb{R}^{n}} g(v)
$$

Since the only way to solve this problem is to do it numerically and this will be an iterative process itself (with no guarantee of convergence in a finite number of steps) it should be discarded as a way of optimizing 4.19.

We propose instead to restrict v_{k} such that the optimization problem 4.20 can be solved explicitly or very easily.

FLETCHER (1970), in dealing with the Quasi-Newton methods for optimization, introduced the concept of "dual" formulas. He noted that the secant relation satisfied by all Quasi-Newton methods

$$
B_{k+1} p_{k}=y_{k}
$$

could be thought of as a mapping giving y_{k} from p_{k} and then a dual formula could be obtained from any formula satisfying 4.21 replacing B_{k+1} by H_{k+1}, p_{k} by y_{k} and y_{k} by p_{k} obtaining a formula satisfying

$$
H_{k+1} y_{k}=p_{k}
$$

which is equivalent to 4.21. In the case of Broyden's "good" formula ($v_{k}=p_{k}$ in 2.8) the corresponding "dual" is the "bad" Broyden's formula $\left(v_{k}^{\top}=y_{k}^{\top} B_{k}\right)$.

If we define an updating formula by H^{0} and its corresponding dual by H^{d}, Fletcher defined a family of formulae obtained from

$$
H=(1-\theta) H^{0}+\theta H^{d}
$$

He then chose θ optimizing in some sense the conditioning of H.

DAVIDON (1975) using the same concept introduced new formulas choosing θ to optimize the condition number of $H_{k}^{-\frac{1}{2}} H_{k+1} H_{k}^{-\frac{1}{3}}$ (in this case H is symmetric and positive definite).

Following the same idea we will use a parameter θ for the optimization of 4.20.

Instead of 4.23 we will define v in terms of θ as

$$
v_{k}=p_{k}+\theta u_{k}
$$

Note that, with v_{k} given by 4.24 , if we define
$\varepsilon_{00}=\left\|B_{k}\right\|^{2}$

$$
\varepsilon_{20}=\left\|p_{k}\right\|^{2}
$$

$\varepsilon_{10}=\alpha_{1}\left\|p_{k}\right\|^{2}$
$\varepsilon_{21}=u_{k}^{\top} p_{k}$
$\varepsilon_{11}=2 \alpha_{1} u_{k}^{\top} p_{k}$

$$
\varepsilon_{30}=2 \mathrm{a}_{1}^{\top} \mathrm{p}_{\mathrm{k}}
$$

$\varepsilon_{12}=\alpha_{1}\left\|u_{k}\right\|^{2}$
$\varepsilon_{31}=2 a_{1}^{\top} \underline{u}_{k}$
equation 4.13 becomes

$$
\left\|B_{k+7}\right\|^{2}=\varepsilon_{00}+\frac{\varepsilon_{10}+\varepsilon_{11} \theta+\varepsilon_{12} \theta^{2}}{\left(\varepsilon_{20}+\varepsilon_{21} \theta\right)^{2}}+\frac{\varepsilon_{30}+\varepsilon_{31}{ }^{\theta}}{\varepsilon_{20}+\varepsilon_{21} \theta}
$$

and by defining

$$
\begin{array}{ll}
\delta_{00}=\left\|H_{k}\right\|^{2} & \delta_{20}=p_{k}^{\top} H_{k} y_{k} \\
\delta_{10} \equiv\left\|p_{k}-H_{k} y_{k}\right\|^{2}\left\|p_{k}^{\top} H_{k}\right\|^{2} & \delta_{21}=u_{k}^{\top} H_{k} y_{k} \\
\delta_{11}=2\left\|p_{k}-H_{k} y_{k}\right\|^{2} p_{k}^{\top} H_{k} H_{k}^{\top} u_{k} & \delta_{30}=2\left(p_{k}-H_{k} y_{k}\right)^{\top} H_{k} H_{k}^{\top} p_{k} \\
\delta_{12}=\left\|p_{k}-H_{k} y_{k}\right\|^{2}\left\|H_{k}^{\top} u_{k}\right\|^{2} & \delta_{31}=2\left(p_{k}-H_{k} y_{k}\right)^{\top} H_{k} H_{k}^{\top} u_{k}
\end{array}
$$

equation 4.15 becomes
$\left\|H_{k+1}\right\|^{2}=\delta_{00}+\frac{\delta_{10}+\delta_{11} \theta+\delta_{12} \theta^{2}}{\left(\delta_{20}+\delta_{21} \theta\right)^{2}}+\frac{\delta_{30}+\delta_{31} \theta}{\delta_{20}+\delta_{21}{ }^{\theta}}$
We will then solve, instead of 4.20 , the simpler problem

$$
\min _{\theta \in \mathbb{R}} g\left(v_{k}\right)
$$

with v_{k} given by 4.24.

We still have to choose \ddot{u}_{k} and from this two methods will result.

First we choose

$$
u_{k}^{\top}=y_{k}^{\top} B_{k}-p_{k}^{\top}
$$

With this choice, v_{k} is such that for $\theta=0$ it gives the Broyden's "good" formula while $\theta=1$ it gives its dual. The method resulting from solving 4.27 will be called method la; in addition we will define method lb as the one solving instead of 4.27 .

$$
\min _{\theta=0} \operatorname{or~}_{\theta=1} g\left(v_{k}\right)
$$

The determination of θ for method lb is immediate.

In the case of method la a typical graph of $g\left(v_{k}\right)$ versus θ is presented in fig 1

Fig l: Typical graph of $g\left(v_{k}\right)$

The value θ_{1} and θ_{2} correspond to the annihilation of the denominators of 4.25 and 4.26 . We found the value for θ solving 4.27 using Newton's method which converges very quickly to each of the three local minima , the initial points were taken as $\theta_{1}-\varepsilon, \theta_{1}+\varepsilon$ and $\theta_{2}+\varepsilon$ for some $\varepsilon>0$.

Finally, we will define method 2 choosing u_{k} such that $\varepsilon_{21}=0$ and $\delta_{21}=0$ because this will enable us to solve 4.27 explicitly (in this case $g\left(v_{k}\right)$ is a polynomial in θ of order 42 . In this case we need

$$
u_{k}^{\top} p_{k}=0
$$

and

$$
u_{k}^{\top} H_{k} y_{k}=0
$$

which can be obtained taking u_{k} as the projection on the subspace orthogonal to p_{k} and $H_{k} y_{k}$ of the vector u_{k} for the method la. This restricts this method to problems for which $n>2$.

4.2.2 Optimizing the condition number using scaling

We have shown in the previous section how we can optimize the condition number of the martix used in step 5 of algorithm 1 , but in doing that the condition number of the problem 1.18 remains unchanged.

We will show in this section how we can achieve both things simultaneously.

If the first approximation B_{0} in algorithm 1 is obtained by using finite differences (as we have proposed in chapter 2) it follows from 3.7 that scaling the variables (or function) at the first iteration is equivalent to postmultiplying (premultiplying for the function) the approximation B_{0} by the scaling matrix.

The following Lemma will show that scaling the function every iteration is equivalent to premultiplying the Jacobian approximation by the scaling matrix.

Lemma 4.1: If we use the change of scale

$$
\hat{f}_{k}=D_{f} f_{k}
$$

in algorithm $1, B_{0}$ is such that

$$
\hat{B}_{o}=D_{f} B_{o}
$$

and

$$
\hat{v}_{k}=v_{k}
$$

then

$$
\hat{B}_{k}=D_{f} B_{k}, \forall_{k}
$$

Proof: assume

$$
\hat{B}_{k}=D_{f} B_{k}, k \leq m
$$

From 2.8 it follows

$$
\hat{B}_{m+1}=\hat{B}_{m}+\left(\hat{y}_{m}-\hat{B}_{m} \hat{p}_{m}\right) \frac{\hat{v}_{m}^{\top}}{\hat{v}_{m}^{\top} \hat{p}_{m}}
$$

and then from the hypothesis

$$
\hat{B}_{m+1}=D_{f} B_{m}+D_{m}\left(v_{m}-B_{m} p_{m}\right) \frac{v_{m}^{\top}}{v_{m}^{\top} p_{m}}
$$

and hence

$$
\hat{B}_{m+1}=D_{f} B_{m+1}
$$

The proof follows by induction.

This Lemma shows that by altering the scaling matrix D_{f} at each iteration we premultiply B_{k} by a different matrix each iteration.

The following theorem due to BAUER (1963) will be the basis for our choice of the internal scaling.

Theorem 4.2: For a nonsingular matrix $A \in L\left(\mathbb{R}^{n}\right)$ and nonsingular diagonal matrices D_{1} and D_{2}, using the maximum norm for matrices,

$$
\min _{D_{1}} k\left(D_{1} A\right)
$$

and

$$
\min _{D_{2}} k\left(A D_{2}\right)
$$

are achieved for D_{1} and D_{2} determined from
$\left|A^{-1}\right| e=D_{2} e$
$|A| e=D_{1}^{-1} \mathrm{e}$
($|A|$ means the original matrix with all its elements taken in absolute value.)

Our strategy for the internal scaling will be as follows:
(a) At the first iteration scale the variables using

$$
\hat{\hat{x}}_{0}=D_{2} x_{0}
$$

where the diagonal matrix D_{2} is obtained from

$$
\left|B_{0}^{-1}\right| e=D_{2} e
$$

(b) At every iteration scale the function using

$$
\hat{\hat{f}}_{k}=D_{1} f_{k}
$$

where the diagonal matrix D_{1} is obtained at each iteration from

$$
\left|B_{k}\right| e=D_{1}^{-1} e
$$

The variables are scaled the first iteration in order to compensate for any bad scaling related to them.

If we want to scale the variables every iteration then we have to be able to change all our data from the old scale to the new scale. This means we have to be able, given B_{k}, to obtain \hat{B}_{k} for the new scale. If the method used is not scale invariant then this means that

$$
\hat{B}_{k} \neq B_{k} D_{2}^{-1}
$$

in general (because we will have different updates for different scales) and then we cannot obtain \hat{B}_{k} based only on B_{k} and D_{2}.

Even in the case of scale invariant methods (for which 4.34 becomes an equality) since we need B_{k}^{-1} in order to obtain D_{2} from 4.32, it will make the scaling very expensive.

Lemma 4.1 shows that since all updates of the form 2.8 are scale invariant for function scaling, it is possible to scale the function every iteration. In this case

$$
\hat{B}_{k}=D_{1} B_{k}
$$

and it is very simple to change the scales. Also since B_{k} is needed to obtain D_{1} using 4.33, it is not an expensive procedure.

With this choice of the internal scaling we are minimizing the condition number of B_{k} at each iteration (ie, we obtain an effect similar to the one of section 4.2.1). If B_{k} is not far from the real Jacobian $F^{\prime}\left(x_{k}\right)$ (which is not necessarily true as has been shown by DENNIS and MORE (1977), even when convergence is achieved) we will then also minimize the condition number of the problem 1.18 as we have explained at the beginning of this chapter.

4.3 NUMERICAL RESULTS

We will present in this section numerical results for our proposals.

The same sets of mathematical examples as in chapters 2 and 3 will be used, ie the "general set", "general subset" and the "chemical equilibrium set". In addition a new set called "restricted set" will be used and its description can be found in Appendix 1. It has been obtained from the "general set" taking only those problems with $n>2$ (this is because one of the methods we have proposed in section 4.2.1 requires $n>2$).

The table of results have the same structure as those of chapter 3, ie, we will present a number of failures and the averages for the coefficients c_{j}. The methods will be named as in chapter 3 plus the ones we have proposed in section 4.2 .1 which will be named as follows.

CIB Method la of section 4.2.1
CIB Method 1b of section 4.2.1
C2 Method 2 of section 4.2.1

In table 4.1 we present the results for the methods proposed in section 4.2.1. They are compared against our implementation of Broyden's method of chapter 2. The results clearly show that the optimization of the condition number of B_{k} as we have proposed is not a good idea.

Table 4.1: Summary of results for the RESTRICTED SET

		ClA	C1B	C2	BRO
Fails	Unscaled	.15	15	14	11
	Var badly scaled	23	17	19	10
	Func badly scaled	20	15	13	11
	TOTAL	58	47	46	32
Averages	Unscaled	3.40	3.76	3.84	1.79
of c_{j}	Var badly scaled	2.29	1.66	2.16	1.73
	Func badly scaled	2.93	2.43	3.37	1.55
	TOTAL	2.93	2.64	3.18	1.69

In the following three tables we test the effect of the internal scaling we proposed in 4.2 .2 when used for implementing Broyden's method as presented in chapter 2 and the scale invariant methods proposed in chapter 3. Results are also shown, for comparison, for the hybrid code mentioned in the previous comparisons (which as we mentioned before has a facility for an internal scale which is not used since it does not improve its performance).

Table 4.2: Summary of results for the GENERAL SET using internal scaling

		SI1	SI2	SI3	SI4	BRO	HYB
Fails	Unscaled	14	10	13	10	13	5
	Var badly scaled	13	10	14	12	13	21
	Func badly scaled	12	8	13	11	12	22
	TOTAL	39	28	40	.33	38	48
Averages	Unscaled	1.46	1.42	1.42	1.69	1.27	1.31
of c_{j}	Var badly scaled	1.54	1.65	1.40	1.66	1.31	1.30
	Func badly scaled	1.47	1.34	1.45	1.47	1.58	1.42
	TOTAL	1.49	1.47	1.42	1.60	1.39	1.34

Table 4.3: Summary of results for the GENERAL SET Using internal scaling

	m	SI1	SI2	SI3	SI4	BRO
Fails	0	0	0	0	0	0
	4	0	0	0	0	1
	8	2	1	1	1	1
Averages of c_{j}	12	7	6	6	5	6
	16	14	12	11	11	8
	TOTAL	23	19	18	17	16
	0	1.28	1.11	1.08	1.08	1.05
	4	1.34	1.14	1.12	1.27	1.08
	8	1.55	1.30	1.17	1.35	1.21
	12	4.82	3.78	1.30	1.38	1.27
	16	1.00	5.49	1.60	2.29	1.28
	TOTAL	1.91	1.89	1.19	1.37	1.16

Table 4.4: Summary of results for the CHEMICAL EQUILIBRIUM SET Using internal scaling

	SII	SI2	SI3	SI4	BRO	HYB
Fails	1	2	1	1	1	9
Averages of c_{j}	2.16	1.38	2.00	1.29	1.93	1.04

In table 4.5 we present a summary of results showing the percentage of success for all methods on all sets using the internal scaling. For comparison, the percentages of success obtained without the scaling are shown.

Table 4.5: Percentages of success for all methods on all sets using the internal scaling

	SII	SI2	SI3	SI4	BRO	HYB
GENERAL SET	$76(73)$	$83(73)$	$75(75)$	$80(75)$	$77(75)$	70
GENERAL SUBSET	$71(68)$	$76(73)$	$78(80)$	$79(78)$	$80(66)$	-
CHEM EQUILIB SET	$92(75)$	$83(75)$	$92(75)$	$92(75)$	$92(75)$	25

() is the percentage of success without the internal scaling.

It is clear from the results that the use of the internal scaling improves the robustness of the codes.

4.4 CONCLUSIONS

We have suggested ways of improving the numerical conditioning of code for solving the problem 1.18. The optimization of the condition number for the approximation to the Jacobian using different QuasiNewton methods is not a good idea while optimizing it using internal scaling gives excellent results.

CHEMICAL ENGINEERING EXAMPLES

In previous chapters we have tested all our proposals using mathematical examples. This has allowed us to compare thoroughly the different alternatives on a wide set of examples and identify those which perform best.

In this chapter we will present numerical results obtained testing our best methods using Chemical Engineering flowsheeting examples.

The examples were taken from various sources and two of them, in particular, are benchmark problems proposed by the European Federation of Chemical Engineers to test the performance of different steady state simulation packages.

The set of problems will involve the following features:

- Involving only mass balances.
- Involving energy and mass balances (hence physical properties such as enthalpy, K-values are needed).
- Physical properties provided as procedures.
- Physical properties provided as equations (ie, no internal iterations are required).
- Strictly simulation problems (all feeds and equipment parameters known).
- Design problems.
- Mixing of equations and procedures.

The simulations package to be used will be the SPEEDUP system developed at Imperial College.

5.1 THE SIMULATION PACKAGE SPEEDUP

We will run our examples using the simulation package SPEEDUP developed at Imperial College (SARGENT, PERKINS and THOMAS (1982)) which was mentioned in chapter 1.

In this package, each unit in the flowsheet is represented by equations, procedures or any combination of both. All procedures have the following format:
(output parameters list) NAME OF PROCEDURE (input parameters list)

Physical properties are available from the package FLOWPACK1 of ICI, a Chao Seader correlation being used.

Our numerical methods presented in the previous chapters, are available as options in SPEEDUP.

SPEEDUP, based on a flowsheet description for the connection between the units, a description of the models representing the units plus an assignment between models and units will create a FORTRAN subroutine for evaluating the residual vector. Once the known variables have been set, SPEEDUP checks for a consistent system to solve (ie, same number of variables and equations) and then will decompose the problem, if possible, into irreducible blocks as explained in section 1.2. The problem will then be solved, block by block, with the numerical method chosen by the user.

An important facility of SPEEDUP which has been very useful to us is the possibility of "typing" the variables and give to each type a default initial guess, a lower bound and an upper bound.

The form of the facility we used is for instance:

$$
\text { TEMP }=300: 250: 350
$$

where 300 is the default initial guess, 250 the lower bound and 350 the upper bound for the variable type TEMP.

The initial approximation to the Jacobian in SPEEDUP is obtained by finite differences using the algorithm of CURTIS, POWELL and REID (1974) which, for sparse systems, reduces the number of function evaluations ($n+1$ is the maximum required) used to obtain the approximation. COLEMAN and MORE (1981) have recently presented an algorithm to find the minimum of those function evaluations but the code implementing it is not available to us.

5.2 FLOWSHEETING•PROBLEMS

We will describe briefly in this section the flowsheeting problems which will be used for testing our methods. A more detailed description is given in Appendix B.

5.2.1 Small networks involving heat exchangers

Two problems representing small heat exchanger networks will be used. We will refer to them by HEXI and HEX2.

They were both taken from GROSSMANN (1978) and are used as modified by EDWARDS (1982).

HEXI is a small network of four heat exchangers and one condenser. The flowsheet is presented in figure 5.1.

HEX2 consists of three heat exchangers, a splitter and a mixer. In figure 5.2 its flowsheet is presented.

We have solved thase problems using two approaches:using only equations to model the heat exchanger and using procedures. Constant stream specific heats will be assumed.

Fig 5.1: Flowsheet for HEXI and HEXIM

Fig 5.2: Flowsheet for HEX2 and HEX2M

Temperature specified
Temperature and flow specified
Heat transfer coefficients and area specified for all units

Consider the heat exchanger of Figure 5.1.

Figure 5.1: A heat exchanger unit

A traditional way of representing a heat exchanger with equations is:

C_{1}	$=C_{0}$	5.1
H_{1}	$=H_{0}$	5.2
Q	$=c p h H_{0}\left(T_{0}-T_{1}\right)$	5.3
Q	$=\operatorname{cpc} C_{0}\left(t_{1}-t_{0}\right)$	5.4
Q	$=U A . \Delta T L M$	5.5
$A R G$	$=\left(T_{1}-t_{0}\right) /\left(T_{0}-t_{1}\right)$	5.6
$\Delta T L M$	$=\left(\left(T_{1}-T_{0}\right)-\left(T_{0}-t_{1}\right)\right) / \ln ($ ARG $)$	5.7

where C refers to the flowrate in the cold stream

H	$"$	"	hot	$"$
t	$"$	temperature	cold	$"$
T	$"$	$"$	hot	"

Q is the interchanged heat
cph and cpc are the specific heats of the hot and cold streams.

It is possible to obtain explicit expressions for T_{1} and t_{1} using the NTU approach (see K$A Y S$ and LONDON (1964)) as follows:

If we define

$$
\begin{aligned}
c_{1} & =c p h H_{0} \\
c_{2} & =c p c c_{0} \\
c_{3} & =U A \\
c & =c_{2} / c_{1}
\end{aligned}
$$

from 5.3 and 5.4 we can see that

$$
T_{1}=T_{0}+c\left(t_{0}-t_{1}\right)
$$

from 5.4, 5.5 and 5.7 it follows

$$
c_{2}\left(t_{1}-t_{0}\right)=c_{3}\left(\left(T_{1}-t_{0}\right)-\left(T_{0}-t_{1}\right)\right) / \ell n(A R G)
$$

and using 5.8 we can see that

$$
\ln (A R G)=\frac{c_{3}}{c_{2}}(1-c)
$$

And now defining

$$
\alpha=\exp \left(c_{3}(1-c) / c_{2}\right)
$$

Using 5.6 and 5.8 we can obtain

$$
t_{1}=\left((1-\alpha) T_{0}-(1-c) t_{0}\right) /(c-\alpha)
$$

We can see then that we can replace equations 5.1 to 5.7 with a procedure which evaluates sequentially 5.9 and 5.8 .

In SPEEDUP the procedure will be of the form

$$
\left(T_{1}, t_{1}\right) \operatorname{SIMHEX}\left(H_{0}, T_{0}, C_{0}, t_{0}, c p h, c p c, U A\right)
$$

The advantage of using the procedure is that if all the input data are known then the procedure returns immediately the solution while the equations 5.1 to 5.7 are, even in this case, a system of nonlinear equations which has to be solved iteratively.

Also, there are less numerical problems involved with equations 5.8 and 5.9 than there are with equation 5.7 which involves a logarithm.

We will consider both cases, ie, using only equations (5.1 to 5.7) for modelling the units (these problems will be called HEXI and HEX2) and using equations and the procedure SIMHEX (which will be called HEXIM and HEX2M).

In HEXI and HEXIM all specific heats are specified and some input flows and temperatures. The UA coefficient is given for all units as well as the latent heat of steam for the condenser.

For HEX2 and HEX2M all feeds are specified (flowrate, temperature and specific heat) but the splitting fraction is left unspecified. The output temperature for the cooling stream is specified instead.

The initial points used were as follows:

HEXI: All temperatures were initialized with $500: 100: 900$ (initial guess, lower bound and upper bound). All flows with $1: 0: 1 . E 10$. The exceptions are listed in Table 5.7.

HEX2: All temperatures were initialized with $170: 80: 250$, the flows with 1 : $0: 1 . E 10$ with the exceptions listed in Table 5.2.

UNIT	VARIABLE	SOLUTION	INITIAL POINTS		
			1	2	3
EX3	Hot input temp	388	450	500	410
	Cold input temp	278	210	1.80	250
CON	Cold input temp	401	480	300	430
EX1	Cold input flow	2.05	3.00	3.50	2.60
EX2	Hot input flow	2.45	1.70	3.00	1.90
EX5	Cold input flow	2.54	1.20	2.50	1.50

Table 5.1: Solutions and initial points for HEXI

UNIT	VARIABLE	SOLUTION	INITIAL POINTS		
			1	2	3
SPL	Input temp	115	125	140	155
	Split factor	0.70	0.60	0.75	0.90
MIX	First input temp	195	200	180	160
	Second input temp	175	170	190	195

Table 5.2: Solutions and initial points for HEX2
HEXIM and HEX2M have the same initial point as HEX1 and HEX2 but without any exception, ie, all variables have the standard initial point.

For these problems we have developed in SPEEDUP a special initialisation procedure which we will call INIT.

We can describe it very briefly as:

- Of all the n variables initialize a subset of m variables.
- Eliminate from the original problem m equations involving the m initialized variables.
- Solve the reduced system of ($n-m$) equations (for our problems, it reduces to solving blocks containing only linear equations).

This procedure is equivalent to doing one pass of the flowsheet using a sequential modular approach and it can easily be implemented in SPEEDUP.

We will present results using this procedure for HEXI and HEX2. After having used the procedure INIT we have all variables initialized as a function of the first n guessed variables. We can then proceed as usual but with a hopefully better initial point.

It was not necessary to use this procedure for HEXIM and HEX2M.

5.2.2 Cavett's process

This well known problem was originally proposed by CAVETT (1963). We have used the modified version of MALATHRONAS (1979).

The flowsheet is presented in figure 5.3.

We have used for this problem the physical properties facilities in SPEEDUP. We have considered two cases for the modelling of the isothermal flashes:

Case (a): Representing the flash by equations describing the mass balance plus an equilibrium equation using the K values and the vapour and liquid molar fractions, and a procedure for evaluating the K values given temperature (T), pressure (P) and liquid composition(BOTTOM). The procedure available in SPEEDUP is
$\left(K_{j}\right) K \operatorname{KVALU}(T, P, B O T T O M)$

Case (b): Representing the flash using only a procedure available in SPEEDUP as
(TOP, BOTTOM) SPHASE (T, P, FEED)
which given temperature, pressure and feed composition evaluates the vapour and liquid composition.

The procedure SPHASE contains internally an iteration loop which calls KVALU on each iteration. Case (a) avoids this inner iteration loop.

The problem was originally proposed as a simulation problem, ie, all temperatures and pressures are given for all flashes plus the feed flowrate. We will call this problem CAVSIM. In addition, we have also considered a design problem in which the temperature of the 4th flash is not given, specifying instead the product flowrate for the second component in stream 12. This problem was also considered by MALATHRONAS (1981) and will be called CAVDES.

Figure 5.3: Flowsheet for CAVSIM and CAVDES

For both problems all flowrates are initialized to $1: 0: 10$ with the exceptions listed in table 5.3 .

UNIT	VARIABLE	SOLUTION	INITIAL POINTSCAVSIMCAVDES		
			1	1	2
FLI	Input flow	0.942	0.512*	0.512	0.512
	Five components	0.715	0.363	0.363	0.363
		0.211	0.121	0.121	0.121
		0.0262	0	0	0
		0.000286	0	0	0
FL4	Temperature	303	not applicable	290	340

Table 5.3: Solution and initial points for CAVSIM and CAVDES

* This initial point is obtained copying the first three components of the feed.

5.2.3 Benchmark problems from EFCE CHEMCOMP 82

These two problems were proposed by the organisers of the conference of the European Federation of Chemical Engineers in Antwerp (May 1982) in order to test different steady state simulation packages.

The first problem, CHEMCO1, is a process of separation of a hydrocarbon mixture. The flowsheet is presented in figure 5.4.

To implement this problem we have developed a special library of models which is presented in Appendix C. The isothermal flash is modelled using the procedure SPHASE (as it was for Cavett's process) of SPEEDUP while the adiabatic flash is modelled using the procedure SCALTP available in SPEEDUP as:
(TOP, BOTTOM) SCALTP (H, P, FEED)
which given enthalpy (H), pressure (P) and feed composition (FEED) evaluates the temperature (T), vapour (TOP) and liquid (BOTTOM) compositions.

Figure 5.4: Flowsheet for CHEMCOI

To model the compressor and the expander the following equations were used (taken from JONES and HAWKINS (1960)):

T temperature
P pressure
H enthalpy
η efficiency
$\gamma \quad \mathrm{Cp} / \mathrm{Cv}$
W work

Subscripts: in input
out output
id ideal

For the expander:
For the compressor:

$$
\begin{gathered}
\frac{T_{i d}}{T_{i n}}=\left(\frac{P_{\text {out }}}{P_{i n}}\right)^{\frac{\gamma-1}{\gamma}} \\
n=\frac{\left(H_{i n}-H_{o u t}\right)}{\left(H_{i n}-H_{i d}\right)} \\
\ldots W=\left(H_{o u t}-H_{i n}\right)
\end{gathered}
$$

For this problem the initial point used was the standard provided by SPEEDUP, which was:

$\begin{array}{lrl}\text { deltas } & 0:-1 . E 10: 1 E 10 \\ \text { enthalpies } & 10:-1 E 10: 1 E 10 \quad \text { GJoules } / \mathrm{hr}\end{array}$

The second problem, CHEMCO2, is a process of production of methanol. The flowsheet is presented in figure 5.5.

Only mass balances are performed for this problem so no physical properties are needed. A temperature approach to equilibrium is used to specify the performance of the reactor.

The description of the reactor is as follows:

Reaction:

$$
\begin{aligned}
& \mathrm{CO}+2 \mathrm{H}_{2} \neq \mathrm{CH}_{3} \mathrm{OH} \\
& \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \neq \mathrm{CO}_{2}+\mathrm{H}_{2}
\end{aligned}
$$

Reaction equilibria:

$$
\begin{aligned}
K_{\mathrm{p} 1} & =\frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}}{\mathrm{P}_{\mathrm{CO}}\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{2}} \\
\mathrm{~K}_{\mathrm{p} 2} & =\frac{\mathrm{P}_{\mathrm{CO}} \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}{\mathrm{P}_{\mathrm{CO}_{2}} \mathrm{P}_{\mathrm{H}_{2}}}
\end{aligned}
$$

with $P_{()}$being the partial pressure of ().
Equilibrium constants:

$$
\begin{aligned}
K_{j 1}= & 0.6+1.5 \times 10^{-3}\left(T_{1}-473\right) \\
\log _{10} K_{p 1}^{0}= & 9.218+\frac{3971}{T_{1}}-7.492 \log _{10} T_{1}+1.77 \times 10^{-3} T_{1} \\
& -3.11 \times 10^{-8} T_{1}^{2} \\
K_{j 2}= & 0.89+4 \times 10^{-4}\left(T_{2}-473\right)
\end{aligned}
$$

$$
\log _{10} K_{p 2}^{0}=1664-\frac{1850}{T_{2}}
$$

where T_{1} and T_{2} are specified temperatures at which the products would be at equilibrium with respect to reactions (1) and (2).

$$
\mathrm{K}_{\mathrm{pl}}=\frac{\mathrm{K}_{\mathrm{p} 1}^{0}}{\mathrm{~K}_{\mathrm{j} 1}}
$$

$$
K_{p 2}=\frac{K_{p 2}^{0}}{K_{j 2}}
$$

Figure 5.5: Flowsheet for CHEMCO2

The initial point for this problem is the one suggested by the proposers in which the composition of stream 2 is set to the same as stream 1. All the other flowrates are initialized to 10000 : $0: 1000000$ (Kmoles/hr).

5.2.4 Nitric acid plant

This problem was also taken from MALATHRONAS (1979).

The flowsheet for this problem is presented in figure 5.6.

It consists of the simulation of a plant producing nitric acid and only mass balances are performed (hence no physical properties are needed). After decomposition we are left with a block of 199 variables, being the largest problem we have solved (regarding storage requirements). We have used the library of standard models performing mass balances available in SPEEDUP.

The initial point used was the standard provided by SPEEDUP for all flowrates (10: $0: 1000$).

We will refer to this problem as NITRIC.

5.2.5 Crude preheat train

This problem was taken from WONG (1981).

It consists of a complicated network involving 20 heat exchangers and 12 streams. The flowsheet is presented in figure 5.7.a.

The original problem was a simulation problem and we have modified it such that all feed flowrates, specific heats and temperatures are given as well as some measured temperatures. With this information, heat transfer coefficients are calculated for all units as well as intermediate temperatures and flows.

We will use, for this problem, a model of heat exchangers using only equations and also one using the procedure SIMHEX as we did for the heat exchangers of section 5.2.1. We will call the problems respectively BPNET and BPNETM.

The initial point used in these cases was the standard provided by SPEEDUP which was:

flowrates	$100:$	$0: 1000$	(Kmoles)
temperatures	$200:$	$-100: 500$	$\left({ }^{\circ} \mathrm{C}\right)$
coefficients (UA)	$100:$	$0: 1000$	

Only for BPNET, the following temperatures are initialized:

STREAM	SOLUTION	INITIAL POINT
51	306	300
52	215.3	250
61	219.5	250

This problem has been very interesting from the point of view of the decomposition phase of SPEEDUP. We have marked in the flowsheet for this problem (see Figure 5.7b) the two largest blocks found.

By slightly altering the specifications we can obtain a very different decomposition. For instance, if instead of specifying stream 36 , on the heat exchanger number 5 , we specify stream 61 on the same unit, the decomposition will give us a block consisting only of the units which are connected to the flowsheet by stream 33 (see Figure 5.76).

5.2.6 Simple ethylene plant

This problem has been taken from PERKINS (1979).

The flowsheet is presented in Figure 5.8. Only mass balances are performed and, as we did for the nitric acid plant, the standard library of models performing mass balances was used.

We have considered a simulation problem (all feeds and equipment parameters known) and 3 design problems:

Figure 5.8 Simple Ethylene Plant

CASE	DESIGN VARIABLES	DESIGN SPECIFICATIONS
1	Conversion in REACIO	Flow of ethylene in stream 16
2	Conversion in REACIO	Flow of ethylene in stream 16
	" REAC3	" propylene " 19
3	Conversion in REACIO	Flow of ethylene in stream 16
	" REAC3	" methane " 10
	TOTAL FEED FLOW	Ratio of propane/butane in stream 19

We will name the simulation problem SIMETH and the design problems DESETH.

A standard initial point of $1: 0: 100$ was used for all flowrates.

5.3 NUMERICAL RESULTS

We will present in this section the numerical results obtained for the problems mentioned in section 5.2.

Four methods will be considered, our implementation of Broyden's method mentioned in chapter 2 (BRO) and three of the scale invariant methods mentioned in chapter 3 (SI2, SI3 and SI4).

We will give for each problem the number of function evaluations used by the method on the biggest block.

The reason for this is because whenever a failure occurred, it happened in the biggest block for all our problems as well as because regarding efficiency all methods perform equally in the smaller blocks.

Turning first to the results for the small heat exchanger networks, we should note that the use of equations for implementing the heat exchanger is not numerically safe because of the logarithm in equation 5.7. If the equation is implemented in this way we risk having a zero denominator. We have used instead

$$
\Delta T L M \ln (\operatorname{ARG})=\left(T_{1}-t_{0}\right)-\left(T_{0}-t_{1}\right)
$$

The problem when using this equation is that it creates trivial solutions (which are not solutions to the original problem). This trivial solution is

$$
\begin{aligned}
\text { ARG } & =1 \\
T_{1}-t_{0} & =T_{0}-t_{1}
\end{aligned}
$$

All cases for HEXI converge to trivial solutions in at least one heat exchanger and the results are presented in table 5.4. In table 5.6 we present the results for HEX2; in this case no trivial solutions were found. The use of the procedure avoids this problem of trivial solutions and the results for these cases are presented in tables 5.5 and 5.7.

INIT POINT	INTERNAL SCALING	INIT FACILITY	METHODS			
			BRO	SI2	SI3	SI4
1	NO	NO	**	**	**	**
1	YES	NO	**	**	***	**
1	NO	YES	63	52	83	46
1	YES	YES	42.	52	93	65
2	NO	YES	54	55	124	58
2	YES	YES	61	55	69	78
3	NO	YES	31	32	69	32
3	YES	YES	40	32	69	40

Table 5.4: Function evaluations for the biggest block for HEXI ** failed to converge

INTERNAL SCALING		METHODS		
	BRO	SI2	SI4	
NO		36	\cdots	28
YES	79		28	59
28				

Table 5.5. Function evaluations for the biggest block for HEXIM

INIT POINT	INTERNAL SCALING	INIT FACILITY	BRO	METHODS SI2 SI3		SI4
1	NO	NO	**	**	**	**
1	YES	NO	**	**	**	**
1	NO	YES	91	29	29	34
1	YES	YES	34	29	44	109
2	NO	YES	86	117	92	75
2	YES	YES	**	159	93	213
3	NO	YES	**	**	**	**
3	YES	YES	88	81	**	285

Table 5.6: Function evaluations for the biggest block for HEX2

INTERNAL SCALING	INIT FACILITY	METHODS			
		BRO	SI2	SI3	SI4
NO	NO	71	105	83	78
YES	NO	70	42.	134	152
NO	YES	23	26	62	21
YES	YES	26	26	54	34

Table 5.7: Function evaluations for the biggest block for HEX2M These problems show clearly:

- The use of a procedure for implementing the heat exchangers is preferable to the use of equations. It allows the use of standard initial guesses in SPEEDUP.
- The INIT facility for obtaining an initial point is essential for this problem represented solely as equations. A solution can not be obtained without it.
- The use of the internal scaling, while it seems to cause the efficiency to deteriorate in some cases, helps robustness.

All methods failed to solve the Cavett's process problem for case
(a) ie, when equations are used (plus the procedure KVALU). For
case (b) most methods did very well and the results are presented in table 5.8. The methods BRO and SI2 performed best while SI3 and SI4 failed for some design cases.

PROBLEM	INITIAL TEMP	SCALING	BRO	SI2	SI3	SI4
CAVSIM			NO	66	64	98
	-	YES	100	81	101	107
CAVDES	-	NO	77	97	$* *$	65
	290	YES	85	108	$* *$	$* *$
	290	\ldots	NO	86	82	$* *$
	340	YES	90	195	$* *$	105

Table 5.8: Function evaluations for the biggest block for CAVSIM and CAVDES

Our results are consistent with those obtained by HILTON and STADTHERR (1981) when considering Cases (a) and (b) with the equation oriented package SEQUEL. They also found case (b) to perform better than case (a).

Table 5.9. shows the results obtained with the benchmark problems of EFCE CHEMCOMP 82. All codes succeeded in finding the solution and the use of the internal scaling does not alter the results much.

PROBLEM	INTERNAL SCALING	BRO	SI2	SI3	SI4
CHEMCO1		NO	39	40	77
	YES	41	40	78	75
CHEMCO2	NO	74	105	110	109
\therefore	YES	85	99	145	87

Table 5.9: Function evaluations for the biggest block for the benchmark problems of EFCE CHEMCOMP 82

We present in table 5.10, the results for the crude preheat train.

PROBLEM	INTERNAL SCALING	METHOD			
BPNET		BRO	SI2	SI3	SI4
	NO	36	30	57	31
BPNETM	YES	33	30	46	30
	NO	61	69	$* *$	155
	YES	94	69	$* *$	212

Table 5.10: Function evaluations for the biggest block for the crude preheat train

Contrary to the results obtained for the Cavett's process and HEXI and HEX2, for this problem the use of only equations for modelling the heat exchanger gives better results than using the procedure. All methods converge very fast and with the standard initial point.

The reason for this is that because most temperatures are known, the argument of the logarithm in the equations is known eliminating the main disadvantages of the use of equations. This also avoids the problem of trivial solutions which we found for HEXI.

Again SI3 fails for BPNETM while BRO and SI2 perform best for all cases.

Due to the internal decomposition in SPEEDUP, the problems NITRIC and all the cases for the simple ethylene plant are such that they are decomposed into only linear blocks (which our code solves in one iteration). This is due to the fact that the nonlinearity is only caused by products of two variables (ie, the function is bilinear), which are solved for in separate blocks. Thus they become linear blocks.

We do not present any results for these problems since all methods solve them in one iteration.

We summarize in table 5.17 the percentages of success for all methods on the 18 problems considered.

INTERNAL SCALING	BRO	SI2	SI3	SI4
NO	83	83	67	78
YES	83	89	67	83
TOTAL		83	\cdots	86

Table 5.11: Percentage of success for all problems

The methods BRO and SI2 are those which had the best performance for the Chemical Engineering problems. Globally, the internal scaling solves more problems.

We present in Table 5.12 the sizes of the problems solved.

PROBLEM	TOTAL NUMBER OF VARIABLES	NUMBER OF BLOCKS	VARIABLES	BIGGESṪ BLOCK nonlimear equations
HEXI	36	14	20	14
HEXIM	21	11	11	8
HEX2	27	9	15	9
HEX2M	18	9	9	5
CAVSIM	55	1	55	40
CAVDES	55	1	55	40
CHEMCOI	251	157	57	38
CHEMCO2	99	48	52	18
NITRIC	425	227	199	0
BPNETM	207	. 161	26	14
BPNET.	267	236	25	13
SIMETH	. 65	22	8	0
DESETH1	65	28	7	0
DESETH2	. 65	26	7	0
DESETH3	87	36	33	0

Table 5.12 Size of the Chemical Engineering problems solved

5.4 CONCLUSIONS

We have available a code implementing our proposed methods whose behaviour on chemical engineering flowsheet problems is very good when used in conjunction with the simulation package SPEEDUP.

Our conclusion is based on the fact that we have tried a wide variety of problems, all considered before by different authors (two of them being benchmark problems) and the initial points used were, in general, the standard provided by the simulation package (and the exceptions are a very small proportion of the total number of variables being initialized).

It seems desirable to incorporate in SPEEDUP an initialization such as we have used for the problems HEXI and HEX2. It is clear that it will help robustness as well as efficiency.

The importance of the exploitation of the structure of the problem is demonstrated by our results. Two problems (ETHYL and NITRIC) which are nonlinear became linear due to the decomposition. The problem BPNET shows how useful, for reducing the size of the problem, the decomposition is. The decomposition into smaller blocks also helps the debugging of a problem, helping to locate the source of difficulties (such as badly posed problems or. getting better initial guesses). The problems HEXIM and HEX2M also show how exploiting the structure (in this case by having explicit expressions for some variables) helps to overcome very difficult problems.

It is unfortunate that avoiding internal loops in the physical properties calculations by linking them to the nonlinear system gives such bad results. The use of special procedures for the physical properties seems to be essential.

This thesis has been concerned with the study of the problem of numerical solution of systems of algebraic nonlinear equations in Chemical Engineering.

Our conclusions from this study follow.

Our implementation of the method of BROYDEN (1965) (Chapter 2) is a considerable improvement over the codes published so far.

We have presented Quasi-Newton scale invariant methods which have shown numerical results which puts them as an excellent alternative to our implementation of Broyden's method, with the additional advantage of being theoretically scale invariant (Chapter 3). We have proposed only 4 particular scale invariant methods but we have shown that many more could be devised. Our ideas for scale invariance could be extended for Quasi-Newton methods generated by updates other than rank-one.

We have proposed and tested with good numerical results an internal scaling procedure which relies on a reasonable theoretical justification. The use of this procedure can be extended to any code for solving nonlinear algebraic equations for which an approximation to the Jacobian is used.

Our codes have shown particularly good numerical results when used for solving steady-state flowsheeting problems. A wide set of examples have been used for the testing and the initial points used were in general well away from the solution. This shows clearly the robustness of our codes.

We have confirmed, with our results, previous findings by other authors regarding the deterioration of the numerical performance of codes when the physical properties inner iterations are considered together with the main iteration for solving the non-linear system.

Since there is a great advantage involved in avoiding inner loops for physical properties, it seems to us that special attention should be given to this.

We believe that our initialisation procedure for obtaining better initial points (section 5.2.1) in SPEEDUP should be incorporated as a standard feature. Our examples have shown that much can be gained in robustness when it us used.

Finally, our experience shows that the combination of our codes and the simulation package SPEEDUP provides a very useful tool for performing steady-state flowsheeting problems in Chemical Engineering.

ASPEN PROJECT (1980), "Aspen User Manual", MIT Cambridge, MA.
BARNES J G P (1965), "An algorithm for solving nonlinear equations based on the secant methods", The Computer Journal, $\underline{8}$, pp 66-72.

BAUER, F L (1963), "Optimally scaled matrices", Num Math, 5, pp 73-87.
BENNETT. J M (1965), "Triangular factors of modified matrices", Num Math, 7, pp 217-221.

BOGLE I D L (1979), "Numerical methods for nonideal flowsheeting problems, MSCDiss, Imperial College.

BRENT R P (1973), "Some efficient algorithms for solving systems of nonlinear equations", SIAM 3 on Num Anal, 10 , No 2.

BROYDEN. C G (1965), "A class of methods for solving non-linear simultaneous equations", Math of Comp, 19, p 577.

BROYDEN C G (1967), "Quasi-Newton methods and their application to function minimisation", Math of Comp, 21, p. 368.
BROYDEN C G (1969), "A new method of solving nonlinear sifoultaneous equațions" , Comp:Journal;12:

BROYDEN. C G, DENNIS J E, MORE J J (1973), "On the local and superlinear convergence of Quasi-Newton methods", J of the Inst of Math and Appl, 12, p 223.

BROWN K M (1966), "A quadratically convergent method for solving simultaneous non-linear equations", PhDDiss, Purdue Univ.

BUS S C P (1975), "A comparative study of programs for solving nonlinear equations", Mathematisch Centrum Report NW 25/75, Amsterdam, Holland.

CAVETT RH (1963), "Application of numerical methods to the convergence of simulated processes involving recycle loops", American Pet Inst, Preprint No 04-63.

CHEN H S, STADTHERR M A (1981), "A modification of Powell's dogleg method for solving systems of non-linear equations", Comp and Chem Eng, ${ }^{5}$, № 3.

COLEMAN T F, MORE J J (1981), "Estimation of sparse Jacobian matrices and graph coloring problems", Argonne Nat Lab Report, ANL-81-39.

COSNARD M Y (1975), "A comparison of four methods for solving systems of non-1/near equations", Report TR75-248, Cornell Univ, Dept Comp Science.

CROWE CM, NISHIO M (1975), "Convergence promotion in the simulation of chemical processes - the general dominant eigenvalue method", AIChE J, 21, No 3.

CURTIS AR, POWELL M J D, REID JK (1974), "On the estimation of sparse Jacobian matrices", J Inst Math Appl, 13, p 117.

DAVIDON. W C (1975), "Optimally conditioned optimization algorithms without line searches", Math Progr, 9, pp 1-30.

DENNIS J E, MORE $j J$ (1974), "A characterization of superlinear convergence and its application to Quasi-Newton methods", Math Comp, 28, p 549.

DENNIS J E, MORE J J (1977.), "Quasi-Newton methods, motivation and theory", SIAM Review, 19, No 1.

DENNIS J E, SCHNABEL R B (1978), "Least change secant updates for Quasi-Newton methods", Report TR78-344, Cornell Univ, Dept Comp Science.

EDWARDS D W (1982), "Robust decomposition techniques for process design and simulation", PhD Thesis, Univ London.

FLETCHER R (1970), "A new approach to variable metric algorithms", The Comp Journal; 13, No 3.

GAY. D M, SCHNABEL R B (1978), "Solving systems of non-linear equations by Broyden!s method with projected updates", From: Nonlinear Prog 3, Ed, Mangasarian, 0 L and others, Academic Press.

GILL P E, MURRAY .W. (1972), "Quasi-Newton methods for unconstrained optimisation", J Inst Math Applic, 9, pp 91-108.

GORCZYNSKI E W, HUTCHISON H P (1978), "Towards a quasilinear process simulator - I: fundamental ideas", Comput Chem Eng, 2, p 189.

GRAGG W B, STEWART G W (1974), "A stable variant of the secant method for solving nonlinear equations", Carnegie Mellon Univ Report.

GROSSMANN I (1975), "Optimum design of heat exchanger networks", MSC Thesis, Univ London.

GROSSMANN I, del ROSAL R (1978), "Comparacion de methodos de convergencia en el calculo de reciclos", XVIII Conv. Nac del IMIQ Merida.

HIEBERT K L (1980), "A comparison of software which solves systems of nonlinear equations", Sandia Lab Report, SAND 80.- 0181.

HILTON C, STADTHERR M A (1981), "Development of a new equation based process flowsheeting system", Paper at 75th AIChE meeting, New Orleans.

IMSL (1979), "Library Reference Manual", Ed 7.
JOHNS W R (1970), "Mathematical considerations in preparing general purpose computer programs for the design or simulation of chemical processes", Paper at EFCE Conf "The use of computers in studies preceding the design of chemical plants", Florence, Italy.

JOHNS W R, SHEPPARD A j (1975), "Multi-component multi-stage absorption and distillation calculations for use with flowsheeting programs". Symp, Computers in the design and erection of chemical plants, Karlovy Vary, Czechoslovakia.

JONES J B, HAWKINS G A (1960), "Engineering thermodynamics", John Wiley.

KAYS W M, LONDON A L (1964), "Compact heat exchangers", McGraw-Hill.
KUBICEK M, HLAVACEK V, PROCHASKA, F (1976), "Global modular NewtonRaphson technique for simulation of an interconnected plant applied to complex rectification columns", Chem Eng Sci, 31, p 277.

LEE N (1980), "Simultaneous solution of design, torn streams and multi-component distillation equations in a sequential modular flowsheeting package", MSc Thesis, Univ of London.

MAHALEC V, KLUZIK H, EVANS B L (1979), "Simultaneous modular algorithm for steady state flowsheet simulation and design", CACE 79, EFCE, Montreux.

MALATHRONAS J P (1979), "Solution of simulation and design problems using Broyden's method in sequential modular flowsheeting packages", MScDiss, Imperial College.

MALATHRONAS J P, PERKINS J D (1980), "Solution of design problems using Broyden's method in a sequential modular flowsheeting package", Paper at CHEM PLANT 80, Heviz, Hungary.

METCALFE S R, PERKINS J D (1978), "Information flow in modular flowsheeting systems", Trans IChemE, 56, p 210.

MINPACK (1980), "Documentation", Argonne Nat Lab, App Math Div.
MORE J J, COSNARD M Y (1979), "Numerical solution of nonlinear equations", ACM TOMS, 5, No 1.

MORE J J, GAREOW B S, HILLSTROM K E (1980), "User guide for Minpack-1", Report ANL-80-74, Argonne Nat Lab.

MOTARD R L, LEE H M (1971), "CHESS User's Guide", 3rd Ed, Dept of Chem Eng, Univ of Houston.

MOTARD R L, SHACHAM M, ROSEN E M (1975), "Steady-state chemical process simulation", AIChE J, 21, p 417.

ORBACH O, CROWE C M (1971), "Convergence promotion in the simulation of chemical processes with recycle - the dominant eigenvalue method", The Canadian J of Chem Eng; 49.

ORTEGA J M, RHEINBOLDT W C (1970),."Iterative solution of nonlinear equations in several variables", Academic Press.

PALOSCHI J R (1980), "A comparative study of algorithms for solving systems of nonlinear equations", Imperial College Report.

PERKINS J D (1979a) Personal communication.
PERKINS J D (1979b) "Efficient solution of design problems using a sequential modular flowsheeting programme", Paper at 12th Symp on Comp Appl in Chem Eng, Montreux.

POWELL' M J D (1970), "A hybrid method for nonlinear equations", In "Numerical methods for nonlinear algebraic equations", P Rabinowitz, ed, Gordon and Breach.

RHEINBOLDT W (1974), "On measures of ill conditioning for nonlinear equations", Tech Report TR330, Univ of Maryland, Comp Sci Center.

ROSEN E M (1962), "A machine computation method for performing material balances", Chem Eng Progress; 58, No 10.

ROSEN. E M (1966), "A review of Quasi-Newton methods for nonlinear equation solving and unconstrained optimization", Proc 21st ACM Nat Meet, Washington.

SAIGAL R (1979), "On solving large structural fixed point problems", Paper at Symp on fixed point alg and complementarity, Southampton Univ.

SALGOVIC. A, HLAVACEK V, ILAVSKY J (1981), "Global simulation of counter current separation processes via one-parameter imbedding techniques", Chem Eng Sci, 36, No 10

SANDIA (1975), "Mathematical Subroutine Library", Sandia Lab.
SARGENT R W H (1977), "The decomposition of systems and procedures and algebraic equations", Paper at Dundee Conf on NA.

SARGENT R W H, PERKINS J D, THOMAS. S (1982), "SPEEDUP: a computer program for steady-state and dynamic simulation of chemical processes", Paper at IChemE Jubilee Symp.

SCHUBERT L K (1970), "Modification of Quasi-Newton method for nonlinear equations with a sparse Jacobian", Math of Comp, 23, p. 27.

SHERMAN J, MORRISON W J (1949), "Adjustment of an inverse matrix corresponding to changes in the elements of a given column as a given row of the original matrix", Ann Math Statist, 20, p 621.

TODD M J (1966), "On condition numbers", Paper at Prog on Math Num, Besancon:

TODD M J (1976), "The computation of fixed points and applications", Springer-Verlag, New York.

VANEK. T, HLAVACEK V, KUBICEK M (1977), "Calculation of separation columns by nonlinear block successive relaxation methods", Chem Eng Sci, 32, p 839.

WEGSTEIN J (1958), "Accelerating convergence of iteration processes", Comm ACM, 1, p 9.

WONG M P F (1981), "Efficient solution of flowsheets with heat exchangers using Broyden's.method in a sequential modular package", MSc Thesis, Univ of London.

APPENDIX A

THE SETS:OF MATHEMATICAL EXAMPLES

We describe here the sets of mathematical examples used for the comparisons. All of them are taken from HIEBERT (1980).

The basic set of examples consist of 18 different "mathematical" problems, each one having a standard initial point (with the exception of the last three having more than one:initial point).

The list of problems can be found in Table Al and they are collected in the MINPACK (1980) test routines VECFEC and INITP listed in Appendix D.

Problems F to N are of variable dimension.

From the basic set of examples four different sets of problems will be configured as follows.

GENERAL SET: Consists of 54 problems taken from the basic set, 21 having as initial point x_{0} (the standard initial point), 18 with $10 x_{0}$, and 15 with $100 x_{0}$. In table A2 we summarize the problems for this set.

GENERAL SUBSET: This is a subset of the general set. If consists of 16° problems, all having the standard initial point and it is listed in table A3. All the problems for this set were selected such that all methods considered converged for the standard initial point.

CHEMICAL EQUILIBRIUM SET: Consists of 12 problems taken from 0 to Q from the basic set and taking different initial points. It is listed in table A4.

RESTRICTED SET: This is just the general set where all problems with $n \leq 2$ were removed. It consists of 46 problems.

PROBLEM	DESCRIPTION	DIMENSION
A	Rosenbrock's function	2
B	Powell's singular function	4
C	Powell's badly scaled function	2
D	Wood's function	4
E	Helical valley function	3
F	Watson's function	variable
G	Chebyquad function	"
H	Brown's almost linear function	"
I	Discrete boundary value problem	"
J	Discrete integral equation function	"
K	Trigonometric function	"
L	Variable dimensioned function	"
M	Broyden's tridiagonal function	"
N	Broyden's banded function	"
0	Chemical equilibrium problem 1	2
P	" " " 2	6
Q	" 3	10

Table Al: List of problems and dimensions

Prob	Orig Prob	Dimen	Prob	Orig Prob	Dimen	Prob	Orig Prob	Dimen
1	A	2	19	L	10	37	L	10
2	B	2	20	M	10	38	M	10
3	C	2	21	N	10	39	N	10
4	D	4	22	A	2	40	A	2
5	E	3	23	B	4	41	B	4
6	F	6	24	C	2	42	D	4
7	F	9	25	D	4	43	E	3
8	G	5	26	E	3	44	G	5
9	G	6	27	F	6	45	G	6
10	G	7	28	F	9	46	G	7
11	G	9	29	G	5	47	H	10
12	H	10	30	G	6	48	I	10
13	H	30	31	G	7	49	\checkmark	2
14	H	40	32	H	10	50	J	10
15	I	10	33	I	10	51	K	10
16	J	2	34	J	2	52	L	10
17	J	10	35	J	10	53	M	10
18	K	10	36	K	10	54	N	10

Table A2: List of problems and dimensions for the general set.

Prob	Orig Prob	Dimen
1	A	2
2	B	4
3	C	2
4	F	6
5	F	9
6	G	5
7	G	6
8	G	7
9	H	10
10	H	30
11	I	10
12	J	2
13	J	10
14	L	10
15	M	10
16	N	10

Prob
1
2

3

4

5

6

7

8

9
H
H
I

J
2

10
10
15
M

10

Table A3: List of problems and dimensions for the general subset.
Prob Orig Prob Dimen1.002
2 0 2
3 p 6
4 p 6
5 P 6
6 P 6
7 Q 10
8 Q 10
9 Q 10
10 Q 10
11 Q 10
12 Q 10

Table A4: List of problems and dimensions for the chemical equilibrium set.

HEXI and HEXIM

The flowsheet is shown in fig Bl. We will use the following notation.
T_{i} temp of stream \mathbf{i}
F_{i} flowrate of stream i
$c p_{i}$ specific heat of stream i

The known data for this problem are:
$T_{1}=140$
$T_{3}=320$
$T_{4}=320$
$T_{6}=240$
$T_{8}=500$
$T_{9}=560$
$T_{14}=280$
$T_{15}=100$
$T_{16}=160$
$F_{4}=2.7778$
$F_{6}=2.306$
$C p_{1}=0.7$
$\mathrm{CP}_{4}=0.6$
$C p_{6}=0.5$
$C P_{9}=0.5$
$\mathrm{CP}_{11}=0.8$
$\mathrm{cp}_{15}=1.0$

UA
EX1 3.975

EX2 1.665

EX3 0.81

EX4 0.81

The latent heat of steam for the condenser is 656.6 .

HEX2 and HEX2M

The known data are

$$
\begin{array}{lll}
F_{1}=1 & F_{8}=0.6 & F_{10}=0.4 \\
F_{12}=0.7 & T_{1}=80 & T_{7}=190 \\
T_{8}=250 & T_{10}=220 & T_{12}=180 \\
\mathrm{cp}_{1}=0.8 & \mathrm{cp}_{8}=0.7 & \mathrm{cp}_{10}=0.6 \\
\mathrm{cp}_{12}=1 . &
\end{array}
$$

UA
HEXI 0.44
HEX2 1.20
HEX3 0.31

```
Five components: \(\mathrm{CO}_{2}\) ETHANE N -BUTANE N -HEXANE N -DECANE Feed: \(0.5124,0.3625,0.1205,0.0932,0.0266\).
```

	T	\cdots
FLI	311	56.2
FL2	322	19.6
FL3	309	4.39
FL4	303	1.91

CAVDES

Same as CAVSIM except instead of T on FL4 the data is the flowrate for the second component on stream. 12 is 2.723×10^{-3}.

CHEMCOI

Feed hydrocarbon-inert gas mixture (1) is mixed with liq (11) returning from vessel V2 in mixer M1.

This stream is expanded somewhat through valve R1 and separated by simple flash in vessel VI.

Top vapour of VI (5) is expanded to given temp and pres (9) and is then separated by flash at same pressure and temperature in V2. Top vapour of V2 (13) is gas product 1.

The liquid bottoms of VI (7) picks up heat resulting in a small temperature rise indicated and then passes through reducing valve $R 2$.

The pressure after R2 is such that the subsequent adiabatic flash produces vapour in the ratio V/F as given.

The liquid bottom product of V3 (15) is cooled further by exch El to stream (17) = the liquid product 1.

The top vapour of V3 (19) is compressed by C2. The power needed for this compression is provided by expander Cl.

The compressor C2 outlet (21) is split in blackbox V4.

Operations taking place in V4 can be represented by the indicated component split ratios.

The resulting streams (23) and (25) have the same pressure drop as indicated. Stream (23) is at its dewpoint temperature and stream (25) has the indicated temperature difference from (21).

Feed is stream 1.

Products are: Streams (13) = vap, (23) = vap, (17) = liquid and $(25)=$ liq/vapour mix
Recycle is: \quad stream (ll) $=$ liquid.

The values for the known data are shown together with the flowsheet in figure 5.4.

CHEMCO2

Input data:

Feed: 6000 k moles/hr

Feed composition:

CO_{2}	6	vol $\%$
CH_{4}	3.2	vol $\%$
CO	14.6	vol $\%$
$\mathrm{~N}_{2}$	72	vol $\%$
H_{2}	4.1	vol $\%$
$\mathrm{H}_{2} \mathrm{O}$	0.1	vol $\%$

Recycle ratio (Str nr 6/Str nr 1) 3.5 mole basis.
Reactor pressure 90 bar.
Temperature reactor outlet $270^{\circ} \mathrm{C}$.
T in degree Kelvin.

Carry out the reactor calculation as follows:

Consider watergas reaction (2) in chemical equilibrium at reactor outlet conditions.

Consider methanol reaction (1) in equilibrium $10^{\circ} \mathrm{k}$ below the temperature at reactor outlet.

Model G/L separator

One stage simple flash.

Outlet temperature $40^{\circ} \mathrm{C}$, no pressure drop.

Only methanol and $\mathrm{H}_{2} \mathrm{O}$ are in liquid phase $\mathrm{K}_{\text {methanol }}=3.8 \mathrm{E}-3\left(40^{\circ} \mathrm{C}\right)$
$\mathrm{K}_{\mathrm{H}_{2} \mathrm{O}}=8 \cdot \mathrm{E}-4 \cdot\left(40^{\circ} \mathrm{C}\right)$.

Nitric acid plant

Problem specification.

Components:
HNO_{3}
N_{2}
0_{2}
$\mathrm{H}_{2} \mathrm{O}$
CH_{4}
CO
CO_{2}
NH_{3}

```
UNIT (1) SIMPLE DISTILLATION
        100% N2 & H2 are taken overhead and an unknown percentage
        of NH3.
UNIT (2) FEED
        Unknown total flow of air composition
        79% N2, 21% O2.
UNIT (3) MIXER
UNIT (4) REACTOR
    Reaction taking place NH
    100% conversion of NH3.
UNIT (5) FEED
    Unknown total flow of }\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ .
UNIT (6) MIXER
UNIT (7) SIMPLE DISTILLATION
    100% HNO
UNIT (8) SIMPLE DISTILLATION
    Unknown percentage of N}\mp@subsup{N}{2}{}\mathrm{ and }\mp@subsup{\textrm{O}}{2}{}\mathrm{ taken overhead.
UNIT (9) FEED
    Unknown total flow of }\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ .
UNIT (10) FEED
    Unknown total flow of CH4.
UNIT (11) MIXER
UNIT (12) REACTOR
    The reaction taking place is }\mp@subsup{\textrm{H}}{2}{}\textrm{O}->\mp@subsup{\textrm{H}}{2}{}+\frac{1}{2}\mp@subsup{O}{2}{
    Unknown conversion of water.
UNIT (13) REACTOR
    The reaction taking place is 2CH4}+\mp@subsup{\textrm{O}}{2}{}->2\textrm{CO}+4\mp@subsup{\textrm{H}}{2}{
    Unknown conversion of O}\mp@subsup{O}{2}{}\mathrm{ .
```

UNIT (14) REACTOR
The reaction taking place is $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2}$ Unknown conversion of O_{2}.

UNIT (15) SIMPLE DISTILLATION $100 \% \mathrm{CO} \& \mathrm{CO}_{2}$ are taken overhead.

UNIT (16) SIMPLE DISTILLATION $100 \% \mathrm{~N}_{2}, 99 \% \mathrm{H}_{2}$ and $100 \% \mathrm{NH}_{3}$ taken overhead.

UNIT (17) MIXER

UNIT (18) REACTOR
The reaction taking place is $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ 25% conversion of N_{2}.

DESIGN CONSTRAINTS

There are 10 design variables. The design constraints are:
(1) HNO_{3} in stream 4 is 0.952 kmoles $/ \mathrm{hr}$
(2) $\mathrm{H}_{2} \mathrm{O}$ in stream 4 is $2.222 \mathrm{kmoles} / \mathrm{hr}$
(3) O_{2} in stream 11 is zero kmoles/hr
(4) $\mathrm{H}_{2} \mathrm{O}$ in stream 11 is zero kmoles/hr
(5) CH_{4} in stream 11 is zero kmoles/hr
(6) N_{2} in stream 6 is 99.2% of the total flow
(7) 0_{2} in stream 8 is 1% of the total flow
(8) CO_{2} in stream 12 is 91% of the total flow
(9) N_{2} in stream 14 is 25% of the total flow
(10) H_{2} in stream 14 is 75% of the total flow.

Crude preheat train

Problem specifications

Feed streams:

STREAM	Flowrate	Temp $\left({ }^{\circ} \mathrm{C}\right)$	C_{p}
1	680	25	0.555
42	480	219	2.912
48	290	159	1.393
50	250	352	0.523
56	160	41	1.068
60	110	263	0.655
65	83	206	0.659
70	39	304	0.674
75	510	315	0.686
78	130	142	0.642
80	580	152	4.482
83	160	133	1.681
86	38	170	0.701

Product Stream temperatures:

STREAM	Temp $\left({ }^{\circ} \mathrm{C}\right)$	STREAM (cont)	Temp $\left({ }^{\circ} \mathrm{C}\right)$ (cont)
84	83.9	66	170.2
87	107.6	62	209.1
47	197.2	71	273.9
57	133.1	54	201
49	203.4		
79	199.7		
41	306.5		
72	70.7		
67	111		
63	84.9		
55	69		

Other measured temperatures:

STREAM	Temp $\left({ }^{\circ} \mathrm{C}\right)$
39	296
38	215.3
53	211.3
29	162.7
30	155.6
31	151.9
32	176.9
53	193.6
14	161
15	152.2
16	136.3
17	108.6
18	120.7
4	126.8
89	142.6
37	281.7
36	219.68

Simple ethylene plant

Problem specification.

Components Feed stream 1 (kmols/hr)
Hydrogen 0
Methane 0
Ethane 80
Propane 120
n-butane 0
Ethylene 0
Propylene 0
Temperature 295 K
Pressure 41.37 bars

UNIT (I) VALVE

UNIT (2) FIRED 'HEATER/FURNACE

UNIT (3) REACTOR
The reaction taking place is
$3 \mathrm{C}_{2} \mathrm{H}_{6}+6 \mathrm{C}_{3} \mathrm{H}_{8} \quad 4 \mathrm{H}_{2}+4 \mathrm{CH}_{4}+5 \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H}_{10}$
90% conversion of $\mathrm{C}_{3} \mathrm{H}_{8}$.

UNIT (4) MIXER

UNIT (5) • PUMP

UNIT (6) DIST/SIMPLE DISTILLATION
$100 \% \mathrm{H}_{2}$ and CH_{4} are taken overhead

UNIT (7) DIST/SIMPLE DISTILLATION
5\% Ethane and 99\% Ethylene are taken overhead

UNIT (8) DIST/SIMPLE DISTILLATION
99% of the ethane remaining and 100% of the etylene remaining are taken overhead.

UNIT (9) FIRED HEATER/FURNACE

UNIT (10)	REACTOR
The reaction taking place is $4 \mathrm{C}_{2} \mathrm{H}_{6}$	$2 \mathrm{H}_{2}+2 \mathrm{CH}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{4}$
80% conversion of $\mathrm{C}_{2} \mathrm{H}_{6}$	

DISTORTED PAGES IN ORIGINAL

LIBRARY OF MODELS FOR CHEMCO1

```
A****************************************
#*LIGKAKYOFOMOELSMOR
A*************)
#* S r E E O U P **
**
#*************************************************************
MODEL EXPANCER
#*************
SET NOCOMP
IYPE F AS ARRAY(NUCOMP) nF FLOWRATE
        IINITOU,TIDLAL AS TFMPERATUKE
    HINIHOU AS HKESSURE
    HIN,HOU.HIDLAL,WORK AS ENTHALPY
    EFFIC AS FRACTION
    gAmma AS NOITPE
Stream
    INPUT IS F.IIN,HIN,HIN
    OUTHUT 1 IS r.TOU.PNU.HOU
    OUTHUT }2\mathrm{ IS WORK
LQUATION
    TIDEAL * PIN ' GAMM\triangle = TIN * POU ' GAMMA:
    EFFIC * ( HIN - HIDFAL ) = HIN - HOU:
    WORK = HOU - HIN;
rKOCLUURE
    ( HIDEAL ) ZCALEN ( TINEAL , POU , F )
    ( HOU ) ZCALEN ( TO.I , POU , F )
```

MODEL COMPRESSOR
カ**************
StT NOCOMP
IYPE F AS ARRAY(NUCOMP) OF FLOWRATE
IIN.TUU,TIDEAL AS TFMPERATURE.
PIN.POU AS PKESSURE
HIN,HOU, HIDEAL, WORK AS ENTHALPY
EFFIC AS FRACTIUN
GAMMA AS NOTYPE
stream
INPUT 1 IS FITIN.PINOHIN
INPUT 2 IS WURK
"OUTRUT IS F. IOU,HOU.HOU
LQUATIUN
IIDEAL * PIN • GAMMA $=$ TIN * POU • GAMMA:
EFFIC * (HIN - HOU) = HIN - HIUEAL:
WORK = HOU -.HIN:
rROCEDURE
(HIDEAL) ZCALEN 1 TINEAL , POU • F)
(HOU , ZCALEN i TO:I: POU:F)

```
MODEL HEATER_COOLER
#********************
SET NOCOMP
IYPE F AS ARRAY(NUCOMP) OF FLOWRATE
    TIN.TOU AS ILMPERATIHE
    HIN.FOU AS HKESSURE
    HIN,HUU,Q AS ENTHALDY
    DELIAI.DELTAK AS DEITA
STREAM
    INPUT IS F,TIN,HIN,HIN
    OUTHUT IS F.IOU.HOU.HOU
LGUATION
    TOU = TIN + UELTAT:
    POU = PIN + UELTAP;
    Q = HOU - HLN:
HROCEDURE
    ( HUU ) ZCALEN ( TO|1 P POU , F )
****
MOUEL VALVE
#*****************
SとT NOCOMP
IYPE F AS ARRAY(NUCOMP) \capF FLOWRATE
    TIN,TUL AS ILMPEKATIIKE
    HIN.POU AS HKESSUKE
    H AS ENTHALHY
    DELIAP AS DELTA
STREAM
    INPUT IS F.TINOHIN.H
    OUTHUT IS F.IOU,POU.HI
LQUATION
    HOU = PIN - UELTAP;
rrOCEDURE
    (TOU ) ZCALIP (H, POU,F,
MUDEL PUMP
&**************
SLT NOCOMP
IYPE F AS ARRAY(NUCOMP) NF FLOWRAIE
    I AS IEMPERAIURE
    PIN.POU AS FKESSURE
    HIN.HOU AS EIVTHALPY
    DELIAP AS DELTA
STREAM
    INPUT IS F,IMPIN,HIN
    OUTPUT IS F.I.PUU,HOU
LQUATION
    POU = PIN + UELTAP:
HROCEDURL
    (HUU ) ZCALLN I T . POU , F )
```

```
MODEL MOL_IC_KG_CUNVLRTER
R************************
SET NOCOMP
IYPE F AS ARRAY(NUCOMP) OF FLOWRATE
    T AS TEMPERAIURL
    \mu AS PRESSURE
    H AS ENTHALHY
    X AS ARRAY(NOCOMP) OF FRACTION
    FKg AS ARRAYINOCOMP, OF KGFLUW
    MOLW AS ARRAY(NOCOMF) OF NOTYPE
    FTOIALKG AS KGFLOW
STREAM
    INPUT IS F,T,P.H
    OUTPUI IS F,I,P,H
EQUATION
    FKG = MOLW * F:
    FTOIALKG = SLGMA ( FKG ):
    X * FTOTALKG = FKG;
****
MODEL MOLAR_FRACILON_IO_MOLES_CONVERTER
H***************************************
SET NUCOMP
IYPE F AS ARRAY(NUCOMP) IF FLOWRATE
    T AS TEMPERAIURE
    P AS PRESSURE
    H AS ENTHALPY
    X AS ARRAY(NUCOMP) OF FRACTIUN
    FTOIAL AS FLUWRATE
STREAM
    INPPUT IS F.T.P.H
    UUTRUI IS F.I.P.H
gGUATION
    FTOTAL * X = F:
    FTOIAL = SIGMA (F,:
MODELL ADIABATIC.rLASH
タ*********************
SET NOCOMP
IYPE F.TUP.EOT AS ARKAY(NOCOMP) OF FLOWRATE
    T.TIOP,TBOT AS IEMPFKATURE
    r AS PRESSURE
    H.HTOP.HBOT AS ENTHALPY
    FRAL AS FRACIION
STREAM
    INPUT IS F.T.P.H
    OUTHUT 1 IS IOP,TTOP.P.HITOP
    OUTPUI 2 IS BOT.TBOT.P.HBOT
EQUATION
    TBOI = TTOP;
    SIGMA(TOP) = FRAC * SIGMA(F):
HROCEUURE
    ( TIOP, TOP , HOT, SCALTP (H,P,F)
    ( HIOP ) ZENIHV ( TTOP , P . TOP )
    (HKOT ) ZENIHL ( TNOT, P , FOOT )
##**
```

MODEL ISOTHERMAL＿rLASH
カ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊日
SET NOCOMP
IYPE F．TOP．BOT AS ARKAY（MOCOMP）OF FLOWRATE
T AS TEMPERAIURE
P AS rRESSUKL
H．HIOP．HBOT AS ENTHALPY
STREAM
INPUT IS F．I•P•H
OUTHUT IS TOH．T．H．HTOP
OUTHUT 2 IS BOT．I．P．HBOT
HROCEDURE
（ TUP ，BOT ）SHHASF（ T ，P ，F ）
（ HIOP ）ZENIHV（ T，P ，TOP ）
（HBOI ）ZENIHL（T，P BOI ）
MUDEL VOLUME＿TO＿MULES＿COMVERTER
म＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
SET NOCOMP
IYPE F AS ARRAY（NUCOMP）OF FLOWRATE
T AS TEMPERAIURE
r AS PRESSUKL
H AS ENTHALHY
TOTALFVOL．RHU AS NOTYPE
TOTALF AS FLUWRATE
STREAM
INPUT IS F．I．P．H
OUTHUT IS F，I．P．H
LQUATION
TOTALF＝RHU＊IOTA，FVOL：
IOTALF $=$ SIGMA（F）：

＊＊＊＊

MODEL MIXER
\＃＊＊＊＊＊＊＊＊＊\＃
SET NOCOMP
IYPE F1，F2，F AS AKRAY（NOrUMP）OF FLOWRATE
T1，12．T AS ILMPEKATIKE
H1．H2，P AS PKESSURE
H1，H2．H AS EINTHALPY
STREAM
INPUT 1 IS FL，TIOPI．H1
INPUT 2 IS Fさ．Tえ，P2．H2
OUTHUT IS F．I．P．H
LQUATIUN
$F^{-}=F 1+F 2:$
$r=P 1$ ；
－H．$\# \mathrm{Hl}+\mathrm{H} 2$ ；
PROCEDURE

```
    \therefore(T)={ZCALIP(H,P , F )
```

```
MODEL BLACKEOX
SET NOCOMP
IYPE FIN.TUP,BOT AS ARRAY(NOCOMP) OF FLOWKATE
    IIN.TIOP.TBOI AS TEMPERATURE
    PIN.PIOP,PBUI AS PRFSSURE
    HIN.HTOP,HBUI AS ENTHALPY
    UELIAP,DELTAI AS DEITA
    SPLITR,XTOP,XBOI AS ARRAY(NOCOMP) OF FRACTION
    COMH67 AS FRACTION
    rotalicp,TOIALBOI as FLOWRATE
    TOTALTCPVOL.RHO AS NOTYPE
    BOTKG.TOPKG AS ARRAY(NOCOMP) OF KGFLOW
    MOLW AS ARRAY(NOCOMP) OF NOTYPE
    TOTALBCTKG,TUTALTOPKG AS KGFLOW
STREAM
    INPUT IS FIN•TIN,PINOHIN
    OUTPUT 1 IS TOP.TTUP,PTOP,HTOP
    OUTPUT 2 IS BOT,TBUI,PRUT,HBOT
LQUATION
    FIN = IOP + BOT:
    BOT = SPLITR * FIN:
    PTOH = PIN + DELTAH:
    PBOI = PICP:
    TBOT = TIN + DELTAT;
    TOIALTUP = SIGMA(TOF):
    TOTALBUT = SIGMA(BUT):
    XTUP * TUTALTUH = TUP:
    XBUT * TOTALBOI = BUT:
    TOTALTUP = RHO * TOTALTOPVOL:
    COMP67 = XTOP(6) + XTOp(7):
    TOIALBOTKG = SIGMA(BOTKG):
    TOTALTUPKG = SIGMA(TOPKG):
    BOTKG = MOLW * BOT:
    TOPKG = MCLW * IOP:
HROCEDURE
    ( TTOP ) SDEWPT ( PIOP , TOP )
    ( HTOP ) ZENTHV ( ITOP , PTOP , TOP )
    ( HBOT ) ZENTHL ( THOT , PBOT , BOT )
```


APPEIDIX C^{\prime}

Numerical results obtained for the general set of mathematical problems using the Broyden's version of the continuation method, The parameter λ in the in the table is as proposed by $3 \operatorname{ROYDEN}(1969)$.

λ

failures	unscaled	0.5	0.1	0.05
	variables badly scaled	21	21	21
	functions badly scaled	22	22	23
	Total	30	31	32
		73	74	76

A maximun of 2000 function evaluations was allowed(for this reason sone problems which converged for $\lambda=0.5$ did not converge for $\lambda<0.5$). The code used for solving each subprobler. is the one described in chapter 2.

APPENDIX D

COPIED FROM MICRO FICHE

BEST COPY

AVAILABLE

Variable print quality


```
    SUAROUTINES VEGFCN AND INITDT,
#,
```



```
    SUQROUTINE VECFCM(N,X,FVEC,NPROB,IER)
    INTEGER N.NPROO
    PGGL XOD.FVEC TO
```



```
    SUBROUTINE VECFCN
    THIS SUBROUTINE DEFITES FOURTEEN TEST FUNCTIONS. THE FIRST
    FIVE TEST FUNCTIONS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY.
    WHLE THE REMAINING TEST FUNCTIONS ARE OF VGRIGQLE DIMENSION
    N FOR ANH NGGEATER THNY OR EOLAL TO: IPROELEMO IS AN
    EXCEPTION TO THIS, SINCE IT DOES HOT ALLOW N - I).
    THE SUBROUTIFE STATEMENT IS
        SUBROUTIIE VECFCN(N,X,F(EC.IPROB)
    WHERE
        N is a positive integer ilput variable.
        X IS an imput array of length N.
        fVEC IS AI OUTPUT GRRAY OF LENGTH N WHICH CONTAINS THE NPROB
            FUNGTION VECTOR EVALUATED AT X.
        IPROB is a positive integer input variable Which def ifies the
            MMBER OF THE PROBLEM. TPROB MNST NOT EXCEED 14.
    SUBPROGRAMS CARLED
        FORTRAH-SUPPLIED ... ATAN,COS,EXP,SIGN,SIN,SURT.
                            MAXO.MINO
    MIMPACK. VERSION OF NRY 1978.
    BLRTON S. GARBOW, NEINETH E. HILLSTRSM, JORGE J. MORE
```



```
    INTEGER I, IEV, IVAR, J,K,KI,K2,KPI ML,MU
    REFL C1,C2,C3,CY, C5,CO,C7,C8,C9,EIGHT,FIVE,H,OHE, PROD,SUM, SUM1,
    DEA SUM2, TEMP, TEMP1,TEMP 2,TEN,THREE,TI,TJ,TK,TPI,TWO, ZERO
REAL flOAT
DATA ZERO,ONE,TWO.THREE,FIVE,EIGHT,TEN
    *O.OEO.1 OEO.2.CEO.3.OEO.5.OEO.8.OEO.1.OEL,
    DATA C1,C2,C3,C4,C5,C5,C7,C8,C9
    * 1.0E4.1.0001EO.2.0E2,2.02E1.1.98E1.1.8E2.2.5E-1.5.0E-1.
    2.9EI
    DIFENSION CEP3R112)
    DATA (CEP3R(1),1:1.12),2*4..2*10..2*40..2*4..2*10..2*40.,
    FLOATIIVAR) - IYAD
    PROBLEM SELECT .
    IF IPROO.LE.18) 6O TC 5
    IF ITPROQ.LE. 20)60 TO }80
    IF TPROB.LE.24) 6O TO $00
```


 LERE-99
RETURN
COMTIME
co 70 190,20, $30,40,50,60,120,170,200,220,270,300,330,350$.
1 400.500.600,700.800,900.1800).NPROB

ROSEMmROCK FUNCTIOH.

10 COMTIME
PVEC(1) OTE - $x(1)$
FVEC(2)- TEN $=(X(2)-X(1): z 2)$
60 70380
POUELL BINGUAR FUNCTION.
20 comtimue
FVEC(1) - $X(1)$ - TEN $=X(2)$
FVEC (2) - SORT (FIVE) $=(X(3)-X(4))$
FVEC(3)- $(x(2): T H 0 \times x(3))=x 2$
FVEC(4) - SORT TTEN * $X(1)-X(4)) *=2$
© 70380
POMELL BADL! SCALED FUNCTION.
30 CONT IUNE
FVEC(1) - $c 1 * X(1) * X(2)$ - ONE
IF (X(1).6T, 200.).OR. (X(2).6T. 200.1)60 TO 35
TE10.
IF (X(i).GT.-200.) TEI-EXP (-X(1))
if $X(2) . G T,-200$.$) TE2 -E X P(-X(2))$
FVEC (2)-GTBTIER2-C2
60 70380
IER=-9
60 TO 380
4000 FLACTION.
yo continue
TEP1 $=x(2)-x(1) * * 2$
TEMP 2 - $x(4)-x(3) * * 2$
FVEC (1) - - C3*X(1) *TEMP1 - (ONE - $X(1))$
FVEC (2) - C3*TEMP1 + C4*(X (2) - ONE) © C5* $(X(4)$ - ONE)
FVEC (3) - -CS*X (3) *TEMP2 - (ONE - X(3))

60 70380
helical valley function.
50 cortime
TPI - EIGHT:ATAY (ONE)
TEMP: SIGN(C7, X(2))
If $(x(1) \cdot G T$. $2 E R O)$ TEMPI - ATAN $(x(2), x(1)), T P I$
If $\alpha(1)$.LT. ZERO) TEMPI - ATAY(X(2)/X(1))/TPI + C8
TEMP2 - SORT $(X(1) * * 2+X(2) * 2)$
FVEC(1) - TEN* (X (3) - TEN*TEMP 1$)$
FVEC(2) - TENA (TEMP2 - ONE)
FVEC (3)-X(3)
6O TO 380
hatson fuictich.
60 Contirae
DO $70 \mathrm{~K}=1, \mathrm{~N}$
FVEC WO: ZERO

AUKI - RLOC 10 (ABS (PRODJ)

4 $4 \times 2 \times 0618$ (ABS
IF (($A W \times 1+$ MUX2).LT. 200) 60 T0 173
IER--9
RETVR
3 comitue
180 contime
D $190 \mathrm{~K}=1 . \mathrm{M}$
FVEC(O) - $X(\mathbb{O})$. SUM
CONTINE
COTO - PROD - ONE
60 TO 380
discrete boundary value function.
200 cortinue
H = ONE/FLOAT ON+1)
D $210 \mathrm{~K}=1 . \mathrm{N}$
TEFP - X (NO FLOAT (X) *H - ONE) * 3
TEPP - ZERO
(f α. NE. ${ }^{1)}$ TEMPI - $X(K-1)$
TERP2- ZERO
If (K. RE. ND TEMP 2 - $X(K+1)$
210 comitue
60 70380
DISCRETE INTEGRAL EQUATION FUNCTION.
22. CONTINE
$H=O N E / F L O A T(N+1)$
D $260 \mathrm{~K}=1 \mathrm{~K}$

SUMI = 2ERO
DO 230 J ${ }^{\text {f }}$ K
TJ = FLOAT (J) *H
TEMP $=(X(J)+T J+O N E) * * 3$
SUMI - SLMI - TJ*TEMP
$\operatorname{sun} 2-x \in R 0$
KP1 = K +
If aN .LT. KPI) ©O TO 250
DO $240 J .1091 . N$
TJ = FLOAT ($($ *
TEMP - (X(J) + TJ-ONE)**3
SLD2 - SLIN2 - CONE - TS *TEMP
CONTINE
comtine
FVECOS - X 10 - H*(CONE - TK) *SUMI - TK*SUM2),TWO
cow 380
TRIGONOMETRIC FUNCTION.
270 carifime
90272 Jol.N
IF (GBS (X (J)).GT.1.E(4)IER=-9
CONTINE
IF (IER.LT.O) RETURN
SLM - ZERO
DO $280 J=1 . N$
FVEC($\sqrt{3}-\cos (x(J))$
SUM-SUM - FVEC((5)
280 CONTIMNE
DO $290 \mathrm{~K}=1$
FVEC OS - FLOAT $(N+K)$ - SIN(X(K)) - SUM - FLOAT (K) *FVEC (K)

290 corrinu

Yarianly dimensioned funcition.
300 continy
$\sin _{00}$ IERO
SUA - SUM •FLOAT $(\sqrt{\prime} *(X(J)$ - ONE $)$
CONTIM

0320 K - 1. N
FYC(NO: X $\mathcal{C O}$ - ONE FLOAT (K) :TEMP
320
continue
6010380
GROYDEN TRIDIAGONAL FUNCTION.
330 contrine
DO $340 \mathrm{~K}=1, \mathrm{~N}$
TEN - (THRE - TWO $X(O)$) $x X(0)$
TETPI - ZERO
IF (K .NE. I) TEMPI $=X(K-1)$
TEPP2 - EERO
IF (K.NE. ND TEMP $2 \in X(K+1)$
FVEC 00-TEMP - TEMP1 - THOETEMP2 ONE
$\omega 10320$
aROYDEN GANDED FUNETION.
350 contimve
M- 5
D $370 \mathrm{~K}=1 . \mathrm{N}$
$K_{1}=\operatorname{MAYO}\left(1, K-M_{L}\right)$
K2 = MINO (K KMU.ND
TEMP = ZERO
$00360 \mathrm{~J} \bullet \mathrm{KI}, \mathrm{K} 2$
 Continue
FVEC 10 - $X(K):(T W O$ - FIVE $E X(K) * * 2)$ - OHE - TEMP
cortimue
co 10380
BeONN FUNCTION - BUS EXAMPLE 5.2 .2
continue
FVEC (1) $-x(1)=* 2-X(2)-1$.
FVEC (2) - $(X(1)-2) * * 2+.(X(2)-0.5) * * 2-1$.
co 70380
FREUDENSTEIN \& ROTH FUNCTION
contimere
FVEC (1) $-13.4 X(1)+((-X(2)+5) * X.(2)-2) * X.(2)$
FVEC (2) $-29 .+X(1)+((X(2)+1) * X.(2)-14) * X.(2)$
60 70380
GFERI \& MANCINO FUNCTION
continue
IALPHAMS
IAETAE14
D0 620 Kal. N

Stro

DO 610 J.I.N
IF (J.EO.K) 60 TO 610
2IJOSCRT $(X(J) * 2+F L O A T(N) / J$

1
ancos (ALOG(21J) **IALPHA))
$6610 \mathrm{JoL}, \mathrm{N}$
IF (J.EQ.K) 60 TO 610

1 $\cos (A L D G(21 \Omega)=\{(A L P H A)$)
continue

COMINE
${ }_{6}{ }^{C} 90310$
FOUR REACTORS EUNCTION
CONTIME
xs $=0.5$
A $0=1$.
06 mbl .
A5-0.
$80=0$.
TKETKIOY.
FVEC (1) -XS*A0 $\times X S C * X(2)-X(1)-T H E T K 1 * X(1) * X(5)$ FWE (2) $-x S \times E 0+X S C * X(6)-X(5)-T h E T K\{\times X(1) * x(5)$ FYEC (3) -XS*X(1) +XSC*X(3)-X(2)-TETK1*X(2)*X(6) FVEC (4) -XS*X(5) $+x S C * X(7)-x(4)-T H E T K I * X(2) * X(6)$ FVEC (5) $=X S \pm X(2)+X S C * X(4)-X(3)-T H E T K 1 * X(3) * X(7)$ FVEC (6) $=X S \times X(6)+X S C * X(8)-X(7)-$ THETK $* X(3) * X(7)$ FVEC (7) $=X S \pm X(3)+X S C * A 5-X(4)-T H E T K 1 * X(4) * X(8)$ FYEC (8) $\times X S \pm X(7)+X S C * 85-X(8)-T H E T K i * X(4) * X(8)$ GO TO 350
ChEMICR EOUILIGRIUM PROBLEM I

CONTIME

FVEC (1) $-x(2)-10$
FVEC (2) X $X(1) * X(2)-5$. E4
co 70380
CHEMICAL EOUILIBRIUM PROBLEM 2
COTTINVE
FVEC (1) $-X(1)+X(2)+X(4)-0.001$
FVEC (2) - X(5) +X(6)-55.
FVEC (3) - X(1) +X(2)+X(3) +2.*X(5)+X(6)-110.001
FVEC (4) $-X(1)-0.1 * X(2)$
FVEC (5) $-X(1)-1 . E 4 * X(3) * X(4)$
FVEC (6) $\times X(5)-55, * 1 . E(4 * X(3) * X(6)$
CO TO 380
CHEMICAL EOUILIGRIUM PROBLEM 3
cont inve
R-CEP 3R GPROB-24) -
TOT=0.
0010 io I-1,N
TOT=TOT+X(i)
If $\alpha(1) .1 T .0 .160701050$
if $X(2) \times X(4): T O T . L T .0 .160$ TO 1050
If $X(4) . L T .0 .160$ TO 1050
IF $\mathcal{X}(1) \approx X(2) *$ TOT.LT.0.) GO To 1050
If $\mathcal{X}(3) *$ TOT.LT.0.) $G 0$ TO 1050
FVEC $(1)-X(1)+X(4)-3$.
FVEC(2) $-2, * X(1)+X(2)+X(4)+X(7)+X(8)+X(9)+2 . * X(10)-R$
FVEC (3) $-2 . \times X(2)+2 . * X(5)+X(6)+X(7)-8$.
FVEC (4) $-2 . * X(3)+X(9)-4$. *R
FVEC (5) $=X(1) * X(5)-1.93 * 1 . E-1 * X(2) * X(4)$

[^0]

$F V E C(10)-X(10) \pm X(4) \approx X(4)-3.846=1 . E-5 * X(4) \pm X(4) \leqslant$ TOT
60 TO 380

1050

BETUN
contline RETVNO

LAST CARD OF SUAROUTINE VECFCN.
En
SUCROUTINE INITPT N. X, MPROB,FACTOR
INIEGER N. NPROS
REAL FACTOR
REN X OD

SUAROUTINE IMITPT

THIS SURPOUTINE SPECIFIES THE STANDARD STARTIMG POINTS POR TH FUXCTIOHS TEFINED BY SUBROVIINE VECFCN. THE SUapoUTIN RETUNHS IN X A MUTSPLE (FACTORS OF THE STAMDARD STARTIIG POINT. FOR THE SIXTH FUNCTION THE STAMDARD STARTINE POIFI IS 2ERO. SO IN THIS CASE. IF FACTOR IS NOT UNITY. THEN THE SUEROUTINE RETVOLS THE VECTOR $X(N)$ EFACTOR. JOI......N.

THE SUAROUTINE STATEMENT IS

SUBROUTINE INITPT (N. X, NPROS, FACTOR)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE.
X IS AN OUTPUT APRAY OF LENGTH N WHICH CONTAINS THE STANDARD STARTING POINT FOR PROBLEM NPROB MUTIIPLIED OY FACTOR.
nPROB IS A POSITIVE integer input variale hich defines the NUHEER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.
factor is an input varialle which specifies the muliple of THE STAMDARD STARTING POINT. IF FACTOR IS UNITY. ND mittiplication is PERFORMED.

MINPACK. VERSION OF JLY 1978.
BURTON S. GARBON, KEMETH E. HILLSTROM, JORGE J. MORE

INTEEER IVAR,J
REAL CL,H,HALF, ONE, THREE, TJ, ZERO
REAL FLOAT
DATA ZERO.HALF, OME, THREE,C1 10.0E0.5.0E-1.1.0E0.3.0E0.1.2EO/
DIMENSION CEPI $(2,2)$, CEP2 $(6,4)$. CEP3 $(10,6)$, NSEAR (18)
DATA ((CEPi(1,) , I-i,2), J=i,2i/2*0.,2*10.1

2. 10. 1. 1. 2., 4*0. 2.,5. 40..1. 5*0.,5..i.

OATA OLEAR (1) $I=1, i 8) / i, 2, i, 2,3,4,1,2,3,4,5,6,2,2,3,4,5,61$
FLOAT (IVAR) - IVAR

SELECTION OF IMITIAL POINT.
IF GPROW.LE. 18)GO TO 5
NPRHKSEAR OPROB-18)
IF OPROS.LE. 20) 90 TO 800
If CPPROB.LE. 24) GO TO 900
if (TPROQ.LE. 36) GO TO 1000
URITE (6.4 4^{4}

```
SELECTION OF INIJIML POITY:
    IF OPROS.LE. 18)GO TO 5
    MPRONSEN2 (MPROS-18)
    If quros.LE.20) 60 T0 800
    If (4PMOR.LE. 24) 60 to 900
    If qNROB.LE.36)60 to $000
    MRITE (6,4)
    FOMMAT ("PROQLEM OUT OF RANGE")
    STOP
    conflimue
    co to (10,20,30,40,50,60,80,100,120,120,140,160,180,180.
    & 400.500.600.700,800.900.1000).NPROB
    ROSETMROCK FUNICTION.
    10 comTIINE
    X(1) =-C
    X(2)=O
    60 T0 200
    PONELL SIMEULAR FUNCTION.
    20 contlime
    X(1) = THREE
    X(2) - ONE
    X(3) - 2ERO
    X(4) - ONE
    CO T0 200
    PONELLL EADLY SCALED FUNKCTION.
30 CONTIMNE
    X(1) - 2ERO
    x(2) - OrE
    CO TO 200
C
    MOOD FUNCTION.
40 CONTIMUE
    X(1) - THREE
    X(2) - -ONE
    X(3) = -THREE
    X(4) = -ONE
    60 TO 200
    HELICAL VALLEY FUHICTION.
50 continue
    X(1) = -ONE
    X(2) = ZERO
    X(3) - ZERO
    CO TO 200
    HATSON FUNCT:ONI.
60 comTINuE
    DO 70 J = 1.N
        contines
    7 0
        contINuE
    coto 200
    CHEOYOLAD FUNCTION.
80 CONTIMNE
    H= OHE/FLOAT (N+1)
```

```
90 comitimye
00 T0 200
gRONN ALMOST-LINEAR FUNCTION.
    100 conrlive
    00110J. 1.N
        X(S) MALF
    llo conTIM
    00 T0 200
C DISCRETE BOUNDARY VALUE AND INTEGRAL EOUATION FUNCTIONS.
    120 CONTINUE
    H-ONE/FLOAT (N+1)
    D 130 J=1.N
        TJ = FLOAT (N) *F
        X(N)-TJ* (T) - ONE
    130 CONTINUE
    00 10 200
C TRICONONETRIC FUNCTION.
    140 CONTINNE
    H=ONE/FLOATIND
    D !50 J = l.N
        X(N)=H
    50 CONTIMNE
        60 T0 200
    VARIRALY DIMENSIONED FUNCTION.
    160 cortimuE
    H= ONE/FLOAT (ND
    DO 170 J - 1. N
        X(N) - OHE - FLOAT (J)*H
        COMTINUE
    co to 200
C BROYDEN TRIDIASOHAL AND BANDED FLNCTIONS.
    I8O CONTINNE
        DO 190 J = 1.N
            X(J) = -ONE
            CONTINNE
            CO TO 200
            BRONY FUNCTION - BUS EXAMPLE 5.2.2
            EONTIMNE
            X(1) =-1.
            X(2) = 1.5
            60 to 200
            FREUDENSTEIN & ROTH FUNCTION
            cortINuE
            X(1)=-5.
            X(2)=0.
            GO TO 200
            - GEERI & MANCINO FUURCTION
            cortime
```

```
ACPTATE
```

ACPTATE
IOETA 14
IOETA 14
ICAMA=3
ICAMA=3
KEI-IBETA*N* (IALPHA+1.)*(N-1)
KEI-IBETA*N* (IALPHA+1.)*(N-1)
$C=$ IOETA*N-(IALPHA+1.)*(N-1)
$C=$ IOETA*N-(IALPHA+1.)*(N-1)
D 60 I Iel.N
D 60 I Iel.N
SLMFO.
SLMFO.
DO $602 \mathrm{~J} \mathrm{I} . \mathrm{N}$

```
    DO \(602 \mathrm{~J} \mathrm{I} . \mathrm{N}\)
```

```
ICNMN
KEI-1GETA*N+ (IALPHA+1.)*(N-1)
```



```
D060 I-1,N
Suro.
DO }802\mathrm{ Je1,N
IF (J.EO.I)GO TO 602
2IJOSORT (FLOAT (1) J)
SLMESUN+2IJ*(SIN(ALOG (2IJ) **IALPHA+COS (ALOG (2IJ)) *:IALPHA)
continue
X(1)=-(II-N/2.) = | IGMMA+SUNO = (C+KEI)/(2. *CEKE I)
COHINME
60 TO 200
FOUR REACTORS FUNCTIOH
COMTIME
X(1)=0.1
X(2) 00.2
x(3) 00.3
X(4) 00.4
x(5)00.5
X(0) 0.4
x(7) 0.3
x(8)00.2
60 TO 200
CHEMICAL EOUILIBRIUM PROBLEM:I
comtINE
DO }810\mathrm{ I-1,N
x(1)-CEPT(I,NPR)
CO TO 200
CHEMICAL EOUILIBRIUM PROBLEM 2
contime
DO 910 I-1.N
X(f)-CEP2(i,NPR)
60 TO 200
CHEMICAL EOUILIBRIUM PRCBLEM 3
contIme
    D0 1010 1-1.N
    X(1) CCEP3 (I.NPR)
    co TO }20
    COMTINEE
    COMPUTE MLTTIPLE OF INITIAL POINT.
    IF (FACTOR EO. ONE) GO TO 250
    If TPROB.EO. 6) GO TO 220
        DO 210 J-1.N
            X(S) = FACTOR *X(J)
                    CONTINNE
    210 60 CONTIN
    220 CONTIMUE
        DO 230 J-1.N
            X(J) - FACTOR
            CONTIME
    230
    cou
    comTIMNE
    contimaE
    RETMRN
```


Un'scalled SET of Problems													
METH	1	2	3	4	5	6		1	2	3	4	5	6
1	6	6	6	5		23		1.20	1.20	1.20	1.00	1.20	4.60
2	27	27	37	34	25	41		1.08	1.08	1.48	1.36	1.00	1.64
3	74	98	29	46	66	179		2.55	3.38	1.00	1.59	2.28	6.17
4	0		111			${ }^{96}$			3.07	1.50	1.00	2.22	8.30
5	28	433	103	246	242	27		1.04	16.04	-	9.18	8.96	1.00
6	363 113	129 103	103 145	125 130	999	91 143		3.99 1.10	1.42 1.00	1.13 1.41	1.37 1.26	1.09 1.08	1.00 1.39
8	20	16	18	32	16	18		1.25	1.00	8.13	2.00	1.00	8.13
9	28	30	29	26	26	27		1.08	1.15	1.12	1.00	1.00	1.04
19	31	23	23	27	22	34		1.41	1.05	1.05	1.23	1.00	1.55
11	61	32	51	37	+ 32	76		8.91	1.00	. 0	1.16 1.48	1.00 3.35	2.38
12 13	-35	294	51	46	104	31		1.13	1.90	1.65	1.48 2	3.35	1.00
13	135	224	77	173	${ }^{95}$	71		1.94	3.15	1.08	2.44	1.34	1.00
14 15	0	19	126	${ }^{\circ}$	106	91		O	2.15	1.38		1.16	1.00
15 16	14	14	14	14	14	15		1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.07 1.17
17	14	14	14	14	14	15		1.00	1.00	1.00	1.00	1.00	1.07
18	74	122	0	0	33	-6		2.24	3.70	0	0	1.00	0
19	31	33	31	31	31	32		1.00	1.06	1.00	1.00	1.00	1.03
20	21	20	20	20	20	21		1.05	1.00	1.00	1.00	1.00	1.05
21	32	28	28	27	28	29		1.19	1.04	1.04	1.00	1.04	1.07
22	6	6	6	5	6	9		1.20	1.20	1.20	1.00	1.20	1.80
23	48	48	58	38	59	36		1.33	1.33	1.61	1.06	1.64	1.00
24	19	10	10	13	11	12		1.90	1.00	1.00	1.30	1.10	\$.20
25	207	419	307	${ }^{\circ}$	0	252		1.00	2.02	1.48			1.22
26	0	425	420	229	283	32		0	13.28	13.13	7.16	8.84	1.00
27	0	182	160	272	0	331		0	1.14	1.00	1.70	0	2.07
28	0	0	8	0	0	-6		0	0	0	0	0	-
29	0	0	0	-	0	192		0	O	0	0	0	1.00
30	0	0	0	0	0	310		0	0	0	0		1.00
31	0	0	0	0		0		0	0			0	
32	33	71	62	68	182	31		1.06	2.29	2.00	2.19	5.87	1.00
33	16	16				17		1.00	1.00	1.00	1.00	1.00	1.06
${ }^{34}$	9	9	${ }^{8}$	17	${ }^{8}$	18		1.13	1.13	1.00	1.00	1.00	1.25
35 36	17	17	17 0	17	17	18 82		1.00	1.00	1.00	1.00	1.00	1.06 1.00
37	93	40	76	92	57	36		2.58	1.11	2.11	2.56	1.58	1.00
38	99	55	54	56	54	54		1.83	1.02	1.00	1.04	1.00	1.00
39	69	70	63	63	63	45		1.53	1.56	1.40	1.40	1.40	1.00
40	8	7	7	7	7	9		1.14	1.00	1.00	1.00	1.00	1.29
41	53	53	78	40	58	40		1.32	1.32	1.95	1.00	1.40	1.00
42	0	0	0	0		437			0		0	0	1.00
43	81	0	212	0	265	44		1.84	0	4.82	0	6.02	1.00
44	0	0	-	0	0	492			0	0	0	0	1.00
45	-	0	0	0	0	244		-	0		0	0	1.00
46	0	0		0	0	0		0		0		0	0
47	179	0	75	101	74	97		2.42	0	1.01	1.36	1.00	1.31
48	65	52	50	50	47	47		1.38	1.11	1.06	1.06	1.00	1.00
49	27	28	20	23	19	21		1.42	1.47	1.05	1.21	1.00	1.11
50 51	65	5	50	5	47	-68					1.34		1.00
52	87	74	61	113	71	58		1.50	1.28	1.05	1.95	1.22	1.00
53	78	75	235	189	76	42		1.86	1.79	5.60	4.50	1.81	1.00
54	74	71	72	88	71	57		1.30	1.25	1.26	1.54	1.25	1.00
falls	14	12	13	14	12	5	MEATH	1.43	2.10	1.71	1.73	1.84	1.33
	ARIGA	BLES	BADL	Y SC	Cflled								
$\begin{gathered} \text { METH } \\ \text { PROQ } \end{gathered}$:	2	3	4	5	6		1	2	3	4	5	6

variables badly scaled

METH	1	2	3	4	5	6	1	2	3	4	5	6
PROB	6	6	6	0	6	35	1.00	1.00	1.00	1.00	1.00	5.83
1	27	27	34	37	25	29	1.08	1.08	1.36	1.48	1.00	1.16
2	76	47	29	51	37	-9	2.62	1.02	1.00	1.76	1.28	0
3	144	249	126	115	118	99	1.45	2.52	1.27	1.16	1.19	1.00
5	28	62	147	64	0	6	1.00	2.21	5.25	2.29	0	0

$\begin{array}{lllllllllllllll}11 & 0 & 110 & 110 & 62 & 101 & -6 & 0 & 1.77 & 1.77 & 1.00 & 1.63 & 0 \\ 12 & 36 & 38 & 34 & 39 & 36 & 33 & 1.09 & 1.15 & 1.03 & 1.18 & 1.09 & 1.00\end{array}$

FIML STATISTICS

Falls	39	28	40	33	38	48	MEAN	1.49	1.47	1.42	1.60	1.39	1.34

DETAJLED RESULTS FOR THE
GENERALS S U B SET

NITSOUT USING THE INTERNAL SCALING

METH	1	2	3	4	5	1	2	3	4	5
PROB	0	0	24	8	0	0	0	3.00	1.00	0
1	65	53	93	102	59	1.23	1.00	1.75	1.92	1.11
2	-9	-9	-9	-9	-9	0	0	0	0	
3	0	0	71	0	0	0	1.35	1.00	0	
4	0	0	96	260	0	0	0	1.05	1.00	0

METH	1	2	3	4	5	6		1	2	3	4	5	6
	14					0		1.00	1.00	8.57	1.00	8.57	0
2	5	5	5	5	5	0		1.00	1.00	1.00	8.00	1.00	0
3	71			68	90	0		1.06	1.00	1.69	1.01	1.34	0
4	67	80	65	84	81	-6		1.03	1.23	1.00	1.29	1.25	0
5	16	13	12	12	12	-6		1.33	1.08	1.00	1.00	1.00	0
6	67	84	72	67	66	-6		1.02	1.27	1.09	1.02	1.00	0
7	-6	0	0	-6	-6	33		0	0	0	0	0	1.00
8	276	79	72	59	71	25		11.04	3.16	2.88	2.36	2.84	1.00
9	59	47	41	65	35	-9		1.69	1.34	1.17	1.86	1.00	0
10	54	61	35	40	35	39		1.54	1.74	1.00	1.14 1.44	1.00	1.11
11 12	185 133	100	111 158	156 108	108	-9		1.71 $\$.33$	1.00	1.03 1.58	1.44 1.08	1.00 1.19	0
fails	1	2	1	1	1	9	MEAN	2.16	1.38	2.00	1.29	1.93	1.04
finkl statistics													
fails	1	2	1	1	1	9	MEAN	2.16	1.38	2.00	1.29	1.93	1.04

this sumoutine calculates the output temperature

 FOR SOTH STREAHS IN A HEAT EXCHANGER GIVEN ALL THE imput dataflourate temperature CP INPUT OUTPUT

HOT	PH	THO	TH	CPH
COLD	FC	TCO	TC	CPC

ua is the product of the u coefficient and the area
CIMYON/SPSTAT/LP. IPRINT. NERRS, IABORT
Cl FH HCPH
C2 ω C*CPC
IF (AOS (C1) .LT.1.E-6) 60 TO 50
if (ADS (C2).LT. i.E-6) 60 T0 50
6070100
50 Cortimue
IF (IPRINT.LE.0) 60 TO 60
WRITE (LP, 1000) C1, C2, UA
1000 FORMAT (" SINHEX-W-BAD ARGUNENTS,C10", G12.6." C2"".612.6.
60 "CONTIMUE" (Na".612.6)
$T C=T C O$
TC=TCO
RETVRN
100 CONTINUE
BETAMC2/Cl
If (ABS (BETA-1.0) , LT. 1.E-6) BETA 1.0-1.E-6
ARGOUAC2* (1.0-EETA)
IF (ARG.GT. 50.0) 60 TO 50
ALPHHOEXP (ARG)
$T C=(1$ (1-ALPHA $) * T H O-(1-B E T A) * T C O) /(B E T A-A L P H A)$
THPTHO EETA (TCO-TC)
RETMRN
END

c
Ctttt+tt+t+tt+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t
SUBROUTIKE SIMCON(TH,FC.TCO,CPC,UA, TC)
this sueroutime calculates the temperature for a condenser GIVEN ALL THE IMPUT DATA

COMYONLSPSTAT/LP. IPRINT, NERRS, IABORT


```
******
mecommemammac

```

TITLE
HEAT EXCHAYGER PROBLEM \&

HODEL HEATEXCHAHCER
TNPE HOTIN. CULDIN, HOTOUT, COLDOUT AS FLOWRATE
THOTIN, TCOLDIN, THOTOUT. TCOLDOUT AS TEMPERATURE
ARG AS LOGARG
O AS NOTYPE2
CPHOT.CPCOLD,UA.DELTATLM AS NOTYPE
STREAM
INPUT I IS HOTIN.THOTIN
IMPTT }2\mathrm{ IS COLDIN.TCOLDIN
OUTPUT I IS HOTOUT,THOTOUT
OUTPUT 2 IS COLDOUT.TCOLDOUT
EOLATION
HOTOUTHOTIN
COLDOUT-COLDIN
O-HOTIN*CPHOT* (THOTIN-THOTOUT):
b-COLDINECPCOLD*TCOLDOUT-TCOLDIND:
g-LA*DELTATLM:
ARG* (THOTIN-TCOLDOUT) -THOTOUT-TCOLDIN
DELTATLM\&LOG (ARG) = (THOTOUT-TCOLDIND - (THOTIN-TCOLDOUT);
crates
YODEL COMDENSER
TYPE HOTIN,COLDIN,HOTOUT, COLDOUT AS FLOWRATE
THOTIN,TCOLDIN, THOTOUT, TCOLDOUT AS TEMPERATURE
ARG AS LOGARG
O AS NOTYPE2
L.CPCOLD.UA, DELTATLM AS NOTYPE
STREAM
INPUT I IS HOTIN,THOTIN
INPUT 2 IS CODIN.TCOLDIN
OUTPUT ! IS HOTOUT. THOTOUT
OUTPUT 2 IS COLDOUT.TCOLDOUT
EOUATION
HOTOUTHDTIM
COLDONT-COLDIN

```



```

titLe
HEAT EXCHNKER PROSLEM !
MODEL HEATEXCHMGER
TYPE HOTIN, THOTIN COLDIN, TCOLDIN. HOTOUT, THOTOUT, COLDOUT,
TCODOOT,CPHOT,CPCOLD,UQ AS NOTYPE
STREAM
InPUT i IS HOTIN.THOTIN
INPIT 2 IS COLDIN.TCOLDIM
OIPUT I IS HOTOUT,THOTOUT
OUTPUT 2 IS COLDOUT,TCOLDOUT
EOMATION
HOTOUTH0TIN
COLDOUT-COLDIN:
COLDOU1-C
(THOTOUT,TCDLDOUT) SIHEX IHOTIN,THOTIN,CPHOT,COLDIN,TCOLDIN,CPCOLD.UA)

MDEL CONDENSER
THPE HOTIM, THOTIN, COLDIN, TCOLDIN, HOTOUT,THOTOUT, COLDOUT.
TCOLDOUT,L.CPCOLD,UA AS NOTYPE
STREAM
INPUT \& IS HOTIN. THOTIN
INPIT }2\mathrm{ IS CODIN.TCOLDIM
OUTPUT I IS HOTOUT,THOTOUT
OUTPUT 2 IS COLDOUT,YCOLDOUT
EOLATIOH
H0TOUT+10TIN,
COLDOUT-COLDIN
THOTOUT-THOTIN:
HOTIMML-COLDIN*CPCOLD* TTCOLDOUT-TCOLDINN:
PROCEDURE
(TCOLADNT) SIMCON (THOTIN,COLDIN,TCOLDIN.CPCOLD.UA)

FLOUSHEET
INPUT ! OF EXI IS FEED :
INPUT 2 OF EXI IS FEED 2
OUTPUT! OF EXI IS PRODUCT:
OUTPUT}2\mathrm{ Of EXI IS INPUT 2 Of EX3
INPUTT I OF EX2 IS FEED 3
INPUT }2\mathrm{ OF EX2 IS FEED
OUTPUT I Of EX2 IS INPIT I of EX3
OUTPUT }2\mathrm{ Of EX2 is INPYT }2\mathrm{ Of CON
INPUT \& of CON IS FEED 5
OUTPTT i OF CON IS PRODNCT
OUTPUT 2 Of CON IS PRODUCT 2
ONTPNT I OF EX3 IS IPMT I OF EX5
OUTPUT }2\mathrm{ OF EX3 IS PRODUST 4
INPYT 2 of EXS IS FEED 6
OUTPUT I OF EXS IS PRODUCT S
OUTPUT 2OF EXE IS PRODUCY %

NNIT EXI IS A HFATEXCHANCER
**** EXI IS A WATEXCHNGER
MHIT EXI IS A HEATEXCHAGGER

INIT EX3 IS A HEATEXCHALGER

NNIT EXS IS A HEATEYMHANGER
N0*:
MHIT COHI IS A CONDETISER

OFERATIOM

```
（s）
HITHIN EXI

WITHIM EX2

WITHIM EX3
UAm0．8100．TCOLDOUT－320．CPHOT＝0．8．CPCOLD－0．7
WITHIN EXS
IHPO．8100．TCOLDIN－100．SPCOLDe1，CPHIT－O．8．THOTOUT－280．TCOLDOUT－1EO
WITHIN CCN

PRESET
WITHIN EX3
T．OTINE \(378: 340: 800\) ．TCO：DIN \(500: 10 C: 900\)
WI THIN CON
TCODIN－500：100：900

\section*{WITHIN EX！}

COLDIN2．38：0：1．E10
WITHIN EXZ
HOTINE2．08：0：1．E10
WITHIN EXS
CODINE1．66：0：1．E：10
WITHIN EXI
THOTNT＝500：100：900
WITHIN EX2
THOTIN \(500: 100: 900\)
WITHIN EX3
THOTOYT－500：100：900
\(\rightarrow\)＋1
OpTIONLS
ROUTINES ON
PRINT OPERATION 4 UNIT 4


**



TITLE
THEAT EXCHATCER PROBLEM 2

MODEL SPLITTER
TYPE SPIN．TIN．SOU1，TOU1．SOU2，TOU2．SPLITFAC AS NOTYPE
STREAM
INPN IS SPIN．TIN
OUTPUT I IS SOU：．TOUI
ourpur 2 is SOU2．TOU2
EMATION
TOUI－TOU2－TIN：
SOUIOSPLITFAC：SPIN：
SPITHSOUS SON 21

MODEL MIXER
TAPE MINR．TINI，MIN2．TIH2．MON．TOU AS NOTYFE
STREAM
INPUT 1 IS MINI．TIN：
INPUT 2 is MIN2．TINZ
outper is mou，tou

EXDAYI
HMOMIMI MIN2


HODEL HEATEXCHWHELR
THPE HOTIN．THOTIN．CODIN．TCOLDIN．HOTOUT．THOTOUT．COLDOUT．
TCOLDOUT．O，CPHOT．CPCOLD．UA，DELTATLM，ARG AS NOTYPE
STREAM
INPUT I IS HOTIM．THOTIN
INOUT 2 IS COLDIN．TCOLDIN
QUPDT i IS HOTOUT．THOTOUT
OUIPUT 2 is COLDOUT．TCOLDOUT
EQATION
HOTOUTHOTIN
COLDOTTOCOLDIM
O－HOTIN：CPHOT：\(T\) THOTIN－THOTOUT：
Q－coldintapcal D＝TCOLDOUT－TCOLDIN：
O－UANELTAKM．
AEGE CTHOTIN－TCOL DOUT）＝THOTOUT－TCOLDIN，
DELTATLMALOG（ARG）－（THDTOUT－TCOLDIN）－TTHOTIN－TCOLDOUT）
－古家家
WHIT SPL IS A SPLITTKR
＊
WIIT IIIX IS A MIXER

UNIT HEXI IS A HEATEXCHHIGER

WHIT HEXZ IS A HEATEXCHWTAER

LHIT HEXZ IS A HEGTEXCHHHEER
Ftera
```

WHI SPLMLS+ASSPLDTERNX

WIIT :IIX IS A MIXER

UIIT HEXI IS A HEATEXCHAHGER

WIT HEXE IS A HEATEXCHAHGER
ywy+
WIT HEXJ IS A HEATEXCHAMGER

```

```

FLOWSHEET
INPNT I OF HEXI IS FEED I
INPUT 2 OF HEX\ IS FEED 2
ouTPUT:I OF HEXI IS PRODUCT I
OUTPUT }2\mathrm{ OF HEXI IS INPUT OF SPL
OUTPUT I OF SPL IS INPUT 2 OF HEXI
OUIPUTT 2 of SP2 is INPUT 2 of HEX3
INPUT I OF HEX2 IS FEED 3
OUTPUT I OF HEX2 IS PRODUCT }
OUTPUT 2OF HEX2 IS INPUT I OF MIX
INPUT I OF HEX3 13 FEED 4
OUTPUT! OF HEX3 IS PRODUCT }
OUTPUT 2 Of HEX3 IS INPUT 2 Of MIX
OUTPUT OF MIX IS PRODUCT Y

DPERATION
SET
WITHIN HEXI
UN00.44823899.H07IN=0.7.THETIN=180. CPHOT-I.
COLDIN-1.0000.TCOLDIN-80.CPCOLE=0.8
MITHIN HEXI
L44-1, 2033485,HOTIN=0.6000, THOTIN-25%, CPHOT=0.7. CPCOLD=0.8
NITHIN HEX3
4000, 31086886, HOTIN=0, 4000, THOTIN=220, CPHOT=0.6, CPCOLD=O.8
WITHIN MIX
T0M=190
PRESET
MTHIN SPL
IN-115:90:160.SPL ITFAC=0.5249:0:1
NITHIN MIX
TIN8-220:100:240.TIN2-156:100:200
IITHIN HEXI
THOTOST=170:80:250
NITHIN HEX2
7HOTCNT=170:80:250.TCOLDIN-170:80:250.

```
FFCDDOUTV190:80:250
WITHIN HEX3
    THOTOTE170: 50:250, TCOLDINe 170:80:250.
    TCOLDOUT:170:80:250
WITHIN HEXI
    ARC-1:0.001:1.E1O
WITHIN HEY2
    COCm1:0.001:1.E10
WITHIN HEX 3
    AたG~1:0.001:1.E10
安解室
CPTIONS
ROUTINES OY
PRINT UNIT 4 OPERATION 4


*
HEAT 2 M
家
*


TITLE
    HEAT EXCHATCER PRUELEM 2

MODEL SPLITTER
TYPE SPIN.TIN.SOU1.TOU1.SOU2.TOU2,SPLITFAC AS NOTTPE
STREAM
    INPTI IS SPIN.TIN
    input is spin. in
    OUTPN i is sous. TOU1
aIPUT 2 is SOU2.TOU2
    arper 2 is SOU2.TOU2
EOUATION
TOUI-TOU2-TIM:
SOUI -SPL ITFAC*SPIN
SOUI OSPLITFAC:EP
SPITHOSOUITSOU2:
max
PDEL MIXER
TPPE MINR,TINL,MIH2.TIN2.MOU,TOU AS NOTYPE
STEEAM
    INPUT 1 IS MIM. TIMI
    IHPUT 2 IS MIN2TINZ
    OUTPUT is Mou.tol
    EOLATION
EOLATION


HODEL HEATEXCHANEER
TYPE HOTIN, THOTIN. COL DIN. TCOLDIH, HOTOUT. THOTOUT. COLDOUT.
        TCODDOUT, CPHOT, CPCOLD,UA AS NOTYFE
Lstrefom

HOOEL HEATEXOHNOER
TYPE HOTIN, THOTIN, COL DIN, TCOL DIN. HOTOUT. THOTOUT. COLDOUT. TCOLDOUT. CPHOT, CPCOLD. LA AS NOTYPE
Irpert i is hotin. Thotin
INPUT 2 is COLDIN.TCADIN
outpert i is hotout. THOTOUT
ourpert 2 is COLDOUT. TCOLDOUT
zouation
TDTOUTHOTIN:
Coldout-coldins
procedure
THOTOUT. TCOLDOUT SIMFEX HOTIN, THOTIN, CPHOT, COLDIN, TCOLDIN. CPCOD.UAS

\section*{}

WHIT SPL IS A SPLITT
UNITE MIX IS A MIXER

UHIT WEXI IS A HEATEXCHAMCER

UNIT HEX2 IS A HEATEXCHANEER

UNIT HEX3 IS A HEATEXCHANGER
* *

FLOMEEET
IMPNT I OF HEXI IS FEED \&
IHPUT 2 OF HEXI IS FEED 2
OUTPUT 1 of HEXi is PRONUCT \(: ~\)
OUTPUT 2 OF HEXI IS INPUT OF \(S P L\)
ourpert i of SPL IS INPUT 2 of HEX2
OUTPUT 2 of SPL IS INPNT 2 of HEX3
INWUT I OF HEX2 IS FEED 3
ouTPUT 1 or HEX2 IS PRODUCT 2
ourpur 2 of HEX2 is INPUT 1 of MIX
INPUT I OF HEX3 IS FEED 4
ouTput 1 of HEX3 IS PRODUCT 3
coviper 2 of HEX3 is ITPUT 2 of MIX
owTPUT of MIX IS PRODUCT i

operation
SET
MITHIN HEXI
UNO. Y4823899. HOTIN=0.7. THOTINE180. CPHOTMI.
COLDINm 1.0000. TCOLDIN-80. CPCOLD=0.8
NITHIN HEXZ

WITHIN HEX3

WITHIN MIX
TON 190
PRESET
WITHIN SPL
TIN \(170: 80: 250\). SPL ITFAC \(-0.5249: 0: 1\)
WITHIN MIX
TINI-170:080:250.TIN2-170:080: 250
MITHIN HEXI
THOTOUT-170:80:250
NITHIN KEX2
THOTOT1-170:80:250, TCOLDINe \(170: 80: 250\).
TCOLDOUT-170:80:250
WITHIN HEX3
THOTOTI 170:80:250, TCOLDIN-170: 80:250.
TCOLDOUT-170:80:250
r***
options
ROUTINES OH
PRIMT UNIT Y OPERATION 4




TITE
MODIFIED CAVETT'S PROCESS

MODEL MIXERAB
- MIXER OF TWO STREANS GMTERIAL BALANCE OARY SET ROCOMP
TYPE FLOWINI. FLONIN2. FLOWOUT AS ARRAY (NOCOMP) OF FLOWRATE
STREAM INPUT : FLONIN:
INYT 2 FLONIN
EOMATION
- CONPONETT MATERIAL 8ALAHCES -

FLOWIN: FLOWIN2 ELOWOUT:
DECLARE COMPONENTS 5: \(102: 104 \cdot 109: 117\)

\section*{TITE}

MODIFIED CANETT＇S PROCESS
＊＊＊＊
MODEL MIXCRHO
－mixer of tio streams amterial balance only－
SET Nocoup
TPPE FLOMINL．FLOUIM2，FLOWOUT AS ARRAY GHOCOWP）OF FLOWRATE


\section*{－}

DECLARE COMPONENTS 5，102，104，109，117
TPE FLNRATE－1：0：10 UNIt＂＂MMOLES＂．
ENTMOIE－10：－1．E10：1．E10
Tenterature \(320: 230: 350\) WNITe＂KELVIN＂． PRESSURE－1：0：100 UITO＂EARS＂

\section*{}

MOOEL ISOFLAMHM
SET HOCOMP
TYPE FLOHIM，FLONOUTI．FLONOUTI AS ARRAY GNOCOMP）OF FLONRATE
T AS TEMPERATUKE
P AS PRESSURE
STREAM INPUT IS FLOHIN
OUTPUT it is FLowouts
OUTPUT 2 IS FLOWOUT2
PROCEDURE
（FLOHOUT1，FLOWOUT2）SPAASE（T，P．FLOWINO

FLOMSHEET
INPUT 1 of MIXI IS FEED 1
OUTPUT OF MIXI IS INPUT ：OF MIX2
INYUT 2 or MIXI is ourpur 2 of FL！
INPUT 2 of MIX2 is OUTPUT 1 of FL3
CUTPUT of MIX2 IS INPUT of FL2
OUTPUT I OF FL2 IS INPUT OF FLI
OUTPUT I OF FLI IS PRODUCT ：
OUTPUT 2 of FL2 IS INPUT 2 of MIX3
INPUT i of MYX3 is outpur 1 of FIY
OUTPUT OF MIX3 IS INPUT OF FL3
OUTPUT 2 OF FL3 IS INPUT OF FL4
OUTPUT 2 of FLY is PRODUCT 2
proner
WITT MIXI IS A MIXERME
SET MOCOMP＝5
5＊＊
WITT MIXZ IS A MIXERMB
SET NOCONP 5
Traxtin
INIT MIX3 IS A MIXERME
SET NOCOMP－5
学来核
HNIT FLI IS A ISOFLASHB
SET MOCOMP－5

PNIT FL2 IS A ISOFLASHA
SET NOCOMP－5

finIt fl3 is a isoflashme
SET HOCOMPO
＊＊
WNIT FLY IS A ISOFLASHMG
```

3ET MOCONF=S
mabman
opEration
SET
MITHIN MIXI
FLOHINI= (0.5124,0.3625,0.1205,0.0932,0.0266)
WITHIN FL!
P-56.2.T-311
WITHIN FL2
T-322.p=19.0
WITHIN FL3
70309,p=4.39
WITHIN FLY
T=303.P-1.91
PRESET
WITHIN FLI FLOWIN= (0.5124,0.3625,0.1205,0.0)
*:%%
cpTIONS
ROUTINES ON.CHAOSEADER

```


*
**
*
安家


Tine
    MDDIFIED CAVETT ©S PROCESS
\(\left.\right|_{r+0 *}\)
```

**

```

```

*)

```

```

time
MODIFIED CAVETT 'S PROCESS

- MIXER OF THO STREAMS GMATERIAL BALAHCE ONLY)
SET NOCOM
TMPE FLONINI, FLOWIN2. FLOWOUT AS ARRAY (NOCOMP) OF FLOWRATE
STREAM INPUT I FLOWINI
INPUT 2 FLOWIN2
OUTPUT FLONONT
EONATION
COMPONENT MATERIAL BALANCES -
FLOHINI + FLOWIN2 - FLOWONT:

DECLARE COTPONENTS 5 102.104.109.117
TYPE FLOMRATE=1:0:10 UN!T: "MMOLES".
ENTHLPIE-10:-1.E10:1.E1O
TEMPERATURE-320:280:350 UNIT="KELVIN".
PRESSURE-1:0:100 WVIT""BARS"
MODEL ISOFLASHME
SET NOCOM
TYPE FLOWIN, FLONOUT1, FLOWOUT2 AS ARRAY (NOCOMP) OF FLC:NRATE
T AS TEMPERATURE
P AS PRESSURE
STREAM INPUT IS FLOWIN
OUTPUT I IS FLOWONT!
OIPUT 2 IS FLOWOUT2
PROCEDLRE
(FLOWOUTI.FLOWOUT2) SPHASE (T.P.FLOWIN)

FlOUSHEET
INPUT I OF MIXI IS FEED 1
OUTP\ of MIXI IS INPUT }1\mathrm{ of MIX2
IIPUT 2 OF MIXI IS OUTPUT 2 OF FLI
INPUT }2\mathrm{ of MIX2 is OUTPUT : Of FL3
OTTPTT OF MIX2 IS INPUT Of FL2
OUTPUT I OF FL2 IS INPUT Of FLI
OUTPUT I OF FLI IS PRODUCT:
OUTPUT }2\mathrm{ OF FLL IS INPUT }2\mathrm{ OF MIX3
INPUT \& of MIX3 is OUTPUT: Of FL4
OTPIT OF MIX3 IS INPUT OF FL3
OUTPUT }2\mathrm{ OF FL3 IS INPUT OF FL4
OUTPUT }2\mathrm{ OF FLY IS PRODUCT 2

UNIT MIXI IS A MIXERMA
UNIT MIXI IS
SET N

UNIT MIXZ IS A MIXERMA
SET HOCONP=5

LNIT MIXZ IS A MIXERMB
SET HOCOMP5

UNIT FLI IS A ISOFLASHMB
SET ITOCOMP=5

UNIT FL2 IS A ISOFLASHM
SET NOCOYP-5

MNIT FL3 IS A ISOFLASHMB
SET NOCOM-5

MNITT FLY IS A ISOFLASHMB
SET NOCOM=5

OPERATION
SET
within mixi
FLOWINI=(0.5124,0.3625,0.1205,0.0932,0.0266)
WITHIN FL\&
P-56.2.T=31!
WITHIN FL2
T=322,P=19.6
WITHIM FL3
T=309.P=4.39
WITHINFLL
FLOWOUT2(2)-2.723E-3.P-1.91
PRESET
NITHIN FLI FLOWINM (0.5124,0.3625,0.1205,0.0)
W\THIN FLY T0290
\#**\&
OPTIOLS
ROUTINES OH, CHFOSEADER

```


```

\#20


```
***
CHEMCOI
```


HODEL EXPANDER

SET NOCOMP
TYPE F AS ARRAY ONOCOMP）OF FLOURATE
TIN．TOU．TIDEAL AS TEMPERATIRE
PIN，POU AS PRESSURE
HIN，HON，HIDEAL，HORK AS ENTHALPY
EFFIC AS FRACTION
CAMA AS MOTYPE
STREAM
INPUT IS F．TIN，PIN．HIN
oumpur i is F．toU．POU．HOU
oumput 2 is work
EQUATION
TIDEAL＊PIN • GAMA－TIN＊PON • GAMMAI
EFFIC ：MIN－HIDEAL）－HIH－HOS：
WORK－HOU－HINS
PROCEDURE
（ HIDEAL ）ZCALEN（TIDEAL．POU．F）
（HOU）ZCALEN（TOS ：PON：F）
＊＊＊＊
MODEL COMPRESSOR

SET NOCOYP
TYPE F AS ARRAY（HOCOMPS OF FLONRATE
TIN．TOU．TIDEAL．AS TEMPERATHE
PIN．POU AE PRESSURE
HIN，HOU．HIDEAL，HORK．AS ENTHARPY
EFFIC AS FRACTION
GAMYA AS NOTYPE
STREAM
INPUT I IS F．TIN，PIN，HIN
INPUT 2 IS WOPK
OUTPUT IS F．TOU，PON，HOU
EOUATION
TIDEAL ：PIN－GAMAA－TIN：POU • GAMMA
EFFIC（ HIN－HOU）－HIN－HIDEAL：
HORK－HOUS－HIN：
PROCEDURE
（HIDEAL）ZCALEN（TIDEAL．POU．F）
（HOS ）ZCALEN（TON：POU：F）
＊＊＊＊
HODEL HEATER＿COOLER
－＊＊＊＊＊＊＊
SET NOCOHP
TYPE F AS ARRAY THOCOMP）OF FLOWRATE
TIN．TOU AS TEMPERATURE
PIN．POUS AS PRESSURE
HIN，HOU， 0 AS ENTHALPY
DELTAT．DELTAP AS DELTA
STREAM
ISPUT IS F．TIN，PIN．HIN
OUTPUT IS F．TOU．POU．HOUS
EOUATION
TOU－TIN－DELTAT，
PON E PIN DELTAP：
O－HOU－HIN
PROCEDURE
（HON ）ZCALEN（TON．PON ．F）
います

YOOSL YALVE

SET NOCOMP
TTPE F AS ARRAY THOCOPP）OF FLOURATE
tin．Tou as temperature
pin．pou as pressure
H AS ENTHMLPY
DELTAP AS DELTA
STREAM
InPUT IS F．TIN．PIN．H
OUTPUT IS F．TOU．POU．H
EQUATION
POU－PIN－DELTAP：
PROCEDURE
（TOU）2CALTP（H．POU．F）
＊＊＊＊
MODEL PUMP

SET NOCOYP
TYPE F AS ARRAY ONOCOMP）OF FLOWRATE
T AS TEMPERATURE

MODEL WLVE

TIN.TOU AS TEMPERATURE
PIM.POU AS PRESSURE
H AS ENTHALPY
DELTAP AS DELTA
STREAM
INPUT IS F,TIN.PIN.H
OUTPUT IS F.TOU,POU.H
EOUATION
POU - PIN - DELTAP:
PROCEDURE
(TON) 2CALTP (H . POU .F)

MODEL PUTY
-************
SET HOCOMP
TYPE F AS MRAY OHOCOMP) OF FLOURATE
T AS TEIPERATURE
PIN. POU AS PRESSURE HIN, HOU AS ENTHALPY DELTAP AS DELTA
STREA
INPUT IS F. T.PIN. HIN
OUTPUT IS F.T.POU.HOU
EOUATION
POU - PIN - DELTAP: PROCEDURE
(HEU) ZCALEN (T. PON .F)

MODEL MOL TO KG COMVERTER

SET NOCONP
TYPE F AS ARRAY (NOCOMP) OF FLONRATE
T AS TEMPERATURE
P AS PRESSURE
H AS ENTHLPY
X AS ARRAY OHOCOMP) OF FRACTION
FKG AS ARRAY (YOCOMP) OF KGFLOW MOLH AS ARRAY OHOCOMP) OF NOTYPE FTOTALKG AS KGFLOW

STREAM

INPUT IS F.T.P.H
drper is F.T.P.H
EOAATION
FKG - MOUN * F_{1}
FTOTALKG = SIGM (FKG):
$X *$ FTOTALKG - FKG:

HODEL MOLAR FRACTION_TO MOLES CONNERTER

SET HOCONP

TYPE F AS ARRAY GNOCOMP) OF FLOWRATS
T AS TEMPERATURE
P AS PRESSURE
H AS ENTHLLPY
X AS ARRAY OHOCOMP) OF FRACTION
FTOTAL AS FLONRATE

STREAM

IMPUT IS F.T.P.H
arper is F.T.P.H
Eulation
FTGTAL $=X=F_{1}$
FTOTAL = SIGMA (F):

+

MOREL ADIAMATIC FLASH

SET Mocorp
TYPE F. TOP ©OT AS ARRAY GHCOMP) OF FLOURATE
T. THOP TOOT AS TEMPERATURE

P AS PRESSURE
H. HTOP, HDOT AS ENTHALPY

FRAC AS FRACTION
STREAM
INPUT IS F, T, P, H
OUTPUT I IS YOP. TTOP. P. HTOP
OUTPUT 2 IS BOT.TBOT.P.HEOT
conation
TBOT - TTOP:
SIGA (TOP) - FRAC : SIGMA (F):
PROCEDURE
(TTOP - TOP , BOT) SCALTP (H.P.f)
(HTOP) EENTHN (TTOP.P.TOP)

HODEL ISOTHERMAL FLASH
ertre
SET MOCOHP
TYPE F.TOP, BOT AS ARRAY GNOCOMP) OF FLONRATE
T AS TEMPERATURE
P AS PRESSURE
H. HTOP, HEOT AS ENTHALPY

STREA
INPOT IS FiTPA
OUTPUT IS TOP, T.P. HTOP
QUTPUT 2 IS BOT.T.P.HBOT

```
MODEL ISOTMERMAL FLASH
```



```
SET PHCOHP
TYPE F.TOP,BOT AS ARRAY (TOCOHP) OF FLOWRATE
    T as temperature
    AS PRESSURE
    H.HTOP,HEOT AS ENTHALFY
STREAM
    INPUT IS F,T,P,H
    OUTPUT IS YOP.T.P.HTOP
    OUTPUT 2 IS BOT.T.P.HEOT
PROCEDURE
    (TOP, OOT ) SPHASE (T, P,F,F)
    (HTOP) RENTHN (T.P.TOP)
    (HEOT) ZENTH (T:P: BOT)
******
HODEL WOLUME TO MOLES CONNERTER
```



```
SET HDCOMP
TYPE F AS ARRAY ONOCOMP) OF FLOWRATE
    T AS TENPERATURE
    P AS PRESSURE
    H AS ENTHMLPY
    TOTALFVOL,RHO AS MOTYPE
    totalf as flowrate
STREAM
    INPUT IS F.T.P.H
    OTTPUT IS F.T.P.H
EOMATION
    totalf = RHo * totalfval:
    TOTALF - SIGHA (F):
****:
HODEL MIXER
```



```
SET MOCOMP
TME F1,F2,F AS GRRAY (NOCOMP) OF FLOMRATE
    T1,T2.T AS TEMPERATURE
    PI,P2,P AS PRESSURE
    Hi,H2,H AS EMTHMPY
STREAM
    ITPUT I IS F!.T!.PI.H!
    IPPUT 2 IS F2,T2,P2,H2
    CuTPUT IS F.T.P.H
LOMTIOH
    F=Fl F2:
```



```
STREMM
    INPUT IS FIN.TIN,PIH,HIN
    OUTPUT I IS TOP.TTOO,PTOP.HTOP
    ouIpert }2\mathrm{ is BOT.T8OT,P80T.HBOT
counTiOM
    FIN - TOP - 80T,
    BOT - SPLITR EI
    BOT SPLITR FINI
    PGOT - PTOP:
    TEOT - TIN - DELTAT,
    TOTNTOP - SIGMA(TOO)
    TOTMLEOT - SIGMA (EOT)
    XTOP TOTALTOP = TOPI
    XEOT a TOTALDOT - COT:
    TOTALTOP - RHO : TOTALTOPVOL:
    CONP'57 - XTOP(6) - XTOP (7):
```

```
    TOTMCTKG - SIGMAOTKG:
    TOTALTOPKS SICN (TOPKG):
    OOINS - MOLN EOT:
    TOPKG - MOLN TOP:
proceotne
    (THOP) SDENPT (PTOP. TOP)
    HTOP ) EENTHN (TTOP: PTOP. TOP
    (HOOT ) ZENTH (TEOT . PCOT . BOT )
```



```
UNIT VMI IS A VOLUME. TO_MOLES_COMVERTER SET HOCOMP-9
H03**
UNIT KI IS A MOL_TO_KG_COWVERTER SET HOCOMPOS
**)
UNIT E2P IS A KEATER_COOLER SET NOCOMPO9
wown
UNIT V2 IS A ISOTHERMAL_FLASH SET NOCOMP. 9
watax
UNIT WM2 IS A VOUUE_TO_HOLES_CONERTER SET NOCOHP=9
```



```
UNIT EZ IS A HEATER_COOLER SET NOCOMPES
*****
UNIT K2 IS A MOL_TO_KG_CONVERTER SET NOCOMP:9
*****
UNIT P2 IS A pUMP SET NOCOMP-9
****
UNIT 72 IS A HEATER_COOLER SET HOCOMP-9
UNIT V3 IS AN ADIABATIC.FLASH SET NOCOMP-9
紋极
lUNIT T3 IS A HEATER_COOLER SET NOCOMP=9
****
UNIT R2 IS A VALVE SET NOCOMPッ9
```



```
PNIT MIX IS A MIXER SET NOCOMPE9
****
WNIT CI IS A EXPANDER SET NOCOMP=9
\%***
UNIT C2 IS A COMPRESSOR SET MOCOMP-9
WNIT VY IS A BLACKBOX SET MOCOMPe9
\%***
UNIT VI IS IN ADIABATIC_FLASH SET NOCOMP.9
```



```
HNIT RI IS A VALVE SET NOCOMP-9
****
WNIT EI IS A HEATER_COOLER SET NOCOMP-9
****
UNIT KS IS A MOL_TO_KG_CONRERTER SET HOCOMPOG
****
operation
SET
WITHIN VAI
TIIIN VMI
TOTALFVOR \(=125\), R+10-4.634, HoO
WITHIN KI
MOLH = 128.16 : \(30.44,58 \cdot 72 \cdot 86.100 .1141\).
\(X(1)=0.09 . X(3)=0.112 . X(4)=0.062, X(5)=0.054\).
\(X(0)=0.03, X(7)=0.081, X(8)=0.133 . X(9)=0.021\).
T-313, P-75
WITHIN E2P TOU=288. DELTAPOO
WITHINK2
MOLH - , 28, 10. \(30,44,58,72.86 .100 .114\)
WITHIN RI
DEL TAP-0.3
NITHIN P2 POUN75
IITHIN T2 DELTAP-0
NITHIN V3
```

Fatco 0.4618
WITHIM 73
DELTATO2. DELTAP-0
WITHIN E!
DELTATE-5.DELTAPN-0.2
WITHIN KS
MRH K (28. 16. 30.44.58.72.86.100.114)
UITMIN CI
EFFIC=0.5, GAMMAMO.1
NITHIN C2
EFFIC=0.8. GAMAA-0.1
WITHIM W4
DELTAT=-10. DELTAP=-0.1, RHO=3.833.


```
FRAC=0.4616
WITHIN T3
    DELTAT=2.DELTAP=0
WITHIN EI
    DELTAT=-5.DELTAP=-0.2
WITHIN K5
    MOLH - (28. 16 . 30 . 44 . 58 . 72 . 86 . 100 . 114)
WITHIN Cl
    EFFIC=0.5.GAMMA=0.1
WITHIN C2
    EFFIC=0.8.GATMA=0.1
WITHIN NY
    DELTAT=-10.DELTAP=-0.1.RHOO-3.833.
    MOLHE (28,16, 30,44,58:72,86, 100:114):
    SPITR = (00.0:0.0% 0.15:0.43 .0.21.0.0.06,0)
WITHIN V2
    Pa25.7-213
WITHIN MM2
    R+50=1.691
WITHIN E2 O=0.144.DELTAP=O
*****
TITLE
    PROELEM I (CASE A) FOR EFCE CHEMCONP }8
******
DECLARE
    TYPE FLONRATE 50:0:1000 UNIT="KMOL/HR".
            KGFLON-5000:0:500000 UNITa"KG/HR"
            TEMPERATURE-300:200:900 UNIT" "DEG KELVIN".
            PRESSURE-40:1:300 UNITO"EARS"
            ENIHNPY=10:-1.OE10:1.OE10 UNIT0"GJOULESNAR".
            FRACTION+0.5:0:1.
            DELTAm0.0:-1.0E10:1.0E10
    COMPONENTS 2.101,102,103,104,106,109.114,115
****
OPTIONS
ROUTINES ON, CHMOSEADER
PRINT UNIT 2 MODEL 2 FLOWSHEET 2 OPERATION 2 DECLARE 2
*N**
```



```
***
CHEMCO2
***
```



```
FLOWSHEET
    OUTPUT I OF SEPARATOR IS PROE:RT I
    ONTPUT }2\mathrm{ OF SEPARATOR IS INPUT OF PURGE
    guTPUT & OF PURGE IS PRODUCT 2
    OUTPUT }2\mathrm{ OF PURGE IS INPUT 2OF MIXER
    OUTPUT OF MIXER IS INPUT OF REACTOR
    OUTPUT OF REACTOR IS INOUT OF SEPARATOR
    OUTPUT OF FEEDER IS INPUT I OF MIXER
*****
    MODEL SPLITNO
    - Two STREAM SPLITTER materIfL. balaHCE OMRY)-
        SET HOCOW
        TFE FLOWIN, fLOWOUTI, FLOWOUT2 AS ARRAY (ROCOMP) OF FLOWRATE
            TOTAL!: TOTAl2 AS flONkATE
```

```
    X1. XZ AS ARRAY" OUOCOND', OF MNEEFACYYORI"
        FRACTIONTAS MOLEFRACTION
    THENM IIEUT FLOWIN
        ysTPUT & FLOWOUT:
        meTPYST 2 FLOWONTA
    ENuTTIOR
    - sTREAM SPLIT -
    - COMPOEMT MATERIAL OMLAKES
                        FLOWIN - FLOWOUT! : FLOWONT2:
    - TOTAL FLONS OF ONTPIT STEEAMS
                            TOTAL& SlGH: FLOWNUTII
                            TOTAL2 - SIGMF (FLONOST2):
        - material fractionts of OUTPETT STREAMS -
        XI - TOTALI - FLONOUTII
        X2 - TOTAL2 - FLOWONT2:
MODEL
        MESEFARATOR
    MFE
        FLOWIN. FLOWONT:. FLOWOUT2 AS ARRAY 17) OF FLOWRATE
        TOTAL!. TOTRE2 AS FLOWRATE
        X3. XY. Y3. Y4 AS MOMEFRACTIOM
    STREAM
        IPPUT FLOWIN
        OTpuT: FLOWOUT!
    0rIPUT 2 FLOWOUT2
    EOUATION
            - gVERALl BalaAKES -
            FLOWOSTI FLOWOUT2 - FLONIN ।
            - TOTRL flONS 
                                    TOTAL! - SIGMA (FLOWOUTI)
                                    TOTAL2 - SSGMA IFLOWONT2S
            - more fractionis.
                X3 : TOTAL! - FLOWOUTI(3)
                    x4 - TOTAL: FLOWONTI (4)
                            Y3 TJTAL2 - FLONONT2(3)
                            M4 TOTAL2 - FLONHOT2(4)
            - EDJILIBRIUM RELATIONIS.
                                    Y3:3.8E-3 : X3
                                    M4 8.0E-4 M4
                    FLONOUTII! - 0 1
                            FLONOUPI (2) - 0
                                    FLONOMTI (5) - 0
                                    Fighovili(6)-0
                                    FLONOMST: (7) - 0
    MOCLL FEEDERMA
    MJGEED STREAM DEFINITIONI MMITERIAL BALARKE OHLY,
        SET IDOCON
        TMPE FLOWOUT AS ARRAY IPNEOMP, OF FLOWRATE
                Y AS ARRAY GTOCONP: OF MOLEFRACTIOH
                TOTAL AS FLONRATE
            STREAM
                OITPMT IS FLOWOUT
            EONATIMI
                TOTAL FEED FLON -
                    TOTAL - SICMA (FLOWONT)
                - mitERIAL fRACTIONS OF FEED STOEAM
                    x: TOTAL: FLOWONT:
MSGEL MEREACTOR
    TTE
            FLONIN. FLOWOUT AS RARAY IT) OF FLOWNATE
            TOTAL AS FLONRATE
            EXTEITI.EXTENTZ AS EXTENT
            XAS EROAY 17) OF MMEFRACTIORI
```



```
        STREAM
            INPMT FLOWIN
            arpert flowin
    EONMTION
            - DEFINITICI OF EONILIERILM CONSTARTTS -
```



```
                    19.218 347!.71
                    MXI - NIO.Kisi - PRESSURE ' }
                RJ2 - 0.89 4.0E-4 192-473) 1
                1520-10'11.004 - 1850.72) ,
                HX2 - NPOC KN2
            - WMLET FLOWS FROM EXTENT NNO STOLCHIONETRY 
                FLOWONT '&: FLOWIN(%). EXTEMTI. EXTENT?
                fLOWOUT (2) - FLOWIN(2): 2 EXTEITI EXTETM'2
            FLOWOUT (3) FLOWIN(3) EXTEITI
            FLONOUT (4) ELONIN(Y) E EXPENT2
            FLOWOST(E) - FLONIN(S). EXPENT2
            FLanoerio)- FLONIN(o)
            FLONOUT (7. - FLOWINTT
            - TOTKL OUTIET FLON
                        TOTAL - SIGNN IFLOWON!
            - male fractionss.
            TOTAR X: FLONONT
            - REACTICII EOUILIARIA 
                    X(3) :X(1):X(2): % X: 1 •
            X(8) - X(4) - X(5) 交(2):NX2 ।
    O:
        MOEEL M*KELTMA
            - MINER OF TWO STFEP5: IMATERIAL CALNHEE MR.Y. 
            SET H0CONP
                TIFE FLOMSNI, FLOWINR. FLOWNYT AS AEFNYY (TOSONS) if FIOWGRTE
```



```
        FLOMOUT (2) - FLONIN(2) - 2*EXTEMTI - EXTEIT2 ,
        LONOT (3) " FLONIN(3) - EXTEMT!
        FLOMOTT(4) - FLOWIN(4) - EXTENT2
        FLOWOUT (S) - FLOWIN(S) - EXTEMT2
        FLOWOUT (6). FLOHINIO
        FLOHOUT (7) - FLONIN(7)
    - total ammer flow.
            TOTAL SIGM (FLOWOUT),
    - male fractions
        TOTAL P X - FLOWOUT
    - reaction equilicria!
            x(3) - X(1): X(2) '2 : X X , 
    X(8) - X(4) - X(5) :X(2) - <x2 ,
10:0
    MODEL MONEUPM.
    - miker of tuo streato materjal balake orly) -
        SET HOCONP
        TPEE FLOWINI, FLOHINL. FLOWONT AS GRRAY INSSOND OF FLOWRATE
                    TOTAL. TOTGLMAE, TOTALR AS FLOWRATE
                    XA: GPRAY ONCONPI OF MOLEFRACTIOH
                    RH,O AS NOTMPE
            STREAM INPUT IFLOWIN:
                    INPUT 2 FLOHIN2
                    OSTPUT FLONOUT
        equatiON
            - componemt material balahces -
                FLOWINI FLOWIN2. FLOHOUT,
            - TOTAL FLOW OF OUTPUT STREAM -
                    TOTAL = SIGMA (FLOWOUT),
            - mhterifl fractions of ONtplt strem
                        X : TOTAL. FLOWOUT:
            - spEifficat:on Of RECYCLE RATIO
                    TOTA(MHE - SIGM (FLONME
                    TOTAD SSMM FIONINI
                            TOTALR =SIGMA IFLOWIN2)
WHITY REACTOR IS A MEREACTOR
                        SEPARATOR IS A MESEPGRATOR
UNIT
                                PURGE IS A SFLITMB
    SET INCOMP-7
###
    SET HOCOFP. %
***
    SET FEEDER IS & FEEDERMB
    SET HOCOWP-7
oferation
    - comporemt mmers : 1-CO.2-H2. 3-CH3OH. -
```



```
DECLFAE
    TN'C DDECLARGTIOKSS FOR LIGPARY MODELS:
```


RI AS ARRAY (NOCOM) OF COEFFICIENT
 EXTENT, COMNERSION AS HOTTPE

STXEAM INPUT FLOWIN OUTPUT FLOWOUT
EOLATION

- EXTENT of reaction -

```
                - NUCEYH * EXTENT = FLOWINGEY) * CONNERSION,
```

- OUTPUT FLOWS FROM EXTENT AND STOICHIOWETRY.

FLOHONT - FLCNIN - NN * EXTENT:

- total output flow -

TOTAL - SIGMA (FLOWOUT):

- material fractions of output streah.

FLOWOUT - TOTAL * X_{1}
jtway
FLOUSHEET
OUTPUT 1 OF DIST7 is PRODUCT :
OUTPUT 2 of DIST7 IS INPUT OF DISTE
outpur 1 OF DISTE IS PRODUCT 2
OUTPIT 2 OF DISTE IS INPUT 1 OF MIXRIIA
OUTPUT OF FEEDIO IS INPUT 2 OF MIXRIIA
OUTPUT OF MIXRIIA IS INPUT: OF MIXRIIB
OUTPUT OF FEEDS IS INPUT 2 OF MIXRIIB
OUTPIT OF MIXRIIB IS INPUT OF REAC12
OUTPUT of REAC12 IS INPUT OF REAC13
OUTPUT OF REACI3 IS INPUT OF REACIY
OUTPUT of REAC14 IS INPUT Of DISTIS
OUTPET I OF DISTIS IS PRODUCT 3
OUTPUT 2 OF DISTIS IS IPPUT I OF MIXRI7
OUTPUT OF MIXRIT IS INPUT OF REACIS
OUTPUT OF REACIE IS INPUT OF DISTI
OUTPET I OF DISTI IS INPUT NE DISTIG
OUTPUT I OF DISTIG IS INPUT 2 OF MIXRIT
OUTPUT 2 OF DISTI6 is PRODUCT 4
OUTPUT 2 of DISTI IS INPUT $:$ OF MIXR3
OUTPUT of FEED2 IS INPUT 2 OF MIXR3
OUTPUT OF MIXR3 IS INPUT OF REACY
OUTPUT OF REACY IS INPUT I OF MIXRG
outpert of feeds is input 2 OF MIXRG
OUTPIT OF MIXRS IS INPUT OF DIST7

WHIT REACY IS A REACTORNG
SET HOCOMP = 9, KEY =9
WNIT DISTE IS A DISTMB
SET NOCOMP - 9

WHIT REAC13 IS A REACTORMB SET NOCOW - 9. KEY = 3

fiIt MIXRG IS A MIXERMB SET MDCOWP 9
FNIT FEEDG IS A FEEDERMB SET NOCOMP 9
WIIT MIXRZ IS A MIXERMA SET NOCMP - 9
\% $*=$
NIT REACIS IS A REACTORMB
SET HKCOF = 9. KEY-2

PHIT DISTT IS A DISTMB SET MCOMP - 9
+
NIT REACIY IS A REACTORMB
SET MCOFP -9. NEY = 3

UNIT SET NOCOP : ${ }^{\text {DIS }}$ IS A DISTMB	
	Co

${ }^{\text {SET }} \text { HOCOPP } 9$	
UNIT DIST: IS A DISTMB SET MOCOP - 9	
SET NMCOM - 9 A Fecle	
$\begin{aligned} & \text { FEEDIO IS A FEEDERMB } \\ & \text { UNIT } \\ & \text { SET* } \end{aligned}$	


```
*,
SIT MIXRIT IS A MIXERME
SET NOCOHP - 9
UNIT DISTI IS A DISTMO
    SET NOCOWP - }
****
NIT FEED2 IS A FEEDERMM
*** IDOCOHP - }
UNIT FEEDIO IS A FEEDFRMM
SET NOCOMP - ?
****
T MIXRIIA IS A MIXERMB
****
WNIT DET DISTIG IS A DISTMB
****
OPERATION
    COMPONENT MMHEERS - 1:HNO3 . 2:N2, 3:02 0
```



```
ET
    WITHIN DISTI
        FRACTION(1) - 0. FRACTION(2) - 1. FRACTION(3) - 0.
        FRACIION(4) = 0. FRACTION(5)-0., FRACTION(6) =0
        FRACTION(7) - O. FRACTION (8) - 1
    WITHIN FEEDZ
                            X(1) =0. X(2) =0.79. X(5)=0.21. X(4)=0. X(5)=0.
            X(6)=0.X(7)=0.X(8)=0
        WITHIN REACY
            NW(1) = 1. NN(2) = 0.NN(3) = 2. NN(4) - 1. NN(5)=0.
            NN(6) = 0. MU(7) = 0.NN(8) = 0.NN(9) = -1.
            COMMERSION = 1
        WITHIN FEEDS
            X ( 1 ) = 0 . X ( 2 ) = 0 . X ( 3 ) = 0 . X ( 4 ) ~ - ~ 1 . X ( 5 ) ~ - ~ 0 . ~
            X ( 6 ) = 0 , X ( 7 ) = 0 , X ( 8 ) = 0
        WITHIN DISTT
            FRACTION(1) = 1. FRACTION(2) = 0. FRACIION(3) = 0.
            FRACTION(4) = 1. FRACTION(5) = 0. FRACTION(t)=0
            FRACTION(7) - O. FRACTION(8) = 0. FRACTION'y) = 0.
            - DESIGH SPECIFICATIONS 1. 2.6 0
                FLOWOUTI (1) = 0.432. FLOWNOT\I (4) - 1.008. X2(2) - 0.992
            WITHIN DISTE
                FRACTION(1) = 0. FRACTION(4) = 0. FRACTION(5) = 0
                    FRACTION(6) - O. FRACTION (7) - 0. FRACTION (8) = 0.
                FRACTION(9) - O
            - DESIGN SPECIFICATION 7 -
                X2(3)=0.0
            WITHIN FEED9
                X(1)=0. X(2)=0,X(3)=0.X(4)=1. X(5)=0.
                X(6)=0,X(7)=0,X(8)=0
            WITHIN FEEDIO
```

 \(X(1)=0 . X(2)=0 . X(3)=0 . X(4)=0 . X(5)=1\).
 $X(6)=0 . X(7)=0 . X(8)=0$
$X(6)=0{ }^{X} X(7)=0 . X(3)-0^{\circ}$
WITHIN REACI2
$N(1)=0, N(2)=0, N(3)=0.5, N N(4)=-1, N(5)=0$.
$\operatorname{MN}(6)=0, N(7)=0 \cdot N(8)=1 . N(9)-i$
WITHIN REACI3
$N(1)=0 . N(2)=0 . N(3)=-1 . N(4)=0 . N(5)=-2$.
$M(6)=2^{2} M(7)-0 . \operatorname{MN}(8)=4 \cdot \operatorname{MN}(9)=0$
WITHIN REACI'
$N(1)=0, N(2)=0, N N(3)=-1, N N(4)=0, N N(5)=-1$.

- DESIGN SPECIFICATYONS 3. 4. 5
$F L O W O U T$ (3) - O. FLOWOUT (4) $=0$, FLOWOUT (5) = 0
WITHIN DISTIS
FRACIION(1) - 0. FRACTION (2) - 0. FRACTION(3) - 0.
FRACTION(4) - O. FRACTION (5): 0. FRACTION(6): :
FRACTIOH(7) - 1. FRACTION(8) - 0. FRACTIOHI(9) - O.
- DESIGN SPECIFICATION 8 .
Xi (7) - 0.91
WITHIN DISTIG
FRACTION (1) - 0. FRACTION(2) - 1, FRACTION (3) - 0.
FRACTION(4) - O. FRACTION(5) -0. FRACTION(8) - 0.
FRACTION (7) - O. FRACTION(8) - 0.99. FRACTION(9) -
HITHIN MIXRIT
- DESIGN SPECIFICATIONS 9. 10 -
$X(2)=0.25 . X(8)=0.75$
HITHIN REACIS
$N N(1)=0 . \operatorname{MN}(2)=-1 . \operatorname{IN}(3)=0 . \operatorname{MN}(4)=0 . \operatorname{MN}(5)=0$.
$N(6)=0 . M(7)=0$ M $N(8)=-3$. $N N(9)=2$.
COMVERSION - 0.25
+***
T:TLE
REKLAITIS , SCOD AMMONIA - NITRIC ACID COMPLEX
OPTIONS ROUTIIES OH
PRINT MODEL 2 FLOWSHEET 2 UNIT 2 OPERATION 2 DECLARE 2

FLOUSHEET

INPUT of D30 IS FEED 1 OUTPUT 1．OF D30 IS J：PUT 2 of HI7 outpert 2 of D30 is IIPPT of D31 INPUT 1 of HIT IS FEED 2 OUTPUT 1 of HIT IS PRODUCT 1 OUTPUT 2 of H17 IS INPUT 2 of H16 CuIPYT 1 of D31 is IMPUT 1 of His outpur 2 of D31 is IfPuT of D32 OUTPUT 1 of D32 IS INPUT 2 of HI4 oulput 2 of D32 is INPUT of D33 OUTPUT i of D33 IS INPUT 2 of HI3 outpur 2 of 033 is InPuT of 034 output 1 of D34 is IIfrut 2 of H12 DITPUT 2 of D34 IS IMEUT 2 of HII

ofiput 2 of HIS IS PRODUCT 13
OUTPUT OF FHE IS PRODUCT：
－本事家
MODEL DIVIDER
TME F．F1，F2 AS FLOURATE
T．T1．T2 AS TEMPERATURE
FRAC．C．Cl．C2 AS NOTYPE
STREAM
InPM IS F．T．C
ourme ！is Ei：TIC！

```
OTP\t }2\mathrm{ of HIS IS PRODUCT IS
OUIPUT OF MHE IS PRODUCT:S
matrom
MODEL DIVIDER
TMPE F.FIF2 AS FLONRATE
        T.1.TI AS TEMPERATURE
FRAC,C,C1,C2 AS NOTYPE
    INPTT}\mathrm{ IS F.T.C
    OMF4T il Is F1.T1,C1
EOMATION
    T1-T2-T,
    Ci=12-Ti
    F=-F!:F
    FRAC** F% = Fi,
*****
HODEL HEATEX
TYPE S1,S2,S10,S20 AS FLOURATE
        TSII,\S2ITTS10.TS20 AS TEMPERATURE
        CP1.CP2,CP10.CP20 AS NOTMPE
        UA AS COEFFICIENT
streai4
        INPMT I IS S1.TS11.CP1
    ompur i is Sio.TSio.cpio
    OTPUT 2 IS S20,TS20,CP20
EOLATION
    S10051,
    S200s2:
    CP10-CP1,
    COCEDURF
        (TS1O.TS2') SIFFEX (S1,TS11,CP1,S2,TS21,CP2.UA)
****
HODEL MIX2S
TYPE F1,F2,F AS FLOWRATE
            T1.T2.T AS temperature
            CI.C2,C AS NOTYPE
stream
    INP\T I IS FI.T1.C!
        INUT 2 IS F2.T2.C2
    0utpuT is F.T.C
EONATION
    F=F! F F2,
        FMIXING EONS. FOR C AND T (ASSUMING STREAMS OF SANE COMP.) -
        CT-C! :'T1 +F2* T2 :
        F
MODEL MIX5S
THPE F{1,F2,F F,F4,F5,F AS FLOURATE
    T1,T2,T3,T4,T5,T AS TEMPERATURE
        C1,C2,C3.C4,C5,C AS NOTYPE
STREAM
    INPMT 1 15 FI.T1.Cl
    INPNT }2\mathrm{ is F2.12,C2
    INPUT 3 is F3:T3.C\
    NAFNT 4 IS FY.M.C4
    INPNT5 IS FS.T5,
EOLATION
    F=F! & F2 & F3 P F4 & F5:
    FMIXING OF C. T (ASSUMING STREAMS OF SAME COMP.) -
        C=C1: Fi: T1 P F2:T2 &F3:T3,F4:T4,F5:T5:
    F***
```

FBDEL MIXGS
THE FI,F2,F 3,FY,F5,F6,F AS FLOMRATE
F1, F2,F3.F4.F5,F6.F AS FLOMPATE
Ci. $\mathrm{CL}, \mathrm{CS}, \mathrm{CY} . \mathrm{C5}, \mathrm{CB}, \mathrm{C}$ AS MOTTPE
STREM
ITPUI i is FI.T1.Cl
Hell 2 is F2. T2.C2
ifent 2 is F2.12.c2
IfPN Y is FY .TM.C4
IPDIT 5 IS F5.75.CE
INPUT 6 is $\mathrm{FG}, \mathrm{T6}, \mathrm{Cl}$
outpur is F.T.C
EOUATIOH

$C \rightarrow C I C$, T IASSUITHE STREAMS OF SAME COMP.

UNIT MIS IS A MEATEX

CNIT his is a heatex

WITT DY3 IS A DIVIDER
*-
CNIT MS IS a heatex
grent
CNIT D32 IS A DIVIDER

ENIT HIO IS A HEATEX

WHIT D37 IS A DIVIDER
GHIT HZ IS A HEATEX

witt his is a heatex

CTIT KIS IS A HEATEX
MVIT $H T$ is a heatex

Whit mid is A mixas

UNIT D33 IS A DIVIDER
UHIT HII IS A MEATEX

UNIT HIG is A IEATEX
制被裸
UNIT 038 is A DIVIDER
LNITY Hi IS A HEATEX
（max
WITT DYI IS A DIVIDER
wat
UNIT HI IS A HEATEX
UNIT M IS A HEATEX
cowis D30 IS A DIVIDER
＊＊＊
fonit my is a mixas
momer
operation
SET specification of feed streams
MITHIM D30
FOHO，T－25．coo． 555
WIThit bys
F 1420 ．T－219．C＝2． 912
WITHIM MIE
S1－290．CP1－1．393．TS11－159
WITHIN Hi
\＄2－250，TS21－352，CP2－0．523
II THIN H2O
SIO160，TS11－41，CP1－1．068
withim hos
SI－110．7S11－203．CP1＝0．055
SITHIN H\％
S1083．TS11－206．CP1＝0．659
WITHIN His
SI＝39．TSII＝304．CPI＝0．674
within hz
STOS $10.7 S 11=315 . C P 1=0.686$
WITHIN HIS
S $1=130, T$ SIJ $=142, C P 1=0.042$
NITHIN DY 3
F－550．7－182，C＝4． 842
WITHIN HI？
Si－160．TSII－133．CP1－1．681
Within his
1－38．TSil－170．CPi－0．708
SPECIFICATIONI OF PRODNCT STREAM TEMPERATINES
WITMIM HIT TSIOE83．9
NITHIM HII TSIO－107．6


```
MNINHII
    1038,75810170.co1-0.701
    SPHCIFICATIOH OF PRODUCT STREFA TEMPERATHNES
MITHIN HIT TSIO-E!.g
NITHIN H11 TS10-107.0
NITHIN MN8 Tw197.2
NINHIN H20 TSIO-133.1
MIMIM HIS TS10-203.4
NITHIN HIP F510.199.7
NITHIN HI TS$00-306.5
NIMMIN HIY TS10070.7
NITMIN H&2 TSiOmili.O
NITHIN HI3 T810-84.9
```


P00.
model givider
THFE F.F1.F2 AS FLOMRATE 9.71.72 AS TEMERATURE CRAC.C.FI.CZ AS WTHE

STREMA

Ifout is F.T.c
arpy $\frac{1}{2}$ is flijl.c!
Equation
TI-T2-T,
cioc $20 c_{1}$
f-F1:f2
FR
|ATH
MOOEL HEATEX
TTEE S1, $52, \$ 10,520$ AS FLOWRATE
TSII.TS21.TS10.TS20 AS TEMPERATHE
CPI. CP2.CP10.CP20.VA AS HOTYPE
O. DELTATIM AS HOTYFE?

ARG AS ARGUNEIT
STREAM
INPY it is S1.TS11.CO1
drent 2 is S2.TS21.cp 2
OUTPIT: IS S10.TS10.CP10
OUTPUT a is S20.TS20.CP20
EXATIOT
$C P 10=C P 1$
$\mathrm{CP}_{2} \mathrm{O}^{-} \mathrm{CP} 2$
510 . 511
$\$ 20$.
2-SI:CPI: TTSII-TSIO),

- - S2: CP2 : (TS20-7S21):

2-U

DELTATLM - LOG(ARG) - ITSIO-TS21)-1TSI1-TS20)
ain
MODEL MIT:2S
TrEE F1.F2.F AS FLOMRATE
T1.T2.T AS TEMPRATURE
CI.G2.C AS NOTYPE

STREAM

EOMTION
f-Fi - f2

- mixilic eolis. for c ario t iassumdicic streams of same comp. -

w*o:
YODEL MIXSS
TFEE F!.F2.F 3.FY.FS.F AS FLOMRATE
T1. T2. 73.74 .75 .T AS TEMERATURE
Ci.ç.ç.c4.65:c AS 10TTP:
stream

IPPTI 3 is $53.13,63$
ifrey y is fy.Ty.cy
dient is 55.75 .65
XTAT is F.T.C
EOMATJOI
F-F! - F2 P F3 - F4 • F5
 - 611

000
mooch mixos
 11.72.73.74. T5.90.9 AS TEMPEAATME C3.c2.63.cy, 63.60.6 as Notree
STREAM

Eotation

- MIXIHC of C. Y ASSUMIHC streine of SAMK COMP.) $c \cdot c$
${ }^{f}{ }^{\circ}$
LiIT HI 3 is a heatex
**s:
Yilt his ds a heatey
UNIT DY 3 is a DIVIDER
ctes
undT He IS m Heatex
pilt d32 is a divider
- **
bilt hio is a heatex
1**:
Luilt D37 is m Diviate
- $0 \cdot 1$

Hevt us Is \& utatey


```
    fove:
    WiIT his is A HEATEX.
    ****
    NIIT HIS IS A HEATEX
    *****
    UNIT EM3 IS A DIVIDER
    ****
    UNIT HE IS A HEATEX
    ##rat
    INIT D32 IS A DIVIDER
    ***
    UNIT HIO IS A HEATEX
    ****
    WIIT D37 IS A DIVIDER
    *)
    UNYT H2 IS A HEATEY
    ****
    UIIT HIS IS G HEATEX
    #***
    UNIT HS IS A HEATEX
    ****
    UNIT DY: IS G OIVIDER
    ****
    bNIT M35 IS A MIX6S
    ****
    HNIT H% IS A HEATEY
    UNIT D34 IS A DIVIDER
    *N**
    ****
    INIT D39 IS A OIVIDER
    家手:
    WNIT HI7 IS A HEATEX
    INIT HIZ IS A HEATEX
    manem:
    WHIT MMS IS A MIXIS
    ****
    HIIT HZO IS A HEATEX
    INIT H3 IS A HEATEY
    meret
    MNIT MHO IS A MIXSS
    w**:
    MIT DJI IS A DIVIDER
    CW**
    UNIIT D36 IS A DIVIDER
    #**:
GNigy HIy IS A MEATEX
0***
\mathrm{ wit his IS a heatex}
****
WNIT HT IS A HEATEX
****
UNIT MH2 IS A MIX2S
****
UNIT D33 IS A DIVIDER
****
UNIT HII IS A HEATEX
****
CNIT HIO IS A HEATEX
####%
UNIT D38 IS A DIVIDER
####
wilit la is a heatex
****
\mathrm{ MITY DYI IS A DIVIDER}
変家*
MNIT MI IS a HEATEX
```



```
lult he IS a heatex
****
pNIT D.30 is a divider
***)
NHIT m4Y is a miv2S
w***
OPERATICH
SET
- specification of feeo streams -
IITHIN D30
F&6:0.T=25.cos.555
WITHIN D45
F=480,T=219,6-2.912
wITHIN His
        $1-290.CP1-1.393.75110159
MITHIN H!
    S2=250.TS21*362.c82*0.523
WITHIN H2O
51:100,7511-41.cP1=1.008
wiTHIN Hos
Si-110.TS1!-263.CP1-0.055
W\THIN +%
    S{-83.TS1/-206.CP!-0.0EQ
WIntin Ha
SI=34.TSI!-304.CPI=C.074
NITHIM H2
    S10510.7S1/=315.CP100.086
    NITHIN H\9
    S1-130.7S110:42.CP100.642
    Si-130,7
    ITHIN DY}
    F-560.T=152.Ca4.842
Nithin hi?
```


WITHIN HI
52~250.7521~352.CP2*0.523
WITHIN H2O
51-100.7511041.CP1=1.048
WITMIEI TM
Si-110.TS11-263.CP1-0.055
WITHIN HO
SI 83. TSII $206 . C P 100.659$
WITHIN HE
S1-39. $7511=304 . C P 1=0.674$
WITHIN H2
Siosio. TSII-318. CPi=0.686
WITHIN HIS
$51-130,7511-142 . C P 1-0.642$
WITHIN DH3
F-580.T-152.C-4.842
WITHIN HIT
Si-160.7SIl-133.CP1-1.681
WITHIN HII
Si=38.7S110170.CP100. 701

- SPECIFICATION OF PROONCT STREAM TEMPERATIRES -

WITHIN HIT TSIO~E3.9
NITHIN HII 7510-107.6
WITHIN MME Tuls7.2
MITHIN H2O TSIO-133.1
WITHIN HIS TS100203.4
WITHIN HI9 TSIO-199.7
WITHIN MI TS100306. 5
MITHIN HIY T\$10-70.7

```
WITHIN H2 YS500171:0
HITHIN H13 75$0004.9
HITHIN KIS TS20069:O
- SPECIFICATION OF OTMER MEASURED TEMPERATLKES -
WITHIN H2 TS20-240.0
WITHIN HN TS20-215.3.7S10=211.3
HITNIN HK TS10el70.2
WIMINHTT TS20m209.1.75100162.7
WIMIN H TS20-273.9.75100156.6
WITHIN H9 TS10m201,0.7520a151.%
WITHN H1O $$20=976.9.7S10-193.0
MITHIN HLI TS20-161.0
WITHIN H12 T820-182.2
WITHIN HI3 TS20-136.3
MININN HIY FS 20-10%.8
WITHIN HIY Is 20-108.0
WITHIN HIG TS20-126.8
WITHIN H2O TS20-142.6
NITMIN H3 IS100331.7
WITHIN HS 7S20m-219.08
****
TITE
    GP HEAT EXCHANCER TETWKRK
*#*:
dECLARE
TYPE FLONRATE=1.0E2:0:1.0E3 UNITO"KMOLES".
                    TEMPERATMRE-200:-100:500 UNIT""DEGC".
                    COEFFICIENTOIE2:0:IE3 UNIT="H.T.C."".
                    ARGINENT-1:1.E-10:1,E10.
            MOTYPE2-1:-1.E10:1,E10.
            NOTYPE-1:0:1.0E13 UNITO"NOUNITS"
****
OTIONS
RONTITES ON
***
```


\geqslant
ETHYL

TinE
SIMFLE ETHMENE PLANT

- + *

MOREL REACTOR
SET KEY
FRGAY REIN(7).REOU(7). STOIT)
STREAM
IFPUT IS REIN
OXTPUT IS REOU
ECNATION
AEYCOMPAREIN OEY : COMEVER
REOURE IN-STOHE YCOMP
Tr $3:$
MONEL MIXER
FRKOAY MIXINI (7) ,MIXIIL2 (7) ,MIYOUT (7)
STREAM
ITPUT I IS MIXIN:

[^1]

```
    MTE& : - %.ETY** EET
    NOTYPE-1:0:1.0E13 UNST" "HOUNITS"
****
OPT1ONS
    NovTINES GN
****
```



```
***
ETHYL
*
```



```
Tine
SIMPLE ETHMENE flatt
****
MODEL REACTOR
SET HEY
ARRAY REIN (7) , REOU (7) ,STO (7)
STHEAM
    INPUT IS REIN
    OTPUT IS REO
colatiow
EEYCONPWEIN GEY *COMMER
REOURRE ITHSTO*KEYCONP
mas:
wryl MIXER
MeRAY MIXINI (7), MIXIM2 (7), MIXOUT (7)
STREGM
    IWPIT I IS MIXIN
```


[^0]: FVEC $(6) \omega X(6) * S C R T(X(1))-2.597 * 1 \cdot E-3 * S O R T(X(2) * X(4) * T O T)$
 FVEC (T) $-X(7) * S C R T(X(4))-3.448 * 1, E-3 * S O R T(X(1) * X(2) * T O T)$
 FVEC (2) $-X(2) * X(4)-1.799 * 1$. $E-E * X(1) * 701$
 FVEC (9) -X (9) *X(4) $-2.155 * 1 . E-4 * X(1) * S C R T(X(3) * T O T)$
 FVEC (10) $=X(10) * X(4) * X(4)-3.846 * 1 . E-5 * X(4) * X(4) * T O T$
 60 70380

[^1]: INPTI 2 IS MIXIN2
 ourmut is MIXAU
 EOMATICR
 KIXCOTCHIXINI -MIXINL

 MODEL SIMPLEDIST

