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ABSTRACT 

The solution of systems of nonlinear algebraic equations is a funda- 

mental mathematical problem in steady state process design and 
simulation in Chemical Engineering. This thesis is related to this 

problem. 

Some new ideas for implementing Quasi-Newton methods are discussed. 
In particular, a modification to Bennett's algorithm (to obtain an 
LU factorization of Jacobian approximations) is proposed to avoid 
numerical singularities. 

Conditions for having scale invariant Quasi-Newton methods are pre- 

sented as well as the convergence properties. Four. scale invariant 

methods are proposed. 

The problem of the numerical conditioning of Quasi-Newton methods is 

discussed and some ideas to improve it are proposed. In particular, 
an internal scaling procedure is devised. 

All our proposals are tested and compared with others. For this a 

wide standard set of mathematical examples is used as well as 
Chemical Engineering flowsheeting examples. 
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CHAPTER 1 

INTRODUCTION 

The solution of systems of non-linear algebraic equations is a 
fundamental mathematical problem i'n s, teady-state process design and 
simulation in Chemical Engineering. 

While we can study the problem from a mathematical point of view, 

specialized approaches have been developed for solving flowsheeti'ng 

problems. 

We will use a very simple chemical process, shown in Fig 1.1, in 

order to help the presentation of our discussion. 

1 MIXER 2 REACTOR 3 
LSEPARATOR product feed - 

d- 

5 

Fig 1.1 A simple chemical process 

If we consider only a mass balance for our example, we can establish 
an approximate mathematical model for the process. Assume there are 

m chemical components involved in this process, we can then use vectors 
ai of m components to represent the molar flows for stream 1. For the 

mixer we can write m equations as 

a2 = a1 + a5 

using vector arithmetic TRm. 

1.1 

To represent the reactor we need an additional vector s6 1Rm containing 
the stoichiometric coefficients for the particular reaction taking place 

plus a scalar y representing the conversion factor of the key component 
(which we will assume is the first). With this we can write for the 

reactor 

a3 = a2 + Y(e1 a21S 1.2 
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which gives us another m equations. 

Finally, if, we use a vector p of m components to represent the fraction 

of the feed to the separator going as product, we can write 

a5 =, a3 - a4 

a4 = p. a3 

1.3 

1.4 

where the vector operation p"a3 means the ari'thmeti'c product of the 

components, i. e 

eT(P'a31 = Cep P)(e a3) 1.5 

Therefore we have 4m equations involving 7m +1 variables which means 

our mathematical model has 3m +1 degrees-of freedom. 

In order to have a consistent model we will have to eliminate the 

3m +1 degrees of freedom and then if we are doing a strictly 

simulation problem we will fix al, s, p and y and find out a2, a3, 

a4 and a5 using equations 1.1 to 1.4. 

We can see that in fact, we have a mathematical problem to solve, that 
is to solve a system of 4m algebraic equations (which for our particular 

example happen to be linear, but it will not be so in general). 

Even for our very simple example, we can see that if m is large then 

the size of the mathematical problem to be solved becomes an impor- 

tant factor. Two decades ago, when computers began to be used for 

solving simulation problems, storage was a critical factor (as well as 

number°of operations) and then specialised approaches were devised to 

tackle the simulation and design problem. 

1.1 THE SEQUENTIAL MODULAR APPROACH 

Since solving a flowsheeting problem by simultaneous solution of all 
the equations involved resources which were not available two decades 

ago (numerical methods, computer storage, speed of computations), the 
sequential modular approach was proposed. MOTARD, SHACHAM and ROSEN 
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(1975) reviewed the state of the art for thi's approach at the- 
beginning of the 70's when several packages were available as well 
as a considerable amount of literature. 

In this approach each unit is represented in the computer as a 
subroutine in such a way that the output streams are evaluated pro_ 
vided the input streams plus the equipment parameters are known. 

For our particular example three subroutines should be available 
as: 

(a2) MIXER (a,, a5) 1.6 

ßa3) REACTOR (a2, s, Y). 1.7 

(a4, a5) SEPARATOR (a3, p) 1.8 

where the arguments on the left of the name of the subroutine are 
the output parameters while the ones on the right are the input 
parameters. 

Since the input parameters must be known to order to use each subroutine, 
due to the recycle stream 5, it is not possible to use the subroutines 
since none of them has all its inputs known. 

The key element for this approach was the introduction of a vector x and 
the replacement of 1.6 by 

(a2) MIXER (a,, x) 1.9 

If we have a value for x we can, by going sequentially through.. 1.9, 
1.7 and 1.8, obtain a value for a5, te we can deffne a function 
g: TRm . mm such that 

a5 = gCxj 1.10 

Now, if we can solve the mathematical problem 

x= gýxý, 1.11 



10 

we can solve the original flowsheeti: ng problem since the solution of 
1.11 coincides with the solution in the flowsheet. 

The mathematical problem 1.11 is known as a fixed point problem and 
it has been well studied (see ORTEGA and RHEINBOLDT (1970), Chapter 5) 
from a theoretical point of view. 

Sufficient conditions for existence of a solution to 1.11 are simple 
to enunciate. If CS 1Rm is a convex, compact set and g (xj is 

continuous in C then 1.11 will have at least one solution in C 

provided 

g(x) cC, Vx6C 1.12 

Unfortunately, it is not simple to show that a general function g, 

satisfies 1.12. 

In solving flowsheeting problems the first method used to solve 1.11 

was successive substitution i'n which a sequence {xn} is generated, 
given an initial estimate xo, as 

xn+l ' 9(Xn) 1.13 

It was found that the convergence of this method was generally slow 
(linear) and then acceleration methods were used. WEGSTEIN's (1958) 

method was first used. ORBACH and CROWE (1971) proposed an accelera- 
ting procedure, later modified by CROWE and NISHIO (1975), known as 
the dominant eigenvalue method which relies on the linear convergence 
of 1.13 to extrapolate a value for x. using it as a new approximation. 
These accelerating procedures can be applied not only to the successive 
substitution method but to any method having a linear rate of 
convergence. 

While this approach succeeds- in reducing considerably the size of the 

mathematical problem to be solved, it presents difficulties in solving 
design problems. Suppose that instead of fixing al, s, p and y in 

our example, we want to fix al, s, p and eýa4, ie we want a desired 

product rate for the first component and to find out what conversion 
we should have in the reactor (y). 
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To handle this problem with this approach control blocks were 
introduced. An additional subroutine is available as 

(Yý CONTROL (a411 1.14 

where a41 = eýa4, which for a given a41 solves the previous simu- 
lation problem obtaintng a value for y. This allows us to define a 
new function I(a41) for which the solution of our design problem 
will be 

Y-Vý°`41) 1.15 

The problem 1.15 is a general non-linear equation which can be solved 

with any method. The important point is that to obtain one value of 
1.15 we must solve one, problem like 1.11 and since a method for. sol- 
ving 1.15 will be in general iterative thi's means we are adding 

another level of iteration. 

It has been proposed by-JOHNS (1970) that 1.11 and 1.15 should be 

solved simultaneously in order to avoid nested iterations. 

METCALFE and PERKINS (1978) and PERKINS (1979b) proposed'the use of 
BROYDEN's (1965) method to converge simultaneously 1.11 and 1.15. 
It was tried successfully solving flowsheeting problems using CHESS 
(MOTARD and LEE (1971)). More results were later obtained by 

MALATHRONAS and PERKINS (1980). 

GROSSMANN and del ROSAL (19781 did a comparison of successive 
substitution, Wegstein, Broyden and the dominant eigenvalue method 
and found the best results for the last two. 

In the last ten years there has been a considerable amount of, work 
in finding methods for solving the mathematical problem 1.11 (see the 
text book by TODD (1976) and SAIGAL (19791). There are not yet 
general codes available for testing them on flowsheeting problems but 
this offers an interesting field for research. 
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1.2 THE EQUATION ORIENTED APPROACH 

The limitations of the sequential modular approach in coping with 
design problems, plus the advance in computer hardware which has 

made it possible to solve problems faster and using considerable 

storage needs has encouraged the development of the equation 

oriented approach. 

In this approach, each'unit. i: n a flowsheet is represented using 

equations, as we did at the beginning of this chapter, and then a 

system of non-linear algebraic equations must be solved. 

In our particular example, the system to be solved will consist 

of the equations defined by 1.1 to 1.4. The important aspect of 
this approach is that there is no difference between a simulation 

or a design problem since the system of equations will always be 

the same. The difference will reside-in which variables in the 

equations will be considered unknowns. In a simulation problem 

we will have as variables a2, a3 a4 and a5; in a design problem 
we can have as variables, for instance, a2, a3, the last m-l 

components of a4, a5 and the conversion y. The only restrictions 

are that the number of variables is the same as the number of 

equations and that the system is consistent die it has at least 

one solution). 

KUBICEK, HLAVACEK and PROCHASKA 0976) proposed the use of the. 
Newton-Raphson method in solving flowsheeting problems using a 
library automatically generating residual vectors (ie the 

equations representing each unit) and Jacobean matrices. 

VANEK, HLAVACEK and KUBICEK (19771 solved separation problems 

using the equation oriented approach and a non-linear block suc- 

cessive relaxation method while SALGOVIC, HLAVACEK and ILAVSKY 

11981) used parameter imbedding-techniques to solve the si'mu- 
lation of counter current separation processes. 

All these works implement the equation oriented approach. based on 

automatic generation of equations and derivatives which, while 
being very convenient for particular cases, is very restrictive 
for general problems. 
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A quasi-linear approach has been proposed by GORCZYNSKI and 
HUTCHISON (1978) in which the equations representing the flowsheet 

are written as 1, 

A(x) x= b(x) 1.16 

where the matrix A(x) and the vector b(x) are considered constants, 
solving 1.16 and then re-evaluating them. This technique has been 

tested by HILTON and STADTHERR (1981) in the SEQUEL equation oriented 

package. 

When the system of equations to be solved is large, it will generally 
be sparse. If we define an occurrence matrix for the system as a 

matrix having as many rows as equationsand columns as variables,, an 

entry being 1 if the corresponding variable appears, in the corresponding 

equation- 0-. otherwise. If the system is sparse then this occurrence 

matrix will have a low density of ones (say 0(n), where n is the number 

of equations). Sometimes, it will be possible to re-number the 

equations and variables such that it is possible to decompose the 

original system into smaller subsystems which can be solved sequentially. 

A detailed discussion of this was given by SARGENT (1977). 

Another important aspect of this approach is that we can add costing 

equations to the ones representing the units and then solve a more 

general optimization problem. 

maximize y(x) 

subject to f(x) =0 

and g(x) 0 1.17 

where f(x) will be our original system of equations representing the 

units and y(x)'will be the objective function plus a set of restrictions 

given by g(x). 
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1.3 MIXED APPROACHES 

This approach is a blending of the two approaches we mentioned before 

using the best of each of them. ROSEN (1962) proposed to use a 
combination of simple linear models and the equation oriented approach 
plus rigorous models given as procedures. His algorithm could be 
briefly put as (see MAHALEC, KLUZIK and EVANS (1979)): 

1 Assume properties for all streams (provides inputs for all 
process units). 

2 Compute outputs of every unit using rigorous models given as 

procedures. 

3 Develop linear models for each unit. 

4 Based on 3 form a linear system of equations representing the 

entire process and solve it (this provides new values for all 
process streams). 

5 Test for convergence and stop if achieved. 

6 Substitute the linear solution for the stream variable (obtained 

in 4). 

7 Go to 2. 

Rosen proposed to use diagonal matrices for the linear models neglecting 
then interaction between variables. This causes instabilities accord- 
ing to MAHALEC, KLUZIK and EVANS (1979). They proposed to use diagonal 

matrices for those units in which the interaction between variables is 

small or nil (mixers, dividers, heat exchangers, pumps, distillation 

units, etc) and full matrices for those with interaction (such as 
reactors). These matrices were obtained by finite difference 

approximations. 

The algorithm proposed in this latter case can be stated as: 

1 Assume initial values for process variables. 

2 Test for convergence and stop if achieved. 

3 Solve the linearized systems of equations 
Bex = -f 
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(where B is the linear approximation, f the function vector 
and ex the current step for the variables vector). 

4 If IIf(x + ex) 11 < IIf (x) 11 go to 7. 

5 Define fo = IIf(x)II, fl = IIf(x + Ax)II, f2 = 11 f(x + 0.5ex)11 
fit a quadratic function through fo, fl and f2 and find the 
coefficient a such that the quadratic has an extreme value 
(ie, zero gradient).. 

6 If IIf(x + aAx) li > iIf(x) Ii go to 8. 

7x=x+ aex, go to 2. 

8 Abandon current linearization B. Make one sequential pass through 
the flowsheet, obtain new values for process variables, find the 

new linearization B and go to 2. 

9 x=x+ex, go to 2. 

Thus this approach first uses the equation oriented approach with the 

simpler linear models and only switches to the procedures implementing 
the rigorous models when it is not making good progress. 

We should put also in this section the idea of METCALFE and PERKINS 
(1978) to iterate simultaneously on stream and design variables (ie, 

eliminating the nested iterations of the control loop in the sequential 
modular approach). This was tested with general problems by PERKINS 
(1979b)and MALATHRONAS (1979) using the simulation package CHESS 
(MOTARD and LEE (1971)) and Broyden's method. 

We should also mention here the idea of JOHNS (1970) of iterating 

simultaneously on recycle streams and internal iterations within units. 

JOHNS and SHEPPARD (1975) implemented this idea to solve distillation 

column iterations simultaneously with flowsheet evaluations. This was 
later extended by LEE (1980) who solved simultaneously the-set of torn 

streams, design equation and the'internal equations of the distillation 

unit. For this he used CHESS plus the sparse Quasi-Newton method 
proposed by SCHUBERT (1970). The same was done by WONG (1981) for 
heat exchanger units using also CHESS and Broyden's method. 



16 

The simulation package SPEED-UP (SARGENT, PERKINS and THOMAS (1982)), 
developed at Imperial College, is another example of a mixed approach. 
By allowing the use of procedures, as well as equations, to represent 
the units, it is possible to describe a problem as a sequence of 
procedures (by having a procedure for each unit) or as an equation 
oriented problem (having all units represented by equations). In 
addition we have all possible intermediate steps. 

This package makes possible the use of procedures written for sequen- 
tial modular packages, allowing users to interface them to SPEEDUP 

very easily (all that is needed is to describe the parameter list). 
This is a very important aspect of a package since most industrial 

software for flowsheeting is written for sequential modular packages. 

Whatever approach is chosen, the basic mathematical problem remains 
the same, ie solving a system of non-linear algebraic equations. 

In particular, the requirements in this sense of the simulation 
package SPEED-UP have motivated the work presented in this thesis. 

Our aim has been to obtain a code for solving the general problem. 

f(x) =0 1.18 

for a given function f: 1Rn TRn whose dependence. on data that has 
to be provided(initial guesses, scaling)is tainimized. There are intrinsic 

difficulties in Chemical Engineering problems which we would like to over- 

come such as singularities(due probably to poor initial data such as in a 
flash having a temperature below the bubble point)or scaling (having to deal 

with values differing by orders of magnitude between therm. 
We will use mathematical examples in order to find out which methods 
of the ones we will propose give good performance. The reason for 
doing this is the cost involved in trying to test thoroughly different 

methods using examples arising from flowsheeting problems. Once the 
best methods are identified, we will test them on flowsheeting 

problems. 

1.4 SOLVING SYSTEMS OF NONLINEAR ALGEBRAIC EQUATIONS 

Methods for solving 1.18 are usually iterative. They generate a 
sequence {xk}, xk 6 TRn, which if the method converges satisfies 
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kl}mom Xk = x* 1.19 

f(x*) =01.20 

If we use the notation F'(x) for the Jacobian matrix of f evaluated 

at x it was observed that if f is a linear function, the solution x* 

can be found as 

x* =x+ pN 1.21 

where 

pN = -F'(x)-lf(x) 1.22 

provided F'(x)-l is well defined. 

If f is not a linear function but xk is a point sufficiently near x*, 

we can expect that defining 

xk+l = xk + pk 1.23 

will provide a better approximation to x*, ie 

II Xk+1 - x* II < IN Xk - x* II 1.24 

The iteration process 1.23 is the Newton method and thus pk is called 
the Newton step. 

This method has been the basis for many successful methods developed 
in the past. The computation of F'(x) is often expensive or even 
impossible, therefore methods have been devised for avoiding it. 

Instead of F'(xk) an approximation Bk to it has been used, giving 
then instead of 1.23 

Pk = -Bk1 f(x) 1.25 

Xk+1 = Xk + Pk 1.26 
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A first method was devised by taking Bk as a finite difference approxi- 
mation to F'(xk). (Discrete Newton's method. ) 

BROWN (1966) proposed a method similar to the discrete Netwon's method 
but requiring less function evaluations and BRENT (1973) proposed a 
method with similar characteristics. 

BROYDEN (1965) proposed a method in'which Bk, while aiming to approximate 
F'(xk), is not obtained by finite differences. This method is a partic- 
ular case of a more general family which has received the name'Quasi- 
Newton methods. DENNIS and MORE (1977) have given a detailed study 

of this family. For the purpose of our discussion we will define three 
families of methods according to the sharing of similar characteristics. 

D-family: discrete Newton's method, Newton-Raphson method (Using 1.22 
instead of 1.25). 

B-family: Brown and Brent's methods. 

Q-family: Broyden's method, all Quasi-Newton methods. 

We will now analyse the three families according to the characteristics 
which are important to us. 

Convergence: This is related to 1.19 and with the "speed" of the method 
to reach x*. Convergence properties are normally local, ie applicable 
to some open set containing the solution x* (which means x0 must be in 
that open. set). The speed of convergence is often measured in terms 
of a sequence {ak) and a scalar ß such that 

1Ixk+l' - x*II - akllxk - x*11ß 

for a given norm. 

Three rates of convergence are often used: 

linear ak = a, 0<a<1, V. ß=1 

superlinear: 
k 

ak =0, a=l 

quadratic: ak = a, ' 'Vk, ß=2 
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Family D has quadratic convergence provided the finite difference steps 
are chosen carefully, (ORTEGA and RHEINBOLDT (1970)) as well as family 
B (MORE and COSNARD (1979)). Family Q satisfies superlinear convergence 
(DENNIS and MORE (1977)). Also 2n - step quadratic convergence, ie 

II xk+2n X* 11 < all xk - x* l12 

(see GAY (1979)) has been proved for Broyden's method. 

Function evaluations: All methods will require the evaluation of-1.18 
at a certain number of points. Some methods require the evaluation of 
each component of the vector"f separately and other the evaluation of 
all components simultaneously. This is of primary importance when 
solving flowsheeting problems in chemical engineering since the eval- 
uation of 1.18 involves normally a considerable amount of work. When 

physical properties are used, the time used for the function evaluation 
will overtake considerably the overhead time used for iteration for the 

method. Families D and Q require the evaluation of the whole vector f 

while family B requires the evaluation of each component separately. 
This difference is very important since there is normally a fixed 
basic time which is shared by all the components if evaluated simul- 
taneously (especially when physical properties are being used). 

In order to compare the methods we will use component function eval- 
uations. The requirements for each method per iteration are: 

Family Component function evaluations 

D n2+n 

6 (n2 + 3n)/2 " 

Qn 

The component function evaluations for family D are for the discrete 

Newton's method. 

If the Jacobian is provided analytically then only n component function 

evaluations are needed. 
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Storage: This is related to the amount of computer storage used 
for implementing the method, the unit is the memory needed for storing 
one real number. Families D and Q require n2 storage locations while 
on family B Brown's method can be implemented using only (n2/4) and 
Brent's method using n2 (see COSNARD (1975)).. This storage is 
basically for storing the Jacobian, all methods use in addition 0(n) 

storage locations for auxiliary--vectors. 

Operations count: This is related to the number of arithmetic 
operations performed per iteration needed for implementing the method 
and it is directly related to the computer time to be used by the 
method. 

The following is the operation count for each family. 

Family Number of arithmetic operations. 

D 0(n3) 

B 0(n3) 

Q 0(n2) 

Linear subsystem: This is an important aspect in chemical engineering. 
If part of the function 1.18 is composed of linear functions then all 
methods will satisfy them (see MORE and COSNARD (1979) for families 
D and B, PERKINS (1979a) for family Q). 

Since most mass balances will be represented by linear equations we 
can expect a significant part of 1.18 to be linear when solving flow- 
sheeting problems. The linear subsystems property guarantees that 
every iterate generated satisfies these equations. 

Scaling: An ideal code should be independent of the scaling used for 
the variables or the functions. We define a change of scale for the 
variables-. as 

f(x) = f(Dx1 x) 1.27 

for a nonsingular matrix Dx, and a change of scale for the function as 

f(x) = Df f(x) 1.28 
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And more generally, for both simultaneously 

f(x) = Df f(Dx x) 

We can define scale independence properly as 

DEFINITION 1: Scale invariant methods. 

1.29 

An iterative method for solving 1.5 will be scale 
invariant if for nonsingular matrices Dx and Df 
defining the change of scale 1.29, the sequence 
{xk} generated by the method satisfies 

A 

Xk = DX xk 1.30 

Methods in family D are scale invariant, family B is not scale invariant 
(see MORE and COSNARD (1977)) and neither is family Q(MALATHRONAS and 
PERKIliS(16980)). Having a scale invariant method is particularly important in 

Chemical Engineering since is not reasonable to ask a user to scale the ori- 

ginal problem in order to present it in a suitable scale for the code. It is 

very common in Chemical Engineering to find values in a simulation dlfferi. ny 

by several orders of magnitude(as in flowrates for instance). 

In addition to the theoretical aspects of the families we should also 
consider the numerical results available in the literature. 

Authors have generally stressed efficiency when presenting numerical 
results, ie how fast does a method converge. A very important aspect 
to us is robustness, ie the ability of a method to converge from 
initial points far from the solution and in bad numerical conditions 
(which are often closely related). Our previous discussion on 
convergence is related to a neighbourhood of the solution and thus is 

not applicable in the first stage when we are far from the solution. 
This means that more important than having a different rate of con- 
vergence (say between superlinear and quadratic) will be having a 
better radius of conyergence(or being more robust), 1e are interested fin ro- 
bustness since while it is important to obtain the solution qutckly it is 

even more important to obtain it at all(even if this is not a fast process). 
Tests for robustness are comparatively rare. 

Three recent studies on robustness are available. BUS (1975) tested 
various codes finding the best results for the discrete-Newton, BROWN 
(1966) and BROYDEN (1965) method. 
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PALOSCHI (1980) obtained good results also for BROYDEN (1965), 

BROWN (1966) and for the implementation of GRAGG and STEWART (1974) 

of the secant method. (While results were very good regarding 

robustness for this latter method, it was found to be poor in ef- 
ficiency and it requires 4n2 storage locations. ) 

A method specially devised for robustness was proposed by BROYDEII(1969) 

based on continuation methods. This was tested by PALOSCHI(1980) without 

obtaining satisfactory results. In appendix C', numerical results obtained 
for this method using the same set of examples as in the next chapters 

, are presented. These appear to confirm our earlier findings that the method 

., K is not very robust. 

, 
The most comprehensive test was done by HIEBERT (1980). Eight codes 

implementing four different methods were tested. Two sets of pro- 

blems were considered: a set of 57 "mathematical problems" and one 

consisting of 22 chemical equilibrium problems. Tests for the effect 

of scaling on the performance of the codes were designed for the 

mathematical problems. For testing the performance on badly scaled 

variables the original problems were modified to 

' f(x) = f(D-ý 

and for badly scaled functions 

. f(x) =D f(x) 

with D being a diagonal matrix whose elements were between 10-5 and 
105, 

The Hybrid method tested by Hiebert can be described very briefly as 
follows; 

Define the gradient step 

9k = 'BkT fix) 1.31 

This is the steepest descent direction and then a hybrid step ph is 

obtained from 

Pk = ak Pk + ßk 9k 1.32 

where Pk is the Quasi-Newton step 1.25. 

The parameters ak and ßk are chosen according to the "progress" 

which the code is making, ie if the code is making good progress 
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ie IIfk+l II < IIfkII)' then gk -* 0 and ak -" 1, ak #0 is only used 
when the code is not behaving very well. The idea is that the gradient 
step is more robust while the Quasi-Newton step is more efficient. 

Regarding the theoretical properties of this method, they are the 

same as family Q for convergence, function evaluations and operations 
count. The storage required for this method is . n2 for the imple- 

mentation tested by Hiebert (but it can be implemented using only 
n2 as in family Q, see CHEN and STADTHERR (1981)). If in 1.32 

ßk #0 then the method will not satisfy linear subsystems as the 
following shows: 

Consider the linear function 

f(xk) = Axk +b 

and take Bo =A (ie, the exact Jacobian). Assume ak = 0, ßk =1 
in 1.32 

pö = -AT fo 

and then 

xý =xo-ATf0 

f1 =f0-AATfo= (I - AAT) fo 

and then unless fo =0 or A-1 = AT, fl j0 (while if we take ak =1 
and ßk =0 then it is easy to see that fl = 0). 

This method is also dependent on the scaling being used and in the code 
tested by Hiebert an internal scaling is provided which results in a 

scale invariant code but this option causes the performance of the code 
to deteriorate instead of improving it (this was found by HIEBERT 
(1980) and confirmed by CHEN and STADTHERR (1981)). 

A summary of results is presented in Table 1.1. 
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Table 1.1: Summary of results obtained by Hiebert (1980) 

Percentage of problems solved 
Math problems Chemical Engineering 

Problems 
Well Poorly 

Method Implementation scaled scaled 
BRENT (1973) MINPACK (1980) 74 49 83 
BROWN (1966) IMSL (1979) 67 50 42 
BROYDEN (1965) SANDIA (1975) 42 29 42 
POWELL (1970) MINPACK (1980) 86 57 50 

The main conclusion from the Hiebert study is that while there are very 
robust codes for well scaled problems, the performance for all codes 
is badly affected by poor scaling. This result is of interest to us 

since a flowsheeting problem involves quantities which differ by 
orders of magnitude (as do for instance, molar fractions and 
flowrates). 

From the analysis of the three families we conclude that the most 
attractive for solving flowsheeting problems is family Q. It has 

good convergence rate, it is the least expensive in function 

evaluations and operations count (the difference with other families 
becoming dramatically different when n becomes large and/or f is 

expensive to evaluate)*, it requires reasonable storage and its only 
apparent disadvantages are the numerical results obtained by Hiebert 
for Broyden's method and its dependence on the scaling. 

We will show in chapter 2 that the first disadvantage is due to a 
poor implementation of the method. We will propose some implementation 
details which will improve considerably the performance of Broyden's 

method as well as a modification to Bennett's algorithm for obtaining 
LU factors which avoids numerically singular approximations Bk+l' 
Numerical results will be presented showing that our implementation of 
Broyden's method has better overall performance than the best method 
tested by Hiebert (ie the hybrid method). 
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Regarding the second disadvantage, the dependence on the scaling, we 
will propose in chapter 3a sub-family of family Q which is scale 
invariant. We will show that its convergence is superlinear and 
numerical examples will show that the methods we propose have 

equivalent behaviour to Broyden's method. 

The numerical results in chapter 3 will show that implementations of 
theoretically scale invariant algorithms are not scale invariant. This 
is due to the numerical conditioning of the problem. 

The numerical conditioning of family Q will be studied in chapter 4 

and ways of improving it will be proposed. In particular an internal 

scaling procedure will be proposed and numerical results will show 
how the performance of the methods is improved with it. 

Finally, in chapter 5, we will apply our best methods to flowsheeting 

problems using the simulation package SPEED-UP. The chemical 

engineering problems will show the behaviour of our code in coping 

with small but difficult to solve problems as well as large 

problems when physical properties are used (when the computer time 
becomes critical). 
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CHAPTER 2 

THE IMPLEMENTATION OF QUASI-NEWTON METHODS 

We will discuss in this chapter the development of an implementation 

of Quasi-Newton methods which, for Broyden's method , gives numerical 
results substantially better than those published so far. 

We will first introduce the family of rank-one Quasi-Newton methods 
and an algorithm implementing it. Implementation details for this 

algorithm will then be discussed. They consist of how to choose the 
initial approximation Bo to the Jacobian and the convenience of its 

re-initialisation, the choosing of an LU factorization, how to find a 
suitable policy for the step reduction factor and how it is possible to 

avoid a numerically singular approximation Bk by using a modification 
of Bennett's algorithm for the updating of LU factors. 

The chapter will end with the presentation, of numerical results 
obtained for Broyden's method using the implementation discussed here. 

2.1 RANK-ONE QUASI-NEWTON METHODS 

Different methods have been proposed in the past based on how Bk in 1.25 
is obtained. BROYDEN (1965) proposed a whole family of methods based 

on the following updating formula. 

B+ ak 
T 

k+l = kbk 2.1 

The two vectors ak and bk were chosen according to the following re- 
lation (secant relation) 

Bk+l Pk = f(xk+1) - f(xk) 2.2 

which arises from the fact that if f is a linear function then its 
Jacobian FI(xk+l) will satisfy 

F' (xk+1) Pk = f(xk+1) - f(xk) 2.3 
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Using the notation 

fk = f(xk) 2.4 

and by defining 

yk=fk+l fk 2.5 

we can see that in order to satisfy 2.2, ak and bk must be such that 

ak = yk - Bk Pk 2.6 

=1 bkPk 2.7 

It is then possible to characterize the family of rank-one Quasi-Newton 

methods with a sequence*{vk} of vectors in TR n using the update formula 

vT 
B k+ I= Bk + (yk - Bk PO 

VT T 
2.8 

vk Pk 

In particular_BROYDEN's(1965) method is a member of this family, in 

which vk = Pk . More methods have been proposed in the past choosing 
different vk. BARNES(1965) proposed to choose vk orthogonal to the previous 
steps pk. This assures that linear systems are solved in one iteration. 
This method was implemented and tested by GAY and SCHNABEL(1978) and 
by PALOSCHI(1980). 

It has been proposed originally by BROYDEN (1965) that instead of using 

1.26, the following equation should be used 

Xk+l - Xk + Ak Pk 2.9 

where the parameter Ak is chosen according to a particular policy. 
Broyden proposed to choose Ak such that 

IIfk+1II < IIfkll 2.10 
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We can formalize this family of methods with the following algorithm: 

ALGORITHM 1: Rank-one Quasi-Newton methods. 

1 Given xo, Bo, c 

2 Setk=o 

3 If llf(xk)11 <e then stop 

4 Choose a suitable value for Ak 

1 5 Pk = -ak Bk f(xk) 

6 xk+l =Xk+Pk 

7 yk = f(xk + l) - f(xk) 
T 

8 Bk+ 1= Bk + (yk - Bk PO 
VT 

k 

wk Pk 

(Vk is determined by the particular method) 

9 k=k+1 

10 Go to 3 

2.2 IMPLEMENTATION OF ALGORITHM 1 

2.2.1 The initial approximation to the jacobian 

Two approaches have been. proposed in the past for the selection of the 
initial approximation to the Jacobian, ie the matrix Bo in step 1 of 
algorithm 1. ROSEN (1966) proposed the use of Bo =I and BROYDEN (1965) 

suggested the use of a finite difference approximation to F'(xo) obtaining 
Bo as 

f(x +de. ) -f 
B°eý _°ä°2.11 

1 
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with 

6=0.01 max {Ieý x01, 10-6 } 

We have chosen to implement Broyden's suggestion. This alternative 
has the disadvantage of requiring n additional function evaluations 
but is has been found to perform better than Bo =I in the past by 
METCALFE and PERKINS (1978) for flowsheeting problems and by PALOSCIII 
(1979) for general non-linear equations. BOGLE (1979) found the use 
of Bo =I to perform better, for some flowsheeting problems, regarding 
efficiency but 2.11 was found better for robustness. An important 
property of Bo obtained using 2.11 is that it will satisfy 

Bo- = DfBODX1 2.12 

for a change of scale of the form 1.29 provided xo is such that all its 
components are not zero. This property is required to ensure scale 
invariance as will be discussed in the next chapter. Another important 

property obtained using 2.11 is that if the problem 1.18 involves any 
linear subsets then all linear equations belonging to that subset will 
be satisfied by the sequence xk for k) O(PERKINS(1979a)). While it is 

not necessary to have approximations Bk being close to F'(xk) to ob - 
tain convergence in practice (DENNIS and MORE(1977)), theoretically su 
perlinear convergence is guaranteed only if Bo is sufficiently close 
to F'(x*), where x* is the solution to 1.18. This suggests that if the 

algorithm is not making any improvement (ie, the norm of the function 

is not being reduced) the behaviour could be improved by having Bk clo- 
ser to F'(x*). For this a re-initialisation of Bk by finite differen- 

ces could be made using some xk being closer to x* than was xo. This has 
been used in the past by CHEN and STADTHERR(1981) using the following 

procedure. 

Calculate a new jacobian if both of the following conditions hold: 
(a) The norm of the function has been reduced by a factor of 2 

since last jacobian evaluation 

(b) 
llfk 

+ 1112 llfk 
- 411 

Ilfk-4II 11fk-911 
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We found the re-initialisation very useful but using instead the 
following procedure: 

Calculate a new jacobian using the best point xk available (ie, the 

one with minimum norm for fk), if both the following conditions 
hold: 
(a) After 10 +n consecutive iterations, the norm of the function 

has not been reduced at least by a factor of 0.9 

(b) Since the last re-initialisation, the norm of the function has, 

at least once, been reduced by a factor of 0.9. 

This re-initialisation is particularly suitable when solving flow- 

sheeting problems because if the function i's sufficiently sparse it 

is possible in 2.11 to perturb more than one variable simultaneously 

and thus reducing considerably the number of function evaluations 

needed to obtain Bo (see CURTIS, POWELL and REED (1974)). 

2.2.2 Evaluation of the step pk 

Step 5 of algorithm 1 involves the solution of a linear system for 
finding the step Pk as 

Bkpk = -ak f(xk) 2.13 

For this we have three alternatives: 
(a) invert Bk 
(b) have available Bkl 
(c) have available a factorisation of Bk. 

The first alternative is not practi'cal. BROYDEN (1965) suggested the 

use of alternative b. For this the use of the SHERMAN -MORRISON 
(1949) formula was proposed for obtaining instead of 2.8 

H=H 
(pk Hkyk) ykHk 

k+l k 
NTH 

2.14 
k kyk 

where 
Hk = Bk1 2.15 
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There are numerical problems related to the use of 2.14 ie, having 

small denominators or obtaining numerically singular approximations 
Hk+l. In addition, preliminary tests for this approach did not show promi- 
sing results, and therefore it was abandoned, It is possible to have alter- 
native (c) using operations of the same order As alternative (b). GILL and 
11URRAY(1972) describe a method for having a factorisation 

Bk = QkRk 2.16 

where Qk is orthogonal and Rk is upper triangular. This approach has 
been used by MORE; GARBOW and HILLSTROM (1980). While this is a very 
safe procedure numerically it has the disadvantage of using 

.- 
n2 storage 

locations(opposed to n2 necessary for alternative (b)). 

It is possible instead to use an LU factorisation 

Bk = LkUk 2.17 

by using the updating algorithm due to BENNETT(1965). This requires 
0(n2) operations(same as alternative (b)) and also n2 storage lo- 

cations. It has been used by CHEN and STADTHERR (1981). 

We have selected alternative (c) for our implementation. 

In section 2.3 we will present a modification to Bennett's algorithm 

which will allow us to avoid numerically singular approximationsBk +1* 

2.2.3 Choosing a suitable Ak 

Step 4 of algorithm 1 has been proposed in the past for improving the 

performance of the methods. 

It has been shown that provided {Ak} converges to 1 then the super- 
linear convergence properties of the method remain unmodified (see 
DENNIS and MORE (1974)). 

BROYDEN (1965) proposed to choose ak such that 

Ilfk 
+ 11l ' IIfkll 2.18 

.{ ,3ý q" i 
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METCALFE and PERKINS (1978), when implementing Broyden's method using 
2.14, found that if 

Ilfk 
+ 111 " (IfkII 

then the approximation Hk +l becomes numerically singular. They 

then suggested the use of ak to ensure that 

Ilfk 
+ 111 s lOIIfkII 2.19 

Numerical results have shown that 2.19 is better than 2.18 (see BOGLE 
(1979)), MORE and COSNARD (1979) suggested using 
ak in order to keep a control on IIpkII. They proposed-to define 

d0 = max (10,10 (1x011) 
2.20 

6 k+1 = max (dk, 10 IIxkII ), k>1 

and then to use ak to ensure that 

II Pk ll ak 2.21 

Numerical results for various methods confirmed the value of this 

rule (PALOSCHI (1980)). We have used for our implementation modified 

versions of 2.19 and 2.21. 

Define 

xk = (ilk' C2k' ..., Enk) 

T 
Pk = C"l kI "W "nk 

50 if Cik =0 
öik = 2.22 

50 ICikI if pik 0 

for'= 1,2, ..., n and kz0. 

Our selection of Ak is made to assure simultaneously 

'. 
Inik1 s dik, i=1,2, ..., n. 12.23 



33 

Ilfk 
+1 

11 s 100IIf0II 2.24 

The-reason for using 2.23 instead of 2.21 is that this choice is 

scale invariant for changes of the form l. 29(w6nn VjK f o). 

Attempts were made to obtain, instead of 2.24, a control being scale 
invariant but none was found to work as well as 2.24. We should note 
that 2.24 will make the code fail if xo is inside a region containing 
a non-zero local minimum of Ilfil. 

2.2.4 Bounds on the variables 

A facility has been provided in our code for allowing the variables to 

be bounded. 

The iterates generated by the code satisfy-the following relation. 

ai s Ei s Bi, i=1,2, ..., n 

To ensure this, Ak in 2.9 is. used if possible. 
ak is because we want. to keep the direction of 
In doing this we ensure that if xk satisfies a 

since xk +-l 
(taken with the full Quasi-Newton 

the linear, subsystem, any xk +1 taken with ak 
the linear subsystem. 

The-reason for using 
the Quasi-Newton step. 
linear subsystem then, 

step) also will satisfy 
ýl will also satisfy 

If the point xk is already on the bound and xk +1 
is predicted out- 

side, no, reduction of the step is possible and then we have no choice 
but to abandon the, Quasi-Newton direction. In this case we project 
the step onto the boundary (see figs 2.1 and 2.2). 

Xk+l 

Xk xk+l 

fig 2.1: Using Ak to keep the fig 2.2: Projecting the step 
Q-N direction on the bound 
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2.3 AVOIDING NUMERICALLY SINGULAR APPROXIMATIONS-TO-THE JACOBIAN 

We are interested in the LU factorization of Bi, that is, having 

Bi =Liui 2.25 

where Li is a lower triangular matrix while Ui is a unitary upper 
triangular matrix. --Two matrices Li 

+1 and Ui 
+1 are obtained such. 

that 

Bi 
+1 =Li+1 ui +1 

2.26 

An algorithm for obtaining Li 
+1 and U. 

+1 
from 2.8 has been presented 

by BENNETT (1965). 

It may happen that Bi + 1, as obtained using 2.8 is singular or its 
LU factorization has very small elements in the diagonal of the matrix 
L. In both cases the solution of 2.13 will be very difficult numeri- 
cally or even impossible. 

We propose here a modification of Bennett's algorithm which produces 
an updated factorization of the Jacobian approximation which satisfies 
the secant relation and is non-singular. In cases where the update 
2.8 and the Bennett algorithm produce a non-singular matrix, our 
algorithm gives the same matrix. If 2.8 or the original Bennett 

algorithm gives a singular matri'x,, our algorithm gives a matrix which 
is in some sense close to that matrix, but which is non-singular. 

In section 2.3.2 we describe very briefly Bennett's algorithm. The 

modification is proposed in section 2.3.3 with its theoretical justi- 
fication. The implementation details are given in section 2.3.4 where 
we show how to choose between the different alternatives. An example 
of use of the modification is presented in section 2.3.5. 

2.3.1 Bennett's algorithm 

Suppose we have an LU factorization of a matrix A 

A= LU 2.27 

and a matrix B is obtained using the updating formula 
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B=A+abT 

where a and b are two given vectors. 

2.28 

If we are going to obtain the LU factors of B using a standard 
technique, without using the fact that'B is obtained using 2.8, we 
need 0(n3) operations. BENNETT (1965) proposed an algorithm to 

obtain the LU factors of B satisfying 2.8 using just 0(n2) operations. 

We will very briefly describe the algorithm. 

Define Li as the unit matrix with the ith column replaced by the ith 

column of the matrix L and U. in the same way, using U Instead of L 

and interchanging the role of rows and columns. 

These matrices will satisfy 

n 
L= ,rL. 2.29 

i=1 

1 
U= ,r Uý 2.30 

i=n 

Define Al = A, B1 = B, a1 = a, b1 =b and for each k, 1<k<n, define 
Ak 

+1 such that 

k Ik 
A= ,rL 

i=1 0 

01 

Ak+l i=k 
2.31 

Ak 
+1 is of order (n - k). 

Then, at each stage k of the algorithm we will have obtained Bk such 
that 

Bk = Ak + akbk 2.32 

and then Lk*, Uk*, ak +1 and bk 
+1 will be obtained such that 
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k Ik 01 
B= ,r Li* ,r Ui* 2.33 

i=1 0 Bk+ 1 i=k 

and 
T Bk+1 = Ak+l + ak+1 bk+1 2.34 

Bk +1 is of order (n - k). 

When stage n- 1 is finished, it is very easy to obtain Ln* and 
Un* = I. The factorization of B will then be 

n1 
B= it Li* 7F Ui* 2.35 

i=1 i=n 

2.3.2 Proposed modification 

In the special case of Quasi-Newton methods, the vector b in 2.28 is 

varied to give different methods. In fact, varying vk in 2.8, we can 
obtain a family of rank-one updates for Quasi-Newton methods. In 

general, all Quasi-Newton methods satisfy the following secant 
relation 

Bp=y 

where p and y are two given vectors. 

2.36 

Suppose we have obtained B for a particular method and it is singular. 
Since B will later be used to solve a linear system, this particular 
method will clearly fail in this case. When this problem arises, we 
propose to modify B to B' such that 

B'P =y2.37 

We will require B' to be non-singular and also not too different from 
B. 

To achieve this, we propose a modification to Bennett's algorithm, to 
be added at stage k, the stage when singularity is detected. 
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The next theorem will show the only case when our proposed modi- 
fication will not be applicable. 

Theorem 2.1: If p and y, are such that 

pk 
p=2.38 

0 

0 
y=2.39 

yk 

with Pk being of order k and yk of order n- k and pj0, y#0. 

Then it is not possible to find L and U, L non-singular, such that 

LUp=y 

Proof: assume there exist L non-singular and U satisfying 2.40. 

Define the following pa 

L11 

L= 
X21 

U11 

U 

0 

rtitions 

0 

L22 

X12 

U22 

2.40 

where Lil, U11 are of order k, L22 and U22 of order n-k, C21 is 
(n- k) xk and C12 is kx (n - k). 

From 2.40 it follows 

L 11Ullpk =0 

C21U11Pk "k 
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Since L11 is non-singular then UIlpk =0 and then yk =0 which contra- 
dicts our hypothesis yj0. 

The following theorem shows that it is possible to modify the algorithm 
to achieve what we want and also how to. 

Theorem 2.2: If at stage k of Bennett's algorithm we have 

k-1 
7r Li* is non-singular for k>1 

i=1 

2.38 and 2.39 are not true simultaneously and 

Jeý Bk e11 =02.41 

Jeý Ak elf >e2.42 

Then there exist L'1*, i=1,2, ..., k- 1 for k-> 1 and B'k such that if 

k-1 Ik101 
IT L' i* ,r Ui* if k>12.43 

i=1 0 B'k i=k-1 

or 

B' = B'1 if k=12.44 

then 

B'p =Y 

and 

k-1 
ii L'i* is non-singular for k>1 

i=l 

2.45 

and 

ýeý B'k e11 =e2.46 

Proof: Case (a). Assume first 2.38 is not true. We will show that 
it is possible to find bk such that 
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eý (Ak + akbj) e1 =s2.47 

and 

bkTPk2 = bk pk2 2.48 

where pk2 is of order n-k+l and such that 

pk1 
p= ifk>1 

pk2 

p=pk2 if k=1 . 1.49. 

If we use the following notation 

ak 
ak = 

ak 

ßk 
bk = 

bk 

2.46 is satisfied if we take 

g'k = (c- eý Ak el)/ak 2.50 

and ak #0 because of 2.41,2.42 and 2.32. 

Since 2.38 is not true, it is possible to find a bk so that, with 
6'k from 2.50, a b'k satisfying 2.48 can be found. 

If we now take 6'k = Ak + akb( and Lt* = Li*, i=1,2, ..., k-1 (if k> 1) 

it is clear that 2.46 is satisfied. 

It remains to show that 2.45 is satisfied and for this define the 
following partitions if k>1 
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k-1 Lkl 0 
,r Li* = 2.51 

i=1 Ckl In-k-1 

1 Okl Okl 
7r O1* = 2.52 

i=k-1 0 In-k+l 

ykl 
y = 2.53 

yk2 

where ykl, Lkl, Ukl are of order k-1 and Ckl is (n-k+l) x (k-1), 
0kl is of order (k-1) x (n-k+l). Since Bp =y it follows 

Lkl (Ukl pkl +D kl pk2) = ykl 2.54 

Ckl (Ukl pkl + Dkl pk2) + Bk pk2 = yk2 2.55 

Since 2.48 is true and 

j 2.56 Bk = Ak + akbk 

it follows 

B pk2 r Bk pk2 

And then 2.45 is satisfied. 

The case. k=1 is straightforward. 

Case (b). Assume now that 2.38 is true. Take 3ý as defined by 
2.50 and bk = bk. We will show that ykl J0 for k>1. 

Assume ykl = 0, from 2.54 it'follows 

(U kl Pkl +D kl Pk2) =02.57 

because Lkl is non-singular and then from, 2.55 it follows 

Bk Pk2 = Yk2 2.58. - 
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and since 2.38 is true, using 2.41 we can obtain 

eý yk2 =02.59 

but this implies with ykl =0 that 2.39 is true and this is a 
contradiction. 

It then follows 

(U kl pk1 + Ok1pk2) '02.60 

and then it is possible to find Ck, such that 

Ck1(Uk1 pk1 + Dkl pk23 + Bk pk2 = yk2 2.61 

giving then that 2.45 is satisfied and also 2.46. 

The same reasoning is valid for k=1. 

2.3.3 Implementation 

We see from the last section that it is possible to update LU factors 

achieving two of our objectives, viz, to avoid singular Jacobi'an 

approximations while satisfying the secant relation. The necessary 
relations which the updating algorithm must satisfy are given in 

Theorem 2.2. In particular, they are equations (2.48) and (2.50) in 

Case (a) and equations (2.50), (. 2.56) and (2.61) in Case (b). A 

study of these conditions reveals that they define a whole family of 
algorithms. In this section, we make suggestions of reasonable 
choices from the family. These choices minimize in some sense the 

correction required to the original Quasi-Newton update to remove 
singularity. 

Using partitions defined by 2.51 and 2.52 it follows 

L kl 

Ckl 

Ik-1 

In-k+l 0 

0 Ukl 

Bk 0 

Dk1 

1 2.62 
'n-k+1 
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or 

L kltJkl Lkl Dkl 
B=2.63 

CklUkl Ckl Dkl + Bk 

If we use Case (a) of theorem 2.2 then 

LklU kl L HD kl 
B' = 2.64 

. 
CklU kl Ckl D kl + Bk 

and if Case (b) is used then 

L klU kl L kl Dkl 
B' = 2.65 

CklUkl Ckl D kl + Bk 

Assume that B' is defined by 2.64, it follows using 2.63 

IIB' - BII = IIBk - BI) 2.66 

and from 2.32 and 2.56 

(IBS - Bit = Ilakil Ilbk - bkII 2.67 

The first component of the vector bk is uniquely defined by 2.50 but 
there is some freedom for the choice of Rk (the remaining components). 

We will make use of the following Lemma due to DENNIS and SCHNABEL 
(1978). 

Lemma 2.1: Let ae1R, vcTR", vj&O. Then the unique solution to 

min 
xc1Rn 

lixil subject to vTx =a 

is 

X= ay 2.68 
vTv 
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Since bk has to satisfy 2.48 in addition to 2.50 it follows that by 

applying Lemma 2.1 with x= bk - bk, v= Pk2 and a= (ßk ßk)e1 pk2 

we can obtain B' such that JIB' - BIJ is a minimum. Thus, the following 

equation defines bk. 

T 

b+ 
(ßk - ßk)(el Pk2'k2 2.69 

kT- 
Pk2 Pkt 

Assume now that B' is given by 2.65. In this case k>1 and 

JIB' - BII2 = 11 (Ck1 - Ckl)Uk1II2 + 11 (Ckl - Ckl)Dkl + (Bk - Bk)112 2.70 

where Ckl must satisfy 2.61 and Bk is defined by 2.56 with Rk = bk and 

ßk given by 2.50. We can see that Bk is uniquely defined but there 

are some degrees of freedom in choosing Ckl satisfying 2.51. 

If we define 
X=C, kl - Ckl 2.71 

using C, u, a and ß for referring to the elements of X, U, D and B and 
dropping the subscripts we can see that 

n-k+l 

i=1 

n-k+1 
IIXD + (B' -B)II2 =E i=1 

k-1 
E 

j=1 

n-k+l 
E 

j=1 

k-1 2 
E ciR uRj 2.72 

t=1 

k-1 2 

. 
t=i 'a2j. + ßßi j- ßi j) 2.73 

Since Ckl satisfies 2.55, and Ckl must satisfy 2.61 it follows that 

Ckl must satisfy 

(ßk1 Ckl)(Ukl pk1 + Dkl 'k2) + (Bk - Bk)Pk2 =02.74 

Dropping the subscript k and defining 

s=U klpkl +D klpk2 2.75 

, 
2.74 becomes 



44 

Xs= (Bk - Bk)pk2 2.76 

In order to minimize 2.70 subject to 2.76 we define the Lagrangian 

n-k+1 
g(X) = IIB' - 8112 +E xiei(Xs - (Bk - Bk)Pk2) 2.77 

i=1 

where we have introduced Lagrange multipliers xi for the constraints 
2.76. 

We will now obtain the partial derivatives of 2.77. 

a II x1 II 2= kEl 
2 

[k_i 

r& ti us j 2.78 E rs i=l R=1 

n-k+l k-1 
IIXD + (B' - B)1I2 =E2 art stj + (g'rj - ßrj) dsj 2.79 

a rs j=1=1 

k-1 k-1 n-k+l 
aý 

IIB' - Bitt =2er1 uLjusj += 6tj6sj 
rs L=1 j=1 j=1 

n-k+l 
+E2 (ßrj - grj)dsj 2.80 

j=1 

If we define 

n-k+1 
h(X) =E ai ei(Xs - (Bk - Bk)pk2) 2.81 

i=1 

and by naming the elements of pk2 as wit iaja n-k+l 

n-k+l k-1 n-k+l 
h(X) =E X" E z"i rj +E (ß: j - ßij), Ij 2.82 

i=1 j=1 j=1 

where ri are the elements of the vector s. 

It follows 

a h(X) =xr2.83 a&rs rs 
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a 
k-1 

, n-k+l 
as 

h(X) =E Erjrj +E (Brj - Brj)"j 2.84 
r j=1 j=1 

and then 

k-1 k-1 n-k+l 
DErs "R 12r, j=lutjusj 

+ 
jE1 

Stjdsj 

n-k+l 
+E 20' - 

j=1 
grj)ssj + arrs 2.85 

ý k-1 n-k+l 39M E r. +. - aar j=1 rj J j=1 
ßrJ Brj ), rj 2.86 

In order to minimize 2.70 we should solve 2.85 and 2.86 equated to 

zero for all possible frs and ar. This requires solving n-k+l linear 

systems of order k-1 and is not practical. In order to simplify the 

problem, we restrict Ckl such that it only differs from Ckl in the 

p-column. In this case Ckl becomes uniquely defined from 2.61. 

tip = (ßi1 ßi1) rl i=1,2, ..., n-k+l 2.87 
P 

We still have some freedom in the choice of p such that rp #0 and we 
will use it for minimizing 2.70. 

With our choice of C11 2.70 becomes 

n-k+l k-1 n-k+1 
ýýBý - 8ýý2 = 

iEl jEl 
gp11 pj +. 

jrl 
clip"Pj + ali - ßijý2 2.88 

since gýj = gij if j>1 and by defining 

k-1 
u=E2 p 

2.89 
j=1 

n-k+1 
ap =E apj 2.90 

j=2 
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2 n-k+1 2 IIB' - B!! = 
iEl 

Eipup +' (hip'lpl + III ßi1)2 + E2p6p 2.91 

and 2.87 gives 

1ýü 
, rla 12 2 ,r+ 
rý -12+ 

,r 
ap 2.92 JIB' - B11 2= n-Ek+1 

(a 1-0.1 ) 
i=1 rp rp 

and then the problem is reduced to finding 

2 

min 
"1 

(u +d+ 62) - 
2ýl p+1; r#0,1 sp<k2.93 PP P1 rP p 

P 

The use of equation 2.69 in obtaining 5 is not safe numerically 
because (ßk - Bk) may be very small. We propose to use instead 

b' =b+ 
(ßii - E) (e7 lPk2)Pk2 

k 2.94 k -T - "kPk2Pk2 

which can also be obtained from 2.32 and 2.50. 

The same is valid also for equation 2.87 and we will use instead 

&'p _ 
(ßiä - e) Cei T ak) 

"1 
2.95 

kp 

2.3.4 Example of use 

We will show with one example how our proposed modification improves 
the performance of, Quasi-Newton methods. Consider Broyden's (1965) 

good method (vi = pi in 2.8). 

We will, take the function 

f(x) =x2.96 
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As the initial point we take 

xo = [iJ 2.97 

and as the initial approximation to the Jacobi'an 

-1 0 
Bo = 2.98 

01 

B0 is easily factorized as 

-1 010 
Bo = LAVA = 2.99 

0101 

Using Broyden's method we will obtain 

1 

Po = -Bol fo = 2.100 

-1 

and then 

2 

xi = xo + Po = 2.101 

0 

From 2.8 it follows 

T0 -1- 
B1 = Bo + 

fTpo 
= 2.102 

Popo 
-01 

And then B1 is singular and Broyden's method will have to be aborted 
since we will not be able to solve 2.96 for i; = 1. 

If instead of the original Bennett's algorithm, which will give us Bl 

as in 2.68, we apply our modi. fi'cation (Case a) of Lemma 2.2 for any, 

c>0, we will obtain 
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e e-1 

01 

and then 

2.103 

x2 
l2 

0} 

1 e-1 

= B2 
01 

0 

x3 = 
0 

and then x3 is the solution, obtained with any e>0. 

2.4 NUMERICAL RESULTS 

We will present in this section numerical results, obtained with the 
implementation discussed in this chapter of Broyden's method Cie, 
vk = Pk in 2.8). We will use the same set of examples as the report 
by HIEBERT (1980). There are basically two sets of examples: a 
"general set" of mathematical examples and a "chemical equilibrium" 
set; they are described in Appendix A. 

As was done by HIEBERT (1980), we will use a diagonal matrix Smn' for 
testing the behaviour of the code under different scaling conditions. 

The diagonal elements of the matrix Smn are defined by 

log10 ami = (m((2i -n- fl/Cn - 11)) 2.104 

for-i = 19 2, ..., n. 

For creating a, set with variables badly scaled we use 
AA 

f fix) = f(S5nx) 2.105 
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and for functions badly scaled 

f (x) = S5n f (x) 2.106 

We will compare our implementation of Broyden's method against Powell's 

method (MINPACK (1980) implementation) which was the one with best 

results in the report by Kiebert. 

In Table 2.1 we present results for the general set and in table 2.2 

those for the chemical equilibrium set. 

The chemical equilibrium problems are already badly scaled and thus 

no additional scaling is used for it. 

In the tables we present the number of problems for which each. code 
failed. The general set has 54 problems while the chemical equiltbri'um 
set has 22. 

Table 2.1: Number of failures for the general set (54 problems) 
Broyden Hybrid 

Original scale 
Variable badly scaled 
Function badly scaled 
TOTAL 

12 5 

13 21 
15 22 
40 48 

Table 2.2: Number of failures for the chemical equilibrium set 
(12 problems] 

Original scale 

Broyden Hybrid 
39 

We present in table 2.3 a comparison for the implementation with and 
without the reinitialisation mentioned in 2.2.1. 

Finally, table 2.4 shows a summary of results in percentage of success 
for the Broyden code tested by Hiebert, the hybrid code and our 
implementation. 
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Table 2.3: Number of failures for the general set showing the effect 
of reinitiali'sation (54 problems) 

With Reinitialisation Without 
Original scale 12 21 
Variable badly scaled 13 23 
Function badly scaled 15 26 
TOTAL 40 70 

Table 2.4: Percentages of success for both. sets 
General Set Chemical Equilibrium 

Hybrid c ode 70 25 
Broyden (tested by Hiebert) 33 42 
Broyden (our implementation) 75 86 

2.5 CONCLUSION 

The numerical behaviour of a method i extremely dependent on its 
implementation. 

Our implementation'of Broyden's'method prov ides'a code which gives 
numerical results competitive with those published so far. 

The implementation of Broyden's method can be greatly improved by 

using a reinitialisation procedure. This is particularly useful when 
solving flowsheeting problems since the cost of evaluating the 
initial Jacobian can be reduced considerably by making use of the 

sparsity of the'problem. 
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CHAPTER 3 

SCALING AND QUASI-NEWTON METHODS 

We will discuss in this chapter the relation of scaling and Quasi- 

Newton methods. 

First, we will establish sufficient conditions for having scale 
invariant methods,. then we will propose Quasi-Newton methods belong- 

ing to the rank-one update family which are scale invariant. We will 

show that three of the new methods are also least-change secant up- 
dates as defined by DENNIS and SCHNABEL (1978). It will also be shown 
that three of the proposed methods have similar local convergence 

properties to Broyden's method (ie, superlinear). 

Finally, the new methods will be compared with Broyden's method (our 

implementation mentioned in chapter 2) and the hybrid method tested 
by Hiebert. 

The same set of problems as in chapter 2 will. be used plus another 

set specially selected to investigate the change in behaviour of the 

methods as the scale of the variables is made worse. 

3.1 THE CONDITIONS FOR SCALE INVARIANCE 

We have already defined the property of scale invariance in chapter I. 

One important property of Newton's method (the basic method from which 
most others have been derived) is its scale Invariance for changes of 
scale of the form 1.29. 

The basic property of Newton's method which provides scale invariance 

is the following relation satisfied by the Jacobian 

F'(xk) = Df F'(xk)DX1 3.1 

K 

because since xo = Dx xo from 1.22 it follows that 

pN = DX pN 3.2 
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and from 1.23 

xk+1 =D x xk+1 3.3 

As we mentioned before, Newton's method is implemented normally (when 
derivatives are not available analytically) using an approximation 
Bk to F'(xk) obtained using 2.11 and we can characterize a family of 
methods, from which Newton's method will be a member using the 
following relation for Bk 

Bk = Qk Pk 3.4 

where Qk and Pk are obtained from n points xki and n steps pki and 
the corresponding function changes 

qki = f(xki + pki) - f(xki)' i=1,2, ..., n 3.5 

as 

Pk = (Pkt' Pkt' ..., Pkn) 3.6 

Rk = (qkl' qk2' ... qkn) 

For Newton's method (the discrete version) xki = xk for all i and 
pki = aei (x being the length of the perturbation). 

It can be easily verified that any method which corresponds to 3.4 

will satisfy 

Bk = Df Bk DX1 3.7 

and this will give us a sufficient condition for scale invariance as 
the following Lemma shows. 

Lemma 3.1: Any method for solving 1.18 which is defined by the 
following iterative procedure, given x0 and Bo, 

Pk = -Bk1 fk 3.8 

Xk+1 = Xk + Pk 3.9 
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with Bk+l obtained in such a way that for a given change 
of scale of the form 1.29 it satisfies 3.7, will be scale 
invariant. 

Proof: from 3.8 

Pk = -gk fk - -(°X BD) Df fk 

_D k 

and then from 3.9 

xk+l = Dx xk+1 

And then the methods defined by 3.4 are scale invariant. They have 
been called secant methods. 

i 
We have mentioned already the inconvenience of Newton's method regard- 
ing its requirements for function evaluations. Methods of the form 

3.4 have been proposed but comparisons are not available. PALOSCHI 

(1980) tested an implementation of a method of this form due to GRAGG 

and STEWART (1974) which gave good results regarding robustness but its 

storage requirement makes it unsuitable for solving large problems. 
(Its efficiency was also poor. ) The method of successive substitutions 
for solving problems of the form 1.11 (fixed point problems) is also 

scale invariant (in this case Dx = Df, see MALATHRONAS (1979)). 

The BROWN (1966) and BRENT (1973) methods are not scale invariant 
(except in, the trivial case Dx = aI, see MORE and COSNARD (1979)). 

The two Quasi-Newton methods proposed by BROYDEN (1965) are also not 

scale invariant. - The one considered "good" requires DX to be 

orthogonal (ie, DX = D-1, this includes all possible permutations of 
the variables; see MALATHRONAS and PERKINS (1980)), while Df should be 

orthogonal in the case of the "bad" method. 

We will devise in the next section Quasi-Newton methods which are 

scale invariant if Dx is a diagonal matrix. 
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3.2 SCALE' INVARIANT'QUASI=NEWTON'METHODS 

We have already defined in chapter 2 the family of rank-one Quasi- 
Newton methods. This family, in general, will not be scale invariant 

as the following analysis shows. 

Consider the update formula 2.8 which characterizes this family. If 

we do a change of scale of the form 1.29 then the new update on the 

new scale will be 

AT 
AAAAA k Bk+l = Bk + (Yk - Bkpk)ATA 

Vkpk 

k 
= Bk +D f(yk - Bkpk)ATy 

vkDXpk 

and since according to lemma 3.1, Bk must satisfy 3.7 for all k, 
it follows 

vT 
Bk+1 = DfBkoxl + Df(Yk - Bkpk)VTDk 

kxpk 

^T 

= Df Bk + (yk - Bkpk)ýTkDX DX1 3.10 
vkDXpk 

We can then see that unless vk is a chosen properly, 3.7 will not be 

satisfied by Bk+l' 

The following lemma will state sufficient conditions for rank-one 
Quasi-Newton methods tobe scale invariant. 

Lemma 3.2: A rank-one Quasi-Newton method defined with the update 
formula 2.8 will be scale invariant under changesof scale 
of the form 1.29 if the sequence of vectors{vk}, which 
characterises the method, is such that 

vk = o; 1 
Vk 3.11 
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provided that Bo is such that 

Bý = DfBoDxl 3.12 

and Dx is a diagonal matrix. 

Proof: Using 3.10 it follows that if Bk satisfies 3.7 then from 3'. 11, 

Bk+l satisfies 3.7. Using 3.12 it follows by induction that 3.7 is 

satisfied for all k, and lemma 3.1 then applies. 

We will now show the existence of methods satisfying lemma 3.2. 

The following notation will be used. 

Xk = (ßk1' ßk2" ..., ýkn) 

Pk = ("kl' 'rk2' "'' 'rkn) 

vk = (Vil' "k2' ..., vkn) 

Definition: Define the p seudoinverse' a+ of a real number a as 

0 ifa0 

a= 
1/a ifa 0 

Given the sequence'{xk} define the sequences'{vk}, '{vk}, '{vk} and 
{Vk} such that for each i, isisn 

1+ 
ski = k+l i 3.13 

2+23.14 
"ki rki(kiý 

ski = "ki("oi)2 3.15 

"ki = nki((ki poi)+)2 3.16 
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Lemma 3.3: Each one of the sequences * {vk}, ' {vk}, {vk} and ' {vk} 
satisfies 3.11. 

Proof: If we denote by si the i-th element in the diagonal of the 
matrix Dx we can see that 

A 
ski = siýki 

ski = i"ki 
AT+ 

Cki = Ckiýai 

poi = 11oiýai 

ýýki ýoi)+ "0 (ski - poi)+ýai 

and 3.11 follows. 

DENNIS and SCHNABEL (1978) proposed the theory for least change secant 
updates for Quasi-Newton methods. We will show now how it is possible 
to relate some of the scale invariant methods we are proposing to this 
theory. 

The Frobenius norm for matrices is defined as 

IIAIIF =EE (ei A ej)2 3.17 
i=1 j=1 

for a matrix A6 L(1Rn). 

Quasi-Newton methods are basically characterized by the updating 
formula for obtaining the approximation Bk+l and, as we have mentioned 
in chapter 2, the basic relation which rules how to obtain Bk+l is the 

secant relation 2.2. 

We can define a set of matrices, for two given vectors y and s, as 

Q(y, s) =' {M 6 L(1Rn) : Ms = y} 3.18 
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In particular, if s= Pk and y= yk, Q(y, s) will be the set of 
matrices satisfying the secant relation, ie Bk+l must be taken 
from Q(yk, Pd. Dennis and Schnabel have shown that the Broyden 

update (ie, vk = Pk in 2.8) is the solution to the problem 

BE Q(Ymin k' Pk) 
IIB - BkIIF 3.19 

They also have shown. that if we extend the Frobenius norm by defining 

the weighted Frobenius norm as 

IIAIIWl'W2 = IIWI A W2IIF 3.20 

for two given non-singular matrices Wl and W2, then the solution to 
the problem 

min 
B6 Q(Yk' Pk) 

JIB - Bk1l WSW.. 3.21 

is solved by taking B= Bk+l with Bk+l given by 2.8 where 

Vk = W-T W-1 Pk 3.22 

We can then see that some rank-one updates can be obtained as least 

change updates (that is if it is possible to express vk as 3.22). 

The matrix W can also be changed at each iteration allowing then 

the more general equation 

Vk = Wk T Wk 1 
Pk 3.23 

We can now show that three of the methods we are proposing can be 

expressed as least change updates under the Dennis and Schnabel theory. 
For all of them we can find a diagonal matrix Wk such that vk can be 

obtained using 3.23. If we express the diagonal elements of the matrix 
}, po for {vk} (we can in this Wk as a vector then'this is {xk} for {vk2 

case apply directly 3.22), and'{xk - xo} for'{vk}, 

While we have proposed only four different scale invariant methods it 
is possible to find many more methods satisfying 3.11. 
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For instance, the family of methods defined by 

++ 
. 24 ski - ýki1ýki/kida 3 

with a being independent of the scaling (ie, a= a) satisfies 3.11, 

as. well as 

"ki = (ski ýoi)+I"ki'(ki poi)+Ia 3.25 

vki _ "oil1ki/lroýla 3.26 

Theoneswe have proposed are special cases of these families. 

The two methods'{vk} and'{vk}, are also invariant under affine changes 

of the more general form 

f(x) = Df f(Dx1(x - b)) 3.27 

and so are the families 3.25 and 3.26. 

If we assume that Wk is a diagonal matrix then by defining the diagonal 

matrix Dk as 

-T -1 3.28 ýk - Wk Wk 

we can use instead of 3.23 

Vk = Dk Pk 3.29 

The condition for scale invariance which Ok should satisfy can be 
deduced from 3.11. 

A sufficient condition is 

Dk = DX Dk Dx 3.30 

We will show in the next section that rank-one Quasi-Newton methods 
satisfying our requirements for scale invariance have the same local 

convergence properties, ie superlinear, as Broyden's method. 
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3.3 CONVERGENCE'RESULTS 

In this section we will establish conditions for local superlinear 
convergence of scale invariant Quasi-Newton methods. 

The following theorem, due to BROYDEN, DENNIS, MORE (1973), will be 
the basis for our convergence results. 

Theorem 3.4: Let f: 1Rn -" 1Rn be differentiable in the open, 
convex set D and assume that for some x* in D, 
f(x*) =0 and F'(x*) is nonsingular, and for some 
ß>0. 

(IF'(x) - F'(x*)II sß lix - x*II 3.31 

for all xGD. 

Assume that there exist ul k0 and a nonsingular 
symmetric matrix M such that 

IIMvk - M-1pkII S ul IIM-1pkII max(Ilxk+l - x*II , IN - x*II) 3.32 

for all xk 6D and Bk such that IIBk - F(x*)11 <c 
for some c >0, where Pk is defined by 3.8 and xk+1 by 3.9. 

Then the method defined by 2.8 is well defined in a 

neighbourhood of x* and F'(x*) and the sequence {xk} 
is locally and superlinearly convergent at x*. 

Based on our deductions in the previous section we will assume that 
vk in 2.8 can be expressed as 3.29. 

We can now state the following theorem. 

Theorem 3.5: Let f: 1Rn i TRn satisfy the conditions of theorem 
3.4 and let {Dk}be a sequence of diagonal matrices 
such that for a fixed positive definite diagonal matrix 
D* the following relation is satisfied for all k. 

II Dk - D* II cn max (Il xk+l - x* II , IN xk - x* II) 3.33 
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Then the method defined by 2.8,3.8,3.9 and 3.29 
is locally and superlinearly convergent provided, for 

a change of scale of the form 1.29, Dk is such that 

-1 - 6k 
= Dx Dk Dx 

Proof: Define the change of scale 

xk = 0* xk 

We can see that 

IIv 
k- PkII = 11 D* Vk - D*PkII = IID*1(Dk - D*)D*pkil 

and then 

IID* vk -D *Pk 11 IID*1 11 IIDk D*II IID* pkII 

now defining 

p1 = nllD*111 

and from 3.33 

IID* Vk - D* pkII -c ul max(IIxk+l - x*II " IN - x*II) IID* pkII 

We now apply theorem 3.4, identifying M and D* 

With the following lemma we will show that three of the scale invariant 

methods we are proposing satisfy the conditions of theorem 3.5. 

Lemma 3.5: The sequences of vectors {vk}, {v3} and (v4 k) satisfy 
condition 3.33, provided for'{v2) x., has no zero 
components and for {vk} ei(x* - xo) J 0, i=1, n. 

Proof: We will use the notation aki for i-th diagonal element of the 
matrix Dk. 
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For {v2 } define D* such that 

,= (*ýý2 

In this case Dk is such that 

(C+)2 aki - ki 

and then 

_2-2+2+2 ki s*i - *i Eki)ý*i) ki) 

Since 2.27 must be satisfied only for an open set containing x*, and 
since we are assuming x* to have all its components away from the 

origin, then it is possible to show that there exists a constant Y1 
such that 

(*i + tki)2(E*i)4(Eki)4 ' Yý 

and then 

(Ski a*i)2 S Yl( *i - ýki) 2 

it now follows 

IIDk - D*II s Yj IIXk - x*II 

and`3.33 is immediate. 

For'{vk} define D* such that 

a*i = (7r +2 
oi) 

Since D* = Dk in this case the proof is trivial. 

And finally for {vk} define D* such that 

d*i = i(E*i poi)+)2 
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Dk will in this case be such that 

Ski = iý ki - poi)+)2 

and again, as we did for'{v21, we can find Y2 such that 

(aki a*i)2 S 72(&*i - Eki) 2 

and 3.33 follows as before. 

We have shown in 3.2 that least change secant updates, as defined by 
DENNIS and SCHNABEL (1978), can be expressed using 

-- Vk = Wk T Wk 1 
Pk 

If the matrices Wk are such that 

Dk = W; -T Wk1 

is a diagonal matrix and if for a change of scale of the form 1.29 
it satisfies 

Dk = Dx1 Dk DX' 

then we can apply our convergence results for any least change secant 
update which can be expressed in this way. 

3.4 NUMERICAL'RESULTS 

We will present in this section numerical results obtained testing 
the methods we have proposed in this chapter. 

The new scale invariant methods will be compared against our implemen- 
tation of Broyden's method presented in chapter 2 and the hybrid 
method tested by Hiebert. 
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We will use the same sets of mathematical examples as in chapter 2 
plus an additional set which is described in Appendix A and which 
we have named "general subset". 

This set has been constructed by taking from the general set those 
problems for which, with the standard initial point, all methods 
considered converged. For studying the behaviour of the different 

methods under a gradual deterioration of the scaling we will use the 
change of scale 

f(x) 
= f(Smn x) 

for m=0,4,8,12, and 16; with Smn as defined in chapter 2. 

We will refer to the different methods using the following nomenclature. 

$11 Scale invariant method using {vk} 

S12 "" "" "" "" {vk} 

S13 .... .... {vk} 

SI4 "" "" I' "" {vk} 

BRO 
. 

Our implementation of Broyden's method (as in chapter 2) 

HYB The hybrid method tested by Hiebert 

To compare the methods regarding efficiency a number ci is defined for 

each method on each problem as: 

not 1if the method has failed to converge 
c :. 

decºned 

ni /no if the method has converged 

where j indicates the method, nj is the number of function evalu- 
ation used for method j and no is the number of function evaluations 
used for the most efficient method of all on this particular problem. 

The results obtained are condensed in tables 3.1 to 3.3 for the three 

considered sets, the general set, the general subset and the chemical 
equilibrium set. 
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The first half of the table shows the number of failures for each 

method while the second half gives the averages for the efficiency 
number c .. 

Note ic oveca9e is based o-n -number of successes . or 
Pact%cu\är rneil%ods. 
Table 3.1: Summary of results for the GENERAL SET 

SIl S12 SI3 SI4 BRO HYB 
Fails Unscaled 14 12 13 14 12 5 

Var badly scaled 12 14 13 13 13 21 
Func " 18 18 14 14 15 22 
TOTAL 44 44 40 41 40 48 

Averages- Unscaled 1.49 2.10 1.71 1.73 1.84 1.33 

of c Var badly scaled 1.55 1.81 1.77 1.65 1.50 1.33 

Func " 1.77 1.26 1.27 1.50 1.44 1.41 

TOTAL 1.. 60 1.75 1.59 1.63 1.60 1.35 

Table 3.2: Summary of results for the GENERAL SUBSET 

m SI1 S12 

Fails 0 0 0 
4 0 0 

8 3 0 
12 9 8 
16 14 14 

TOTAL 26 22 

Averages 0 1.40 1.37 
of c 4 1.53 1.37 

8 1.63 1.57 
12 6.07 3.82 
16 2.75 1.40 

TOTAL 2.15 1.76 

S13 SI4 BRO 

0 0 0 

0 0 0 

0 1 3 
5 5 10 

11 12 14 
16 18 27 

1.12 1.27 1.24 
1.11 1.20 1.27 
1.28 1.17 1.28 
1.37 1.20 9.55 
3.11 1.16 1.04 
1.35 1.21 2.19 

Table 3.3: Summary of results for the CHEMICAL EQUILIBRIUM SET 

SI1 S12 SI3 SM BRO HYB 

Fails 3 3 3 3 3 9 

Averages of c 1.28 1.53 1.34 1.40 2.94 1.05 
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Finally, in table 3.4, we give a complete summary showing percentages 

of success for all methods on all sets. 

Table 3.4: Percentage of success of all methods on all sets 

SI1 S12 S13 S14 BRO HYB 

GENERAL SET 73 73 75 75 75 70 

GENERAL SUBSET 68 73 80 78 66 - 

CHEM EQUILIB SET 75 75 75 75 75 25 

The hybrid code was not tested with the general subset because it has 

shown already very bad behaviour when variables are badly scaled. 

The results for the general set (table 3.1) show no significant 
difference between our scale invariant method S13, SI4 and BRO (Broyden's 

method). The results for the remaining scale invariant methods do not 
differ too much. As before, all Quasi-Newton methods show better 

robustness (specially on the badly scaled cases) and slightly less 

efficiency than the hybrid code. 

The results for the general subset show clearly the advantage of the scale 
invariant code, all of them failing in less cases. S13 and SI4 give 
the best results in efficiency and robustness. 

For the chemical equilibrium set all scale invariant methods fail 

on three cases as does BRO. There is an important difference in 

efficiency but it is caused by a particular problem for which Broyden's 

method takes many more iterations than the rest. 

Finally, table 3.4 shows the global superiority of the scale invariant 

methods. 

3.5 CONCLUSIONS 

We have presented in this chapter scale invariant Quasi-Newton methods 
which are competitive with Broyden's method. The results obtained for 
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the general subset (when the variables are gradually badly scaled) 
show clearly the advantage of using the theoretically scale-invariant 
methods. Scale invariance, in practice, is only achieved if infinite 

precision arithmetic is used. Since this is not the case different 

results are obtained with different scales as the tables show. 
There is still room for improvement in the numerical conditioning 
of the methods in order to minimize the effects of finite precision 
arithmetic being used. We will show in the next chapter possible 
ways to deal with this problem. 

The scale invariant methods S13 and SI4 are the best alternatives 
according to our numerical results. 
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CHAPTER 4 

THE NUMERICAL CONDITIONING"0F'QUASI=NEWTON METHODS 

We will discuss in this chapter some ideas for optimizing the numerical 
conditioning of Quasi-Newton methods. 

We will first present the concept of condition number for general 
matrices and its relation to the numerical conditioning of systems of 
non-linear equations. 

Some ideas for optimizing the numerical conditioning will be proposed 
and tested. 

First, an explicit expression for the condition number of the approxi- 

mation to the Jacobian for general Quasi-Newton methods will be derived 

which will allow us to select Quasi-Newton methods with optimally 
conditioned updates. Secondly, an internal scaling procedure will be 

proposed for optimizing the condition number of both the problem and 
the approximation to the Jacobian. 

Finally we will present numerical results obtained with the proposals 

of this chapter. 

4.1 THE CONDITION NUMBER 

The condition number has been introduced as a measure of the numerical 

conditioning for general matrices (see TODD (1966)). 

For a non-singular matrix A6L (1Rn) the condition number K(A) is 

defined as 

K(A) = IIAII IIA-1II 4.1 

for a given matrix norm I1II. 

If A defines a system of linear equations in TRn 

Ax=b 4.2 
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it is a well known result (ORTEGA RHEINBOLDT(1970)) that if 
B6 L(TRn) is close to A in the sense that 

(IA-111 JIB - All <14.3 

then B is also non-singular, and for b#0 the solutions x* of 4.2 

and y* of 

Bx=c 4.4 

satisfy the estimate (see RHEINBOLDT(1974)) 

IIX* - Y*t) K(A) IIB - All 
+ 

lib - c1l 
4.5 

ýýX*ýý K(A) IIB - All/IIAII TIMT hIbil 

As an example of the use of this number let us assume that in solving 
numerically the equation 4.2 we have found an approximation y* to x* 
(the exact solution). 

If K(A) is a large number then the fact that Ay* sb does not mean 
that y* is close to x*; we can deduce this using 4.5 to obtain 

IIX* - YJ 
s KýAý 

Ilb - AY*I{ 

Ilx*ll Ilbil 

In general we can say that the smaller K(A), the better the result 
obtained in solving numerically 4.2. 

This important result has led to finding ways for transforming 4.2 
into an equivalent linear system having the same solution but smaller 
condition number. 

This concept of condition number for linear systems has been generalized 
to systems of non-linear equations byRHEINBOLDT (1974) as follows: 

For a given function f: Dc 1Rn yTRn, closed set CcD and point 
z6C define 
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u(f, C, z) = sup* {t E [0, °'); ilf(x) - f(z)J1 -- tlix-zli, c6 C} 

v(f, C, z) = inf* it 6 [0,00); IIf(x) - f(z) 11 c tlix-zU, cE C} 

and then, define the localized condition number 

4.6 

v(f, C, z) if 0< u(f, C, z), v(f, C, z) < 
u C, 

K(f, C. z) = 4.7 

co otherwise 

It can be shown that 4.7 reduces to 4.5 if f is a linear function. 

REINBOLDT (1974) has shown that if f is a continuous function in D 

and if the Jacobian F'(x) of f is nonsingular in D then for any 
c> 0 there is a6>0 such that if 

C={xE1Rn, ýýx - zil s s}cD 4.8 

then 

Iv(f, C, z) - JIF' (z) II Isc4.9 

lu(f, C, Z) - IIF'(z)-111-1I :5E4.10 

and then, asympotically near z, the conditioning of the non-linear 
function f and its Jacobian F'(z) are the same. 

An equivalent formula to 4.5 is obtained for the non-linear case and 
then the condition number for systems of non-linear equations plays a 
similar role as it does for linear systems. 

4.2 QUASI-NEWTON METHODS AND THE CONDITION NUMBER 

The numerical performance of Algorithm 1 in chapter 2 is affected by 
the condition number in two different ways. 

(a) The conditioning of the problem 1.18 itself, as explained in 

section 4.1. 
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(b) The conditioning of Bk since step 5 of the algorithm 
implies solving the linear system 

Bk Pk = ^Xk fk4.11 

We will propose in section 4.2.1 a way of dealing with (b) and in 

section 4.2.2 how to deal simultaneously with (a) and (b). 

4.2.1 Optimizing ihe *Condition number'üsina'different methods 

Step 5 in algorithm 1 involves the solution of a linear system. 
According to our discussion in section 4.1 we should try to optimize 
the condition number of Bk in order to obtain better numerical results. 
For this, we will make use of the degrees of freedom provided by Vk in 

step 8 of the algorithm, choosing it such that the condition number of 
Bk+l is minimized. 

The following property will allow us to obtain an explicit expression 
for K(Bk+l)' 

Property 1: For any A6 L(1Rn), b6 TRn, c6 TRn, the Frobenious norm 
for matrices and the Euclidean norm for vectors. 

CIA + bcTIIF = IIAIIF + IIbII2 IIcII2 + 2bTAc 4.12 22 

Proof: 

nn IIA + bcTIIF =EE (eiAe + eibcTe2 
i=1 j=1 -JJ 

nn 
=EE 

f(ejAe)2+(ejb)2(eJc)2 

i=1 j=1 

+2(eib)(eTAej)(cTej )) 

1EE (eieTAejej)c = IIAIIF + IIbII2 IIcII2 + 2b 
j i =1 =1 

= IIAIIF + IlbII2 IIcII2 + 2bTAc 
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In what follows we will assume II IIF for matrices and II 112 for 
vectors. 

We can then evaluate from 2.8 and Property 1 

22' 
IIYk 

'- Bkpk II. II yk JI2 
IIBk+1 11 = IIBkII + (VT k Pk)2 

+ 
2(Yk - Bkpk) T Bkyk 

Vkpk 
4.13 

If we define Hk = Bk1 3-k and using the SHERMAN and MORRISON (1949) 
formula, we can obtain from 2.8. 

T 
- Hkyk)vkH (Pk 

T 
Hk+l = Hk +ý k 

vkHkyk 

and then using again Property 1 

IIH 112 = IIH II + 
IIPk. - HkykJI2 " 

IINkHkII2 
k+l k (Vk Hk yk) 

+ 
2(Pk -H kyk )THkH T 

kvk 

V Hkyk 

We can now evaluate, using 4.13 and 4.15, 

K(Bk+1)2 = IIBk+lII2 IIHk+1112 

4.14 

4.15 

4.16 

and thus we have found an explicit way of evaluating the condition 
number for the approximation to the Jacobian obtained using rank-one 
Quasi-Newton methods. 
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Define now 

al = IIYk - BkPk II2 

03 = IN Pk - Hkyk II 2 

aý _ (yk - Bkpk)T Bk 

b4 = (Pk - Hkyk)T Hk 

9ý TRH ---> 1R as 

Ta Tv 

91(v) = IIBkII2 + al Tv2+2T4.17 (v Pk) VT Pk 

and g2 : TRn TR' as 

vTHHTv bTHTv 
92(v) = IIHkII2 + ß3 Tk 

k2 
+24k4.18 

iv HkYk) v HkYk 

If we define g: TO => TR - as 

9(ß) = 91(v) 92(v) 

then it follows 

K(Bk+l) = 9(ßk) 4.19 

If we are interested in minimizing the condition number of Bk+l using 
vk we should solve: 

min 9(v) 
v6 TRn 

4.20 

Since the only way to solve this problem is to do it numerically and 
this will be an iterative process itself (with no guarantee of 
convergence in a finite number of steps) it should be discarded as a 
way of optimizing 4.19. 
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We propose instead to restrict Vk such that the optimization problem 
4.20 can be solved explicitly or very easily. 

FLETCHER (1970), in dealing with the Quasi-Newton methods for optimi- 
zation, introduced the concept of "dual" formulas. He noted that the 

secant relation satisfied by all Quasi-Newton methods 

Bk+l Pk = yk 4.21 

could be thought of as a mapping giving yk from Pk and then a dual 
formula could be obtained from any formula satisfying 4.21 replacing 
Bk+l by Hk+l' Pk by yk and yk by Pk obtaining a formula satisfying 

Hk+l yk = Pk 4.22 

which is equivalent to 4.21. In the case of Broyden's "good" formula 
(vk = Pk in 2.8) the corresponding "dual" is the "bad" Broyden's 
formula (vT T 

= yk Bk)' 

If we define an updating formula by H0 and its corresponding dual by 
d H, Fletcher defined a family of formulae obtained from 

H= (1 - 0)H° + eHd 4.23 

He then chose e optimizing in some sense the conditioning of H. 

DAVIDON (1975) using the same concept introduced new formulas 

choosing e to optimize the condition number of Hki Hk+1Hk3(in this case 
H is symmetric and positive definite). 

Following the same idea we will use a parameter e for the optimi- 
zation of 4.20. 

Instead of 4.23 we will define v in terms of e as 

Vk=pk+euk 4.24 
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Note that, with vk given by 4.24, if we define 

coo = JI Bk 11 2 
£20 = II Pk II 

2 

E10 ° a1 I! PklI2 E21 = UT Pk 

C11 = 2°`1 UT k Pk c30 = 2aß Pk 

2T 
F-12 = alIIukil E31 = 2aß ltk 

equation 4.13 becomes 

IIB 112 =e+ 
e10 + c11e + C12e 

+ 
? 30 + £31e 

k+l 00 (c20 + £21 0) 2 
C20 + £21e 

and by defining 

600 = IJHkU(2 

alp (IPk - HkykJI2 IIp HkII2 

dý =2 II Pk - Hkyk II 2 
pkHkHku k 

a12 = IIPk - HkykII2 IIHkukII2 

equation 4.15 becomes 

T 
2O =H P kyk 

T H= ukHkyk 

TT 
30 = 2(pk - Hkyk) HkHkpk 

831 =2 (pk - Hkyk) T HkHkuk 

ýýH 112 =+ 
10 + alle + 

k+l ý0 
a 1202 630 + 

+ 
a 318 

(d20 + 621 e)2 620 + 6216 

We will then solve, instead of 4.20, the simpler problem 

min 
e6 1R 9(ßk) 

4.25 

4.26 

4.27 

with vk given by 4.24. 



We still have to choose ük and from this two methods will result. 

First we choose 

TTT ýk-3'kBk-Pk 4.28 

With this choice, vk is such that fore =0 it gives the Broyden's "good" 

formula while e=l it gives its dual. The method resulting from solving 
4.27 will be called method la; in addition we will define method lb as 

the one solving instead of 4.27. 

min 4.29 
0=0 or 0=1 9(ßk) 

The determination of e for method lb is immediate. 

In the case of method la a typical graph of g(vk) versus e is 

presented in fig 1 

Fig 1: Typical graph of g(vk) 

IL 
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The value el and 02 correspond to the annihilation of the denominators 

of 4.25 and 4.26. We found the value for 8 solving 4.27 using Newton's 

method which converges very quickly to each of the three local minima 
the initial points were taken as e1 -e, 01 + and 02 +c for some 

e>0. 

Finally, we will define method 2 choosing uk such that e21 -0 and 
621 =0 because this will enable us to solve 4.27 explicitly -(-'n this 

case g(vkj is a polynomial in e of order 41. In this case we need 

UT =0 k Pk 

and 

T 
UT Hkyk= 0 

which can be obtained taking uk as the projection on the subspace 
orthogonal to Pk and HLyk of the vector-uk for the method la. This 

restricts this method to problems for which n>2. 

4.2.2 Optimizing the condition number using scaling 

We have shown in the previous section how we can optimize the con- 
dition number of the martix used in step 5 of algorithm 1, but in 
doing that the condition number of the problem 1.18 remains unchanged. 

We will show in this section how we can achieve both things 

simultaneously. 

If the first approximation B0 in algorithm 1 is obtained by using 
finite differences (as we have proposed in chapter 21 it follows from 
3.7 that scaling the variables for function] at the first iteration is 

equivalent to postmultiplying (premulttplying for the functions the 
approximation Bo by the scaling matrix. 

The following Lemma will show that scaling the function every iteration 
is equivalent to premultiplyi'ng the Jacobian approximation by the 
scaling matrix. 
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Lemma 4.1: If we use the change of scale 

fk =Df fk 

in algorithm 1, B0 is such that 

Bo = Df Bo 

and 

Vk = Vk 

then 

Bk=DfBk, 

Proof: assume 

Bk= Df Bk, ks m 

From 2.8 it follows 

^T ým 
Bm+l = 

Bm + (ym - 
gm pmt T 

Vp mm 

and then from the hypothesis 

VT m Bm+1 =D fBm + Dm(ym - Bmpm) 
T VT 

and hence 

Bm+l = Df Bm+l 

The proof follows by induction. 

This Lemma shows that by altering the scaling matrix Df at each 
iteration we premultiply Bk by a different matrix each iteration. 
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The following theorem due to BAUER (1963) will be the basis for our 
choice of the internal scaling. 

Theorem 4.2: For a nonsingular matrix A6L (TRn) and nonsingular 
diagonal matrices D1 and D2, using the maximum norm 
for matrices, 

min K(D1 A) 
D1 

and 

min K(AD2) 
D2 

are achieved for DI and D2 determined from 

1A1! e = D2 e 

JA1 e= D1 1e 

4.30 

4.31 

4.32 

4.33 

(JAI means the original matrix with all its elements 
taken in absolute value. ) 

Our strategy for the internal scaling will be as follows: 

(a) At the first iteration scale the variables using 

0 
x0 = D2 x0 

where the. diagonal matrix 02 is obtained from 

18-11 e=De 

(b) At every iteration scale the function using 

fk = D1 fk 
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where the diagonal matrix Dl is obtained at each iteration 
from 

ýBkI e=D1 e 

The variables are scaled the first iteration in order to compen- 
sate for any bad scaling related to them. 

If we want to scale the variables every iteration then we have to 
be able to change all our data from the old scale to the new scale. 
This means we have to be able, given Bk, to obtain Bk for the new 
scale. If the method used is not scale invariant then this means 
that 

Bk Bk D21 4.34 

in general (because we will have different updates for different 

scales) and then we cannot obtain Bk based only on Bk and D2. 

Even in the case of scale invariant methods (for which 4.34 becomes 

an equality) since we need Bkl in order to obtain 02 from 4.32, it 

will make the scaling very expensive. 

Lemma 4.1 shows that since all updates of the form 2.8 are scale 
invariant for function scaling, it is possible to scale the function 

every iteration. In this case 

Bk = DI Bk 

and it is very simple to change the scales. Also since Bk is 

needed to obtain Dl using 4.33, it is not an expensive procedure. 

With this choice of the internal scaling we are minimizing the 

condition number of Bk at each iteration (ie, we obtain an effect 
similar to the one of section 4.2.1). If Bk is not far from the 

real Jacobian F'(xk) (which is not necessarily true as has been 

shown by DENNIS and MORE (1977), even when convergence is achieved) 
we will then also minimize the condition number of the problem 1.18 

as we have explained at the beginning of this chapter. 
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4.3 NUMERICAL'RESULTS 

We will present in this section numerical results for our proposals. 

The same sets of mathematical examples as in chapters 2 and 3 will be 

used, ie the "general set", "general subset" and the "chemical 

equilibrium set". In addition a new set called "restricted set" will 
be used and its description can be found in Appendix 1. It has been 

obtained from the "general set" taking only those problems with 

n>2 (this is because one of the methods we have proposed in section 

4.2.1 requires n> 2). 

The table of results have the same structure as those of chapter 3, 

je, we will present a number of failures and the averages for the 

coefficients cj. The methods will. be named as in chapter 3 plus the 

ones we have proposed in section 4.2.1 which will be named as follows. 

C1B Method la of section 4.2.1 

C1B Method lb of section 4.2.1 

C2 Method 2 of section 4.2.1 

In table 4.1 we present the results for the methods proposed in 

section 4.2.1. They are compared against our implementation of Broyden's 

method of chapter 2. The results clearly show that the optimization 

of the condition number of Bk as we have proposed is not a good idea. 

Table 4.1: Summary of results for the RESTRICTED SET 

CiA C1B C2 BRO 

Fails Unscaled . 15 15 14 11 

Var badly scaled 23 17 19 10 

Func badly scaled 20 15 13 11 

TOTAL 58 47 46 32 

Averages Unscaled 3.40 3 . 76 3.84 1.79 

of c Var badly scaled 2.29 1 . 66 2.16 1.73 

Func badly scaled 2.93 2.43 3.37 1.55 

TOTAL 2.93 2.64 3.18 1.69 
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In the following three tables we test the effect of the internal 

scaling we proposed in 4.2.2 when used for implementing Broyden's 

method as presented in chapter 2 and the scale invariant methods 
proposed in chapter 3. Results are also shown, for comparison, for the 
hybrid code mentioned in the previous comparisons (which as we mentioned 
before has a facility for an internal scale which is not used since 
it does not improve its performance). 

Table 4.2: Summary of results for the GENERAL SET using internal scaling 

Fails Unscaled 

Var badly scaled 
Func badly scaled 
TOTAL 

Averages Unscaled 

of c Var badly scaled 
Func badly scaled 
TOTAL 

SI1 S12 S13 S14 BRO HYB 

14 10 13 10 13 5 
13 10 14 12 13 21 
12 8 13 11 12 22 
39 28 40 M 38 48 

1.46 1.42 1.42 1.69 1.27 1.31 
1.54 1.65 1.40 1.66 1.31 1.30 
1.47 1.34 1.45 1.47 1.58 1.42 
1.49 1.47 1.42 1.60 1.39 1.34 

Table 4.3: Summary of results for the GENERAL SET 
Using internal scaling 

m Sil S12 S13 SI4 BRO 

Fails 0 0 0 0 0 0 

4 0 0 0 0 1 
8 2 1 1 1 1 

12 7 6 6 5 6 
16 14 12 11 11 8 

TOTAL 23 19 18 17 16 

Averages of c0 1.28 1.11 1.08 1.08 1.05 
4 1.34 1.14 1.12 1.27 1.08 
8 1.55 1.30 1.17 1.35 1.21 

12 4.82 3.78 1.30 1.38 1.27 
16 1.00 5.49 1.60 2.29 1.28 

TOTAL 1.91 1.89 1.19 1.37 1.16 
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Table 4.4: Summary of results for the CHEMICAL EQUILIBRIUM SET 

Using internal scaling 

SI1 S12 S13 SI4 BRO HYB 

Fails 121119 

Averages of c 2.16 1.38 2.00 1.29 1.93 1.04 

In table 4.5 we present a summary of results showing the percentage of 

success for all methods on all sets using the internal scaling. For 

comparison, the percentages of success obtained without the scaling 

- are shown. 

Table 4.5: Percentages of success for all methods on all sets using 
the internal scaling 

SI1 S12 S13 SI4 BRO HYB 

GENERAL SET 76 (73) 83 (73) 75 (75) 80 (75) 77 (75) 70 

GENERAL SUBSET 71 (68) 76 (73) 78 (80) 79 (78) 80 (66) - 

CHEM EQUILIB SET 92 (75) 83 (75) 92 (75) 92 (75) 92 (75) 25 

() is the percentage of success without the internal scaling. 

It is clear from the results that the use of the internal scaling 
improves the robustness of the codes. 

4.4 CONCLUSIONS 

We'have suggested ways of improving the numerical conditioning of 

code for solving the problem 1.18. The optimization of the condition 

number for the approximation to the Jacobian using different Quasi- 
Newton methods is not a good idea while optimizing it using internal 

scaling gives excellent results. 
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CHAPTER 5 

CHEMICAL ENGINEERING EXAMPLES 

In previous chapters we have tested all our proposals using mathemati- 
cal examples. This has allowed us to compare thoroughly the different 

alternatives on a wide set of examples and identify those which per- 
form best. 

In this chapter we will present numerical results obtained testing 
our best methods using Chemical Engineering flowsheeting examples. 

The examples were taken from various sources and two of them, in par- 
ticular, are benchmark problems proposed by the European Federation of 
Chemical Engineers to test the performance of different steady state 
simulation packages. 

The set of problems will involve the following features: 

- Involving only mass balances. 

- Involving energy and mass balances (hence physical properties such as 
enthalpy, K-values are needed). 

- Physical properties provided as procedures. 

- Physical properties provided as equations (ie, no internal 
iterations are required). 

- Strictly simulation problems (all feeds and equipment parameters 
known). 

- Design problems. 

- Mixing of equations and procedures. 

The simulations package to be used will be the SPEEDUP system 
developed at Imperial College. 

5.1 
. THE SIMULATION PACKAGE SPEEDUP 

We will run our examples using the simulation package SPEEDUP deve- 
loped at Imperial College (SARGENT, PERKINS and THOMAS (1982)) which 

was mentioned in chapter 1. 
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In this package, each unit in the flowsheet is represented by equations, 
procedures or any combination of both. All procedures have the 
following format: 

(output parameters list) NAME OF PROCEDURE (input parameters list) 

Physical properties are available from the package FLOWPACKI. of ICI, a 
Chao Seader correlation being used. 

Our numerical methods presented in the previous chapters, are available 
as options in SPEEDUP. 

SPEEDUP, based on a flowsheet description for the connection between 

the units, a description of the models representing the units plus an 

assignment between models and units will create a FORTRAN subroutine 
for evaluating the residual vector. Once the known variables have 
been set, SPEEDUP checks for a consistent system to solve (ie, same 
number of variables and equations) and then will decompose the problem, 
if possible, into irreducible blocks as explained in section 1.2. The 

problem will then be solved, block by block, with the numerical 
method chosen by the user. 

An important facility of SPEEDUP which has been very useful to us is 

the possibility of "typing" the variables and give to each type a 
default initial guess, a lower bound and an upper bound. 

The form of the facility we used is for instance: 

TEMP = 300 : 250 : 350 

where 300 is the default initial guess, 250 the lower bound and 350 
the upper bound for the variable type TEMP. 

The initial approximation to the Jacobian in SPEEDUP is obtained by 

finite differences using the algorithm of CURTIS, POWELL and REID 
(1974) which, for sparse systems, reduces the number of function 

evaluations (n+l is the maximum required) used to obtain the approxi- 

mation. COLEMAN and MORE (1981). have recently presented an algorithm 
to find the minimum of those function evaluations but the code imple- 

menting it is not available to us. 
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5.2 FLOWSHEETING'PROBLEMS 

We will describe briefly in this section the flowsheeting problems 
which will be used for testing our methods. A more detailed 
description is given in Appendix B. 

5.2.1 Small networks invö1'ing'heat'exchängers 

Two problems representing small heat exchanger networks will be used. 
We will refer to them by HEXT and HEX2. 

They were both taken from'GROSSMANN (1978) and are used as modified 
by EDWARDS (1982). 

HEX1 is a small network of four heat exchangers and one condenser. The 
flowsheet is presented in figure 5.1. 

HEX2 consists of three heat exchangers, a splitter and a mixer. 
In figure 5.2 its flowsheet is presented. 

We have solved these problems using two approaches: using only 
equations to model the heat exchanger and using procedures. Constant 

stream specific heats will be assumed. 
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Fig 5.1: Flowsheet for HEX1 and HEX1M 

HEI XCH1 

A8 
HEXCH2 

13 

9 
2 SPLITTER MIXER 

13 
5 

HEXCH3 

11 

4 

0 
6 

Fig 5.2: Flowsheet for HEX2 and HEX2M 

Q Temperature specified 
A 

Temperature and flow specified 

Heat transfer coefficients and area specified for all units 
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Consider the heat exchanger of Figure 5.1. 

cph 

cpc 

Figure 5.1: A heat exchanger unit 

A traditional way of representing a heat exchanger with equations 
is: 

C1 = Co 5.1 

Hý = Ho 5.2 

Q = cph H0 (T0 - T1) 5.3 

Q= cpc C0 (t1 - to) 5.4 

Q= UA. eTLM 5.5 

ARG = (T1 - to)/(To - t1) 5.6 

ATLM = ((T1 - T0) - (To - t1))/tn (ARG) 5.7 

where C refers to the flowrate in the cold stream 

H hot 

t temperature cold 
T hot 

Q is the interchanged heat 

cph and cpc are the specific heats of the hot and cold streams. 

It is possible to obtain explicit expressions for Tl and t1 using the 
NTU approach (see kAYS and LONDON (1964)) as follows: 
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If we define 

c= cph Ho 

c2= cpc Co 

c3=UA 

c= c2/cl 

from 5.3 and 5.4 we can see that 

T. = To + c(to - t1) - 5.8 

from 5.4,5.5 and 5.7 it follows 

c2(tl - to) = c3((T1 - to) - (To - tj))/Rn (ARG) 

and using 5.8 we can see that 

zn (ARG) = c3 
(1 - c) 

2 

And now defining 

a= exp (c3(1 - c)/c2) 

Using 5.6 and 5.8 we can obtain 

t1 = ((1 - a)TO - (1 - c)t0)/(c -a) 5.9 

We can see then that we can replace equations 5.1 to 5.7 with a 
procedure which evaluates sequentially 5.9 and 5.8. 

In SPEEDUP the procedure will be'of the'form 

(T1, t1)SIMHEX(Ho, To, Co, to, cph, cpc, UA) 5.10 

The advantage of using the procedure is that if all the input data are 
known then the procedure returns immediately the solution while the 

equations 5.1 to 5.7 are, even in this case, a system of nonlinear 
equations which has to be solved iteratively. 
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Also, there are less'numerical problems involved with equations 
5.8 and 5.9 than there are with equation 5.7 which involves a 
logarithm. 

We will consider both cases, ie, using only equations (5.1 to 5.7) 

for modelling the units (these problems will be called HEX1 and HEX2) 

and using equations and the procedure SIMHEX (which will be called 
HEX1M and HEX2M). 

In HEXT and HEX1M all specific heats are specified and some input 

flows and temperatures. The UA coefficient is given for all units 

as well as the latent heat of steam for the condenser. 

For HEX2 and HEX2M all feeds are specified (flowrate, temperature and 

specific heat) but the splitting fraction is left unspecified. The 

output temperature for the cooling stream is specified instead. 

The initial points used were as follows: 

HEX1: All temperatures were initialized with 500 : 100 : 900 

(initial guess, lower bound and upper bound). All flows 

with 1: 0:. 1. E10. The exceptions are listed in 

Table 5.1. 

HEX2: All temperatures" were initialized with 170 : 80 : 250, "the 

flows with 1: 0 : l. ElO with the exceptions list ed in 
Table 5.2. 

UNIT VARIABLE SOLUTION INITIAL PO INTS 
1 2 3 

EX3 Hot input temp 388 450 500 410 
Cold input temp 278 210 1.80 250 

CON Cold input temp 401 480 300 430 
EX1 Cold input flow 2.05 3.00 3.50 2.60 
EX2 Hot input flow 2.45 1.70 3.00 1.90 
EX5 Cold input flow 2.54 1.20 2.50 1.50 

Table 5.1: Solutions and initial points for NEXT 
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UNIT VARIABLE SOLUTION INITIAL POINTS 

1 2 3 

SPL Input temp 115 125 140 155 

Split factor 0.70 0.60 0.75 0.90 

MIX First input temp 195 200 180 160 

Second input temp 175 170 190 195 

Table 5.2: Solutions and initial points for HEX2 

HEX1M and HEX2M have the same initial point as HEXT and HEX2 but 

without any exception, ie, all variables have the standard initial 

point. 

For these problems we have developed in SPEEDUP a special initiali- 

sation procedure which we will call INIT. 

We can describe it very briefly as: 

- Of all the n variables initialize a subset of m variables. 

- Eliminate from the original problem m equations involving the 

m initialized variables. 

- Solve the reduced system of (n-m) equations (for our problems, 
it reduces to solving blocks containing only linear equations). 

This procedure is equivalent to doing one pass of the flowsheet 

using a sequential modular approach and it can easily be imple- 

mented in SPEEDUP. 

We will present results using this procedure for HEXT and HEX2. 
After having used the procedure INIT we have all variables 
initialized as a function of the first n guessed variables. We can 
then proceed as usual but with a hopefully better initial point. 

It was not necessary to use this procedure for HEX1M and HEX2M. 
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5.2.2 Cavett's process 

This well known problem was originally proposed by CAVETT (1963). 
We have used the modified version of MALATHRONAS (1979). 

The flowsheet is presented in figure 5.3. 

We have used for this problem the physical properties facilities in 
SPEEDUP. We have considered two cases for the modelling of the 
isothermal flashes: 

Case (a): Representing the flash by equations describing the mass 
balance plus an equilibrium equation using the K values 

and the vapour and liquid molar fractions, and a pro- 
cedure for evaluating the K values given temperature (T), 

pressure (P) and liquid composition(BOTTOM). The pro- 
cedure available in SPEEDUP is 

(K1) KVALU (T, P, BOTTOM) 

Case (b): Representing the flash using only a procedure available 
in SPEEDUP as 

(TOP, BOTTOM) SPHASE (T, P, FEED) 

which given temperature, pressure and feed composition 
evaluates the vapour and liquid composition. 

The procedure SPHASE contains internally an iteration loop which 
calls KVALU on each iteration. Case (a) avoids this inner iteration 

loop. 

The problem was originally proposed as a simulation problem, ie, all 
temperatures and pressures are given for all flashes plus the feed 
flowrate. We will call this problem CAVSIM. In addition, we have 

also considered a design problem in which the temperature of the 4th 

flash is not given, specifying instead the product flowrate for the 

second component in stream 12. This problem was also considered by 
MALATHRONAS (1981) and will be called CAVDES. 
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12 

Figure 5.3: Flowsheet for CAVSLM and CAVDES 
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For both problems all flowrates are initialized to 1: 0: 10 with 
the exceptions listed in table 5.3 . 

UNIT VARIABLE SOLUTION INITIAL POINTS 
CAVSIM CAVDES 

1 12 
FL1 Input flow 0.942 0.512* 0.512 0.512 

Five components 0.715 0.363 0.363 0.363 

0.211 0.121 0.121 0.121 

0.0262 0 00 

0.000286 0 00 

FL4 Temperature 303 not 290 340 
appli- 
cable 

Table 5.3: Solution and initial points for CAVSIM and CAVDES 

* This initial point is obtained copying the first three components 
of the feed. 

5.2.3 Benchmark problems from EFCE CHEMCOMP 82 

These two problems were proposed by the organisers of the conference 
of the European Federation of Chemical Engineers in Antwerp (May 1982) 
in order to test different steady state simulation packages. 

The first problem, CHEMC01, is a process of separation of a hydro- 

carbon mixture. The flowsheet is presented in figure 5.4. 

To implement this problem we have developed a special library of 
models which is presented in Appendix C. The isothermal flash is 

modelled using the procedure SPHASE (as it was for Cavett's process) 
of SPEEDUP while the adiabatic flash is modelled using the procedure 
SCALTP available in SPEEDUP as: 

(TOP, BOTTOM) SCALTP (H, P, FEED) 

which given enthalpy (H), pressure (P) and feed composition (FEED) 

evaluates the temperature (T), vapour (TOP) and liquid (BOTTOM) 

compositions. 
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To model the compressor and the expander the following equations 

were used (taken from JONES and HAWKINS (1960)): 

T temperature 

P pressure 

H enthalpy 

n efficiency 

Y Cp/Cv 

W work 

Sub scripts: in input 

out output 

id ideal 

For the expander: For the compressor: 

Tid Pout 

Tin = min 

(Hin Hout) 
n= 

in - id 

(Hin Hid) 
n= Hin Hout 

W= (Hout - Hin) 

For this problem the initial point used was the standard provided 
by SPEEDUP, which was: 

flowrates 50 :0 

flowrates 5000 : 0 

temperatures 300 : 200 

pressures 40 : 1 

fractions 0.5 : 0 

1000 kmol/hr 

500000 kg/hr 

900 OK 

300 bars 

1 
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deltas 0: -1. E10 : 1E10 

enthalpies 10 : -1E10 : 1E10 GJoules/hr 

The second problem, CHEMC02, is a process of production of methanol. 
The flowsheet is presented in figure 5.5. 

Only mass balances are performed for this problem so no physical 
properties are needed. A temperature approach to equilibrium is used 
to specify the performance of the reactor. 

The description of the reactor is as follows: 

Reaction: CO + 2H2 CH3OH 

CO + H2O CO2 + H2 

Reaction equilibria: 

pCH30H 
KP1 

PCO KPH 
2 

PCO PH2O 
Kp2 = 

PCO2 PH2 

with P() being the partial pressure of (). 

Equilibrium constants: 

Kii = 0.6 + 1.5 x 10-3 (T1 - 473) 

log10 KP1 = 9.218 + 3971 
- 7.492 log10 T1 + 1.77 x 10-391 

1 

- 3.11 X 10-892 

Kj2 = 0.89 +4x 10-4 (T2 - 473) 
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log10 K02= 1664 - 
1850 

2 

where T1 and T2 are specified temperatures at which the products 

would be at equilibrium with respect to reactions (1) and (2). 

K0 
P1 Kp1 

KJ 1 

K° 
KP2=KKi 

REACTOR 

Feed 2 MIXER 

1 

6 3 

PURGE 5 HEAT EXCH 
+ GAS/LIQ 
SEPARATOR 

7 
4 
Product 
stream 

Figure 5.5: Flowsheet for CHEMC02 
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The initial point for this problem is the one suggested by the 

proposers in which the composition of stream 2 is set to the same 
as stream 1. All the other flowrates are initialized to 
10000 :0: 1000000 (Kmoles/hr). 

5.2.4 Nitric acid plant 

This problem was also taken from MALATHRONAS (1979). 

The flowsheet for this problem is presented in figure 5.6. 

It consists of the simulation of a plant producing nitric acid and 

only mass balances are performed (hence no physical properties are 

needed). After decomposition we are left with a block of 199 

variables, being the largest problem we have solved (regarding 

storage requirements). We have used the library of standard models 

performing mass balances available in SPEEDUP. 

The initial point used was the standard provided by SPEEDUP for all 
flowrates (10 :0: 1000). 1 

We will refer to this problem as NITRIC. 

5.2.5 Crude preheat train 

This problem was taken from WONG (1981). 

It consists of a complicated network involving 20 heat exchangers 
and 12 streams. The flowsheet is presented in figure 5.7. a. 

The original problem was a simulation problem and we have modified 
it such that all feed flowrates, specific heats and temperatures are 
given as well as some measured temperatures. With this information, 
heat transfer coefficients are calculated for all units as well as 
intermediate temperatures and flows. 

We will use, for this problem, a model of heat exchangers using 
only equations and also one using the procedure SIMHEX as we did 
for the heat exchangers of section 5.2.1. We will call the problems 
respectively BPNET and BPNETM. 
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The initial point used in these cases was the standard provided by 

SPEEDUP which was: 

flowrates 100 :0: 1000 (Kmoles) 

temperatures 200 : -100 : 500 (°C) 

coefficients 100 :0: 1000 
(UA) 

Only for BPNET, the following temperatures are initialized: 

STREAM SOLUTION INITIAL POINT 

51 306 300 

52 215.3 250 

61 219.5 250 

This problem has been very interesting from the point of view of 
the decomposition phase of SPEEDUP. We have marked in the flowsheet 

for this problem (see Figure 5.7b) the two largest blocks found. 

By slightly altering the specifications we can obtain a very 
different decomposition. For instance, if instead of specifying 

stream 36, on the heat exchanger number 5, we specify stream 61 on 
the same unit, the decomposition will give us a block consisting 

only of the units which are connected to the flowsheet by stream 
33 (see Figure 5.7b).. 

5.2.6 Simple ethylene plant 

This problem has been taken from PERKINS (1979). 

The flowsheet is presented in Figure 5.8. Only mass balances are 

performed and, as we did for the nitric acid plant, the standard 
library of models performing mass balances was used. 

We have considered a simulation problem (all feeds and equipment 

parameters known) and 3 design problems: 
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CASE DESIGN VARIABLES 

1 Conversion in REAC10 
2 Conversion in REAC10 

REAC3 
3 Conversion in REAC10 

11 " REAC3 

DESIGN SPECIFICATIONS 

Flow of ethylene in stream 16 
Flow of ethylene in stream 16 

" propylene 19 
Flow of ethylene in stream 16 

11 methane 10 

TOTAL FEED FLOW Ratio of propane/butane in 
stream 19 

We will name the simulation problem SIMETH and the design problems 
DESETH. 

A standard initial point of 1: 0: 100 was used for all flowrates. 

5.3 NUMERICAL RESULTS 

We will present in this section the numerical results obtained for 
the problems mentioned in section 5.2. 

Four'methods will be considered, our implementation of Broyden's 
method mentioned in chapter 2 (BRO) and three of the scale invariant 

methods mentioned in chapter 3 (S12, S13 and S14). 

We will give for each problem the number of function evaluations used 
by the method on the biggest block. 

The reason for this is because whenever a failure occurred, it 
happened in the biggest block for all our problems as well as because 

regarding efficiency all methods perform equally in the smaller 
blocks. 

Turning first to the results for the small heat exchanger networks, 
we should note that the use of-equations for implementing the heat 

exchanger is not numerically safe because of the logarithm in 

equation 5.7. If the equation is implemented in this way we risk 
having a zero denominator. We have used instead 

ATLM m(ARG) = (Tj - to) - (To - tj ) 
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The problem when using this equation is that it creates trivial 

solutions (which are not solutions to the original problem). This 

trivial solution is 

ARG =1 

-to= T0-t1 

All cases for HEXT converge to trivial solutions in at least one 
heat exchanger and the results are presented in table 5.4. In table 

5.6 we present the results for HEX2; in this case no trivial 

solutions were found. The use of the procedure avoids this problem 

of trivial solutions and the results for these cases are presented 
in tables 5.5 and 5.7. 

INIT POINT INTERNAL SCALING INIT FACILITY METHODS 
BRO S12 S13 S14 

1 NO NO ** . ** 
** ** 

1 YES....... .. NO ** ** **.. . ** 

1 NO YES 63 52 83 46 

1 YES .. . YES . . 42. . 52 93 65 

2 NO YES 54 55 124 58 

2 YES YES 61 55 69 78 

3 NO YES 31 32 69 32 

3 YES YES 40 32 69 40 

Table 5.4: Function evaluations for the biggest block for HEX1 

** failed to converge 

INTERNAL SCALING METHODS 
BRO S12 S13 S14 

NO 36 28 59 28 

YES 79 28 59 28 

Table 5.5. Function evaluations for the biggest block for HEX1M 
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INIT POINT INTERNAL SCALING INIT FACILITY BRO 
METHODS 
SI2 S13 S14 

1 NO NO ** ** ** ** 

1 YES NO ** ** ** ** 

1 NO YES 91 29 29 34 
1 YES YES 34 29 44 109 

2 NO YES 86 117 92 75 
2 YES YES ** 159 93 213 

3 NO YES ** ** ** ** 

3 YES YES 88 81 ** 285 

Table 5.6: Function evaluations for the biggest block for HEX2 

INTERNAL SCALING INIT FACILITY METHODS 
BRO S12 S13 S14 

NO NO 71 105 83 78 

. ... YES. NO . . 70'. . .. 42 134 152 

NO' YES 23 26 62 21 

YES YES 26 26 54 34 

Table 5.7: Function evaluations for the biggest block for HEX2M 

These problems show clearly: 

- The use of a procedure for implementing the heat exchangers is 

preferable to the use of equations. It allows the use of 

standard initial guesses in SPEEDUP. 

- The INIT facility for obtaining an initial point is essential for 

this problem represented solely as equations. A solution can not 
be obtained without it. 

- The use of the internal scaling, while it seems to cause the 

efficiency to deteriorate in some cases, helps robustness. 

All methods failed to solve the Cavett's process problem for case 
(a) ie, when equations are used (plus the procedure KVALU). For 
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case (b) most methods did very well and the results are presented 
in table 5.8. The methods BRO and S12 performed best while S13 

and S14 failed for some design cases. 

PROBLEM INITIAL TEMP SCALING BRO 
METHODS 

S12 S13 S14 

CAVSIM - NO 66 64 98 67 

- YES 100 81 101 107 

CAVDES 290 NO 77 97 ** 65 

290 .... YES 85 108 ** ** 

340 NO 86 82 ** ** 

340 YES 90 195 ** 105 

Table 5.8: Function evaluations for the biggest block for CAV5IM and 
CAVDES 

Our results are consistent with those obtained by HILTON . and 

STADTHERR (1981) when considering Cases (a) and (b) with the 

equation oriented package SEQUEL. They also found case (b) to 

perform better than case (a). 

Table 5.9= shows the results obtained with'the benchmark problems of 

EFCE CHEMCOMP 82. All codes succeeded in finding the solution and the 

use of the internal scaling does not alter=the results much. 

PROBLEM INTERNAL SCALING 'METHODS 
BRIO S12 S13. S14 

CHEMCO1 NO 39 , 
40 77,67 

YES 41,40.78 75 

CHEMC02 NO 74 '105 110 109 

YES 85 99 145 87 

Table 5.9 : Function evaluations for the. bigg, est block for the 
benchmark problems of EFCE CHEMCOMP 82 

ri 
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We present in table 5.10, the results for the crude preheat train. 

PROBLEM INTERNAL SCALING METHOD 
BRO S12 S13 S14 

BPNET NO 36 30 57 31 
YES *33 

. 30 . 46 30 

BPNETM NO 61 69 ** 155 
YES 94 69 ** 212 

Table 5.10: Function evaluations for the biggest block for the 
crude preheat train 

Contrary to the results obtained for the Cavett's process and HEXT 

and HEX2, for this problem the use of only equations for modelling 
the heat exchanger gives better results than using the procedure. 
All methods converge very fast and with the standard initial point. 

The reason for this is that because most temperatures are known, the 

argument of the logarithm in the equations is known eliminating the 

main disadvantages of the use of equations. This also avoids the 

problem of trivial solutions which we found for HEXT. 

Again S13 fails for BPNETM while BRO and S12 perform best for all 

cases. 

Due to the internal decomposition in SPEEDUP, the problems NITRIC 

and all the cases for the simple ethylene plant are such that they 

are decomposed into only linear blocks (which our code solves in 

one iteration). This is due to the fact that the nonlinearity is 

only caused by products of two variables (ie, the function is 

bilinear), which are solved for in separate blocks. Thus they 
become linear blocks. 

We do not present any results for these problems since all methods 
solve them in one iteration. 

We summarize in table 5.11 the percentages. of success for all 
methods on the 18 problems considered. 
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INTERNAL SCALING BRO S12 S13 S14 

NO 83 83 67 78 

YES 83 89 67 83 

TOTAL 83. . . 
86. 67 81 

Table 5.11: Percentage of success for all problems 

The methods BRO and S12 are those which had the best performance 
for the Chemical Engineering problems. Globally, the internal 

scaling solves more problems. 

Re present in Table 5.12 the sizes of the problems solved. 

PROBLEM TOTAL NUMBER NUMBER OF IH BIGGEST BLOCK 
OF VARIABLES BLOCKS VARIABLES tONLINEA1 EQUATIONS 

HEX1 36 14 20 14 

HEX1M 21 11 11 8 

HEX2 27 9 15 9 

HEX2M 18 9 9 5 

CAVSIM 55 1 55 40 

CAVDES 55 1 55 40 

CHEMC01 251 157 57 38 

CHEMC02 99 48 52 18 

NITRIC 425 227 199 0 

BPNETM 207 161 26 14 

BPNET. 267 236 25 13 

SIMETH . 65 22 8 0 

DESETH1 65 28 7 0 

DESETH2 65 26 7 0 

DESETH3 87 36 33 0 

Table 5.12 Size of the Chemical Engineering problems solved 
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5.4 CONCLUSIONS 

We have available a code implementing our proposed methods whose 
behaviour on chemical engineering flowsheet problems is very good 
when used in conjunction with the simulation package SPEEDUP. 

Our conclusion is based on the fact that we have tried a wide 
variety of problems, all considered before by different authors 
(two of them being benchmark problems) and the initial points used 
were, in general, the standard provided by the simulation package 
(and the exceptions are a very small proportion of the total 

number of variables being initialized). 

It seems desirable to incorporate in SPEEDUP an initialization 

such as we have used for the problems HEX1 and HEX2. It is clear 
that it will help robustness as well as efficiency. 

The importance of the exploitation of the structure of the problem 
is demonstrated by our results. Two problems (ETHYL and NITRIC) 

which are nonlinear became linear due to the decomposition. The 

problem BPNET shows how useful, for reducing the size of the problem, 
the decomposition is. The decomposition into smaller blocks also 
helps the debugging of a problem, helping to locate the source of 
difficulties, (such as badly posed problems or getting better 
initial guesses). The problems HEX1M and HEX2M also show how 

exploiting the structure (in this case by having explicit expressions 
for some variables) helps to overcome very difficult problems. 

It is unfortunate that avoiding internal loops in the physical 

properties calculations by linking them to the nonlinear system 

gives such bad results. The use of special procedures for the 

physical properties seems to be essential. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

This thesis has been concerned with the study of the problem of 
numerical solution of systems of algebraic nonlinear equations in 
Chemical Engineering. 

Our conclusions from this study follow. 

Our implementation of the method of BROYDEN (1965) (Chapter 2) is a 
considerable improvement over the codes published so far. 

We have presented Quasi-Newton scale invariant methods which have 

shown numerical results which puts them as an excellent alternative to 

our implementation of Broyden's method, with the additional advantage 
of being theoretically scale invariant (Chapter 3). We have proposed 
only 4 particular scale invariant methods but we have shown that many 
more could be devised. Our ideas for scale invariance could be 

extended for Quasi-Newton methods generated by updates other than 

rank-one. 

We have proposed and tested with good numerical results an internal 

scaling procedure which relies on a reasonable theoretical justification. 
The use of this procedure can be extended to any code for solving non- 
linear algebraic equations for which an approximation to the Jacobian 
is used. 

Our codes have shown particularly good numerical results when used for 

solving steady-state flowsheeting problems. A wide set of examples 
have been used for the testing and the initial points used were in 

general well away from the solution. This shows clearly the 
robustness of our codes. 

We have confirmed, with our results, previous findings by other 
authors regarding the deterioration of the numerical performance of 
codes when the physical properties inner iterations are considered 
together with the main iteration for solving the non-linear system. 
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Since there is a great 
for physical properties, 
should be given to this. 

advantage involved in avoiding inner loops 
it seems to us that special attention 

We believe that our initialisation procedure for obtaining better 
initial points (section 5.2.1) in SPEEDUP should be incorporated as 
a standard feature. Our examples have shown that much can be gained 
in robustness when it us used. 

Finally, our experience shows that the combination of our codes and 
the simulation package SPEEDUP provides a very useful tool for per- 
forming steady-state flowsheeting problems in Chemical Engineering. 



113 

REFERENCES 

ASPEN PROJECT (1980), "Aspen User Manual", MIT Cambridge, MA. 

BARNES JGP (1965), "An algorithm for solving nonlinear equations 
based on the secant methods", The Computer Journal; 8, pp 66-72. 

BAUER, FL (1963), "Optimally scaled matrices", Num Math, 5, pp 73-87. 

BENNETT. JM (1965), "Triangular factors of modified matrices", Num 
Math, 7, pp 217-221. 

BOGLE, IDL (1979), "Numerical methods for nonideal flowsheeting 
problems, MScDiss, Imperial College. 

BRENT RP (1973), "Some efficient algorithms for solving systems of 
nonlinear equations", SIAM J on Num Anal, 10, No 2. 

BROYDEN. CG (1965), "A class of methods for solving non-linear 
simultaneous equations", Math of Comp, 19, p 577. 

BROYDEN CG (1967), "Quasi-Newton methods and their application to 
function minimisation", Math of Comp, 21, p'368. 

BROYDEN CG (1969), "A new method of 4o1vjn9 ngnljneAr siluultaneous 
eauations" 

, Comp_. Journal ; 12: ' 

BROYDEN. C G, DENNIS J E, MORE JJ (1973), "On the local and 
superlinear convergence of Quasi-Newton methods", J of the Inst 
of Math and Appl, 12, p 223. 

BROWN, KM (1966), "A quadratically convergent method for solving 
simultaneous non-linear equations", PhDDiss, Purdue Univ. 

BUS. JCP (1975), "A comparative study of programs for solving non- 
linear equations", Mathematisch Centrum Report NW 25/75, 
Amsterdam, Holland. 

CAVETT RH (1963), "Application of numerical methods to the conver- 
gence of simulated processes involving recycle loops", American 
Pet Inst, Preprint No 04-63. 

CHEN H S, STADTHERR MA (1981), "A modification of Powell's dogleg 
method for solving systems of non-linear equations". Comp and 
Chem Eng, 5, No 3. 

COLEMAN 'T F, MORE JJ (1981), "Estimation of sparse Jacobian matrices 
and graph coloring problems", Argonne Nat Lab Report, ANL- 81-39. 

COSNARD MY (1975), "A comparison of four methods for solving systems 
of non-linear equations", Report TR75-248, Cornell Univ, Dept 
Comp Science. 

CROWE CM, NISHIO M (1975), "Convergence promotion in the simulation 
of chemical processes . the general dominant eigenvalue method", 
AIChE J, 21, No 3. 

CURTIS. AR, POWELL MJD. REID JK (1974), "On the estimation of 
sparse Jacobian matrices", J Inst Math Appl; 13, p 117. 



114 

DAVIDON .WC (1975), "Optimally conditioned optimization algorithms 
without line searches", Math Progr, 9, pp 1-30. 

DENNIS J E, MORE JJ (1974), "A characterization of superlinear 
convergence and its application to Quasi-Newton methods", Math 
Comp, 28, p 549. 

DENNIS J E, MORE JJ (1977), "Quasi-Newton methods, motivation and 
theory", SIAM Review, '19, No 1. 

DENNIS J'E, SCHNABEL RB (1978), "Least change secant updates for 
Quasi-Newton methods", Report TR78-344, Cornell Univ, Dept Comp 
Science. 

EDWARDS DW (1982), "Robust decomposition techniques for process 
design and simulation", PhD Thesis, Univ London. 

FLETCHER R (1970), "A new approach to variable metric algorithms", 
The Comp Journal; 13, No 3. 

GAY. D M, SCHNABEL RB (1978), "Solving systems of non-linear 
equations by Broyden! s method with projected updates", From: 

"Nonlinear Prog 3, Ed, Mangasarian, 0L and others, Academic Press. 

GILL P E, MURRAY W. (1972), "Quasi-Newton methods for unconstrained 
optimisation", J Inst Math Applic, 9, pp 91-108. 

GORCZYNSKI E W, HUTCHISON HP (1978), "Towards a quasilinear process 
simulator - I: fundamental ideas", Comput Chem Eng, 2, p 189. 

GRAGG W B, STEWART GW (1974), "A stable variant of the secant method 
for solving nonlinear equations", Carnegie Mellon Univ Report. 

GROSSMANN I (1975), "Optimum design of heat exchanger networks", 
MSc Thesis, Univ London, 

GROSSMANN I, del ROSAL R (1978), "Comparacion de methodos de 
convergencia en el calculo de reciclos", XVIII Conv. Nac del IMIQ 
Merida. 

HIEBERT KL (1980), "A comparison of software which solves systems of 
nonlinear equations", Sandia Lab Report, SAND W- 0181. 

HILTON C, STADTHERR MA (1981), "Development of a new equation based 
process flowsheeting system", Paper at 75th AIChE meeting, 
New Orleans. 

IMSL (1979), "Library Reference Manual", Ed 7. 

JOHNS WR (1970), "Mathematical considerations in preparing general 
purpose computer programs for the design or simulation of chemical 
processes". Paper at EFCE Conf "The use of computers in studies 
preceding the design of chemical plants", Florence, Italy. 

JOHNS W R, SHEPPARD AJ (1975), "Multi-component multi-stage absorption 
and distillation calculations for use with flowsheeting programs", 
Symp , Computers in the design and erection of chemical plants, 
Karlovy Vary, Czechoslovakia. 



115 

JONES J B, HAWKINS GA (1960), "Engineering thermodynamics", John 
Wiley. 

KAYS W M, LONDON AL (1964), "Compact heat exchangers", McGraw-Hill. 

KUBICEK M, HLAVACEK V, PROCHASKA, F (1976), "Global modular Newton- 
Raphson technique for simulation of an interconnected plant 
applied to complex rectification columns", Chem Eng Sci, 31, 
p 277. 

LEE N (1980), "Simultaneous solution of design, torn streams and 
multi-component distillation equations in a sequential modular- 
flowsheeting package", MSc Thesis, Univ of London. 

MAHALEC V, ' KLUZIK H, EVANS BL (1979), "Simultaneous modular algorithm 
for steady state flowsheet simulation and design", CAGE 79, EFCE, 
Montreux. 

MALATHRONAS JP (1979), "Solution-of simulation and design 
problems using Broyden's method in sequential modular flowsheeting 
packages", MScDiss, Imperial College. 

MALATHRONAS J P, PERKINS JD (1980), "Solution of design problems 
using Broyden's method-in a sequential modular flowsheeting package". 
Paper at CHEM PLANT 80, Heviz, Hungary. 

METCALFE S R, PERKINS JD (1978), "Information flow in modular flow- 
sheeting systems", Trans IChemE, '56, p 210. 

MINPACK (1980), "Documentation", Argonne Nat Lab, App Math Div. 

MORE J J. COSNARD MY (1979), "Numerical solution of nonlinear 
equations", ACM TOMS, 5, No 1. 

MORE ýJ J, GARBOW B S, HILLSTROM KE (1980), -"User guide for Minpack-l", 
Report ANL-80-74, Argonne Nat Lab. 

MOTARD R L. LEE HM (1971), "CHESS User's Guide", 3rd Ed, Dept of Chem 
Eng, Univ of Houston. 

MOTARD R L, SHACHAM M, ROSEN EM (1975), "Steady-state chemical process 
simulation", AIChE J, 21, p 417. 

ORBACH 0, CROWE CM (1971), "Convergence promotion in the simulation of 
chemical processes with recycle - the dominant eigenvalue method", 
The Canadian J of Chem Eng, 49. 

ORTEGA J M, RHEINBOLDT WC (1970), ""Iterative solution of nonlinear 
equations in several variables", Academic Press. 

PALOSCHI. JR (190), "A comparative study of algorithms for solving 
systems of nonlinear equations", Imperial College Report. 

PERKINS, JD (1979al Personal communication. 

PERKINS JD (1979bl "Efficient solution of design problems using a 
sequential modular flowsheeting programme", Paper at 12th Symp 
on Comp Appl in Chem Eng, Montreux. 



116 

POWELL'' MJD (1970), "A hybrid method for nonlinear equations", In 
"Numerical methods for nonlinear algebraic equations", 
P Rabinowitz, ed, Gordon and Breach. 

RHEINBOLDT W (1974), "On measures. of ill conditioning for nonlinear 
equations", Tech Report TR330, Univ of Maryland, Comp Sci Center. 

ROSEN EM (1962), "A machine computation method for performing material 
balances", Chem Eng Progress, '58, No 10. 

ROSEN. EM (1966), "A review of Quasi-Newton methods for nonlinear 
equation solving and unconstrained optimization", Proc 21st ACM 
Nat Meet, Washington. 

SAIGAL R (1979), "On solving large structural fixed point problems", 
Paper at Symp, on fixed point alg and complementarity, Southampton 
Univ. 

SALGOVIC, A, HLAVACEK V, ILAVSKY J (1981), "Global simulation of 
counter current separation processes via one-parameter imbedding 
techniques", Chem Eng Sci, '36, No 10 

SANDIA (1975), "Mathematical Subroutine Library", Sandia Lab. 

SARGENT RWH (1977), "The decomposition of systems and procedures 
and algebraic equations", Paper at Dundee Conf on NA. 

SARGENT RWH, PERKINS J D, THOMAS. S (1982), "SPEEDUP: a computer 
program for steady-state and. dynamic simulation of chemical 
processes", Paper at IChemE Jubilee Symp. 

SCHUBERT. LK (1970), "Modification of Quasi-Newton method for nonlinear 
equations with a sparse Jacobian", -Math of Comp, 23, p'27. 

SHERMAN J, MORRISON WJ (1949), "Adjustment of an inverse matrix 
corresponding to changes in the elements of a given column as a 
given row of the original matrix", Ann Math Statist, 20, p 621. 

TODD MJ (1966), "On condition numbers", Paper at Prog on Math 
Num, Besancon. 

TODD MJ (1976), "The computation of fixed points and applications", 
Springer-Verlag, New York. 

VANEK. T, HLAVACEK V, KUBICEK M (1977), "Calculation of separation 
columns by-nonlinear block successive relaxation methods", Chem 
Eng Sci, 32, p 839. 

WEGSTEIN J (1958), "Accelerating convergence of iteration processes", 
Comm ACM, 1, p 9. 

WONG MPF (1981), "Efficient solution of flowsheets with heat 
exchangers using Broyden's. method in a sequential modular package", 
MSc Thesis, Univ of London. 



117 

APPENDIX A 

THE SETS: OF MATHEMATICAL'EXAMPLES 

We describe here the sets of mathematical examples used for the 

comparisons. All of them are taken from HIEBERT (1980). 

The basic set of'examples consist of 18 different "mathematical" 

problems, each one having a standard initial point (with the exception 
of the last three having more than one initial point). 

The list of problems can be found in Table Al and they are collected 
in the MINPACK (1980) test routines VECFEC and INITP listed in 
Appendix D. 

Problems F to N are of variable dimension. 

From the basic set of examples four different sets of problems will be 

configured as follows. 

GENERALSET: Consists of 54 problems taken from the basic set, 21 having 

as initial point xo (the standard initial point), 18 with 10x0, and 
15 with 100x0. In table A2 we summarize the problems for this set. 

GENERAL'SUBSET: This is a subset of the general set. If consists of 
16'problems, all having the standard initial point and it is listed 

in table A3. All the problems for this set were selected such that 

all methods considered converged for the standard initial point. 

CHEMICAL'EQUILIBRIUM SET: Consists of 12 problems taken from 0 to Q 

from the basic set and taking different initial points. It is 

listed in table A. 

RESTRICTED'SET: This is just the general set where all problems with 

n<2 were removed. It consists of 46 problems. 
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PROBLEM DESCRIPTION DIMENSION 

A Rosenbrock's function 2 

B Powell's singular function 4 

C Powell's badly scaled function 2 

D Wood's function 4 

E Helical valley function 3 

F Watson's function variable 

G Chebyquad function 

H Brown's almost linear function 

I Discrete boundary value problem 

J Discrete integral equation function 

K Trigonometric function 

L Variable dimensioned function It 

M Broyden's tridiagonal function 

N Broyden's banded function 

0 Chemical equilibrium problem 1 2 

P if It 11 2 6 

Q 3 10 

Table Al: List of problems and dimensions 
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Prob Orig 
Prob Dirnen 

1 A 2 

2 B 2 

3 C 2 

4 D 4 

5 E 3 

6 F 6 

7 F 9 

8 G 5 

9 G 6 

10 G 7 

11 G 9 

12 H 10 

13 H 30 

14 H 40 

15 I 10 

16 J 2 

17 J 10 

18 K 10 

Prob Prob Dirnen 

19 L 10 

20 M 10 

21 N 10 

22 A 2 

23 B 4 

24 C 2 

25 D 4 

26 E 3 

27 F 6 

28 F 9 

29 G 5 

30 G 6 

31 G 7 

32 H 10 

33 I 10 

34 J 2 

35 J 10 

36 K 10 

Prob Prig Dirnen 

37 L 10 

38 M 10 

39 N 10 

40 A 2 

41 B 4 

42 D 4 

43 E 3 

44 G 5 

45 G 6 

46 G 7 

47 H 10 

48 I 10 

49 J 2 

50 J 10 

51 K 10 

52 L 10 

53 M 10 

54 N 10 

Table A2: List of problems and dimensions for the general set. 
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Prob Orig Prob Dirnen 

1 A 2 

2 B 4 

3 C 2 

4 F 6 

5 F 9 

6 G 5 

7 G 6 

8 G 7 

9 H 10 

10 H 30 

11 I 10 

12 J 2 

13 J 10 

14, L 10 

15 M 10 

16 N 10 

Table A3: List of problems and dimensions for the general subset. 
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Prob Orig Prob Dirnen 

1. 0 2 

2 0 2 

3 p 6 

4 P 6 

5 p 6 

6 p 6 

7 Q 10 

8 Q 10 

9 Q 10 

10 Q 10 

11 Q 10 

12 Q 10 

Table A4: List of problems and dimensions for the chemical 
equilibrium set. 
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APPENDIX B 

DESCRIPTION'OF'THE CHEMICAL ' ENGINEERING' PROBLEMS 

HEX1 and'HEX1M 

The flowsheet is shown in fig B1. We will use the following 

notation. 

I. temp of stream i 

Fi flowrate of stream i 

cpispecific"heat of stream i 

The known data for this problem are: 

T. = 140 T3 = 320 T4 = 320 

T6 = 240 T8 = 500 T9 = 560 

T14 = 280 T15 = 100 T16 = 160 

F4 = 2.7778 F6 = 2.306 

cp1 = 0.7 cp4 = 0.6 cp6 = 0.5 

cp9 = 0.5 cp11 = 0.8 cp15 = 1.0 
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UA 

EX1 3.975 

6X2 1.665. 

EX3 0.81 

EX4 0.81 

The latent heat of steam for the condenser is 656.6. 

HEX2 and HEX2M 

The known data are 

F1 F8. = 0.6 F10 = 0.4 

F12 = 0.7 T1 = 80 T7 = 190 

T8 = 250 T10 = 220 T12 = 180 

cp1 = 0.8 cp8 = 0.7 cp10 = 0.6 

CP12 -, I 

UA 

HEX1 `0.44 

HEX2 1.20 

HEX3 0.31 
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CAVSIM 

Five components: C02 ETHANE N-BUTANE N-HEXANE N-DECANE 

Feed: 0.5124,0.3625,0.1205,0.0932,0.0266. 

T `' P 

FL1 311 56.2 

FL2 322 19.6 

FL3' 309 4.39 

FL4 303 1.91 

CAVDES 

Same as CAVSIM except instead of T on FL4 the data is the flowrate 
for the second component on stream. 12 is 2.723 x 10-3. 

CHEMC01 

Feed hydrocarbon-inert gas mixture (1) is mixed with liq (11) returning 
from vessel V2 in mixer Ml. 

This stream is expanded somewhat through valve R1 and separated by 

simple flash in vessel V1. 

Top vapour of VI (5) is expanded to given temp and pres (9) and is then 

separated by flash at same pressure and temperature in V2. Top vapour 
of V2 (13) is gas product 1. 

The liquid bottoms of VI (7) picks up heat resulting in a small 
temperature rise indicated and then passes through reducing valve R2. 

The pressure after R2 is such that the subsequent adiabatic flash 

produces vapour in the ratio V/F as given. 

The liquid bottom product of V3 (15) is cooled further by exch El to 

stream (17) =, the liquid product 1. 
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The top vapour of V3 (19) is compressed by C2. The power needed for 

this compression is provided by expander Cl. 

The compressor C2 outlet (21) is split in blackbox V4. 

Operations taking place in V4 can be represented by the indicated 

component split ratios. 

The resulting-streams (23)'and (25) have the same pressure drop as 
indicated. Stream (23) is at its dewpoint temperature and stream 
(25) has the indicated temperature difference from (21). 

Feed is stream 1. 

Products are: Streams (13) = vap, (23) = vap, (17) = liquid and 
(25) = liq/vapour mix 

Recycle is: stream (11) = liquid. 

The values for the known data are shown together with the flowsheet in 
figure 5.4. 

CHEMC02 

Input data: 

Feed: 6000 k moles/hr 

Feed composition: 

CO2 6 vol % 
CH4 3.2 vol % 
CO 14.6 vol % 

N2 72 vol % 

H2 4.1 vol % 
H2O 0.1 vol % 

Recycle ratio (Str nr 6/Str nr 1) 3.5 mole basis. 

Reactor pressure 90 bar. 

Temperature reactor outlet 270°C. 
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T in degree Kelvin. 

Carry out the reactor calculation as follows: 

Consider watergas reaction (2) in chemical equilibrium at reactor 
outlet conditions. 

Consider methanol reaction (1) in equilibrium lO°k below the temperature 

at reactor outlet. 

'G/L'sepýrätor Model 

One stage simple-flash. 

Outlet temperature 40°C, no pressure drop. 

Only methanol and H2O are in liquid phase Kmethanol = 3.8 E-3 (40°C) 

KH 
20 

= 8. E-4. (40°C). 

Nitric acid plant 

Problem specification. 

Components: 

HNO3 

N2 
02 

H 20 
CH4 

Co 
Co 2 
NH3 
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UNIT (1) SIMPLE DISTILLATION 
100% N2 & H2 are taken overhead and an unknown percentage 

of NH3. 

UNIT (2) FEED 
Unknown total flow of air composition 
79% N2121% 02. 

UNIT (3) MIXER 

UNIT (4) REACTOR 
Reaction taking place NH3 + 202 + HNO3 + H2O 

100% conversion of NH3. 

UNIT (5) FEED 

Unknown total flow of H20. 

UNIT (6) MIXER 

UNIT (7) SIMPLE DISTILLATION 
100% HNO3 and 100% H2O taken overhead. 

UNIT (8) SIMPLE DISTILLATION 
Unknown percentage of N2 and 02 taken overhead. 

UNIT (9) FEED 

Unknown total flow of H20. 

UNIT (10) FEED 

Unknown total flow of CH4. 

UNIT (11) MIXER 

UNIT (12) REACTOR 

The reaction taking place is H2O - H2 + JO2 

Unknown conversion of water. 

UNIT (13) REACTOR 
The reaction taking place is 2CH4 + 02 - 2C0 + 4H2 
Unknown conversion of 02, 
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UNIT (14) REACTOR 
The reaction taking place is CH4 + 02 -ý'C02 + 2H2 

Unknown conversion of 02. 

UNIT (15)-, - SIMPLE DISTILLATION 
100% CO & C02 are taken overhead. 

UNIT (16) SIMPLE DISTILLATION 

100% N2,99% H2 and 100% NH3 taken overhead. 

UNIT (17) MIXER 

UNIT (18) REACTOR 
The reaction taking place is N2 + 3H2 ; 2NH3 

25% conversion of N2. 

DESIGN CONSTRAINTS 

There are 10 design variables. The design constraints are: 

(1) HNO3 in stream 4 is 0.952 kmoles/hr 

(2) H2O in stream 4 is 2.222 kmoles/hr 

(3) 02 in stream 11 is zero kmoles/hr 

(4) H2 0 in stream 11 is zero kmoles/hr 

(5) CH4 in stream 11 is zero kmoles/hr 

(6) N2 in stream 6 is 99.2% of the total flow 

(7) 02 in stream 8 is 1% of the total fl ow 

(8) CO2 in stream 12 is 91% of the total flow 

(9) N2 in stream 14 is 25% of the total flow 

(10) H2 in stream 14 is 75% of the total flow. 
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Crude ' preheat' train 

Problem specifications 

Feed streams: 

STREAM Flowrate Temp (0 C) 

1 680 25 

42 480 219 

48 290 159 

50 250 352 

56 160 41 

60 110 263 
65 83 206 

70 39 304 

75 510 315 
78 130 142 

80 580 152 

83 160 133 

86 38 170 

Product Stream temperatures: 

STREAM Temp (°C) STREAM 
(cont) 

84 
87 
47 

57 

49 

79 
41 

72 
67 

63 
55 

83.9 
107.6 
197.2 

133.1 

203.4 

199.7 

306.5 

70.7 
111 

84.9 
69 

66 
62 
71 
54 

Cp 

0.555 
2.912 
1.393 

0.523 
1.068 

0.655 

0.659 

0.674 

0.686 
0.642 

4.482 
1.681 

0.701 

Temp (°C) 
(cont) 

170.2 
209.1 
273.9 
201 
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Other measured temperatures: 

STREAM Temp (°C) 

39 
38 
53 

29 
30 
31 

32 
53 

14 

15 

16 
17 

18 

4 

89 
37 
36 

Simple ethylene'plant 

Problem specification. 

Components 

Hydrogen 
Methane 

Ethane 

Propane 

n-butane 
Ethylene 
Propylene 

Temperature 

Pressure 

296 
215.3 

211.3 
162.7 
155.6 
151.9 

176.9 
193.6 

161 

152.2 

136.3 

108.6 

120.7 

126.8 

142.6 

281.7 

219.68 

Feed stream 1 (kmols/hr) 

0 
0 
80 
120 

0 
0 
0 
295 K 
41.37 bars 
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UNIT (1) VALVE 

UNIT (2) FIRED'HEATER/FURNACE 

UNIT (3) REACTOR 

The reaction taking place is 

3C2H6 + 6C3H8 4H2+ 4CH4 + 5C2H4 + 2C3H6 + C4H10 

90 % conversion of C3H8, 

UNIT (4) MIXER 

UNIT (5) PUMP 

UNIT (6) DIST/SIMPLE DISTILLATION 
100% H2 and CH4 are taken overhead 

UNIT (7) DIST/SIMPLE DISTILLATION 
5% Ethane and 99% Ethylene are taken overhead 

UNIT (8) DIST/SIMPLE DISTILLATION 

99% of the ethane remaining and 100% of the etylene 
remaining are taken overhead. ' 

UNIT (9) FIRED HEATER/FURNACE 

UNIT (10) REACTOR 

The reaction taking place is 4C2H6 2H2 + 2CH4 + 3C2H4 
80% conversibn of C2H6 



DISTORTED PAGES IN ORIGINAL 
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APPENDIX C 

LIBRARY OF MODELS FOR CHEMCOI 

a 
a* LIbkARYOFM0DELSFOR *# 

a* 
a* SPLE0UP 
u* 

MOOLL LXNANCER 

')LT NOCOMP 
I YPE F AS ARRAY(NUCOMP) 0F FLOWRATE 

TINsTOU, TIDLHL AS TFMPERATUKE. 
PIN, NOU AS PRESSURE 
HIN, HOU, HIDLAL, WORK AS ENTHALPY 
EFFIC AS FRACTION 
GAMMA AS NOI YPE 

STREAM 
INPUT IS F, 1IN, PIN, NIN 
OUTPUT 1 IS f, TOU, PnUsHOU 
OUTPUT 2 IS WORK 

LQUAIION 
TIDLAL * PIN ' GAMMA = TIN * POU ' GAMMA; 
EFFIC *( HIN - HIDrAL )= HIN - iiOU; 
WOITh HOU - HIN; 

VROCLUURL 
HIDEAL ZCALLN TInEAL ' POU F) 
HOU ZCALLN ( TO,, POU F 

MODEL COMPRESSOR 

SLT NOCOMN 
TYPE F AS ARRAY(NUCOMP) nF FLOWRATE 

1INoTUUtTIDENL AS TrMPERATURL 
PIN9POU AS PRESSURE 
HIN, HOU, HIDLAL, WORK AS ENTHALPY 
EFFIC AS FRACTION 
GAMMA AS NOTYPE 

STREAM 
INPUT 1 IS I- , TIN, PIri9HIN 
INPUT 2 IS WUFZK 
UUTº'UT IS F"IOU, PUU. HOU 

LQUATIUN 
TIDLAL * PIN ' GAMMA = TIN * POU ' GAMMA; 
LFFLC *( HIN - HOU )= HIN - FI1ULALi 

º'ROCEOURt HOU ---- f1IN =. 

HI0CA L) ZCALLN ( TInLAL POU vF HOV ) ZCALLN ( TOI, ' POU vF 
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114UDEL HEATLR_COOLLR 
q*******************t1 
SLT NOCOMP 
IYPE F AS ARRAY(NUCOMP) nF FLOWRATE 

TIN"TOU AS ILMPLRAT,, RE 
PIN, POU AS HKESSURE 
HIN, HOU, Q AS ENTHALPY 
OELIAl, OELTAr AS DEITA 

STREAM 
INPUT IS F, TiN, I'IN, ýi1N 
UUTHUT IS F. IOU"PUU. HOU 

LUUAT I ON 
TOU = TIN + UELTAT; 
POU = PIN + uELTNP; 
0= HOU - HIN; 

PROCEDURE 
HUU ), ZCALLN t T01 " POU .F 

MUUEL VALVE 

ALT NOCOMP 
TYPE F AS ARRAY(NUCOMP) nF FLOWR/\TE 

TIN, TUU AS ILMPLKAT11RE 
NIN, POL' AS PRESSURE 
H AS . NTHALPT 
DELIAP AS DELTA 

STREAM 
INPUT IS F, TIN"PIN, G. 
OUTNUI IS F. IOU"POU. II 

LOUATION 
NUU = PIN - ULLTAP; 

lROCEUURL 
( TOU ) ZCAL Ip(H. P0U "F') 

MODEL PUMP 

St. T NOCOMP 
TYPE F AS ARRAY(NUCOMP) nF FLOWRAIE 

T AS TEMPLRAIURL 
PIN, POU AS rl<ESSUHE 
HIN, HOU AS LNTHALPY 
DELIAP AS D. LTA 

STREAM 
INPUT IS F, 1iPIN, HIp. I 
OUTPUT IS F, I. PUU, HnU 

tOUATION 
POU = PIN + UELTAP: 

NKOC1DURt 
14UU ) ZCALLN tT. POU 'F) 

**** 
if 
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MODEL MOL_1C_KG_CUNVLKTER 

SET NOCOMP 
1YPE F AS ARRAY(NUCOMP) nF FLOWRATE 

T AS TEMPERA 1 URL 
)' AS PRESSUKt 
I-1 AS EFTHALI'T 
X AS ARRAY(NUCOMP) nF FRACTION 
FKG AS ARRAYINOLOMP1 OF KGFLUW 
MOLW AS ARRAY(NUCOMp) OF NOTYPE 
FTOIALKG AS KGFLOW 

STREAM 
INPUT IS F, T"P"H 
OUTPU1 IS F. I, P, H 

tUUATI0rJ 
FKG = MOLW * F; 
FTOIALKG = SIGMA ( AKG ); 
X* FTOTALKG = FKG; 

MODEL MOLAR_FRACIION_10_MOLES_CONVERTER 
a*************************************# 
SET NUCOMP 
IYPE F AS ARRAY(NUCOMP) nF FLOWRATE 

T AS TEMPERATURE 
P AS PRESSURL 
H AS LNTHALPY 
X AS ARRAY(NUCOMP) nF FRACTION 
FTO1AL AS FLUWRAIE 

STREAM 
INPUT IS FtT'P, H 
UUTIU1 IS FtI, PtH 

LUUA TI ON 
FT01AL *X=F; 
FTOIAL = SIUMA (F%; 

MODEL ADIABATIC-FLASH 

SET NOCOMP 
IYPE F, TUP980T AS ARRAY(juOCOMP) OF FLOWRATL. 

T, TIOP, TBOT AS ILMprIATURE 
I' AS PRESSUKt 
H, HTOP, HBOT AS LNTI-IALPY 
FRAL AS FRAG: I ION 

STREAM 
INPUT IS F. T'PiH 
OUTtUT 1 IS IOP, TTOp"P, tITOP 
OUTPU1 2 IS UOT, 1U0T, P, H8OT 

LUUATION 
T801 = TTOPi 
SIGMA(70P) = FRAC * SIGMA(F)i 

NKOCLUURL 
TrOP TOP . BOT I SCALTP (H"P' F) 
1110P ) ZEN I HV TTOP 'P" TOP 

( HtbOT ) ZEN I HL ( TnOT .P. HOT 
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MODEL ISOTHERMAL_t-LASH 

SET NOCOMP 
(YPE F, TOPtBOT AS ARRAY(rNOCOMP) OF FLOWRATL 

T AS TEMPERA'IURL 
P AS PRESSUKL 
H. HIOP. HBOT AS LNTHALPY 

STREAM 
INPUT IS F"I"P"H 
OUTPUT IS TOP, T, P, HTOP 
OUTPUT 2 IS UOT"1. P. HBOT 

NROCEDURL 
( TOP . BOT ) SPHASF lT. P'F) 
l HIOP ) ZENIHV (T9Pi TOP ) 
l HbOl ) ZEN I HL (T'P, BO () 

MODEL VOLUME_TO_MULES_COn, VERTER 
g*****************************#l 

SET NOCOMP 
IYPE F AS ARRAY(NUCOMP) nF FLOW RA1E 

T AS TEMPERATURE 
P AS PRESSUKL 
H -A L-NTHAL'Y 
TOTALFVOL, RHU AS NOTYPE 
TOTALF AS FLUWRATE 

STREAM 
INPUT IS F"1'P. H 
OUTPUT IS F, I, P, H 

LOUATION 
TOTALF = RHO * IUTA, FVOL; 
COTALF = SIGMA lF1; 

MODEL MIXER 
u*********ý 
SET NOCOMP 
TYPE F1"F29F AS ARRAY(NOrOMP)OF FLOWRATE 

T1,12,1 AS ILMPEKATiiRE 
Pl, P2sP AS PKESSURE 
H1, Fº2, P AS L14THALPY 

STREAM 
INPUT 1 IS F1, Tl"P1. H1 
INPUT 2 IS FL, T2, P2. H2 
OUTPUT IS F, I, P, H 

LQUA T. ION 
F'='Fl + F2; 

. -H. _. HI + F12; 
" ', PROCLOURL ' 

'4 T), =: ZCALIP HP9F 
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MODEL BLACK6OX 
SET NOCOMP 
TYPE FIN. TUP, BUT AS ARRAy(NOCOMP) OF FLOWRRATE 

TIN. TI OP. TUU I AS TEMPERATURE 
PIN9PIOP, PBU1 AS PRFSSURL 
HIN, HTOP. HBUI AS ENTHALPY 
ULL1AP, 0ELTA1 AS DEITA 
SPLITK, XTOP, ABOI AS ARRAY(NOCOMP) OF FRACTION 
COMP67 AS FRACTION 
TOTALICP, TOTALBOI As FLOWRATE 
TOTALTCPVOL"KHO AS n1OTYPE 
BOTKG. TOPKG AS ARRAy(NOCOMp) OF KGFLOW 
MOLW AS ARRAY(NOCOMp) OF NOTYPE 
TOTALUCTKG. 1'UTALTOP14G AS KGFLOW 

STREAM 
INPUT IS FIN"TIN. PItt, HIN 
OUTPUT 1 IS TOF, TTUP, PTOP, HTOP 
OUTPUT 2 IS BOT, TBU1, PpOT. FIBOT 

LOUAT ION 
F Ira =I OP + BOT 
BOT = SPLITR * VIN; 
PTUP = PIN + DLLTAN; 
PBOT = PICP; 
TBUT = TIN + DLLTAT; 
TOIALTUP = SIGMN(TUP); 
TOTALBUT = SIGMA(BUT); 
XTOP * TOTALTUN = TOP; 
XBUT * TOTALISO'I = bUT; 
TOTALTOP = RHO * TOTALTOPVOL; 
COMP67 = XTOP(6) + XTOp(7)i 
TO I ALBOTKG = SIUMA (UOTKG) ; 
TOTALTUPKG = SIGMA(TOPKG); 
BOTKG = MCLW * SOT; 
TOPKG = MCLW * IOP; 

PKOCLOURL 
( TTOP ) SDEWPT ( P10P . TOP 

( HTOP ) ZENTHV ( ITOP ' PTOP ' TOP 
( HBOT ) ZENTHL ( T6OT . PBOT , 130T ) 

APPENDIX C' 

Numerical results obtained for the general set of mathematical problems 

using the Broyden's version of the continuation method, The parameter X in the 

in the table is as proposed by BROYDEiL(1969). 
X 

0.5 0.1 0.05 
failures unscaled 21 21 21 

variables badly scaled ?2 22 23 
functions badly scaled 30 31 32 

Total 73 74 76 

A maxirnun of 2000 function e-aluations was allowed(for this reason some 

problems which converged for =0.5 did not converge for X<0.5). The 

code used for solving each subproblem is the one described in chapter 2. 
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º rs""rstfrrrrstits! ssfrssssrlttsttttftlfft*fftsstfsltftt*lttsisusppftrt 
º"rrf rrtrrttfttrtrrftsstrsttstrtfff tf tf/f tftXf tXrftittXfXrttrftXtMXttXXf 
"s tt 
r" Xt 

"" SUBBROUTINES VECFCN AND INITPT Xt 
rr Xf (rr 

fr 
"Rrrrffrtsruftuffftutsftrrtlffff*IXtaf*X "Xtststft*Xtr XSXXXfr*XX*Xtrtf XX 
"frsrrr*XXXXfruSXtff XffrtttfrttritrtfXffrttsrturrff*Xfff*Xrttf XXf XXXrrr 

SUeROUTIPE VECFCN(N. X. FVEC, NPROB. IER) 
INTEGER N, NDROS 
9"d. XQD. FVECRD 

r tot*Xtf 

L 

$ ROVTIt VECFCU 

THIS SUBROUTINE DEFINES FOURTEEN TEST FUNCTIONS. THE FIRST 
FIVE TEST FUNCTIONS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY, 
WHILE THE REMAINING TEST FUNCTIONS ARE OF VARIABLE DIMENSION 
N FOR ANY N GREATER THAN OR EOUAL TO I (PROBLEM b IS AN 
EXCEPTION TO THIS. SINCE IT DOES NOT ALLOW N" 1). 

THE SUBROUTINE STATEMENT IS 

St1RRWUTINE VECFCN'N. X. f"EC. NPROe) 

WHERE 
N IS A POSITIVE INTEGER It JT VARIABLE. 

X IS AN ItIPUT ARRAY OF LENGTH N. 

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NPROB 
FUNCTION VECTOR EVALUATED AT X. 

IfROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE 
NUMBER OF THE PROBLEM. NPRO$ MUST NOT EXCEED 14. 

SUBPROGRAMS CALLED 

FORTRAN-SUPPLIED ... ATAH. COS, EXP. SIGN. SIN, SORT, 
MAXO, MINO 

MIMPAC! (. VERSION OF JULY 197$. 
BURTON S. GARBOW. KEttETH E. HILLSTRr4M, JORGC J. MORE 

rrrsssssrs 
INTEGER I. IEV. IVAR. J. K. KI. K2. KPI. L. MV 
REAL CI. C2. C3, C4, C5, C6. C7. C$, C9, EIGHT. FIVE. H, ONE. PROD. SUM. SUt11. 

St12. TEtf', TEMPI. TEMP2. TEti, THREE. TI. TJ, TK, TPI. TWO, ZERO 
REAL FLOAT 
DATA E 

ORO. OO t 
E, Th 

, 
TTH 

EE. 
FIOE. EIGH7, TEN0E0,1.0Et/ 

DATA c. 1. C2, C3. C4, C5, C6. C7. CS, C9 
* : t. OE4.1. OOOIEO, 2. OE2.2.02E1, I. 92EI, 1. SE2,2.5E-1.5.0E-1, 
r 2.9E1, 
DIMENSION CEP3R (12) 
DATA (CEP3R(I). I. 1.12)i294.. 2rt0., 2r40.. 2$4., 2r10.. 2x40. i FLOAT'IVAR) " IYAR 

PROBLEM SELECT . 
IF (HPROe. LE. 1E)Go TO 5 
IF Qf'ROS. LE. 20)G0 TO Y00 
IF MOB. LE . -24) GO TO 900 

'ir; % sIee. %en 'fA') AAA 



0 1663 IER"-99 
RETURN 

s CONTINUE 

tý 
TO (406! 56Ö oo0,706 $bo,, 6017 200 22 

. 
1b0O). Rý70,300.330.350. 

C 
C ROSFJ ROCK FUNCTION. 

to CONTIt 
FVEC(1) " ONE - X(t) 
FVEC(2) " TEN* (X (2) -X (t) **2) 
GO TO 3$0 

C 
C POWELL SINGULAR FUNCTION. 
C 

20 CONTINUE 
FVEC(t) " X(I) " TEN*X(2) 
FVEC 
FVEC(3) 

" 
(SOR X12cF-VTRsX(3))**2ý)) 

FVEC(4) " SORTCTEMIcXUU - X(4))**2 
GO TO 310 

C 
PO ELL GADL! SCALED FUNCTION. CC 

30 CONTINUE 
FVEC(t) " CI*X(I)*X(2) " ONE 
IF((X(t). GT. 200. ). OR. 'Xt2). GT. 200. ))GO TO 35 
TE1.0. 
TE2.0. 
IF (X(1). GT. -200. )TEI"EXP(-X(t)) 
IF cX (2) . GT. -200. ) TE2"EXP (-X (2) ) 
FVEC(2)"TE1"TE2-C2 
GO TO 310 

35 IER--9 
GO TO 330 

WOOD FUNCTION. 

40 CONTINUE 
TEMPI " X(2) - Xtt)**2 
TEI 2" X(4) - X(3)r*2 
FVEC(t) " -C3*X(t)*TEPPI - (ONE - X(1)) 
FVEC (2) " C3*TEMPI " C4* (X (2) - ONE) " C5* (X (4) - ONE) 
FVEC (3) " -C3*X (3) *TEFP2 - (ONE - X(3)) 
FVEC (N) a Cb*TEIc2 " C4* (X (4) - ONE) " C5* (X (2) - ONE) 
GO TO 380 

HELICAL VALLEY FUNCTION. 

50 CONTINUE 
TPI " EIGHT*ATAN(ONE) 
TEMPI " SIGN(C7, X(2)) 
IF X(t)GT. ZERO) TEMPI ATAll(X(2)/X(l))/TPI 
IF (X(1) LT. ZERO) TEMPI " ATAN(X(2), X(1)), TPI " Cl 
TEPP2 " SORT(X(1)**2"X(2)**2) 
FVEC(t) " TEN*(X(3) - TEN*TEIc1) 
FVEC (2) " TEN* (TEPP2 - ONE) 
FVEC+3) " X(3) 
GO TO 310 

WATSON FUNCTION. 

60 CONTINUE 
DO 70K" 1. N 

FVEC IIQ " ZERO 



wwn- 11 
FVEC W" ZERO 

TI 
"IFLOýÄ+(I), C9 

wmi - Im TEMP " a+E DO 90 Ja2. N 
StMt a SUMt " FLOAT (J-t)*TEMPsX(J) 
TEMP " TI*TEtP 

$0 COWINUE 
SUM? a ZERO 
TEMP " ONE 
DO 90 J"I. N 

S1M2 " SU42 " TEMPsX Q) 
TOP " TI. TEMP 

90 CONTINUE 
TEMPI " SUMI - SUM28*2 - ONE 
TEMP2 a TN0*T? *SUM2 
TEMP " ONE/TI 

FVEC pö 
t . FVEC (FA " TEMP* (FLOAT (K-t) - TEMP2) *TEPPI 

TEMP " TI. TEMP 
t00 COtfTU JE 
tt0 CONTINUE 

TEMP " X(2) -X (t) **2 - ONE 
FVEC(t) a FVEC(U " X(U *(ONE - TWO*TEI'V) 
FVEC (2) a FVEC (2) " TEMP 
GO TO 320 

C 
C CHEJYOUAD FUNCTION. 
C 

120 ý 
1. N 

FVEC 00 " ZERO 
130 CONTINUE 

DO 150 J 1. N 
TEMPI   ONE 
TEMP2 " TWO*X (J) - ONE 
TE19 " TWO*TEMP2 
DO t 4o I. I. N 

FVEC (I) " FVEC (1) + TEMP2 
TI " TEMP TElc2 - TEMPI 
TEMPI " TEPP2 
TE1P2 " TI 

190 CONTINUE 
150 CONTINUE 

1K " ONE/FLOAT 00 
IEV " -1 
DOt60K  1. N 

FVEC 00   TK$FVEC (10 
IF (1EV . GT. 0) FVEC(K) " FVEC(K) " ONE/ (FLOAT W =s2 - ONE) 
IEV " -IEV 

160 CONTINUE 
GO TO 310 

8R01ä ALMOST-LIHEAR FUNCTION. 

170 
S 

"ýLOATQh1) 

PROD " OtE 
DO 180 J"1. N 

SUM " SUM " X(J) 

ADDED TO AVOID CRASHING 

If (PR00. LE. 1. E100)GO TO 173 
AUXt&ALOG10 (ASS (PROD) ) 

OC! cÄýs cc)) IF( t, AUX2). LT. 200)GO TO 173 



M I'f LOr"10 U63 (PROW) 

IF I (AUXt0M1X2) 200) GO TO 173 
IER"-1 
RETURti 

3 CONTINUE 
PROD "X W) *PROD 

too COtINUE 
DO 190 K"1. N 

f VEC 00 " X00 " SUM 
190 CONTINUE 

FVEC41 " PROD - ONE 
GO TO 380 

DISCRETE BOtR1DARY VALUE fMHCTIOH. 

200 CONTINUE 
H"O(, fLOATQN1) 
DO 210K" 1. H 

TEIG " (X Od " FLOAT 00 sH " ONE) *13 
TEMP I" ZERO 
IF (K . HE. t) TEMPI " X(K-1) 
TEIc2 " ZERO 
IF (K . t(. M TElP2   XO(s1) 
FVEC CFO " TWO*X 00 - TEMPI - TEMP2 " TEMP*H**2, TV'D 

2t0 CONTINUE 
CO TO 310 

DISCRETE INTEGRAL EQUATION FUNCTION. 

222 CONTINUE 
H  ONE/FLOAT(1H1) 

260 
  FLOAT 00 "H 

SLM1   ZERO 
DO 230J" 1. K 

TJ   FLOAT Q) sH 
TEIG   (X(J) + TJ " ONE) *3 
SUMt   SUMt + TJ*TEMP 

230 CONTINUE 
SUH2 " ZERO 
KPI "K+t 
IF (N LT. KP1) GO TO 260 
DO 240 J" KPt. H 

TJ " FLOAT (J) *H 
TEMP " lXlJ) f TJ " ONE)**3 
SUM2 " SIM2 f (ONE - TJ) TEMP 

240 COHTItfJE 
250 CONTINUE 

FVEC AO " X00 + H* ((ONE - TK) *SUMt " TKsSJM2), TWO 
260 COHTIMJE 

W TO 380 
TRIGONOIETRIC FUNCTION. 

270 CGhVINUE 
?0 272 J"t. N 
IF(AMS(X W)). GT. t. Etw)IER -9 

12 CONTINUE 
IF (IER. LT. O)RETURN 
SUM " ZERO 
DO 2=0 J"1. N 

FVEC c. n " Cos OX (. )) SUM - SUM . FVEC (J 
280 CONTINUE 

DO 290 K"1. N 
FVEC QO   FLOAT (M#10 - SIN (X (K)) - SUM - FLOAT QO *FVEC (K) 

GO TO 380 



210 Comnfllz 
GO TO 310 

C 
C VARIRlLY DIMENSIONED FUKTION. 
C 

304 IMFS 
ZERO 

DO 310JJ""1. N 
SM " SUM " FLOAT W) * (X (J) - ONE) 

3t0 CONTINUE 
TOP " Sll}* (ONE " TW0s$lM*92) 
DO 320 K"1. N 

FVEC W" X00 - ONE " FLOAT no *TE. 9 
320 CCtITIMJE 

CO TO 380 
C 
C SROYDEN TRIDIAG0NAL FUNCTION. 

330 CONTINUE 
00340K" 1. N 

TEW " (THREE - TWOIX QO) xX oo 
TEW 1" ZERO 
IF OC ME. 1) T: f91 " X(K-1) 
TEMP2 " ZERO 
IF (X . ti. M TEPP2 " XIK+U 
FVEC 00 " TEMP - TEMPI - TWO; TEMP2 " ONE 

340 CONTINUE 
GO TO 390 
GROVDEN SNIDED PIM: TION. 

350 CONTINUE 
ML"5 
HU aI 
DO 370K" 1. N 

Kt " MAXO (1, K-ML) 
K2   MINO (K+MU. 10 
TEMP a ZERO 
DO 360 J" K1.92 

IF (J NE. K) TEMP " TEMP +X (J) * (ONE +X 0) 
360 CONTINUE 

FVEC 00 " X00 s'TWO + FIVE*X (K) "*2) + ONE - TEMP 
370 CONTINUE 

GO TO 380 

BROWN FUNCTION - BUS EXAMPLE 5.2.2 

COtff IM)E 
FVEC (1)  X (1) 2*2-X (2) -1. 
FVEC (2) " (X (t) -2. ) x12+ (X (2) -0.5) *12-1. 
CO TO 380 

FREUDENSTEIN t ROTH FUNCTION 

COt17fl E 
FVEC (1) a-13. #X (1) ei (-X (2) 46. ) *X (2) -2. ) *X 12) 
FVEC(2) -29. *X(1) ei (X (2) $1. )*X(2)-19. ) *X(2) 
90 TO 380 

GHERI t MANCINO FUNCTION 

COt1TIMIE 
IA -pI s6 
IGGNVA03 

DO 620 Ke1, H 

Awo. 
DO 610 J I, H 
IF(J. E0.1060 TO CO 

i ZIJ"SORT (X (J) **2+FL0AT 00 /J) SUlhSUM+ ct IJ* (SIN (AL(jG (ZIJ)) **IALPHA" 
1 COS(AL0G(ZIJ))**IALPHA)) Io IA PMITTMIC 



DO 410 J"1 N 
IF (J. EO. Il e0 TO 410 
Z IJ"SOAT (X W) **2"FLOAT QO ,, J) 
SUII0SUNI (tIJ* (SIN (ALOG (2IJ)) ** IALPMA' 

t COS CALOG (ZIJ)) **IALPFW ) 
610 WINK 

FVEC (10 "SUM* IBETA*N*X 00 . (K-N/2) **IGA *IA 
020 CCtf IP 

GO TO 380 

FOUR REACTORS FUNCTION 
COt1TI fJE 
XS-0.5 
A0a1. 
Not. 
A5W0. 
60.0. 
TiETKt-4. 
XsC. 1. -XS 
FVEc it). XSIAO+XSC*X (2) -X (1) -TFETK1*X ct) *X (5) 
FV¬C (2) "XS*6O+XSC*X (6) -X c5) -THETKI*X (1) *X 5) 
FVEC (2) . X$*X (1) sXSC*X (3) -x (2) -TI#TK1*X (2) *X (6) 
FVEC (9). XS*X (5) sXSC*X (7) -X t6) -TFETKI*X (2) *X (6) 
FVEC (5) "XS*X (2). XSC*X (4) -X (3) -THETKI*X (3) *X (T) 
FVEC (6)  XS*X (6) $XSC*X (i) -X (7) -T}ETKI *X (3) *X (7) 
FVEC MT) "X$*X (3) +XSC*A5-X (4) -T ETKI*X (4) *X (t) 
FVEC(t)"XS*X(7)+XSC*66-X(=)-THETKI*X(4)*X(3) 
GO TO 380 

CHEMICAL EQUILIBRIUM PROBLEM I 

) CONTINUE 
FVEC(1)"X(2)-10. 
FVEC (2) "X (1) *X (2) -5. E4 
GO TO 390 

CHEMICAL EQUILIBRIUM PROBLEM 2 

) CONTINUE 
FVEC(1)"X(1)+X(2)+X(4)-0.001 
FVEC (2) "X (5) +X (6) -55. FVEC (3)  X (1) +X (2) +X (3) +2. IX (5) +X (6) -110.001 FVEC (4) oX (1) -0.1*X (2) 
FVEC (5)  X (1) -1. E4*X (3) *X (4) 
FVEC(6) X(5)-55. *1. E14*X(3)*X(6) 
GO TO 380 

CHEMICAL EQUILIBRIUM PROBLEM 3 

00 COtTTI1'RlE 
R"CEPäR 0PROB-24) 
TOT-0. 
DO 1010 I. 1. N 

t0 TOT"TOT+X(I) 
IF(X(1). LT. O. )GO TO 1050 
IF IX (2) *X (4) *TOT. LT. O. ) GO TO 1050 
IF (X(4) . LT. O. )GO TO 1050 
IF a (U *X (2) *TOT. LT. O .) GO TO 1050 
IF (X (3) *TOT. LT. O. ) GO TO 1050 
FVEC(1)"X(t)+X(4)-3. 
FVEC(2)"2. *X(1)+X(2)+X(4)+X(7)+X(3)+X(9)+2. *X(10)-R 
FVEC(3) 2. *X(2)+2. *X(5)+X(6)+X(7)-3. 
FVEC (4) "2. *X (3) +X (9) -4. *R 
FVEC (5) "X (t) *X (5) -1.93* 1. E"t *X (2) *X (4) 

FVEC (6) -X (6) *SORT (X (U) -2.597* t. E- 3*SORT (X (2) *X ru * 
FVEC M "X (7) *SORT (X (4)) - 3. 'f4s* 1. E-3*SCRT (X (U *X (2) * 
FVEC (t) "X(t) *X (4) -t . 799+1. E- r*X t 1) *i 0T 
FVEC t9) "X (9) *X (4) -2.155*1. E-4*X tt) *SORT (X (3) *T0T) 
FVEC (10) "X t10) *X (4) *X (4) -3.846*1. E-5*X (4) *X (4) *TOT 
G4 TO 390 

1050 IER"-9 



"tc(U"x(max(l)-ia xi. t-L*m1)*IV1 
FVEC (9) "X (9) *X(4) -2.156* t. E-4*X (1) *SORT (X(3) *TOT) 
FVEC (10) "X (10) *X (4) *X (4) -3.146*1. E-5*X (4) *X (4) *TOT 
GO TO 380 

1050 IER -9 
RETURN 

380 CONTINUE 
RETURN 

LAST CARD OF SUBROUTINE VECFCN. 

END 
SUBROUTINE INITPT (N. X. NPROB, FACTOR) 
INTEGER H, NPRO6 

FACTOR 
REM. (N) 
AX 

SUBROUTINE INITPT 

THIS SUBROUTINE SPECIFIES TIE STANDARD STARTING POINTS FOR 
TIE FUNCTIONS DEFINED BY SUBROUTINE VECFCN. THE SUBROUTINE 
RETURN IN XA MULTIPLE (FACTOR) OF THE STANDARD STARTING 
POINT. FOR THE SIXTH FUNCTION THE STANDARD STARTING POINT IS 
ZERO. SO IN THIS CASE. IF FACTOR IS NOT UNITY. THEN THE 
SUBROUTINE RETURNS THE VECTOR X(J) " FACTOR, J"1..... N. 

C THE SUBROUTINE STATEMENT IS 
C 
C SUBROUTINE INITPT(N. X. NPROB, FACTOR) 
E 
C WHERE 
C 
CN IS A POSITIVE INTEGER INPUT VARIABLE. 

X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE STANDARD 
STARTING POINT FOR PROBLEM NPR09 MULTIPLIED BY FACTOR. 

C NPRO@ IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE 
c NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14. 

FACTOR IS AN INPUT VARIABLE WHICH SPECIFIES THE MULTIPLE OF 
C THE STANDARD STARTING POINT. IF FACTOR IS UNITY. NO 
C MULTIPLICATION IS PERFORMED. 
C 
C MINPACK. VERSION OF JULY 1971. 
C BURTON S. GARBOM. KENNETH E. HILLSTROM. JORGE J. MORE 
C 
C axssss*sts 

INTEGER IVAR. J 
REAL C1. H. HALF. ONE. THREE, TJ. ZERO 
REAL FLOAT 
DATA ZERO. HALF. OHE. TFREE. C1 iO. OEO. 5.0E-I, 1. OEO. 3.0EO. 1.2EO' 
DIMENSION CEPI(2.2). CEP2(6.4). CEP3(10.6), NSEAR(I3) 
DATA ((CEPt(I, J). I. t. 2), J 1.2)i2*0., 2*10. i 
DATA ((CEP2(I. J). I. 1.6). J"1.4)i6*0.. 6*t., t. E-4.1. E-3.0.. 1. E-4. 

1 55.. 1. E-4,6*10. i 
DATA ((CEP3(I. J). I I 10), J"t. 6)i0.. 1., $., 3.. 5.. 1.. 4*0., 1.. 

2 2., IO.. 1.. 1., 2.. 4*0.. 2.. 5., 40.. 1. *0., 5., 1.. 
3 1., 20.. 1.. 5*O., t. i DATA (HSEAR(I) I t, ti)i1.2,1.2,3.4,1,2.3.4.5,6.1.2.3.4.5.6, 
FLOAT(IVAR) " IVAR 

C SELECTION OF INITIAL POINT. 
C 

IF Q O6. LE. ll)GO TO 5 
NPR-NSEAR (tPM-11 
IF G R06. LE. 20)GO TO $00 
IFUcRG6. LE. 24)GO TO 900 
IF(? PRO6. LE. 36)GO TO 1000 
WRITE(6L9) 

..... a,. ,,....,...,. C«. 



ýc SELtVTIV17 VI' UYUIIIK. ruing. 
C 

IF MOS. LE. 1=) G0 TO 5 
M1tt"MSUR MOB-1$) 
IF 41PROb. LE. 20) GO TO $00 
IFlt RO0 . LE. 24)GO TO 900 
IF 0 *O6. LE. 36)GO TO 1000 
WRITE( 9) 
FOR T( = PROBLEM OUT OF RANGE") 
STOP 

5 CONTINUE 

1GO 
TO 

90b200b3 640 60 600b90ý100,120, t20, l4O* 160.180. ISO- 

c 
C ROSEtlIROCK FUNCTIOt4. 
C 

to CONTIMJE 
XlI " -Cl 
X(2) " ONE 
CO TO 200 

POWELL SINGULAR FUNCTION. 

20 CONTINUE 
X(t) " ME 
X (2) " -Ott X (3) " ZERO 
x(4) " ONE 
GO TO 200 
POWELL BADLY SCALED FUNCTION. 

30 CONTINUE 
X(1) - ZERO X(2) - ONE CO TO 200 

WOOD FUNCTION. 

40 CONTINUE 
X(t) " -THREE 
X(2) " -Ott X(3) " -THREE 
X (4) - -ONE GO TO 200 

HELICAL VALLEY FUNCTION. 

50 CONTINUE 
Xcu " -Ott X (2) " ZERO 
X (3) " ZERO GO TO 200 

WATSON FUNCTION. 

60 CONTINUE 
DO 70J" 1. N 

X c, » - ZERO 
70 CONTINUE 

GO TO 200 

CF¬BYGUAD FUNCTION. 

to CONTINUE 
H" ONE/FLOAT (lIs 1) 

Do 90J" 1. H 
XO  FLOAT (J) *H 

90 CONTINUE 
GO TO 200 

I, C MONI ALMOST"LIHEAR FUNCTION. 



90 Gowlti E -. 
CO TO 200 
BRONN ALMOST-LINEAR FUNCTION. 

100 CONTINUE 
DO 110 J"1. N 

X (J) " HALF 
110 CONTINUE 

GO TO 200 

DISCRETE BOUNDARY VALUE AND INTEGRAL EQUATION FUNCTIONS. 

t20 CONTINUE 
H" ONNE, FLOAT(N+t) 
DO 130J  I. N 

TJ   FLOAT (J) "H 
X (J) a TJ* (TJ - ONE) 

t30 CONTINUE 
GO TO 200 

TRIGONOMETRIC FUNCTION. 

tqO CONTINUE 
Ha ONE/FLOAT(N) 
DO 160 J"1. N 

X0"H 
150 CONTINUE 

GO TO 200 

VARIAGLY DIMENSIONED FUNCTION. 

tt0 CONTINUE 
H  ONE/FLOAT(N) 
DO ITOJ" 1. N 

"X(. A   ONE - FLOAT (J) *H 
170 CONTINUE 

GO TO 200 

BROYDEN TRIDIAGONAL AND BANDED FUNCTIONS. 

t50 CONTINUE 
DO 190J" 1. N 

X(J) " -ONE 
t1YO CONTINUE 

GO TO 200 

C 

C 
C 

BROW FUNCTION - BUS EXAh9LE 5.2.2 

^OMTIM)E 
X(t) -t. 
X(2)p1.5 
GO TO 200 

FREUDEfSTEI7I $ ROTH FUNCTION 

COt1TIMJE 
X(t)--5. 
X (2) -0. 
GO TO 200 

'G ERI t MANCINO FUiCTION 

COPRINUE 

IALPWM6 
I&ETA 14 
ICIi t .3 
KEI"I8ETA*N, 
C. TRFTA*N-( 

I&ETA 14 

KEI TA*N+(IALPHA+1. ); (N-1) 
C. IBETA*N- (IALPHA# 1. ) t (N-1) 
CO 601 I. 1, N 
SUM-0. DO 602 J-1. N 



ICA!! M 3 
KE I  IKTA*N+ (IALPHA+ 1. ) * (N-1) 
C ISETA*N-(IALPHA41. )"(N-t) 

St 
il I. 1. N 

DO 602 J S. N 
IF(J. EO. I)GO TO 602 
ZIJ. SORT (FLOAT (I) J) 
SUM SUM"IIJ*(SIN (ALOG(1IJ))**IALPHA"COS(ALOG(ZIJ))**IALPNA) 

602 CONTINUE 
X(I) -((I-N'2. )**IGAMMA#S1A1 s(C. KEI)/(2. $CsKEI) 

60t CONTINUE 
GO TO 200 

C 
C FOUR REACTORS FUNCTION 

700 CONTINUE 
x(1)-0.1 
X (2)"0.2 
X(3) O. 3 
X (4)  0.4 
X (5)  0.5 
X (e)  0.4 
x(7)"0.3 
X(n 0.2 
GO TO 200 

C CHEMICAL. EQUILIBRIUM PROBLEM'1 
C 
$00 CONTINUE 

$10 
DO $t0 I. 1 N 
X(I)"CEPt(I. NPR) 
GO TO 200 

C 
C CHEMICAL EQUILIBRIUM PROBLEM 2 
C 
900 CONTINUE 

DO 910 laid i 
9t0 X(I) CEP2(I. NPR) 

GO TO 200 
C 
C CHEMICAL EQUILIBRIUM PRCSLEM 3 
C 
1000 CONTINUE 

DO 1010 Ie1. N 
1010 X(U"CEP3(I, NPR) 

GO TO 200 
200 CO TINUE 

IC COMPUTE MULTIPLE OF INITIAL POINT. 

L 

IF (FACTOR EO. Ott) GO TO 250 
IF (IPM EO. 6) GO TO 220 

DO 210 J" 1. N 
X (J) " FACTOR*X (J) 

210 CONTINUE 
GO TO 240 

220 CONTINUE 
DO 230J" 1. H 

X(J) " FACTOR 
230 CONTINUE 
240 CONTINUE 
250 

RETURN 

C 
C LAST CARD OF SUBROUTINE INITPT. 
C 

END 
#xxxx#sx#xsilslstssssssssxs#stsxasssss: lsst#ssssssss: lsssrsss#ssssssssas 
#x#xx#x#tss##ts#! #! stlsssxsst#t#rtxsss#RlsR: isstsssssssssssssssssssslsss 
asr#xxx#x#x###st#s! #ssstit#tsitsi##sxtrls#sttstsaxtiirisasf#xrassfssasass 
feaMxxxr#a##x##MRlxltx#ss#R#i! #rxfttRtrtRxlRaR! #! lRtitt#! r#ta! #ftttRRttlr 



C LAST CARD OF SUBROUTINE INITPT. 
C 

END 
sýksrs*s#!! #ssl: lf#! ss#sstst#ssssslts##: s#sssistltstttsssssstssas#si! ltss! 
#! yr##s! s! #####ltss#t#s!! #s##saffltsflsslssl: ##ssss#ts: ltlssff#sss: sssstt 
lWdlclt#t#Y!! #!!! ##t!!! #ttt! #ft! #ftttiftlffttittitlt#! t!! ftltiftitt! ltii#i 
#sM*#t##ý:! #! lstfss#sssstttsttss###st#stf#t! s#t: ssssssslslsssss#sslsssis 
###srr#! s! #*#sttttt#t##lttstttlt#stfst#ttslstsltttstttsssslsts#stssstssts 
!! #! #*####s! s##! s#sfs##asss##sst#sss#ss#ssssssstsfssssstsssssssssssssssi 
! ##! ##! #! t!! *!! ti! ####! ###! f#ff!! #! f#! i! lf. tltlffi! liitltff#t#!! t! liftftt 
! ¢1t! [t! #t! f! #! #!!! #f!! f##tt#t! #t!! ##ftf! #f#if#t! #lftf#!!! f#f##flii! #tftfft 

#Y*s*Y! s'r! ####s#sYSfs#Y: #: #sslsfstsss: ssssssis! l. sissss#siss#ss#sssiisst 
saýa*s#sssssss: #ssss#slsss#sfsssss#sssssssss#: sss: sss: siss#sssssssss#ss 

** ii 
DETAILED RESULTS FOR THE 

fýY ## 
** GENERALSET s# 
ss s# 
** tt 
fakYlýYYlY*R##! #f#iYY#YfYY! ###iffffifittiittii#iftliiittititi#i#ssstifli! 

METHOD DESCRIPTION 

t SCALE INVARIANT METHOD 1 
2 SCALE INVARIANT METHOD 2 
3 SCALE INVARIANT METHOD 3 
4 SCALE INVARIANT METHOD 4 
6 BROYDEN'S METHOD 
6 POWELL'S HYBRID METHOD (MI PACK IMPLEMENTATION) 

tüMRS ON PC RIGTH TABLES ARE THE EFFICIENCY COEFFICIENTS 

ENTRIES ON THE LEFT TABLES ARE AS FOLLOWS. 

METHODS I TO 5 

2.0 K MR Of FUNCTION EVALUATIONS USED (IT MEANS THE METHOD 
HAS CONVERGED) 

0 AFTER 500 FUNCTION EVALUATIONS CONVERGENCE HAS NOT BEEN 
ACHIEVED 

-2 CURRENT JACOBIAN IS SINGULAR AND THIS IS NOT AVOIDABLE 
-5 THE STEP HAS BEEN REDUCED 10 TIMES WITHOUT ACHIEVING 

A REDUCTION IN THE NORM OF THE FUNCTION 
-6 THE CURRENT STEP IS TOO SMALL(I. E. IT WILL NOT MODIFY 

THE VARIABLES VECTOR WHEN ADDED) 
-9 A VALUE FOR ONE THE VARIABLES IS SUCH THAT A FUNCTION 

CAN NOT BE EVALUATED(FOR INSTANCE AN ARGUMENT FOR THE 
E)POtEITIAL FUNCTION IS TOO BIG) 

METHOD 6 

THE CODE IS NOT MAKING ANY PROGRESS(I. E. THE NORM OF THE 
FUNCTION IS NOT BEEN REDUCED AT ALL). 

ALL THE OTHER CODES ARE THE SAME AS FOR METHODS I TO 5 

THOUTUSINGTHEINTER f1 AL SCALING 
  " u r  r.   .   .. r  rr uwo . r.. rr rr rrr.... rs.  r  u. r....   u  ..    

UiSCALED SET OF PROBLEMS 



UNSCALED SET OF PROBLEMS 

PITH 1 2 3 4 5 6 1 2 3 4 5 6 

1 6 6 6 5 6 23 1.20 1.20 1.20 1.00 1.20 4.60 
2 27 27 37 34 25 41 1.01 1.0$ 1.41 1.36 1.00 1.64 
3 74 98 29 46 66 179 2.55 3.38 1.00 1.59 2.21 6.17 
4 0 227 111 74 164 96 0 3.07 1.50 1.00 2.22 1.30 
5 22 433 0 246 242 27 1.04 16.04 0 9.11 8.96 1.00 
6 363 129 103 125 99 91 3.99 1.42 1.13 1.37 1.09 1.00 
7 113 103 145 130 111 143 1.10 1.00 1.41 1.26 1.0$ 1.39 
9 20 16 to 32 16 to 1.25 1.00 1.13 2.00 1.00 1.13 
9 28 30 29 26 26 27 1.0$ 1.15 1.12 1.00 1.00 1.04 

10 3t 23 
, 23 27 22 34 1.41 1.05 1.05 1.23 1.00, 1.55 

It 61 32 0 37 32 76 1.91 1.00 0 1.16 1.00 2.38 
12 35 59 51 46 104 31 1.13 1.90 1.66 1.48 3.35 1.00 
13 1311 224 77 173 95 71 1.94 3.15 1.01 2.44 1.34 1.00 
14 0 196 t26 0 t06 91 0 2.15 1.31 0 1.16 1.00 
15 14 14 14 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
16 6 6 6 6 6 7 1.00 1.00 1.00 1.00 1.00 1.17 
17 14 14 14 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
to 74 122 0 0 33 -6 2.24 3.70 0 0 1.00 0 
19 31 33 31 31 31 32 1.00 1.06 1.00 t. 00 1.00 1.03 
20 21 20 20 20 20 21 1.05 1.00 1.00 1.00 1.00 1.05 
21 32 28 211 27 23 29 1.19 1.04 1.04 1.00 1.04 1.07 
22 6 6 6 5 6 9 1.20 1.20 1.20 1.00 1.20 1.80 
23 41 41 53 31 59 36 1.33 1.33 1.61 1.06 1.64 1.00 
24 19 10 10 13 11 12 1.90 1.00 1.00 1.30 1.10 1.20 
25 207 419 307 0 0 252 1.00 2.02 1.46 0 0 1.22 
26 0 425 420 229 283 32 0 13.2$ 13.13 7.16 3.94 1.00 
27 0 112 160 272 0 331 0 1.14 1.00 1.70 0 2.07 
23 0 0 0 0 0 -6 0 0 0 0 0 0 
29 0 0 0 0 0 192 0 0 0 0 0 1.00 
30 0 0 0 0 0 310 0 0 0 0 0 1.00 
31 0 0 0 0 0 0 0 0 0 0 0 0 
32 33 71 62 68 192 31 1.06 2.29 2.00 2.19 5.37 1.00 
33 16 16 16 16 16 17 1.00 1.00 1.00 1.00 1.00 1.06 
34 9 9 9 9 1 10 1.13 1.13 1.00 1.00 1.00 1.25 
35 17 17 t7 17 17 19 1.00 1.00 1.00 1.00 1.00 1.06 
36 0 0 0 0 0 32 0 0 0. 0 0 1.00 
37 93 40 76 92 57 36 2.58 1.11 2.11 2.56 1.511 1.00 
3$ 99 55 54 56 54 54 1.33 1.02 1.00 1.04 1.00 1.00 
39 69 70 63 63 63 45 1.53 1.56 1.40 1.40 1.40 1.00 
40 ß 7 7 7 7 9 1.14 1.00 1.00 1.00 1.00 1.29 
41 53 53 72 40 56 40 1.32 1.32 1.95 1.00 1.40 1.00 
42 0 0 0 0 0 437 0 0 0 0 0 1.00 
43 31 0 212 0 265 44 1.84 0 4.32 0 6.02 1.00 
44 0 0 0 0 0 492 0 0 0 0 0 1.00 
45 0 0 0 0 0 244 0 0 0 0 0 1.00 
46 0 0 0 0 0 0 0 0 0 0 0 0 
47 179 0 75 101 74 97 2.42 0 1.01 1.36 1.00 1.31 
43 65 52 50 50 47 47 1.38 1.11 1.06 1.06 1.00 1.00 
49 27 21 20 23 19 21 1.42 1.47 1.05 1.21 1.00 1.11 
50 65 52 50 51 47 38 1.71 1.37 1.32 1.34 1.24 1.00 
51 0 0 0 0 0 -6 0 0 0 0 0 0 
52 87 74 61 113 71 52 1.50 1.22 1.05 1.95 1.22 1.00 
53 73 75 235 129 76 42 1.16 1.79 5.60 4.50 1.91 1.00 
54 74 71 72 13 71 57 1.30 1.25 1.26 1.54 1.25 1.00 

FAILS 14 12 13 14 12 5 MENI 1.49 2.10 1.71 1.73 1.24 1.33 

VARIABLES BADLY SCALED 

METH 1 2 3 4 5 6 1 2 3 4 6 6 
PROB 



METH 1234se1 23456 

1 6 6 6 5 6 35 1.20 1.20 1.20 1.00 1.20 7.00 
2 27 27 37 35 33 29 1.00 1.00 1.37 1.30 1.22 1.07 
3 74 111 29 46 66 -9 2.55 3.13 1.00 1.59 2.28 0 
4 160 0 110 427 131 99 t. 62 0 1.11 4.31 1.39 1.00 
5 28 369 0 0 75 -6 1.00 13.13 0 0 2.61 0 
6 296 It 121 87 121 -6 3.40 1.01 1.47 1.00 1.39 0 
7 270 110 127 112 135 -6 2.45 1.00 1.15 1.02 1.23 0 
$ 20 16 to 32 2t 23 1.25 1.00 1.13 2.00 1.31 1.44 
9 21 30 29 30 29 21 1.00 1.07 1.04 1.07 1.04 1.00 

10 31 23 23 27 59 55 1.35 1.00 1.00 1.17 2.57 2.39 
It 61 32 173 35 0 -6 1.91 1.00 5.41 1.09 0 0 
12 35 59 51 46 33 27 t. 30 2.19 1.19 1.70 1.22 1.00 
13 71 224 77 77 162 46 1.70 4.187 t. 67 1.67 3.52 1.00 
t4 347 95 0 96 73 -6 4.45 1.22 0 1.23 1.00 0 
15 14 14 14 i4 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
16 6 6 6 6 6 7 1.00 1.00 1.00 1.00 1.00 1.17 
t7 14 14 14 14 14 15 t. 00 1.00 1.00 1.00 1.00 t. 07 
1$ 64 110 0 51 0 56 1.25 3.53 0 1.00 0 1.10 
19 60 64 14 101 57 39 1.54 1.64 2.15 2.59 1.46 1.00 
20 21 20 20 20 23 23 1.05 1.00 1.00 1.00 1.15 1.15 
21 32 21 2S 28 33 34 1.14 1.00 1.00 1.00 1.1$ 1.21 
22 6 6 6 5 6 9 1.20 t. 20 1.20 t. 00 1.20 1.10 
23 52 52 57 40 i 34 1.53 1.53 1.61 1.1$ 1.12 1.00 
24 19 10 10 13 11 -9 1.90 1.00 1.00 1.30 1.10 0 
25 202 0 462 0 0 -6 1.00 0 2.24 0 0 0 
26 0 0 366 228 so 33 0 0 *1.09 6.91 2.67 1.00 
27 0 150 413 0 0 -6 0 1.00 2.75 0 0 0 
21 0 '0 0 0 0 -6 0 0 0 0 0 0 
29 0 209 0 0 0 -6 0 1.00 0 0 0 0 
30 0 0 0 0 0 -6 0 0 0 0 0 0 
31 0 0 0 0 0 -6 0 0 0 0 0 -0 
32 40 70 0 69 44 39 1.03 1.79 0 1.74 1.13 1.00 
33 16 16 16 16 16 t7 1.00 1.00 1.00 1.00 1.00 1.06 
34 9 9 $ $ i 10 1.13 1.13 1.00 1.00 1.00 1.25 
35 17 17 17 17 17 to 1.00 1.00 1.00 1.00 1.00 1.06 
36 0 0 0 0 -9 -6 0 0 0 0 0 0 
37 99 62 31 79 101 37 2.41 1.68 1.03 2.14 2.73 1.00 
31 121 55 54 56 109 3$ 3.11 1.45 1.42 1.47 2.87 1.00 
39 69 70 63 64 t0 50 1.31 1.40 t. 26 1.2* 1.60 1.00 
40 9 7 7 7 7 12 1.29 1.00 1.00 1.00 1.00 1.71 
41 59 53 64 70 43 39 1.51 1.36 1.64 1.79 1.10 1.00 
42 0 0 477 0 240 -6 0 0 1.99 0 1.00 0 
43 It 365 248 311 92 -6 1.00 4.38 3.06 3.1'S 1.14 0 
44 0 0 0 0 -5 -6 0 0 0 0 0 0 
46 0 0 0 0 0 -6 0 0 0 0 0 0 
46 0 0 0 0 0 -6 0 0 0 0 0 0 
47 140 0 12 102 139 -6 1.71 0 1.00 1.24 1.70 0 
48 65 52 50 53 75 41 1.59 1.27 1.22 1.29 1.93 1.00 
49 27 28 20 25 31 21 1.35 1.40 1.00 1.26 1.90 1.05 
SO 65 52 50 53 30 42 1.55 1.24 1.19 1.26 1.90 1.00 
51 0 0 0 0 0 -6 0 0 0 0 0 0 
52 71 0 116 It 57 67 1.37 0 2.04 1.42 1.00 1.1i 
53 78 75 180 194 67 44 1.77 1.70 4.09 4,41 1.62 1.00 
54 74 71 72 98 12 60 1.23 1.1$ 1.20 1.47 1.37 1.00 

FAILS 12 14 13 13 13 21 MEAN 1.55 1.11 1.77 1,69 1.50 1.33 

MiCTIONS BADLY SCALED 

METH 1 2 3 4 5 6 1 2 3 4 5 6 
GAGS 

1 4 6 6 6 6 -4 1.00 1.00 1.00 1.00 1.00 0 
2 5t 53 64 65 57 0 1.00 t. 04 1.25 1.01 1.12 0 
3 56 54 30 30 31 0 1.87 1.20 1.00 1.00 1.03 0 
4 0 0 12 417 473 0 0 0 1.00 5.09 5.77 0 
5 0 0 0 0 0 -6 0 0 0 0 0 0 



e tot 4e tWo0 10-Ir° ö 1.11 i. oö t. ö9 t. -t t i. öi yö 
7 464 174 150 150 187 0 3.09 1.16 1.00 1.00 1.25 0 
8 143 43 34 29 36 -6 4.93 1.48 1.07 1.00 1.24 0 
9 33 34 33 32 29 124 1.14 1.17 1.14 1.10 1.00 4.28 

t0 56 28 30 37 28 20v 1.96 1.00 1.07 1.32 1.00 7.14 
I1 0 0 59 101 51 -6 0 0 1.16 2.0 1.00 0 
t2 36 38 34 42 105 33 1.09 1.15 1.03 1.27 3.18 1.00 
13 139 84 78 65 84 73 2. t4 1.29 1.20 1.00 1.29 1.12 
14 0 79 189 134 0 93 0 1.00 2.39 t. 70 0 1.18 
15 15 15 15 IS 15 16 1.00 1.00 1.00 t. 00 1.00 t. 07 
tb 8 8 8 8 8 9 1.00 1.00 t. 00 1.00 t. 00 1.13 
17 16 16 t6 16 16 17 1.00 1.00 1.00 1.00 1.00 1.06 
18 0 43 81 253 45 -6 0 1.00 1.88 5.88 t. 05 0 
19 69 70 79 80 88 63 1. to 1.11 1.25 1.27 1.40 1.00 
20 25 24 25 25 25 26 1.04 1.00 t. 04 1.04 1.04 1.08 
21 55 34 34 34 34 36 1.62 1.00 1.00 1.00 1.00 1.06 
22 6 7 7 6 7 11 1.00 1.17 1.17 1.00 1.17 1.83 
23 54 57 68 77 73 43 1.26 1.33 1.58 1.79 t. 70 1.00 
24 t9 It 12 t3 10 12 1.90 1.10 1.20 1.30 1.00 1.20 
25 0 0 0 0 0 0 0 0 0 0 0 0 
26 272 0 0 0 140 57 4.77 0 0 0 2.46 t. 00 
27 0 0 220 0 0 -6 0 0 1.00 0 0 0 
28 0 0 0 0 0 -6 0 0 0 0 0 0 
29 0 0 0 0 0 -6 0 0 0 0 0 0 
30 0 0 0 0 0 -6 0 0 0 0 0 0 
3t 0 0 0 0 0 -6 0 0 0 0 0 0 
32 It 123 63 69 120 46 1.76 2.67 1.37 1.50 2.61 1.00 
33 t9 19 19 19 19 20 1.00 1.00 1.00 1.00 t. 00 1.06 
34 to 10 10 10 10 11 1.00 1.00 1.00 1.00 1.00 1.10 
35 t9 t9 t9 t9 19 20 t. 00 1.00 1.00 1.00 1.00 t. 05 
36 0 0 0 0 0 128 0 0 0 0 0 1.00 
37 82 73 74 79 80 44 1.86 1.66 1.68 1.80 1.82 1.00 
38 137 60 67 65 62 37 3.70 t. 62 1.21 1.76 t. 68 t. 00 
39 87 106 93 95 90 47 1.85 2.26 1.91 2.02 1.91 1.00 
40 8 1 8 8 9 17 1.00 1.00 1.00 1.00 1.13 2.13 
41 71 61 80 47 70 49 1. b1 1.30 1.70 1.00 1.49 1.04 
42 0 0 0 0 0 0 0 0 0 0 0 0 
43 0 0 0 448 0 0 0 0 0 1.00 0 0 
44 0 0 0 0 0 0 0 0 0 0 0 0 
45 0 0 0 0 0 364 0 0 0 0 0 1.00 
46 0 0 0 0 0 -6 0 0 0 0 0 0 
47 tb= 0 103 147 106 49 3.43 0 2.10 3.00 2.16 1.00 
48 75 58 57 53 52 82 1.44 t. 12 1.10 1.02 1.00 1.5v 
49 28 30 22 26 21 23 1.33 1.43 1.05 1.24 1.00 1.10 
50 88 63 58 b7 57 39 2.26 1.62 1.49 1.46 1.46 1.00 
5t 0 0 0 0 0 -6 0 0 0 0 0 0 
52 149 97 114 107 72 -6 2.07 1.35 1.58 1.49 1.00 0 
53 77 74 63 65 63 45 1.71 1,64 1.40 1.44 1.40 1.00 
54 76 74 76 77 79 73 t. 03 1.00 1.03 1.04 1.00 1.05 

FAILS 13 IH 14 14 15 22 MEAN 1.77 1.26 1.27 t. 50 '. 44 1.41 

FIML STATISTICS 

FAILS 44 44 40 41 40 48 MEAti 1.60 1.75 1.59 1.63 1.60 1.35 

SIMGTHE! tiTERNALSC AL I HG 
wýowawwwwwwýwwwwwaRwwuwwuwwwwrwwwwwwiwwuwuwww" 

tU CALED SET OF PROBLEMS 

METH 123456 
PR08 
U 1 2 3 456 1 2 3 4 5 6 

t 6 6 6 t" bý t. 1.0 1.0 1.17, t0 -: A, 83, ýr 
2 27 27 34 35 25 41 1.03 1.03 1.36 1.40 1.00 1.64 
3 73 62 29 66 37 179 2.52 2.14 1.00 2.23 1.28 6.17 
4 0 290 1111 433 11! 96 0 2.92 1.23 4.51 1.23 1.00 
5 21 62 26 00 27 1.09 2.30 3.19 0 0 1.00 



METH t23456t23456 

7- 6 23 t. .Ö 
1. ÖÖ 1.11 1.00 : 1.83 

2 27 27 34 33 25 41 1.01 1.08 1.36 1.40 1.00 1.64 
3 73 42 29 66 37 179 2.52 2.14 1.00 2.25 1.2$ 6.17 
4 0 280 its 433 its 96 0 2.92 1.23 4.51 1.23 1.00 
5 21 62 86 0 0 27 1.04 2.30 3.19 0 0 1.00 
6 164 76 102 75 16 91 2.19 1.01 1.36 1.00 1.15 1.21 
7 164 107 107 120 99 143 1.66 1.08 1.01 1.21 1.00 1.44 
$ 20 16 1$ 22 16 18 1.25 1.00 1.13 1.38 1.00 1.13 
9 28 30 29 26 30 27 1.12 1.20 1.16 1.00 1.20 1.01 

t0 29 23 23 29 21 34 1.38 1.10 1.10 1.38 1.00 1.62 
it 0 107 0 =4 10$ 76 0 1.41 0 1.11 1.42 1.00 
t2 35 36 33 34 35 31 1.13 1.16 1.06 1.10 1.13 1.00 
13 12 92 75 75 75 7t 1.15 1.15 1.06 1.06 1.06 1.00 
t4 103 156 1i7 100 186 91 1.13 1.71 2.05 1.10 2.04 1.00 
15 14 14 t4 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
t6 6 6 6 6 6 7 1.00 1.00 1.00 1.00 1.00 1.17 
t7 14 14 14 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
18 76 0 0 0 47 -6 1.62 0 0 0 1.00 0 
t9 31 31 31 31 31 32 1.00 1.00 1.00 1.00 1.00 1.03 
20 21 20 20 20 20 21 1.05 1.00 1.00 1.00 1.00 1.05 
21 32 21 28 27 29 29 1.19 1.04 1.04 1.00 1.04 1.07 
22 6 6 6 6 6 9 1.00 t. 00 1.00 1.00 1.00 1.50 
23 49 49 50 31 48 36 1.36 1.36 t. 39 1.06 1.33 1.00 
24 19 10 10 13 37 12 1.90 1.00 1.00 1.30 3.70 1.20 
25 0 0 0 0 0 252 0 0 0 0 0 1.00 
26 71 0 0 273 0 32 2.22 0 0 8.53 0 1.00 
27 0 426 227 227 125 331 0 3.41 1.82 1.82 1.00 2.65 
28 0 0 0 0 0 -6 0 0 0 0 0 0 
29 0 176 0 468 0 192 0 1.00 0 2.66 0 1.09 
30 0 316 0 0 0 310 0 1.02 0 0 0 1.00 
31 0 0 0 0 0 0 0 0 0 0 0 0 
32 92 66 79 58 69 31 2.97 2.13 2.55 1.87 2.23 1.00 
33 t6 16 16 16 16 17 1.00 1.00 1.00 1.00 1.00 1.06 
34 9 9 $ 8 1 10 1.13 1.13 1.00 1.00 1.00 1.25 
35 17 17 17 17 17 18 1.00 1.00 1.00 1.00 1.00 1.06 
36 0 0 0 0 0 82 0 0 0 0 0 1.00 
37 97 39 96 64 37 36 2.69 1.08 2.67 1.78 1.03 1.00 
38 114 55 54 56 57 54 2.11 1.02 1.00 1.04 1.06 1.00 
39 69 70 63 65 63 45 1.53 1.56 1.40 1.44 1.40 1.00 
40 1 7 7 7 7 9 1.14 1.00 1.00 1.00 1.00 1.29 
41 58 54 56 6t 55 40 1.45 1.35 1.40 1.52 1.38 1.00 
42 0 0 423 458 463 437 0 0 t. 00 1.08 1.09 t. 03 
43 53 157 153 190 0 44 1.20 3.57 3.58 4.32 0 1.00 
44 0 213 0 477 0 492 0 1.00 0 1.69 0 1.74 
45 0 0 0 0 0 244 0 0 0 0 0 1.00 
46 0 0 0 0 0 0 0 0 0 0 0 0 
47 62 144 94 130 99 97 1.00 2.32 1.55 2.10 1.60 1.56 
48 65 53 50 54 45 47 1.44 1.12 1.11 1.20 1.00 1.04 
49 27 22 20 23 19 21 1.42 1.47 1.05 1.21 1.00 1.11 
50 65 54 50 53 44 3* 1.71 1.42 1.32 1.39 1.16 1.00 
51 0 0 0 0 0 -6 0 0 0 0 0 0 
52 120 113 61 66 57 58 2.11 1.98 1.07 1.16 t. 00 1.02 
53 91 75 179 208 134 42 2.17 1.79 4.26 4.95 3.19 1.00 
54 86 71 72 91 71 57 1.51 1.25 1.26 1.60 1.25 1.00 

FAILS 14 10 13 10 13 5 MEAN 1.46 1.42 1.42 1.69 1.27 1.31 

VARIABLES BADLY SCALED 

PETH 1 2 3 4 5 6 1 2 3 4 5 6 
PROS 

1 6 6 6 6 6 35 1.00 1.00 1.00 1.00 1.00 5.83 
2 27 27 34 37 23 29 1.03 1.08 1.36 1.49 1.00 1.16 
3 76 47 29 51 37 -9 2.62 1.62 1.00 1.76 1.25 0 
4 144 249 126 115 tit 99 t. 45 2.52 1.27 1.16 1.19 1.00 
5 21 62 147 64 0 -6 1.00 2.21 5.25 2.29 0 0 

e 94 $4 ýy 96 1M6 -6 1.12 1.00 1.00 1.14 1.74 0 ýwf '+ 
7 31 146 164 114 139 -6 3.4t 1.28 1.35 1.00 1.22 0 
t 20 16 1= 20 16 23 1.25 1.00 1.13 1.25 1.00 1.44 
9 2$ 30 29 27 30 21 1.04 1.11 1.07 1.00 1.11 1.04 

10 29 23 23 30 21 55 1.31 1.10 1.10 1.43 1.00 2.62 
1 11 0 112 0 74 131 -6 0 1.51 0 1.00 1.77 0 



r. ýý ." .ý "" 1" YI ºr7º l. [Y º. [V &. VV [D 1. VV 

FAILS 14 10 13 10 13 6 MEAN 1.46 1.42 1.42 1.69 1.27 1.31 

VARIABLES BADLY SCALED 

METH 1 2 3 4 5 6 1 2 3 4 5 6 
PROB 

1 6 6 6 6 6 35 1.00 1.00 1.00 1.00 1.00 5.83 
2 27 27 34 37 25 29 1.08 1.08 1.36 1.48 1.00 1.16 
3 76 47 29 51 37 -9 2.62 1.62 1.00 1.76 1.21 0 
4 144 249 126 its 118 99 1.45 2.52 1.27 1.16 1.19 1.00 
5 21 62 147 64 0 -6 t. 00 2.21 5.25 2.29 0 0 

6 94ý 14 96 46 1 1 1 -6 1.12 1. 1.00 1.14 1.7'4 0 
7 389 146 14 114 139 

1 
3 9 -6 3.41 1.21 1.35 1.00 1.22 0 

8 20 16 18 20 16 23 1.25 1.00 1.13 1.25 t. 00 1.44 
9 28 30 29 27 30 29 1.04 1.11 1.07 1.00 1.11 1.04 

10 29 23 23 30 2t 55 1.3$ 1.10 1.10 1.43 1.00 2.62 
tt 0 112 0 74 131 -6 0 1.51 0 1.00 1.77 0 
t2 35 36 33 37 35 27 t. 30 1.33 1.22 1.37 t. 30 1.00 
13 82 82 75 75 75 46 1.79 1.78 1.63 1.63 1.63 1.00 
14 103 243 194 0 12 -6 1.26 2.96 2.37 0 1.00 0 
15 14 14 14 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
16 6 6 6 6 6 7 1.00 1.00 1.00 1.00 1.00 1.17 
17 14 14 14 14 14 15 1.00 1.00 1.00 1.00 1.00 1.07 
is 91 0 0 0 . 47 56 1.94 0 0 0 1.00 1.19 
t9 55 64 10 92 91 39 1.41 1.64 2.05 2.36 2.33 1.00 
20 2t 20 20 20 20 23 1.05 1.00 1.00 1.00 1.00 1.15 
21 32 23 28 23 28 34 1.14 1.00 1.00 1.00 1.00 t. 21 
22 6 6 6 6 6 9 1.00 1.00 1.00 1.00 1.00 1.50 
23 49 49 51 60 49 34 1.44 1.44 1.50 1.76 1.44 1,00 
24 t9 13 10 12 38 -9 1.90 1.30 1.00 1.20 3.80 0 
25 0 0 392 0 369 -6 0 0 1.06 0 1.00 0 
26 71 429 0 315 0 33 2.15 13.00 0 9.55 0 1.00 
27 0 285 332 247 0 -6 0 1.15 1.34 1.00 0 0 
29 0 0 0 0 0 -6 0 0 0 0 0 0 
29 0 249 0 0 0 -6 0 1.00 0 0 0 0 
30 0 0 0 0 0 -6 0 0 0 0 0 0 
31 0 0 0 0 0 -6 0 0 0 0 0 0 
32 35 65 37 49 44 39 1.00 1.86 1.06 1.40 1.26 1.11 
33 16 16 16 16 16 17 1.00 1.00 1.00 1.00 1.00 1.06 
34 9 9 8 8 8 10 1.13. 1.13 1.00 1.00 1.00 1.25 
35 17 17 17 17 17 18 1.00 1.00 1.00 1.00 1.00 1.06 
36 0 0 -9 -9 0 -6 0 0 0 0 0 0 
37 20b 75 39 78 40 37 5.57 2.03 1.05 2.11 1.08 1.00 
33 116 55 54 56 57 38 3.05 1.45 1.42 1.47 1.50 1.00 
39 69 70 63 63 63 50 1.38 1.40 1.26 1.26 1.26 1.00 
40 $ 7 7 7 7 12 1.14 1.00 1.00 1.00 1.00 1.71 
41 51 54 56 61 55 39 1.49 1.38 1.44 1.56 1.41 1.00 
42 0 0 0 0 348 -6 0 0 0 0 1.00 0 
43 62 134 0 162 0 -6 1.00 2.16 0 2.61 0 0 
44 0 247 0 262 0 -6 0 1.00 0 1.06 0 0 
45 0 0 0 0 0 -6 0 0 0 0 0 0 
46 0 0 0 0 0 -6 0 0 0 0 0 0 
47 72 126 102 137 117 '-6 1.00 1.75 1.42 1.90 t. 63 0 
411 65 53 50 50 45 41 1.59 1.29 1.22 1.22 t. 10 1.00 
49 27 28 20 25 19 21 1.42 1.47 1.06 1.32 1.00 1.11 
50 65 54 50 50 "44 42 1.55 1.29 1.19 1.19 1.05 1.00 
51 0 0 0 0 0 -6 0 0 0 0 0 0 
52 95 It 103 193 116 67 . 1.42 1.31 1.54 2.88 1.73 1.00 
53 91 75 195 217 111 94 2.07 1.70 4.43 4.93 2.52 1.00 
54 96 71 72 73 71 60 1.43 1.18 1.20 1.22 1.18 1.00 

FAILS 13 10 14 t2 13 21 MEW t. 54 1.65 1.40 1.66 1.31 t. 30 

FUNCTIONS BADLY SCALED 

METH 1 2 3 4 S 6 1 2 3 4 5 6 
PROB 

1 6 6 6 6 6 -6 1.00 1.00 1.00 1.00 1.00 0 
2 56 56 64 47 S4 0 1.19 1.19 1.36 1.00 1.15 0 
3 108 65 30 67 30 0 3.60 2.17 1.00 2.23 1.00 0 
4 144 99 194 85 88 0 1.69 1.16 2.28 1.00 1.04 0 
5 36 0 -2 0 0 -6 1.00 0 0 0 0 0 
6 172 95 102 85 99 0 2.02 1.12 1.20 1.00 1.16 0 
7 151 175 155 136 158 0 1.11 1.29 1.14 1.00 1.16 0 
8 24 20 22 21 20 -6 1.20 1.00 1.10 1.05 1.00 0 
9 33 34 33 32 37 124 1.03 1.06 1.03 1.00 t. 16 3.88 

10 36 27 28 30 26 200 1.44 1.08 1.12 1.20 1.00 8.00 

1.77 1.77 1.00 1.63 0 o 110 tto 62 lot -6 -O-C. 77- 
12 36 It 34 39 36 33 1.09 1.15 1.03 1.1t 1.09 1.00 



METH 1 23 4 5 6 1 
PROS 

t 6 66 6 6 -6 1.00 
2 66 56 64 47 54 0 1.19 
3 10$ 65 30 67 30 0 3.60 
4 144 99 194 86 ii 0 1.69 
5 36 0 -2 0 0 -6 1.00 
6 172 95 102 85 99 0 2.02 
7 161 175 155 136 158 0 1.11 
8 24 20 22 21 20 -6 1.20 
9 33 34 33 32 37 124 1.03 

10 36 27 28 30 25 200 1.44 

t I 

FAILS 

I FAILS 

IN tto 62 1 
36 39 36 33 
8 79 1 2 73 
7 1 1 3 

0 
261 

15 15 15 15 15 16 
6 9 

1 16 16 16 16 17 
IS 64 67 70 52 -6 6$ 61 67 61 67 63 
26 24 25 
2 34 

34 
339 

35 36 

6 7 22 6 11 
61 61 70 63 59 43 
19 14 12 13 It 12 

0 
139 121 0 133 446 57 
270 438 210 242 352 -6 0 0 0 0 0 -6 392 300 0 304 0 -6 0 444 0 0 0 -6 0 248 0 0 0 -6 71 103 16 103 $6 46 

19 t9 19 19 11 20 
10 10 t0 10 10 11 
19 19 t9 19 19 20 

1 
$1 79 73 77 69 44 

161 64 63 65 69 37 
73 73 80 11 
3 $ $ $ 3 17 

66 66 70 63 49 
0 0 433 0 0 0 

56 167 0 229 354 0 
0 280 0 0 0 
0 369 
0 0 0 0 0 -6 

-5 12$ 100 106 135 49 
76 5$ 57 57 59 32 
2! 30 22 25 24 23 

tot 66 62, 54 $0 39 
o o 0 0 0 -6 134 $9 127 t31 93 -6 93 76 241 184 64 45 

90 74 76 76 92 78 

t2 S 13 II 

FINAL STATISTICS 

39 23 90 33 

1.09 
1.29 
1.00 
1.00 
1.00 
1.00 
1.69 
1.0! 
1.19 
1.24 
1.00 
1.42 
1.73 

0 
2.44 
1.12 

0 
1.31 

0 
0 

1.54 
1.06 
1.00 
1.00 

0 
2.00 
4.35 
1.56 

)0 
35 
0 

)0 
0 
0 
0 
0 

1.33 
1.27 
2.59 

0 
1.51 
2.07 
1.22 

12 22 MEAN 1.47 

2 3 4 5 6 

1.00 1.00 1.00 t. 00 0 
1.19 1.36 1.00 t. 15 0 
2.17 1.00 2.23 1.00 0 
1.16 2.28 1.00 t. 04 0 

1.12 1.20 1.00 1.16 0 
1.29 1.14 1.00 1.16 0 
1.00 1.10 t. 05 1.00 0 
1.06 1.03 1.00 1.16 3.98 
1.08 1.12 1.20 1.00 2.00 

ER 1.03 1.18 1.09 1.00 
1.29 1.1* 1.17 1.00 1.12 
1.01 2.41 4.10 3.22 1.19 
1.00 1.00 1.00 1.00 1.07 
1.00 1.00 1.00 1.00 1.13 
1.00 1.00 1.00 1.00 1.06 
1.23 1.29 1.35 1.00 0 
1.09 1.06 1.09 1.06 1.00 
1.14 1.19 1.19 1.00 1.24 
1.00 1.00 1.00 1.03 1.06 
1.17 3.67 1.00 1.00 1.83 
1.42 1.63 1.47 1.37 1.00 
1.27 1.09 1.11 1.00 1.09 

0 0 0 
2.12 0 2.33 7.32 1.0 
1.81 1.16 1.00 1.45 0 

1.00 
0 

1.01 
0 0 

t. 0 0 0 0 
0 

2.24 1.87 2.24 1.87 1.00 
1.06 1.06 1.06 1.00 1.11 
1.00 1.00 1.00 1.00 1.10 
1.00 t. 00 1.00 1.00 1.05 

0 0 0 0 1.00 
1.90 1.66 1.75 1.57 1.00 
1.73 1.70 1.76 1.34 1.00 
1.55 1.40 1.70 2.43 1.00 
1.00 1.00 1.00 1.00 2.13 
1.35 t. 59 1.43 1.29 1.00 

0 1.00 0 0 0 
2.99 0 4.09 6.32 9 
1.00 0 0 0 0 

o o 0 0 1.00 

2.61 2.04 2.16 2.76 1.00 
1.02 1.00 1.00 1.04 1.44 
1.36 1.00 1.14 1.09 1.05 
1.69 1.59 1.39 2.05 1.00 

0 0 0 0 0 
1.00 1.43 1.70 1.10 0 
1.69 5.36 4.09 1.42` 1.00 
1.00 1.03 1.03 1.24 1.05 

1.34 1.45 1.47 ' 59 1.42 

3$ 42 MEAN 1.49 1.47 1.42 1.60 1.39 1.34 
ffttsslssssssfls##fsssssssff#fssfslfsssttflffssf!! sYlYStstsls! #f#Yfft# 
!!! flfYY#ft####! f#ff!!! t!! ff!! f#ff! #tftf#! #YYtf! #ftfflfY###tffffft#ttf 

ft 
!Y f# 

DETAILED RESULTS FOR THE Yf 
U fs 

GENERALSUBSET tf 
t !Y 

YY 
#tf! lYtfffi#lYt ti ttttttfttffltlY#ltffitfltYltlffYlti#!! #! #tiftt#ff!! f! 
tYf#fttfYttfif!!! tt! #fYttlYYt#Ytff##!!! it#tfffY!! Y!! YY! #! YlYtlff##Y#f! 

IT. 40UT USING THE INTERNAL SCALING 
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IT. 40UT USING THE INTERNAL SCALING 
////////////////////1mass 

12345 

27 
666 

27 37 3$ 25 
74 9$ 29 46 66 

363 129 103 125 99 
l20 lib l1$ 132 lto 

28 30 29 26 26 

36 
59 23 46 

t04 
13$ 224 77 173 96 

14 14 14 14 14 
66666 

t4 N 14 
31 

33 
31 

31 31 

21 20 20 20 20 
32 2$ 21 27 29 

00000 MEAN 

1 2 3 4 5 
6 6 6 5 6 

27 27 37 37 33 
75 70 29 46 66 

319 102 117 96 16 
273 221 101 11$ 147 
20 16 tt 32 20 
23 30 29 29 29 
3t 23 23 
35 59 51 

46 33 

13$ 229 77 77 It 
19 14 19 14 lY 
6 6 6 6 6 

14 19 14 19 19 
59 76 63 94 62 
21 20 20 20 23 
32 29 28 2! 34 

0 0 0 0 0 MEAN 

1 2 3 4 5 

1.20 1.20 1.20 1.00 1.20 
1.08 1.01 1.48 t. 36 1.00 
2.55 3.33 1.00 1.59 2.28 
3.67 t. 30 1.04 1.26 1.00 
1.10 1.00 t. 41 1.26 1.01 
1.25 1.00 1.13 2.00 1.00 
1.0$ 1.15 1.12 1.00 1.00 
1.41 LOS LOS 1.23 1.00 
1.00 t. 69 1.46 1.31 2.97 
1.79 2.91 1.00 2.25 1.23 
1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.06 1.00 1.00 1.00 
1.05 1.00 1.00 1.00 1.00 
1.19 1.04 1.04 1.00 1.04 

1.40 1.37 1.12 1.27 1.24 

1 2 3 4 5 

1.20 1.20 1.20 1.00 1.74 
1.00 1.00 1.37 1.37 1.22 
2.59 2.41 1.00 1.59 2.23 
4.52 1.19 1.36 1.12 1.00 
2.53 2.11 1.00 1.09 1.36 
1.25 1.00 1.13 2.00 1.25 
1.00 1.07 1.04 1.04 1.04 
1.35 1.00 1.00 1.17 2.39 
1.06 1.79 1.55 1.39 1.00 
1.79 2.91 1.00 1.00 1.14 
1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 t. 00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.29 1.07 1.42 1.05 
1.05 1.00 1.00 1.00 1.15 
1.14 1.00 1.00 1.00 1.21 

1.53 1.37 1.11 1.20 1.27 

P TH 1 2 3 4 5 1 2 3 4 5 
` 

1 6 6 6 5 6 t. 20 1.20 1.20 1.00 1.20 
2 136 67 63 42 30 4.53 2.23 2.10 1.40 1.00 3 86 59 23 "9 65 3.04 2.11 1.00 0 2.32 
4 0 t64 13* 121 282 0 1.36 1.14 1.00 2.33 
5 201 321 155 215 0 1.30 2.07 1.00 1.39 0 
6 48 24 21 26 30 2.29 1.14 1.00 1.24 1.43 7 0 33 31 51 0 0 1.06 1.00 1.65 0 
i 0 74 104 46 0 0 1.61 2.26 1.00 0 
9 35 59 51 46 33 1.06 1.79 1.55 1.39 1.00 

10 78 224 77 77 59 1.32 3.90 1.31 1.31 1.00 
11 15 14 15 15 15 1.07 1.00 1.07 1.07 1.07 
12 7 7 7 7 7 1.00 1.00 1.00 1.00 1.00 13 15 14 15 15 15 1.07 1.00 1.07 t. 07 1.07 
t4 35 62 61 35 35 1.00 1.77 1.74 1.00 1.00 15 21 20 20 20 21 1.05 1.00 1.00 1.00 1.05 t6 33 27 27 27 32 t. 22 1.00 1.00 1.00 1.19 

FAILS 3 0 0 1 3 PEAtl 1.63 1.57 1.21 1.17 1.28 

Pý t 2 3 4 5 1 2 3 4 5 
p 

1 0 0 24 1 0 0 0 3.00 1.00 0 2 65 S3 93 102 59 1.23 1.00 1.75 1.92 1.11 
3 -9 -9 -9 -9 -9 0 0 0 0 0 4 0 0 96 7t 0 0 0 1.35 1.00 0 5 0 0 272 260 0 0 0 1.05 1.00 0 



PETH 
PROS 

1 
2 
3 
4 
5 
6 
7 
$ 
9 

to 
It 
t2 
t3 
19 
15 
t6 

FAILS 

METH PROS 1 
2 
3 
4 
5 

7 
3 
9 

to 
tt 
12 
13 
14 
15 
16 

FAILS 

FAILS 

USING THE INTERNAL SCALING 
. ýovo. oou.. w. w.. o.. u... u.... o... owo.. o o. u" 

METH 1 23 4 5 1 2 3 4 5 
PROB 

1 6 66 7 6 1.00 1.00 1.00 1.17 1.00 
2 27 27 34 35 25 1.08 1.08 1.36 1.40 1.00 
3 73 62 29 66 37 2.52 2.14 1.00 2.28 1.28 
4 164 76 102 75 86 2.19 1.01 1.36 1.00 1.15 
5 154 107 107 120 99 1.56 1.08 1.08 1.21 1.00 
6 20 16 18 22 16 1.25 1.00 1.13 1.38 1.00 
7 28 30 29 25 30 1.12 1.20 1.16 1.00 1.20 
8 29 23 23 29 21 1.38 1.10 1.10 1.38 1.00 

1 2 3 4 5 

63 53 93 102 59 
-9 -9 -9 -9 -9 0 0 72 
0 2 2 260 

0 

0 0 0 0 0 

35 59 51 46 33 
131 66 
1 67 13$ 22 22 262 
147 97 12 10 323 
277 134 22 22 201 
-6 397 134 13$ 243 
% 5 30 4 0 
0 0 2 20 0 

9855 10 MEAN 

12345 

0 0194t09 00 

-9 -9 -9 -9 -9 
-6 0000 
0000000 

000000 

128 59 74 54 31 
130 81 303 80 Ln 

00000 
-6 -6 13 -2 -6 
00000 
0 00 

0000 
00000 

14 19 11 12 14 MEAN 

FINAL. STATISTICS 

26 22 16 19 27 MEAN 

12345 

003.00 1.00 0 
1.23 1.00 1.75 1.92 1.11 

o 0 0 0 0 0 0 1.35 1.00 0 
0 0 t. O0 1.00 0 

0 
0 0 0 0 0 
0 0 0 0 0 1.06 1.79 1.55 1.39 1.00. 

2.33 1.00 0 0 0 
7.59 6.27 1.00 1.00 11.91 

14.70 9.70 1.20 1.00 32.30 
12.59 6.09 1.00 1.00 9.14 

0 2.96 1.00 1.03 1.31 
2.91 1.76 1.00 1.15 0 

0 0 1.13 t. 00 0 

6.07 3.82 1.37 1.20 9.65 

2 3 4 6 

O 0 6.73 t. 00 0 
0 0 1.73 1.00 0 
0 0 0 0 0 

0 
0 0 0 
0 0 0 0 

0 0 0 0 0 

3.22 1.79 2.24 1.64 1.00 
1.63 1.01 3.79 1.00 1.07 

0 0 1.00 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

2.75 1.40 3.11 1.16 1.04 

2.15 1.76 1.35 1.21 2.19 

it 12 
13 

15 

FAILS 

14 14 14 14 14 
66666 

14 14 14 14 14 
31 31 31 31 31 
21 20 20 20 20 
32 23 29 27 28 

000i0 MEAN 

£. VV 

1.09 
\. V7 

1.09 
{ . VV 

1.00 
f. VJ 

1.00 
&. VV 

1.00 
1.00 1.00 1.00 1.00 1.00 
t. 00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.05 1.00 1.00 1.00 1.00 
1.19 1.04 1.04 1.00 1.04 

1.28 1.11 1.09 I. IH 1.05 

METH PROS t 2 3 

12345 

66666 
27 27 34 37 25 
76 73 29 68 37 

1 2 3 4 5 

1.00 1.00 1.00 1.00 1.00 
1.0$ 1.0$ 1.36 1.43 1.00 
2.62 2.52 1.00 2.34 1.22 



METH PROS t 
2 
3 
4 
5 
6 
7 
$ 
9 

to 
It 
12 
13 
14 
15 
to 

FAILS 

PTM PROD 1 
2 
3 
4 
5 
6 
7 
i 
9 

to 
11 
to 
t3 
14 
t5 
to 

FAILS 

PITH Pace 

2 3 
4 
5 
6 
7 

1 2 3 4 5 

6 6 6 
27 27 34 37 25 
76 73 29 68 37 

211 76 139 101 127 
122 112 91 106 0 
20 16 1i 32 16 
21 30 29 29 30 
29 23 23 23 21 
35 36 75 

t37 2 
75 75 

14 14 14 14 14 
6 6 6 6 6 

14 14 14 14 14 
S7 61 116 84 62 
21 20 20 20 20 
32 2! 28 2= 29 

0 0 0 0 1 MEAN 

1 2 3 4 6 

6 6 
52 55 56 74 72 
70 7 5 60 9 

13 11 9 3 13 
308 265 1 24S I3 1 
4$ 24 21 27 21 
72 33 31 92 32 
0 0 114 102 0 

35 36 33 3= 35 
12 !2 75 75 75 
15 14 15 15 15 
7 7 7 7 7 

15 14 15 15 15 
69 39 0 0 30 
21 20 20 20 20 
33 27 27 27 26 

2 1 1 1 1 M&fi 

1 2 3 4 5 

72 86 1% 92 117 
-9 -9 -9 -9 -9 
0 0 116 305 79 
0 160 0 129 0 

0 0 0 0 0 
0 0 0 0 0 

9 
to 
it 
12 
13 
14 
15 
to 

FAILS 

PETM PROs 
t 
2 
3 
4 
5 
6 
7 
t 
9 

10 
it 
t2 
13 

t37 82 75 75 75 
197 132 22 23 21 
1$ 191 12 12 it 
17$ 130 22 21 22 
t27 391 1 
72 59 33 61 

170 

00000 

?6656 MEAN 

1 2 3 4 5 

13 14 13 13 13 
0 0 361 0 112 

-9 -9 -9 -9 -9 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

32 A3 34 40 35 
0 55 95 120 172 
0 0 0 0 17-1 

-6 295 13 72 13 
0 0 0 0 15e 

1 2 3 4 5 

1.00 1.00 1.00 1.00 1.00 
1.08 1.03 1.36 1.43 1.00 
2.62 2.52 1.00 2.34 1.2$ 
2.7$ 1.00 1.23 1.33 1.67 
1.24 1.14 1.00 1.08 0 
1.25 1.00 1.13 2.00 1.00 
1.00 1.07 1.04 1.04 1.07 
1.31 1.10 1.10 1.33 1.00 
1.06 1.09 1.00 1.21 1.06 
1.33 1.09 1.00 1.00 1.00 
1.00 1.00 1.00' 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 
1.00 1.07 1.49 1.47 1.09 
1.05 1.00 1.00 1.00 1.00 
1.14 1.00 1.00 1.00 1.00 

1.34 1. t9 t. t2 t. 27 t. og 

1 2 3 4 5 

1.20 1.20 1.20 1.00 1.20 
1.00 1.06 1.08 1.42 1.50 
2.54 2.50 1.00 2.19 1.32 

0 1.65 2.23 1.00 1.66 
3.05 2.62 1.00 2.43 1.12 
2.29 1.14 1.00 1.29 1.00 
2.32 1.06 1.00 2.65 1.03 

0 0 1.10 1.00 0 
1.06 1.09 1.00 1.15 1.06 
1.09 1.09 1.00 1.00 1.00 
1.07 1.00 1.07 1.07 1.07 
1.00 1.00 1.00 1.00 1.00 
1.07 1.00 1.07 1.07 1.07 
1.74 1.00 0 0 2.05 
1.05 1.00 1.00 1.00 1.00 
1.27 1.04 1.04 1.04 1.00 

1.55 1.30 1.17 1.35 1.21 

t 2 3 4 5 

1.13 1.00 1.13 1.00 1.13 
1.00 1.10 2.51 1.1* 1.50 

0 0 6 
0 

0 
1.49 3.9 1.00 

0 1.24 0 1.00 0 
0 0 0 0 0 
0 0 0 0 0 

1.06 1.09 1.00 1.12 1.06 
1.33 1.09 1.00 1.00 1.00 
9.35 6.57 1.05 1.10 1.00 

16.73 12.32 1.09 1.09 1.00 
L'. 93 6.19 1.05 1.00 1.05 
Let 4.95 1.71 1.00 1.39 
2.10 1.79 1.00 1.95 2.12 

0 0 0 0 0 

4.92 3.72 1.30 1.32 1.27 

12345 

1.00 1.08 1.00 1.00 1.00 
0 0 3.22 0 1.00 
0 0 0 0 0 

0 0 0 0 0 
1 

0 0 0 0 
1.00 1.03 1.06 1.25 1.09 

0 1.00 1.73 2.18 3.13 
0 0 0 0 1.00 
0 18.95 1.00 6.00 1.00 
0 0 0 0 1.00 



METH 1 2 3 45 1 2 3 If 5 
PROB 

1 13 14 13 13 13 1.00 1.0$ 1.00 1.00 1.00 
2 0 0 361 0 112 0" 0 3.22 0 1.00 
3 -9 -9 -9 -9 -9 0 0 0 0 0 
4 0 0 0 00 0 0 0 0 0 
5 0 0 0 00 0 0 0 0 0 
6 0 0 0 00 0 0 0 0 0 
7 0 0 0 00 1) 0 0 0 0 
8 0 0 0 00 0 0 0 0 0 
9 32 A3 34 40 35 1.00 1.03 1.06 1.25 1.09 

10 0 56 95 120 172 0 1.00 1.73 . Is 3.13 
it 0 0 0 0 to 0 0 0 0 1.00 
t2 -6 245 13 73 13 0 13.35 1.00 6.00 1.00 
13 0 0 0 0 153 0 0 0 0 1.00 
t4 0 0 0 0 242 0 0 0 0 1.00 
15 0 0 0 36 0 0 0 0 1.00 0 
16 0 0 0 00 0 0 0 0 0 

FAILS 14 12 II II I MEAN 1.00 5.49 1.60 2.29 1.29 

FINAL STATISTICS 

FAILS 23 t9 It 17 16 MEAN 1.91 1.39 1.19 1.37 1.16 
ýký1'XX#XX##X#X#YX##X#7k##! Y####X!!! X# #XXX#! ###Y!!!! ##!! #!! X!!! #X! #!!! # 
Mt7k#X####XX#####XX#X###X##!! X###! #! X X##XXlX#!! tt#!!! 1t! # ! ####!! #Y!!!!! # 
ýtyt X* 
Mc# *# 

DETAILED RESUL TS FOR T HE 
# ## 

** CHEMICAL EQUI LIBRIUM SET 
yrik *# 
7k# *# 
*#XX*X####X######! #X! ####Y###! #XY## #7t####! X###X#X#### ! X#X###X###X### 
#! X'fR'ftX#X##XtXXX#####! ######! #7tlX####XX#X###!!! ##! #### #####! #! #! ##X! # 

ITH0UT USING THE INTERNAL SCALING 

METH 
P123M56 

2000550 

3 170 119 0 119 00 
9 62 70 97 113 73 -6 5 19 19 13 13 22 -6 
6 62 IM 65 62 69 -6 700000 33 
20 t3 64 90 434 25 

12 .3456 
0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 0 

1.93 1.00 0 1.00 0 0 
1.00 1.13 1.56 1.32 1.13 0 
1.08 1.09 1.00 1.00 1.69 0 
1.10 1.35 1.05 1.00 1.03 0 

0 0 0 0 0 1.00 
0 3.52 2.56 3.60 17.36 1.00 

11 132 0 111 01 
12 154 133 176 105 I 

FAILS 3333 

FINAL STATISTICS 

FAILS 3333 

b -9 1.69 1.37 1.17 1.00 1.03 0 
w 39 1.59 2.09 1.03 1.15 1.00 1.15 
6 -9 1.19 0 1.00 0 1.05 0 
7 -9 1.47 1.27 1.63 1.00 1.11 0 

39 MEAN 1.23 1.53 1.34 1.40 2.94 1.05 

39 MEAN 1.28 1.53 1.34 1.40 2.94 1.05 

USING THE INTERNAL SCALING 

METH 1 23 4 5 6 1 2 3 4 5 6 
PROD 

1 14 t4 120 14 120 0 1.00 1.00 5.57 1.00 5.57 0 
2 5 55 5 5 0 1.00 1.00 . 1.00 1.00 1.00 0 
3 71 67 113 68 90 0 1.06 1.00 1.69 1.01 1.34 0 
4 67 10 65 84 Q1 -6 1.03 1.23 1.00 1.29 1.25 0 
5 16 13 12 12 12 -6 1.33 1.08 1.00 1.00 1.00 0 
6 67 54 72 67 66 -6 1.02 1.27 1.09 1.02 1.00 0 
7 -6 00 -6 -6 33 0 0 0 0 0 1.00 
3 276 79 72 59 71 25 11.04 3.16 2.88 2.36 2.34 1.00 4 GO Y7 u1 !. G 2L -O 4 .O 4 13LL 1 @7 4 04 I AA A 



METH 123456123456 
PROS 

1 t4 14 120 14 120 0 1.00 1.00 1.57 1.00 9.57 0 
25555501.00 1.00 1.00 1.00 1.00 0 
3 71 67 113 68 90 0 1.06 1.00 1.69 1.01 1.34 0 
4 67 80 65 84 It -6 1.03 1.23 1.00 1.29 1.25 0 
5 16 13 12 12 12 -6 1.33 1.08 1.00 1.00 1.00 0 
6 67 84 72 67 66 -6 1.02 1.27 1.09 1.02 1.00 0 
7 -6 00 -6 -6 33 000001.00 
1 276 79 72 59 71 25 11.04 3.16 2.11 2.36 2.34 1.00 
9 59 47 41 65 35 -9 1.69 1.34 1.17 1.86 1.00 0 

10 54 61 35 40 36 39 1.54 1.74 1.00 1.14 1.00 1.11 
11 1M 0 111 156 10$ -9 1.71 0 1.03 1.44 1.00 0 
12 133 100 159 108 119 -9 1.33 1.00 1.53 1.01 1.19 0 

FAILS 121119 MEAN 2.16 1.3$ 2.00 1.29 1.93 1.04 

FINAL STATISTICS 
FAILS 121119 MEAN 2.16 1.31 2.00 1.29 1.93 1.04 

#fa1CM##71c7o#**#*k*####***#k#*#*k! #! ##***##k##k#*! *s#*#ýt#***##***###! #! k# 

flalcygk#yt##*#f*! #*'Yf####*fkf##*#+1#! ####kk##*! Y#! Y####kk###*#! **k#f! #**## 
ytkllt !** 
*** *## 

*** SPEEDUPDATAFILE S*** 
sxs *! f 
7k*# #*k 
7k#fgWt###i*#####i*#*##*k*! ***#! ##! #! #**i#**#k*#*! #! *kkk*k######k#kk*#k 

## 
## 

PROCEDURES USED IN SPEEDUP FOR THE PROBLEMS ** 
## 

HEXIM. HEX2M AND BPHET FOR THE SIMULATION OF 
## 

THE HEAT EXCHANGER AND CONDENSER UNITS ** 
## 

SIMHEX ** 
## 

S1MC0N ** 

#* #s 
##ýanr##**##*#**ss##s#s#ý*###*#*s##*#######sss*s*s##ssssss**s##s#s 

SUBROUTINE SIMEXcFH. THO. CPH. FC. TCO. CPC. UA. TH. TC) 
C 
C 
C THIS SUBROUTINE CALCULATES THE OUTPUT TEMPERATURE 
C FOR BOTH STREAMS IN A HEAT EXCHANGER GIVEN ALL THE 
C ItPUT DATA 
C 
C FLOW RATE TEMPERATURE CP 
C 
C INPUT OUTPUT 
C 
C 
C 

COLD FH THT OO TH 
C CPC 

C 
C UA IS THE PRODUCT OF THE U COEFFICIENT AND THE AREA 
C 
C 

COIiOWSPSTAT, LP. IPRINT. HERRS. IABORT 
CtIFH*CPH 
C2-FC*CPC 
IF (ABS (Cl) . LT. t. E-6) GO TO 60 
IF(ABS(C2). LT. 1. E-6)G0 TO 50 
GO TO 100 

50 CONTINUE 
IF(IPRINT. LE. O)GO TO 60 
I' ITE(LP. 1000)C1. C2. UA 

1000 FORMAT(" '. IM t-w-BAD ARGUMENTS. CI-". 612.6. " C2"". GI2.6. 
"" UA-. G12.6) 



Itltýt#SIMEX(FH. 
THO. CPH. FC. TCO. CPC. UR. TH. TC) 

THIS SUBROUTINE CALCULATES THE OUTPUT TEMPERATURE 
FOR BOTH STREA4S IN A HEAT EXCHANGER GIVEN ALL THE 
INPUT DATA 

FLOW RATE 

HOT FH 
COLD FC 

TEMPERATURE CP 

INPUT OUTPUT 

THO TH CPH 
TCO TC CPC 

UA IS THE PRODUCT OF THE U COEFFICIENT AND THE AREA 

CC"F 
$STAT. -LP. IPRINT. HERRS. IAGORT 

C2-FC*CPc 
IFIAaS(C1). LT. 1. E-6)GO TO 50 
IF(ASS(C2). LT. 1. E-6)G0 TO 50 
GO TO 100 

so COMTIPEIE 
IF(IPRINT. LE. O)GO TO 60 
MITE (LP. 1000) CI, C2 UA 

1000 FORMATI" SIPIIX-W-BAD ARGUMENTS. C1. ", 612.6. " C2"". G12.6. 
"" UAu". 612.6) 

60 CONTINUE 

TC-TCO 
RETURN 

100 CONTINUE 
BETAwC2/C1 
IF(ABS(BETA-1. O). LT. t. E-6)BETA I. 0-1. E-6 
A G-UA, C2* (1.0-BETA) 
IF(ARG. GT. 50.0)G0 TO 50 
ALPtY4OM (ARC) 
TC" l lt-ALPAA) *TH0- l1-BETA) *TCO) i (BETA-ALPIV ) 
T wT 0$SETA* (TCO-TC) 
RETURN 
END 

""""1.11.1""1""t$$4$41"""11""""1"""""4""""" 

"ýtýttttttttttttýtttttttttýýtttttýtttt+t 
SUSROUTItE SIMCON(TH. FC. TCO. CPC. UA. TC) 

THIS SL ROUTINE CALCULATES THE TEMPERATURE FOR A CONDENSER 
GIVEN ALL THE INPUT DATA 

FLOW ATE 

HOT 
COLD FC 

-TEMPERATURE CP 

IPIPUT OUTPUT 

TH 
TO TC CPC 

UA IS THE PRODUCT OF THE U COEFFICIENT AND THE AREA 

CGilHOWSPSTAT, LP. IPRINT. NERRS. IABO 

(C2) . GE. 1. E-6) GO TO 100 

too COHTIMX 
ARc. C3iC2 
IF (ARG. LT. 50.0) GG TO 200 
TC"TH 
RETURN 

200 CONTINUE 
TC. TH-(TH-TCO)iEXP(MG) 
RETURN 
END 

C****, r. *: sssses*ss*s**r**s*ssssssssssss*ssssssss 
ýs, s, rs*s*xs*sssrassrsss*ssssss: sssrsss*ssssssss 

tkýlc!! ýK##*###########ýk#######f####! #flftt########! ##!! #1#fff! #f#fff##! # 
f4k1r#1r*#ýk####!!! ####! ##!! f##! #! Y!! #! ##!! Y! f! f! ####!!! #f##ff#f!!! #Y#f#f 

+ý* HEAT1 ** 

xc #* 



*5 is 

** HEAT1 t* 

frt !t 
*s as 
ank**ssstý*tsstsstssts*sttsss*ssssssssststssstsstssssýtsssss: sssssststs 
scs*s*sssssssssssssssssssssssstss: ssossstassssststtstssssstsssssttsss 

FEAT E)CI* GER PROBLEM I 
FEATEXCIWKER 

HOTIN. COLDIN. HOTOUT. COLDOUT AS FLOWRATE 
THOTIN. TCOLDIN. THOTDuT. TCOLDOUT AS TEMPERATURE 
ARC AS LOGARG 
0 AS NOTYPE2 
CPHOT. 000OLD. UA. DELTATLM AS NOTYPE 

INPUT 1 IS HOTIN. THOTIN 
INPUT 2 IS COLDIN. TCOLDIN 
OUTPUT 1 IS HOTOUT. THOTOUT 
OUTPUT 2 IS COLDOUT. TCOLDOUT 

OTIN*CPHOT* (THOTIIl-THOTOUT) o OLDII*KPCCOLD*RCOLDOUT-TCOLDIW i A*DELTATLM; 
*(THOTIN-TCOLDOUT) THOTOUT-TCOLDIht 
TATLM AG (ARG) " CTHOTOUT-TCOLDItM - (THOTIN-TCOLDOUT) 

. CONDENSER 
HOTIN. COLDIN, HOTOUT, COLDOUT AS FLOWRATE 
T OTIN. TCOLDIN. THOTOUT, TCOLDOUT AS TEMPERATURE 
ARC AS LOGARG 
0 AS NOTYPE2 
L. CPCOLD. UA. DELTATLM AS NOTYPE 

INPUT I IS HOTIN. T1'OTIN 
INPUT 2 IS COLDIN. TCOLDIN 
OUTPUT I IS HOTOUT. THOTOUT 
OUTPUT 2 IS COLDOUT. TCOLDOUT 
ON 

rT. COLDIN1 

INt 

O. COLDIN*CPCOLD*(TCOLDOUT-TCOLWO 1 Q. L *DELTATLM 

DLLTAT 
ýOOGTG)ýTTHOOTTOUTT-TCOLDIM 

-( TIN-TCOLDOUT) 
wrý* 

I OF EXt IS FEED I 
2 GF EXt IS FEED 2 

t OF EXI IS PRODUCT t 
2 OF EXI IS INPUT 2 OF EX3 

I OF EX2 IS FEED 3 
2 OF EX2 IS FEED 4 

t OF EX2 IS INPUT I OF EX3 
2 OF EX2 IS INPUT 2 OF CON 

1 OF CON IS FEED 5 
t OF CON IS PRODUCT 2 
2 OF CON IS PRODUCT 3 
1 OF EX3 IS INPUT 1 OF EX5 
2 OF EX3 IS PRODUCT 4 

2 OF EX5 IS FEED 6 
I OF EX5 IS PRODUCT 5 
2 OF EX5 IS PRODUCT 6 

EXI IS A HEATEXCHMIGER 

EX2 IS A FEATEXCHANGER 

EX3 IS A HEATEXCFWIGER 

IT EX5 IS A HEATEXC1 IGER 

IT CON IS A CONDENSER 
or* 
ERATIOU 

ITHIN EX1 
UA"3.9750. HOTIN"2.7771. THOTIN 320. CPHOT"0.6. TCOLDIN 140. CPCOLD"O. 7 

ITHIN EX2 
URmt. 6650. CP110T"O. H. COLDIN"2.3060. TCOLDIN"240. CPCOLD"0.5 

ITHIN EX3 
Uii"0.8100. TCOLDOUT"320. CPHOT O. B. CPCOLD"O. 7 

ITHIN EX5 
WOO. $100. TCOLDIPMtoo, CPCOLD"i. CPHOT"O. S. THOTOUT 22O. TCOLDOUT"160 



. 9750. HOTIN-2.7778. THOTIN-320. CPHOT"0.6. TCOLDIhh140. CPCOLD-O. 7 
EX2 

. 666650. CPHOT. O. $. COLDIt1-2.3060. TCOLDItN240. CPCOLD O. 5 

. E1x000. 
TCOLDOIJT. 320. CPHOT. O. $. CPCOLD O. 7 

. CtOO. 
TCOLDINIOO. CPCOLD-I. CPHOT O. i. THOTOUT"220. TCOLDOUT 160 

. 1200. Lý656.6. CPCOLD-O. 5. THOTISN560. TCOLDOUT"500 

on 
TYPE FLONtATE-1: 0: 1. E10. 

TEMKRATURE-500: 100: 900. 
LOGARG-1: 0.001: 1. E10. 
t10TYPE2.1: -1. E10: 1. E10 

sstsssssssssssss: ss: ssssr: ssssssssststttsssssssssssrssstssss 
tssssssýststsrs: strsstsss: tss: sststsstssssststtsstsstsssstas 

Yi 
as 

HEATIM 
st 
st 

sasssssssssss:: ssssssrs: ssts: ssssssssssssss:: sts:: sss: sssst: 

EXCHANGER PROBLEM 1 

TYPE HOTIN. THOTIH. COLDIN. TCOLDIN. HOTOUT. THOTOUT. COLDOUT. 

STREATCOLDOUT. 
CPHOT. 000OLD. UA AS NOTYPE 

INPUT I IS HOTIN. THOTIN 
INPUT 2 IS COLDIN. TCOLDIH 
OUTPUT 1 IS NOTOUT. THOTOUT 

_ 
OUTPUT 2 IS COLDOUT. TCOLDOUT 

OTOUT. TCOLDOVT) SIItiIEX (HOTIN. THOTIN. CPHOT. COLDIN. TCOLDIN. CPCOLD. Ikü 

CONDENSER 
HOTIN TNOTIN COLDIN. TCOLDIN, HOTOUT. THOTOUT. COLDOVT. 
TCOLDbUT, L. CdCOLD. UA AS NOT1'PE 
M 

INPUT I IS NOTIN. THOTIN 
INPUT 2 IS COLDIN. TCOLDIN 
OUTPUT I IS NOTOUT THOTOUT 
OUTPUT 2 IS COLDOU+. TCOLDOUT 

N*CPCOLD=(TCOLDOUT-TCOLDIN)$ 

SIHCON (THOTIN, COLDIN, TCOLDIN, CPCOLD, UN 

PUT 1 OF EXI IS FEED I 
PUT 2 OF EXI IS FEED 2 
MOUT I OF EXt IS PRODUCT I 

PUT 2 OF EXt IS INPUT 2 OF EX3 
PUT 1 OF EX2 IS FEED 3 
PUT 2 OF EX2 IS FEED 4 
rTRUT I OF EX2 IS INPUT I OF EX3 
r7DUT 2 OF EX2 IS INPUT 2 OF CON 
PUT I OF CON IS FEED 5 
RDUT 1 OF CON IS PRODUCT 2 
RAUT 2 OF CON IS PRODUCT 3 
M PUT 1 OF EX3 IS INPUT 1 OF EXS 
TPUT 2 OF EX3 IS PRODUCT 4 

PUT 2 OF EX5 IS FEED 6 
RDUT I OF LXS IS PRODUCT 5 
Mg 2 OF LXS IS PRODUCT 6 
ss 
IIT EXI IS AI ATEXCI4AMCER 

, IT EX2 IS A HEATEXOW4GER 
: ss 
IIT EX3 IS 'A HLATEXCHAPIGER 
; rr 
IIT EX5 1S A FEATEXC-WjGER 
'ss 
PIT CON IS A CONDEtISER 
sf 

(RATION 



MITHIN EXI 
UA"3.9750. HOTIN"2.777$. THOTIN"320. CP 3T"O. 6. TCOLDIN"140. CPCOLD 0.7 

WITHIN EX2 
UA"t. 6450. CPHOT"0. O. COLDIN02.3060. TCOLDIN0240. CPCOLD"0.5 

WITHIN EX3 
1 O. StO0. TCOLDOVT"320. CPNOT"O. $. CPCOLD"0.7 

WITHIN EX5 
! Mi"0. $l00. TCQLDItN100. CPC0LD"t. CPW T"O. $. THOTOVT"28O. TCQLDOUT"100 

WITHIN ecti 
UMt. t2CO. L"656.6. CPCOLD"o. S. TH07111460. TCOLDOVT"600 

PRESET 
WITHIN EX3 

rlOTIN"37$: 340: 800. TCOLDIN"4O0: 10C: 900 
WITHIN CON 

TCOLDIN"500: 100: 900 
WITHIN EXt 

COLDIN"2.3i: 0: 1. E10 
WITHIN EX2 

HOTIN"2. O1: 0: 1. E1O 
WITHIN EX5 

COLDIN I. 66: 0: 1. E1O 
WITHIN EXt 

THOTOJT"600: t00: 900 
ITHIN EX2 
TNOTIN"500: 100: 900 

ITH 
I 
IN EX3 

THOTOVT"50O: 100: 900 
fYY# 

TIONS 
INES ON 

INT OPERATION 4 UNIT 4 

riitRYYt; rt; sstss; sstrrs; rttssati#itatitit#; ssit#it; sssisYSi#sitttsYs 

RýkiYY#a#tstis*i#irirsisisitistfsistithissiittstirsirst*''YYYrtitrt; " 
*t aß 

Yý HfAi2 tt 
Mi is 
;tft 
tt! #tit#ii#s; #1stirsssssstit"YSt#t#s$s$ssrst. trtti#tttat*Y*#attt; it! 

ifltttiiY*ittt#ti#; t;; JýttitYiY#iiiitti; itftltti##! i#tti#iitYit#itiit 

AT E)CCHANGEP PROBLEM 2 
1* 
DEL SPLITTER 
n SPIN. Till, SOUI. Tou1. SOU2. TOU2. SPLITFAC AS NOTYPE 

'BUT IS SPIN. TIN 
JTPVT 1 IS SOUI. TOUI 
JTPUT 2 1S SOU2. TOU2 
' TION 
Jt"TOUJ2"TINe 
J1"SPLITFAC'SPINt 
IN"SOJIsSOU21 

ODEL MIXER 
YPE MINI. TINI. MIN2. TIN2, MOV. TOU AS HOTYPE 

INPUT t Is MINI. Tlnt 
INPUT 2 IS MIN2. TIt12 
OUTPUT IS MOU. TOU 

MOWNINI. MIN24MOU'TOU. 
MIN1t. IN1"MIN2*TIN2s 

ýýrs 
MODEL FEATEXCIWIGER 
TYPE HOTIN. THOTIN. CO1DIN. TCOLDIN. HOTOUT. TMOTOUT. COLDOUT. 

STREW 
TTCOLDWUT. 0. CPMOT. CPCOLD. UA. DELTATLM. ARG AS NOTYDE 

INPUT I IS HOTJN. THOTIN 
INPUT 2 JS COLDIN. TCOt. DIN 
OUTPUT I IS HOTOUT. THOTOIIT 

--.. ---OUTPUT 
2 IS COLDOUT. TCOLDOUT 

Q. $$ TZNsa't OT"'THOTfN-THOTOUT) 
O. COLDIti+(: PCOLD" (TCOLDOUT-TCOLDIN) t 04%DELTATLN; 
ARG* (T OTIN-TCOLDOIJT) eTHOTOUT-TCOLDINt DELTATLMq. OG (ARG) " (T}l)TOUT-TCOLDIN) - rTHOTIN-TCOtDOUT) 
tses 
UNIT SPL IS A SPLIT'FR 
sssýe 
UNIT : IIX IS A MIXER 
ors 
UNIT IEXt IS A HEATEXCFiiNGER 
rn.. s 
UNIT FEX2 IS A HEATEXCHAH ER 
ss*. s 

. -IT 
FEX3 IS A HEATEXCWWAR 

st 
CI A6 Ir 



8117 SFL, �Llo p: SR! '3 ýTiiZ.; w" 

UNIT AIX 1$ A MIXER 
*sss 
WIT FEX1 IS A HEATEXCIiß`4GER 

IT FEXi' IS A IEATEX04PWAR 

IT FEX3 IS A HEATEXC*«'IGER 

t OF HEXI IS FEED I 
2 OF FEXI IS FEED 2 
1 OF 1EXI IS PRODUCT 1 
2 OF HEXI IS INPUT OF SPL 
I OF SPI. IS INPUT 2 OF HEX2 
2 OF SFL IS INPUT 2 OF HEX3 

I OF FEX2 IS FEED 3 
1 Of IEX2 IS PRODUCT 2 
2 OF 1E; X2 IS IPPUT I OF MIX 

1 OF HEX3 13 FEED 4 
1 OF HEX3 IS PRODUCT 3 
2 OF HEX3 IS INPUT 2 OF MIX 
OF MIX IS PRODUCT 4 

[THIN FECI 
UA"O. 44l23199. HOTIN"0.7. TH'`TIN"1t0. CPHOT"I. 
COLD IN 1.000O. TCOLDIN"$O. CPCOLC"0. I 

ITHIN HEX2 
t#i"1.20334$S. HOTIN"0.6000. THOTIN 2V.,. CPHOT"0.7. CPCOLD"0. I 

ITHIN FEX3 
UA"0.310=6M. HOTIN"0.4000. THOTI10220. CPMOT"0.6. CPCOLD"O. I 

? Tl1T. A Y? U 

90: 160. SPLITFAC"O. 5249: 0: 1 

: too: 2M0. TIN2"t56: 100: 200 

170: 10: 250 
2 
t70: t0: 250. TCOLDIN-170: 10: 250. 

TCQLP JT" 170 t i0: 250 
[THIN HEX3 
TMOTOVT"170: $01250 TCOLDIN9170: 10: 250. 
TCOLDOUT"170t80: 254 

(THIN ICCI 
ARC"1t0.00111. E10 

ITHIN HEY2 
ARro"1: 0.001: 1. E10 

ITHIN HEX3 
AkG"t: 0.00t11. E10 

ON 
T4 OPERATION 4 

srsf*rssrarss*as*titat*aarsaasr$***1*aatat*sa*aatS$*S51aarararatst** 
rrtrtsssas*atsststststsas*ssssssaassrsaarsrstsstatssssssseesssssrt*t 
tr as 

fr t* 

*s HEAT2M 
*t *t 
ss tt 
rsrts***sr*s*ss*s*tasaaa***s***s**as********asrsss**s*rsa*t***s*s*s* 
r*stssssrsss: sssass: esssa*: sssrssrsrasssseata*srsasssr*esrrassttssrr 

ITLE 
FEAT EXCIW GER PROBLEM 2 

ODEL SPLITTER 
YWE SPIN. TIN. $OUI. TOUI. SOU2. TOV2. SPLITFAC AS NOTME 
TREAM 
INPUT IS SPIN. TIN 
OUTPUT 1 IS SOUI. TOU1 
OUTPUT 2 IS SOU2. TOU2 
OVATION 
OUI-TOU2-TINS 
OU1 SPLITFAC; SPIN, 
PIt$SOUI+S0U21 

ODEL MISER 
YPE 

AMMIM1. 
TIt11. MIu2. TIN2. MoU. ToU AS IIOTYPE 

, TRE 
IWUT I IS MINI. TIN1 
INPUT 2 IS MIN2. TIN2 
OUTPUT is MOU. TOU 
AUATION 
KX) MINI+M1N2 
3V'TOl1-MIt11=TIHI'MIf2''T11121 

IfATEXCNANGER 
HOTIN. T1$ TIN. COIDIN. TCOLDIN. HOTOUT. THOTOUT. COLDOUT. 
TCO. DOVT. CPHOT. CPCOLD. UA AS NOTYF{ 



HOTIN. THOTIN. COLDIN. TCOLDIN. HOTOUT. THOTOUT. COLDOUT. 
TCOLDOUT. CPHOT, CPCOLD. UA AS NOTYPE 
11 

IPUT 1 IS HOTIN. THOTIN 
INPUT 2 IS COLDIN. TCOLDIN 
OUTPUT 1 IS HOTOUT. THOTOUT 

__04ITPVT 
2 IS COLDOUT. TCOLDOUT 

In& 
LDINs 

. TCOLDOIT) SI IEX (MTIN, THOTIN. CPHOT, COLDIN, TCOLDIN. 
CPCOLD. UA) 

MIT $PL IS A SPLITTER 

UNIT MIX IS A MIXER 
WIT I, qZXI IS A FEATEXOW GER 
tttrs ' 
UNIT HEX2 IS A FEATEXQWIGER 

UNIT FEX3 IS 
.A 

HEATEXCHAt4GER 

t OF IEXI IS FEED t 
2 OF HEI« IS FEED 2 

1 OF tEXI IS PRODUCT 1 
2 OF FEXI IS INPUT GF SPL 
1 OF SPL IS INPUT 2 OF HEX2 
2 OF SPL IS INPUT 2 OF FEX3 

I OF HEX2 IS FEED 3 
1 OF HEX2 IS PRODUCT 2 
2 OF HEX2 IS INPUT I OF MIX 

I OF HEX3 IS FEED $ 
1 OF HEX3 IS PRODUCT 3 
2 OF HEX3 IS INPUT 2 OF MIX 
OF MIX IS PRODUCT 4 

ERATION 
T 
THIN HEXT 
MOO. Nf23$99. HOTIN"O. 7. THOTIN"180. CPHOT 1. 
COLDIN"1.0000. TCOLDUIS0. CPCOLD"O. $ 
THIN HEX2 
UM1.20334=5, MOTIN-0.6000. THOTIN"250. CPHOT 0.7. CPCOLD"0. I 
THIN HEX3 
UASO. 31086=$6, HOTIN 0.4000, THOTIN"220. CPHOT"0.6, CPCOLD 0.3 
THIN MIX 
TOU"190 
LESET 
THIN SPL 
TIN 170: $0: 250.5PLITFAC"O. 5249: 0: 1 
, THIN MIX 
7I1t-170: 090: 250,7IN2.170: 0$0: 250 
, THIN FEX1 
THOTOUT"170: $0: 250 
, THIN FEX2 
THOTOUT"170: $0: 250 TCOLDIN"170: $0: 250. 
TCOLDOUT"170: $0: 256 
, THIN FEX3 
THOTOUT 170: f0: 250 TCOLDIN"I70: 30: 250. 
TCOLDOUT"170: *0: 256 

4 OPERATION 4 

ks*tsasasssss*sssssssa**s*sssxssss*stxtss***sx**x*ss**ssx**stst* 
ra*assaa*ssss*asss**tsas*****"`t*s*sts**s*s*s***sxs*as**ssas**t* 

*s 
s* 

tAVSIM x* 
** 

xs 
t: ssaessxsssxss**ss: *assassssstxsxxxxssxxaxxxxxa*sxsatxxtxxx*sxx 
rxssxsssssstxxsssxxsssxsxsxx: xsxxxsxxxxxxxssxasxas*xsrsxx*xxsxs* 

MODIFIED CAVETT"S PROCESS 

MODEL MIXERMS 
" MIXER OF TWO STREAMS (MATERIAL BALA CE ONLY) " 

SET NOCOMP 
TYPE FLOMINI. FLOWIN2. FLOWOVT AS ARRAY (NOCOMP) OF FLOHRATE 
STREAM INPUT I FLOWINI 

Itsm 2 FLONIN2 
OUTRVT FLOi4OUT 

' COPPOItHT MATERIAL SALAt$CES ". 
FLOWIHI " FLOWIM2 " FLOWOVT; 

Sa! Ot/Et S ý102ý104.104s117 
w ý!. 



rITLE': 
MODIFIED CAVETT'S PROCESS 

MISER OF TWO STREAMS (MATERIAL BALANCE ONLY) " 
TTTE 

FFL VV OWINt. FLOWIN2. FLOWOUT AS ARRAY (HOCOMP) OF FLO ATE 
STREAM INPUT I FLOIZNI 

I PUT 2 FLOWIN2 
OUTPUT FLOWOUT 

EQUATION 
" COlPOtltfT MATERIAL BALANCES " 

FLOWINI " FLOWIt12 " FLOWOUTo 

DECLARE CCI 0t(J1TS5.5,102 104,109 117 
TYPE FLOSNATE. 1: 6110 UI1It""MOLES". 
EMTK#LPIE. 10: -1. (10s1. E10 

TEMPERATURE-320: 210: H0 IMIT""KELVIN". 
PRESSURE. 1: 0: 100 UNIT""GARS" 

SETINNOCý 
TYPE TLS_M 

OWý1. 
FLOWOUT2 AS ARRAY (NOCOPP) OF FLOHRATE 

P AS PRESSURE 
STREAM IIIPUT IS FLOWN 

OUTPUT 1 IS FLOWOUTI 
OUTPUT 

PROCE 
2 IS fLOW0UT2 

DURE 
(FLOWOUTI. FLOWOUT2) SPMSE (T. P, FLOWIN) 

rT t OF MIXT IS FEED I 
UT OF MIX! IS IPPUT I OF MIX2 
R2 Of HIM IS OUTPUT 2 OF FL1 
rT 2 OF MIX2 IS OUTPUT I OF FL3 
UT OF MIX2 IS INPUT OF FL2 
UT t OF FL2 IS INPUT OF Fit 
UT 1 OF FLt IS PRODUCT 1 
UT 2 CF FL2 IS IN)UT 2 OF MIX3 
RI OF HIM IS OUTPUT I OF FL4 
UT OF HIM IS IF UT OF FL3 
VT 2 OF FL3 IS INPUT OF FL'$ 
VT 2 OF FL9 IS PRODUCT 2 

' MIX1 IS A MIXERMO 
MOCM" 

MIX2 IS A MIXERM6 

' MIX3 IS A MIXERMS 
NOQOMP+S 

FLI ISSA ISOFLASI* 

FL2 IS A ISOFLASMIB 
NOCOW-5 

FL3 IS A IS *LA$I*B 
NOCOlP-S 

FLI IS A ISOFLASIMS 

mss 

THIN HIM 
FLOMIn1"(O. 5124.0.3425,0.1205,0.0932.0.0266) 
THIN FL I 
P"54.2. T"311 

Teä09 P. 4.39 
WITHIN OL9 

T-303, Pe1.91 
PRESET 
WITHIN FLI FLONIN. c0.5124.0.3625.0.1205.0.0> 

O 4. CHAOSEADCR 

ssssaslssssstaststsr: stasas: tsetssstttsstsssassatsststatssttttattatt 
srtstassstlssssssssssstslstssasssssstsessssasstatsssassssasssassssatt 
ss at 
s! as 

CAVDES tt 
s! at 
!! at 
! fr!! tltattttttatttattitilYltattttttittYRatltttatttatlfattatttltaRtt lt 
!!! flttfcttttitttttttft$tt*ttttftttt! ltttattatttitttattttattat7tt$*** 

IED CAVETT'S PROCESS 



its Yt 
tt Rt 

*º CAVD E$ 
#Y RR 
Y# ;f 
YYYýtYtYt#s#Y#Rtf#stsststsstssssttsts: ##s#s; fs#ss:; t; R; s#es#; t; #, ý, #tu 
YXt1YYYYYYtY; Ytt; t#; t; fttt#t; tRftt#tttt#; Y; R; tf; tfftttRRYfft#####t;; 

IFIED CAVETT"S PROCESS 
MODEL MI? RERMS 
" MIXER OF TWO STREAMS (MATERIAL BALANCE ONLY) " 

SET NOCOPP 
TYPE FLOAIN1. FLOWIN2. FLOWOUT AS ARRAY (NOCOMP) OF FLOATE 
STREAM INPUT I FLONINI 

INPUT 2 FLOMIN2 
OUTPUT FLOWOVT 

EQUATION 
" COMPOPENT MATERIAL BALANCES " 

FLOWINI 4 FLOWIN2 " FLOIi0UTs 

COMPONENTS 5 102.104.109.117 
TYPE FLOWRATEu1: 0: 10 1M'.?  "IIOLES". 

Et4THA. PIE"10: -1. EIO: t. E10 
TEMPERATURE-320: 290: 3 0 UNIT-"KELVIN". 
PRESSURE"I: 0: 100 UNIT "BARS" 

MODEL ISOFLASHMB 
SET PWCOPP 
TYPE FLOWN FFLLOW1. FLOWOVT2 AS ARRAY (NOCW) OF FLOATE 

T AS 
P AS PRESSURE 

STREAM INPUT IS FLONIN 
OUTPUT I IS FLOKOUT1 
OUTPUT 2 IS FLOWOUT2 

PROCEDURE 
(FLOWOUTI. FLOWOUT2) SPHASE (T. P. FLOWIN) 

I OF MIX1 IS FEED I 

INPUT 2 OF MIXt IS OUTPUT 2 OF Fit 
INPUT 2 OF MIX2 IS OUTPUT I OF FL3 
OUTPUT OF MIX2 IS INPUT OF FL2 
OUTPUT I OF FL2 IS INPUT OF FLt 
OUTPUT I OF FLt IS PRODUCT I 
OUTPUT 2 OF FL2 IS INPUT 2 OF MIX3 
INPUT t OF MIX3 IS OUTPUT I OF FL4 
OUTPUT OF MIX3 IS INPUT OF FL3 
OUTPUT 2 OF FL3 IS INPUT OF FL4 
OUTPUT 2 OF FL4 IS PRODUCT 2 

UNIT MIXt IS A MIXERMB 
SET NOCO 5 
secs: 
UNIT MIX2 IS A MIXERMB 
SET NOCOPP 5 

AXIS A MIXERMB 

FLI IS A ISOFLAS* 
IJOCOMPOS 

FL2 IS A ISOFLASH'6 
MOCOlP-S 

FL3ISSA ISOFLASHM6 

FL4 IS A ISOFLASI IB 
Nocow"5 

ET 
ITHIH MIX1 
FLOWIHI. (0.5124.0.3625.0.1205.0.0932.0.0266) 

ITNIN FL1 
P"56.2. T-311 

ITHIN FL2 
T 322. P 19.6 

ITHIH FL3 
T-309. P-4.39 

ITHIN FL4 
FLOWOl1T2 (2) -2.723E - 3. P-1.91 

RESET 
ITHIH FLI FLOWIN"(0.5124.0.3625.0. IA^05.0. Q) 
ITHIN FL4 To290 
*rs 

INES ON. cW OSEAD¬R 

tttYYtYit#tttltY! ltttlt! ##t!! ttli! lYtYttlt#! Y#! ##! ##! i!! YY!! #t! ##! 't 
itYlift!!! Ytlili! #t! tlti!! i! 3! tlYYttiiltYilitt!! t!! 33lf! #Y*Yi#t! Y## 
a ti 

!Y rru[wrAq ýr 



Asafatxx!: *x*. saGnt$*PAI***I. tl*tiwfx **. tslt-, tmslsttstts1xmltf'ka, R"RýnýR, üfisx`. 
*s 

CHEMCo1 xs 
ss 
x* 

Rs**s: asxsxssssts: ssssssssssxssss*ssssssssss*sssss: ss*ss: sxxss 
esssssssssssssss: sssssssssssssxxsxstsssxsssssxsxsxsssssssrrssx 

ssrass: rsss: s:: sssssss: srss: ssssssssssrssssts" 

0* LIBRARY OF MODELS FOR "ý 
r,. 1" 

SPEEDUP *1 
0* 
ýi7kiiittiisitstsis***$*$*$ u**S$**ths$stt*t$$*$********I***" 
MODEL WANDER 
ýlaRýifii7tiii! " 

SET HOCOMP 
TYPE F AS ARRAY (NOCOIP) OF FLOATE 

TIN. TOU. TIDEAL AS TEI4PERATURE 
PIN. POU AS PRESSURE 
HIN. HOU. HIDEAL WORK AS ENTHALPY 
EFFIC AS FRACTION 
GAMMA AS NOTYPE 

STREAM 
INPUT IS F. TIN PIN. HIN 
OUTPUT I IS F. +OU. POU. HOU 
OUTPUT 2 IS WORK 

TIDEAL s PIN " GNI " TIN s POL) " GAMMA& 
EFFIC $S HIN - HIDEAL) " HIN - H0U4 
WORK " HOV - HINT 

PROCEDURE 
c HIDEAL ZCALEN ( TIDEAL " POU "F) c Ho) ) ZCAL. EN ( TOU " POL) "F) s*sý 

MODEL COMPRESSOR 
ýresssýtsssssssss" 

F AS ARRAY (NOCOK°) OF FLOW RATE 
TIN. TOU. TIDEAL AS TEWERAT'JRE 
PIN. POU AS PRESSURE 
HIN. HOU. HIDEAL. WOW AS ENTHALPY 
EFFIC AS FRACTION 
GAMMA AS HOTYPE 

INPITT 1 IS F. TIN, PIN. HIN 
INPUT 2 IS WORK 
OUTPUT IS F. TOU. POU. HOU 
ION 
TIDEAL * PIN ' GAMMA " TIN + POU ' GMMA, 
EFFIC *c HIM - HOV)   HIN - HIDEALs 
WORK " HOU - HINs 

t HIDEAL ) ZCALEN ( TIDEAL . POU .F c HOV ) ZCALEN t TOU . POU .F) 

PE F AS ARRAY (IIOCOFP) OF FLOMStATE 
TIN. TOU AS TEMPERATURE 
PIN. POU AS PRESSURE 
HIN. HOU. O AS ENTHALPY 
DELTAT. DELTAP AS DELTA 

REAM 
INPUT IS F. TIN. PIN. HIN 
OUTPUT IS F. TOU. POU. HDU 

UATION 
TOU " TIN " DELTAT, 
P00 - PIN " DELTAP, 
0- HOU - HINZ 

OCEDURE 
HOU ) ICALEN I TOO . POU .F st 

MODEL VALVE 
ýsss: ststtstsssss 
SET NOCOMP 
TYPE F AS ARRAY WCOIP) OF FLOHRATE 

TIN. TOU AS TEMPERATURE 
PIN. POU AS PRESSURE 
H AS E"rHALPY 
DELTAP AS DELTA 

STREAM 
INPUT IS F. TIN. PIN. H 
OUTPUT IS F. TOU. POU. H 

EQUATION 

Eý 
PIN - DELTAP1 

t YOU ) 2CALTP (H. POU .F) t, ýwt 
MODEL PIMP 

T N000W 
PE F AS ARRAYe+XOMP) OF FLOWRATE 

T AS TEMPERATlPE 



SET NOCOeP 
TYPE F AS ARRAY(N000MP) OF FLOHRATE 

TIN. TOU AS TEMPERATURE 
PIN. POU AS PRESSURE 
H AS ENTM. PY 
DELTAP AS DELTA 

STREAM 
INPUT IS F TIH. PIN. H 
OUTPUT IS I. TOU. POU. H 

EQUATION 
POV " PIN - DELTAPA 

PROCEDURE 
( TOU ) ZCALTP cH. POU .F) 

MODEL PUMP 
ýaaýncsc*ss: sý 
SET NOCOlP 
TYPE F AS ARRAY(NCOIP) OF FLOW RATE 

T AS TEMPERATURE 
PIN. POU AS PRESSURE 
HIN HOU AS ENTHALPY 
DELtAP AS DELTA 

INPUT IS F. T. PIH. HIN 
OVWUT IS F. T. POU. HOU 

POl1   PIN " DELTAP+ 
DUKE 
( I+U ) ZCALEN !T. POU .F) 

*t*. 

TYPE F AS ARRAY(HOCOMP) OF FLOWRATE 
T AS TEMPERATURE 
P AS PRESSURE 
H AS EHTWILPY 
X AS ARRAY(NocOMP) OF FRACTION 
FKG AS ARRAY WCOIP) OF KGFLOW 
MOLK AS ARRAY (i000 ') OF HOTYPE 
FTOTALKG AS KGFLOW 

STREAM 
IttPI)T IS F P. H 
OUTPUT IS ýT 

. 
t. P. H 

OUATIOH 
FKG " MOLK * F1 
FTOTALKG   SIGMA ( FKG i 
X* FTOTALKG " FKGs 

L MOLAR FRACTION 
_TO 

MOLES_COWERTER 
*sariasisssasssssss'ssss: ssssssssss" 

F AS ARRAY NOCOPP) OF FLOiRATC 
T AS TEMPERATURE 
P AS PRESSURE 
H AS EHT1 . PY 
X AS ARRAY(MCOMP) OF FRACTION 
FTOTAL AS FLOIRATE 

It UT IS F. T, P. H 
OUTPUT IS F, T. P. H 
ICH 
FTOTAL "X F: 
F'OTAL   SIGMA If) 

MODEL ADIABATIC FLASH 
sssýse, sssssssssisssss 
SET NOCOIV 
TYPE F. TOP BOT AS ARRAYUIOCOIP) OF FLOHRATE 

T. TTOa TOOT AS TEMPERATURE 
P AS WESt E 
H HTOP. HBOT AS EUTHALPY 
F&AC AS FRACTION 

STREAM ýIIPPUT 
IS FTP. H 

OUTPUT 1 11 i'OP. TTOP. P. HTOP 
OUTPUT 2 IS BOT. TBOT. P. HDOT 

EOUATIOH 
TOOT w WON 

PS 
(TOP) " FRAC * SIGl4 (F) s DURE 

(TTOP . TOP . SOT) SCALTP (H .P. F) 
c HTOP ) ZEIfTHV ( TTOP .P. TOP ) 

H60T ) lEI1THL ( TOOT .P. SOT ) 
sss, x 
MODEL ISOTHERMAL FLASH 
ýsss: ssss*ssssssisss: " ' 
SET HOCOI 
TYPE F. TOP BOT AS _ 

TO OAS 
YMOCOPP) OF FLOATE 

TP 
AS PRESSURE 

H. HTOP. HBOT AS ENTHALPY 
STREAM 

INPUT IS F T. P H I OUTPUT IS tOP. t. P. HTOP 
OUTPUT 2 IS BOT. T. P. HBOT 



MMEC. ' rsoTI w. FtAsH 
ýtlnkttltytttttt*Y tttt" 
SET HOCO 

ARRAY ý F. 
TO ýEýEOT AS 

Rf 
MOCOW) OF FLOWRATE 

P AS PRESSURE 
H. HTOP, FßOT AS EUITHALPY 

IS F T. P H 
I$ tOP. t. P. HTOP 
2 IS 6OT. T. P. HBOT 

. SOT ) WI SE C*. P. F) 
3 ZEWTHV (T .P. TOP) 
) lEttTIL (T. P. BOT ) 

. essctsssttstisststatssssssssstý 
ET HOCOIP 
YPE F AS ARRAY QICOMP) OF FLOHRATE 

T AS TEIPERATURE 

H AS EMTFWLPY 
TOTALFVOL. RHO AS HOTYPE 
TOTALF AS F LOKRATE 

TREAM 
It, UT ISF. TPH 
OUTPUT IS F. i. i. H 

OUAT I0f1 
TOTALF " RHO t TOTALFVOL; 
TOTALE " SIGMA IF s 

: sss 
OD(L MINER 

Noc , F1, F2, F AS PRW1Y400019)OF FLOYRATE 
T1. T2, T AS TEMPERATURE 
Pt P2 P AS PRESSURE 
H1. H2. H AS ENTHALPY 

I IS F1, T1. P1. H1 
2 IS F2. T2, P2. H2 

IS F. T, P. H 

" Fl " F24 

P PIS 
H" H1 "H2s 

PROCEDURE 
ýT) "ZCALTP (H. P " F) 

"... ... .......................... " ....... " END . OýF. L! BRARY " 
" ............................................ " 

F VMt IS FEED 
OF VM1 IS INPUT OF K1 
OF KI IS INPUT OF E2P 
OF E2P IS INPUT I OF MIX 
OF MIX IS INPUT OF Al 
Of Rt IS INPUT OF Vt 
1 OF V1 IS INPUT OF Cl 
1 OF Cl IS INPUT OF T2 
OF T2 IS INPUT OF V2 
1 OF V2 IS INPUT OF VM2 
2 OF V2 IS INPUT OF P2 
OF P2 IS INPUT 2 OF MIX 
OF VM2 It. INPUT OF E2 
OF E2 IS INPUT OF K2 
OF K2 IS PRODUCT 1 
2 GF VI IS INPUT OF T3 
OF T3 IS INPUT OF R2 
OF R2 IS INPUT OF V3 
1 OF V3 IS INPUT I OF C2 
2 OF Ct IS INPUT 2 OF C2 
2 OF V3 IS INPUT OF E1 
OF EI IS INPUT OF K5 
OF KS IS PRODUCT 4 
OF C2 IS INPUT OF V4 
1 OF V4 IS PRODUCT 2 
2 OF V4 IS PRODUCT 3 

TYPE FIH. TOP. SOT AS ARRAY «XCWc1 OF FLO ATE 
TIH. TTOP. TSOT AS TEW tRAT1. ( 
PIH. PTOP. P$OT AS PRESSURE 
HIN HTOP HSOT AS EN l4 LPY 
DELtN . D&LTAT AS DELTA 
SPLITR. XTOP. XSOT AS ARRAY MOCOMP) OF FRACTION 
COI 7 AS FRACTION 
TOTALTOP. TOTALOOT AS FLOHRATE 

} TOTALTOPVOL. Rto AS HOTYPE 
BOTKG. TOPICG AS ARRAY WCOMP) OF KGFLOW 
MOIM AS ARRAY QWOMP) OF HOTYPE 
TTOTALBOTKG. TOTALTOPhG AS KGFLOW 

STREAM 
Iti'IJT IS FIH. TIN. PIt1. HItt 
OUTPUT I IS TOP. TTOP. PTOP. HTOP 
OUTPUT 2 IS b0T. T60T. PBOT. HOOT 

PAYTtMI 



T. PTU FIwi1l1ºI HIMVMý'1!. AlL SW \FA: " 

TOTN. BO" TKG. TOTTLTOPKG'-HS'' KCvf'VtU'' ýTREN! 
INPUT IS FIN TIN P211.11111 
OUTPUT 1 IS TOP. TTOý. PTOP. HTOP 
OUTPUT 2 IS BOT. T90T. PSOT. HBOT 

! OVATION 
FIN " TOP " BOT; 
BOT " SPLITR " FIN, 
PTOP " PIN " DELTAPa 
P0OT " PTOP, 
TOOT " TIN " DELTAT 
TOTALTOP -S IGW ROP) , TOTAL60T " SIGIW (00T), 
XTOP " TOTALTOP " TOP; 
MOOT " TOTALSOT " BOT; 
TOTALTOP " RHO " TOTALTOPVOL; 
COIIP67 - ? TOP I4) " XTOP (7) , 

OTKG " Slam (SOTM 
Mrs a SIG $ (TOPKG) s 
" MOLK a WTI 

MOIM 2 TOP, 

( TTOP) SDEiPT ( PTOP . TOP 
HTOP) ZEMTHV (TTOP . PTOP . TOP 

( HOOT) ZEIITÜ ( TOOT . PWT . BOT ) 
raýsý 
UNIT VM1 IS A VOUIE_TO_MOLES_COHVERTER SET HOCOMP"9 

UNIT KI IS A MOL TO_KG_COf ERTER SET t4000MP=9 
*sý** 
UNIT UP IS A HEATER COOLER SET NOCOMP-9 

UNIT V2 IS A ISOTlER14AL_FLASH SET IIOCOMP09 

IlllIT VM2 IS A VOLUME` TO_MOLES_COHVERTER SET NOCOMP-9 

UNIT E2 IS A HEATER COOLER SET HOCOMP"9 

UNIT K2 IS A MOL TO_KC_COWERTER SET H0001P"9 

UNIT P2 IS A PtR SET H000MP"9 
sr*** 
UNIT T2 IS A HEATER-COOLER SET NOCOMP*9 
*ýs 
UNIT V3 IS AN ADIABATIC_FLASH SET HOCOMP"9 

IAüT T3 IS A HEATER_COOLER SET NOCOMP-9 

IT R2 IS A VALVE SET HOCOMP 9 
ET 

MIX IS A MIXER SET NOCOMP-9 

IT CI IS A EXPANDER SET NOCOMP-9 
sc* 
IT C2 IS A COMPRESSOR SET NOCOMP-9 

IT V4 IS A BLACKIOX SET f10001ý"9 

IT V1 IS AN ADIABATIC-FLASH SET NOCOMP-9 

IT RI 1S A VALVE SET HOCOMP=9 
*ti 

11IT Ei IS A HEATER-COOLER SET NOCOMP-9 

IT KS IS A MOLTO_KG CCCIVERTER SET NOCOMP-9 

TIOH 

THIN V1I 
TOTAI. FV%-125. P44O-4.634. H"O 
THIN K1 
HOLK "1 2$ . 16 . 30 . 44 . 5$ . 72 . It . 100 . 114 
X(1)00.09. X(3)00.112. X(4)00.042, X(5)"0.054. 
X (6) -0.03. X r7) -0.0$1. X (1) "0.133. X t9) "0.021. 
T"313. P"75 
THIN E2P TOV"2$$. DELTAP"0 
THIN K2 
MOI. N  1 2$ . 16 . 30 . 44 . 5$ . 72 , 96 . 100 114 ) 
THIN RI 
DELTAP"0.3 
THIN P2 POU-75 
THIN T2 DELTAP"0 
THIN V3 

WITHIN T3 
DEI. TAT"2. DELTAP-O 

WITHIN Et 
DELTAT. -5. DELTAPo-0.2 

WITKIN KS 
(23 . 16.30 , 44 . 58 72 16 , 100 , 114 7 

WITHIN 
; 

t( 
EFFIC"0.5. CAM[1A. 0.1 

WITHIN C2 
EFF I C-O. 1. CAtftwo. 1 

WITHIN W 
DELTAT"-10 DELTAP. -O. 1. RH0.3. $33. 
FIOl1Wý- 2$ " 16 . 30 . ̂ 44 

51 . 72. E 16A. t00 1 114 ). 
. 



WITHIN T3 
DELTAT"2. DELTAP"O 

WITHIN E1 
DELTAT"-S. DELTAP"-0.2 

WITHIN 
MOLN ( 2= . 16 . 30 . 44 . 5E . 72 . $6 . 100 . 114 ) 

WITHIN Ct 
EFFIC"0.5. GAMMA 0.1 

WITHIN C2 
EFFIC"O. 8. CAMW0.1 

WITHIN V4 
DELTAT"-10 DELTAP -O. 1. RHO"3. $33. 
MOLW "c 21 . 16 . 30 44 5t . 72 16 , 100 . 114 ). 
SPLITR "(0.0.0 . 

'0 
. 

b. IS . 0.41 . 0.21 . 0.06 .0) WITHIN V2 
P"25. T"213 

WITHIN V112 
RNO. 1.691 

WITHIN E2 G"0. t44. DELTAP"0 
ýwr 
TITLE 

PROBLEM I (CASE A) FOR EFCE CNENCOIIP 12 
lt71tY! 

DECLARE 
TYPE FLONWTE"50: 0: 1000 UNIT""KMOL, NR". 

KGFLOW4000: 0: 500000 UNIT""KGi1R". 
TEMPERATURE=300: 200: 900 UNIT""DEC KELVIN". 
PRESSURE"40s1: 300 UNIT""b11RS". 
ENTHALPY"10: -1. OE10: 1. OE1O UNIT""GJOVLES, NR". 
FRACTION 0.5: 0: 1. 
DELTA 0.0: -1. OEIO: 1.0Et0 

COMPONENTS 2.101.102.103.104.106.109.114.115 
*s*s 

TIONS 
ROUTINES ON. CHAOSEADER 
PRINT UNIT 2 MODEL 2 FLOWSHEET 2 OPERATION 2 DECLARE 2 
rwyrr 

f!!!! ltstttstss!! rlrtstsfstlt! *Yff tt f ass slrrtr rs tt ss t*Ylftf 

tosstlflss! lRSStsssssslslfsYYtssltatsslsstssssrrsssattss: t 
rt 
tt 

CHEMC02 "Y 
as 
tt 

sssstflftYYStlsstsstttsssstasssslssssssssarR: sRRSSSSttssart 
! lYfYYtftf tYltlYtYSftYtYftlttttrttrfftttttRRftttrtrf tttRttt 

OUTPUT I OF SEPARATOR IS PROF, IT I 
OUTPUT 2 OF SEPARATOR IS IIct1T OF PURGE 
OUTPUT I OF Pt*KE IS PRODUCT 2 
OUTPUT 2 OF PURGE IS INPUT 2 OF MIXER 
OUTPUT OF MIXER IS INPUT OF REACTOR 
OUTPUT OF REACTOR IS INPUT OF SEPARATOR 
OUTPUT OF FEEDER IS INPUT I OF MIXER 

MODEL SPLITM 
" TWO STREAK SPLITTER (MATERIAL BALANCE OttY) " 

SET NOCOIP 
TYRE FLOMIN. FLOWOUTI. FLOWOUT2 AS ARRAY (mOCOMP) OF FLOWRATE 

TOTALI. TOTAL2 AS FLOWRATE 



Y1'. 'X2"AS ARRAS"�'? IOCÖMI 0: "MOLEF ACJ' N 
FRACTION AS MOIEFRACTION 

TNE. M IlcUT FLOWIN 
YJTDt1T ! FLOW T! 
: "ITM1T 2FLO* T2 

EOUý+TJOtI 
" STREAM SPLIT " 

FLOW IJT2 " FLOWIN " FRACTIOlli 
" cOMPOtlEN7 MATERIAL SALANCES " 

FLOWIN " FL0WOVT1 " FLOWOV72, 
" TOTAL FLOWS Of OvTD4.17 STREAMS " 

TOTALI " SI6t+. s 'FLOWOUTI) I 
TOTAL2 " SIGMA (FLOWdJT2)1 

"S TERIAL FRACTIONS OF OVTPI'T STREAMS " 
{ X1 " TOTAL! " FLOt4OV7! s 

X2 " TOTAL2 " FLOWOVT2i 

, MODEL MESEPARATOR 
TYPE 

FLONIN. FLOWOUTI. FLOWOUT2 AS ARRAY 17) OF FLOWRATE 
TOTALI. TOTAL2 AS FLOWRATE 
X3. X4, Y3. Y4 AS MOLEFRACTION 

STREAM 
1IPVT FLOWUN 
OUTPUT I FLOWOUTI 
OUTPUT 2 FLOWOUT2 

EQUATION 
OVERALL 9ALANCES " 

4 FLONOVT! " FLOWOVT2 " FLOWIN 
" TOTAL FLOWS " 

TOTAL! " SIGMA 'FLOWOUTI) 
TOTAL2 " SIGMA (FLOWOUT2) 

" MOLE FRACTIONS " 
X3 " TOTALS " FLOWOU7t 3) 
X4 " TOTAL I" FLOWOUT I (4 ) 
Y3 " TOTAL2 " FLOWOUT213) 
Y4 " TOTAL2 " FLO+. Y T2(4) 

" E(YUJL1@RIQM RELATIOt1S " 
Y3 " 3. $E-3 " X3 

FLOW0VT1$) 
a 

0, 
äE; 4 " X4 

FLOWOUTI(2) "0i 
FLOWOUT1 (4) "0i 

It FLOMOUT1, el' "0 
FLO YJTt (7) "0 

MO EL FEEDERM9 
" FEED STREAM DEFINITIO14 4MATERIAL B.. LAt4CE ONLY) " 

SET FIOCOPP 
TYPE FLOWOUT AS ARRAY t$XOMP) OF FLOWRATE 

X AS ARRAY (1IOCOW) OF t*)LEFRACTION 
TOTAL AS FLOWRATE 

STREMM 
OI fTPU7 1SF". ONOUT 

E" TOTAL 
FEED FLOW " 

TOTAL " SIGMA 'FLOWOUT). 
" MATERIAL FRACTIONS OF FEED STREAM " 

X" TOTAL " FLOWOUT, 
""r 

LDEL MEREACTOR 
TYPE 

FLCWIH. FLOWOUT AS ARRAY '7 OF FLOWRATE 
TOTAL AS FLOWRATE 
EXTE1fT1, EXTENT2 AS EXTENT 
X AS ARRAY (7) Of MOLEFPACTIO14 

' Kit. liJ:, F? i1"l i2. lý1Ö, 3Q. T1. T'f, tAlsit0l AS 146'1'YCE 
STREAM 

INPUT FLOW114 
OUTPUT FLOWC*JT 

" 
E TDEFF1t1IT1C1 

Of EOVILIBRIUM C*NSTAUTS " 
KJ1 " 0. e " t. SE-3 " 471 " 473) 
ý710 " 1+"19.211 " 3971, T! " 7.492 " LOG10IT1' " 1.77E"3 " T! 

3.1tE"l it T1'2) 
P0(! " PD10"KJ1 " DRESSt. E'2 
KJ2 " 0.89 " 4.0E-4 " 'T2.473) 
PP20 " 1ä'(I. 6e4 - tts0"T2) I 

" 
hNMET OWWS FROM4EXTENT 

Ar4D STOICHIOMETRY " 
FLOWOVT'1' " FLOWUN'1) " EXTENTI " EXTENT2 
FLOH) T12) " FLONINI2) -2" EXTENTI " EXTENT2 
FLOHOUT 13) " FLOWIN'h " EXTE14TI 
FLOhOM(4) " FLOWIN N) EXTENT2 
FLOIiYJT 150 " FL03dIN'S' " EXTENT2 
FLOW JT'e) " FLOWIN(e) 
FLOWOUTt7, " FLONIN(? ) 

" TOTAL OUTLET FLOW " 
TOTAL " SIGs 'FLCWOUT" 

" MOLE FRACTIOUS " 
TOTAL "X" FLOWOtJT 

" REACTION EQUILIBRIA " 
X13) "X'I "X(2); "cX% I 

?; '1' " Xý4ý " X' " X(2, " .' (2 

MIXER 
OF TWO 

STFfAra MpTE91A.. MAWE ": (&Y' " 
SET NOCOW 
T'iT4 FLOl.; NI. FLOKIN2. FLO MIT AS ! FRAY It XO') '. FLOW ATE 



" "AJIMprimea, rMvr9rc. Ni tt R'A6MV . "ý""". " . 
FLCWWTI'J1 1- F'. 1n"+1) , a, EXItwrr x". Er4l r° FLOWOUT12) " FLOWI1(2) 2" EXTENTI " EXTEM2 
FLOMOUT13) " FLONIN13) " EXTEMI º FLONOt1T(4) " FLOMIn('f) EXTEM2 º FLOHOUTS) " FLOWIn(5) " EXTEM2 º FLOWOVT, 6) " FLOWIN(b) 
FLOHOUT 1T) " FLOW IN (7) º " TOTAL OUTLET FLOW " 

TOTAL " SIGMA FLOWOVT) 
" MOLE FRACTIONS " 

TOTAL "X" FLCE3IT º " REACTION EOUILI6R1A " 
X13) " X( 1) " X2'2 "Wº 

X(j) " X44) " XºS) " X(2) " 0(2 º 

MODEL MAnupme 
" MIXER OF TWO STREN"ä (MATERIAL EAL 4C ONLY) " 

SET FOCOW 
TYPE FLOWINI. fLOWIN2. FLOWOUT AS ARRAY ºNOCOMP) OF FLOW RATE 

TOTAL. TOTALIt KE. TOTALR AS FLOHRATE 
X R. " ARRAY QIOCOMP) OF MOLEFRACTION 
f "" j0 AS NOTYPE 

STREAM INPUT I FLCWINI 
INPUT 2 FLOWIN2 
OUTPUT FLOHOUT 

EQUATION 
" COMPONENT MATERIAL BALANCES " 

FLOWINI " FLONIN2 " FLOWOJTº 
" TOTAL FLOW OF OUTPUT STREAM " 

TOTAL " SIGMA (FLOWOVT)i 
" MATERIAL FRACTIOtü OF OUTPUT STREAM " 

X'" TOTAL " FLOWOVTº 
" SPE''. IFICAT: ON OF RECYCLE RATIO " 

TOTALMN(E " SIGMA (FLOWINI) º TOTALR " SIGMA (FLOWIN2) 
TOTALR " RATIO = TOTALMAKE º 

NIT REACTOR IS A MEREACTOR 
!! f 

NIT SEPARATOR IS A (SEPARATOR 

NIT PURGE IS A SLIT 
SET ts)COMc "7 

IT MIXER IS A MAetwie 
SET W COW "7 

sr 
IT FEEDER IS A FEEDERMS 
SET HOCOW "7 

" COMPONENT NUMBERS I- CO. 2 H2.3 - CH30H. " 

F"4 H2O. 5-CÖ2. Ö-CFN. -7-P12-ý 
SET 

WITHIN FEEDER 
TOTAL " 6000. X'1+ 

" 
0.146. X(2) 0.720. X(3) 0. 

X(4) " 0.001, X'5) 0.06. X(6) " 0.032 
MITHIN MIXER 

RATIO " 3.5 
WITHIN REACTOR 

TI " 533.15. T2 " 543.15. PRESSURE " 90 
WITHIN 

SEPARATOR 
Y3 " 0.0. Y4 " 0.0 
WITHIN REACTOR 

FLOi4IN(I) " 176. FLOWIN12) " 4320. FLOWIN13) " 0.0. 
FLOWIN(4) " 6. FLOWIN(S) " 360. FLOWI1i6) " 192. 
FLOidIN (7) " 246. 
FLONOt1Ti1) " S76. FLONYUT(2) " 4320, F. iIOUT(3) " %C. 
FLC* OUT (4) " b. FLOWOUT(5) to 360. FLOWOUT i6) " 1%. -. FLONOUT(7) " 246. 
EXTENTI " 0. EXTENT2 " 0. 

X(1) " 0.146. X(2) " 0.720. X(3) " 0. X"4) " 0.001. 
X'5) " 0.06. X t6) " 0.032. X(7) " 0.041 

frrr 

DECLARE 
TYPE "DECLPG:. TIONS FOR LIBRARY MODELS* 

FLOATE " 10000.0: 0.0: 100000.0 UNIT""KMO1. 'IR" EXTENT " 0: -1000000.0: 1000000.0. 
MOLEFRACTION " 0.5: 0.0: 1.0 . PRESSURE " 10.0: 0.0: 1000.0 VNIT""8AR" 

rrrs 
TIONS 

! ROUTINES ON 

ysrsststsafrsasarratsfýrffrrfassftaatrsusfrarrsassatat. tttrrarttsft 
sarrrararrs: arrafarsaffrfaasssrsftafsatatrrrssssfrsaartttrrtsrttrata 

r ra 
s sa 

"NITRIC "f " a. 
ssrtstrtrtrsffstassffasrafarsttstssataaftrtaatfraerttttstsstssstattr 
s*rrrtsasfssrefrrsssýffaaar: safasaarffarsarrrsssrtftssrssrsttstarsf" 

DECL1 E 
TYPE "DECLARATIOt$S FOR LIBPARRY MODELS 



ýsU +, 

1r` #t .s 

iNITRIC 
t! #t 

Yf #t 

yii#ttittltYft#tftffff#tiitttitttYttifYitYtf! #tf #tiittf7ttttlt##t### 
i'1i##if itftittittfitlfffttitttitf tttfttttitttflffiffYtf tftttiffftt#t 

DECLARE 

TYPE 'DECLARATIONS FOR LIBRARY MODELS` 
FLOHRATE " 10.00.0: 1000.0 UNJT""h190_ýtft" 
MOLEFRACTION " 0.5: 0.0: 1.0. 
COEFFICIENT " 0.0: -10.0: 10.0 

s#ii 
MODEL MIXERMB 

4" MIXER OF TWO STREAMS (MATERIAL BALANCE ONLY) t 
SET NOCOlP 
TYPE FLOWINI, FLOWIN2. FLOWOUT AS ARRAY EN000MP) OF FLOWRATF 

TOTAL AS FLOWRATE 
X AS ARRAY (HOCOMP) OF MOLEFRACTION 

STREAM INPUT I FLOWINI 
INPUT 2 FLOWIN2 
OUTPUT FLOWOUT 

EQUATION 
" COMPONENT MATERIAL BALANCES " 

FLOWINI " FLOWIN2 " FLOWOUT: 
" TOTAL FLCW OF OUTPUT STREAM " 

TOTAL " SIGMA (FLOWOUT): 

M'0`ERIAL F rIONS OF OUTPUT S AM " 
Xt TAL - FLOWOJTi 

litt 
MODEL SPLITTS 
" TWO STREAM SPLIMR (MATERIAL BALANCE ONLY) " 

SET NOCOMP 
TYPE FLOWIN. FLCCGI. TI. FLO DJ12 AS ARRAY rNOCOMPj OF 9LQWRATE 

TOTALI. TOTAt2 AS FLOW RATE 
XI. X2 AS NAY (H000MP) OF MOLEFRACTION 
FRACTION AS 11OLEFRACTION 

STREAM INPUT FL. WIN 
OUTPUT I FL06WI 
OUTPUT 2 FLO &&'T2 

EQUATION 
" STREAM 

FLSPýTI " FLOWN # FRACTIONi 
" COMPONENT MATERIAL BALANCES " 

FLOWIN " FLOWOUTI # FLOWOUT2, 
" TOTAL FLOWS OF OUTPUT STREAMS 0 

TOTAL I" SIGMA (F LOWOUT t) i TOTAL2 " SIGMA (FLOWOUT2)1 
" MATERIAL FRACTIONS OF OUTPUT STREAMS - 

XI # TOTALI " FLOWOUTII 
X2 # TOTAL2 " FLOWOUT2i 

"'161L 

" TWO 
DSTREAM 

COMPONENT SPUTTER (MATERIAL BALANCE ONLY) " 
SET NOCOMP 
TYPE FLOWIN. FLOWOUTI. FLOWOVT2 AS ARRAY (NOCOMP) OF FLOWRATE 

TOTALI. TOTAL2 AS FLOWRATE 
X1, X2. FRACTION AS ARRAY tT000MP OF MOLEFRACTION 

STREAM INPUT FLOWIN 
OUTPUT I FLOWOUTI 
OUTPUT 2 FLOWOU72 

EQUATION 
" COMPONENT SPLITS - 

FLOOMI " FLOWIN * FRACTION: 
" COMPOtVfT MATERIAL BALANCES " 

FLOWIN " FLOWOUTI " FLO JT21 
" TOTAL FLOWS OF OUTPUT STREAMS " 

TOTALI " SIGMA (FLOWOUTI)s 
TuTAL2 " SIGMA (FLOWOUT2), 

" MATERIAL FRACTIONS OF OUTPUT STREAMS " 
XI * TOTALI   FLOWOUTI: 
X2 Y TOTAL2 " FLOWOUT2i 

#sf 
MODEL FEEDERPIB 
" FEED STREAM DEFINITION (MATERIAL BALANCE ONLY) " 

SET t$OCOMP 
TYPE FLOWOUT AS WAY (NOCC! W' OF FLOWRATE 

X AS ARRAY QgCOMP) OF MOLEFRACTION 
TOTAL AS FLOWRATE 

STREAM 
OUTPUT IS FLOHOUT 

EQUATION 
" TOTAL FEED FLOW "' 

TOTAL " SIGMA (FLOHOUT) i 
" MATERIAL FRACTIONS OF FEED STREAM " 

Xt TOTAL   FLOWOVTi 
1t1/ 

MODEL REACTOR* 
" " REACTOR WITH CONSTANT COtNERSIOU (MATERIAL BALANCE O ICY) 

SET tVX«P. KEY 
TYPE FLOWIN FLOWOUT. AS ARRAY aNOCOW) OF FLOHRATE 

X AS FWY (IIOCOW) OF MOLEFRACTZON 
TOTAL AS FLOWRATE 

i WS ARRAY cnoc01 fFIC --. _ 
EXTENT. CONVERSION AS IIOTYPE 

STPL-AM It" FLOWIN 



MODEL REACTORlß 
" REACTOR WITH CONSTANT COt ERSIOIH (MATERIAL BALANCE ONLY) " 

SET HOCOMP. KEY 
TYPE FLOWIN FLOWOUT AS ARRAY tNOCOMP) OF FLOWRATE 

X AS (RAY R10COMP) OF MOLEFRACTION 
TOTAL AS FLOHRATE 

CUFFICIENT 
EXTENT, CONVERSION AS NOTYPE 

STAr. AN INPUT FLOWIN 
OUTPUT FLOHOUT 

EQUATION 
" EXTENT OF REACTION " 

- NUOCEY) * EXTENT " FLONIN(KEY) * CONVERSIONS 
" OUTPUT FLOWS FROM EXTENT AND STOICHIOMETRY " 

FLOWOUT - FLGNIN " NU " EXTENT+ 
" TOTAL OUTPUT FLOW " 

TOTAL " SIGMA (FLOWOUT)s 
" MATERIAL FRACTIONS Of OUTPUT STREAM " 

FLOI4OUT " TOTAL x Xi 
. s. e ýFLOWSIEET 

OUTPUT 1 OF DIST7 IS PRODUCT I 
OUTPUT 2 OF DIST7 IS INPUT OF DIST$ 
OUTPUT 1 OF DIST$ IS PRODUCT 2 
OUTPUT 2 OF DIST$ IS INPUT I OF MIXRILA 
OUTPUT OF FEED10 IS INPUT 2 OF MI)Gt11A 
OUTPUT OF MIXRIIA IS INPUT 1 OF MIXRIIB 
OUTPUT OF FEEDS IS INPUT 2 OF MIXRIIB 
OUTPUT OF MI)tRItB IS INPUT OF REACI2 
OUTPUT OF REACI2 IS INPUT OF REAC13 
OUTPUT OF REAC13 IS INPUT OF REAC14 
OUTPUT OF REAC14 IS INPUT OF DISTIS 
OUTPUT 1 OF DIST15 IS PRODUCT 3 
OUTPUT 2 OF DIST15 IS INPUT I OF MIXR17 
OUTPUT OF MIXR17 IS INPUT OF REACTS 
OUTPUT OF REACTS IS INPUT OF DISTI 
OUTPUT 1 OF DISTI IS INPUT (K DIST16 
OUTPUT 1 OF DIST16 IS INPUT 2 OF MIXRI7 
OUTPUT 2 OF DIST16 IS PRODUCT 4 
OUTPUT 2 OF DISTI IS INPUT 1 OF MI)SR3 
OUTPUT OF FEED2 IS INPUT 2 OF MIXR3 
OUTPUT OF MIXR3 IS INPUT OF REAC4 
OUTPUT OF REAC4 IS INPUT 1 OF MIXRE 
OUTPUT OF FEEDS IS INPUT 2 OF MINR6 
OUTPUT OF MIXR6 IS INPUT OF DIST? 

141T REAC4 IS A REACTORM6 
SET t«OCOMP " 9. KEY  9 

MIT DISTI IS A DISTMB 
SET FIOCO* "9 

MIT REAC13 IS A REACTORMB 
SET t4000MP   9. KEY "3 

MIT MUGt6 IS A MIXERMS 
SET WCOMP "9 

MIT FEED9 IS A FEEDERMS 
SET 14000CV "9 

MIT MIXR3 IS A MASERN 
SET ftXC P"9 

OMIT REACtS IS A REACTOR! 'B 
SET HIQCOI " 9. KEY º2 

UNIT DIST7 IS A DISTP 3 
SET t1000MP "9 

Y'ktx 

IMIT REAC14 IS A REACTORMS 
SET tIQCOtc   9. KEY "3 

sxsý 
UHIT DISTIS IS A DISTMB 

SET FY)COW "9 
tl1R! 

UNIT FEEDS IS A FEEDERMS 
SET fCOMP "9 

sýsr 
UIIT REACI2 IS A REACTORIiB 

SET MOCODP " 9. KEY "4 
"Y!! t 

IHIT MIXR116 IS A MIXERMB 
SET MOCOMP "0 

rla* 
WIT MIXRI7 IS A MIXERMS 

SET tIOCOIf "9 
s! Y! 
WIT DISTI IS A DISTMB 

SET NOCOPP "9 
***It 
NIT FEED2 IS A FEEDERMS 

SET NC'COMP "9 
rlsr 
UNIT FEEDIO IS A FEEDERM 

SET WCQMR "9 



X lt' i1M4V11Ali' "" "74 4'rß `f. '' 

Ut1IT MIXRI7 IS A MIXERMS 
SET WCOtc' -9 

UNIT DISTI IS A DISTMO 
SET NOCOtc "9 
T FEED2 IS A FEEDERMB 
SET t1000W "9 

FEEEEDIO IS A FEEDFRI! 

T MIXRIIA IS A MIXERMD 
SET t1000MP  9 

T DISTI6 IS A DIST B 
SET NOcosc -9 

" C0IcGtfNT HIMRS -1: HN03 .2: N2 . 3: 02 " 
"4: H2O .5: CH4.6 : CO " 
"7: CO2 .i: H2 .9: NH3 " 
SET 

WITHIN DIST1 
FRACTION(! ) " 0. FRACTIOH(2) " I. FRACTION(3) " 0. 
FRACTION(4)   0. FRACTION(5) - 0. FRACTION(6) " 0. 
FRACTION (7) " 0, FRACTION(S)  1 

WITHIN FEED2 
X(1) " 0. X(2) " 0.79. X(; ) " 0.21. X(4) " 0, X(5) " 0. 
X(6)   0. X(7) - 0. X(Q) "0 

WITHIN REAC4 
NU(I) " 1. NU(2)   0. NU (3) " -2. NUM " 1. Ml (5) " 0, 
NU (6) " 0. NU (7) " 0. NU it)   0. NU (9)   -1. CONVERSION  1 

WITHIN FEEDS 
X(1) " 0. X(2) " 0. X(3) " 0. X(4) " 1. X(5) " 0. 
xl6) "0. X(7)" 0. X($) "0 WITHIN DIST7 
FRACTION(! ) " 1, FRACTION(2) " 0. FRAC; ION(3) - 0. 
FRACTION(') " 1. FRACTION(S) " 0. FRACTION(6) " 0. 
FRACTIONCf " 0, FRACTION(Q) " 0. FRACTION')   0, 

" DESIGN SPECIFICATIONS 1.2.6 " 
FLOWO')T1(I) - 0.432. FLOWMTI (4) " 1.008. X2(2) " 0.992 

WITHIN DISTS 
FRACTION(I) " 0. FRACTION(') " 0. FRACTION(S) " 0. 
FRACTION(6)   0. FRACTION (7) " 0. FRACTION(S)   0. 
FRACTION(9)   0. 

" DESIGN SPECIFICATION 7" 
X2(3) " 0.01 

WITHIN FEEDS 
X(1) " 0. X(2)   0, X(3) " 0. X(4) " 1. X(5)   0. 
X(6)"0, x )"0, x(8)"0 WITHIN FEED10 

X(1) "0. X(2) "0. X(3) "0. X(4) "0. X(5) " I. 
X(6) " 0. Xl7) " 0. X(4) "0 

WITHIN REAC12 
Null) " 0. NU(2) " 0. NUM " 0.5, NUM " -1. NU(5) " 0. 
M(6) " 0. M1(7)   0. NUM " 1. NU(9) "C 

WITHIN REAC13 
Null) " 0. NU (2) " 0. NUM " -1. NUM " 0. NU (5) " -2. M (6) " 2. NU (7)   0. NU (8) a 4. NU (9) "0 

WITHIN REAC14 
NU(1) " 0. NU(2) " 0. NUM " -1. NUM " 0. NU(5) " -1. NU(6) - 0. NU (7) " 1. NU (8) " 2. M(9) " 0, 

" DESIGN SPECIFICATIONS 3.4. 5" 
FLOWOUT(3) " 0. FL0W0UT(4) " 0, FL0WOUT (S) a0 

WITHIN DISTI5 
FRACTION(1) " 0. FRACTION(2) " 0. FRACTIOfi(3) " 0, 
FRACTION(4) " 0. FRACTION(S) " 0. FRACTION(6) " 1, 
FRACTION(7) " 1. FRACTION(S) " 0. FRACTION(9) - 0. 

" DESIGN SPECIFICATION 3" 
X1(7) " 0.91 

WITHIN DIST16 
FRACTION(1) " 0. FRACTIO(1(2) " 1, FRACTION(3) " 0. 
FRACTION(4)   0. FRACTION(S) " 0. FRACTION(6) " 0. 
FRACTION(7) " 0. FRACTION(Y)   0.99. FRACTION(9) "1 

WITHIN D 
ESIGN SPECIFICATIONS 9 10 " 

X(2)   0.25. X(1) " 0.7ý 
WITHIN REACTS 

NU 41) " 0. M (2) " -1. NU 13) " 0. NU (4) " 0. NU (5) " 0. 
NU(6)   0. NU(7)   0. Mit) " -3. NU(9) " 2. 
CONVERSION " 0.25 

RERLAITIS / SOOD AMMONIA - NITRIC ACID COMPLEX 

TIONS ROUTINES ON 
PRINT MODEL 2 FLOWSHEET 2 UNIT 2 OPERATION 2 DECLARE 2 

sttstrtssrzssrrsttsssstssst: rrtstsssssszstsatsrsttxzttttss: txstss 
srsttrsr: rssatrss: tssstrsstt: stttssts: sstsrs: strtsssastatstt: tstr 

tt 

rs 
BPNET tr 

tr 
t" 

rsxssssssrrs: xssztsttfssas: ssrssxrsstrtassszztsstrtsttrsxstsrtata" 
rxttsttsttztstrssssrstssssrststtzstzsstttfsstfstssrtt: týtttsssrzz 



1. L'MY'. Y sRrr, 'cYi. Y't. R"1r7. t: Y1w 1M1x cuvst"xL, ýYk f'1 tY rs, rs711'2'y'H8lJlu7 iT, PY Is 

xt 
st 

bPNET ax 
xt 

: xssrtsrxsstrsssstsxs: stsssrrxaxrsrrrxtxsttsxtsxxsrxttstrsxs 
txtYt3ltttt#tltttt*trtttXxtRtlffittxt*Ytxttttttxttltltttltkt 

OF D30 IS FEED 1 
I. OF D30 IS 1: 1PJT 2 Of H17 
2 OF D30 IS INPUT OF D31 

I OF H17 IS FEED 2 
1 OF H17 IS PRODUCT 1 
2 OF H17 IS INPUT 2 OF H16 
I OF D31 IS INPUT I OF H15 
2 OF D31 IS IH)UT OF D32 
I OF D32 IS INPUT 2 OF Ht4 
2 OF D32 IS INPUT OF D33 
I OF D33 IS INPUT 2 OF H13 
2 OF D33 IS INPUT OF D34 
1 OF D34 IS INPUT 2 OF H12 
2 OF D34 IS INPUT 2 OF H11 

OUTPUT I OF H11 IS PRODUCT 2 
OUTPUT 2 OF H11 IS INPUT I OF M35 
INPUT OF D43 IS FEED 4 
OUTPUT I OF D43 IS INPUT I OF HIS 
OUTPUT 2 OF D43 IS INPUT 2 OF H2O 
OUTPUT I OF HIS IS INPUT I OF M44 
OUTPUT 2 OF H16 IS INPUT 6 OF M35 
ItfUT I OF H2O IS FEED 5 
OUTPUT I OF H2O IS PRODUCT 4 
OUTPUT 2 OF H2O IS INPUT 2 OF M44 
OUTPUT OF M44 IS PRODUCT 5 
INPUT OF D45 IS FEED 6 
OUTPUT I OF D45 IS INPUT I OF HIO 
OUTPUT 2 OF D45 IS INPUT 2 OF HIS 
INPUT I OF HIS IS FEED 7 
OUTPUT I OF HIS IS PRODUCT 6 
OUTPUT 2 OF HIS IS INPUT 2 OF H19 
INPUT I OF H19 IS FEED I 
OUTPUT I OF M19 IS PRODUCT 7 
OUTPUT 2 OF H19 IS INPUT 2 OF M45 
INPUT I OF HI IS OUTPUT OF M42 
INPUT 2 OF HI IS FEED 9 
OUTPUT I OF H1 IS PRODUCT S 
OUTPUT 2 OF H1 IS INPUT 2 OF H3 

NPUT OF D31 IS OUTPUT OF M35 
OUTPUT I OF D31 IS INPUT OF D39 
OUTPUT 2 OF D3$ IS INPUT OF D37 
OUTPUT I OF D37 IS INPUT 2 OF HS 
OUTPUT 2 OF D37 IS INPUT OF D36 

NPUT I OF Ht IS FEED 10 
VYJW I OF HI IS INPUT I OF M14 
JOUTPUT 2 OF HI IS INPUT 3 OF M40 
K)UTPVT I OF H14 IS PRODUCT 9 
IOUTPUT 2 OF H14 IS INPUT 4 OF M35 
IOUTPUT I OF D39 IS INPUT 2 Of H7 
OUTPUT 2 OF D39 IS INPUT 2 OF H6 

NPUT I OF H6 IS FEED II 
JOUTPUT 1 OF H6 IS INPUT I OF HI2 
JOUTPUT 2 OF H6 IS INPUT 5 OF M40 
JOUTPUT I OF H12 IS PRODUCT 10 
JOUTPUT 2 OF H12 IS INPUT 2 OF M35 
IOUTPUT I OF D36 IS INPUT 1 OF H9 
IOUTPUT 2 OF D36 IS INPUT 2 OF H10 
JOUTPUT 1 OF H10 IS INPUT 1 OF M48 
OUTPUT 2 OF H10 IS INPUT 1 OF M40 

NPUT 2 OF M40 IS OUTPUT I OF H9 
NPUT 4 OF M40 IS OUTPUT 2 OF H7 

OF M40 IS INPUT OF D41 
OUTPUT I OF Dot IS INPUT 1 OF H4 
OUTPUT 2 OF D41 IS INPUT 2 OF H5 
INPUT I OF H5 IS FEED 12 

OUTPUT I OF H5 IS INPUT I OF H7 
OUTPUT 2 OF H5 IS INPUT I OF H3 
"-VT I OF H? IS INPUT I OF H13 
OUTPUT I OF H13 IS PRODUCT II 
IOUTPUT 2 OF H13 IS INPUT 3 OF M35 
OUTPUT 1 OF H3 IS INPUT I OF M42 

2 OF H3 IS INPUT 2 OF H4 
OUTPUT I OF H4 IS INPUT 2 OF H2 
0JTPVT 2 OF H4 IS INPUT 2 OF H9 
INPUT I OF H2 IS FEED t3 

ofnAm 1 OF H2 IS PRODUCT 12 
WPUT 2 OF H2 IS INPUT 2 OF M42 
OUTPUT 2 OF H9 IS INPUT 2 OF H15 
MJTPUT 1 OF HIS IS INPUT 5 OF M35 

rAnm OF M41 IS PRODUCT 

MODEL DIVIDER 
TYPE F. F1. F2 AS FLO'I ATE 

T. T1. T2 AS TEMPERATURE 

STREAM 
FFRAC. C. C1. C2 AS t10TYP£ 

INPUT I SFTC 
OUTPUT t IS t. Tt. CI 



omnl, ý.., 
. 

Rise 

OUTPUT OF M41 IS 
sýsý 

TYPE F. F1. F2 AS FLOWRATE 
T. Tt. T2 AS TEMPERATURE 

STRE AM 
AC. C. CI. C2 AS NOTYPE 

I K)T IS F. T. C 
OUTF1JT I IS Ft. Tt. CI 
OUTPUT 2 IS F2. T2. C2 

EOUATIOt1 
TI T2 T, 
CI C2wCi 
FRAC *F 2FII 

sý** 
MODEL HEATEX 
TYPE St S2 StO. S20 AS FLOWRATE 

TSII. +S2I TS10. TS20 AS TEMPERATURE 
CP1. CP2. CýIO. CP20 AS NOTYPE 

SSA 
AS COEFFICIENT 

INPUT 1 IS S1. TSII. CPI 
INPUT 2 IS S2. TS21. CP2 
O'rTPUT 1 IS SIO. TSIO. CPIO 
OUTPUT 2 IS S20. T520. CP20 

fOUATIOtI 
st0. st' 

a 
a 

SI1I X (S1. TSII. CPI. S2. TS2I. CP2. UA) 

DEL MIX2S 
PE F1. F2. F AS FLOATE 

T1. T2, T AS TE14PERATURE 
CI. C2. C AS HOTYPE 

REAM 
INPUT I IS F1. T1. C1 
INPUT 2 IS F2. T2. C2 
OUTPUT IS F. T. C 
üATIOtl 
F"Ft"F2s 

MIXING EONS. FOR C AND T (ASSUMING STREAMS OF SAME COMP. ) " 
C Ct I 

F "T"Ft'T1 42A72 ( 
iss 
)DEL MIX5S 
?E Ft. F2, F3, F4. F5. F AS FLOWRATE 

Tt. T2. T3. T4. T5. T AS TEMPERATURE 
Ct. C2. C3. C4. C5. C AS 140TYDE 

BREAM 
INPUT I IS Ft. Tt. CI 
INPUT 2 IS F2, T2, C2 
ItPfl 3 IS F3, T3. C3 
INPUT 4 IS F4. T4. C4 
It9UT 5 IS F5 T5, C5 
OUTPUT IS F. t. C 
1UATION 
F"Ft"F2"F3"F4"F5( 

MIXING OF C. T (ASSUMING STREAMS OF SAME COIc. ) " 
C" C11 

F"T" Ft ' TI " F2 ' T2 " F3 ' T3 " F4 ' T4 " F5 a T5 
rss 

MI S 
TYPE Ft. F2. F3. F4. F5. F6. F AS FLOATE 

Tt. T2. T3. T4. T5. T6. T AS TEMPERATURE 
C1. C2. C3. C9. C3, C6. C AS NOTYPE 

STRiAM 
IM PVT t IS F1. TI. CI 
IPPUT 2 IS F2. T2. C2 
IPPUT 3 IS F3.73. C3 
IMPUT 4 IS F'1. T9. C`$ 
ItOUTT 5 IS F6. T5. C5 
INPUT 6 IS F6. T6. C6 
OUTPUT IS F. T. C 

EOUATIOil 
F" Ft " F2 " F3 " F4 " F3 " f6i 

" MIXING OF C. T (ASSUMING STREAMS OF SAME COMP. ) " 
CaCt a 

F*T- Ft*TI " F22T2 " F3'T3 " F4'T4 " F5OT5 " F6'T6 
**** 
UNIT H13 IS A HEATEX 
s, ýs* 
UNIT Htt IS A HEATEX 

UNIT D43 IS A DIVIDER 
on* 
UNIT H5 IS A HfATEX 
rr** 
UNIT 032 IS A DIVIDER 
ýss* 
WIT H10 IS f HEATEX 
., rss 
UNIT D37 IS A DIVIDER 
see 
UNIT H2 IS A HEATEX 
»wss 
UNIT Ht5 IS A EATEX 



? b"Aä'A HEATER 
UNIT D32 IS A DIVIDER 
tUT H10 IS P HEATEX 

D37 IS A DIVIDER 

IT H2 IS A HEATEX 
, +rs, 

IT HIS IS A HEATEX 

IT H9 IS A HEATEX 

IT MS IS A DIVIDER 

JT HIS IS A MIXMS 

IT Hb IS A HEATEX 

IT D3'$ IS A DIVIDER 

T D39 IS A DIVIDER 
s 

IT H17 IS A HEATEX 

IT H12 IS A HEATEX 

HIT M41 IS A MIX2S 

HIT 1420 IS A HEATEX 

JT Hl IS A HEATEX 

IT MYO IS A MIXES 
to 
IT D31 1S A DIVIDER 

sýrýra 
IT D36 IS A DIVIDES 

IT H1I IS A HEATEX 

MT H11 IS A FEATEX 

MIT N7 IS A NEATEX 
Mrw. 
RUT M42 IS A MIMS 
ft" 

D33 IS A DIVIDER 
rýr«a 
UNIT N11 IS A NEATEX 

HIT N10 IS A MEATEX 

UNIT D31 IS A DIVIDER 
rr«s 
HIT N4 IS A NEATEX 

UNIT DY1 IS A DIVIDER 

UNIT N1 IS A HEATEX 
, rte: 
UNIT HI IS A HEATEX 
pm 
UNIT D30 IS A DIVIDER 

, WT 1944 IS A MIXSS 

SPECIFICATION OF FEED STREAMS " 
THIN 030 
F"UO T"25. C"0.556 
MIN bis 
F"M10. T"219. C"2.912 
THIN HIP 
6t"290 CPI. 1.393. TS1I6159 
THIN H1 
SS22t2f0TS21.352. CP2.0.523 

S1.160. TS11.41, CP1.1.061 
THIN H5 
St"1t0. TSII. 263. CP1"o. 655 
THIN H6 
St"$3. TS11.206. CP1.0.6ä9 
THIN Hi 
Sl"39. TS1I. 304, CP1.0.674 
THIN H2 
Sl"810. TS11.3t5. CP1.0.696 
THIN Ht9 
St 130. TSl1"192, CP1.0.6'12 
THIN D43 
F«ß1O. T l52. C"4. $42 
THIN Ht7 
St"t60. TS11.133. CPI't. 68! 
THIN H11 
SS"31 TS11.170. CP! "0.701 

SPECIFICATION WF PRODUCT STREAM TEMPERATUF(S " 
(THIN H17 7S10"$3.9 
MIN Htl TStG. 107.6 
MIN M Tu7.2 



J11ý10Q'yýSLfýAlä«Ci: laýi': ari8LJ4:; '; *. i 

a1TMllt Ht I1ý S1.3S TSfl. 170. CPlmO. 701 
SPECIFICATION OF PRODUCT STREAM TEMPERATURES 

WITHIN H17 TS100$3.9 
MITHIN Hlt TSt0a107.6 
MITHIN "48 T"117.2 
MITHIN H2O TSt0.133.1 
MITHIN HIS TS10.203.9 
MITHIN Ht TS1Os199.7 
MITHIN H1 TS$0-306.5 

I7HZN H14 Tf10070.7 
rA! ITHIN H12 TS10.111. O 

1TH1N H13 TS1O"$4.9 

CIVICATIOH OF OTHER MEASURED TEMPERATURES 
H2 TS20.2%. 0 
HM TS20415.3. TSIO 211.3 
He T$10.170.2 
H7 TS20.209.1. TSIO. 1o2.7 
He TS20.273.9. TS10.155.6 
HO TStO-20t. 0. TS20.151. v 
H10 T$20.176.9. TS10.193.6 
Hit T$20.161.0 
1112 TS20.152.2 
H13 TS20.136.3 
H1w TS20 tOt. 6 
H15 TSIO. 120.7 
Ht6 TS20.126.9 
H2O TS20"t42.6 
H3 TS10.2$1.7 
H5 TS20.2t9.6 

" INITIAL GUESSES FOR BLOCK 13$ " 
WITHIN H7 TSII. 240 
WITHIN N3 TS2I. 300. TS20.250 

TITLE 
BO HEAT EXCHANGER NETWORK 

FLOWRATE"1. OE2zO: t. 0E3 UHIT""KMOLES". 
TEMPERATURE"200. -100: 5OO UHIT""DEGC". 
COEFFICIEHT"1E2: O: tE3 UNIT""H. T. C. ". 
HOTYPE 1: 0: 1. OE13 UNIT-"N"ITS" 

ICES ON 

*xttxxtsttstttttttsstsssasatststssssstastsessttsassassýstssassstassst 
ttirt*tttttsttttsttssrsasssssaatstsststtstssstts: assssttstssstttttt: ss 
11 xt 

xt st 
xt BPNETE a" 
tt s" 
** ss 
*ttttstsxssssssssttssssttsstssssatss: sssasssassttsastssassstssst: sss 
ýatýsssxststýrtttttttssttttsttsats: stsssttststststssttstt: t: sssstttttts 

OF D30 IS FEED I 
1 OF D30 IS INPUT 2 OF H17 
2 OF D30 IS INPUT OF D31 

1 OF H17 IS FEED 2 
1 OF HIT IS PRODUCT 1 
2 OF H17 IS INPUT 2 OF H16 
1 OF D31 IS INPUT 1 OF HIS 
2 OF D31 IS INPUT OF D32 
1 OF D32 IS INPUT 2 OF HLY 
2 OF D32 IS INPUT OF D33 
1 OF D33 1S INPUT 2 OF H13 
2 OF D33 IS INPUT OF D34 
t OF D34 IS INPUT 2 OF H12 
2 OF D34 IS INPUT 2 OF Hit 

t OF Hit IS FEED 3 
1 OF Hit IS PRODUCT 2 

OUTPUT 2 OF Hit. IS INPUT I OF M35 
INPUT OF D43 I1 FEED 4 
OUTPUT I OF D43 IS INPUT I OF H16 
OUTPUT 2 OF D43 IS INPUT 2 OF H2O 
OUTPUT I OF H16 L3 INPUT I OF M44 
OUTPUT 2 OF H16 IS INPUT 6 OF M35 
INPUT I, OF H2O IS FEED 5 
OUTPUT I OF H2O IS PRODUCT 4 
C$ TPUT 2 OF H2O IS INPUT 2 OF M44 
OUTPUT OF M44 IS PRODUCT 5 
INPUT OF D43 IS FEED 6 
OUTPUT I OF D46 IS INPUT 1 OF H10 
OUTPUT 2 OF D45 IS INPUT 2 OF HIS 
INPUT I OF HIS IS FEED 7 
OUTPUT 1 OF HIS IS PRODUCT 6 
OUTPUT 2 OF HIS IS INPUT 2 OF H19 
INPUT 1 OF $19 IS FEED I 
OUTPUT I OF H19 IS PRODUCT 7 
OUTPUT 2 OF H19 IS INPUT 2 OF Mot 
INPUT I OF Ht IS OUTPUT OF M42 
INPUT 2 OF HI IS FEED 9 
OUTPUT I OF HI IS PRODUCT t 



Y 

t OF DM3 IS INPUT I Of HIS 
2 OF D43 IS IPPtT 2 OF H2O 
1 OF HIS IS INPUT I OF M44 

i2GOF HI ItISFEEDINPUT 
6 OF M35 

S 
I OF H2O IS PRODUCT 4 
2 OF H2O 1$ INPUT 2 OF M44 
OF 1444 IS PRODUCT 5 

OF D45 IS FEED 6 
I OF D46 IS INPUT I OF H10 
2 OF D45 IS INPUT 2 OF HIS 

I OF HIS IS FEED 7 
t OF HIS IS PRODUCT 6 
2 OF HIS IS INPUT 2 OF H19 

I OF H19 IS FEED S 
1 OF H19 IS PRODUCT 7 
2 OF H19 IS INPUT 2 OF M48 

I OF HI IS OUTPUT OF M42 
2 OF Ht IS FEED 9 

t OF H1 IS PRODUCT S 
2 OF Ht IS INPUT 2 OF H3 

OF D3$ IS OUTPUT OF M35 
I OF D3$ IS INPUT OF D39 
2 OF D3$ IS INPUT OF D37 
I OF D37 IS INPUT 2 OF NO 
2 OF D37 IS INPUT OF D36 

I OF NO IS FEED 10 
I OF He IS INPUT I OF H14 
2 OF Ht IS INPUT 3 OF M40 
I OF H14 IS PRODUCT 9 
2 OF H14 IS INPUT 4 OF M35 
t OF D39 IS INPUT 2 OF H7 
2 OF D39 IS INPUT 2 OF H6 

I OF H6 IS FEED It 
I OF H6 IS INPUT I OF H12 
2 OF H6 IS INPUT 5 OF M40 
t OF HI2 IS PRODUCT to 
2 OF H12 IS INPUT 2 OF 1135 

'I OF D36 IS INPUT I OF H9 
'2 OF D36 IS INPUT 2 OF H10 

I OF HIO IS INPUT I OF M48 
'2 OF Ht0 IS INPUT 1 OF M40 
2 OF M40 IS OUTPUT I OF H9 
4 OF M40 IS OUTPUT 2 OF H7 
' OF M40 IS INPUT OF D41 

IOFD41ISINPUT IOFH4 
2OF Dot IS INPUT 2 OF HS 

I OF H5 IS FEED t2 
I OF H6 IS INPUT I OF H7 
2 OF Aö IS INPUT I OF H3 
I OF HT IS INPUT I OF H13 

rI OF H13 IS PRODUCT It 
r2 OF Ht3 IS INPUT 3 OF M35 
rI OF H3 IS INPUT I OF M42 
r2 OF H3 IS INPUT 2 OF IN 
fI OF H9 IS INPUT 2 OF H2 
r2 OF IN IS INPUT 2 OF H9 
t OF H2 IS FEED 13 

TI OF H2 1S PRODUCT 12 
12 Of H2 IS INPUT 2 OF M42 
12 OF H9 IS INPUT 2 OF HIS 
TI OF HIS IS INPUT 5 OF M35 
t2 OF HIS IS PRODUCT 13 
r OF. IIMI IS PRODUCT 3 



ºMttl DIVIDER Tt F. Fl. F2 AS FLOW ATE 
T. 7 1, T2 AS TEMPERATURE 
FRAC. C. r1. C2 AS NOTYPE 

STREAM 
INPUT IS F. T. C 
OUTPUT 1ISF1. T 1, C1 
OUTPUT 2 IS F2. T2. C2 

EQUATION 
T1"T2"T* 
C1"C2"C, 
F" F1 " F2 
FRAC "F" 

Fts 

Itsss 
MODEL RATE? ( 
TYPE S1, S2. S10. S20 AS FLOATE 

TSII. TS2I. T$IO. TS20 AS TEMPERATURE 
CPt. CP2. CPtO, CP20, VA AS NOTYPE 
O. DELTATIM AS NOTYPE2 
ARG AS ARGUMENT 

, STREAM 
INPUT I IS S1, TS11, CPI 
1tPUT 2 IS $2. T521. CP2 
O4ITPM I IS SSO. TSIO. CP10 
OUTPUT 2 IS S20. TS20. CP20 

"T I Oti 
CP10"CPti 
CP020"CP21 

S20 " S21 
0" St 2 CPI " 'TS11-TSIO a 0" $2 " CP2 " (TS20-TS21)i 
0" VA " DELTATLMs 
ARG " 'TSII-T! **) " TSIO-T52Ii 
DELTATLM " L06(ARG) " (TS10-TS2I)-'TSII"TS20) 

t* 
ýWDEL M11: 2S 
M'E Ft. F2. F AS FLOWRATE 

TI, T2. T AS TEMPERATURE 
CI. C2. C AS NOTYPE 

IIF'VT I IS F1. TI. CI 
II'VT 2 IS F2 T2. C2 
OUTPUT IS f. t. C 

F" FS " Flt 
MIXING EMS. FOR C AND T 

C"C1 $ F'T"F1'T1sF? "Ti 

'ASSUMING STREAMS OF SA1( COND. ) 0 

MIX S F1, F2, F3, F4, Fß, F AS FLc*ATE 
T1, T:. T3, T4. TS, T AS TEP ERAT E 
Ct, C2, C3, C4, CS, C AS IOT? PE 

11c1T 11S F1T1, C1 
IfVJT 2 1S F2: T2, C2 
1PW1T 3 IS F3T3, C3 
1ä'V1 4 IS F4: T4. C4 
Itw 5 15 FS. TS. C4 
0L1TAc1T is F. T. C 
PATIOU 
F"Ft "F2"F3"F'$"Flo 
MIX114 GF C. T "ASSXJMIIK, STEFANS OF SAME COW, ) 

C"C1, 6 

i "T"Ft "Tt "12" I: "f! ºTý"i4ºT4"i6ºT5 
j w, 

M»( S 
TI. T2. T3, TV, TR, Te. T 

A 
AS 

S TEMDPERAT%E 

STREACt. 
C2. C3. C4,0, Ce. C AS NCTY1 

IWVT I is F1, T1. Ci 
IWVT : is F2. T2, C2 
iWt1T 3 It i3. T3. C3 
11itJT 4 is F4, T4. C4 
lli'VT ! is F5, T5, C5 
Itft1T e 1S F6. Tt. Ce 
OIrfl T 1: 1 F. T. C 

EOVAT1a4 
f" F1 " i2 " i3 " F4 " F5 " 't, 

MIXING Cf C. T ASSU IliG STREi. "S pF SAHE COMP. ) " 
C" Cl I 

."T" 
itºT1 " i21T2 " i3473 " F41T4 " F51T5 " FtýºTb I. f .. 

WIT H13 Is A IfATEX 
0' so 
WIT H11 IS A IfATEX 
r. "" 

Ui1T D43 IS A DIVIDER 
# *to 
WIT H5 IS A HEATEx 

Uü T D32 IS A DIVIDER 
"rts 
WIT HIO IS, A 1fATEx 

iss. r TWIT D37 IS A DIVIDER 
s.. s 

11 047 T W? id L ýYSATCV 



n"4""ti1. .* . r. '" RJ'A\: R`(trwM'Si'+7\QIV'1. "t "Ta'nIMF rR"Rw ."r:, 
TPpt 

F"7" F1"T1" FF"T2 " Fi"T3 " F41T4 " FE"75 " FO"TA 
I r. r" 
'WIT H13 IS A KATE). 

1.117 H1$ IS A HEATER 
s s's 

IT D43 IS A DIVIDER 
tsrs 
UNIT If IS A HEATEX 
rrrs 
UIIT D32 IS A DIVIDER 

UtiIT H10 IS A EATEN 

ullT D37 IS A DIVIDER 

WT H2 IS A HEATEX 
rrr" 
WIT HIS IS A HEATER 

UNIT H9 IS A HEATEX 
'rss 

IT MS 15 A DIVIDER 
'tsr 

IT M35 IS A MIXES 
srs 

IT H6 IS A HEATER 
sss 

IT D34 IS A DIVIDER 
rr 
IT D39 IS A DIVIDER 
rs 
IT H17 IS A HEATEX 

IT H12 IS A HEATEX 

IIT M41 IS A MIX2$ 
:s 
UT H2O IS A HEATEX 

x 
IT H3 IS A HEATEX 
5, 
IT M40 IS A MIXSS 

r 
IT D31 IS A DIVIDER 
ss 

4IT D36 IS A DIVIDER 

W11; -954 if -4 WE ATiX 

WIT H19 1S A HEATEX 
tfrt 
IHIT HT IS A HEATER 
ttitt 

M1T M42 IS A MIX2S 
ffs" 

UNIT D33 1S A DIVIDER 
, rrr * 

CHIT H11 IS A HEATEX 
frf* 
UNIT H1(+ IS A HEATEX 
tsrs 
UNIT D31 IS A DIVIDER 

rr 
UHIT MI IS A NEATER 
str* 
UNIT D41 IS A DIVIDER 
rtf, t 
UNIT Ht IS A HEATEX 
rýra 

IT HI IS A HEATER 

UNIT D30 IS A DIVIDER 

MIT M44 IS A MtY. 2S 

SPECIFICATION OF FEED STREAMS 
THIN 030 
F"610. T"25. C"1.555 
THIN OH5 
F"410. T"2t9. C"2.912 
THIN HIS 
Sl"2$0. CP1.1.393. TSt1.159 
THIN H1 
S2.250, T521.3S2, CP2.0.523 
THIN 1420 
St"150, TS1I. 9I. CP1.1.015 
THIN 45 
St6tto. TSt!. 263. CP1"o. 6S'S 
THIN Hb 
S1013, TS1I. 20O, CPi"0. b59 
THIN HS 
St"3l"TSti"309. CPt"C. 674 
THIN H2 
S1.510. TS1I. 315, CPI. O. (11 
TWH H19 
St"130. TS11"'42. CP1. O. b9? 
THIN 1x13 
F"SIO. T"152. C"9.5 2 
THIN H17 
St 1bo. TS1I. 133. CP1.1.1S 

0 

0 



Y. IIHIN" ht' 
$2.25O. TS2I. 3S2. CP2.0.523 

MITHIN H2O 
St"t6O. TStI"4I. CC1.1. Ot I 

WITHIN ! 16 
St"1t0. TS1t. 263. C01.0. e55 

WITHIN Hb 
S1"i3. TSI1.206. CP1.0.659 

WITHIN to 
St"31. T$11.304. CPI. 0.674 

WITHIN H2 
St"6f0. TSII03t5. CP100.616 

WITHIN H19 
S1.13O. TS1I"l42. CPIm0.642 

WITHIN D43 
F 6$O. T"t52. C"4. i42 

WITHIN HIT 
S1.160. TS1t"133. CPI. 1.6$1 MITHIN H11 
St"31, TS%I. 170. CP1.0.701 

SPECIFICATION OF PRODUCT STREAM TEMPERAT'ERES " 
ITHIn H17 TSla43.9 
ITHIN Hit TSta107.6 
ITHIN ! Ni T"197.2 
ITHIN H2O T$ta133.1 
MIN HIS TS100203.9 
ITHIN H19 TS10 199.7 
ITHIN HI TSia306.5 
ITHIN H14 T$t0.70.7 

WITHIN 1113 T$ta{4.9 
WITHIN HIS TS20.49.0 
" SPECIFICATION OF OTHER MEASURED TEPPERAT'. $" 
WITHIN H2 TS20.2%. Q 
WITHIN H4 TS20 215.3, TS10.211.3 
WITHIN H6 TS10"t70.2 
WITHIN K7 7520.209.1,7S10.162.7 
WITHIN He T$2a273.9, T$tat55.6 
WITHIN H9 TS1a201.0. TS20"I5I. 9 
WITHIN H10 T$20w176.9. TSIO'193.6 
WITHIN Hit T$20.16t. 0 
WITHIN H12 TS20"152.2 
WITHIN $13 7$200136.3 
WITHIN H14 T$20 101.6 
WITHIN HIS TSta120.7 
WITHIN H16 TS20*126. $ 
WITHIN H2O T$20.142.6 
MITHIN H3 TStO. 2$1.7 
MITHIN H5 T$20.219.61 
*#«s 
TITLE 

BV HEAT EXC1 4GER ttTN)RK 

DECLARE 
TYRE FLOW ATE 1. OE2: 0: 1. OE3 UNIT""KMOLES". 

TE cERATURE"200: -100: 500 UNIT""DEGC". 
COEFFICIENT"IE2: 0: 1E3 UNIT""H. T. C. ". 
ARG* ENT"1: 1. E-10: t. E10. 
Ii3TYPE2.1: -1. Et0: 1. E10. 
I10TYPE"1: 0: 1. OE13 Lt1IT"11OIR ITS" 

OPTIONS 
ROMMES OPI 

! rs*Y*srttrlrrltrlrsrrssr: ss[ssttfr: erstlastltstserttssststsstfrrRSa 
s+rakrr! *ttrtlrstass[trr*rssrrst*Y! t[4strsts[rsr*srrs*r4rsssss[tasrrt 
9rY ra 
KY !t 

ETHYL 
YY *! 

*y !r 

ir! *! *tt!! irlrrfirttttrttrltrtr[tf t1R[f tt! [tt[/! t!! [tf tl tf lRltRlrtt4! 

tk*rttrY4f tirr!! *!! f! lt4rtrflrl4ftfttt*tt[! lttf[4t[r*ltf tf lr! [tRY*!!! 

TITLE 
SIMPLE EThYLENE PLANT 

ssss ' 
IDL REACTOR 
SET IktY 
ARRAY REIN(7). REOU(7). STO(7) 
STREAM 

INPUT IS REIN 
OUTPUT IS REOU 

EOrJATION 
12 : YCOIP. REIN (XEY) *COlfJER 
REOU REIN*STOºKEYCOIP 
miss* 
MONL MIXER 
WAYYMMIXINt (V MIXIH2 47) MlY. OVT c') 
STREA 

INPUT t Is MIXINI 

INPUT 2 IS MIXIN2 
OUTPUT is MIXOUT 

EQUATION 
MIX04JT"MIXINI9MIXIN2 

MODEL SIFPLEDIST 
aw.. v ww-. "wn. P. 



rkvRýINMrI f: +i. 4.9; ̂h4"sr. CfYJ'! i'ý 
* 

`"A 
"iOTY"iýs: ý. r. rY06: t. ETCr t$ JTPE"1: O: 1. OE13 uriIT-%fOV ITS" Iss*" �.,, 

zits (*1 

assaras#rstesstrrslrsttsarr!! rltartrrtttxttatrxtrttarr##fettrx 
ttass#rtx# ataxrrrrtttr: ftetrrsrrrtar#sltlsxtrrsrtrreatttrt#se 

xt 
tx 

ETHYL tx 
' at 

xt 
aaax: xratr##terRttrstttrtsafraatrtxrrrtta#ixts##lxfxrt#tr#tlrt 
strtrlr#xrxlrttrrt#tftrtattfrtfttrtrx#kttrtt#atttttttr! lktataa 

I LE 
SIMPLE ETHYLENE PLANT 
its s 

RE IN (7) . R£OV (7) . STO (7) 

R IS REIN 
VT IS REOV 
ON 
PRE IN XEY) *CONVER 
f IiNSTO'I EYCW 

MIXER 
MIXINI (7) 1 MIXIN2(7). MIXOUTI'? ) 

Rt is MIXINt 

MIXGUT $IXInt. MIXIN2 

MODEL SIMPLEDIST 

STREAM 
ARRAY DIh(7). TOP(7). 8OT(7). SEP(7) 

INPUT IS DIN 
OUTPUT 1 IS TOP 
OUTPUT 2 IS BOT 

T R¬AC3 IS A REACTOR 

T REACIO IS A REACTOR 
KEY-3 

$ 
T MUN IS A MIXER 

T DIST6 IS A SIMPLEDIST 
x 
T DIST7 IS A SIMPLEDIST 

T DISTE IS A SIPPLEDIST 

CF REAC3 IS FEED I 
OF REAC3 IS INPUT 2 OF MIX4 

I OF MIX'i IS OUTPUT OF REACIO 
OF MIX4 IS INPUT OF DIST6 
I OF DIST6 IS PRODUCT 1 
2 OF DIST6 IS INPUT OF DISTT 
I OF DISTh IS PRODUCT 2 
2 OF DISTT IS INPUT OF D1STQ 
I OF DIM IS INPUT OF REACIC 
2 OF DISTS IS PRODUCT 3 

loft 

THIN REAC3 
REIN(U "O. REIN (2)"O. REIN(3)20. REIN(4)"120. REIN (5)"O. REIN (6)"O. REIN (7)"0. 
STO(1)"O. 667. STO! 2)"O. 667. STO(3)"-0.5. ST0(4)--1. ST0(5)"O. 167. ST0(6)"0. $33, 
STO (7) "0.333. C0NVER"0.9 
THIN REACIO 
ST0(I)"G. 5. STO(2)-0.5. STOr3) -I. STO(4)"O, STO(5)"O. STO(6)"0.75. ST0(7)"0, 
CONVER"O. $ 
THIN DIST6 
SEP (1) "1. SEP (2) "1. SEP (3) "O. SEP (4) "0. SEP t5) "O. SEP (6) "0, SEP (7) "0 THIN DIST7 
SEPII)"1, SEP(2)"1. $EP(3)"0.05. SEP(4)"0.5EP(5)-O. SEP(6)"0.99, SEP(7)"0 
THIN DISTt 
SEP IPuI. 5EP (2) " 1. $EP (3) "O. 99. SEP (M) 0. SEP (5) "O. SEP (b) -1, SEP (7) -0 


