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CHAPTER I

RADIATIVE HEATING

The subject of radiative heating is concerned with the 

heating and cooling of atomic, molecular and particulate matter 

by the processes of absorption and emission of radiation, which 

will be seen later to be very important heating mechanisms of 

such material. A quantitative description of these processes 

requires a detailed knowledge of the optical properties of the 

material involved in the interaction with the radiation. This 

must be supplied by mathematical models appropriate to the 

astrophysical context. In most problems the matter is of 

sufficient a density to consider it to constitute an atmosphere, 

in which case the radiation field incident upon each particular 

element of matter is controlled by the optical properties of the 

remainder of the atmosphere. In this way the theory of the 

radiative heating of an atmosphere is closely associated with the 

theory of radiative transfer.

The theory of radiative transfer has developed from the 

study of stellar atmospheres into a large and complex branch of 

astrophysics and is now deeply involved in the study of planetary 

nebulae, circumstellar shells, interstellar dust clouds and 

planetary atmospheres. The theory of planetary atmospheres is of 

major significance at the present time because the nearby planets 

are the only astronomical bodies for which direct measurements 

are available. During the past decade various probes have been 

sent to the nearby planets with the purpose of making measurements
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of the physical conditions that exist within their atmospheres.

It is of fundamental Importance to modern astronomy that the 

theories of radiative transfer and radiative heating stand up 

to these direct tests. It is also of great value to find the 

temperatures of other astronomical objects that are heated by 

radiative processes. The dust particles of interstellar space 

are heated In this way and the temperatures of these particles 

are important In a number of astronomical contexts. For example, i 

the formation of hydrogen molecules is, at present, considered .to S 

take place in association with dust grains, and the relevant 

physical processes of'absorption, adsorption and evaporation 

depend critically on the temperatures of the grains. The 

interpretation of the results of radiative heating calculations 

must be performed with reference to other heating processes. . -J

If it is found that other heating mechanisms provide a significant 

source of heat, and hence radiation by thermal emission, then the 

whole transfer problem must be reformulated and re-solved. •

In general, the intensity of a radiation field in an 

atmosphere is a function of position in the atmosphere, direction 

and frequency. The optical characteristics of the atmospheric 

constituents are also, in general, functions of position and '

frequency. We shall see that this situation presents too complex

a problem to be handled by transfer theory as known at present, 

and that it will be necessary to introduce several physical and 

mathematical approximations. These approximations will be 

introduced at an appropriate stage in the development of the theory 

but it will be useful to introduce a geometrical approximation v

at this juncture because it is mathematically necessary for the 

theory to be applied within the framework of a particular

..... . ...J



co-ordinate system. The theories of stellar and planetary

atmospheres have been established in plane-parallel geometry and 

rectangular cartesian co-ordinates. Stars and planets are 

approximately spherical in shape but the geometrical thicknesses 

of their atmospheres are so small with respect to their radii 

that it is a good approximation to consider their atmospheres as 

infinite slabs with parallel planar surfaces. This would not be 

true for circumstellar shells and interstellar dust clouds. 

Consequently the theories of radiative transfer in these objects • 

have been established in spherical geometry and spherical polar 

co-ordinates. This geometry provides a good approximation for 

circumstellar shells but not necessarily for interstellar dust 

clouds. Nevertheless, the representation of these clouds by 

spherical atmospheres is the simplest procedure that can be 

adopted. Moreover, the complexity of the physics and mathematics 

of the radiative heating problem is such that the geometrical 

approximation is usually the last to be questioned.

After formulating the equation of transfer in these two 

geometries we shall consider the large variety of methods available 

for the solution of the equation of transfer in each geometry. 

'Discussions of the physical nature of the scattering processes.in 

planetary atmospheres and dust clouds; the frequency dependence 

of the radiative heating problem; and the topic of radiative 

heating itself, both in general terms and in relation to other 

mechanisms of heating will follow and form the main body of this 

introductory chapter. We shall then be in a position to discuss 

previous work in this field and to present the rationale behind the 

selection of the methods to be used in Chapters II and III for the 

solution of the appropriate equations of transfer.
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1. The Equation of Transfer

The equation of transfer is the fundamental equation of the 

theory of energy transport in any medium. It appears in all the 

branches of physical science where energy is carried by particles 

of any description. The two branches in which It occurs most <

frequently are radiative transfer and neutron diffusion, the 

particles transporting the energy being photons and neutrons 

respectively. The equation of transfer is formulated from an 

"Eulerian point of view” for it considers only the energy that is 

involved in an interaction between a particle and the medium 

through which the particle is carrying the energy^nd the way in whicl 

that energy is transformed by the interaction. It does not depend 

on the nature of the particle carrying the energy nor on the nature 

of the interaction involved in the energy transfer. The relation 

between these ideas of energy transfer and those ideas that depend 

on the precise nature of the interactions between the individual 

particles has been discussed at length by Kourganoff (1952) and 

by Samuelson (1967b). This matter will not be discussed here, 

but it will be necessary to quote the definitions of the quantities 

involved in the formation of the equation of transfer because 

they are fundamental to the whole subject. These definitions

can be found in all the standard reference texts on radiative 

transfer, examples of which are works by Chandrasekhar (1960), 

Kourganoff (1952), Unsbld (1955), Woolley and Stibbs (1953),

Sobolev (1963), Pecker and Schatzman (1959) and Mihalas (1970).

The fundamental quantity required is the amount of energy, 

dE„ , in a specified frequency interval, ( + ), which is

transported across an element of area, , and in directions 

confined to an element of solid angle, cioo , during a time, dt.



This energy, dEtf, is expressed in terms of the specific intensity, 

, by

<{£9 « I», Cos 0 dv d-cr do clt ,

where 9 is the angle which the direction considered makes with 

the outward normal to dcr . The specific intensity is usually 

referred to as the intensity and we shall adopt this unambiguous 

abbreviation. The construction involved in defining the intensity"3 

also defines a pencil of radiation.

A pencil of radiation traversing a medium will be weakened by 

its interaction with matter. If the intensity, I„ , becomes 

I„ + dl„ after traversing a thickness,ds, in the direction of its 

propagation, then

~ ds f (1-2)

where p is the density of the material and is the mass

absorption coefficient of the material for radiation of frequency V 

Equation (1-2) defines the mass absorption coefficient. The r.adiatic 

lost to the radiation field is either absorbed or scattered. When it is

without a change of direction.

absorbed it is converted by the material into some other form of 

energy, which may take the form of radiation of a different 

frequency. When it is scattered it is changed in direction but 

often remains of the same frequency. Of course, it would not be 

prudent to consider the scattering to involve all but the original 

direction, so the radiation in the original direction is the sum

of the radiation which is not scattered and that which is scattered

The distinction between absorption



and scattering must be made with great care, particularly with 

regard to frequency dependence. This will be carried out in 

Section 1.3. but for the purposes of this expository section on 

the equation of transfer all that need be stated is that 

as defined above includes absorption losses due to time absorption 

and scattering. It will hereafter be known as the extinction 

coefficient and ''true" will be omitted from ’i’true absorption 

coefficient”.

The emission coefficient,J* , is defined in such a way that 

an element of mass,dwj emits in directions confined to an element 

of solid angle,dw, In the frequency interval ( •p + dtf ) and in 

time, dh, an amount of radiant energy given by

jv Am Aw Av At. (I~3)

The source of this energy is unimportant for the purposes of this 

section. The ratio of the emission coefficient to the extinction 

coefficient is an important quantity in the theory of radiative 

transfer and is known as the source function,

By - jv / . (1-4)

These definitions permit the derivation of the equation

of transfer, which involves the equating of the differential 

change in energy content of an infinitesimal volume of matter with 

the difference between the energy it absorbs and the energy it 

emits. Consider a small cylindrical element of cross-section,A<r, 

and length, As , in the medium. From the definition of the 

intensity, the difference in the radiant energy in the frequency 

interval, ( i>, ), crossing the two faces normally in a time,
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it , and confined to a solid angle, deo , can be expressed as 

( il\> /is ) J-p i<r i<o <&<u. This increase in energy must be equal 

to the energy emitted by the element in the same frequency interval^ 

into the same solid angle and in the same time, minus the energy 

absorbed by the element in the same frequency interval, solid 

angle and time. The absorbed energy is given by the expression, 

k9 p is x Tv (Ls> dcr di , while the emitted energy is given by •

dcr ds dt • Thus the equation for energy balance in the

cylinder is

JT„ ds dcr d& di ~ Js Ty eta <Aw 4- i^is ivioit, 
is

which is commonly written in the form,

!

- JT _ Tv - j,/k„ , r„ - ,
(1-5)

k„yO(ls

and is known as the equation of transfer.

The solution of this equation can be written down straightway,

for the equation of transfer in this form is merely a first order 

differential equation whose integrating factor is exp ( ” ( S, S')?

where

Tv ( s , SO ’ /
ff'

is. (1-6)p

This quantity is known as the optical distance between s and s' and 

it is a measure of the distance between s and s' in terms of the 

extinction of radiation of frequency, . If Iv(0) is the 

intensity in the positive s-direction at s = 0, then the solution 

of equation (1-5) is
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T ,, t r\ " r’6’°’
T Is) = I v (o) £ +

— %v(s, s )
£>„ (s') e fe, o <L$' (1-7)

The physical meaning of this equation is clear. Equation (1-7) 

merely states that the intensity at a distance, s , along a line 

in a medium, in the direction of positive s along the line, is 

equal to the intensity at the end of7 the line, s = 0, in the 

positive s-direction, attenuated by the optical distance between 

s = 0 and s , plus the integral sum of the emission coefficient 

at all points between s= o and s, attenuated by the optical 

distance between that point and s .

Were the source function known then equation (1-7) could be 

solved either analytically or numerically, and the intensity, JT-Xs) j 

could be found exactly. However, in most problems the source 

function is known only as a function of the intensity itself and 

equation (1-7) becomes an integral equation for the intensity.

It is not uncommon for the source function to be a function of the & 

integral of the intensity as well as the intensity, in which case 

equation (1-5) is an integro-differential equation. Both equations:^ 

(1-5) and (1-7) are far from easy to solve even in the most 

simplified physical contexts. Before giving details of the various 5 

methods available for the solution of these'equations we shall 

adapt equation (1-5) to the two geometries that will be considered 

in the later chapters of the thesis.

Firstly, we consider the equation of transfer in a plane- 

parallel atmosphere, for which rectangular cartesian co-ordinates 

are the most suitable. The intensity will, in general, be a 

function of three position co-ordinates, (x,y,z ), and two direction 

co-ordinates. However, in most problems and in particular, the
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problems tackled in this thesis, the intensity will not be a 

function of the position co-ordinates, (x, y), because the 

incident radiation on the (x.y ) plane will always be uniform 

and the atmospheric parameters will be assumed to remain constant 

throughout each layer parallel to the surface of the atmosphere. 

The effect of lateral inhomogeneity in plane-parallel atmospheres 

has been considered by Wilson (1963), and the scattering problem 

for a searchlight beam, which is an example of non-uniform 

incident radiation, has been considered by Rybicki (1971).

The remaining position variable, z, is defined as the distance 

along a line normal to the surface of the atmosphere, measured

. positively outwards from the surface. The radiative transfer

is considered to take place along a line set at an angle, 0 , 

to this axis and at an azimuthal angle, $ , to some arbitary 

azimuthal direction. These geometrical parameters are shown in 

Fig. 1. In keeping with standard procedure we define

jj. - cos 0. (1-8)’

Thus the equation of transfer for a plane-parallel atmosphere

becomes .

Secondly, we consider the equation of transfer in a spherical 

atmosphere, for which spherical polar co-ordinates are the most 

suitable. In the majority of the problems considered in the 

later part of the thesis, all the radiation fields are axially 

symmetric. Consequently, we can assume the atmosphere to be

„ , ,, r... -I.. -.1-. J -■•.’J­-- ■- i--xs—•   .... • •
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homogenous throughout each spherical shell centred on the origin, 

so that we have complete spherical symmetry. In this case the 

intensity is a function of the radial co-ordinate, r , and the 

direction co-ordinate, 6 , only. Fig. 2 shows the co-ordinate t;

system of the axially symmetric spherical atmosphere and Fig. 3
I

shows the construction of the geometry around point P, suitably 

enlarged. The s-direction is the line along which we consider -I 

the radiative transfer to take place and the distance, R , is 

the radius of the outer surface of the atmosphere. Again we 

use equation (1-8). The distance along s is a function of r and * 

(i so that the total differential of s is

A « .

cts 3 s ds

It is clear that 

is equal to -dd. 

and hence

dr - ots. Cos 6 ~ 

Therefore we write

A
and that the angle POP 

— r = ots. Sua 0

J. ~ ( 1 ~ f*2)

ds dr r dp

so that the equation of transfer in a spherically symmetric 

atmosphere'is

3K> (y, p) -+• (, t - p*) d T-v fr,^) (1-10)

r

- -fcv p [ (r, ja) - («-. r)].
rr



11

2. Solutions for the Source Function

The source function is, in general, a function of the 

intensity of the radiation field so that a solution of the 

equation of transfer in either its differential equation, (1-5) 

or integral equation, (1-7), form is a very difficult problem. 

Furthermore, the source function is often a function of the 

mean intensity of the radiation field which is denoted by J (z) 

and is defined by equation (1-11). Equation (1-11) also 

defines two other quantities that are frequently encountered 

in radiative transfer studies, namely Iiv(z) and K^(z).

X (x) -

0 -I

i
1
1]
I

$
I

J's

4ir +»
K/*) - J_ j J' f , /) . (I-li)

a r-J

These three quantities are the first three direction moments 

of the intensity. The equation of transfer has been used most 

extensively in plane-parallel atmospheres so we shall outline a 

number of the methods available for its solution in plane-parallel 

geometry and then discuss the extension of these methods to 

spherical geometry.

• It will be convenient to introduce the variable, Tv , which 

is the optical depth. It is the optical distance measured from 

the surface of an atmosphere along the negative z-axis, and by 

analogy with equation (1-6) is defined by

ci.« - kv yO ; ~ (1-12)
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It will also be convenient to omit the subscript 1? from all

symbols used in this and the following section so that the

symbols refer to the monochromatic quantities or the integrated

quantities. The matter of their frequency dependence will be I
5 £

the subject of Section 1.4, Hence equation (1-^) becomes If

otl (i-i3) |

ckt }

When the source function includes the moments of the 4

intensity as defined by equation (1-11), the equation of transfer
-■ <4'

becomes an integro-differential equation involving the variables 

•fc , p and o The earliest methods of solution of this equation
1

involve the replacement of the intensity of the radiation field, 

which is an unknown function of direction by an approximate ^1

one of simple angular dependence, and thus reduce the integro- 

differential equation, (1-13), to one or more ordinary I

differential equations for directional independent quantities.

The first of these methods is the Schuster-Schwarzchild two- |

stream approximation. The total radiation field is replaced by j 

a radiation field in the direction, p = +1, whose intensity is 

equal to the mean intensity of the radiation in the hemisphere,
J

p > 0, and another appropriately defined radiation field In the 

other hemisphere,, The equation of transfer is formulated for *

these two radiation fields independently and the two resulting 

differential equations, which are usually elementary, are solved 

by standard mathematical techniques. Details of this and the -1

other methods mentioned here are available in the standard

reference texts.



A similar approximate method is that due to Eddington. The 

intensity is assumed to be isotropic and equal to I„ in the 

hemisphere, p > 0, and isotropic and equal to IA in the 

hemisphere, p < 0. This representation of the intensity, 

together with the equations (1-11), gives the relation

KCx) - (.1/1) rc-c), (1-14)

which is known as Eddington’s approximation. It is clear from 

its construction that it is an exact relation Tor an isotropic 

radiation field. The integral operators, Ec and L, 9 defined as

■ l. ’ w J J ;

iv + <

l, yy • (i is)

0 -(

are applied to equation (1-13) and produce two coupled ordinary 

differential equations that can be solved by using the relation 

(1-14). The approximate intensity representation also yields 

an approximate boundary condition. If there is no radiation 

incident upon the surface of the atmosphere then 1^ is zero and 

we obtain the relation

T(°) - 2. H(°) , (1-16)

which is known as .the Eddingfon. approximate boundary condition., 

Eddington approximation is more general than the two-stream 

approximation. As shown by Woolley and Stibbs (1953) equation
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(1-14) is exactly true when the intensity can be represented by 

a series expansion of Legendre polynomials of argument, p,, 

provided that the term involving Px(p,) is excluded. Thus the 

Eddington approximation is valid for quite anisotropic radiation 

fields. However, the approximate boundary condition is true 

only when there is no incident radiation on the surface and when 

the emergent radiation is isotropic.

A third method involving an, approximation for the angular 

dependence of the intensity is due to Chandrasekhar (1960).

The intensity is considered to be 2n streams in the directions 

given by the abscissae of the Gaussian mechanical quadrature. 

These abscissae are, in fact, the zeros of the Legendre 

polynomial PAn (p,)o fhe mean intensity can therefore be 

represented by

T(-k) = £ ZZ
(1-17)

J*"1
T ‘

where dj and pj are the weights and abscissae of the Gaussian 

mechanical quadrature of order n j and the equation of transfer 

can be replaced by the system for 2 n coupled linear differential 

equations

llt illv.Jil) = i.'f.J'i') J L=il,+2,...±n. (1-18)
‘ A

When n is unity this approximation reduces to a two-stream 

approximation that is very similar to the Schuster-Schwarzchild 

approximation. The higher the value of n the better the 

approximation but the more difficult the solution because there 

are always 2 n differential equations. Details of the solution
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of such sets of equations for a variety of problems have been 

described by Chandrasekhar.

The discrete ordinate method described above is essentially 

a generalization of the two-stream approximation to a 2 n -stream 

approximation. The Eddington approximation has been generalized
i

in a similar way by Huang (1968). In the Eddington approximation.; 

the radiation field is assumed to be constant over two hemispheres 

so that the generalized method assumes it to be constant over 

smaller ranges of direction, the number of these ranges giving 

half the order of the approximation. The advantage in this 

method over the discrete ordinate method lies in the low order 

approximations when its advantage is of the same nature and 

magnitude as that of the Eddington approximation over the two-streaii 

approximation <,

Equations (1-7) and (I-11) combine to form 

• r*r
= i W E(k-tl) it, (1-19)

provided that 1(0) = 0, as is invariably the case. The functions 

En(t) are the exponential integral functions, details of which are 

given in the Appendix; and is the total optical thickness of 

the atmosphere. This equation is frequently referred to as 

Milne1s first integral equation and details of Its construction 

are given in Section II.4. It is often written in the form

J

T(-v) = A. { 'btt'll ,

where Ajp)j - | J r,(k-tndEt‘Vo

(1-20)

.A.,-,;.!. \
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The operator, /\, [pt)j is known as the lambda operator.

In a great many problems the source function can be expressed by

Bf'K) - TCx) + T, b)

in which case the following integral equation can be derived from 

equation (1-20).

3(0 - A.J Mt)} + Xk) . (1-21)

Such an equation exists when the source function is isotropic. 

However, when the source function is anisotropic equation (1-21) 

takes the form

+r -n
Bf'V.p = 7 J J* fy , /-') (1-22)

-f o

where = e'‘*/r/lfl, (x/(<>o); = 0 , ( X/p < 0 ).

The solution of this equation, or its simpler form, (1-21), is 

shown by Busbridge (1960) to be the Neumann series solution.

That is
oO <r°

s(-v.m) - Z - E x„(x),

(1-23)

where KW = A.fxJt)}

and the lambda -operator is defined by equation (1-20) or, more 

generally, by the integral part of equation (1-22), which must
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be evaluated numerically. Van de Hulst (1948) has shown that 

this solution represents the sum of the contributions to the 

radiation field from light scattered n times, and that the source 

function for the light scattered n times is given by one lambda 

operation upon the source function for the light scattered n-1 

times. The quantity J, (*t) is taken to be the source function 

for the light that is not scattered at all. This method of 

solution has been used by Irvine (1968a) who performed the lambda 

operation by use of a double numerical integration scheme for each 

value of n • The exactness of the method is determined by the 

accuracy of the numerical computations and the number of terms 

used for the series of lambda operations. The number of terms 

required for convergence to an accurate solution was found to be 

small for optically thin atmospheres but too large to render the 

method practicable for optically thick atmospheres because light 

is scattered a large number of times in optically thick atmospheres 

and each term in the series represents the contribution from each 

order of scattering. However, Hansen (1969a) has developed a

method due to Van de Hulst whereby the exact solution for multiple

scattering problems in optically thick atmospheres can be obtained.

This method involves the numerical evaluation of reflection and 

transmission functions for an atmosphere of optical thickness 

2 'to from the same functions for an atmosphere of optical thickness 

fo . This is known as the doubling method, and results for 

optically thick atmospheres can be obtained fairly rapidly from the 

results for optically thin atmospheres which have been found by the 

Neumann series method. The relative speed and accuracy of this 

doubling method has been established by Irvine (1968a) and by 

Hansen (1969b), The lambda operator can be used in a slightly
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.1
different way that gives rise to a series of methods that are 

frequently known as iterative methods. These are particularly 

useful when the source function is independent of direction and 

the analytical form of the lambda operator can be used. We 

have seen that successive applications of the lambda operator on 

CH yields the Neumann series solution which converges to the exact 

solution, but only does so at any practicable rate when the 

atmosphere is optically thin. If an approximate solution is 

inserted into equation (1-21) another iterative series is obtained.’ 

The solutions obtained by the two-stream and Eddington approximations

are ideal for this purpose and are frequently used. The initial 

approximation is now quite good so the series converges rapidly 

even for optically thick atmospheres. However, it does not 

necessarily converge to the exact solution. The reason behind

the poor convergence of the Neumann series is that the initial 

approximation, J, (^t) is not close to the final solution in cases 

where multiple scattering is important. However, in the iteration! 

methods based on approximate solutions a complete analytical 

solution is never possible. Even when the initial approximation 

is of a very simple analytical form, the lambda operator, by

a

virtue of the exponential integral function will never yield 

analytical solutions simple enough to be iterated analytically 

a second time. Thus, numerical integration techniques must be 

employed for second and subsequent lambda iterations. For 

stellar atmosphere problems dealing with conservative isotropic 

’’scattering” and constant net flux Kourganoff (1952) indicates 

that lambda iterations on the source function found by using 

Eddington’s approximation, converge to the exact source function 

as the number of iterations tends to infinity. The lambda

a
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iteration, method is also discussed by Mihcllas (1970) in

relation to stellar atmosphere problems. He points out that 

a constant error in the approximate solution is halved at the 

surface but unchanged deep inside the atmosphere, by one 

application of the lambda operator. A lambda operator improves 

the solution at the boundary but leaves it unchanged at large 

distances away from the surface so that a very great number of 

iterations is needed to improve the solution deep inside the 

atmosphere. Thus it is expedient to select an approximation 

that is best deep in the atmosphere, though perhaps weak near the 

surface. Such an approximation is the Eddington approximation, 

and the improvement in its solution for stellar limb darkening 

has been demonstrated by Mihilas.

Several variations on the lambda iteration technique are 

discussed by Kourganoff (1952), who also discussed another class 

of methods known as variational methods. These are also outlined 

by Sobolev (1963). The principle of these methods is as follows. 

A functional is created which takes an extreme value when the 

exact solution of the equation to be solved is inserted into it. 

If, for example, the equation to be solved is

oO

Bf-v) = i f B(fc1 E-.Ot-ti) dt,

then a suitable functional is

cr . ( [ $(*)/F~ l] A.

0

The equation to be solved is Milne’s first integral equation.

It is known that when that is satisfied then so is Milne’s second
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i
integral equation, which is 4

*° Q; "**
F* 2-f 6(0 E.(t-x) at - 2. f 'B(t) EJr-fc)Xt. 1

0 ,
•O , 5

Writing $ ('t) - £ j" (t-- 1 f 'R(fc) ETatt-fcltftfc, |

r i

the functional, cr , will become zero when = F. This will
- £

occur when the source function, B(t)? in Milne’s second integral 

equation is the exact solution because the functional, <r , will
5-

be greater than zero when the source function is not the correct 

one. The source function is expressed as a series of n suitably
I

chosen functions with arbitrary coefficients. The functional 

is thus a function of these coefficients and is made to approach 

zero by adjusting them in an appropriate manner. The series for 

B(x) which gives a minimum value for <r is the best that can be 

found for that particular set of functions. The variational ;

method has its greatest advantage when the equation to be solved 

is relatively straightforward and when a functional can be chosen 

that can be evaluated analytically. This is made possible 

through the choice of the arbitrary functions. Numerical work 

is involved only in minimising the functional, though this too could 

be analytical;for very simple arbitrary functions. The method 

has proved very useful in work on stellar atmospheres but an 

equation such as (I~22) would require numerical integration to 

find the functional as well as numerical processes to minimise it.

It would seem that the Neumann series solution with doubling is a 

better method than the variational method as it requires no more 

numerical calculations and yet provides the exact solution which

the variational method does not. The accuracy of the variational
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method has been discussed by Kourganoff (1952) who concludes 

that the solutions converge rapidly as n increases, even for 

small values of n . As in the Eddington approximation the 

deviation from the exact solution is greatest near the surface, 

so the solution is ideally suited for a lambda iteration, which 

is usually possible analytically as the chosen functions are 

usually simple, Kourganoff has shown that the iterated 

variational solution for n = 6 is very close indeed to the exact 

solution for the grey stellar atmosphere problem.

The advances in computational techniques made during recent 

years have stimulated the development of a large number of 

methods of solution of the equation of transfer that are 

essentially numerical in character. They are based on the 

numerical solution of the equation of transfer written in a 

slightly more amenable form, and have arisen in connexion with 

stellar atmosphere problems. Several are detailed by Mihilas 

(1970). Their main advantage is that they are capable of 

dealing with problems too complex to be dealt with by the other 

methods. For example, they can cope with the sets of equations 

that result when the frequency dependence of radiative transfer 

is taken into account. These sets of equations are usually 

interdependent and strongly coupled. This class of methods 

fall into two categories: those favouring a solution from the 

integral equation form of the equation of transfer and those 

favouring a solution from the differential equation form.

Of the former type, one method is due to Kurucz (1969) which 

involves the replacement of the integral in the lajnbda-operator 

by the sum of integrals over a set of discrete depth intervals 

and the source function within each depth interval by a quadratic 

interpolation formula. These integrals are then solved
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analytically as they are of a simple form and yield a set of 

linear algebraic equations -for the source function values in 

each of the depth intervals, which are solved numerically.

The approximation involves the use of the interpolation 

coefficients and the set of discrete source function values, 

but this can be made minimal by extending the number of 

numerical divisions in the problem.

When considered as an integro-differential equation the 

equation of transfer involves an integral of the intensity over 

all directions. Chandrasekhar 1s discrete ordinate method 

involved the replacement of this integral by a Gaussian

quadrature sum and the replacement of the integro-differential 

equation by a set of 2n coupled ordinary differential equations. 

The analytical solution of these equations is difficult for all 

but small values of n and even then possible for certain problems 

only. With the aid of numerical techniques the 2n coupled 

differential equations could be solved exactly. However, the 

boundary conditions that are associated with the vast majority 

of problems in radiative transfer are such that one boundary 

condition needs to be applied at the upper surface of the 

atmosphere and the other at the lower surface of the atmosphere 

which is infinity if the atmosphere is semi-infinite. This two- 

point boundary condition makes the numerical solution of the set 

of differential equations very much more difficult, and

consequently, various techniques that attempt to surmount this 

difficulty have been proposed. Two such techniques are outlined 

by Mihilas (1970). The first involves a Riccati transformation

and was introduced by Rybicki (1965). The 2n differential
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equations are written as two matrix differential equations, one 

for the outward intensities, p, > 0, and the other for the inward 

intensities, p, < 0. When the vector representing the outgoing 

intensities is represented by a matrix operating on the vector 

representing the incoming intensities plus an auxilliary vector, 

the first matrix differential equation can be transformed into 

two simultaneous initial value matrix differential equations.

As these have initial value boundary conditions they can be 

integrated numerically without any serious difficulty and 

consequently the whole intensity distribution can be determined.

The second method is due to Eeautrier (1964) and involves 

the replacement of the differential operators in the equation of 

transfer by difference operators. This is accomplished by 

substituting a set of depth points for the continuous depth 

variable. The set of differential equations are thus reduced to 

a set of matrix equations for which the two~point boundary 

condition presents no problem. They are solved numerically.

The advantage of these modern numerical methods lies in their 

flexibility. Initially they proceed along the same lines as 

the discrete ordinate method to form the set of 2 n differential 

equations, but whereas the older methods were.unable to cope with 

the more complex problems involving the interlocking of various 

radiation fields, these numerical methods can deal with such 

problems with no drastic change in the theory. This great 

flexibility arises from the introduction of sets of discrete 

angle, depth and frequency points. However, it also means that 

large amounts of computer time are required, particularly in the 

case of the non-grey, non-coherent, non-LTB problems of stellar 

atmospheres. In order to reduce this large computation time,
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a method has been developed by Auer and Mihilas (1970) for

use in complex model non-LTE stellar atmosphere calculations,

and which involves the use of an Eddington-like approximation

tor the angular dependence ot the intensity instead ot a set

ot discrete direction points. The Eddington approximation,

equation (1-14), can be written as ET("t) - f('t) CT('t) }

where ~ . Atter solving tor the source function

using this approximation and then tor the intensity using 

Feautrier’s method, Au.er and Mihilas calculated the quantities

Cf('fc') , K'('t) and the new function, fCt) . They then repeated

the process as an iteration scheme and tound that the solutions 

converged after two or three iterations. The Eddington boundary 

condition written in the form, J EK°) , was also used in the 7

iteration process. It was found that this iteration scheme was 

much faster than the equivalent method of using a high order angle i 

quadrature for the initial approximation which results in the 

solution of large number of differential equations. Moreover, 

the Eddington approximation itself was found to give good results ) 

for most of the spectrum of the emergent stellar radiation.

The advantage of these numerical methods lies in their ability 

to cope with complex physical problems. Their use has been 

developed in stellar atmosphere studies but problems on planetary 

atmospheres are less complex in that the radiative transfer treatment 

seldom concerns frequency interdependence. The great advantage 

of-the numerical techniques is therefore almost nullified so that 

planetary atmosphere work has retained the simpler methods 

outlined earlier. Irvine (1968b) and Kawata and Irvine (1970) 

have compared several of the methods available for the study of 

multiple scattering in planetary atmospheres. They used the
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doubling method based on the Neumann series solution for optically 

thin atmospheres and compared its results for the total albedo 

of the atmosphere with those obtained by Romanova’s method, (1962) 

the Eddington approximation, the two-stream approximation and a 

modified version of the two-stream approximation as developed 

by Sagan and Pollock (1967). The total albedo of the atmosphere 

is defined as the ratio of the reflected flux to the incident

flux; and all calculations were performed for scattering that 

was strongly peaked in the forward directiono Romanova’s 

method is one in which highly anisotropic scattering is accounted 

for in an approximate way so that computing time may be saved; 

and Irvine did find this to be true and satisfactorily accurate. 

The accuracy of the other approximate methods was seen to vary 

from situation to situation. In general, the Eddington 

approximation was the most accurate for isotropic scattering 

and fairly good for most angles of incidence. However, for 

forward scattering with considerable absorption in thin 

atmospheres it was found to be rather poor; the two-stream 

giving the best results. Consequently, the Eddington 

approximation was found to be the best of approximate methods 

overall, and it was found to be most accurate for conservative 

isotropic scattering and normal incidence in thick atmospheres.

The final class of methods to be mentioned here do not 

find the source function by solving the equation of transfer 

directly but find it from the solution of an equation for the 

intensity of the radiation which is based on another physical 

concept. Chandrasekhar (1960) has developed exact solutions 

for the emergent radiation from a plane-parallel atmosphere by 

means of principles of invariance. These were first introduced
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by Ambartzumian (1943). In a series of papers, Bellmann et al 

have extended these ideas to develop theories based on the 

Principle of Invariant Imbedding. This principle is stated by 

Bellmann and Kalaba (1956) as follows. ’’Given a system, S, 

whose state at a time, t, is specified by a state-vector, x , 

we consider a process which consists of a family of 

transformations applied to the state-vector. Suitably 

enlarging the dimension of the original vector by means of 

additional components, the state-vectors are made elements of a 

space which is mapped into itself by the family of transformations.: 

In this way we obtain an invariant process by imbedding the 

original process within the new family of processes. The 

functional equations governing the new process are the analytical 

expression of this invariance”. The method involves adding an 

amount, A x , to a linear dimension, x } and writing down an 

expression, for example, the reflection at the point, x -t-^x ? >

in terms of the reflection at the point, x , plus first order 

processes within Ax. As Ax is allowed to approach zero, an 

■ equation for the reflection function, is '.found. This can be solved 

numerically and is more general than the results from, the 

principle of invariance itself. Moreover, it can be applied to 

source functions within the medium whereas methods derived from 

the principle of invariance cannot. Essentially, the method Is 

based on differentiation with respect to the total thickness of 

the atmosphere and physically means the building up of the 

atmosphere by the successive addition of very thin layers.

However, as noted by Van de Hulst and Grossman (1968), it 

progresses very slowly, as does the Neumann series solution.

Hence it is better to use the doubling method where possible.
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These methods based on the principle of invariant imbedding are 

very flexible but involve the numerical solution of complex 

integral equations. Similar function equations have been derived; 

using probability functions, as proposed by Sobolev (1963).

The methods outlined here range from the type where a simple x 

physical approximation permits an analytical solution, to the 

type where the whole problem is solved numerically, using a 

computer. The general advantage of the former is simplicity 

and of the latter, flexibility together with the ability to cope 

with complex problems. The best method for a particular problem 

clearly depends on the nature of that particular problem and on 

the purpose of the required solution. The selection of the 

method to be used in this work will be discussed later, in Section

1.7.

Methods of solution for the source function in spherical 

geometry:- The introduction of spherical geometry into radiative 

transfer problems arose from the failure of the plane-parallel 

approximation in certain cases where the curvature of the

atmosphere could not be neglected. For problems in normal stellar 

atmospheres the plane-parallel approximation is satisfactory.

The earliest problems to use spherical geometry were those in 

stellar interiors and extended stellar envelopes, and it was not 

long before planetary nebula and interstellar cloud problems were 

formulated in spherical geometry. Most problems in sphericaJ. 

geometry have enjoyed complete spherical symmetry and most have 

involved a central source, either as a point source, as in 

planetary nebulae or as a diffuse field of specified outward flux 

incident on the inner surface of a spherical shell.
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The methods that have been applied to these problems are 

varied, as were those used for plane-parallel atmospheres. Huang 

(1969b) has used the Eddington approximation in circumstellar 

envelope problems, and Underhill (1948) has used the second 

approximation of the discrete ordinate method in studies of line 

absorption in extended stellar atmospheres. Both these methods 

are of the class that use simple approximations. For a simpler 

problem in planetary nebulae, the more complex spherical harmonic 

method has been used by Se n . (1949) and the half-range spherical 

harmonic method has also been applied to planetary nebulae and 

extended stellar atmospheres by Wilson and Sen (1965,a,b).

An important paper by Chapman (1966) is concerned with the use of 

an iterative procedure, based on the Eddington approximation, 

and equivalent to the lambda-iteration method of plane-parallel 

atmospheres. The particular atmosphere that he studied was a 

spherical shell surrounding a black-body core. This method 

provided results for the intensity, as well as the moments of the 

intensity, and it was found that the radiation was strongly peaked 

along an outward radial direction; so strongly, in fact, that the * 

ratio, K/J was closer to unity than to one third. Chapman then 

accounted for this in a somewhat empirical manner. However, this 

peaking of the radiation field stimulated a numerical method, 

proposed by Hummer and Rybicki (1971) for conservative isotropic 

scattering and extended by Cassinelli and Hummer (1971) for non­

conservative scattering. The method involves an iterative 

procedure whereby the ratio, K/J , known as the Eddington factor 

and designated, , is ascribed an assumed form as a function of

optical depth. The equation of transfer is then integrated

numerically to find the mean intensity and the source function,
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from which the intensity is recalculated by Eeautrier's

technique (1964). The function /fe) is then recalculated and 7

the procedure repeated. Iterative procedures such as those of
0

Hummer and Rybicki and Chapman do not strictly adhere to the .1

flux integral which can be solved exactly in conservative problems;;

This was noted by Wilson, Tung and Sen (1972) who also show that iS
-xS• -the half-range spherical harmonic method automatically takes into
S

account any peaking of the radiation field. Nevertheless, the 

departures of the flux from the correct fluxes in the iterative 

methods are very small.

The only methods that have been applied to complex, non­

conservative, anistropic scattering problems are those that 

involve the principle of invariant imbedding and those of a 

probabilistic nature. Such methods are very general and can be 

applied to problems in any geometry without any new difficulty.

Leong and Sen (1969) have applied the probabilistic model to a 

spherical cloud with a central source. The methods of this type 

also have a straightforward application to problems with external 

sources. For example, U'esugi and Tsujita (1969) have considered 

a spherical atmosphere illuminated by a searchlight beam and 

Bellman, Kagiwada, Kalaba and Ueno (1969) have dealt with 

illumination by a crovm of rays. However many of the integral 

equations derived by these methods are still awaiting numerical 

techniques suitable for their solution. Monte Carlo techniques 

are readily applicable to very complex geometrical situations, 

and Mattilla (1970) has studied scattering by an externally 

illuminated spherical cloud using such techniques. Nevertheless, 

it is in this range of problems in which the illumination is 

external, for which the least amount of information is available
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and all the problems considered in this thesis involve externally 

illuminated atmospheres.

It is natural to enquire into the possibility of replacing «' 

a spherical atmosphere by an equivalent plane-parallel atmosphere. 

Several authors have shown that this is possible in problems for 

which the integral equations of radiative transfer take the same 

form in each geometry. Gruschinske and Ueno (1970) have used 

such a technique to give exact numerical results for various 

problems by using the invariant imbedding approach. However,

Minin (1964) has shown that this similarity between the two 

geometries is only present for isotropic scattering problems so 

that methods involving geometrical transformations are limited in 

their applicability. The selection of the method that we shall 

adopt for use in this thesis will be delayed until the general "

discussion in Section 1.7.

3. Isotropic and Anisotropic Scattering

The absorption coefficient was defined in Section 1.1 by 

equation (1-2) and it was stated there that this equation defined 

the total absorption or extinction coefficient per unit mass of the 

medium. The equation merely states that the loss of intensity 

from a radiation field passing through a medium is proportional 

to the intensity of the radiation and the distance traversed in 

the medium, provided the distance is infinitesimal so that the 

intensity and physical nature of the -medium remain constant over

that distance. It was also stated that this loss was due to 

absorption or scattering, or a combination of both. When the loss 

is due to absorption only, the extinction coefficient is written,

, and referred to as the absorption coefficient It replaces
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kv in equation (1-2). Similarly, when the loss is due to 

scattering only, the extinction coefficient is written, cr^ , 

and referred to as the scattering coefficient. The linearity 

of these phenomena is evident from the definitions and requires 

that = Kv + cr> when both absorption and scattering are

present. We define to be the albedo for single scattering of 

radiation of frequency i) , such that

crv / ( Kv 4- ot*) .OJ (1-24)

The albedo is thus the fraction of the intensity lost to the pencil^ 
of radiation that is lost by asingle scattering process. |

Alternatively, it can be said that the albedo for single scattering 

is the probability that a photon lost to the radiation field will 

re-emerge as a scattered photon.

The scattered radiation will not necessarily be scattered in 

the same direction as the incident radiation, nor will it 

necessarily be scattered equally in all directions, but will be 

scattered as a function of the angle between the directions of the 

incident and scattered radiation. If this angle is © , the

function governing the directional dependence of the scattering is 

written, ©) , and known as the phase function for single

scattering. It must be normalized so that the radiation scattered 

in all directions is given by the albedo. Thus, we have

C ©) Jp' CO - U>

w
(1-25)

where is the differential element of solid angle and the

integral is over all solid angles. The phase function for

lJ. zdis:/-'* ...7.,.-. ..
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isotropic scattering is, ; and another commonly

used phase function, Rayleigh’s phase function, is

p9(©1 - 3 (t -* CoS2-®).

This is an example of a conservative scattering phase function and 

it is accordingly normalized to unity.

A general phase function is frequently described by a series 

expansion of Legendre polynomials

<BO
p(©) = E "tLftoS©). (1-26)

» 1-- o

We have omitted any frequency subscripts for clarity. The 

frequency dependence of these and other quantities will be 

discussed in the following section. In our co-ordinate systems 

directions are specified by the two co-ordinates, p and / . With 

primed quantities referring to the incident direction of the 

radiation and unprimed quantities to the emergent direction of the 

scattered radiation, equation (1-26) becomes

co

On expanding this by means of the addition theorem for spherical

harmonics, we find

[?( JS p") --- ZZ +

+ 2. IZ (Ga ) ( b') Co*s I

J
(1-27)
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This general phase function is only tractable Tor certain oT the 

methods oT solution oT the transfer equation outlined in the 

preceding section. In Tact, it cannot be used in the method 

that will be employed in Chapter II Tor the study oT the 

radiative heating of plane-parallel atmospheres. It has already 

been stated that the problems in spherical geometry will involve 

axially symmetric radiation Tields, which means that the radiation 

Tields are independent oT azimuth„ Consequently, the phase 

Tunction may be integrated over azimuth before introducing it 

into the theory oT the problem at hand. This integration over 

azimuth results in a great simpliTication oT equation (1-27).

Hence

J.. pq, 
2ir

H )K^f) , (1-28)

0

Tor axially symmetric radiation Tields. This general phase 

Tunction, (1-26) is normalized by use oT equations (1-27) and 

(1-25) to yreld as its albedo.

For many real atmospheres, phase functions are highly 

anisotropic. The atmospheres are Trequently assumed to consist 

oT spherical dielectric particles whose radius is oT the order oT 

4 jjl. The Mie theory oT scattering Is applicable to such particle 

and this theory always produces phase functions that have strong 

Torward peaks and, to a lesser extent, backward peaks. Potter 

(1970) uses such a phase function Tor scattering in the atmosphere 

oT Venuso The Torward peak is suTTiciently strong and narrow 

that Potter approximates the real Tunction by truncating it and

adding a delta-Tunction spike in the Torward direction. He 

considers the radiation scattered into the spike not to be
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scattered at all and alters the albedo and total thickness of >i
3

the atmosphere accordingly. Most treatments of complex phase 

functions involve their expansion as series such as that of 

equation (1-26). When strong forward scattering is present 

a large number of terms are needed to make the series expansion 

accurate. Such a large number of terms results in excessive 

computation time. However, this computation time is drastically ‘ 

reduced by the use of the delta-function approximation, whereby 

a 350 term expansion can be reduced to a 50 term expansion.

Potter *s results using the approximate phase functions agree to 

within one percent of those obtained by using the real phase 

functions except in cases where the radiation incident on the 

atmosphere is incident at a grazing angle and where the radiation 

emerging from the atmosphere is normal to or grazing the surface 

of the atmosphere. The general conclusion of his work is that 

a delta-function approximation for a sharp peak in a phase 

function is a good and valuable approximation.

The phase functions used in the study of planetary atmospheres 

do not differ greatly from the isotropic phase function once the 

two peaks are accounted for by delta-functions. As the delta- 

function approximation as described above has been found to be 

good, it is reasonable to postulate a schematic phase function 

consisting of an isotropically scattering part and two delta- 

function spikes, one forward and the other backward. Defining, 

to as the albedo, ay .the fraction of the scattered radiation that 

is scattered,/into the’spikes, and (3, the fraction of the 

radiation scattered into the spikes that is scattered into the 

forward spike, the normalized schematic phase function is
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p( j-s ~ S(p~p') S^“^') -t

+ (t-^) SCptj*') s ( <j> - c/' -IT)
!}•

(1-29)

The azimuthally independent form of this phase function suitable 

for axially symmetric radiation fields is

pfr > r' + p/)] j, .0 t (i~yS)) = w (1-30)

Three important special cases of equations (1-29) and (1-30) are; 

(1) a = 1, which corresponds to isotropic scattering; (2) a. = 0, 

{3 = 1 which corresponds to scattering into the forward spike 

only; and (3) a = 0, (3=0 which corresponds to the physically 

unrealistic case of scattering into the backward spike only.

The second case can be considered to be one of no scattering 

provided that optical depth scale is suitably adjusted,,

Phase functions are commonly described by two parameters, 

the albedo, io , and the asymmetry parameter, g . The asymmetry 

parameter is a measure of the forward throwing nature of the 

phase function and is defined as

_[
2

+i

Cos© cos © , I) (1-31)3 = iCoS© .

Thus, for the schematic phase function given by equation (1-30)

we have .

W (l-et) (2£-l)3 = (1-32)

and for the general phase function given by equation (1-26) we
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have

P.Ccos©) K PL(cos@) dcos(S)

l=o3

/V
0J, (1-33) I

Is it possible to construct a schematic phase function that 

exhibits the same properties as a general phase function? If 

not, what restrictions must be imposed on the phase function in 

order to make possible the representation of a general phase 

function by a schematic one? In most problems involving 

scattering, part or all the emission coefficient is given by the 

scattering of a radiation field,, For axially symmetric radiation 

fields this part of the emission coefficient is

Ji(s> = kp.i p (p } ^') I ) dj-d. (1-34)
'P z

4a
1

Consider first a phase function given by the general expansion, 

(1-26), the axially symmetric form of which is given by equation

(1-28). An arbitrary radiation field can be represented by a sum “5

of Legendre polynomials also;

1

L a„ kjp , (1-35)

1
so that Inserting equations (1-28) and (1-35) into equation (1-34), ?!

we have
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j6>(p= pJ Z E <uTUr’Ur'
-- c
y

= f^0 £ /C2/ + ').
(1-36)

Consider now the schematic phase function whose axially symmetric 

form is given by equation (1-30). The emission coefficient for 

scattering in this case is

J(s’ ( J*) - J_ J" <3 + 2- +

w
(l-^) S( |A +p')l. 5Z.

f/

Now, . Therefor<

jw(f)= kf> ) £«u„ -c aiU.-oc) £ [ (-0"(-/3')]a„X(r)l

w
= E K.'Ktp’l.

(1-37)

Equations (1-36) and (1-37) are of the same form and are identical 

if each pair of theN+1 coefficients are the same in the two series. 

Thus we can write N + 1 equations relating the three unknowns of 

the second series (<3 , , A ) to theN+1 unknowns of the first
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series, ( toL) „ These can only be solved when N=2, whence we 

have

and

Oo ~ CO M + WOo ( I- oO GJ Oo so that CO = bJ,

«,Ai/3e W <X, , so that Uy3-<)=£ ti, / 3 gjo(_ i-oQ f

£>i / 5 H to (j-vti&i , so that d - <5 Wj ) / 5 GJ.

,li "

Thus we can say that if an axially symmetric/radiation field can

be represented by the sum of three Legendre polynomials, then 

the real phase function can be replaced by a schematic one and

there will be no change in the radiation scattered from that
air­

field. A great many of the' 'radiation fields encountered inz

radiative transfer studies can be approximated fairly well by 

three Legendre polynomials, so the schematic phase function is 

a reasonable approximation. It is only when the radiation 

fields themselves become strongly peaked that there is a greater 

discrepancy between the results from the two phase functions.

A corollary of this result is that the schematic phase function

'4'

.1
produces • the same emission coefficient as a general phase function;

in an arbitrary axially symmetric radiation field if the phase

function can be expressed in terms of three Legendre polynomials. 

This result follows by terminating the series of equation (1-28) 

at term M and noting that the two series, equations (1-36) and 

(1-37) can be made identical if M equals two for any value of N 

as well as vice versa. There are considerable advantages in 

using the schematic phase function for it is relatively simple 

to include it m analytical work and long computational times will J

I
i

1
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not be required when numerical calculations are involved.

A further point that can be appropriately demonstrated at

this point will appear very important in our later work in the 

thesis. It applies to problems that have axially symmetric, 

radiation fields and is thus important in the theory of spherical 

atmospheres as developed in Chapter III. The integrals over 

angle, of the emission coefficient unweighted and weighted with p, 

are often needed. For the general phase function, the scattering 

emission coefficient is given by equation (1-34) and the phase 

function by equation (1-28). Thus

and

+«

(n.

+1 <■( 
C r

-t -i

4-1 +l

1(f) I

(1-38)

jfs> ( p)

i &r
J

*1 -(

(1-39)

The schematic phase function is given by equation (1-30) and the same 

two . quantities for this phase function are
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+i +i +i
f”(p Jp. - ± k jfl u + 2(i-«<) [ y3+

-1 -I

(i-p) S (.p+^') ] j dp,

~ k^w T, (1-40) ,,

and r j‘”(M pf

+< ftr
pT(p() & } d + 2(i-°<')

j•f -<

I yS S(f -(*') +('-/2) ttydp-

= fey, u(i-^ta^-i) M . k/qU (1-41)

Equations (1-38) to (1-41) show that the two phase functions give 

the same expressions for these quantities if theyhave the same 

albedo and the same asymmetry parameter. The other integrals 

in the series can also be found, The schematic phase function 

has only three arbitrary parameters so that only three pairs of 

integrals can be equated for the two phase functions. However, 

it will transpire that only the two integrals evaluated above 

will be needed in order to solve the equation of transfer.

This means that, under any restrictions imposed by the method, 

the solution of the equation of transfer will be independent of 

the phase function apart from the values of the albedo and the 

asymmetry parametero The significance of this will be examined 

later when the equation of transfer is solved for spherically 

symmetric atmospheres.

The relationship between anisotropic and isotropic scattering

.4

has been studied by a number of authors. Van de Hulst and Grossman-?’
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(1968) have reported the existence of similarity relations between ( 

plane-parallel atmospheres containing anisotropic scatterers and | 

similar atmospheres containing isotropic scatterers. The intensity! 

of the reflected radiation from a finite plane-parallel atmosphere 4 

containing anisotropic scatterers is very similar to that of the H 

radiation reflected from a plane-parallel atmosphere of different J 

total optical thickness containing isotropic scatterers of a >

different albedo. The similarity relations are simple relation- $
4

ships between the two optical thicknesses and the two albedos. h

It is interesting to note that they involve only the albedo and the £ 

asymmetry parameter of the phase function and that the exact

shape of the phase function does not affect the reflected radiation.^ 

This conclusion is virtually the same as those of the two preceding.^ 

paragraphs and emphasises the fact that the exact nature of the ?

phase function is not of vital importance to the results of

radiative transfer calculations. Hansen (1969b) has calculated

absorption line profiles for a cloudy atmosphere using an ’ "*
* $

expansion for the phase function and also using the similarity

• • • ' ■ relations. His conclusions are basically that, although T

anisotropy does affect the shape of the absorption line, that

shape is barely dependent on which of the two methods is used. These 

results show that the similarity relations are good, certainly In 

that context, and also that the asymmetry parameter is the most 

important phase function parameter after the albedo. The 

existence of the similarity relations, and their dependence on 

o and g only, gives support to the result that the solution of 

the equation of transfer for axially symmetric fields depends on < 

£> and g only; a result which might have appeared at first sight 

to be detrimental to the approximation that permitted the result.



Thus we conclude that these similarity relations together with |

. . . iPotter’s delta-function results provide a good rationale for the
1

use of the schematic phase function of equation (1-29). This
i

phase function can provide a full range of values of g from zero M 

to unity and is lacking complete generality only in the rest of 

its shape. Consequently, we shall not concern ourselves with 

phase functions more complex than the schematic one.

.3$

4. Grey and Non-grey Atmospheres 3

The general equation of transfer for plane-parallel atmospheres 1 

is equation (1-9) and this equation involves frequency dependent 

quantities. The frequency dependence of these quantities arises

from their definitions which are constructed to be as general as 

possible. This Sectioh is concerned with the nature of the frequency f 

dependence of these quantities and the manner in which it affects 

the equation of transfer. The discussion will be restricted to 

plane-parallel atmospheres but applies equally to atmospheres in 

any geometry. J

The source function at a particular frequency is, in general, 

dependent on the intensity of the radiation field at every other 

frequency and this is basically the reason for the extreme complexity 

of the frequency dependent problem. We shall consider two limiting-1 

cases for the source function. The first is that for an atmosphere 

in local thermodynamic equilibrium or LTE. In this case, an 

element of matter emits radiation with a spectrum that depends 

solely on its temperature, which in turn depends on the energy 

balance within the element of matter. This spectral distribution 

Is described by the Planck function, ; and the equation
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o£ transfer, (1-9) becomes

U dLAz) = - p [ Iv(x') - ,' 1 (1-42) j

where kv is "the frequency dependent absorption coefficient.

There is no scattering of the radiation in this case.

The other extreme case is that of an atmosphere whose 

emission is due to scattering only. Before formulating an 

expression for the source function it is necessary to define a 

function, w V, V ) 9 which describes the frequency dependence

of an act of scattering. Adopting the definition of such a 

function as given by Stibbs (1953), we say that P(v,v’) denotes 

the probability that the average atom in an assembly of absorbing 

atoms will emit radiation of frequency, v' , after an absorption 

has taken place in frequency y . This function is normalized 

to unity so that

J *P (v Jy ' - S .o
It follows from the definition of the phase function, the 

absorption coefficient and the emission coefficient that the 

emission coefficient for a scattering atmosphere is

(1-43)

(1-44)

p( f* i 0; f , </') x

where any radiation absorbed through the absorption coefficient,
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, is completely removed from the radiation field* The 

source function is given by j^7 ( X , p t ft ) / C Kv + cr»); 

and we thus see that the source function is a function of the 

intensity at every frequency.

We must consider first the special case of coherent 

scattering. Scattering is said to be coherent when the emitted 

radiation is of the same frequency as the incident radiation. 

This is expressed mathematically by the equation

p(v, V-) - S(v-v') , (1-45)

where is Dirac's delta-function which is normalized

to unity by definition. When inserting equation (1-45) into 

equation (1-44) for the emission coefficient, we obtain

<2tr + t

(z « (kv-<-^')_1_
J W

. (1-46)

Thus the equation of transfer for pure, non-conservative, coherent 

scattering in a plane-parallel atmosphere is

otT9 (z, jx , 0)

Az.

gir +< 
r c

_L
far J „

a -i
(1-47)

This equation of transfer . for radiation of frequency, y , 

is independent of the intensity of radiation at other frequencies. 

Consequently, problems involving coherent scattering only are
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relatively simple to solve in terms of the frequency dependence

of the scattered radiation.

In general, the source function is a combination of both 

extreme cases of emission and the problem becomes very much more 

complex. In line absorption in stellar atmospheres radiation 

is transferred by means of atomic and ionic electron transitions. 

This could be considered to be coherent scattering except for 

the many atomic collisions that exist because the density and 

temperature in stellar atmospheres are high. These have the 

effect of broadening the atomic energy levels and making the 

scattering non-coherent. This subject has received considerable 

attention, one review article, for example, is that by Spitzer 

(1944). However, our work is concerned with radiative transfer 

in planetary atmospheres and interstellar dust clouds. These 

media are much cooler than stellar atmospheres and are made up 

of much larger particles, which scatter radiation in a classical 

manner as described by the Mie theory. The subject of scattering 

by such particles has been covered in detail by Van de Hulst (1957) 

Mie scattering is always coherent so we shall consider all 

scattering in this thesis to be coherent as is standard procedure 

in studies of planetary atmospheres and interstellar dust clouds.

A different technique is required in order to simplify the 

equation of transfer of an atmosphere in LTE as given by equation 

(1-42). A commonly used approximation in this respect is that 

of the atmosphere being grey. An atmosphere is said to be grey 

when the absorption coefficients are independent of frequency.

The grey equation of transfer is found by integrating equation 

(1-42) over all frequencies and is
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«. = Kf> [iM - B(T)1 ,
di

where T(%) ~ L IvCzldV and B (t) - 

The quantity I(z.) is known as the integrated 

as the integrated Planck function which is a 

the temperature,

£(t) = 0-TVir ,

(1-48)

J. .

intensity and B (t ) 

simple function of

(1-49)

where cr is Stephan1s constant. The absorption coefficient, k , 

in equation (1-48) is the grey absorption coefficient. In 

practice, the absorption coefficient is not grey but a strongly 

frequency dependent quantity. Nevertheless, equation (1-48) is 

frequently used as the equation of transfer for the integrated 

intensity and k is taken to be a mean absorption coefficient 

suitably defined. This sounds simple but is quite complicated, 

even in the classical Milne problem. For equation (1-48) to be 

true with k representing a mean absorption coefficient It is 

necessary to have

K
o

f
*0

kv Tv Tv J 'B(v.'r') b /-gtr).

This relation cannot, of course, hold in general.

However, when the problem is concerned with an optically thin

atmosphere dominated by emission, the integrated Planck function 

is greater than the integrated intensity. Consequently, the

mean absorption coefficient may be taken to be equal to the Planck



47

mean absorption coefficient which is defined as j

CO

f<v (v ,"f j rfv / ^13 C~r). (1-50) %

For the other extreme of an optically thick atmosphere in which **

the temperature varies slowly with depth, the Rosseland mean %

absorption coefficient may be used, namely

3^6v,“r)j „ a<~> / f

2~r (1-51)

have been many attempts to formulate suitable mean 

coefficients for problems intermediate between the two

There

absorption

cases mentioned above. These frequently involve the intensity 7

of the radiation field which is the desired solution of the -t

equation of transfer. This in turn depends on the mean absorption - 

coefficient and the direct solution of the equation of transfer. 

Furthermore, as has been pointed out by Traugott (1968), mean #

absorption coefficients that involve the intensity itself will be 

functions of direction as well; and the equation of transfer will j 

be even more complicated than that given by equation (1-48).

Recently, Pomraning (1971) has suggested a new method of finding 3 

a suitable grey equation of transfer. The method involves a mean 1 

absorption coefficient defined by the asymptotic solution of the 

equation of transfer. The angular dependence of the mean absorption: 

coefficient so defined is accounted for by a process that involves 

the insertion of an extra term into the source function. This 

takes a form identical to a scattering source function. The major 

difficulty encountered in this method of forming a grey equation

of transfer is the construction of the asymptotic solution of the
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equation of transfer, which is fundamental to the definition of 

the mean absorption coefficient. Pomraning also suggeststhat 

such detailed consideration of the mean absorption coefficient 

is only necessary when the frequency variation of the absorption 

coefficient is rapid. Otherwise, any suitable mean absorption 

coefficient such as the Planck or Rosseland coefficient is quite 

adequate. Additional alternative treatments of non-grey stellar 

atmosphere problems have been discussed by Kourganoff (1952).

These involve iterative procedures starting from the solutions 

for the grey atmospheres. However, for our studies of planetary 

atmospheres and interstellar dust clouds it will be sufficient 

to consider them to be grey and to use a simple mean absorption 

coefficient.

In conclusion, it should be noted that the grey equation of 

transfer and the monochiromatic equation of transfer for coherent 

scattering are of the same form but refer to different quantities, 

namely the integrated and monochromatic intensities respectively. 

The latter is given by equation (1-47), while the Integrated 

emission coefficient for the coherent scattering atmosphere is the 

integral of equation (1-44) over all frequencies, which is

j's> Iz ) = ( K-s-CT^ j_ 

ifir

2xc +|

i f', 0'

Accordingly, we have
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p- Jl (2, p, /) 
di

air +1 
r r

1
Mr

- (k + cr)p I (z , , <f> ) -

pC ; |x" , cj>' ) J (x , ^') jy (X-52) 1

The solution of this equation is the same function of z as the 

solution of equation (1-47) for the monochromatic intensity.

As a consequence of this we can solve for the monochromatic intensity 

and obtain , the ..integrated , intensity by a suitable frequency 

integration. This solution for the integrated intensity will differ 

from the solution of equation (1-52). The reason for this 

difference is that the variation of the absorption coefficient 

with frequency will cause the radiation of different frequencies 

to be attenuated by different amounts after traversing the same 

geometrical distance. Thus, at any point in the atmosphere the 

integral of the intensity over frequency will not have the same 

value as the integrated intensity given by the solution of the grey 

equation of transfer. However, this discrepancy will be very 

small if the absorption coefficient is a slowly varying function 

of frequency. It is such a function in the planetary atmosphere 

and interstellar dust cloud problems so that we shall use the grey 

equation. We shall see later that this allows a complete 

analytical solution of the radiative heating problem. The 

monochromatic treatment would not allow such a solution, but would 

be preferable were a complete analytical solution impossible
d

due to other factors.

>.}

,..
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5o The Problem of Radiative Heating

It is well known that radiation in an enclosure surrounded 

by walls which are maintained at a constant temperature will be in I 

equilibr ium with the walls, and that the equilibrium distribution 

of the radiation, both as regards quantity and quality (wavelength)/ 

is fixed entirely by the temperature, T, of the walls. Such 

radiation is known as black-body radiation and is described by the ■ 

Planck function, B(>>,T) . Many of the properties of this black- £

body radiation have been discussed by Eddington (1926). Although 

black-body radiation can be in equilibrium with matter, and both 

the radiation and the matter can be described by the temperature, Tj$) 

a mixture of radiation of various wavelengths in arbitrary

proportions is not, in general, in equilibrium with matter at any

temperature and has no unique temperature. However, if it has 

the same total energy density as radiation of temperature, T, which | 

must be a black-body radiation, T is called its effective

temperature. Thus, an isotropic radiation field with arbitrary 

frequency variation of intensity, £„ , is ascribed an effective

temperature, T, given by

-T- *crT
7T

Tv d.v , (1-53)

where 0" is Stephan’s constant. The term, o-T^/tt is merely the 

integral of the Planck function B(T), as stated by Stefan’s law.

The temperature that a particle would adopt in such a radiation 

field has been discussed by Van de Hulst (1946), Eddington (1926), 

and by Fabry (1917). A black-body is said to absorb all radiation 

incident upon it and emit the same total energy, which by

Kirchhoff’s law is in the form of radiation described by Planck’s law
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Therefore, it will adopt a temperature equal to the effective 

temperature of the radiation field.

Real particles are not black-bodies but are particles that .fj
If

- .... have frequency dependent absorption efficiencies that are less 

than unity. The absorption efficiency of a particle is defined 

by Van de Hulst (1957) to be the ratio of its absorption cross- 

section to • its geometrical cross-section, and is denoted by QAts.

For the particle to be in thermal equilibrium it must emit the 

same total energy as it absorbs. This condition is expressed 1

mathematically by the energy balance equation,

CU I. GUs 3 .

The quantity, Q»fcs is, of course, a function of 

is defined as the temperature of the particle, 

equation follows that proposed by Van de Hulst

(1-54) .

frequency, and T ?

The form of this

(1946) but is

expressed in terms used more recently by most authors. It

can be seen that it reduces to equation (1-53) if the absorption 

efficiency of the particle is independent of frequency in which
<3

case the particle is said to be grey. Thus, a grey body adopts 

the same temperature that a black-body would in the same 

radiation field, that temperature being equal to the effective 

temperature of the radiation. In equation (1-54) the absorption 

efficiency can be replaced by the absorption coefficient defined 

in Section 1.1 because the latter is merely the former multiplied 

by an appropriate constant which cancels from each side of the 

equation. Accordingly, equation (1-54) can be written in the form

rr
l<v K, kv3 (v.T") dv . (1-55)

A
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In all problems involving the radiative heating of a particle 

by external radiation sources, the radiation field in which the 

particle Is found is dilute, and in most cases, very dilute„ 

Typically, a grain in interstellar space will be in a radiation 

field which is approximately black-body radiation of temperature 

10^ °K, diluted by a factor W = 10~^^. Were such a grain a 

black-body it would take up the effective temperature of the 

radiation field, which in this case is approximately 3°K. Thus 

we see that the absorption by the grain, given by the left-hand 

side of equation (1-55) involves radiation in the visible and 

neighbouring parts of the spectrum, whilst the emission from the 

grain involves radiation in the far infra-red. In most problems, 

Tv - 0 when y is less than some particular frequency, V, }

and -0 when D is greater than some particular frequency

. Thus, equation (1-55) can usually be replaced by

B (v,-T) c(v .Kv Iv Jv (1-56)

It will b.e seen later that transfer problems involving these 

radiation fields are simplified considerably when V, is greater 

than V* o Fortunately this is true for most physical problems,

because the dilution of the radiation is so high. For example,
zj. o • * -

a 10 K radiation must have W 10 in order to ensure that

A microscopic reason for this degrading of dilute high 

temperature radiation is given by Woolley and Stibbs (1953) in 

terms of Rosseland’s theorem. This theorem states that, in a 

very dilute radiation field a quantum system will almost always 

degrade the radiation and thus, the chance of a radiation field
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Thebeing changed into a dilute hotter field is negligible, 

theorem also shows that the probability of thermal photons being 

upgraded to visible photons is extremely small. This condition 

will be a fundamental feature of our treatment of radiative 

heating as will be seen when the equations of transfer pertinent 

to the problem are formulated in Chapters II and III.

The manner in which the temperature of a real particle depends 

on its absorption coefficient has been discussed by Fabry (1917).

He simplified the discussion by considering the absorption 

coefficient to be grey and equal to ks at frequencies greater than

, and grey and equal to at frequencies lower than

We again assume that "Pi is greater than and we define the 

parameter, y\ to be their ratio; . When n equals

unity the material is completely grey and the temperature of the 

particle is equal to the effective temperature of the radiation 

field incident upon it. When n increases, decreases so that 

B(v,T) must increase to maintain energy balance in the particle. 

Similarly, kp increases and B(v,'T ) decreases when n decreases.

The outcome of this balancing procedure is that the temperature 

of the particle is greater than or less than the temperature that 

a blackt.body would assume in the same situation, according to 

whether n is greater or less than unityo This argument has been 

applied to a situation which at first sight appears to be rather 

restricted; but.a more general frequency dependent absorption

coefficient could have been considered and the argument would 

have reached the same conclusion with the parameter, n, defined as 

some measure of the average slope of the absorption coefficient 

plotted as a function of frequency.

In defining the temperature of a particle by means of the
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'1

1

'i

-t

energy balance condition, it is necessary to estimate whether 

or not fluctuations of the energy of the system are comparable to 

the energy content of the particle. Greenberg (1968) stated 

that if they were then the temperature could not be so defined. 

However, he concluded that the definition of temperature from the 

energy balance condition is acceptable from this point of view 

by showing that the rate of absorption of radiant energy by a 

particle typical of those in interstellar space is significantly 

less than the total heat content of the particle.

As examples of typical calculations for interstellar grains

we quote Greenberg (1971) who calculates the temperatures of

spherical ice particles which possess a frequency dependent

absorption coefficient. The absorption efficiency or spectral

emissivity, £ , of a O.lp, radius ice particle at 103 °K and 10°K

. -2 -4is 2.5 x 10 and lo9 x 10 respectively. Were these values

constant over their respective parts of the spectrum then the

parameter n, defined above would assume a value of the order of 
2

10 . The fact that they are not constant makes the temperature 

calculations longer and sufficiently complex to necessitate the 

use of a computer„ For such an ice-particle in a dilute black- 

body radiation field of temperature, 10*°K, and dilution factor,

10 ■L0, Greenberg’s calculations give 10.8°K as the temperature 

of the grain. This compares with the value of 3.18°K that a black- 

body would adopt in the same radiation field, and bears out the 

conclusions of the qualitative argument given above. The precise * 

nature of the frequency dependence of the grain absorption

coefficients is fundamental to the determination of their

temperatures and a great deal of work is being done at present on
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various grain models and their absorption coefficients. Over 

the past decade a large number of models have been proposed.

These include carbon grains, carbon grains with ice mantles, 

silicate grains and mixtures of all three. These and other 

grain models have been reviewed by Greenberg (1968) and more 

recently by Wickramasinghe and Nandy (1972)„ Also, Hoyle and 

Wickramasinghe (1967) have proposed grains with impurity 

oscillators that enhance their far infra-redemission and hence

lower their temperature. These grain models have to fit

observational data obtained for several different phenomena and 

in particular have to fit interstellar reddening curves. So 

far, no grain model has been isolated as the best, the problem 

being remarkably complex in view of the infinite possibility 

of grain mixtures.

The preceding discussion has been concerned with an isolated 

particle. This thesis is concerned with the radiative heating of 

accumulations of such particles in atmospheres. The dependence 

of the energy balance on the nature of the absorption coefficient 

is the same for any particle whether it is isolated or in an 

atmosphere. However, a particle in an atmosphere absorbs a 

radiation field that varies throughout the atmosphere. This 

radiation field is controlled by the absorption coefficient of 

the particles so that the particle temperature depends on the 

absorption coefficient in two distinct ways. As an example, 

we shall consider' a semi-infinite atmosphere illuminated from 

above by a dilute stellar radiation field. The term "stellar 

radiation field" will always refer to radiation in the visible 

and neighbouring parts of the spectrum, that radiation being of 

some stellar origin. Again, for simplification of the discussion
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we shall assume a two-part grey absorption coefficient of '3

parameters «s , k? and n as defined earlier. The stellar 

radiation is attenuated on passage through the atmosphere due 

to absorption by the particles according to the stellar j

absorption coefficient, Ks . The reduction of the intensity of

the stellar field causes the temperature to fall and thus it
- ! 

would be expected that the temperature would decrease with depth j 

in the atmosphere for any value of n . This would be true were 

equation (1-56) valid inside an atmosphere; but it is not. The 

thermal radiation from the other particles in the atmosphere will '■§ 

also be incident upon the particle under consideration and will «

also heat up the particle. The absorption, and hence, the

temperature, will essentially depend on the intensity of the

dominant radiation field. Equation (1-55) shows clearly that <

the dominant field is the stellar field when n is large, and the 

thermal field, which is the radiation field generated by the thermal? 

emission from the particles, when n is small. The intensity <

of the thermal radiation field is itself controlled by the 

parameter, n , the stellar radiation field being fixed by the 

particular choice of fts . The parameter, n , as well as being 

the ratio of the absorption coefficient in the visible to that in •3 

the far infra-red, is also the inverse ratio of the mean free 

paths of the photons in the two radiation fields. If A is the 

mean free path of a photon, then A? / As . Thus, for small ;•

values of n , the mean free path of the thermal photons is shorter -• 

than that of the visible photons and a large radiation field can 

be built up inside the atmosphere in those regions where the stellar 

photons can reach easily but the thermal photons cannot leave.

This is known as the classical greenhouse effect, a phenomenon

....A,-
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that greatly increases the temperature of those parts of the

atmosphere that are sufficiently far from the surface. It ’

increases the temperature to such an extent that the decrease 

in temperature due to both the smaller stellar field and the 

single particle energy balance effect are made insignificant.

When n assumes a value greater than unity the absorption by 

a particle-is dominated by the stellar radiation field. Moreover, 

the mean free path of the thermal photons is large in comparison 

with that of the stellar photons so that thermal radiation escapes 

very easily and cannot be built up into a large field. An 

inverse greenhouse effect is said to exist and the temperature 

of the particles follows closely the intensity of the stellar 

radiation field except where that field is zero, in which case the 

thermal radiation, though small, is non-zero everywhere due to 

the GarS-<e^wd=t4a—which the thermal photons pass through the atmosphere, 

and this non-zero thermal radiation field prevents the temperature 

of the particles falling to zero.

It must be stressed that a particle at any point in an 

atmosphere will assume a temperature above or below the effective 

temperature of the radiation field at that point, depending on n 

in the same manner as did an isolated particle. The effective 

temperature of the radiation field is, of course, the temperature 

that a black-body would assume at the same point in the atmosphere, 

though the radiation field would be vastly different were all the 

particles black-bodies. Nevertheless, a particle deep in an 

atmosphere whose value of n is less than unity will assume a 

temperature greater than the effective temperature of the reduced 

incident radiation due to the build up of the large thermal 

field, but less than the effective temperature of the total
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radiation field due to the energy balance condition.

This discussion has not included consideration of scattering

of the incident radiation. This is because it would not have

altered the qualitative conclusions but would have unnecessarily 

complicated and confused the argument involved in reaching these 

conclusions. The effect of scattering will be discussed later.

The energy balance equation has been derived under the 

assumption that the heating of the particle is due to the

s

I

I

,3
absorption of radiation only, and that the cooling of the particle 1 

is due to the emission of radiation only. We shall now consider § 

the relative importance of other possible mechanisms for the

heating and cooling of interstellar grains. The literature, 

to date, would imply that these other mechanisms are negligible 

and that the energy balance within a particle is indeed 

represented by equation (1-55). Van de Hulst (1949) has 

considered the heating of interstellar grains in normal interstellar 

space, by collisions with atoms and ions and by chemical reactions 

involving captured atoms. His calculations showed that both these’
i

heating mechanisms are negligible. Similarly, his calculations 

for the cooling of interstellar grains by the evaporation of atoms 

from their surfaces indicate that the dominant cooling mechanism 

is the emission of thermal radiation. The effect of grain 

heating by collisions has been calculated more recently by

Greenberg (1971) and he too deems it negligible under normal

conditions. The physical processes ‘of molecule formation on 

the surfaces of interstellar grains have been examined by Solomon

a ,and Wickramsinghe (1969) Atoms of hydrogen adhere to the

surface of a grain by physical rather than chemical absorption 

processes and they form molecules on the grain surfaces.
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Considerable heat of formation is generated by this process, but
•*$

whether it is imparted to the grain as a whole or to neighbouring 'I 

atoms, the grain temperature will remain fairly constant due to 

the resulting cooling by evaporation. Furthermore, a monolayer 

of hydrogen molecules is prevented from forming on the grain 

surface until all the hydrogen in the atmosphere is in molecular ; 

form. Only then is it possible for shells of hydrogen to be built * 

up around the grain. The important result of such work from

our point of view is that the temperature of the grain is barely 

affected by these processes, so that we can ignore grain heating 

by molecule formation. A further source of heating is that of *

cosmic rays passing through the grains. Salpeter and Wickramasinghe 

(1969) discuss this process and show it to be negligible under 

most conditions. Thus we may consider the grains to acquire |

a temperature controlled solely by radiative absorption and emission^

processes.

Different physical conditions exist in planetary atmospheres 

where the densities of the particles and the gas are large. ■

Essentially there are two subsystems; the cloud subsystem and the 

gas subsystem. The processes of radiative heating and cooling 

apply to the two subsystems separately. Their heating rates 

are different because the heat capacities of the two subsystems 

are different and this sets up a non~LTE situation. To deal 

with energy transfer within either subsystem it would be necessary 

to account for the flow of energy between them and hence set up 

a coupled pair of transfer problems. The processes of energy 

exchange between the two subsystems are: (1) radiative exchange;

(2) heat conduction across the particle boundary from the kinetic 

energy of the gas molecules; and (3) phase changes involving mass
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exchanges between the two subsystems. If these processes are 

efficient then the two subsystems will be in LTE and may be .4

treated as one system. If not, then the complex problem

suggested earlier will exist. Samuelson (1970), who formulated

this argument, showed that process (2) is very efficient in

normal planetary atmospheres and that such atmospheres can be

considered to be In LTE. The consequence of this is that both

subsystems are at the same temperature, which is generated by the• £

radiative heating and cooling of the two subsystems together. The 

atmosphere can thus be treated as having optical properties equal J 

to the sums of the respective optical properties of the two

individual subsystems. The equation of transfer can be formulatedL
J

and solved for the medium as a whole. Other forms of heating, 

such as cosmic ray heating, are clearly negligible In the case of 

planetary atmospheres. Samuelson also states that the LTE 

preserving mechanisms are far less efficient for interstellar and 1 

circumstellar clouds where the gas densities are very much lower. 

Consequently LTE cannot be assumed for these media. Fortunately, 

as aLready explained, the gas density in these media is usually so 1 

small that the interaction between the gas and dust subsystems is « 

negligible and the radiative heating of the grains can be treated |

without reference to the gas. This is certainly true in most

interstellar clouds but care must be taken in circumstellar

shell problems where gas densities may be higher. >

Before concluding this section mehtion should be made of the

phenomenon of scattering and its relation to radiative heating.

The grains and cloud particles are known to scatter a substantial
X1

fraction of the visible radiation incident upon them. This

affects the transfer aspects of the problem in that it governs
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the amount of radiation that is absorbed and also the penetration 

of the stellar radiation into the atmosphere. The scattered 

radiation is emergent from the particle in one sense, but it is 

not included in the energy balance equation because it would be 

imprudent to consider the temperature to be dependent on a dilute 

radiation field, the temperature of the particle being a measure 

of its thermal emission. A fraction of the thermal radiation

absorbed by a particle may also be considered to be scattered and 

consequently not contribute to the temperature of the particle.

Such a situation has been considered by Samuelson (1967a), though 

it is not standard amongst other works on radiative heating and 

infra-red radiative transfer. It must be stressed that all 

scattering processes affect the temperature of a particle only in 

as much as they control the radiation field incident on the 

particle. The temperatures of particles in a particular radiation 

field depend only on the absorption coefficients.

6• Critique of Previous Work

The quantity of literature concerned with radiative transfer 

problems is so vast that we must restrict the discussion of this 

section to those papers that deal directly with radiative heating 

problems, even though scattering theory is used in radiative 

heating theoryo As mentioned in the previous section the topic 

of radiative heating has been centred on the heating of planetary 

atmospheres and dust clouds, interstellar and circumstellar.

Firstly we shall consider several of the papers devoted to the 

greenhouse effect in planetary atmospheres.

The exact solution for the mean intensity of the thermal 

radiation and the temperature within a two part grey semi-infinite

.... ......... J ---- - ..... .'<>'-j Hi">
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plane-parallel atmosphere has been obtained by Wildt (1966) by 

using a form o£ Hopf’s (1934) analytical solution of Milne’s 

integral equation for a grey atmosphere in strict radiative 

equilibrium. Wildt’s solution is restricted to the special case 

of a non-scattering atmosphere but he quotes extensive results 

for this problem. More recently, Shultis and Kaper (1969) have 

obtained the exact solution for the mean intensity of the thermal 

radiation and temperature within an anisotropically scattering, 

two part grey, finite plane-parallel atmosphere. They used a 

complex method derived from techniques developed in the field of 

neutron transport which produced the solution in the form of an 

integral equation to be solved by numerical methods. They did 

not quote any numerical results because no suitable computer 

programme had been developed. In the event of the production 

of such a programme, their method will prove extremely valuable.

The lack of comprehensive exact results has meant that it has 

been necessary to use approximate methods for solving the transfer 

problems involved in the greenhouse effect. Samuelson (1967a) has 

used the discrete ordinate method for a two part grey, aniso­

tropically scattering,semi-infinite plane-parallel atmosphere, 

which he supposed to consist of particulate matter whose optical 

properties could be calculated from the Mie theory. Another 

source of infra-red opacity in the Venusian atmosphere is

absorption by carbon dioxide and water vapour„ In relation to

this, a series of papers by Sagan and Pollock were published 

drawing conclusions from measurements made by the Mariner 5 and 

Venera 4 Venus probeso In a study of the greenhouse effect on 

Venus under radiative and convective equilibrium for a variety 

of frequency dependent absorption coefficients, Sagan (1969)



concluded that an approximation of greyness is not good when

gaseous absorption is the dominant source of the infra-red

opacity but acceptable when particulate matter is the dominant *

infra-red opacity source, provided that the particles are larger 

than or of comparable size to the wavelength of the radiation. 

Furthermore, even a window-grey approximation is often inappropriate 

in the former case. These conclusions were obtained from t

solutions of the transfer problems using Eddington1s approximation. 

Pollack (1969a,b) gives a method of calculating the greenhouse . 

effect for non-grey atmospheres; but the models that he used were " 

numerous and diverse so that attempts to compare his results with 

the measurements of the physical state of the atmosphere are 

inconclusive with regard to the choice of the most suitable model 

for the atmosphere. The general conclusion drawn from these 

papers is that the gases in the atmosphere can provide the infra­

red opacity necessary ,to give rise to the measured greenhouse *

effect under certain restrictions imposed on the constitution of ■ 

the atmosphere. Further conclusions are obscure. The non-grey 

problem has also been treated by Ohring (1969) who assumed the 

measured temperature profile for the Venusian atmosphere and • 

developed an iterative technique for the radiation fields using 

the energy balance condition at the surface. He too concluded 

that the greenhouse effect could be maintained by either gas or 

dust. A further critique of other work on the greenhouse effect 

has been given by Pollack (1969b), who also showed that the 

Venusian atmosphere is not black to the incident sunlight. Thus, 

the semi-infinite atmosphere used by Samuelson is far from 

satisfactory even for Venus. We shall see later that the semi­

- 63 - i

infinite atmosphere is a good approximation to a finite atmosphere
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with a conservative ground layer, only when the ground behaves 4

as the semi-infinite atmosphere itself. The measurements of -•

the temperature profile of the Venusian atmosphere as quoted by
JJ*

Sagan and Pollack (1969) indicate that the atmosphere is not

isothermal near the ground, whereas the predictions of Samuelson’s 

model are that the temperature rises as the depth increases 

until a maximum temperature is reached at a certain depth and that 

below this depth the atmosphere is isothermal. As we shall see ■-* 

later, this isothermal region occurs when the fluxes of the infra­

red and stellar radiation fields are zero. Thus, the Venusian
"'.f

atmosphere can never be replaced by a semi-infinite atmosphere, I

unless it transpires that the reflection properties of the ground "i
,1

are exactly those of the semi-infinite atmosphere.

The emission and transmission of thermal radiation in clouds f

and haze in planetary atmospheres has been treated in a completely ? 

different manner by Kattawar and Plass. (1970). They utilised 

a Monte Carlo technique to follow the path of a thermal photon 

after emission, accounting for multiple scattering until it 

emerged from the atmosphere or was absorbed. They assumed a 

temperature profile for the atmosphere, which was. assumed to be 

in LTB and calculated the thermal emission from each particle 

using the black-body function for the appropriate temperature.

This treatment, though acceptable for scattering problems with 

an external source, contradicts the theory of radiative transfer 

in which the absorbed photons contribute to the source function, 

the temperature and the thermal emission of each particle.

The Monte Carlo method of Kattawar and Plass is only valid in 

the limiting case where the temperature is dominated by the

absorption of visual photons and where there is a large albedo for
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thermal photon scattering. This is the situation of an inverse 

greenhouse effect which is not the observed situation for 

planetary atmospheres J

The equivalent study in spherical geometry is less well 

documented. Whilst there has been a strong interest in developing 

radiative transfer solutions for scattering in spherical

atmospheres there have been very few calculations of the infra­

red radiation generated in such atmospheres. The astronomical 

objects to have received some interest in this context are 

circumstellar shells and interstellar grains. Huang has studied 

the former in a series of three papers (1969a,b, 1971). The 

first of these deals with the two limiting cases of optically 

thin and optically thick shells, and the second with the more 

interesting intermediate case. The properties that he ascribed 

to the grains of the shell are not those of typical interstellar 

grains. He claimed that circumstellar grains are very much 

larger than typical interstellar grains and hence, that, they 

scatter isotropically, emit infra-red radiation isotropically 

and possess a completely grey extinction coefficient. It would 

not be a difficult task to extend Huang’s calculations to 

encompass grains that scatter anisotropically and have a two part 

grey extinction coefficient, Huang used the Eddington 

approximation to solve the transfer equations and assumed the 

radiation incident on the inner surface of the shell to be diffuse 

and of a known flux. This assumption is only valid when the

shell is very close to the surface of the central star. The

resulting solution for the mean Intensity of the visible radiation 

in the shell involves a homogeneous Bessel equation which can be 

solved analytically; and the solution for the mean intensity of
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the thermal radiation in the shell is found from the solutions

for the visible radiation and the total radiation, A serious 

criticism of Huang’s theory arises from the work of Chapman (1966) 

on extended stellar atmospheres. For the problem of constant 

net energy flow, which is the spherical equivalent of the problem 

of constant net flux, Chapman has shown that the outward flowing 

radiation field becomes progressively more forward peaked as 

its distance from the central star increases. Thus the ratio K/J 

which Huang has assumed to be one third, is closer to unity at 

large values of the radius. As mentioned in Section 1.2 several 

other methods are known to be able to overcome this phenomenon.

Huang’s third paper deals with the case of distant envelopes 

for which the solid angle subtended by the central star at any 

point in the envelope or shell is sufficiently small that the star 

may be taken to behave as a point source. Consequently, the 

radiation incident on the inner boundary of the shell is no longer 

diffuse but radially directed. The reduced incident radiation, 

which is the unscattered part of the radiation from the star, 

is known exactly and the equation of transfer for the diffuse, 

scattered radiation field can be solved. It reduces to an 

inhomogeneous Bessel equation whose solution can be evaluated by 

numerical integration. Although the numerical evaluation of the 

solution is more complex In this case the peaking of the radiation 

field is removed or certainly reduced by separating out the 

highly directional reduced incident radiation. The method for 

close shells could be improved in this way by using an assumed 

angular distribution for the incident radiation, treating the 

reduced incident radiation exactly and consequently reducing the 

peaking of the outward flowing radiation for which the Eddington
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approximation is made.

In treating the diffuse radiation field as two distinct 

entities, one of which is scattered optical radiation, and the 

other, thermally emitted infra-red radiation, care must be taken 

to ensure that they do occupy separate parts of the spectrum.

This can be done by considering the frequency range of the 

calculated black-body functions. If the dilution of the optical 

radiation is too small, then an overlap in frequency between the 

two fields will occur, and the equations of transfer will be very 

much more complex. Huang did not mention this point nor did 

he quote absolute temperatures. Consequently, his theory may 

be erroneous in certain cases.

Finally, we turn to the subject of interstellar grains. It 

was noted in the previous section that no particular grain model 

has been selected as the obvious candidate and that extensive review* 

articles on interstellar grains are available. The behaviour of •'4 

interstellar grains with regard to their infra-red emission has 

been studied by Krishna Swamy (1970) and, more recently, by 

Greenberg (1971) who investigated the influence of the incident 

radiation and optical properties of the grains upon their 

temperature. The effects of grain shape have also been studied by 

Greenberg and Shah (1971). All these calculations utilise non- ■ 

grey absorption coefficients but are restricted to grains in free ~- 

space. Greenberg (1971) does make an attempt to estimate the 

grain temperatures within clouds but he does so in a very rough 

manner. Werner and Salpeter (1969) claim to have solved the 

radiative transfer problem in detail for a spherical dust cloud 

illuminated externally by a uniform isotropic dilute radiation 

field typical of that pervading interstellar space. Their model

'7
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was one of a cloud of constant density, and frequency dependent- 

absorption coefficient, albedo and asymmetry parameter. They 

treated the anisotropic phase function in a schematic way, which 

as we noted in Section 1.3 is a good approximation; and they

based their solution for the scattered radiation on an inter­

polation between the Neumann series solution for multiple 

scattering 'in a semi-infinite plane-parallel atmosphere and the 

solution for singly scattered radiation in a spherical atmosphere. 

The former solution, they assumed to be valid for optically 

thick spherical atmospheres and the latter for optically thin 

spherical atmospheres. They calculated the reduced incident 

radiation by numerical integration, but it transpires that an 

analytical integration was possible in their case of constant 

density atmosphereso The nature of the integrand for the 

reduced incident radiation mean intensity makes the numerical 

integration, though straightforward in theory, complex for 

optically thick and intermediate atmospheres at most values of the 

radius so that this numerical treatment could have proved an 

unnecessary source of numerical error. Their treatment of the 

transfer of the infra-red radiation consisted of a two part 

iteration scheme. For a particle whose infra-red absorption 

coefficient is very much smaller than its visible absorption 

coefficient, as is generally true of interstellar grains, the 

source function for the infra-red radiation is dominated by the

mean intensities of the reduced incident and scattered radiation 

fields. Consequently, Werner and Salpeter calculated the 

temperatures that the grains would have adopted had there been no 

thermal radiation field, and then they calculated the thermal 

radiation field at every point in the atmosphere by integrating
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the thermal source function derived from their estimates of

the grain temperatures, along all lines of sight assuming that *1

there was no interaction between the radiation and the inter­

vening grains. They then calculated new grain temperatures i

based on the new radiation field at every point. Thus we see that j 

they have treated the scattered radiation in neither an exact 

manner nor even in an approximate radiative transfer manner;

and that they have completely ignored the transfer aspects of

the thermal radiation field. In fact, the former is the more f

serious weakness for grains whose infra-red opacities are as low 

as those that they used. This leaves considerable scope for 

producing a model interstellar dust cloud involving standard 4

radiative transfer theory, either exact or approximate. J

7° Outline of the Present Work i

This Chapter has been concerned with some of the general aspects

of radiative heating and the associated radiative transfer

problems. In Section 1.1 the fundamental quantities of the

subject were defined and the equation of transfer for a general 

problem was derived in both plane-parallel and spherical 

geometries. The solution of this equation has been the goal 

of a large number of astrophysicists and indeed scientists in a 

diversity of disciplines, and several of the more frequently 

used methods of solution were outlined in Section 1.2. It was 

seen that these methods were of great diversity, ranging from 

those utilising a simple approximation in order to permit an 

analytical solution, to those of extreme generality whose 

evaluation was only possible by extensive numerical computation. 

Section 1.3 was devoted to the topic of scattering, especially
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that of anisotropic scattering; its implications and means of 

treating the additional complexity that it introduces to a 

transfer problem. Aspects of the frequency dependence of 

transfer problems were considered in Section 1.4, in particular, 

the topics of coherent scattering and grey absorption coefficients. 

Section 1.5 dealt with the problem of radiative heating in a 

qualitative manner, discussing the behaviour of real and black 

matter in a particular radiation field. It was seen that the 

scattered radiation field and the thermal radiation field occupy 

distinct parts of the spectrum for many problemsof astronomical 

significance. This division of the spectrum into two parts enable 

the radiative heating problem to be treated as two transfer 

problems only partially coupled. The scattering problem can be 

treated independently of the remainder of the problem but the

transfer of the thermal radiation involves the solution for the

scattered radiation field. Lastly, in the previous section, a 

number of recent publications dealing with the radiative heating 

of' planetary atmospheres, and, circumstellar and interstellar 

clouds, were discussed.

Before selecting the. most suitable method available for 

solving the twin transfer problems of radiative heating it is 

necessary to have regard to the aims of the solution. These aims 

are naturally dictated to, by the contents of the previous section 

which dealt with prior work in the field. The aim of a problem 

in theoretical astrophysics can, broadly speaking, fall into two 

categories. Firstly, there is the ideal of producing a 

mathematically accurate and physically realistic model of a 

particular astronomical object. Such a model must, of necessity, 

be very complex and use the most accurate available values of the
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physical quantities required as input data. In the absence of 

suitable observational measurements, the most complete current 

theoretical model of each facet of the problem must be used.

For example, in the theory of scattering in cloudy atmospheres 

both Potter (1969) and Samuelson (1967a) have used a scattering 

phase function calculated using the Mie theory. It is a 

complex function and is usually represented by a suitable series 

expansion of Legendre polynomials, which, as mentioned in 

Section 1.3, frequently requires handling by complex computational 

techniques. For this physically realistic type of model it is 

essential to use the most accurate method of solution of the 

equations of the problem, which in the case of transfer equations 

is usually one of the numerical methods delineated in Section 1.2. 

It was stressed there that such methods were designed to handle 

the more general problems that arise for physically realistic

models.

The other ideal Is to investigate the physical processes 

involved in the astronomical object and to determine- the role 

that each physical parameter assumes in controlling the physical 

state of the object, which in our case is the temperature of the 

atmosphere. When a numerical method is used, the relative 

importance of the atmospheric parameters is .often obscured, 

whereas an analytical method frequently clarifies the situation. 

The equation of transfer is an integro-differential equation and 

as such can only be solved analytically in the presence of one 

or more approximations. The question of non-greyness illustrates 

this point. When the absorption and. scattering coefficients 

are frequency dependent there is no unique albedo and consequently 

no way to determine precisely the effect of scattering on the
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one albedo and its role in the problem can be investigated

simply and clearly. '?

It has been the aim of most work on the subject of radiative 

heating, to provide a simple, yet accurate model of the atmosphere 

in question. Samuelson has, to a certain extent, showed how the 

atmospheric parameters control the temperature but his theory 

has been applied to a semi-infinite atmosphere only, which, as 7

we have seen, is inadequate even for an atmosphere as thick as that J 

of Venus. In the field of interstellar dust clouds there is an Is*

even greater need for a simple, explanatory model because the 

limited work in this field has been directed to produce real 

physical values by using complex grain models and has been
1

accomplished at the expense of radiative transfer theory. <

Although an approximate model may not realise physically accurate 

solutions there is a great value in knowing the dependence of the I 

solution upon the physical parameters involved in the problem, 

besides the ensuing understanding of the physical principles 

themselves. An approximate solution will yield a considerable 

amount of information showing which parameters are important under 

given conditions, and consequently which parameters need to be $

determined accurately before an accurate physically realistic model ~ 

is constructed. It will be the aim of this study to ascertain 

the role of- each atmospheric parameter in determining the 

temperature profiles of simple models of plane-parallel and spherical 

atmospheres by means of a simple analytical solution of the 

appropriate equations of transfer. In doing so, the approximate 

temperature profiles will themselves be valuable as first results .<
"A

in problems where results are hitherto unavailable. Furthermore, ®
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it is hoped that the resulting information concerning the

atmospheric parameters will be of value in illuminating those 5

physical studies that are most important in the construction of *
•s

more accurate model atmospheres. |

The model that has been chosen to be investigated has the

following properties. The absorption coefficients are grey over i 

each of two«-separate parts of the spectrum but not necessarily 

grey over the whole spectrum. These two parts of the spectrum >

correspond to the visible and nearby frequencies and the far • •• •

infra-red frequencies. The scattering of the visible radiation 

is anisotropic with a phase function represented by the schematic 

one of equation (1-29). It was seen in Section 1.3 that this phase' 

function was capable of producing results identical to those 

obtained with an arbitrary phase function when the radiation field * 

was axially symmetric and could be represented by a three term 

series of Legendre polynomials. Since such radiation fields are 

fairly common in radiative transfer problems the schematic 

representation of anisotropy is excellent. The infra-red radiation' 

is generated by thermal emission from the matter in the atmosphere 

and is not scattered by that matter, though is frequently re­

absorbed. We shall use Eddington’s approximation to solve the 

appropriate equations of transfer for the scattered and the thermal 

radiation fields because it yields simple analytical solutions

for the moments of each of the radiation fields. We saw in

Section 1.2 that it was generally the best method of its type. 

Furthermore, it readily lends itself to an analytical solution 

for the intensity as a function of position and direction, thus ’

enabling the emergent radiation to be obtained as a function of

direction. All further details of the model will be introduced
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at a more convenient moment. These tew properties described 

here are, in tact, the major approximations that will be needed.

Chapter II will be concerned with the radiative heating 

of plane-parallel atmospheres illuminated by dilute parallel 

stellar radiation. The first section will be a discussion of

the illuminating radiation and the second, a discussion of the 

nature of the absorption coefficients involved in the radiative 

heating problem. After defining the precise physical problem 

of the heating of a plane-parallel atmosphere, the equations of- 

transfer for the scattered and thermal radiation fields will be

solved using Eddington’s approximation, firstly for a semi­

infinite atmosphere and secondly for a finite atmosphere. This 

will occupy section II.3. The finite atmosphere will be treated 

with and without a partially reflecting ground layer at its lower

surface. The mean intensities of the two radiation fields will

be illustrated and their dependence on the atmospheric parameters 

will be discussed in detail. The temperature distribution within 

these atmospheres will be calculated and suitably illustrated in

Section II.4. It was mentioned in Section 1.2 that the source

function as derived by Eddington’s approximation is an ideal 

operand for the Lambda operator and that this operation improves 

the. solution. Consequently, we shall apply this procedure to the 

thermal radiation field and discuss the ensuing results. This

will occur in Section II.4 also. For several decades the exact

solutions for the emergent scattered radiation from both semi­

infinite and finite plane-parallel atmospheres have been known. 

These solutions are based on the principles of invariance as 

established by Chandrasekhar (1960). In Section II.5 we shall

develop similar methods by which the emergent thermal radiation
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can be found. These will be applicable in certain circumstances 

only, and will be described in Section 11.5,1. In Section :

II. 5-2 we shall calculate the emergent radiation intensity as 

found from the approximate source functions of Section II.4; 

and in Section II.5.3 we shall discuss and compare the results 

for the exact and approximate solutions for the intensity of 

the emergent thermal radiation from these plane-parallel 

atmospheres.

Chapter III will be concerned with the radiative heating of 

spherical atmospheres illuminated externally by a radiation field 

similar to that of the interstellar radiation field. The type

example of this problem is the interstellar dust cloud and the 

treatment of the spherical atmosphere problem will be orientated 

towards the appropriate solutions for interstellar clouds, 

though will still be of sufficiently general a nature to be 

applicable to other objects of astronomical interest. Section

III. l will include a discussion of the interstellar radiation 

field and its relation to typical dust clouds; and Section III.2 

will cover points on the absorption coefficients of grains typical 

of those in interstellar clouds. Sections III.3, III.4 and

III.5 are counterparts of those sections in Chapter II, and 

will give accounts of the solutions of the equations of transfer 

for the two radiation fields, the temperature distributions and 

the emergent radiation fields respectively. However, there are 

no counterparts to the exact solutions of Sections II.5.1 

for spherical atmospheres. The results will be discussed in 

relation to the importance of the various parameters involved 

In the theory; and comparisons will be made between the results 

of Chapter II for plane-parallelatmospheres and the results
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of Chapter III for spherical atmospheres. However, these -j

comparisons will not be strict comparisons between two similar 

problems because the incident radiation is different for the 

two geometries. An important approximation will be made before the j 

solutions of Section III.3 are performed. That is, the

absorption coefficients and density will be assumed to be independent
I

of position in the atmosphere. The ‘need for this assumption -;4

will be made apparent at the appropriate time. In Section III.6 

we shall deal with attempts to relax this restriction; and in 

Section III.7 we shall consider the possible effects of varying I

the geometrical distribution of the incident radiation.

There will be a short summary of each Chapter at its conclusion 

and the thesis will be completed with several concluding remarks.
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CHAPTER II

PLANE-PARALLEL ATMOSPHERES

The form of the equation of transfer pertinent to considerations 

of the radiative heating of plane-parallel atmospheres is that given -J 

by (1-9) in terms of the geometrical depth, z , measured normally 

to the surface. In order to simplify this, we shall assume the 

atmosphere to be grey in two discrete parts of the spectrum,, The 

first of these is centred on the visible part of the spectrum and 

we shall use the adjective "stellar” to describe both scattered 

and unscattered radiation of these frequencies. The appropriate 

absorption and scattering coefficients will be assigned the

subscript, s o However the subscript, s , appended to the 

intensity and its associated moments will not refer to the stellar 

radiation field but to the scattered radiation field or even part 

of that fieldo This will be defined clearly in Section II.3.

In previous work on planetary atmospheres the stellar radiation 

field has been referred to as the solar radiation field, and the 

radiation field generated in the infra-red,which is the second 

region of the spectrum in which the atmosphere is assumed to be 

grey,, by thermal emission of the atmosphere has been referred to 

as the planetary radiation field and has usually been ascribed 

the subscript p „ Such terminology will not be applicable to 

interstellar dust clouds which are the type example of Chapter III. 

Consequently we shall use the names stellar and thermal or infrared 

to refer to the two radiation fields; these names being equally 

suitable in each context. However, in order to adhere to a
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standard notation we shall maintain the use of the subscript p 

for the thermal radiation field in planetary atmospheres and also 

use it to depict the thermal radiation field in interstellar dust

clouds.

1. The Incident ^Radiation

The radiation incident on the surface of an atmosphere will, 

in general, vary from one atmosphere to another in both its 

geometrical distribution and its photon content. The latter is 

essentially Its dilution and its spectral distribution. This 

Chapter is concerned with plane-parallel atmospheres of which 

planetary atmospheres are the archetype so that this discussion 

will be limited to typical radiation fields incident on the planets. 

Of the planets in the solar system, Venus has received most 

attention with regard to its atmosphere. Consequently, most of 

the data quoted here will be those used in studies of the Venusian 

atmosphere. However, the radiation incident on the other planetary 

atmospheres will be different chiefly in its dilution allowing 

the discussion to be quite general in its application.

To a first approximation, the radiation flux incident on the 

surface of a planetary atmosphere is that from the Sun, diluted 

according to the inverse square of the distance between the Sun and 

the planet. For the planet Venus, the geometrical dilution factor 

is equal to the square of the radius of the Sun, divided by the 

square of the distance between the Sun and Venus, and equals 

4 x 10 , For such dilution the Sun’s radiation at the position

of Venus can be regarded as parallel; the angle of divergence of 

the beam being 2SEH arcsecs. Consequently, the geometry of the

typical planetary problem is one of a plane-parallel atmosphere,
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illuminated at all points on its upper surface by parallel 

radiation incident at an angle, arc cos , to the normal to the 

surface and at an angle, , in azimuth to an arbitrary zero of

azimuth. The incident radiation field is said to be of

integrated flux, 7rF across a surface normal to its direction of 

propagation so that the incident radiation field is written

b, « 7T F /a) ,

(o , , <f>) * o , (ii-i)

U > O .

and

where

The transfer problems of this Chapter will all involve this

incident radiation field.

We noted in Chapter I that scattering is a linear phenomenon 

and that we can therefore treat two radiation fields of the same 

frequency in the same atmosphere as separate entities. Suppose 

the incident radiation is given by the superposition of several 

beams and is given by

H

then the intensity of the scattered radiation field at a point in 

the atmosphere characterised by the position co-ordinate, X , is

Kt, , 0 )
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where 17 ( %,, 0 ) is the intensity of the scattered radiation

field that would result from the incident beam, 7T Fz

Thus we have a simple way of adapting the theory to cater for

other forms of incident radiation.

We have a wide selection of suitable spectral distributions 

for the incident radiation. In the case of Venus, or any 

planet of the Solar System we have the observed solar spectrum 

at our disposal. For accurate model atmosphere calculations 

this is clearly the one to use. A variety of theoretical 

model stellar atmospheres are available and it would make an 

interesting study to investigate the effect of the spectral type 

of the central star on the thermal properties of a planet. The 

simplest of these is the black-body spectrum corresponding to the 

colour temperature of the central star. However, for the study 

of grey planetary atmospheres the spectral distribution of the 

incident radiation is immaterial; and, as noted in Section 1.4, 

frequency dependent absorption and scattering coefficients have 

very little effect on the resultant radiation fields for coherent 

scattering, which is usually assumed to be valid for planetary 

atmospheres. The spectral distribution of the incident radiation 

field is thus far less important than the value of the integrated 

net flux. It is this latter quantity that controls the average 

temperature of the planet. However, this conclusion requires 

one qualification. The spectral distribution might lie within 

the spectral divisions created by the two part grey absorption 

coefficients. When there is incident radiation of frequencies 

close to that of the border between the ’’stellar” and ’’thermal” 

parts of the spectrum then the problems mentioned in the previous 

Chapter will arise. Fortunately, both the temperature of the Sun
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and the dilution are sufficiently high to prevent this happening 

in typical planetary problems. An incident radiation flux 

field located entirely in the thermal part of the spectrum, however, 1 

is readily acceptable by the model. i

The atmosphere of a planet will always have a ground at its |

lower surface, though the atmosphere of Venus is frequently 

assumed to be semi-infinite. The semi-infinite approximation is 

sometimes adopted by considering the ground layer to exhibit optical 

properties similar to those of the semi-infinite atmosphere below a <i 

certain depth. However, it is a simple matter to treat the

atmosphere as finite and to consider the ground as a radiation source?•J

in its own right, though, of course, its own source of energy is 

that radiation passing through the atmosphere. A variety of 

ground models are available, but we shall restrict our work to *■

the simplest and most common. The ground is assumed to reflect 

a fraction, k, of the stellar radiation flux incident upon it and ?

to absorb the remainder. It is also assumed to absorb all the

infra-red radiation incident upon it and to emit isotropically and 

thermally all the energy that it has absorbed. The reflection of 

the stellar radiation is considered to obey Lambert’s law, as 

detailed by Chandrasekhar (I960), and according to which the reflected- 

radiation is isotropic and independent of the direction

of the incident radiation. The opposite physical extreme is that 

of specular reflection which is often assumed to occur at the 

interface between the earth’s atmosphere and an ocean. However, 

Lambert’s law is more appropriate for the standard planetary problem. 

An extension of the model to include complex reflection functions 

is possible but would create more additional mathematics than would 

be profitable in view of the approach of the thesis to the transfer

problems.
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2. The Greenhouse Parameter

The radiative heating of an atmosphere that is grey in two 

parts of the spectrum involves the two grey absorption coefficients, 

fcs and }<f j and the grey scattering coefficient, o~s . We 

require two parameters to link these three coefficients. The 

choice of the first is simple. It is w , the albedo for single 

scattering as defined in Section I.3.by

co * <rs / ( ks 4 crs>. (II-2)

The choice of the second is less straightforward because it 

is affected by the choice of the depth scale in the atmosphere.

In solving transfer problems, rather than using the geometrical 

depth, -z, it is convenient to use the optical depth as the 

position variable. This is defined by

(II-3)

where ki can be either the absorption, the scattering or the 

.extinction coefficient. It has already been mentioned that it is 

generally convenient to divide the stellar radiation field into the 

reduced incident radiation and the scattered radiation field.

With the choice of the extinction coefficient for Kl in equation 

(II-3) the reduced radiation field is independent of the albedo and 

depends solely on the optical depth. This situation is a useful 

asset, so we define

d't --= - ( ks-h trs ) (11-4)
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The choice of the second parameter would therefore lie 

between (ks-t-Cs)/ k? and . The former is the ratio

of the extinction coefficients in the two parts of the spectrum 

and the latter, the ratio of the absorption coefficients. These 

two ratios are the same when there is no scattering and have been 1

called the greenhouse parameter by Wildt (1966) and by Stibbs 

(1971), who point out that this greenhouse parameter is equal to 

the ratio, Ap/A? where AP and As are the mean free paths of the
4- ithermal and stellar photons respectively. When the greenhouse q

parameter is less than unity, the thermal photons are ”trapped” 

within the atmosphere with respect to the stellar photons; and J

when the greenhouse parameter is greater than unity the thermal j

photons can disperse easily, again with respect to the stellar 

photons. The former effect is known as the greenhouse effect 

from which the parameter derives its name. When stellar photon 1

scattering is present the ratio of the mean free path is

** .
Ck

Vb « ( ks + Z KP. (II-5)

This is the more important physical parameter of the two and

accordingly, we define the greenhouse parameter, n , by equation

—

(II-5) .

In general, the greenhouse parameter is a function of position 

and direction. The positional dependence arises from the fact 

that all three coefficients are mutually Independent functions

of depth, and the directional dependence from the theoretical
. . . . . i

impossibility of deriving true grey absorption coeffcients.
A

However, as discussed in Section 1.4 we shall assume that genuine 

direction independent absorption coefficients can be formed and

• .-is
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that real frequency averaged coefficients will not differ

significantly from these. It will be found that the solutions 

of the equations of transfer involve integrals of the type,

J" a('t') 3ft) cl't „ These can be evaluated numerically for any

function, n.C't:) , but can only be evaluated analytically for certain

simple functions. The aim of this thesis was stated to be the 

attempt to gain insight into the roles of the various atmospheric 

parameters involved in the problem. Consequently, we shall assume 

the greenhouse parameter to be independent of depth. This is not 

a serious physical liability in view of the fact that the optical 

depth accounts for the major depth variation of the density and 

absorption coefficients by definition. We shall also assume the 

albedo to be depth independent. These two assumptions are 

frequently made, for example, by Wildt (1966), Stibbs (1971) and 

Samuelson (1967a)o

At this juncture it is necessary to ascertain the range of 

values that the two parameters, o and n should cover, The 

Venusian atmosphere, as a prominent candidate for a greenhouse 

model has received a large amount of study. Sobolev (1963) 

quotes a value of 0.989 for the albedo for single scattering in the 

Venusian atmosphere, and subsequent estimates of this quantity have 

all been of the same order of magnitude. In studies of line 

absorption profiles typical values of the albedo for scattering 

in the continuum, <SC , are 0.99, 0.999 and 1.0. Hansen (1969b) 

has showed that values of <ioc down to 0.976 barely affect the 

absorption line profiles and provide correct values for the total 

planetary albedo, which is the fraction of the incident flux on 

the surface of the atmosphere, that Is reflected by the planet as 

a single entity. He used values of , the albedo at the centre
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o£ an absorption line, of the order of 0.9. Such values of

Zoa and wc would give values of a grey albedo ranging from 0.95

to 0.999. When the albedo is close to unity the absorption 
xj,1

coefficient is a very small fraction of the extinction'coefficient. 

Now, the value of the absorption coefficient is very important 

in determining the temperature of the atmosphere in that it actually 

measures the amount of energy absorbed by an element of matter 

within the atmosphere. Consequently, even though the albedo may 

not critically affect the shapes of the absorption lines, it is 

imperative that evaluations of the thermal characteristics of a 

physically realistic model atmosphere use very accurate values 

of the albedo, if the albedo is close to unity as indeed it is for 

the Venusian atmosphere. -»i --

Samuelson (1967a) has shown that the ratio of the extinction 

coefficients in the visible to that in the infra-red will/not fall 

below unity for any size of particle. He did so using the Mie 

theory, and with his value of of 0.99 a typical value of the 

ratio of the absorption coefficients would be 0.01. Wildt (1966) 

used such a value for his exact theory without scattering but exact

correlation between different conditions is difficult due to the

scattering, particularly when it is highly forward peaked. The 

inclusion of gaseous infra-red opacity may render the greenhouse 

parameter smaller still. This results from Pollack’s (1969b) 

studies of the Venusian atmosphere, which also show the extreme 

complexity of a real planetary atmosphere.

For grains in interstellar space, typical values of w and n 

quoted in the literature are quite unlike those for planetary 

atmospheres. Werner and Salpeter (1969) use albedo values of the 

order of 0.5 and show in Fig. 1 of their paper, values of the
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2 X
greenhouse parameter ranging from 10 to 10 . This vast 7

range arises from the dramatic variation of the infra-red j

absorption coefficient with frequency and the strong effect of
. >

impurities in the grains. It shows that the choice of the mean 

absorption coefficient is Important in the interpretation of 

observations by comparison with theory. The large number of 

grain models available at present has also helped in maintaining 

a large range of suitable values for the greenhouse parameter and 

albedo. For scattering in the Coalsack and Libra cloud, Mattilla 

(1970) concludes that the albedo is of the order of 0.65; Martin 

(1971) suggests a value of 2.5 for the greenhouse parameter for a 

grain with kp measured at 10|i; and Greenberg (1971) uses a value ' 

of approximately one hundred for the greenhouse parameter. In
I

the field of circumstellar shells, Huang (1969b), argues that the 

grains are relatively large and consequently have values of n of 

the order of unity. ••

The third parameter required is the asymmetry parameter of the

phase function. By far the majority of authors use phase functions

calculated from the Mie theory which always produces phase functions

with large forward peaks. Potter (1969) and Samuelson (1967a) use

such phase functions. Potter's phase function also has a peak in g

the backward direction but Samuelson's does so only for a few

particle sizes. Typical values of g for these phase functions are

0.9 whereas those quoted by Werner and Salpeter (1969) for

interstellar grains are near 0.4. 1
th&e J

We have seen that a wide range of values of each of the three I
Z .1

optical parameters, certainly covering different objects but
•? ■ ?

sometimes covering different models for the same object. The

calculations to be performed later in the Chapter will include the
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full range of possible values for each of these parameters.

This will be done for three reasons. Firstly, it will enable 

us to gain a full insight into the effects of the parameters even 

though the values of the parameters applicable to planetary 

atmospheres are not applicable to interstellar grains and vice versa 

By using the full set of parameters in each geometry the effects of 

the geometry will not be obscured by the more important effects of 

the optical parameters. Secondly, it will enable us to consider 

the complete range of physical properties of each parameter.

Although the phase functions with negative values of g are not 

physically significant they are not mathematically meaningless 

and will bring to light any special effects that may occur when * 

is zero, and may be obscured if the range of values of g were 

terminated at zero. Thirdly, and by no means trivially, it will 

furnish a useful check on the numerical procedures in the 

computer programmes that provide the results of the analytical 

solutions. This is very useful because an error may be

significant but undetectable within a limited range of values of 

one of the parameters but it is extremely unlikely that an error 

would remain unnoticed when subjected to the full range of parameter 

values, which in the case of the greenhouse parameter can extend 

from IO"*1' to IO*1” .

3. The Source Function

The radiative heating problem, as formulated in the preceding 

sections is summarised as follows. A parallel beam of dilute 

stellar radiation of integrated net flux, ttF , per unit area normal 

to itself, is incident upon the surface of a plane-parallel 

atmosphere at an angle, cos"1 F-o , to the inward normal and at
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an azimuthal angle, </o , to an arbitrary zero of azimuth. The 

atmosphere is grey to this radiation and has grey absorption 

and scattering coefficients,, k5 , and respectively. The absorbed 

radiation is degraded by the absorbing matter and re-emitted 

thermally and isotropically in the far infra-red. The atmosphere 

is grey to radiation of these frequencies also, with a grey 

absorption coefficient, . The three absorption coefficients 

are related by the albedo, , and the greenhouse parameter, n , 

both of which are assumed to be independent of depth in the 

atmosphere. They are defined by equations (I1-2) and (II-5) 

respectively. The optical depth is measured in terms of the 

stellar extinction coefficient as defined by equation (II-4-).

The scattering of the stellar radiation is anisotropic and obeys 

the schematic phase function of equation (1-29).

The combination of the anisotropy of the scattering and the 

azimuthal dependence of the incident radiation creates the first 

difficulty encountered in solving the problem by causing the 

scattered radiation field to be dependent on azimuth.

Chandrasekhar (1960), when treating the scattering problem for a 

general phase function by the discrete ordinate method, divided 

the scattered radiation into a series of components of specified 

azimuth dependence and solved the equation of transfer for each 

component independently. A similar technique can be used here 

and fortunately a very simple solution occurs due to the simple 

nature of the phase function. The radiation that is continuously 

scattered by the delta-function spikes of the schematic phase 

function will remain in the same line in the atmosphere as the 

reduced incident radiation. The sum of this part of the

scattered radiation field and the reduced incident radiation field
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will be known as the linear radiation field and denoted by 

( ^ > ~ and It- f , +^<>, The remainder of the

scattered radiation is that scattered from the linear radiation 

field in the isotropic part of the phase function. This is 

the azimuthally independent part of the radiation field even 

though second and subsequent scatterings may be anisotropic.

We shall call this radiation field the scattered radiation field 

even though that is not strictly correct and shall denote it by 

ls(^> • We have thus separated the azimuthally dependent part

of the radiation field from the azimuthally independent part.

The former can be found exactly but we must treat semi-infinite 

and finite atmospheres separately.

3.1. Semi-infinite Atmospheres It follows from the definitions

of the source function and schematic phase function, and equation 

(1-46) that the source function for the linear radiation field is

( T , ~ a , <fio ) =

air +(

& kir (i-«C) j p & j-’-o-j-*')
4-T

a -I

•+• + S ( dj* dtf'

[ p Ifc ( X ,) I(lk (r , £ J

and ( X , + =

The azimuth co-ordinate

of significance because 

each value of po„ The

l + ({-^) r/(-H (x, “JS ,

will be omitted hereafter without any loss 

only one azimuthal value is possible for 

two equations of transfer for upward and

downward flowing radiation are
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d I ft'rt (t-j = (nr, jaJ -£(1-*)^ I/<M (y, ja0)

£(,-*>(1-/0 IiU'K, -/a0)5 (II-6)

and ~ fo q) = lu(*. ~f.) - Il« C'V,-/*.)

- & (i-cO(i-ys) I(l; (r , ). (II-7)

Equations (II-6) and (II-7) constitute a pair of simultaneous 

linear first order differential equations which can be solved easily 

They combine to give

d - °Ll ] Iq, (r , -/a,) -- o,

dr J (II-8)

where O’

L i- 5 (I-*)] [

The general solution of this second order differential 

equation is

-L (r, -p.) - A
<rx/^o -o'V/Po

e ~f h e (11-10)

, 2.

(II-9)

where A and B are two arbitrary constants which must be found by 

using two boundary conditions. The first boundary condition is 

based on the requirement that, in the limit as nr tends to infinity,

Ifc (-V, - /*. ) tends'to zero. This is true for all values of the
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scattering parameters with the exception of the special case 

when o=l and a = 0, In that case equation (II-10) is not the 

solution of equation (II-8). The arbitrary constant, A, must 

equal zero for this boundary condition to be fulfilled. The 

second boundary condition is applied at the surface of the 

atmosphere and is, that the downward flowing radiation must be 

equal in intensity to the incident radiation which is nF .

Thus we have

k. V - f.) = 7r r e (11-11)

This result together with equation (II-7) gives the intensity in 

the upward direction as

r "1 _<r-v/po
kk't.f*) = TrF [ I - (!-■«)/ - cr] & (11-12)

From these two equations we obtain the moments of the linear 

radiation field, the first two of which are

~err/N r- -1

Ok (1) = ±J- £ L -a-J (11-13)

£>((-»<) (l-/3)

and H& ('r'l = -2. I*„ Fe-trX/|A’ [ ~ I + °~~3 . (11-14)

There are two special cases for the solutions for the linear 

field. When the scattering is isotropic, cl is equal to unity and 

equations (11-12) to (11-14) assume indeterminate forms. in this 

physical situation the linear radiation field and the reduced 

incident radiation field are identical. There is no upward 

reduced incident radiation and the constant, cr ? is equal to unity
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Hence, the first two moments of the reduced incident radiation

field are

(t)~- 1 F
-r/p,

and (T) “ - 2 F e (11-15)

The symbol (T, /) and its associated symbols are chosen

to represent:.the reduced incident radiation; and in the case of 

isotropic scattering the moments 3rbu('X) and are given by

equation (11-15) also.

Again equations (11-12) to (11-14) assume indeterminate forms 

when the backward scattering spike is absent. This corresponds 

to the parameter (3 being unity and the linear scattering being 

forward only so that the upward linear radiation field is again zero 

In this case the constant or is equal to (i-w ) and the first two 

moments of the linear radiation field are

- err /po
Jk (r) = iR and (11-16)

We are now in a position to consider the emission coefficient

and source function for the scattered radiation field. The

emission coefficient for this radiation field is made up of the 

radiation scattered isotropically from the linear radiation field

the total radiation scattered from the scattered radiation field 

itself. The albedos for these two processes are and £>

respectively. The emission coefficient, which is not a function

of azimuth, is therefore
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an 4-t

js (-S, p = +<rsy _L'j f Z* p', +

o -I 

2TT -f<

t (ks + cy) /? _i/’it J j (t^a^d11-17) 0 -<
Hence, we obtain

Bs ( ) = k> e( CTt^C't) -v Cx> C< 3^ (x) + Co ( I~ «■) yg Isf'Y, |a) +

+ co Is(x,-j*) (11-18)

so that the equation of transfer is

I* ~ IsC'V, (*) - W

ol'K

- co oL Ts(x) - to 4 35m (x) . (11-19)

A similar equation for the thermal radiation can also be

formulated and this will be done later in this section. It will 

be seen to involve the solution of equation (11-19). The two 

equations of transfer form a pair of simultaneous integro- 

differential .equations whose inter-relationship arises from the 

degrading of the unknown of the first equation, the scattered 

radiation, to the unknown of the second, the thermal radiation. 

Hence the equation of transfer for the thermal radiation uses the 

solution of equation (11-19). Were there some mechanism whereby 

the inverse process could take place, the source function of 

equation (11-18) would include a term involving the thermal

radiation field and the two integro-differential equations would
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be truly coupled. Fortunately, this degree of complexity does -i.V

not arise in situations involving highly dilute incident radiation, 

so that the coupling is only partial and equation (11-19) can be 

solved directly.

We shall solve equation (11-19) using the Eddington approximation*?
J-

We reduce the integro-differential equation to a pair of total

differential equations by applying the two moment integral operators, i 

defined by equation (1-15),to equation (II-19). Thus, we obtain

(i-£ ) Tj-Cr) _ <5<x (V) (11-20)

dz ' i

and JKs(t) •= Q f-ZoO-*) (2/3-/)] J

d-Z ;

These can be solved by use of the Eddington approximation which '5

links and CJsft) by the relation, ksC't) = TsCtr) / 5 . *

Accordingly, we obtain

ij;m = 3khsw,

where V = / - <2 < l~ eOC 4/0-0 .

(11-21) i

I

The constant, ft , is related to the asymmetry parameter, g, by the 

relation, ft-O-jp ; and it transpires that the solution of -

equations (11-20) and (11-21) involve ft rather than g, so for this 

reason we shall use ft rather than (f-j ) . Equations (11-20) and (11-21) 

combine to form

(11-23)- 5 5 Jbk M ,
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where e*=3$O-£>'), (11-24)

and the function CT^ M is given by the appropriate equation 

from (11-13) to (11-16). These equations are all of the same 

form and can be expressed as

Ttl, (*) = IE e.
4-

- cr-t//* o

The solution of equation (11-23) is

Ts(r) = Ce" + pe'M +

4- ( - <r’)
(11-25)

where C and D are arbitrary„constants. To find these we require

two boundary conditions. Firstly, we must ensure that, in the 
_ -£'t

limit as tr tends to infinity the quantity, J's (^) e tends to

zero. This is satisfied if C is equal to zero. This boundary 

condition is commonly used in scattering problems and has been 

discussed by Chandrasekhar (1960). Secondly, we apply the 

Eddington approximate boundary condition at the surface where it can 

be applied because there is no downward scattered radiation at the 

surface. The condition is given by equation (1-16) and gives an 

expression for T), of

J) = - 3£ ot \ F ( +- 2cr/^„)
- cr*) (3j<4- ie)

(11-26)

The two special cases that gave rise to the spherical forms of 

Fun merely affect the expression for the constant, A. However 

a mathematical indeterminate form exists for equations (11-25) and 

(11-26) when — crAJ) = o. The solution for this special

case proceeds exactly as before and yields
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~ 5qc<Qf[ (i-3€/6y)~ (Rie/srXt+agr)] 

j6 6* (14-26 /3yj

-er
e (11-27)

Equation (11-27) arises for real values of p,o given by

= [l-w (I-K)] /3(!-S).

For example, by cos*-' = 45° when <u = 0.5 and a = 0.5. In

general the solution for the mean intensity of the scattered 

radiation field is given by

Ts(^ Da
- <? 'V E'

- CT'Y / fo
(11-28)

with the constants, D and E* assuming one of the forms given above. 

We are now in a position to obtain a solution for the thermal

radiation field. The emission coefficient for this field is

comprised of two parts. Firstly, the thermal radiation field is 

absorbed and re-radiated conservatively and Isotropically; and 

secondly, the energy absorbed from the stellar radiation field is

converted into thermal radiation which is likewise radiated iso­

tropically. The emission coefficient in this case is a function of 

process is isotropic. It is given

TJt, ) + Itm (T , /a' , df (hf>‘ -~j-

f Up' , (11-29)

T only, because the emission 

by
+i

JPU) = /yx [

d -/

2ty +i
r r

+ r„
Vrr j

0 _/

and hence the source function is given by
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= TpW + n(i-<8)[ T.C'r) + Tox (<t) ]
(11-30)

where n is defined by equation (II-5). The equation of transfer 

for the thermal radiation field thus becomes

This equation is written in terms of V , as defined earlier, which 

is the optical depth for extinction of the stellar radiation.

It is for this reason that the right-hand side of the equation 

involves the factor r ( I / u ) .

The solution of equation (11-31) follows the same procedure 

as the solution of equation (11-19) for the scattered radiation 

field. The two integral operators, L« and L, , applied to 

equation (11-31) yield

and

(11-32)

which, in Eddington*s approximation becomes

pf-v) (11-33)Ho (^)p

Owing to the conservative nature of the process of the absorption 

and re-radiation of the thermal radiation field, equation (11-32) 

does not involve (Jp('t) and thus can be solved independently of
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equation (11-33). In general we have

Tu (<n = + Efe-0^0 (11-34)

E = E' + x / 4-where (11-35)

Using equation (11-34) and integrating equation (11-32) we obtain

A Z, f -CTX/^a
HpC't) - (j -v (l - u>) E|a.o g + n£'.

3
(11-36)

Integrating equation (11-33) directly, using equation (11-36) 

we find

- _o-r/m„
tytl = -3(i-^)Te - 3(i-£);kFe. + + fr. (n-37)

n c Y\ O'-

where G and Gz are the two constants of integration„ These are 

found by applying two boundary conditions the first of which is 

expressed by the equation,

Hs(is) **• H + Huu (11-38)

which states that the net flux of energy at any depth in the

atmosphere is zero. This is a direct consequence of the principle 

of conservation of energy which must be applied because there are 

no energy sources or sinks in the atmosphere; and it applies at all 

optical depths because the atmosphere is homogeneous and contains 

no local heat sources or sinks or heat transfer mechanisms such

as convection. The algebra Involved In applying the condition of
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conservation of energy as expressed by equation (11-38) is
. z

simple though tedious, and leads to the condition that G must 

equal zero. This restraint on the system prevents Tpf'f) increasin 

with depth, so that no boundary condition at large optical depths 

need be required. The second boundary condition to be applied 

is the approximate Eddington boundary condition, CTp ( o’) - '■

which leads to the expression

(r - 3(i~&) 3)(l/n d ££/3 ) + H ( l/n + 2.cr/^^o)
— (11-39)

J

This completes the solution for the mean intensities of the

scattered and thermal radiation fields.

Before discussing the properties of these solutions it will

be profitable to investigate a possible variation in the method of 

solution of the equations of transfer. Adding equations (11-20) 

and (11-32) gives

dHT('v) «-[ I- «(*-*)] Tfclt) 

(to

where - H$(r) *V .

This equation can be solved exactly to give

-7 -CT-t/Po
Ht-Ct.) - £ J - to (i - <*) J X Fe -v Ci .

Equations (11-14) to (11-16) give the appropriate expressions for 

Hk, (-v) from which we see that

Hr ~ C, - (-e).
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Conservation of energy demands that Ci be zero. In this way we i

see that the condition of conservation of energy can be applied >

to the problem before any approximation is made and that the flux, •?

is known exactly. However, Hj (r) cannot be found exactly 

because the two moment equations for the scattered radiation field 

are coupled. The two approximate second moment equations combine 

to give ' -

JPM = 3 [ V HsM + 2 14,m] , i

<k% . "

or J. vTs('t) + v\X(t) - 3 j (r) cZ'V . •«
1 J J

f az “I -crY/jHo
Hence X Gt) - C* - JL L 1 “>> 0-^)J \ Fe . (11-40)

A tedious reduction shows that this expression for the mean intensity 

of the thermal radiation field is exactly the same as that given 

by equation (11-37). Although these two methods of solution 

involve the same approximations and arrive at the same answers, 

they do draw light on different facets of the mathematics of the .

problem and the application of the boundary conditions. In particulai 

the second method shows that energy is conserved exactly in the 

solution for the fluxes, a point that is obscured in the first

method.

We are now in a position to consider the physical significance 

of the solutions for the two radiation fields. We have seen how

useful it was to construct the linear radiation field which includes 

the azimuthally dependent part of the scattered radiation field. 

Neither this, nor the azlmuthally independent scattered radiation
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hitherto referred to as the scattered radiation field, is

physically meaningful; the two radiation fields that are physically 

meaningful are the reduced radiation field and the genuine 

scattered radiation field. The latter is given by

rSc<-t> = rs(r) +, (II_41)

and will be referred to as the scattered radiation field for the

remainder of this subsection.

The numerical values of the mean intensities of the scattered

and thermal radiation fields have been found by assigning each 

parameter a numerical value and evaluating the appropriate 

expression for the mean intensities by means of a computer 

programme. A set of values of each parameter was used, though 

not every combination of parameters was utilised because some were 

included for use in special cases. The values of the parameters 

used in the calculation.-are given in Table I.

The mean intensity of the scattered radiation field is shown 

graphically as a function of % in Figs. 4 to 6. These graphs 

show the dependence of the radiation field on albedo, phase 

function and angle of incidence respectively. The surface values 

and those at small optical depths are important, so the optical 

depth scale was chosen to be linear between 15 = 0.0 and 15 = 1.0.

In order to include a wide range of values of 15 the scale beyond 

T = 1.0 was chosen to be logarithmic. It is this change of scale 

that causes the discontinuities at the point 15 = 1.0.

The greater the albedo for single scattering, the larger the 

number of photons that are scattered into the scattered radiation 

field, and the larger the number of collisions that a photon



TABLE I

Values of atmospheric parameters used in computer programmes for 
calculating the mean intensities of the radiation fields in semi­
infinite atmospheres.

'fc.
A/60 - CL P p n

0.0 0.1 0.0 0.0 1.0000 10*

0.1 0.3 0.2 0.2 0.9484 10*

0.2 0.5 0.4 0.5 0.8660 10°

0.5 0.7 0.6 0.8 0.6248 10~*

1.0 0.9 0.8 1.0 0.3548

1.5 0.95 1.0

2.0 0.99

5.0

10.0

20.0

50.0
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undergoes before it is absorbed. A larger number of collisions 

before absorption gives rise to a greater penetration into the 

atmosphere. Both these phenomena are borne out in Fig. 4 in

which the radiation field is seen to increase with albedo at all

optical depths and especially at large optical depths. The rate 

of increase of the radiation field with albedo, -Jsc (X4 d co

so
reaches its maximum at w =1,0. Consequently the value of the 

albedo is critically important when it is close to unity. This 

is the case in planetary atmospheres and thus physically realistic 

model planetary atmospheres require very accurate values of the

albedo.

Fig. 5 shows the mean intensity of the scattered radiation 

field as a function of T , for several phase functions, with po = 

1.0, and u> = 0.9. The phase functions shown vary from the

extreme cases of complete forward and complete backward scattering 

to pure isotropic scattering. The effect of varying the parameter, 

(3, can be seen closely. When (3 = 1.0 the delta-function 

scattering is all forward so that, for a given value of a the 

penetration of the radiation into the atmosphere is at its maximum. 

Thus, at the surface, the scattered radiation field is smaller 

than it is when {3 -• 0.5, the case corresponding to a symmetrical 

phase function; whilst, in the interior of the atmosphere, it is 

greater. The opposite is true when (3 = 0.0. It can therefore 

be said that the scattered radiation field contains an energy 

that is almost independent of the value of (3. This can be seen 

from the graphs of Fig. 5 which intersect at intermediate values of 

Z . The total energy content of the scattered radiation field 

is not completely independent of (3 because surface losses depend 

on (3 „ This is seen most clearly when a = 0.0. In this case,
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when p = 1.0 all the scattered radiation is directed away from

the surface and there is no radiation loss from the surface.

It is for this reason that CT^c(o')-0'O in this case, However,

when p is less than unity there will be some loss through the 

surface and this loss will be an inverse function of p.

Consequently, the scattered radiation as a whole increases as p

increases.

The effect of cl on lTscC'V) is two-fold. Firstly, the 

variation of d~sc (V) with p increases dramatically as a. tends to 

zero because the absolute value of the asymmetry parameter, g , 

increases as a tends to zero. Secondly, a decrease of a makes the 

radiation more penetrating when p = 0.5. Now, when p = 0.5 the 

phase function is symmetric, g equals zero and a variation of the 

radiation field with a can only be understood in terms of surface

effects. The radiation field can be seen to increase with a 

at the surface and to decrease with a deep in the atmosphere when 

'h = 10.0. When some of the downward scattered radiation is 

scattered by the spike of the phase function, the penetration will 

be greater than when all the downward scattered radiation is 

scattered by the isotropic part of the phase function. The 

opposite can be said of the upward scattered radiation, and for 

p ~ 0.5 the two effects will neutralise themselves leaving Tsc(V) 

independent of a. However, near the surface the upward scattered 

radiation is modified by surface loss. For small values of u 

there is more surface loss than for high values of u. This is 

most easily understood when the incident radiation is normal to 

the surface and Fig. 5 refers to this case. The radiation 

scattered upwards has least chance of being scattered or absorbed 

before it emerges from the surface, if it is scattered along a
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path normal to the surface. The traction of the scattered

radiation scattered along such a path is greatest when a = 0.0. 

Hence, the radiation field near the surface increases as a 

increases, and the radiation field in the interior of the 

atmosphere decreases as a. increases. In Section 1.3 it was seen 

that axially symmetric fields produced solutions for ZTsc C'Y.') 

that are independent of a when (3 = 0.5. The reason for this 

is that the preferential surface loss described here no longer 

occurs for axially symmetric incident radiation fields. Hence, 

for such fields, g is a unique measure of the effect of anisotropy.

The effect of |x0 on the scattered radiation field is 

dependent on both the phase function and the position in the 

atmosphere. For large and intermediate values of x the 

qualitative effect is independent of the phase function. The 

mean intensity of the scattered radiation simply decreases as the 

value of jx 0 decreases. The smaller the value of p0 , the greater 

the quantity, f/, which is the optical distance that the 

incident radiation must traverse in order to reach depth x in the 

atmosphere. Consequently, the radiation field will suffer greater 

absorption loss before reaching depth x when is small than

when jx <, is large. The situation is more complex when x is small. 

As we have already seen, the scattered radiation field increases 

with depth as it is built up from the reduced incident radiation 

field until it begins to decrease with depth as absorption losses 

become greater. It transpires that, as jx „ decreases, the 

optical distance along the line of the incident radiation between 

the surface and a point at optical depth X , will Increase,and 

that if this distance is small, the scattered radiation field will 

be built up to a greater extent, the smaller the value of jx,, .
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Fig. 6 shows the mean intensity of the scattered radiation field 

plotted as a function of f for several values of for values

of = 0.9, a = OoO and (3 = 1.0. The quantity, Jsc ( *¥ , p® ) / f*o 

is seen to be negative for small values of x. and positive for 

large values of ns . This situation only occurs when a is set

to zero from the set of available values of a listed in Table I.

When a is one of the non-zero values there is no crossing of the 

curves as there is in Fig. 6. Instead, the curves for small 

values of p,6 are always below those for high values of jjl o .

The reason for this is that when a. is not zero or not close to

zero some radiation is scattered ,rsidewaysn out of the line of 

the incident radiation. As po decreases some of this sideways 

scattered radiation has a progressively greater chance of escape 

from the surface and it transpires that the increase in energy 

loss through the surface as p0 decreases is greater than the 

increase in build-up of the scattered radiation field for the 

same decrease of [jl„ o Fig. 6 has been drawn for (3 equal to 

unity. Were (3 smaller the intersections of the curves would have

been located at lower values of . This follows from the fact

that the build-up of the scattered radiation field is greatest 

for high values of p. It is measured by the slope of the graphs 

of Fig. 5, which are

These results can be investigated mathematically. Firstly, 

consider the case of linear scattering.only, which is the only 

case in the range of available phase functions for which CTsc(t) 

was evaluated in which the interesting intersections of Fig. 6 

occur. Equations (11-13), (11-15) and (11-40) give
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_crzv /f*<,
O’icC'v, = i R 

1 ±
[ ! - fa Cgyg-<) -cr j - i Fe 7/*i

The maximum occurs when the derivative of this equation is equated 

to zero, whence

or

o = i J r ~ . “I
or*tLi“W(ayS-i)-crJe -re

Jr. £o-/s) J

/ f*v ~ c3(t_^’) / cr £ | - ~Q ~ <r J - f'

Thus, the value of i_lo which gives the maximum value of Tsc ( f , ^-o) 

is which is

ja™4* s 'V (t- cr) / log .
(11-42)

To provide a numerical example we choose (3 = 0.5 and = 0.9. The 

appropriate values for cr and log V' are 0 = 3162 and 0.7324 respectively. 

From equation (11-42) we find that the maximum value of Tsc

occurs at values of p,oW of 0.093, 0.93 and 4.67, when values of T 

are 0.1, 1.0 and 5.0 respectively. These numbers agree with the 

qualitative conclusions of the preceding paragraph. The form of 

equation (11-42) draws to mind a point that is easily glossed over 

in qualitative arguments and often obscured in numerical results; 

namely, the existence of a finite value of when is very

small indeed. This is, of course,'due to the fact that, even with 

very small values of and , when is small enough, (0.09 in the 

example) the attenuation factor will create a reduction of 

It is not advantageous to apply the same technique to the general
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case in which a is non-zero, as the expressions become very complex. 

The maximum of <TSC ("tf) with respect to can be found by

equating the derivative of □'se('t) with respect tot, to zero.

For general anisotropic scattering this gives

= E - e^DF/a-E-'] t (11-43)

- G~<r)]

where *D and Ez are always of opposite sign.

We now focus our attention on the thermal radiation field, the

behaviour of which can readily be detected by inspection of the 

formulae for CT^Ct) . When n is large the mean intensity of the 

thermal radiation field is approximately constant throughout the 

atmosphere and this constant is of the order of 0.5. When n is 

small, is about 0.5 at the surface, rises rapidly with depth

until it is of the order of 50 at an optical depth of about 10, and 

remains at that high value at all points deeper in the atmosphere.

The physical processes behind this behaviour can also be deduced 

from the equations of the preceding analysis. Consider equation 

(11-37). Remembering that g' equals zero, it is clear that J’p('t) 

tends to the value of the constant, (r , as % becomes larger. 

Furthermore it is clear that CTp(t) is approximately equal to G- 

when n is large even for small values of r . Finally, the 

'V-dependent terms of this equation are of comparable magnitude to <3- , 

as given by equation (11-39), when n and t are both small, so that 

J'jd't) is small in these circumstances. The physics behind these 

results can be seen most clearly by studying equations (11-33) and 

(11-38). The first of these states that the energy density gradient 

necessary to maintain a certain flux in the opposite direction is 

proportional to that flux. The second is the mathematical
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expression of the principle of conservation of energy. From this, 

together with the expressions for Hs(V) and HtrftC'V) it is 

clear that no stellar radiation penetrates below a certain optical 

depth, , and that the flux of the thermal radiation .field is also 

zero below that depth. This zero flux means, by equation (11-33), 

that the mean intensity of the thermal radiation field is constant 

below o At points between 'tc and the surface the thermal flux
j

is non-zero and the dependence of the mean intensity or energy «

density gradient upon n is shown by equation (11-33). In fact this 

gradient is inversely proportional to n because HfC't) is independent - 

of n as can be seen from equation (11-32). The flux, Hp('t) 

never attains a very high value so that the gradient, Jfp('t) / d't; 

is always very small when n is large and large when n is small.

Now, at the surface, the boundary condition links jy(o) with Hp(o) 

which, as we have seen is independent of n . Consequently cTpCo") 

is independent of n . Thus, when n is small, CTpC't) rises rapidly 

from a small value until t is equal to and CTp Or) has reached a 

large value. The physical principle behind this phenomenon is 

that the energy density gradient of a radiation field needed to 

maintain a given flux through an atmosphere, is inversely proportional 

to the mean free path of the photons of the radiation field in that 

atmosphere. This is true for isotropic scattering (or isotropic 

and conservative,absorption plus emission, which amounts to the same 

phenomenon as far as radiative transfer in grey atmospheres is 

concerned) in as much as equation (11-33), which is based on 

Eddington’s approximation, remains true. This physical principle 

is precisely that upon which Van de Hulst (1968) based his

sim.ilar.ity relations, for he expressed the energy density gradient 

as being propertional to the fraction ( i-j ) . The asymmetry parameter
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is a measure of the mean free path in the direction of transfer, so 

therefore the two principles are the same.

The effect of scattering on the thermal radiation field arises 

from its effect on the thermal radiation flux via the principle 

of conservation of energy. Its importance is demonstrated in 

Fig. 7 which shows the quanti ty, J ( , to ) - » &) / ( V , 0• i) ,

plotted as a function of (i-o ). The quantity,J , is a more 

suitable quantity to show the physical effects of co rather than

because the latter extends over a wide range of values.

The logarithmic scale for ( i- to ) is used to show the importance of

to as it approaches unity, these values of being the most

important in planetary atmosphere studies. The diagram shows

crf (t, £) as a function of w for discrete values of ; the whole

being shown for normal incidence and isotropic scattering. The

essential features of Fig. 7 are independent of the phase function

and angle of incidence. Firstly, consider the continuous curves 
-a.

for which n equals 10 , and m particular, that curve for

The inward flux of radiation at the surface is a constant and by 

virtue of conservation of energy an increase in the emergent stellar 

flux results in a decrease in the emergent thermal flux, and this, 

by virtue of the boundary condition results in a decrease of the

mean intensity of the thermal radiation field at the surface. As 

the albedo for single scattering increases so does the emergent 

thermal flux. Hence the gradient ctTpfo, w ) / c(u> is ne.gative.

The situation inside the atmosphere is more complex. At small 

values of V , the decrease of the mean intensity of the stellar 

radiation field is greatest for the smallest value of £> . This

arises from the fact that,in a certain small optical distance the 

absorption loss is proportional to (|-w ). Consequently, the
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two arguments.

inward stellar flux and the outward thermal flux increase as the 

albedo decreases. From equation (11-33) we see that the thermal 

energy density gradient likewise increases. This together with 

the fact that \Tp£°} increases as the albedo decreases gives the 

result that the gradient dvTp ('t, £> w is negative when ■t is small, j 

However, the situation is different for large values of t for which *

the slopes of the stellar intensities with % are zero for small -1

values of w but still non-zero for larger values of w due to the 

associated increased penetration. Hence, the opposite conclusion 

is reached; that the gradient, d Tp( T,&)/<)£«> is positive for large 

values of . There is however, a slight difference between the

In the case when was small the negative gradient, 

enhanced the negative gradient, ^TpC'fc'jto) / .

However, on reversal of the albedo dependence of the gradient, 

alTf(r)/olY , the surface value dependence on the albedo counteracts 

this gradient dependence. Consequently, it is only for very large 

values of that the gradient is positive for all
A/

values of W . For lesser values of -t the surface value effects exceed

the gradient effects for high values of the albedo so that the

curves shown in Fig. 7 have maxima around <£> = 0.9. The results 

from Fig. 7 emphasize our earlier deduction that the albedo is a very 

critical parameter when it is near unity. Only in the case of

% = 10 is the dependence of Op upon the albedo small when the 

albedo is large. Moreover, we see that, for very thick atmospheres 

such as that of Venus, the mean intensity of the thermal radiation 

varies with the albedo in opposite senses at the surface and deep 

in the atmosphere.

When n is large the curves for all values of tr are identical

to that of O^Co-) for 10
-in because, as we have already noted
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crfco is a constant for n - 10* and is independent of n .

The special case in which n equals unity will be discussed later.

We will first investigate the effects of the phase function on

the thermal radiation mean intensity. This is shown in Fig. 8

for po » 1.0 and Co = 0.9. The families of curves are for n = 10 ,
— A

1 and 10 and are at depth 'f = 50 where the mean intensity is at

. . . *»•its maximum value. The family of curves for n = 10 apply for

all values of . The scale of the ordinate is different for the 

three families but this does not affect the qualitative conclusions 

which are clarified by superimposing the three families of curves. 

Fig. 8 shows CTp plotted as a function of a for the three values 

of P; 0.0, 0.5 and 1.0. Consider first the case of n = 10^ for 

which we have already noted that the thermal radiation mean intensit; 

is controlled by the emergent stellar flux. We have seen that 

the stellar flux is greatest when (3 is zero so that by considering 

the principle of conservation of energy and the Eddington boundary 

condition we see that and also CTp (V) ? because n is large,

is greatest when p is unity. Similarly, the emergent stellar flux 

is smallest for small values of a,and p equal to unity, and greatest 

for small values of a when p is zero. The same argument as before 

shows the curves of Fig. 8 to be physically reasonable; and they 

apply equally well to each value of n . However, when n is 10'X 

the extent of the dependence of JpC't) upon p is far greater, 

particularly when p is near unity. The consequence for model 

planetary atmospheres is clear. They’involve strong forward 

throwing phase functions so that the phase function must be 

accurately determined in order for accurate values of to be

produced. However, we saw in Section 1.3 that the exact shape of

the phase function was not important so we conclude that model
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planetary atmospheres require very accurate values of the asymmetry 

parameter as well as the albedo.

The variation of the mean intensity of the thermal radiation 

field with p,o is shown in Fig. 9, in which the quantity,

3s dp (x, ptd/CTf is plotted as a function of t for w = 0.9, cl =

1.0, n = 10 and several values of po. The incident flux contains

a factor so that the thermal flux includes this factor also.

This is shown clearly in Fig. 9. The quantity, 5 ? exhibits

very little dependence on T and, of course, would show none were 

n = 10 . Consequently, we can write down an approximate equation

to account for the effect of jjlo in CTpCt) ; which is

J'pC'V, (11-44)

where is a fraction slightly less than unity.

Finally, we consider the special case when n equals unity.

It would appear from Fig. 7 that 1.0. However this Is not a

general conclusion; it merely applies to the special case of

isotropic scattering. Equivalent graphs for which [3 is greater 
-3.

than 0.5 would be similar to those for n = 10 ; whilst those for

which (3 is less than 0.5 would be similar to that for n - 10 . The 

arguments applied earlier to the effects of albedo and phase function 

on dpCv) are still valid for the case of n - 1.0. Nevertheless, 

it will be profitable to investigate the characteristics of the 

equations of the problem for the special case of isotropic scattering 

and n equal to unity. It is easy to show that the constant, G , 

is 5/4 for normal incidence and it is for this reason that the 

quantity,J , equals unity for large values of f , as shown in Fig. 7; 

the constant being independent of the albedo. For this problem in
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general, it can be shown that

Lim. CTpM - 1^F(5^o + 2), (IX-45)

where the convergence to the limit is moderately rapid.

Consequently, we obtain an expression for ? as defined by equation 

(11-44), which is

V) = (Sf‘e+2.') / 5 . (11-46)

The reason for the independence of equation (11-45) with co is that 

the transfer of the thermal radiation is exactly the same as the 

transfer of the stellar radiation, the equation of transfer for the 

sum of the intensities of the two fields being that for conservative 

isotropic scattering. Thus, when the stellar intensity is zero, 

the thermal intensity has attained its constant value which is 

independent of the albedo. The two boundary conditions used were 

j;(o) « 2,Ws(o) and . Were the factor, 2, in the

boundary conditions a different factor, $ say, equation (11-45) 

would have been

Ljm . Xp(r) = j_ F ( +• 0 ) .
r —=> 00

For normal incidence the limiting value of CTp('v') given by this 

equation is equal to the limiting value of Tp (r') given by equation 

(11-45) for the Eddington boundary condition, multiplied by a 

factor, (3 + $ )/5. This result can be manipulated to show that an 

error of X % In the value of $> used In the boundary condition 

leads to an error of 2x/5% In the resultant limiting value of Cb)
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for this special case. The transmitted error is higher when jjlo 

is less than unity, but in general, we may conclude that the 

Eddington approximate boundary condition will affect the solutions 

deep in the atmosphere to a lesser extent than it does the

solutions at the surface.

3.2. Finite Atmospheres We have already noted that a semi­

infinite atmosphere is not a good model for a planetary atmosphere,

even for that of Venus. We shall now consider the same radiative 

heating problem for finite atmospheres with a ground layer, the 

properties of which were given in Section II.1. We shall solve the 

problem in the same way as we did for semi-infinite atmospheres 

and then we shall consider the special case of a finite atmosphere 

with no ground. This has no value in planetary atmosphere studies 

but is included for completeness by which it emphasises many of the 

salient features of the radiative heating problem.

The linear radiation field is defined in the same way as before 

and we shall derive exact expressions for its intensity. There are 

two further radiation fields in this problem, namely, the reduced 

visible ground radiation field and the reduced thermal ground 

radiation field. By virtue of the isotropy of the emission from the 

ground, the radiation scattered from these fields is independent of 

azimuth, so that there is no need to include any contribution from 

these in the azimuthally dependent linear radiation field. The 

scattering of the linear radiation field is one example of the 

general problem of one-dimensional radiative transfer along a line 

of finite length and with radiation incident upon both ends of the 

line. It will be expedient to solve the general situation because 

other examples of this problem will occur in Chapter III. Let xo 

be the total optical length of the linear medium and let x be the
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optical distance measured in terms of the extinction coefficient 4

from one end. Let I + (x) represent the intensity of the radiation 

flowing in the positive oc-direction at a point x, and let I~ (32) 

represent the intensity of the radiation flowing in the opposite :

direction at the point X . Let I* be the intensity of the radiation 

incident upon the medium in the positive X-direction at the origin,

X = 0, and let Io be the intensity of the radiation incident upon the » 

medium in the negative X-direction at the point, X= Xa . These 

are defined in each problem and hence create the two boundary 

conditions. .

T+(°) = T* and I (<O * I„ . (11-47) i

Let o, be the albedo for single scattering and let [3 be the fraction 

of the scattered radiation that is scattered forwards, the 

remaining fraction, (1 - (3), being the scattered backwards.

The subscript, unity, on the albedo serves as a reminder that it is 

not necessarily the same quantity as the albedo for single scattering 

in the complete problem of scattering in a finite atmosphere.

It is, in fact, equal to <*> (1 - a) in terms of the parameters defined 

earlier for the schematic phase function, and represents the albedo 

for scattering into the delta-function spikes.

The two equations of transfer for the intensities in the positive 

and negative x-directions are

= -rw and

o! x

respectively, where B" (3c) are the two source functions. The source 

function, B*J'(x), is the sum of the radiation scattered forwards from

' ' ' - • ■ ■' - ■ <£$
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(x) and the radiation scattered backwards from .1” (x) , whilst 

the source function, B"(x), is the sum of the radiation scattered 

forwards from I (x) and the radiation scattered backwards from I (x) 

That is,

= Z, & I*Cx) + 0-/0 !’(*■>.

Hence, we obtain

d.1 (*) = -( I - £>,^5) X* (x) + I (x)

otx
(11-48)

and - fr'W • - (>-<3,/S') r(x) + £,<.-/?) x+u)

These two equations combine to give

2 t +I (x) - cr* I+(x) « o , 

cl x2

the solution of which is

where

VM = C, e + Ct e
-<rx

(11-49)

(11-50)

and C, and are constants of integration. Equations (11-48) and 

(11-49) combine to give

rw
w, 0-^)

C crx r n ~frK r -s?
(Cxe L 1-w, p +©-J 4- C2 e /. i~ ti, ^-cr B (11-51)
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Applying the two boundary conditions given by equations (11-47) 

to equations (11-50) and (11-51) we obtain

and

C, = W, (i-/6)T0 - -or) T„ e.
-cr Xo

( I- to, p + or) e - ( I ~ jg - cr) £

Ca = I* - Ci .

crxo (11-52)<rx

Consider the following special cases.

(i) To"° ; To • This is the case of no incident radiation; 

and equations (11-49) to (11-52) yield the trivial solution

C, = C-3. - 0 , I*(x) - 1'M^ o,

(ii) To ~O . This is the case of incident radiation upon one 

end only for which we obtain

and

C, = - (i- <3.^ - I„+ - crXo
e

( 1 - -V CT ) G - ( 1- <2,^ <r)
- crxo

(11-53)

c, = i: - c,

(iii) To -• 0. This is the case of radiation incident upon the

end, X = Xo only, for which we obtain

c, -
+ ~ { I-w, „ cr) &

(11-54)
(I — yg’) I.
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and Cx = - c,.

(iv) r„+ ~ To - To . We have the same incident radiation upon 

each end of the medium and therefore, we have

{ &,(i~ }

and

Cv = T( p) “ (t- - or)
-crxo

£ / /«» x o“Xo f \ ?
[ {i-co, 6 + <r)e - (i-£o,p-o-)e j 

C2 * 10 - Ci.

(11-55)

The linear radiation field in our problem of a finite plane- 

parallel atmosphere with parallel radiation incident upon its upper 

surface corresponds to the special case (ii) with it ~ 7T F. The 

albedo in question is the albedo for scattering into the delta- 

function spikes, which is to, = co (1 - a). The geometry of the

problem demands that x-'tf/ and that the radiation field exists

for (i = (io only and for or + 7V only. Consequently,

the first two moments of the linear radiation field are

I
.... b” oo (i-cQ ( + o*" J q d-

A-TV W ( l - ti) ( I

j -o"tZp«
(11-56)

r 1 r „ 1
and « Cl fA0 L ter J e + Q Ll~(11-57)

+ d - <TJ £.

It to (i-ot) (i~/0 k-TT (l-ot) (i-p)

where C» and CA are given by equations (11-5 3) with X« « IT F.

The reduced incident radiation field can be written down
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immediately. It is merely the incident intensity exponentially 

attenuated from the point of entry into the atmosphere to the 

depth in question. We thus have

££ (v, jz, /) = rrFe

andM - A Fe 
4

S (p -1*0} f ~ /o) 9

W « -1 jAo Fe“T/r\ (n-58)

Before proceding with the solution for the scattered radiation 

we shall consider several special cases. Firstly, in the limit 

as 'to tends to infinity, the constants C, and Cx tend to zero and

7T F respectively. Thus, equations (11-49) and (11-51) tend to 

equations (II-1I) and (11-12), so that the limiting forms of the 

expressions for finite atmospheres agree with those obtained for 

semi-infinite atmospheres In the preceding sub-section. Secondly, 

in the case of isotropic scattering, cr is unity and the albedo, tu, 9 

is zero, This causes equation (11-51) to be indeterminate.

However, when the scattering is isotropic the linear radiation field 

is identical to the reduced incident radiation field given by 

equation (11-58). Another apparent singularity arises in the third 

special case for which (3 = 1.0. The solution can be found by 

appropriately adjusting the equations of transfer, equations (11-48) 

and then proceeding as before. Hence, we obtain

I+(x) = 1; e
0-

and T(x) « o ,

so that OS- (vl ~
trx'/po ~(rr-/Ho

and , (11-59)
'+ '

where cr = 1 - w, , in this case, These results are obvious from

physical reasoning., When the spike scattering is forward only
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the situation is the same as though the scattered radiation were 

not scattered. Thus, the incident radiation is attenuated by the 

absorption coefficient and isotropic part of the scattering 

coefficient rather than the extinction coefficient.

We are now in a suitable position to construct the source 

function for the scattered radiation and solve the equation of 

transfer. The scattered radiation is, of course, not the true 

scattered radiation field because part of this is included in the 

linear radiation field. The most convenient way to treat the 

ground radiation is to consider, it an external source of isotropic 

stellar intensity, G-s , and isotropic thermal radiation, .

The values of G-s and Gp are found by applying boundary conditions .

The emission coefficient for the scattered radiation is made up of 

three terms; the radiation scattered isotropically from the linear 

radiation field; the radiation scattered anisotropically from the 

scattered radiation field; and the radiation scattered anisotropically 

from the reduced visible ground radiation. Hence

Rtt +1
f fjs ~ ~~ Ifo (t, p', j£') dp' dfi' 4-

J J 
o -1

+1

+ ( Kj <■ <r,) a j

4- ( + crs

O -I

-m
r r

p , 0 J n' , $' ) G-jr £ c£|/)/? ~ 
I li*tprr

<|

The limits of the last integral are p/ = 0 and p/ - 1, rather than 

p/ = -1 and p/ = +1, because the integrand is zero for all negative 

values of p' . The source function, , is the ratio of

this emission coefficient to the extinction coefficient, (Ks+Cl)p>^
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and the phase function used above is the schematic one of equation 

(1-29). The third integral in the emission coefficient deserves 

mention. By virtue of the three-part nature of the phase 

function, this integral will divide into three separate integrals. 

The one that arises from the isotropic part of the phase function 

involves an integral that is known as an exponential integral 

function. Details of the exponential integral functions, their 

definitions and their properties are found in the Appendix.

The other two integrals of this third integral of the emission 

coefficient involve a type of delta function which we shall define

as

s -1

s O ; § O .

It is introduced merely to aid the mathematical expression of the 

equation of transfer; and it will be cancelled during the solution 

of the equation. Using these functions, the source function

becomes

+■ (a (l - d.} (i --p ) Jy ("£ } - ja) 4* ~ £*> ol Grs -f*

. (11-60)

Consequently, the equation of transfer for anisotropic scattering 

in a finite plane-parallel atmosphere with a ground layer is
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p 41s (* ■ - ZocZJsC't) - (u (<~o<)^ Ij ( *t, <^) ~

- <S(i-dXi-/Crs(r ,-p) £s E2.(u-r)~

• . -C'to-'v)/! - Cr»-v)M
-to (i-«d C G-se - cXG-»0 6y)£ £ye. . (n-6i)

We shall solve this equation by Eddington1s method in the 

same way as we did in the preceding subsection for semi-infinite 

atmospheres o Firstly., we integrate the equation of transfer by 

applying the Lo -operator, to obtain '

- ( I- u> ) X ft} - (X ot 3E (-t) - p (J-5 Ez(t«,-t) , (11-62)

and secondly, we integrate the equation of transfer by applying 

the i, -operator, to obtain

XKs(r) = [ 1-Hs(x) - Xw (z^-0 frs r3<r.-x). 

ckx. &

Using the Eddington approximation, equation (1-14), and defining

2f * l - & (l- <x.) (2^-{‘) (11-63)

we obtain Ci.) " 3 $ R s Ci) — S Eg, C T,-1;) . (ii --64)
> <%

Equations (11-62) and (11-64) combine to give
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(t1-S') ls(t) = - l[i-»U)]CsE«h.-t), (11-65)
t

where 3 8* f t- t*t ) . (11-66)

Equation (11-65) is a second order inhomogeneous total differential 

equation with constant coefficients and can be solved by normal 

analytical techniques. The solution involves further transcendental 

functions, the F^-functions, which are integrals of products of 

exponential and exponential integral functions. They are defined 

in Section 2 of the Appendix and several of their properties are also 

listed. To avoid long strings of constants, equation (11-56) for 

the mean intensity of the linear radiation field will be written

ct-c/ja,,
* /U e + /5t e , (n-67)

where A6 and Av can be found from equations (11-56), (11-58) or

(11-59) which ever is appropriate. The solution of equation (11-65) 

is

S-V -ft -w/pe
e + $xe + + he. *

* As G-s | e Fa L-S/r^u ~ e Fa IX (11-68)

where As and Ax are arbitrary constants, and

A, = 3ZU* fls/C Fpt - ffO ,

A„ = At / ( - er') , (11-69)
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and /A 5 - “ 3 £ I - CI - t*> ) 3 / S .

The boundary conditions to be applied to this solution all involve 

the scattered flux, Ks(t) , which is found by using equations 

(11-66) and (11-68). The derivatives of the F*.-functions are 

given in the Appendix, so that we have

-S'* CTT/^o
Hs(t) = & A e - S A* e + q~/^e

_ <r r /
- Q'/Ih. e + (>-y) Eif'Vo-'t)

sap* **

- SAs f e. Fa t e R IX(%~t')']J (ii-70)

The conditions required to determine Grs , A, and Ax are the 

two Eddington approximate boundary conditions pertinent to the 

two surfaces of fhe atmosphere and the equation defining the 

parameter A. The two Eddington approximate boundary conditions

are

= 2Ps(o) and = -2H$Cr„). (11-71)

The parameter, A, is defined as the ratio of the stellar radiation 

flux reflected by the ground, to the stellar radiation flux incident 

on the ground. Now the outward flux from the ground, by

definition of G-s , is

+i

-i

(11-72)
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and the flux incident upon the ground is - ^f-7r (v,,).

Equating the emergent flux with \ times the incident flux, we

obtain

Grs = -4-X [ Hs(ro) + Hb-jTo')]. (11-73)

Equations (11-71) and (11-73) provide three equations for three 

unknowns and the solution for these unknowns involves no difficulty. 

Thus we have completed the solution for the first two moments of

the scattered radiation field.

The emission coefficient of the thermal radiation is comprised 

of five terms. The radiation from the three stellar radiation 

fields, the linear, the scattered and the reduced visible ground 

radiation fields, is converted into thermal radiation and emitted 

isotropically. The first three terms of the emission coefficient

are from these three sources. The other two sources consist of 

the radiation absorbed from the thermal and reduced thermal ground 

radiation fields and then emitted conservatively and isotropically. 

We have defined Gq as the intensity of the thermal radiation emitted 

isotropically from the ground, so that the emission coefficient

for the thermal radiation is

2.TT +1

o -l

4

4ir

in- i
s' S'

4-

ttr t

o 0

G-p CL+ J

o o

(i,/*') oU'. (11-74)
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The factor, n, in the attenuation coefficient in the fourth term 

of this equation is due to the fact that the thermal ground 

radiation is attenuated according to kp whereas the optical depth 

scale is measured in terms of (tq+c's) „ The source function, 

which is the emission coefficient divided by the absorption 

coefficient, KP , is thus

'BpCx) = 3^ M ~ E’x E 4-

+ Vi(i-ta) L 3s Ot) + (t) + £ 6-5 J , (11-75)

and hence, the equation of transfer for the thermal radiation is

I* 41? (*> r) = a 1.(1:,/*) - a - j_ ck g r<to-r)/n] - 
'Jr n *»

- (l-fcj) Jsfr) - (i-w) - i £(-u) £s Ha.ffo-'C). (11-76)
1

This equation is solved by applying the two integral operators, 

Lo and L, , and replacing the resultant moment Kp(i) in the second 

equation by CTpCT)/3 according to the Eddington approximation. 

Hence, we obtain

Jl My (x? = - Ei C (%-X)/v\l - X £s ) E2 -

ysM - G-&) YgUt), (11-77)

and g.jp M (11-78)- JL Hr6t) .
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Using equations (11-67) and (11-68) for Jurt(*y) and CTs('e) 

respectively we integrate equation (11-77) to obtain

ht(t) = t, - i Ej t (T.-n/ni-

-(l-w) r i zfa i 
L ~ $ J h-S) [ A, 1

* fU £ J

~ ~ 00 ) j*o L (^5 + ) 6 ~(Aw* /!•»*)€. I

(11-79)

where details of the integrations of the exponential integral

functions and the Fv< -functions are given in the Appendix.

Equation (11-79) involves two unknown constants, 8, and Gp; ‘

and these must be determined by two boundary conditions. However, 

at this stage in the solution only one boundary condition can be 

applied successfully, and that is the condition of conservation 

of energy. So far, our solutions have been valid for atmospheres 

with and without a ground. However, the application of the 

principle of conservation of energy is different in the two cases.

We shall postpone consideration of atmospheres with no ground, and firs' 

consider atmospheres with a ground layer. For these atmospheres 

the principle of conservation of energy expresses itself mathematically 

as the condition of zero net flux, which is

H* M s ( A ) +■ Up M t HC“ 0 , (11-80)

where 4 TVHground is the flux of the combined reduced ground radiation
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fields. It is given by

HyouU (**) - JL &S Ej + 1 £3 C(tP-i:)Ad .
2. 2>

(11-81)

The substitution of equations (11-57), (11-70), (11-79) and (11-81)

into equation (11-80), followed by a lengthy algebraic reduction 

yields the condition that the constant, B, , must be zero for 

energy to be conserved in the atmosphere.

It is interesting to note that this result is independent of 

£rr . Consider the energy balance at the ground surface. The 

emergent thermal flux is equal to the incident thermal flux plus 

the absorbed fraction, (1 - \) of the incident stellar flux. The 

emergent thermal flux is

1
f f

r (11-82)

O o

the incident thermal flux is 

flux is - H-ir H HsC'to) + 3

4-tr , and the incident stellar

The energy balance is

therefore

JIT An-+ J -Mrh (11-83)

However, this is not an equation for 6rp . The total flux of 

ground radiation, H<younA (To) is given by 7r ( )

from equations (11-72) and (11-82). Thus an equation for (%)

can be written involving equations (11-73) and (11-83).
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4K * IT ( + 6-S)

- [ UXri+Mt^Gv.)] -4k(H)[ HsCTuU Wh«(n)]-UM/r,). •

A glance at this equation shows it to be nothing more than equation 

(11-80), the equation of constant net flux, which does not involve 

the constant, Gp . Thus we see that the greater the flux out of 

the ground the greater the flux reflected back into the ground 

by the atmosphere. Nevertheless, it is still quite surprising 

that this state of affairs should exist. Xt is quite analogous, 

however, with a similar arbitrariness encountered by Chandraskhar 

(1960) in work on the exact solutions of similar problems using 

the principles of invariance. These principles will be discussed 

and used in Section II.5.1. Chandrasekhar found that, for 

conservative problems, the principles of invariance yielded 

arbitrary solutions that could not be resolved by appeal to the 

flux-integral alone, but by appeal to the K-integral as well.

The situation here is similar. The problem is conservative and 

is exact because we are considering fluxes only. This was shown 

to be so by the second method outlined in Section II.3.1. and is 

true here also, even though it is not proved directly. Our 

solutions are arbitrary and we shall see that a unique solution 

is only possible after using the second moment integral of the 

equation of transfer, which is the K-integral, and is expressed 

in an approximate form by equation (11-78). Furthermore, the 

arbitrariness vanishes if the thermal radiation transfer is

considered to be non-conservative.

The integration of equation (11-78) using equation (11-79) gives
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r.(t) = ba - 3 G-p Hu. [ 1 -
z

— 3 (I - co ) [■ n r . st -sti
L _ 2 As Si/iv-T) - 3 (i-fi-) L «,e + d5e l~I- 1 5 J

• -
r , crt/f'o
L ( As * Ac.) c

n <rx

— 36*-u) /is F sc-t.-t) -SOt.-T) 3
■ e GCS/VT)]|.( 11-84)

vS1

The constants, and Crf are found by using the two Eddington

approximate boundary conditions

XpCo) = 2HPM and TpCn):: - 2.Hp(To) . (11-85)

This procedure is straightforward and completes the solution of 

the equations of transfer for the scattered and thermal radiation 

fields in an anisotropically scattering finite plane-parallel 

atmosphere with a conservative Lambertian ground layer.

An important special case is that of the finite atmosphere 

with no ground at its lower surface. The scattering problem is 

exactly the same as the scattering problem of the finite atmosphere 

with a ground layer of albedo, equal to zero. Consequently, 

the source function is given by equation (11-60), the equation of 

transfer by equation (11-61) and the mean intensity and flux of 

the scattered radiation field by equations (11-68) and (11-70) 

respectively. In these equations the parameter, A, and hence 

the intensity, , are zero. The linear radiation field is,are zero.
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of course, unchanged. However, the two problems are not the 

same for the thermal radiation field. In the case of the

ground being absent, the intensity, , is zero also, but with

this restriction, equations (11-75), (11-76) and (11-79) still

represent the source function, the equation of transfer and the 

thermal flux respectively. The major change in the physics of 

the problem arises in the expression of the principle of 

conservation of energy, which is no longer the equation of zero 

net flux, equation (11-80). Energy must be conserved in the 

atmosphere, so we state that the net flux into the atmosphere at 

its upper surface must equal the net flux out of the atmosphere at 

its lower surface. Accordingly, we have

HUn C * Ms t Hp Co) - Huk (Vo) + Hp. (11-86)

It transpires that this equation is independent of 6>, and that the 

net flux at any depth is constant and equal to B, . This arises 

from the conservative nature of the problem. The finite plane- 

parallel atmosphere with a conservative ground and the semi­

infinite plane parallel atmosphere both had a constant net flux 

but that flux was zero. The mean intensity of the thermal 

radiation is found by using equations (11-78) and (11-79), and is 

given by

J-jA) = 'B
c-v

« £ + A 2 e.
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The two constants, B< and Bx, are found by using the two

Eddington approximate boundary conditions, equations (11-85).

The difference between the forms of the equation for the mean 

intensity of the thermal radiation field in finite plane-parallel 

atmospheres with and without a ground is, apart from the presence 

of the ground radiation terms in the^former case, the linear 

term in the optical depth, which is non-zero in the latter case. 

The constant, B, , which multiplies T in this term is given by

B. ~ { Ai [ e£Y” ~ ) 1 +
(To + /s)

4 [•+ L e 0~2*S/3) - (l+£n£/3)

S*

+

+ fA
r* cr xi (1 o* ( As + ) L& ( I * 2 wcr / 3 j*o ) -

cr 2-

+
r -crx/po “j")

p/ ( + A?) L ( |~ 2AC-/3 f-’o') - (l + 2^0*7 3 j j
CT

The constants, A, , A3 and A6 all involve negative exponentials of to 

so that, when To is large, B, is small. This is in agreement 

with the semi-infinite limit in which B, equals zero. Clearly, 

the difference term between the two problems is greatest when n 

and are small, and negligible when n is large, whether rft 

be large or small.

There are two other special cases where the general theory 

requires modification. Firstly, there is the case in which the 

phase function parameters, (a, (3) are (0, 1). The solution for the: 

scattered radiation field can be obtained exactly. The downward

radiation field is the linear radiation field and the upward stellar
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radiation field is the reduced visible ground radiation and 

radiation scattered from it. The first of these is given by

If,k -f ) = T

where er» G-£>) ; and the last by

TS I 6
C-r'lCo-'t)/f* p

(11-88)].

The intensity of the radiation from the ground is given by the 

flux balance at the ground surface and is

- / po
G$ = Fe . (n-89)

The mean intensity of the scattered radiation field is found by 

integrating equation (11-88) over all directions and substituting 

the expression for &s given by equation (11-89). Hence, we obtain

-£rro/pfr r *1
CTs(’v) w .1 e L t flrCtc-a)] - J(11-90)

It is this procedure of integrating the intensity to obtain the 

mean intensity that prevents similar analytical expressions being 

obtained for other values of p. In such cases, the intensity 

of the scattered radiation can be found exactly but its complex 

dependence on p prohibits its analytical integration. However,

the general method copes with the problem quite adequately in 

those cases. The solution for the mean intensity of the thermal 

radiation for the special case, (a, (3) = (0, 1), follows the 

general method but involves the following equations which are of a
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different form from the general ones on account of the different 

form of equation (11-90) for J$(i) . The equation of transfer

is

U. J Ip ± Xp ('V, m) - - JrpFjC (*©-**■)/* 3
r " *”

r -O-tZf'o
- iO-Ofi-jEjI-fffr.-ioJ - , (IJ-91)

i. \ J

from which we obtain

Hp('V) ~ - 1 (x-p Ej C C'Vs>-'t)/ft3 - J_ <cs C )3 +
r j2 v 5 2 & 1

-crX Zpo
+ /% (i- ft) Fe 4 . (n-92)

" 4 cr

The principle of conservation of energy as expressed by equation 

(11-80), proves that the constant B( must be zero, so that the 

mean intensity of the thermal radiation field is given by

~<S"X
cTjJt) ~ Ccr(iyt) ] - 3^/ pe , (11-93)

2ncr 4ft cr

in which the constants, BA and &p , are found from the two

Eddington approximate boundary conditions, equation (11-85).

The final special case for consideration is that in which

d - cr k 0 , a condition that produces a singularity in the

solutions. The method is unchanged and produces
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, S't , ~sr . sr , ~st 
= /!,£- 4/)^ 4- A^xe + /U te +

( r ec'Vo-'Y) - ste.-'t) 3
+ /|5G-S££ Rf-S/To-t)! ~e. R(11-94)

where $3 ~ ~ 3 tu «* K 4 & / 3 S t

K - 3w^kA/^S,

and As ~ $s.

The constants A\ and are found from the Eddington approximate 

boundary conditions; and the solution for the thermal radiation 

is as it was for the general problem.

We are now in a position to discuss the results of the fore­

going analysis. The equations for the mean intensities of the 

three radiation fields were evaluated by a computer for sets of 

discrete values of the atmospheric parameters. The depth points 

used were integral tenths of the total optical thickness of the 

atmosphere, , for which values of 0al, 1.0, 5.0, 10.0 and 50.0 

were used. Otherwise, the atmospheric parameters were allocated 

those values given in Table I for semi-infinite atmospheres. 

Firstly, we shall consider the scattered radiation field, which 

for the purpose of this discussion will revert to the true 

scattered radiation field as defined by equation (11-41) and 

denoted by CTsc('t') , It will prove valuable to compare the 

results for the finite atmosphere with those for the semi-infinite 

atmosphere. Consequently, we shall denote any quantity in a

semi-infinite atmosphere by the superscript, 00 „
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* <

Fig. 10 shows the mean intensity of the scattered :

radiation field in a finite plane-parallel atmosphere with no j

ground, as a function of optical depth, for values of of

0.1, 1.0, 5.0, 10.0 and 00 . All curves are for normal incidence 

and an albedo of 0.9. The continuous curves refer to isotropic 

scattering and the broken curves to complete back scattering,

(a, p) = (0,' 0). The case of all forward scattering would produce 

curves that would superimpose upon the curve for isotropic scattering 

in a semi-infinite atmosphere. Both sets of curves show that 

approaches for all values of t , as to tends to infinity

and that this approach is always from below. In fact, the graph ■ 

of JscCf) for % = 50 would be superimposed upon f't) to

within the available accuracy of the graph. As the thickness of 

an atmosphere increases, so the loss of radiation at the lower 

surface decreases, and once the scattered and reduced incident 

radiation fields are attenuated to negligible quantities the 

atmosphere is effectively semi-infinite. Moreover, it is evident 

from Fig, 10 that the difference in the results for a thick finite 

atmosphere and a semi-infinite atmosphere is smallest at the upper 

surface and greatest at the lower surface. This is a natural 

consequence of the source of the difference between the two 

atmospheres being the lower surface itself. Atmospheres for which 

to is less than or equal to unity differ greatly from semi-infinite 

atmospheres. The reduced incident radiation that leaves the 

lower surface is large and has not traversed a distance great enough 

for a substantial scattered radiation field to form. Consequently, 

the scattered radiation field in thin atmospheres is small at all 

optical depths.

The effect of anisotropy on the scattered radiation field is

• • i

i'
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shown in Fig..11. The quantity plotted as ordinate, , is defined 

as the fraction, £ - cr5c(ii)] / '3rsc(%) and is a measure of the

reduction of Uscit) from its value in a semi-infinite

atmosphere at depth % to its value at the lower surface of a 

finite atmosphere of the same total optical thickness, % ; this

reduction being due to the truncation of the atmosphere at .

The effect is greatest at the lower surface, and therefore is 

defined at the lower surface. In Fig. 11? is plotted as a

function of a for various values of (3 and % , and for =0.9 

and p„ - loO. The total effect of anisotropy is given by the 

combination of Figs. 5 and 11. Clearly, is greatest when the 

backseattering content of the phase function is greatest. To 

understand Fig. 11 it Is best to consider the scattered radiation 

to consist of radiation scattered from upward flowing radiation 

and also from downward flowing radiation. At the lower surface 

of the atmosphere the former is absent and consequently the 

scattered radiation field Is lower than the scattered radiation 

field at the same depth in a semi-infinite atmosphere which is 

derived from both upward and downward flowing radiation fields. 

Clearly, the phase function that scatters most from the upward 

flowing radiation field will give rise to the smallest scattered 

radiation at the lower surface. Such phase functions are those 

with the smallest values of p, and of those of a particular value 

of (3, those with the smallest value of a. The converse is also

true, and in the limit of (a, [3) = (0,1), takes the value of zero<

This is the limiting case of all forward scattering where the 

scattered radiation is independent of the atmosphere below.

Thus, to has no effect on JscCt: ) in this case. The curves of

Fig. 11 for which J3 = 0.5 show that is not a unique function of
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g ; the asymmetry parameter being zero for all values of a when 

(3 = 0.5. A similar point was discussed in the previous subsection. 

The final point to note from Fig. 11 is the decrease of with % 

for all values of the phase function parameters. This was seen 

in Fig. 10 also but here we observe that the effect of anisotropy 

is greater for optically thin atmospheres. This can be attributed 

to the influence of the anisotropy depending on the upward flowing 

radiation field lost due to truncation of the atmosphere and this 

loss being greatest for optically thin atmospheres.

The effects of the albedo and the angle of incidence upon the 

scattered radiation field are essentially the same for finite 

atmospheres as they were for semi-infinite atmospheres. We may 

now consider the effects of the inclusion of a ground layer at 

the lower surface of a finite atmosphere. These are shown in 

Fig. 12 for isotropic scattering of albedo, 0.9, and normal 

incidence, p,<, = 1.0. The presence of the ground introduces an 

extra radiation field, the reduced visible ground radiation, which 

also gives rise to scattered radiation. The greater the value 

of A, the greater, Crs and thus, the greater the radiation scattered 

from the reduced visible ground radiation. This is borne out 

by Fig. 12 for all values of , though the effect of the ground is 

small for very small and very large values of % . In the former

case the reduced visible ground radiation leaves the atmosphere 

through its upper surface before it is sufficiently attenuated to 

give rise to a substantial contribution to the scattered radiation 

field. Thus, the scattered radiation field remains small.

However, it is not merely doubled but quadrupled when \ changes 

from zero to unity. This is due to the isotropic nature of the

reflected radiation from the ground. That radiation which is
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diffusely reflected at a ••’•grazing angle to the ground has a large 

optical distance to traverse before reaching the surface. 

Consequently, the fraction of the reduced ground visible radiation, 

whose flux is of the same order of magnitude as the reduced 

incident flux, that gives rise to scattered radiation is greater 

than the equivalent fraction of the reduced incident radiation.

For large optical thicknesses all the reduced incident and 

scattered radiation is absorbed before it penetrates to the ground. 

Consequently, the value of A. does not affect the scattered radiation 

field at all. To see the true effect of the ground on atmospheres 

of intermediate thickness we must include the reduced visible

ground radiation field with the scattered radiation field. Fig. 13 

shows the sum of the mean intensities of these two fields plotted 

against optical depth for the same set of atmospheric parameters 

as Fig. 12. It can be seen that this stellar radiation field 

considerably exceeds rr w , in particular for optically thin 

atmospheres. In the semi-infinite case, the atmosphere below a 

particular depth, % , reflects a fraction of the downward radiation

flux at that depth. The ground at the lower surface of a finite 

atmosphere of total optical thickness, % , also reflects a

fraction of the downward flux at that depth; this time the fraction 

is \. The reflection by the semi-infinite atmosphere depends on 

the scattering parameters of the atmosphere and the directional 

distribution of the downward flowing radiation. Nevertheless, 

it can be said that if the ground albedo, A., is sufficiently 

greater than the total albedo of the semi-infinite atmosphere 

then the stellar radiation in the finite atmosphere will exceed 

that at the same opti.cal depth in the semi-infinite atmosphere.

Again, if A. is sufficiently smaller than the total albedo of the
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‘'SGmi-iiTiC±n±te atmosphere, the converse is true. A glance at 

Fig. 13 shows that a value of A of about 0.4 gives rise to 

radiation fields of the same order of magnitude as those in a 

semi-infinite atmosphere. This is also true for optically 

thick atmospheres, but deviations from (TSc (-T) are much smaller.

We can conclude from Fig. 13 that, as far as the stellar radiation 

is concerned., an atmosphere of optical thickness greater than 

twenty may be replaced by a semi-infinite atmosphere, and one of 

optical thickness greater than ten, if A is neither close to zero 

nor unity. These approximate limits would be smaller for smaller 

scattering albedos and vice versa.

The mean intensity of the thermal radiation field is described 

graphically in Figs. 14 to 16. This quantity is CTp(T) as given 

by equation (11-84) and hence excludes the reduced thermal ground 

radiation. Firstly, we shall consider the greenhouse parameter,

• fj.n , to be large, m fact 10 , m which case all the terms

involving T in equation (11-84) are negligible unless those 

containing positive exponentials are sufficiently large to remain 

significant when divided by n. This condition is only true when

' both % and % are very large. The results for 0)00 when n = 104 

show that dp Ck) is independent of T . Even for a value of % 

of 50 the change in 3"p(^) from the upper to the lower surface is 

only of the order of a percentage.

Fig. 14 shows dp(t) at T/To =0.5 plotted as a function of 

"h for n = 10 , w = 0.9, = 1.0, cl = 0 and for (3 = 0.0, 0.5 and

1.0; and A = 0.9, 0.5 and 0.0. The results for the atmosphere

with no ground are the same as those for the atmosphere with 

zA = 0.0. Two clear conclusions can be drawn. Firstly, for

optically thin atmospheres the scattering phase function is
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unimportant and tor a specified value of the albedo for single 

scattering, the thermal radiation depends only on the ground 

albedo, A. Secondly, the converse is true. For optically 

thick atmospheres, the thermal radiation, , depends

critically on the phase function but is independent of both the 

ground albedo and the optical thickness of the atmosphere. The 

emission of the thermal radiation depends on the absorption of 

five radiation fields; the reduced incident; the reduced visible 

ground; the scattered; the reduced thermal ground and the 

thermal, radiation fields. For large values of n, the first 

three of these sources of thermal radiation are dominant, but of 

these only the first two are important in optically thin atmosphere 

It is only the third that is dependent upon the phase function to 

any significant extent; so therefore the phase function is 

irrelevent as far as optically thin atmospheres with large values 

of n are concerned. The reduced visible ground radiation depends 

directly on A and hence, JpOt) does likewise for small values 

of % . Although not shown in Fig. 14, both the absolute value

of dp('t) and the dependence of ft) upon A are far greater for 

smaller values of the scattering albedo. In such cases the 

absorption is greater and yet not sufficiently large to reduce 

noticeably, because the atmosphere is thin. Hence, \Tp (t) 

increases as w decreases and A increases. Furthermore, the 

limiting optical thickness below which the phase function can be 

ignored is 0.5 for w =0.1 and A = 0.5, whereas it is 0.2 for w = 

with the same value of A. This follows from the relative 

importance of the scattered radiation field, which is the most 

strongly phase function dependent of the relevant terms in the

emission coefficient. The situation is different for optically
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thick atmospheres. In such atmospheres no stellar radiation reaches 

the ground, so that the ground behaves merely as a conservative 

diffuse reflector of the thermal radiation field. Thus, A is not 

important for optically thick atmospheres. For a particular 

value of to it can be seen that Jp 6t") increases with an increase 

in the value of g , the asymmetry parameter. This result stems 

from the flux balance condition. As g is increased, so the 

stellar radiation scattered out of the atmosphere through its 

upper surface is decreased and the outward thermal flux is 

increased. The boundary condition requires that CTp(o) increases 

also, and, as n is large, increases at all values of % when

g is increased. Fig. 14 shows this clearly; that for - 50 

for example, \Tp (V) is greatest when (3 =1.0 and smallest when 

P = 0.0. Now the value of g is directly proportional to 

but the flux of stellar radiation scattered out of the atmosphere 

increases drastically with w . Thus, \Tp(t) is greatest for 

small values of to . The exception to this is the case of p = 1.0, 

when no scattered radiation is lost through the upper surface of 

the atmosphere and all the scattered radiation is absorbed by the 

atmosphere. The high value of n and the associated independence 

of CFpC'vd upon t cause to be independent of to also, in

this special case. The value of % greater than which Cfp M 

is independent of A is clearly dependent on g. The greater the

value of to and the greater the value of p, the more penetrating 

is the stellar radiation. The thermal radiation, is only

independent of A in atmospheres where the stellar radiation does 

not penetrate to the ground, so that for p = 1.0 and to = 0.9, JpCt) 

depends on A even in atmospheres as thick as % =50.0.

The atmosphere with no ground layer deserves special mention.
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It is surprising that it gives the same values of Jp C't) as do 

those cases with a ground albedo of A. = 0, because the two 

atmospheres are completely different with regard to the thermal 

radiation. When A. = 0 the ground reflects all the thermal 

radiation incident upon it and no stellar radiation, but when 

there is no.ground there is no reflection of either radiation 

field,, For' large values of n ? the atmospheres are optically 

thin to the infra-red radiation even though they may be optically 

thick to the stellar radiation. Consequently, the contribution 

to the diffuse thermal radiation field from absorption of the 

reduced thermal ground radiation is negligible. The quantity, JpCe) 

does not include the reduced thermal ground radiation field so that 

we have the result that 0? (t) is the same for no ground as it is

for a ground of A. = 0, when n is very large.

By comparison of Figs. 8 and 14 we note that the limiting 

values of JpCt) for thick atmospheres in Fig. 14 do not approach 

the appropriate values of for the semi-infinite atmospheres,

, but approach a value exactly one half of .

This applies for all values of A. and for the case of no ground also. 

We are considering the case of n = 10*, for which the atmosphere 

is very thin to the thermal radiation and CTpOv) is essentially a 

constant equal to one half the emergent flux of thermal radiation. 

For an optically thick finite atmosphere the thermal radiation is 

generated in the upper ten or twenty units of optical distance.

The radiation that is emitted upwards will almost all escape from 

the upper surface because n is large, and will produce a certain 

emergent flux. This contribution to the emergent flux will be 

the same for a semi-infinite atmosphere. The radiation that is

emitted downwards will be replaced by either a ground layer or the
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semi-infinite atmosphere below the point under consideration. In 

each case the reflected flux is equal to the downward flux due to 

the conservative nature of both physical systems, and in each case, 

n being large, this downward flux is equal to the upward flux due 

to the isotropic nature of the thermal emission process. However 

for a finite atmosphere with a ground the reflected field is not 

considered to be part of the thermal radiation field. Thus, the 

emergent flux of radiation in the thermal part of the spectrum from 

an optically thick atmosphere of li ~ 50.0 and of n = 10^ , is

the same as that from a semi-infinite atmosphere. However, the 

emergent thermal radiation flux, Hp(t) , is one half that from

the semi-infinite atmosphere, the other half being the reduced 

thermal ground radiation. It is this latter flux that escapes 

from the lower surface of a finite atmosphere with no ground so

that the value of vTp('t) is the same for optically thick
<• ‘ 

atmospheres of % ££ 50 and n = 10 , with and without a ground of 

albedo, \ = 0.

When n = io , the function, 3"p W) Is far more complex and 

is strongly dependent on optical depth. As for semi-infinite 

atmospheres, the small value for n enables a large thermal 

radiation field to be maintained away from the upper surface of the 

atmosphere. The physical principles controlling the thermal 

radiation field are the same as those controlling the same field in 

a semi-infinite atmosphere and were discussed in detail in that 

context. However, the large thermal radiation field cannot be 

maintained near the lower surface of the atmosphere. This 

decrease in intensity near the lower boundary, and indeed the whole 

intensity profile, is shown in Fig. 16. Before discussing this, 

we shall consider Fig. 15 which is the counterpart of Fig. 14 for
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*-2 ‘n « 10 . However, the ordinate is now the maximum mean thermal

intensity attained in the atmosphere„ The values of A represented i 

are 0.9, 0.5 and 0.1 and the case of no ground is also included 

as it bears very little relation to that of A = 0.0. The

similarity between Figs. 14 and 15 is striking. Most of the 

underlying physics in Fig. 15 is the same as that discussed in 

connexion with Fig. 14. When the atmosphere is optically thin i

the scattered radiation field is negligible, the phase function 

irrelevant but the ground albedo important. When the atmosphere 

is optically thick, the ground albedo is irrelevant whilst the 

phase function is important. However, Fig. 15 does differ from 

Fig. 14 in three ways. The major A-dependent sources of the 

diffuse thermal radiation in optically thin atmospheres are the 

two reduced ground radiation fields of which the thermal field is 

the more important when n is small because it is entirely converted 

into diffuse thermal radiation. Hence (t) increases as A 

increases in this case. Secondly, the case of no ground does 

not give the same results as the cases with ground layers for 

the values of X available but does give results that seem to 

approach those for the cases with ground layers, as % increases. 

Thirdly, the maximum radiation field in a finite atmosphere of

= 50 with a ground layer is identical to that in a semi-infinite 

atmosphere at optical depth, T = 50; whereas for n = 10* they weie 

exactly half those values. This latter effect for n - 10 was

attributed to the inclusion of one half the total thermal radiation 

field in Jp(T) and calling the other half the reduced thermal 

ground radiation. It will be seen in Fig. 16 that this still 

applies when n = 10 but only very close to the ground, because
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the functions Up (t.) 

for all values of %

the reduced thermal ground radiation is attenuated in a very 

short optical distance from the ground, and that absorbed thermal 

radiation is propagated conservatively under the classification of 

CTF(t) . Fig. 15 shows the maximum of (t) which is therefore 

equal to CTpQ'V) . At first sight it would appear that the 

function, UTp for the case of no ground should remain below

for the cases with a ground, and should do so 

For optically thin atmospheres this

difference is large but for optically thick atmospheres it .is small 

because the lower boundary does not affect the properties of the 

upper part of the atmosphere. This becomes clearer when Fig. 16 

is considered. It shows the profiles of CTpfT) with Tp Ov) / Up"** 

as ordinate and T//vo as abscissa, for the phase function (cl, (1) =

(0.0, 0.5), normal incidence, albedo, fa =0.9, for the case of a 

finite atmosphere with no ground and one with a ground of arbitrary 

albedo, A.. The profiles are independent of \. For optically 

thick atmospheres we have seen that is equal to Up t

the constant value which attains deep in a semi-infinite

atmosphere. It can be seen that Up('h) rises to its maximum in 

about one fifth of the optical thickness of the atmosphere.

Now, we have already noted that a large energy density gradient 

is necessary to maintain a certain flux through an atmosphere in <

which the mean free path of the photons is small. This steep 

gradient is maintained into the atmosphere until the stellar radiatioif 

field has been attenuated to a negligible quantity at which point 

the fluxes of both radiation fields are zero. Then the thermal 

radiation field remains at this constant value at all points deeper 

in the atmosphere, that constant value being U"^ ( ) if the 

atmosphere is semi-infinite. The same is true for the total thermal
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thermal radiation in a finite atmosphere when a ground is present. 

This can be seen in Fig. 16 where the decrease in CTP('t) / 

at the lower boundary is due to the division of the thermal 

radiation into the two thermal radiation fields as explained earlier 

These effects are clearly independent of \. Moreover, 

in the no ground case, rises to the same maximum value because this 

maximum depends on the scattered radiation field only, which for 

optically thick atmospheres is independent of A. However, having 

attained this maximum, , in the no ground case, decreases

steadily towards the lower surface, almost to zero, the gradient 

being sufficiently large to maintain the small but finite flux 

that must pass through the atmosphere. This flux, which is 

determined by Rs Ct) } and the principle of conservation

of energy, controls the negative gradient of ’J’p('t’) , and unless

'Vo is one hundred or greater this gradient is not steep enough 

to attain t00) at the depth great enough .for this value to have

been attained by the mean intensity gradient from the upper surface. 

Thus never attains this value in Fig. 15 for the values

of % chosen. For optically thin atmospheres, the maximum in 

Fig. 16 is close to the lower, ground surface. These thin 

atmospheres are still optically thick to the thermal radiation so 

the fall in at zV~'k> is again due to the change in

designation of the thermal radiation leaving the ground, but the 

maximum is much nearer the lower surface due to the balance of this

last effect and the steep gradient needed to maintain the thermal 

flux which is non-zero at all optical depths in these optically 

thin atmospheres. This balance also produces the result that J'p(t) 

never reaches . The functions, (t) in the optically
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thin atmospheres with no ground layer are almost symmetrical about 

the point, 'V/'to = 0.5 so that the outward flowing fluxes of 

thermal radiation are equal and opposite. However, the magnitude 

of the thermal radiation field in this case is small despite n 

being small because the atmosphere is so thin that very little 

stellar radiation is absorbed. Those atmospheres of % =1, 5 and i 

10 are intermediate between the two atmospheres discussed and this 

is clearly shown in Fig. 16. Were anisotropy amongst the

variables of Fig. 16, then it would be seen that the maxima occur 

nearer the lower surface when g is large and positive, and nearer >* 

the upper surface when g is large and negative. This is due to 

the change in profile of the stellar radiation field, which, of 

course, is the source of the thermal radiation field.

4. The Temperature Profile

In Section 1.5, which was concerned with the problem of

radiative heating, the subject of temperature was discussed. It was* 

seen that it is common practice to define the temperature of a 

particle by the energy balance equation, (1-55). This equation 

states that the temperature of a particle is defined as the 

temperature of a black-body which would emit the same amount of 

radiation as the particle. This is not to say that it is the
I

temperature which a black-body would have in the same situation.

The difference between such temperatures were fully discussed 

in Chapter I. In adopting equation (1-55) as the temperature 

defining equation we are assuming LTE to hold for the atmosphere.

In the problem that, we have been discussing the absorption 

coefficient has been taken to be constant over all appropriate

frequencies, which are located in the infra-red region of the
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spectrum. Consequently, we say that the emission coefficient

is

jp = Kp Bp ~ KP B(t) , (11-96)

where B(T) is the integrated Planck function and BP , the source 

function of the thermal radiation which we have obtained by 

solution of the equation of transfer in the previous section. 

Equation (11-96) is merely an expression of Kirchhoff’s law and 

the definition of the source function. It leads to

= BP(r). (n-97)

Now, we have shown that the source function, , is proportional

to F, the flux in the incident beam, so we therefore have the 

result that the temperature is proportional to the fourth root of 

that flux. It is convenient to replace F by the effective 

temperature of the incident radiation field which is defined by the 

relation,

F ~ cr . (11-98)

Thus, we have

Bp (T) = (T/Tif. ' (11-99)

p

It will be convenient to omit the constant, "U , so that we shall use 

the symbol T to refer to the temperature in units of Te.

Accordingly, we have
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£7 T* » £>„(r) (ii-ioo)
-7T

Thus the temperature is found directly from the results of the 

previous section.

4.1. Semi-infinite Atmospheres The source function for the 

thermal radiation field in a semi-infinite plane-parallel atmosphere 

is given by equation (11-30) and the resulting temperature is given 

by

= JiC-y) + TUi:)]. (11-101)

if x 7

For large values of n ? it is clear that the stellar field is the 

more important source of heating unless the stellar field is 

extremely small as is the case deep in the atmosphere. As we saw 

in the previous section, iTp('b) is approximately constant 

throughout ‘the atmosphere and is of the order of 0.5. Consequently,

it is only important in the heating of the atmosphere when the

• ~ s
stellar field is very small, of the order of 5 x 10 . For small

values of n , the converse is true. The thermal radiation field 

is the more important, and, as we have seen, is very large

throughout most of the atmosphere.

Figs. 17 to 19 show the effect of the albedo on the temperature

profiles of the atmosphere for n = 10^; 10* and 1.0 respectively.

All three are drawn for isotropic scattering and normal incidence.

In Fig. 17, n is large and it is clear that T varies inversely 

with w near the surface and deep within the atmosphere whilst 

it varies directly with w at intermediate values of the optical 

depth of the order of 5.0. Deep in the atmosphere the only
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radiation field present is the thermal radiation field which, as 

we saw in Fig. 7 varies inversely with the albedo. This was 

discussed in the previous section. The inverse dependence of the 

temperature upon the albedo near the surface is due to the 

factor, (1~to) in equation (11-101). The energy balance equation 

(1-55) shows that the temperature depends on the ratio of the 

absorption coefficients in the stellar and thermal parts of the 

spectrum. This ratio is equal to with n defined as the

ratio of the two extinction coefficients. As the albedo increases

so the material becomes a poorer absorber of the stellar radiation 

and hence the energy content and temperature of the material

decrease. The anomalous result for intermediate values of 'V

is due to the increased penetration of the stellar radiation that 

accompanies an increase of the albedo. When w is greater than 

0.9 there is a significant scattered field at T = 10 whereas when 

6$ is less than 0.9 there is virtually no scattered radiation at 

that depth. Clearly this effect of the albedo is the greatest 

of the three at these optical depths. It can be seen that a 

maximum exists in each T(t) curve for very large values of the 

albedo. The dominant radiation field is E. <Ts + 3

and as this includes the reduced incident radiation field it would 

be expected that the gradient, JlTY't)/ would be negative

for all values of the albedo. However, when the albedo is very 

large the scattered radiation field increases more rapidly than 

the reduced incident radiation field decreases, so that a maximum 

exists in the sum of the two radiation fields. This arises from

the "sideways" scattered radiation that contributes more to the 

scattered radiation field than that which is lost by absorption. 

This can only happen when the absorption loss is very small and
1
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.1

therefore the albedo high. The depth at which T(r) attains is 

maximum is given by

= log E ~ O~ £~ Z € j) ?

E cr/]

where the constants are given in Section II.3.1. 

scattering and normal incidence this reduces to

(11-102)

For isotropic

Z C 3 -t 2e) / 5 & g ] / (i-e)

Hence, a maximum only occurs when the albedo is greater than two 

thirds. Consequently, we have a maximum at Tnxax = 1.157 when to 

= 0.99. This is verified in Fig. 17.

Fig. 18 shows the temperature profiles of a similar atmosphere 

for which n = 10 . In this case C't) is large and is the

dominant term in equation (11-101) at all depths. Consequently, 

the albedo dependence of the temperature is the same as that of

which was displayed in Fig. 7 and discussed in Section

II.3.1.

Fig. 19 is somewhat intermediate between the two previous 

figures, for neither the stellar nor the thermal radiation field
j

is dominant. At small optical depths the decrease of the temperature?
I
3

resulting from an increase in the albedo, is large. We have seen i 

in Fig. 7 that Tp (t) 

opposite is true for 

is multiplied by the

is overcome and a net decrease results for the temperature profile. 

Deep in the atmosphere the temperature is independent of the albedo.

At such optical depths the albedo dependent scattered radiation

decreases as the albedo increases. The
■]

the stellar radiation field but that field j
]

factor ( i-to ) so that the increase with albedo
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field is zero so that the albedo dependence of the temperature a

is the same as that of the thermal radiation field. When the b

scattering is isotropic the stellar and thermal photons are

transferred in similar ways so that the albedo has no effect on ?'

the thermal radiation field. For other phase functions the

transference of the two fields is not the same so that the

temperature deep in the atmosphere will depend upon the albedo. «

The effect of anisotropy as a whole is shown in Fig. 20

- • • which is drawn for co — 0.9, a value for which the effects of ;

anisotropy are large. The temperature profiles are shown for

4- -X, ■the three values of n » 10 , 1.0 and 10 and for values of (3 of

0.0, 0.5 and 1.0. Again the values of 0.0 and 1.0 were chosen 3

for a and p, for convenience. Deep in the atmosphere the effect d

of anisotropy is greatest when n is less than or equal to unity, 

whilst near the surface it is greatest when n is larger than unity. 

This arises from the effect of anisotropy on the particular term ;

that is dominant in each solution. Discussion of these points . M

was made in the previous section with reference to each radiation ,■

field, and will not be repeated here. It can be seen that, whenn 

is less than or equal to unity, the forward scattering phase 

function produces far greater temperatures than the other phase 

functions. The reason is essentially due to the very small loss 

of scattered radiation through the surface when the scattering is 

peaked in the forward direction.

In general, we can conclude that the temperature depends strongl; 

on the albedo, particularly near the surface; and strongly on the . 

phase function or its asymmetry parameter, particularly deep in the 

atmosphere when n is small. However, the value of the greenhouse 

parameter is the most important factor in determining the temperature
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of a planetary atmosphere. Once this is established for a

particular atmosphere we can see from the above results at which 

optical depths the albedo and other parameters are their most 

critical in determining the temperature of the atmosphere.

An interesting situation arises when po is small and n is 

equal to unity. Fig. 21 shows the appropriate temperature 

profiles for a semi-infinite atmosphere in which there is isotropic 

scattering with an albedo of 0,9. In general, the temperature 

decreases as decreases because the flux of energy entering the 

atmosphere is proportional to pt,, and the temperature depends 

directly on that flux. This is true for all values of n, but 

when n is equal to unity and is of the order of 0.1, a minimum 

temperature is seen to exist at optical depths of about 0.25. For 

such low values of po the incident radiation, on entry into the 

atmosphere has but to traverse a small vertical depth before it is 

attenuated to zero. Hence, this radiation heats up the surface 

layers only. That radiation derived from it can penetrate into 

the atmosphere more or less as before. The thermal radiation 

so derived can build up a temperature gradient so that a minimum 

is observed in the temperature profile. When n is small, the 

reduced incident radiation field barely contributes to the 

temperature; and when n is large, the thermal radiation field is 

equally unimportant. Consequently the minima are observed when n 

is equal to unity or close to unity, only. Fig. 22 shows the 

minima in relation to anisotropy for co - 0.9, = 0.15 and again,

n - 1.0. The larger the value of cl, the greater the minimum in 

the temperature profile. This follows from the fact that, when cl 

is small, the scattered radiation remains closer to the surface. 

Furthermore, when a is zero and (3 is less than 0,5, the temperature
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gradient is always negative. In this case the thermal radiation 

is generated so close to the surface that a sufficiently large 

fraction of it* escapes to ensure that the thermal radiation 

field never becomes large enough to establish a positive temperature 

gradient.

We have seen that, when n is unity and the scattering is i

isotropic the transfer of the two radiation fields is the same and j 

that the total radiation field is independent of the albedo.

Although the total radiation can be treated as one field as far as 

radiative transfer is concerned, only part of that field is 

considered to contribute to the temperature and that part is certainly 

dependent on the albedo. A similar situation can be envisaged 

for the thermal radiation field with any value of n . Consider 

a fraction, , of the absorbed thermal radiation to be emitted

isotropically without contributing to the temperature of the 

absorbing material, and let the remainder, also emitted isotropically, 

contribute to the temperature. The former part is a scattered 

part because it does not affect the material during its interaction 

with the material, whilst the latter part is absorbed and, together 

with the absorbed stellar radiation, is thermally emitted at a 

temperature controlled by the relative absorption and emission 

properties of the material. The parameter, <Zp , is therefore a s

thermal scattering albedo. In this situation, the source 

function for the thermal radiation is not equal to the integrated 

Planck function as in equation (11-96). The intensity of the 

thermal radiation field at any point in the atmosphere is 

independent of the value of because, as far as the equation of 

transfer is concerned the two processes of conservative isotropic

scattering and absorption plus conservative isotropic emission are
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identical. This applies to grey atmospheres only, or, at least 

to atmospheres that are grey in the infra-red. When considering 

monochromatic radiative transfer the two processes are not 

equivalent because their respective emission coefficients are 

completely different functions of frequency. The temperature, 

however, does depend on the value of . In the situation where 

the thermal scattering is anisotropic the thermal radiation field 

is transferred in a different manner and consequently the mean 

intensity of the radiation field is dependent on and, of course,

the phase function involved. However, it is our aim to consider 

the effect of on the.temperature profiles. Therefore it

will suffice to consider the scattering to be isotropic and thus 

introduce no new equation of transfer. The equation of transfer 

for this situation is

The second term on the right-hand side of this equation is the 

contribution to the source function of the scattered thermal 

radiation, the third term is that of the absorbed thermal radiation, 

which is emitted isotropically, and the fourth term is that of the 

absorbed stellar radiation field, which is transformed into 

thermal radiation by the absorbing material. The parameter, n 

is defined as the .ratio of the extinction coefficients; that is

) / C l<p 4- Cf' ) . (11-104)
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With this definition of n the equation of transfer becomes

u arP(t,r) = ±rPR,r)

dz

a. r,(T) - ((-<2a[rsw+ (11-105)

where co5 is the albedo for single scattering of the stellar photons. 

This equation is identical to that used before and its solution 

is therefore given by equation (11-37). The temperature, however, 

is not given by equation (11-101) but by

A T4 = M + L Xsfrt)* Thu('t)!, (11-106)

0-£p)

where is the albedo for single scattering of the thermal photons 

and is defined as

~ Crp / ( 4- <rp) . (11-107)

Since all the radiation fields are independent of , the

temperature is influenced by only by its presence in the

denominator in equation (11-106).

Clearly, the effect of is negligible when n is very small.

*{*Its effect when n is 10 and 1.0 is shown m Figs. 23 and 24 

respectively. These show the temperature plotted against optical 

depth for normal incidence, isotropic scattering of = 0.9, 

and for several values of . In Fig. 23, for n = 10* , an 

increase in temperature of 10% is incurred when £>? changes from 0.0 

to 0.3 but in Fig. 24, for n = 1.0, the equivalent increase is 

only 1%. These increases are greatest near the surface, because 

that is where the stellar radiation is most important and

influencesthe temperature through the stellar radiation field.
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At large optical depths the temperature is independent of the

value of »p . The diagrams show that as op increases so the

gradient jLT/J.Xt increases, and, as can be seen from equation 

(11-106), the temperature reaches infinity when equals unity.

This physically implausible situation is, however, never reached.

It arises when to? =1.0 which means that kP is zero; and, because 

the emission coefficient, given by Kirchhoff’s law, is

the temperature must be infinite in order to maintain an emission 

from the material equal to the absorption of the stellar radiation. 

However, as the temperature increases, so the maximum frequency 

of the Planck function increases and the situation will arise when 

this frequency exceeds the lowest frequency of the incident radiation 

The model thus breaks down when the temperature increases too much 

so that the range of is limited by the model. The maximum 

value of wp is still close to unity because the highest temperature
zv» /V

calculated was merely 12.0 and that was for =0.1 and ^P = 0.9. 

Such a non-zero value of top has been considered by Samuelson (1967a) 

and he has used a maximum value of wp of 0.5 in connexion with 

planetary atmospheres. For these atmospheres n is not large. 

Consequently, the effect of on the temperature profiles can be 

neglected. This also justifies the neglection of anisotropy 

in the treatment of the scattering of the thermal radiation. The 

additional mathematical computation would have been considerable and 

yet would have yielded little numerical change in the temperature 

profiles„

An Iterated Solution for the Temperature Distribution:- It was 

mentioned in Chapter I that the solutions obtained by the Eddington 

approximation are amenable to an iteration procedure and that the 

first of these iterations can usually be performed analytically.
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The integral form of the equation of transfer as given by equation 

(1-7) is, for the semi-infinite plane-parallel atmosphere,

r(x,+/*) =
- (t-ne) /p

e 1

(11-108)

I(r,-^) = ' + e 'BCOd.t/u
a

and the mean intensity is given by

+1

I ('V , [A ) cip= (11-109)

These equations apply to axially symmetric radiation fields and i

those whose source functions are isotropic. This is the case for '*? 

the thermal radiation field in a semi-infinite plane-parallel ;;

atmosphere, and it is an iteration on this radiation field that we 

require. The variable, T? , in equations (11-108) is measured in f

terms of the extinction coefficient of the radiation field in question.^ 

We have been using the symbol, 'V , to represent the optical depth 

measured in terms of the extinction coefficient of the incident *

radiation field. In order to maintain this convention the equations 

(11-108) for the thermal radiation field, become

ft? '*

C 'Bp (G dt / ,

-•c/np
T “ p ) “ I p ( 0 t - p ) £ 4-

(11-110)

Sp M dh / tA p .e
J

Combining equations (II-110) and (11-109), together with the boundary
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condition, I? ( o } -p ) = 0, we obtain

crP M = j 'bp ft) H, h-fcl at. (ii-ni)
V\

The source function tor the thermal radiation tield is given by 

equation (11-30);

E.P(-t)= cr?(*) + vUi-<2)[ X„Ur)J.

Hence

where

(*v) “ v\(i-CS>E 3s6c) + * (n-112)

4> A-t f'cBp (t) t
ad

''if®} ' h 1 I <#:
VI

(11-113)

and Aa:{.......] is known as the lambda operator. This is not

exactly the same operator as the conventional lambda operator 

discussed in detail by Kourganoft (1952) but it is entirely 

equivalent to that operator in principle. The difference between 

the two exists merely in the factor, n, which arises due to the 

particular choice of the variable, T . <-

Equations (11-111) and (11-112) describe an iteration procedure 

involving the source function. The source function for the thermal 

radiation field is found by substituting equations (11-13), (11-25)

and (11-37) into equation (11-30), and is

(0 = Q, e + Q& e + (11-114)
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where Qn = (I-to ) £ vt - 3 / ri C* "1 ,

Qj * Cf-£)£“C*-~2>^o*/^cr2],

and Q <i a .

The application of equation (11-112) involves the exponential integral' 

function, details of which are given in the Appendix. The required

result for the iterated source function is

■Bp ft) . vUi-£) [ + n.uf'c)] +

+ jQ, e£ £ F, C £A , -r/w.3 + loa C I + e-rtl / 6n j *

- crr/fAo s' ”7
+ Qz £ £ F» L cr^Zy>„ , r/^1 + fo^ f <+ /crrt j

u2 <?,[ a-^Ct/^)]. (n-115)

The final three terms in this equation constitute the new 

expression for the mean intensity of the thermal radiation field. 

Consider first the case when n is large. In Section II.3.1 

we saw that Tp ft) fts Qj for large values of n f where the 

superscript zero denotes those functions belonging to the first 

solutions as obtained in that section. The new function, 

depends upon the ratio, b/n , the optical depth measured in terms 

of the thermal absorption coefficient. When this ratio is large

( b,') tends to Q3 and the standard property of the lambda

operator, that the source function remains unchanged deep in the 

atmosphere, is still true. For values of this ratio, b/A > that are
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small, the final term in equation (11-115) tends to ? and

□V’m is one half 'Tp . This situation exists when t;

is large, even though t/v\ may be small. When 'V itself is small, 

the exponential terms in equation (11-115) are no longer small, 

and it transpires that they are greater than <1so that 

is greater than 0"^ (u) for small values of . However, when 

n is large, the temperature is dominated by the stellar radiation 

field at optical depths down to 10 units so that the temperature 

at optical depths of less than 10 units is virtually unaffected 

by the lambda operator. The lambda operator only has effect at 

depth where the stellar radiation is zero and where the atmosphere 

above is optically thin to the thermal radiation. The function 

5 (li) is shown in Fig. 23 for values of T as large as 106 .

The regions in which the lambda operator increases or decreases the 

temperature, as discussed above, are quite clear.

Consider now the case when n is small. For all but small 

values of 1; the following limits are reached: ~ o ? F,£ J - I i

and logtH-Gnl/ £v\ tends to unity. Hence, 0"^' tends to

for all values of TS provided that the ratio, T/n , is 

large. For small values of 'b/vi, the term, Ex(l;/\r), tends to 

unity and is reduced to a value less than CT^ ('U)

A different situation arises for intermediate values of X ; that is, 

for those values of T that yield the ratio, X/K , approximately unity. 

The Fn-functions are no longer at their limiting values of unity 

and the result - is that (yA exceeds vT p (t) for these values

of T . The depression of CTp(o) is of the order of 4 or 5% and 

is the point at which the lambda operator has the greatest effect. 

Consequently, the temperature profile is altered only slight^/ by 

one lambda operation, and the results are not of sufficient magnitude 

to warrant their graphical representation.
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The lambda operator affects the temperature profile for the 

case in which n equals unity in the same manner as that for the 

case in which n is small but the effect extends to greater optical 

depths. The results of a lambda operation on such an atmosphere are \ 

shown in Fig. 24„ As in Fig. 23 this is for p,0 = 1.0, (0 = 0.9, and ■ 

isotropic scattering. In general we conclude that the lambda 

operator takes effect within an optical depth, of one or two units 

measured in terms of the infra-red absorption coefficient, and that 

this effect has most effect on the thermal radiation field when n 

is large but most effect on the temperature profiles when n is unity. 4 

4.2. Finite Atmospheres The temperature distribution is given 

by the fourth root of the source function for the thermal radiation 

which, in the case of a finite plane-parallel atmosphere with a ground 

at the lower surface is,

"T4 = ± [ U-ti/d +

f Y\

Again, it is evident that the stellar radiation fields are dominant 

when n is large and the thermal radiation fields when n is small.

In Fig. 25 the temperature profiles of an atmosphere of n = 10 

under normal illumination are plotted as a function of fractional 

optical depth for the case of isotropic scattering of albedo, 0.9.

The temperature profiles are drawn for each of the standard total 

optical thicknesses and for values of \ of 0.1, 0.5 and 0.9, plus 

the no ground case. Most of the features of these graphs have been 

discussed in relation to the individual radiation fields of which the
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souwe function is comprised. The optically thick atmospheres

are unaffected by A because no stellar radiation can penetrate to

the ground; but it is only for these that the atmosphere with no

ground is significantly different from that with a ground of A - 0„

In this case, when there is no ground there is no thermal radiation

reflected at the lower surface,and because n is large and the

stellar radiation field is zero, the omission of this contribution

to the heating of the atmosphere is important. As the total

optical thickness of the atmosphere increases the amount of stellar

radiation reaching the ground increases so that the effect of A

becomes increasingly more important. For example, when = 5.0

and A = 0.9 the atmosphere close to the ground is hotter than that

a small distance farther from the ground. When the atmosphere Is

optically thin the reduced visible ground radiation is far larger

than the scattered radiation and consequently the temperature of the

atmosphere, which is virtually isothermal, is controlled by A

rather than % . For smaller values of the scattering albedo the

general effects are the same but the atmospheres are much hotter,

especially near the upper surface, due to the factor (1 -w) in

equation (11-116). For anisotropic scattering the changes in the

temperature profiles are even simpler. A forward throwing phase

function effectively makes the atmosphere optically thinner so that

when (cl, (3) = (0, 1) the temperature profiles for atmospheres of

of 50.0 and 5.0 are very similar to those of isotropically scattering

atmospheres of % of 10.0 and 1.0 respectively.

Fig. 26 shows the equivalent results as those of Fig. 25 for
. -2.

an atmosphere with n = 10 . However, the values of A chosen for

this diagram are 0., 1 and 1.0. In general, the temperature of the

atmosphere increases towards the lower surface showing the existence
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■

I
5-

-of .-file ^greenho^s-e effect. Again, the ground parameter, A, does j

not affect those atmospheres sufficiently thick to prevent the 

stellar radiation field reaching the ground surface. However, the 

temperatures of thin atmospheres are not dominated by A only as they ’ 

were in Fig. 25 but by A and to . This happens because, even 

though the atmosphere may be optically thin to the stellar radiation 

it is very thick to the thermal radiation and this thickness 

controls the thermal flux through its control of the scattered flux 

and the principle of conservation of energy. The temperature ’

profiles of the atmospheres with no ground layers now differ 

considerably for those with a ground layer, and do so for all optical 

thicknesses. When n = 10"* the temperature is essentially the 

fourth root of the sum of the mean intensities of the two thermal 

radiation fields. Consequently the main features of Fig. 26 are 

the same as those of the thermal radiation fields discussed in

Section II.3.2.

The intermediate case of n = 1.0 is shown in Fig. 27, which 

is similar to Figs. 25 and 26 but shows curves for A = 0.1 only.

There is, for each value of % , a positive temperature gradient

indicating a greenhouse effect, but in absolute terms the 

temperature deviates only a small amount from unity. The greenhouse 

effect is thus very much smaller than it was when n was 10 ' .

The most interesting feature of this set of graphs is the behaviour 

of the temperature near the ground surface. Two effects contribute 

to this behaviour, the first of which occurs when n is 10 also 

and therefore, is a feature of the stellar radiation field. The 

stellar radiation diffusely reflected from the ground is reflected 

isotropically whereas stellar radiation incident on the ground, in 

particular, the reduced incident radiation, is incident at angles
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close to the normal to the ground. Were the reflection similar

to that of a mirror, the mean intensity of the stellar radiation 

would not be expected to rise near the ground, but the isotropic ;

diffuse reflection causes a relative trapping or localization of part 

of the reflected radiation in those layers of the atmosphere close 

to the ground. Consequently the temperature rises near the ground

when n is such that the stellar radiation contributes to the

temperature and when the atmosphere is sufficiently thin to allow *'e

the stellar radiation to reach the ground. However, this

behaviour is modified by another effect which is the cause of the

minimum in the curve for X =50. The mean intensity of the thermal 

radiation field for large values of % and "V as given by equation 

(11-84) is approximately

- 3 &•„£■,[ ( x.-x) / n 7 .
a.

Consequently, the source function, as given by equation (11-75), is

<-t) = | +• i s-f e-x[(x-x)/n], (n-n?)

When n = 10 , even with = 50, the optical distance,

is very small. Consequently, Bp('t') — B-x and we observe no

. -St
minimum in the temperature profile. When n = 10 , the optical 

distance, ('U. -^ )/vy is sufficiently large to render both exponential

integrals zero, so that, again ; but now this is for

intermediate and small values of X only. However, when n - 1.0, the 

exponential integrals are not negligible, except for optically thin 

atmospheres where (11-117) is not valid. Thus we obtain a minimum

in the temperature profiles of optically thick atmospheres at an
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optical distance of unity, or a little less, above the ground.

This minimum is a standard feature of the Eddington approximation 

Tor certain conservative problems. In the simple case of a 4. I
conservative scattering semi-infinite plane-parallel atmosphere i

illuminated from above by isotropic radiation,the solution for the f 

total radiation field, in Eddington’s approximation is ■

The ratio, (v) / (n) , extends from one third, when t: is zero,

to unity when % is infinity. Consequently, 04 is equal to B

when r: is zero, and infinity, but less than B, when is some 

intermediate value. The same atmosphere when illuminated by parallel 

radiation of net flux, 7rF , yields

rT(“d = •& - i e~X/r° (3^-1) ,

for the mean intensity of the total radiation field in Eddington’s 

approximation. The gradient of this is positive or negative 

according to whether po Is less than or greater than 1/JIT .

The minimum for isotropic incidence is clearly the integral effects 

of many such parallel beams. As can be seen from Rig. 27 these 

minima are combined with the other ground effect when % is less 

than 50,0. These surface effects are similar for all phase 

functions. However, when the scattering is all forward an optical 

thickness is not sufficient to prevent the stellar radiation 

reaching the ground. Consequently, the minimum is not noticeable

in this case.
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The presence of a ground layer emitting radiation thermally 

introduces the concept of a ground temperature. This matter has 

been discussed by Milne (1930) who has shown that a semi-infinite 

isothermal body behaves as a black body for each frequency, V , 

for which K? , its absorption coefficient, is not zero, provided 

that scattering is neglected. This result assumes LTE to hold 

within the body, an assumption that is reasonable for a planetary 

surface. The restriction of there being no scattering applies 

to transfer of the radiation within the body. The emission 

governed by 6rs in our problem is not of this category but is a 

surface reflection of part of the stellar radiation incident upon it. 

This reflected light plays no part in determining the temperature 

of the ground. Only the absorbed radiation affects the ground 

temperature and we have not considered any scattering of the thermal 

radiation field in the finite atmosphere problem. Hence, we 

allocate a temperature, Tj , to the ground such that

- Gp Z F . (n-118)

This temperature is shown plotted as a function of X in Rig. 28

for isotropic scattering, w = 0.9, = 1.0, \ = 0.1, and n *- io\

-2.
1.0 and 10 . The ground temperatures are shown as continuous

lines and the surface temperatures of the atmospheres in contact 

with the ground are shown as broken lines. For most values of n 

and % there is a temperature discontinuity between the ground and 

the atmosphere with which it is in contact. In real atmospheres 

local conduction effects will tend to smooth out these discontinuities

However, no discontinuities exist for optically thick atmospheres
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because no stellar radiation reaches the ground. The source

function for optically thick atmospheres is given by equation (11-117).: 

and gives

T £% ) = -B«.

i

The constant Ba is found from equations (11-79), (11-84) and (11-85)

appropriately adjusted for this special case, and equals Grp /F.

By comparison with equation (11-118) we conclude that T^ = T(%) for 

optically thick atmospheres. The reason behind this equality lies 

in the isotropic nature of the emitted radiation and the assumed 

isotropic nature of the thermal radiation field used in the 

Eddington boundary condition. This must apply to the thermal 4

radiation field for all values of n . Consequently, there is a close■ 

agreement between T^ and T(^ ) for all values of % when n is IO-* , 

a value for which the stellar radiation field does not affect the 

temperature to any extent. Also, we see that T(%) is far greater 

than Tj when nis 10 and the atmosphere is optically thin. When n 

is large the infra-red absorption coefficient is very small, so that a 

small amount of absorbed visible radiation produces a high temperature 

The ratio of the absorption coefficients in this case is

However, the ground absorbs a fraction, (1 - \), of the incident visib 

radiation and all the incident thermal radiation, so that the ratio

between its absorption coefficients is (1 - \). The fact that it 

is a good absorber and emitter of thermal radiation means that Tg 

cannot rise in the same way as T( % ) does. We conclude that a 

ground layer behaves in a similar manner to a semi-infinite atmosphere 

whose greenhouse parameter is unity and whose albedo for single 

scattering is The similarity is not an exact relation because
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the semi-infinite atmosphere only reflects isotropically under 

certain conditions which are never prevalent at the lower surface 

of a finite atmosphere. Results similar to those given in Fig. 28

are available for all values of w and A. Since it is the values of 

Y\.( l-w ) and (1 -A) that determine the temperatures of the 

atmosphere and the ground respectively, the values of T<j and T( % ) 

are very close when nis small and when w = a. It is for this 

reason that Fig. 28 was drawn for A =0.1 and w = 0,9, which was the 

case that would show up the differences between T( % ) and Tg to the 

greatest extent.

An Iterated Solution for the Temperature Distribution:- The 

lambda operator may also be used to iterate the solutions for the 

source function for the thermal radiation field in a finite plane- 

parallel atmosphere in a manner analogous to that used in Section 

II.4.1 for semi-infinite atmospheres. The lambda operator has a 

different form but is constructed in the same way as that for 

semi-infinite atmospheres. The formal solution of the equation of 

transfer for thermal radiation in a finite plane-parallel atmosphere 

is given by equation (1-7) suitably adapted, and is

(£ -
= I 'B.fOe £/»r

(11-119)

| ft) e / vi.

Substituting these expressions for the intensity in the defining 

equation for the mean intensity, we obtain

ft) = _L r
"Bp ft) E", [ A*] dl; . (11-120)



_
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The source function for the thermal radiation in a finite plane- 

parallel atmosphere with a ground layer is given by equation (11-75) /

and is

(fc) - Jp(t) + +

£z (?.-£-)] , (11-121)

so that we obtain the iteration scheme, .

hfM = A^ftp(t)} + £» [ (%-fc)/>d +

+ Yi(|-£>)l rif-t) + i (Sj £i , (11-122)

Vo

Where AT f ~ f(t) £,[b-t//n A .
This is the lambda operator for finite plane-parallel atmospheres and 

is a truncated form of the lambda operator for semi-infinite 

atmospheres given by equation (TI-113).

The source function is a function of optical depth of the form

€<■ _ ~<rb/pa
~ Qa c + Qu <2- *r
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+ Qs E"2 (%-fc) + Qi 4 Q, Fir(x-U/«i3 +

- Edto -t)
F»f +

+ L t) /v\ ~3 4* G?io t + Q(i 9

where the constants, Qj. can be found in Section 11.3.2. for the 

cases of finite plane-parallel atmospheres with and without ground 

layers. The substitution of this source function into equation 

(11-122) leads to the integrals of products of exponential integral 

functions. Some of these have been tabulated and are known

functions of ordinary exponential integrals but others have not and 

must be evaluated numerically. However, in the special case of a 

finite plane-parallel atmosphere without a ground surface, the 

exponential integral functions vanish and the source function,

e -t $3 <2. t + @6 , (11-123)

yields an analytical solution for equation (11-122). The iterated 

mean intensity of the thermal radiation field is thus

4-
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I v wp© r n
+ 5 $3 a <. H [-•'f/'fo , J + F, [ ncr/p., (-v.-'t)Znl j +

— Ort/ /% C
+ - Q* £ I f;l ^/f'o, 'b/vt 3 + Fi C-vicr/^o f (i;-’v)/h3

+• i Qg ~ £iC£%-^)A3 + v\ £“•$ A M3 - n G [ Ao-t) A3 j *

+ I Qfc £ 2-£a6t/«> - . (11-124)

The effect of a lambda operation on the temperature profile 

of a finite atmosphere is very similar to that of a lambda operation 

on those of a semi-infinite atmosphere. When n is small the

effects are small and are localized in the regions of the atmosphere 

very close to its upper surface. When n is large the effects on 

the thermal radiation field are to increase it substantially unless 

'V/n is large. However, when n is large the thermal radiation 

field has little effect on the temperature profiles unless t and % 

are large. In such cases the temperature is increased considerably 

For example, when = 50 the temperature descends from 4.6 to 0.8

instead of 0.6. Thus, we conclude that the lambda operator changes

the temperature very little.

However, it is well known, from the theory of the lambda operat 

as given in detail by Kourganoff (1952), that the lambda operator 

reduces the function on which it is operating, at the origin but 

leaves it unchanged at higher values of V . The preceding results 

would appear to contradict this. In fact they do not because 

we are not comparing the resultant function of the lambda operation 

with the initial function whether we consider the mean intensity 

of the.' thermal radiation or the source function. The original

source function is
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= yp (fc) + *>((-£) f TtUt)] ,

and the iterated source function is

"Bp (t) - A t ”Tj> ( k) 4> v\ (i-<2>) At F + vF(f* (^)J +

4* V\ ( {— to > [ Ts(t) + tu(fc)3.

The final term in the iterated source function is added to the

result of the lambda operation so that, when n is large the

iterated source function is greater than the original source 

function. Similarly, the second term is added to the result of 

the iteration for the thermal radiation mean intensity so that this 

too is increased even though At is less than J? (. t)

There is a slight reduction in the source function after a lambda 

operation when n is very small because the decrease in tfp(t) to

t

equation. Thus the effect of the lambda operator is not always 

that of reducing a function near the origin.

5• The Emergent Radiation

The theory of Sections II. 3 and II. 4- has produced approximate 

results for the temperatures and mean intensities of the radiation 

fields within plane-parallel atmospheres. Whilst there is no 

simple exact theory for these solutions, there is an exact theory 

available for calculating the emergent radiation from plane-parallel 

atmospheres. We shall discuss this theory and then compare its
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results with similar results that will be obtained from our i

approximate source functions. This will prove to be a very 

useful check on the accuracy of the approximate method.

5.1. The Exact Solution It will be seen that the intensity

of the emergent radiation from a plane-parallel atmosphere can be 

expressed exactly in terms of certain functions that are solutions 1 

of several non-linear integral equations. Whilst it is true ’

to say that the appropriate functions for semi-infinite atmospheres 

are the limiting cases of those for finite atmospheres, it will 

prove instructive to consider the semi-infinite atmospheres

separately.

5.1.1. Semi-infinite Atmospheres The intensity of the radiation 

diffusely reflected from a semi-infinite plane-parallel scattering 

atmosphere illuminated by a parallel beam of radiation has been 

derived exactly by Chandrasekhar (1960) using a method based on the 

principles of invariance. For the problem of diffuse reflection, 

the principle of invariance is stated as follows:- "The law of 

diffuse reflection by a semi-infinite plane-parallel atmosphere must 

be invariant to the addition (or subtraction) of layers of arbitrary 

thickness to (or from) the atmosphere". This principle was first 

formulated by Ambartzumian (1943) and can be expressed mathematically 

in terms of a pre-defined reflection function. For a semi-infinite 

plane-parallel atmosphere illuminated by a parallel beam of radiation 

of net flux, 7rF per unit area normal tp itself, which is incident

on the surface of the atmosphere in a direction, (~^i0 , $0 ), the 

intensity of the radiation reflected from the atmosphere.in a directi 

(p, / ) Is given by

(11-125)



176

This is the definition of the reflection function, SC

where the direction co-ordinates are the same as those used

earlier in the Chapter. For isotropic scattering, the reflection

function,S , can be shown to be given by

(11-126)

where w is the albedo and H (p)is a known function defined by the 

integral equation

(11-127)

The azimuthal co-ordinates have been omitted from equation (11-126) 

because the reflection function is independent of azimuth when 

the scattering is isotropic. The theory has also been done for 

anisotropic scattering by Chandrasekhar (1960) who has used several 

simple phase functions and a general phase function in the form of 

a series of Legendre polynomials. The resulting integral equations 

are far more complex and it would be easier to treat anisotropy 

by applying the similarity relations of Van de Hulst and Grossmann 

(1968) to the solutions for isotropic scattering. However these 

would not render exact solutions though they would be very ’

reliable as proved by Hansen (1969b).

The exact solution for the emergent intensity of the thermal 

radiation produced by absorption of the stellar radiation is a more 

complex problem. For the special case in which scattering is 

absent, the problem has been solved by Stibbs (1971). This 

was based on the model for the classical greenhouse effect involving 

two grey absorption coefficients as we have been using. The
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emergent thermal radiation is given in terms of a reflection 

function in a manner analogous to that used for the scattering 

atmosphere. This reflection function, which .is independent of aziim 

because the thermal emission is isotropic, is defined by

Ip ( ) = 5 K ( J* , po) , (11-128)

where TVH is the net flux of the illuminating beam of dilute 

stellar radiation and is shown to be

f H (p) U (p0/^) , (11-129)
+ J* 9 ( *

vrhere n is the greenhouse parameter.

Attempts to find the emergent thermal radiation from such an

atmosphere when There is scattering of the stellar radiation as well 

as thermal radiation generation have been made but have yielded 

an integral equation that was not soluble in terms of known 

functions. However, solutions of the problem are available in 

certain special cases. Firstly, when n is equal to unity and 

the scattering is isotropic, the thermal radiation distributes itself 

throughout the atmosphere in exactly the same way as does the 

scattered radiation. Thus, the total radiation emerging from the 

surface of the atmosphere is identical to that reflected from a 

conservative isotropic scattering atmosphere. The intensity of the 

emergent radiation is the difference between the intensities of the 

emergent total radiation and the emergent scattered radiation.

Writing the H-functions as functions of direction and albedo, we have

Ip ( 0» p) ~ po L MC p,i) H (~ k (p, M jii-iso)
f po
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lor the intensity of the emergent thermal radiation from an

atmosphere with isotropic scattering of albedo, ca and greenhouse 

parameter, unity.

There is a second special case for which the problem with 

scattering can be solved and that is the case of linear scattering, 

the case for which the parameter a. of the schematic phase function, 

equation (1-29), is zero. For the remainder of this section we 

shall express all optical depths as tp , the optical depth

measured in terms of Kp . The linear radiation field in a semi­

infinite atmosphere is given by equations (11-11) to (11-13), which 

expressed in terms of Tp are

It,k ('Ep, ~/*J

p • "t

- vi or tp / l&e
= tr b e

- it rs n e , (n-131)

- n crisp /
and 0 uk (Fs Y &

where c $ - cr 1 / U) ( ' “ ,

« f f - U ( :^-i) -cr T / £> , (11-132)

and O’2 - (2^-03.

The equation of transfer for the thermal radiation field is given 

by equation (11-31), which, expressed in terms of the variable, tp 

is

f ~ (%} - v\ . (11-133)
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There are two components of the linear radiation field in this 

problem, one upward component and one downward component, whereas 

there was no upward component when scattering was absent.

Nevertheless, the principle of invariance is expressed mathematically 

in terms of the downward component and is unaffected by the upward 

componento The mathematical expression of the principle of 

invariance and the ensuing algebra proceeds by a method analogous 

to that used by Stibbs (1971). We therefore have

Tp (y + p) 5 e 
y

- *\ tr Xp/po

(11-134)

for the principle of invariance, and

fr

as the resulting expression for the reflection function, R(p, po). 

Let

so that

p + ( p O / O- )

(

where H(|±) is the I-I-function for conservative isotropic scattering.
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Consequently, 1
cr

(11-138)

Equating the right-hand sides of equations (11-137) and (11-138), 

we obtain

"T (/*<») " v\ V ((- CS ) R(^o/^cr).

Hence R (p , ) = vfo(l-Sl [-Up) H t^o/VkCr) , (11-139)

ncr^A -v f*o

and Tp(&, m) « ±FsVW(l~&) H(^ FK^o/kct ) . (11-140)
> ■ O" » <• h g

Thus, we have the exact solution for the emergent thermal radiation 

from an atmosphere with non-conservative linear scattering. This 

is not the most general solution but it does give solutions for the 

full range of values of the asymmetry parameter, g, through the
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5.1.2. Finite Atmospheres The method of obtaining the exact 

solution for the emergent radiation from a finite plane-parallel 

atmosphere is similar to that used for semi-infinite atmospheres 

but it is far more complex. It is, of course, necessary to 

evaluate the radiation diffusely transmitted through a finite 

atmosphere as well as that reflected by it. As with the theory 

of semi-infinite atmospheres, this theory relies heavily on the 

work of Chandrasekhar (1960). We have only sketched the theory 

for semi-infinite atmospheres and shall do the same for the theory 

of the emergent scattered radiation from finite atmospheres.

However, we shall give the complete theory of the emergent thermal 

radiation from finite atmospheres because all these theories 

are essentially the same, and that of the emergent thermal radiation 

from finite atmospheres is the most complex and is not available 

in the literature„ Having solved the problem for a finite plane-

parallel atmosphere we shall find it relatively easy to add a ground 

layer at the lower surface of the atmosphere. Firstly, however, 

we shall give an outline of the functions involved in the theory 

of the emergent scattered radiation from a finite plane-parallel 

atmosphere.

Reflection and transmission functions analogous to that of 

equation (11-125) are defined and four equations that embody the 

principle of invariance are constructed. These together with the 

equation of transfer give four integral equations for the reflection 

and transmission functions. For isotropic scattering these render 

the following solution;
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and 1 - _L j T('6> ; p , =

where X(p-) and Y(p-) are defined by a pair of integral equations:

X(p)=> + ±^fl Exp) X(r') - ypsyp')] Jy <n-i42)

|A 4- JA f

and Y (p) - £ 4- f C V (p) X(p') ~ X(p) df*\

X r~r'
(11-143)

These functions are known as Chandrasekhar1s X~ and Y-functions 

and the equations defining them vary from phase function to phase 

function. The quantity, X is the total optical thickness of the 

atmosphere measured in terms of the extinction coefficient of the 

scattered radiation. Naturally, the reflection and transmission 

functions are functions of % . The angles, cosp, and cos"1 p,o

are the angles of emergence and incidence respectively, and all the 

functions are azimuthally independent for isotropic scattering. 

Chandrasekhar has also solved the scattering problem for more complex 

phase functions, but these can be accounted for more easily by 

the similarity relations.

We now give the detailed theory of the exact solution for the 

emergent thermal radiation from a finite plane-parallel atmosphere 

with no scattering. The method follows that of Chandrasekhar (1960) 

outlined above, and that of Stibbs (1971) for the equivalent problem 

in semi-infinite atmospheres. The model atmosphere is the same 

as that used in previous sections. That is, the atmosphere is

plane-parallel and of finite optical thickness, % . A parallel
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’beam of dilute stellar radiation of net flux, , across unit

area normal to itself, is incident upon the upper surface of the 

atmosphere at an angle, cos”' (i„ , to the normal to the surface.

This radiation is attenuated by absorption and the absorbed radiatior 

is emitted conservatively and isotropically as infra-red radiation. 

The atmosphere is assumed to be grey in the visible or stellar 

part of the.spectrum, of absorption coefficient, ; and grey

in the infra-red or thermal part of the spectrum, of absorption 

coefficient, kp . The ratio of these absorption coeffients is n ,

the greenhouse parameter which is assumed to be constant throughout 

the atmosphere,, All optical depths will be measured in terms 

of the thermal absorption coefficient and designated , so that

. ..... r-
the incident radiation field at depth -fc is of net flux, irrs e 

per unit area normal to itself. The thermal radiation field is 

independent of azimuth because it is emitted isotropically. <

Consequently, we shall omit any possible azimuthal dependence in 

the reflection and transmission functions.

’Define a reflection function, 5 ('to - ja , , and a transmission

function, TO., H,r.) , for such an atmosphere, such that

IP ( ° , + p ) - ^s. S ( Ti, j )i_£ i f , /T (11-144)

and IpCt. ji. T(r.; , p.) t (11-145)

where cos“’|i is the angle of emergence and ji is greater than zero*
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Those intensities described by are all upward flowing, and those 

described by -p are all downward flowing. The flux, TT FP , is the 

flux of thermal radiation incident on the upper surface of the 

atmosphere at an angle of cos'1 po to the normal. In the problem,

Fy is actually zero but it is necessary to use such a definition 

for S and T. Define a reflection and transmission function for 

the conversion of stellar to thermal radiation, such that

= 5. K ('Vo ; f t po) , (11-146)

and I p ( ) x Fs Q ( f . ( H-147)

The principle of invariance is now invoked in four ways:-

(i) The intensity of the upward flowing thermal radiation at 

depth, T; , is equal to that of the radiation reflected and converted 

from the reduced incident radiation and reflected from the downward 

diffuse thermal radiation field at depth t; by the atmosphere below 

depth X . Expressed mathematically this becomes

‘r z s -tt'K /fa n Z .
Ip . + p) = Be R ( r.-t i h , ) +

, 1 >r
+ _!_ ( p, p Ip (t.-p'Mj.' . (11-148)

A

(ii) The intensity of the downward flowing thermal radiation at 

depth '"fc is equal to that of the radiation transmitted and converted 

from the Incident radiation plus'-that of the radiation diffusely 

reflected from the upward diffuse thermal radiation at depth 't , by 

the atmosphere above depth ''t . That is
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~ Fs. Q(r„; +

I
+ ± C Sf'V; P , p‘ ) rp + /*') olp .

I* o
(11-149)

(iii) The intensity of the thermal radiation reflected from the 

whole atmosphere is equal to that of the thermal radiation 

reflected by the atmosphere above depth , plus that of the thermal 

radiation which passes through that same part of the atmosphere from 

below. The latter quantity is made up of the upward thermal 

radiation field at depth or transmitted directly and also diffusely.

Hence

Fs R ('Vb j p » Fy 6 (r; p > pb) 4- e IP t

i
T( T ; {A* ) Ipfv, dp1 . (11-150)

(iv) The intensity of the thermal radiation diffusely transmitted 

through the whole atmosphere is equal to that of the thermal 

radiation diffusely transmitted from the reduced incident radiation 

at depth f , through the atmosphere below t , plus that of the 

downward thermal radiation field at depth t: transmitted directly 

through the atmosphere below depth t plus that of the radiation 

diffusely transmitted from the downward thermal radiation field at 

depth t through the atmosphere below depth . That is
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5 = Be ' Q(%-T;n,n) +

k-fj. 1

I ■(

+ &

Differentiating equations (11-148) to (11-151) and passing the 

first and last to the limit of X = 0, and the other two to the limit 

of , we obtain

dip [z, t

dZ
= -5. f - ag

I

+

-h (11-152)

- 'i
lip (% £ 5M, Mo ) f

ro

+ pjp')t (11-153)

0 ~ J*s SR ( % ; M , U o ) + £ •%//* 1

%

•%
~e 3- J

1

I X> '£tt
(11-154)
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and 0 - Py ~ Q ( ; b , »„} - 3Q ('to; H, M.) + C
r« a?.

* V . dt

r
+ 2. £ Ij, T(r„. f,r') &(tr/h9

Ut
et«'. (11-155)

We now invoke two boundary conditions and make use oT the 

equation of transfer. The two boundary conditions are: that 

there is no incident thermal radiation on the upper and lower

surfaces. That is

and ) « 0 . (11-156)

The equation of transfer in a plane-parallel atmosphere is

(11-157)

and the source function Tor the thermal radiation is

r
Ipf.'t,4- ± «FS e.

-«“1£ /fo
(11-158)

Hence

r

JIP ( , t p)

oK

cK %

f~S R ( 'Vo ; j* t M„ ) - 2. *B- Co )

-x'SjJu) s
r

’ 'Bo .
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(X,~p) Pg Q (;/*,/*«») + i 'Bp(to) 
A-j’a r

Using these equations for the derivatives of the intensity, 

equations (11-152) to (11-155) become

JL Fs / r + a ) , c») + 2K boj p,
v r r° /

i
= Cbpfo) + 1 f S ( To ; (o) >

J u I
(11-159)

F$ f J_ Q ( » |* i ) + Q To j i ^o)

L r

3p ( To )

«
1 j_ ( S ( Xo • j } ^p (To. ) 

z 1 Z4'
(11-160)

_L P* ^F i H , « £

Sr®

-r® / p
3p(ro) t

and

1
pTl-r,

r

i.Fs Q (to ; B , Mo) +• Q (% ; h , /
I

To /f

(11-161)

B?(o) + [nr(^; r . (n-i62)

p1
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The source function at the appropriate values of T is given by- 

equations (11-158), (11-144), (11-145) and (11-156), so that

= j. 5

and

Y\ + J-J £(% i p" , p *{2.
r"

(11-163)

- 'A'Vq /pO
v\e + J.

a
Q (to; p" , po \dp_"

r"
(11-164)= lFs

r

These two equations together with equations (11-159) to (11-162) 

give four integral equations for the reflection and transmission 

functions;

J- 4- j ^(t© j p t pg ) 4- 3 ( to • p , p„ )

l

) V\ pV % J p , p e ) e 4 X Q (to; j.? , po)
* 1 r"

^fp 'S'
* -f e + j. (11-166) ;

Q (to; p > po) 4 BQ (*& ; p •, po )

i ( ?, (to-, p , dji

r j

<2.
fp

4 J_ 
A

7o
t I

- J’l
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and i Q ( j I* , Me ) 4- BQ ( U i H , a» )

r h 1

vtG
-v\ to/po •+ LJQ (Y.;p'1, p.) ^p”^ + .p'li/p'J. (n-168)

r k j» r
Now, the reflection function,£ , and the transmission function,!1, 

are defined in exactly the same way as they are for the scattering 

problem. The transfer of the thermal radiation is exactly the 

same as the transfer of scattered radiation when the scattering is 

conservative and isotropic. Thus

1
f S(U; p , u') = X (pi ,

and -c JL
2.

C'^O ; a Y Q* ) .

r

(11-169)

(11-170)

Let V) i- X 
2.

f\ ( To ’ 1p ) cZpf

r'
(11-171)

and let
-vWo/b*

+ X G?(to; p.p'lX' ’ 7(p) 
I"

(11-172)

j < <
£

. r
e.

y o

r

~ W(^) 4

Eliminating the function derivatives from equations (11-165) to 

(11-168) and using the definitions, equations (11-169) to (11-172) 

we obtain

and

+ £. ) (dl's ; p , ^t„) = W(^„) XVp) - X(^o) (11-173)

(2. - -'-J r' M = - 2(/a„) x(p 1. (11-174)
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Substituting equations (11-173) and (11-174) into equations (11-171) I? 

and (11-172) respectively, we obtain

W ( js 1 - v\
I

(11-175)

and Z. (po) ~*

2 1
(11-176)

Equations (11-142) and (11-143), which define the X- and Y-functions, 

for the conservative case and argument, [io/p, are

v\ X ( ) n +

+ A
f.......b.. [ a xcp.z^ xm - '(11-177)
1 |AO +VXH'

and - V\ £
n %o / p a

P° [ ya y( XCjA1) -- h X(|Va V/(^f)]c^'. (11-178)

Jo r°

A comparison of the pair of equations, (11-175) and (11-176), with 

the pair, (11-177) and (11-178), indicates that W(|ro) and Z{[xo) 

satisfy the same two equations as nX(pQ/n) and nY(pQ/n) .

Furthermore, as these equations are ordinary equations in the unknown 

variables, we can show that

W( fbV“ A X ( fb/^) and (11-179)

However, this is not the final solution because the X- and Y- 

functions for conservative scattering are not unique. Chandrasekhar

has proved that, if X(p) and Y(p) are solutions of the integral
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equations (11-142) and (11-143), then so are the functions

X(p-) + qir£x(|x) + Y(p,)J and Y(pt)_ qjr[x(p-) + Y(p, )] ,where q is an 

arbitrary constant. The functions involved in equations (11-175) 

and (11-176) are not unique, and so the functions, W (p,,) and Z (4O) 

are not unique, but are

+ 4,/^ [nXs(^o/n) + , (11-180)

and Z ( p«>) - Y\ Y$(pe/n) - [nXy(^0/h) + (11-181)

v\

where the subscript s denotes a standard solution as defined by 

Chandrasekhar. The emergent thermal radiation can thus be expressed 

by using equations (11-180), (11-181), (11-173), (11-174), (11-146)

and (11-147) and the non-unique forms of the X- and Y-functions, as

Ip ( o , 4- ~ f-S L ~ Y$( po/*} Ys(] t

'1 !_ j* + / V\

+ | L XyYs( p)] f Xs ) t Yy J

and ~ 5l£o C ~ Xy oA ) Vs (/*)]

V L & /'A “ f

~ $ [ X$(p} 4 (J4)] L Yj (/<a ) .

(11-182)

(11-183)
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The principle of invariance cannot provide a unique solution for 

the emergent radiation in the conservative problem. We can find 

an expression for by utilising the flux and K-integrals which 

the equation of transfer admits in conservative cases. By applying 

the L©-operator to the equation of transfer, which is given by 

equations (11-157) and (11-158) we obtain the flux integral;

or

alt

nA: / p o
~ JL e

r -nr/f. 
Fs I e (11-184)

and by applying the -operator to the equation of transfer, we 

obtain the K-integral;

JKp (x) = Hp (t) , 
d*c

or (11-185)

where and are constants of integration. At the two boundaries 

of the atmosphere, equations (11-184) and (11-185) become

Hp (o) - ± F$ ( I- V,} , (11-186)

H. (t.) = iFsN Le - s, J t11-1871
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and

kp<o) = ±fs/s [ +n] ,
(11-188)

[ -Wp/po
& - 2T,% 4- (11-189)

These same quantities can also be found from their definitions, (1-11)1 

and equations (11-182) and (11-183). In this way we are able to 

obtain four equations involving the constant q which we can equate 

with equations (11-186) to (11-189) and hence obtain expressions 

for q, and . To do so we utilise various theorems for

the X- and Y-functions which have been proved by Chandrasekhar (I960).'- 

Hence, we obtain

(11-190)

HP too) ~ JL Fs j & 4- iCXs(fVn) t
(11-191)

Hp(o) - ±FS

Kp6>) s ~ J. (^<>/n) - 2 y$ (-t

(c<£ Xs(^oZh)+ YsQs/m)J•1 1 2
(11-192)

and Is p (yJ) ~ ~~ Fs J** j Xs (n ) - 1 sZ, Ys -

£«2 e
Q'V^ ) + Zsf^oAo]

(11-193)
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•*w

where att and are the moments of order n of Xs(p.) 

respectively. These moments are defined by

and Ys (p.)

and

i

Ys(r)r^r (11-194)c(*\ ~ I Xs (^) dp

Equations (11-186) and (11-190) give, as do equations (11-187) and 

(11-191),

f Xsf^o/n) + f
(11-195)

and equations (11-188) and (11-192) give

'a. - -^,ys(p>) +

+ (^3.^^2 ) f Xsf/%/* 1 ** y$ ( f'cA'l ) J,
(11-196)

whilst equations (11-189) and (11-193) give

X§(/*©/**) Ys (

- ± j f XrQo/n ) f Y$ ) ]. (11-197)

Substituting equations (11-195) and (11-196) into equation (11-197), 

we obtain an expression for the constant q in terms of the moments 

of the standard X- and Y-functions. Thus

*— ( — /5»t ) (11-198)

G<t i £x} i- 2 Gu -f- A)
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This expression is the same as that obtained by Chandrasekhar for 

the problem of conservative isotropic scattering.

Details of the X- and Y-fu.netions will be given in the third 

part of this section but it can be stated now that their evaluation

is sufficiently complex that tables are used for all practical <
P

purposes. The standard solutions were defined from mathematical 

considerations and it transpires that they are seldom experienced
J

in practice. The tables all quote the conservative X- and Y-functions 

as those functions that satisfy the standard problem of conservative 

isotropic scattering. These we shall denote by Xc(p) and Yc(p).

Now we have shown that the constant q is the same for these functions 

as it is for the functions W(p0) and Z(jjlo) so that we conclude that

nXc(pM') and Z(p.)= -n . (11-199)

Hence, the emergent thermal radiation from a finite plane-parallel > 

atmosphere xvith no scattering is

and

Tp (°, +1*) ~ X&C~ Yc Yc(p]/Q1

rv(%, -yO* i- R/% [ Yc Yc(p) - XcCpoA) yc<p)]/

(X1-200)

We may now consider the addition of a ground layer at the 

lower surface of the atmosphere. This extra feature will be dealt 

with in a manner closely resembling that with which Chandrasekhar 

(1960) treated the ground layer at the lower surface of a scattering 

atmosphere. The properties of the ground layer are the same as
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those of the ground layer introduced in Section II.3.2. That is, 

the ground behaves as a Lambertian surface reflecting with 

intensity, £-g , a fraction, of the stellar radiation incident 

upon it and absorbing the remaining fraction. It also absorbs 

all the thermal radiation incident upon it and emits all the absorbed 

radiation thermally and isotropically with intensity, .

It will be convenient to introduce several shorthand 

definitions before establishing the physics of the amended problem.

We define

S( p = tty' r
J Qt

-'a

and $* s

J a
(11-201)

Iz

I f

It is necessary to introduce both r(p) and r, (p) because the function 

«(% •> p - p) does not satisfy the principle of reciprocity. That 

is to say

K ( To i ® R ( T® j f*0 , p ) .

This can be seen from equation (11-173). The same is also true for
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the function Q ( % ; j* , j*0 ) ; but the functions, S (■ J* i f*o )

and T"(%; |a , ja^ do satisfy the principle of reciprocity.

Consequently, s, (p-) = s(p) and t((p.) ~ t (p) .

The intensity of the emergent thermal radiation from an .

atmosphere with no ground will be assigned the superscript, zero.

The ground can be included in a statement similar to those expressing 

the principle of invariance. That is, the emergent thermal £

radiation from the upper surface of an atmosphere with a ground at 

its lower surface is equal to the emergent thermal radiation from |

the atmosphere in the absence of the ground plus the thermal ground « 

radiation diffusely transmitted through the atmosphere plus the 

visible ground radiation diffusely transmitted and degraded by the 

atmosphere plus the thermal ground radiation directly transmitted 

and reduced. This statement can be expressed mathematically by

Ip(o, + p) = + i j -r(t.jj.,p‘)G-f+
i

I

+ 1 Q (To j , jt*) *

or

where

-f v (11-202)

1 ft
4- e (11-203)

A similar physical statement and mathematical expression can be 

constructed for the intensity of the diffuse thermal radiation field

emergent from the lower surface of the atmosphere and hence incident
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upon the ground. This quantity must be equal to the emergent 

thermal radiation from the lower surface of the atmosphere in the 

absence of the ground plus the thermal ground radiation diffusely 

reflected by the atmosphere plus the visible ground radiation 

diffusely reflected and degraded by the atmosphere. This statement 

can be expressed mathematically by

Ip (to ,-pl = Ip (%>, -p"> + _L /" GpSC't. i p, j? 'id-p +

Vh

I
r

+ R, (to j ,

Jo,

or Tp (, - j*) ~ 4 (11-204)

In order to complete the solution we must derive expressions for 

5s and Gq, . This is done by considering the energy balance into 

and out of the ground. The flux of the reduced incident radiation 

into the ground is tt (a0 Ey exp( - , and it is a fraction, A,

of this which must be equal to the upward flux of stellar radiation 

reflected by the ground, which is TT (33 . Hence -

4$ * Fg £ • (11-205)

The upward flux of thermal radiation from the ground is 7vfi-p , and 

this must be equal to the downward flux of thermal radiation 

incident upon the ground, which is given by equation (11-204), plus 

the fraction, (1 -A), of the downward flux of the reduced incident 

radiation at the ground. This arises from the conservative nature
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of the ground. Hence

jrGp ~ (i-X) rFs e 4 2vj

or

i

4 2t £rp $(p) dp + 2ir fr, Cpl dp

r t > iGr? ~ . L U~X)^o F$ (?,_______ 4- B 4 6r$ r J . (11-206)

E «- sj

r

J
s r

Although equations (11-202), (11-205) and (11-206) express the

complete solution for the emergent thermal radiation from a finite 

plane-parallel atmosphere with a ground, it will be expedient to show 

how the functions defined by equations (11-201) are obtained in 

practice. Those that are derived from the standard scattering 

reflection and transmission functions can be expressed in terms of 

the X- and Y-functions and their moments. We have,

fcQ) = ~ Up'

and T( %a ■, r, = i*r° I XdfO W~ XcCpYc^n]

for conservative isotropic scattering, so that

tQ>) = r I _2f'£ XcCr-) yap- xapyap) J( Vf I n |) WTI—«.MU | f If•A* I AA fw'

(11-207)
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The last result is given by Chandrasekhar (I960), as are many other 

properties of the X- and Y-functions. Hence

Jff) = j [ & XJp + 6-«U> Ycf/')].
(11-208)

We must remember that the moments are now moments of the Xr - and

Yc-functions. Similarly

s(O = rr
j

JjX [ Xc (J*) Xc (p') - Xc (p) /c (p1)]

r + r‘

and

(11-209)

S = 2- ( sCk) dp

I - 2oZ, fA~oio) - 2 a, a, . (11-210)

The functions q(|r) , q,(p) and r are more complex by virtue of the 

presence of the parameter n . Equations (11-147), (11-183) and

(11-199) provide expressions for q(p-) and (p^) •

(M)
p'/Y\ - jw

(p'MXcxcZcQ^J^ (n-211)
n

and <3 , (~ JL p'pa dp f Yc ((%/«*) )(c(pf) ~ Xcf^o/n) Yc(pf)J, 

a ~ t*'
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. . /
The second ©f these is mtegrable m the same wa« as were s (p) and 

t (P-b so that

V ‘r-1 ■ r -e p0 Xt. ) 4-+

+ (1 - 50^ ) Yc ( p* /n ) J .
(11-212)

However, the first integral must be evaluated by numerical methods 

unless n is unity. An analytical method of solution would involve 

changing the upper limits of the integral to 1/n and no further 

progress could be made. Now

i i
r

2 t ( k)r =
o 4

R (to, , p') dp dp'

= a.

»

r, (p') dp1

As with q(p) ‘and .q (p), r, (p) can be integrated analytically but r(p) 

cannot. Hence

p1/n 4- p

f MpMup- y,(p7n)x,(r)l

pf — S p E ( o{0 ) A c ( p'/w b p>Q Yc p 1 ,

and
pl [Cii'dcs,'} Xc.(pv^) *p* Yc(py*)ldpf.

(11-213)r ~

...■Js
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Equation (11-213) must be integrated numerically. The need to 

perform this and other integrals numerically is not a serious 

drawback to the exactness of the solution, especially when it is 

remembered that the so-called ,ranalyticaln solutions are not 

genuinely analytical. They merely express the solution in terms 

of standard moments of the X- and Y-functions. These moments

must be evaluated by interpolation on suitable tables which have 

been constructed by numerical integration of the X- and Y-functions. 

Thus, even though the foregoing analysis is exact, the intensity 

of the emergent thermal radiation is only available to an accuracy 

determined by the tables of the X- and Y-functions and their moments, 

together with the accuracy of the method of interpolation utilised 

in the numerical programmes.

The theory for semi-infinite atmospheres was extended to include 

linear scattering. This is possible for finite atmospheres only 

when (3 is unity and the scattering all forward. This is because 

the source function has an extra term which vanishes when (3 is unity. 

This extra term hinders the progress of the theory. Nevertheless, 

for [3 equal to unity the solution proceeds as before to give

and (~ CTiA Yc ( pe/ncr ) t

where cr - (I- w ) . Briefly, this can be seen from the fact that

the stellar radiation is attenuated by crn'tf , so that n is replaced 

by 'Acr in the appropriate equations. Only in the equation for the 

source function is n not so changed, but this equation involves 

the factor, n(l ~w) , which equals vyr in this case. Consequently,

n is replaced by ykt throughout the theory and the intensity of the

emergent thermal radiation from the upper surface of a finite plane-
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parallel atmosphere with no ground, but with forward scattering, is

(faMcr) Xc(p) /n<r ) (11-214)

t p + pa/ ncr]

It is reasonable that n should be replaced by flcr because the only 

real physical change is in the relationship between the absorption 

coefficients. The scattered radiation can be accounted for by 

assuming that it is not scattered but that the absorption coefficient

has become (f~ to ) ( Ks + h's) , which is equal to the extinction

coefficient employed in measuring optical depths. Hence, n is 

changed to the ratio of the new extinction coefficients which is no*. 

This did not happen in semi-infinite atmospheres when (3 was less 

than unity.

There is one further case that we can usefully consider.

That is the case of isotropic scattering when n is equal to unity. 

The transfer of the stellar and thermal radiation fields is the

same so that the total emergent radiation is given by the solution 

for the emergent scattered radiation in the conservative isotropic 

scattering problem. Thus the emergent thermal radiation is given 

by the difference between the two solutions for the emergent 

radiation in the isotropic scattering problem for conservative and 

non-conservative scattering. Writing the X- and Y-functions as 

functions of p and to we have

(11-215)
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The extension of the solution to the atmosphere with a ground

layer follows readily in the same manner as before.

5.2. The Approximate Solution As with the exact solution we 

shall find it profitable to consider semi-infinite and finite 

plane-parallel atmospheres separately,,

5.2.1. Semi-infinite Atmospheres The emergent intensity from 

the surface of a semi-infinite plane-parallel atmosphere is given 

by equation (11-108), which represents the formal solution of 

the equation of transfer, with the variable, Tr set to zero. This 

equation applies to both radiation fields in the greenhouse problem < 

with scattering, where the variables, t and q; are measured in 

terms of the appropriate extinction coefficient. We shall revert 

to our original convention of measuring q; in terms of the

extinction coefficient for the stellar radiation because our solutions 

for the source function involve this convention.. Thus, the ■

intensity of the emergent radiation from a semi-infinite plane- •'

parallel atmosphere is
0*

and

©
(11-216)

■£>„ (t) «-L /
dk I KjA (11-217)

0

for the scattered and thermal radiation fields respectively.

In Section II„3O1 theapproximate solutions for the source functions 

were derived, and by inserting these in the above equations we 

arrive at approximate solutions for the emergent intensity.

The mean intensity of the radiation at the surface can be found by 

direct integration of the emergent intensity over all directions.

Ip (’, + f») - e
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This process is, of course, the same as the lambda operation

described in Section II.4.1.

For the scattered radiation field, equation (11-216) can 

only be used when the scattering is isotropic, because all other 

forms of the phase function yield source functions that include 

the Intensity as well as the mean intensity and hence render 

equation (11-216) an integral equation for the intensity. However, 

we have solved for the scattering source function when the 

scattering is isotropic, and we have

Bs(t) = W y3(fc) + W irxno ,

where Ts(fc) and r (t) are given by equations (11-25) and 

(11-15) respectively. This can be written in the form

~ Q, 0. + Qa C , (11-218)

with Q, and Qz appropriately defined. Substituting this equation 

for the source function into equation (11-216) we obtain

+ ___ Qa , (11-219)

(£ jA + ( )

for the emergent scattered radiation from a semi-infinite plane- 

parallel atmosphere with non-conservative isotropic scattering.

The source function for the thermal radiation field, however, 

is isotropic whatever the phase function of the scattering of the 

stellar radiation. Consequently, the emergent thermal radiation 

can be found for all scattering phase functions. The source

function for the thermal radiation is given by equation (11-30),
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which is,

BJfc') = TJfc) + v\(i-<3r)[ Ys(t)+

It is convenient to express this in the form

Qi £. + Q2 e. t Q3 t (11-220)

where

and

Q, X E V\((-Zu)

Qu ~ r v\ (i- u?)

0.3 - 6*,

SO-w^/vur1] S

the constants T), E and G being given in Section II„3.1.

Substituting equation (11-220) into equation (11-217), we obtain

rP(o, <3, Q' Qs . (11-221)

fe'i [a, < j } ( crv\p /+ 1 )

Thus we have the approximate solution for the emergent thermal 

radiation from a semi-infinite plane-parallel atmosphere, with 

non-conservative anisotropic scattering,

5.2.2a Fini te A t mo spheres Firstly, we consider the case in which

there is no ground layer at the lower surface of the atmosphere.

The intensities of the emergent scattered and thermal radiation field 

from the upper surface of a finite plane-parallel atmosphere are 

given by the appropriate forms of equation (11-119), which are

Ts ( o , -*- «)
tZB«(t)e 1 &lA (11-222)

o
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and Ip(o, + p) = I Bp(t) e dh /i\p (11-223)

and the intensities of the emergent scattered and thermal radiation 

fields from the lower surface of the atmosphere, again given by 

equation (11-119), are

and

) = Bs(fe) £ dfc/^ , (11-224)

] 'QfU'i &C^/r
(11-225)

Equations (11-222) and (11-224) can only be integrated when 

the scattering is isotropic, in which case the source function can 

be expressed in the form

Bsft)
St

-f (11-226)

where the constants Q are found from equations (11-57), (11-60),

(11-68) and (11-69)o The intensity of the emergent scattered 

radiation is thus

Is ( o , Ee^^"' ^-,1-
( Sp -i)

r i/p *1
-CM?- -'J - Qs L e. -1J

( S jA + { ) ( p (-t 0
(11-227)

from the upper surface of the atmosphere; and
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IJu.-p') ■= Sh{-
•'C k“ c j - C

r - SX, -Ve/f]
?, L e - e J -

I £ +0 ( Sp -1)

r -t„/ Pl
- L e ~ c J . (11-228)

from the lower surface of the atmosphere. There are special forms

of these equations which arise when p = p0 and p = l/g due to

indeterminacies, but these special cases present no difficulty.

The source function for the thermal radiation is always

isotropic and assumes the form

-gfc crfc/fip -crk/pe
1^(0- + Qa e + g?3c + (11-229)

Substituting this into equations (11-223) and (11-225) gives

Ip
( o , + ff) - Qv I* (S-iMfQTo n

. e. -< J -

( £v\J4~ I )

r 1
Qz L e ~U +

( Swp +0

- l/^h) *1
e ~ U

r ~(<r-/po +
— Qh- £ £ “ 1 1-

(,CTA Ja/^o ~ I ) ( £r a ^/fi )

r "I
- Qs L ("to+wj-Ce J

r n
-(36 Le ->] , (11-230)

and , -p) - Q, L e - e J
r - SX> -

- Qa L e - e. J
1 q.

( Sv\p 4-f • ( S 5A )

r <X't» / f5 » -*Vo Z*A 'J r - / j* 0 - 't-.i
- Qm- I. £ - e. ,q +

( CTAp/p* 4 I ) ( cr n w — ( )

■1 0<5 [ — V\ p ( 1 - (> ) j •{• Qd‘-e J , (11-231)
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for the intensity of the emergent thermal radiation from the upper 

and lower surfaces of a finite plane-parallel non-conservative 

anisotropic scattering atmosphere.

The intensity of the emergent radiation from the upper surface 

of a finite plane-parallel atmosphere with a ground layer at its 

lower surface, is found in exactly the same manner as that for the 

emergent radiation from the atmosphere with no ground. For 

isotropic scattering the source function for the scattered radiation 

given by equation (11-60), can be expressed in the form

£• J_. t {o
” Qte * Qa. £ -t $-5 & + +

C s(ro-fc)
e E I-£, CTo-t) J - e (11-232)

Is(o, + /<)

into equation (11-222) we obtain

1 r -t„( s+i/p) -1
L e - ' J ~~ Qa. te - < j

Cop •h 0

O5 / 6

L e ____ - i J * Qh. e R t i/f, r.l
( p Z p „ 4. j ) p

r~ r , n r- r c -1? u
K L’/p , xJ - e. R L- R-n J J +

*
C S p

(11-233)

for the intensity of the emergent scattered radiation. Similarly,
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the source function for the thermal radiation for any scattering 

phase function, can be expressed in the form

Crfc / - crb /po
T>P(H <= *Que +

«+- Q5 E2 (To-fc) 4- $6 E(Yo-fc)Zw'] +- Qt + Qg

Faf-£, (%>-£)] - c R fS, +Q(0 , (11-234)

which, substituted into equation (11-223), gives

r %,( 6-’'*/<) *1 r -%>C £-tl Z^M ) “I
XP(o,+p - Q, Le -U - Qa I e ‘ -1 j d

(. S n p - ( ) ( S V\ |4 + < )

f TaCot/p,, - i/np) n r 7
-b j. Q.___  “■ l J — / <2. 7 t

-(7 ( Cr-W p / [i 0 d{ )

* R [ ’M/t , U J • + Q& e R [Vp , IV**]
V\ jA

+

r

-To/am

4- Q’f.e........... . L , uj
YljA

€?«■ Fit [ ,/p , r,Ml +

r

4 Q t -() & R [“S, Xi?T * ( £hJ4 d<) £ R £ £, ta^

S*vp c
•%/n h1 h [i/«p ,1'd \ -<- Q.o f < - e 1 1 , (I1 235



212

for the intensity of the emergent thermal radiation.

All these emergent intensities refer to the diffuse radiation

fields designated with the subscripts s or p in Section II. 3.2. •?

They do not represent the total radiation emerging from the 5

atmosphere in the part of the spectrum to which they refer. The 

intensity of the stellar radiation emerging from the lower surface' 

of a finite plane-parallel atmosphere with no ground layer is given 

by equation (11-228) plus the term (174)ttF exp (-%

which is the intensity of the reduced incident radiation field at ?

the lower surface. The intensity of the stellar radiation 

emerging from the upper surface of a finite plane-parallel 

atmosphere with a ground layer at its lower surface is given by 

equation (11-233) plus the term, Qts p (-''&/, which is the

intensity of the reduced visible ground radiation field at the 

upper surface. Similarly the intensity of the thermal radiation 

emerging from the upper surface of a finite plane-parallel 

atmosphere with a ground layer at its lower surface is given by . >1

equation (11-235) plus the term (jr? (~%/hytr) , which is the 

intensity of the reduced thermal ground radiation field at the 

upper surface. J

5.3. Comparison of the Solutions The derivation and description

of both the approximate and the exact solutions for the angular s
1

distribution of the intensity of radiation emerging from plane-

parallel scattering atmospheres has been the subject of a large

number of authors. In this thesis the topic of scattering has i

been considered in relation to the problem of radiative heating. 

Consequently, we shall neither quote nor discuss the results for 

the emergent scattered radiation from plane-parallel atmospheres, 

but restrict the discussion of this section to a consideration of
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the emergent thermal radiation. Furthermore, the exact solutions 

for the emergent thermal radiation from a semi-infinite plane- 

parallel atmosphere with no scattering have been discussed by 

Stibbs (1971). The inclusion of linear scattering does not 

affect these results to any great extent, so we shall restrict 

ourselves to giving a comparison of the approximate and the exact 

solutions for the emergent thermal radiation in certain cases only, 

rather than giving a comprehensive account of either or both

solutions.

5.3.1. Semi-infinite Atmospheres The numerical evaluation of 

the approximate solution for the intensity of the emergent thermal 

radiation from a semi-infinite plane-parallel atmosphere, as given 

by equation (11-221), is elementary. The numerical evaluation of 

the exact solution, as given by equation (11-140) is less straight­

forward. It involves the H-functions for arguments greater than 

unity. The H-functions were first evaluated for arguments between 

zero and unity, but investigations into the planetary problem led 

to their evaluation for arguments greater than unity. They have 

been tabulated by Stibbs (1963) for arguments ranging from zero to 

one hundred. However, in equation (11-140) the argument is |ro/ncr, 

which wrll frequently exceed one hundred when n = 10 . Thus,

our results are extensive only for values of n greater than 10"* ; 

but for the case of n= 10 we do have some results for small angles 

of incidence. For large values of n , the quantity, H(po/n<r) 

is approximately H(o ) which equals unily .

P'ig. 29 shows the emergent thermal radiation, , as a

function of p, the cosine of the angle of emergence.. The graphs 

are plotted for normal incidence, for n = io\ for values of (3 of 

0.1, 0.5 and lo0, and for values of to of 0.5 and 0.9. A prominent
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feature of each curve is the rapid increase in the intensity as 

grazing angles of emergence are approached. A value of 0.25 

for p corresponds to an angle of emergence of 75°. For such small 

values of p the representation of a real atmosphere by a plane- 

parallel one ceases to be good so that these large emergent 

intensities are not a cause for concern. Fig. 29 applies to the 

case of n = 10 which is not typical of planetary atmospheres.

These are the atmospheres most frequently represented hy plane- 

parallel ones in the context of radiative heating. It has been 

shown, for example, .>5^/Mih<tlas (1970), that the main contribution 

to the emergent scattered radiation from an atmosphere, emanates 

from an optical depth equal to p. For the thermal radiation define 

in terms of our optical depth unit, this principle shows that the 

main contribution issues from an optical depth of p/n. When n is 

very large, the layers near the surface are much hotter than those 

deep in the atmosphere. Consequently, the main contribution to 

the emergent thermal radiation increases as p decreases and is large 

when p is very small. We have seen earlier, in Fig. 20, that the 

temperature of the atmosphere at most optical depths is greatest 

when the asymmetry parameter Is unity and smallest when it is zero. 

Consequently, the emergent thermal radiation'is greatest when the 

phase function parameters, (cl, (3) are equal to (0.0, 1.0). The 

converse is true when p is small because the depth p/n then lies 

in the surface region where the temperature decreases as the 

asymmetry parameter increases. Again, the smaller the value of the 

albedo, the greater is the contribution of the absorbed stellar

radiation to the thermal radiation source function and hence the 

greater the emergent thermal radiation. Thus, ) is greater
t'j

when W = 0.5 than when o) = 0.9 as seen in Fig. 29. However, this
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result does not apply when [3 = 1.0, which, tor a semi-infinite 

atmosphere , is similar to the case of no scattering. Consider 

equation (11-140) which is the exact solution for the emergent 

thermal radiation. The denominator, ( 4- ) is approximately
A/

; the parameter, y and CT are unity and (1 ~u>) respectively, 

so that the equation reduces to

*

for all forward scattering. This result is independent of the. 

albedo, and also of the precise value of n itself. This result 

is borne out in Fig. 29 also. The agreement between the approximate 

and the exact solutions is good for both values of u> shown and for 

all three values of (3. The maximum difference between the two 

solutions for the thermal radiation emerging normally from a semi- 

infinite atmosphere is no greater than five percent.

Fig. 30 is the same as Fig. 29 with the value of n equal to unity 

In this case the temperature gradient of the atmosphere, dT/dT, 

is positive and hence the function, d If is also positive.

As in the previous case, small values of and high values of (3 

yield the greatest values of Ip o, , with the special

case of {3 =1.0 showing very little dependence of Tp (. o, ) 

on the albedo. The agreement between the results of the exact 

and approximate methods is again good for W = 0.9 but a little less

for Co = 0.5.

. . . . -a,Frg. 31 is the same again with n = 10 ‘ . However, results are 

shown for W = 0.5 and p0 = 0.5 only, because the arguments of the 

I-I-functions exceed one hundred in the cases used in Figs. 29 and 30.

Nevertheless, there are sufficient results to show that there is
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good agreement between the exact and approximate methods,

especially when p is greater than 0.3.

5.3.2. Finite Atmospheres Firstly, we shall consider the finite 

atmosphere with no ground, for which we shall consider the emergent j 

thermal radiation from the upper surface only. The approximate 

solution for this is given by equation (11-230) and this can be
J

evaluated without any numerical difficulty. The exact solution 

for the same quantity is given by equation (11-200), or equation •' 

(11-214) if we include forward scattering. These equations

involve the X- and Y-functions which are solutions of the pair 

of coupled integral equations, (11-142) and (11-143). The 

solution of these equations is a complex mathematical and 

computational procedure. It has been the goal of many authors to 

introduce practical methods of computing numerical values for these 

X- and Y-functions. Such are those methods introduced by 

Chandrasekhar and Elbert (1952), Mayers (1962), Sobouti (1963), and 

Bellman et al (1966). They are sufficiently complex that tabulated 

values of the results are given and it is very much simpler to 

interpolate on these tables than to generate the functions directly. 

More recent methods such as those of Cohen (1969) and Caldwell (1971) 

are simpler to perform but still involve lengthy numerical 

integration processes. These authors do not provide extensive 

tabular results. The X- and Y-functions for isotropic scattering 

are functions of % and p„ It has been general practice to give 

results for values of % less than 2 or 3 and values of p less than 

unity. Only Bellman et al give results for large values of %, 

reaching a maximum of 20.0; and only Sobouti gives results for 

values of p greater than unity, reaching a maximum of 20.0.
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Consider first the case of n = 1.0. Provided there is no

scattering, the maximum value of the argument p is unity. Thus, 

the results of all authors are applicable and we can produce 

results for many values of 33 less than 20.0. When scattering 

is present it is necessary to reduce p0 to 0.5 in order to obtain 

the equivalent set of results. The behaviour of the X- and 

Y-functions as % tends to infinity, has been studied by Van de 

Hulst (1964) and Carlstedt and Mullikin (1966). Both give •• •'

asymptotic expressions for the X- and Y-functions in terms of the 

H-function. Those of the latter are very general and reduce to 

those of the former in his case of conservative isotropic scattering 

Thus, a complete set of results for all values of X are available. 

The case of n = 10involves arguments that are very close to zero. 

Furthermore, in order to obtain results for the set of values of 

the total optical thickness of the atmosphere as used for the ' 

approximate solutions, and measured in terms of the extinction 

coefficient of the stellar radiation, the X- and Y-functions are 

required for values of % ranging from 10 to 5 x 10 . All

the tabular values of the X- and Y-functions have 0.1 as their .

lowest value of 33 so that the required tables are not available. 

Thus, for n = 10 we are limited to values of X of 10 and greater 

For the case of n — 10 , the atmospheres are very thick to the 

thermal radiation for the standard values of X and the asymptotic 

equations can be used. However, they have only been derived for 

values of p less than unity. Consequently we are restricted to 

those tables of Sobouti which are limited to X less than 3.0 x 10 

p /wcr less than 20.0 or p/cc less than 0.2. A full set of results 

awaits an extension of the tables of the X- and Y-functions to larger 

values of % and larger values of p.
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The X- and Y-functions that we require are those for 

conservative isotropic scattering, which we have already seen to 

be not unique. However, by using the K-integral we proved that 

they were the same as those for the standard scattering problem,

and are the X- and Y-functions that occur in the tables.

Consequently, we shall use those functions tabulated by Sobouti

for values of D, as measured in terms of the thermal 
* r

absorption coefficient, of 0.1 and 1.0.

We also obtained the exact solution for the emergent thermal 

radiation for isotropic scattering in the special case of n = 1.0. 

This is given by equation (11-215) which involves the X- and 

Y-functions for conservative and non-conservative isotropic 

scattering. Despite the restriction on n , this solution shows 

the effect of scattering on the emergent thermal radiation to a far 

greater extent than the solution for the case, (a., (3) = (0, 1), 

which is not a physically realistic scattering phase function.

Fig. 32 shows the angular distribution of the emergent thermal 

radiation from a finite plane-parallel atmosphere under normal
(f.

incidence with n — 10 . The exact solutions are available for

(3 - 1,0 only, and as we observed for semi-infinite atmospheres, are 

almost independent of the albedo. Therefore, Fig. 32 includes
/V

results for 60 = 0.5 only. The approximate solutions are given 

for (3 = 0.0 and 0.5 as well as 1.0 for completeness. As before, 

the continuous curves represent the exact solutions and the 

broken curves the approximate solutions. These optical thicknesses 

correspond to thermal optical thicknesses of 0.1 and 1.0 respectivel 

In general, the function, has a larger negative gradient

than the equivalent function for a semi-infinite atmosphere.

This is because the source of thermal radiation from absorption of
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thermal radiation is truncated for all but very small

values of jjl. The atmospheres are effectively semi-infinite to

the stellar radiation which is the dominant source of thermal 

radiation. The approximate solutions show that the parameter, p, 

affects the emergent thermal radiation from a finite atmosphere 

in the same way that it does that from a semi-infinite atmosphere. 

Again, a comparison between the exact and approximate solutions 

shows them to be in good agreement, though not sufficiently good 

to render them indistinguishable, the maximum deviation of the 

approximate solution from the exact solution being of the order of 

ten percent. The results are very similar for the two values of Xo

because the dominant source of the thermal radiation when n - 10

is the stellar radiation which is independent of % when is

greater than 10 , and we have 10 and 10 for values of X .

Fig. 33 shows the same results for n - 1.0. The approximate 

solutions are almost idependent of p so that only the case p =1.0 

is shown. When % = 0.1 the temeperature gradient, dT/dT, is

negative, as it was when n was IO**, and hence, rfXp ( o

is also negative. The same is true for the case, X = 1.0, except 

when p represents a grazing angle of emergence, when the emergent 

thermal radiation reaches a maximum. Fig. 33 also includes the 

results for isotropic scattering obtained from equation (11-215); 

and these are generally greater than the corresponding forward 

scattering results. In general, the agreement between the results 

from the two methods as shown in Fig. 33, is poorer than it was in 

Fig. 32, although there is still a great similarity in shape between 

the intensity distributions of the emergent thermal radiation as 

determined by the two different methods. The results from the

approximate method are all too low by about twenty percent.
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Again, the relationship between the isotropic and forward

scattering results is the same for each method. We conclude

that the approximate solutions for the emergent thermal radiation 

from an optically thin finite plane-parallel atmosphere display 

the correct physical characteristics of the problem but are not 

close enough to the exact solutions to provide accurate quantitative*

results.

Finally, we consider the solutions of the emergent thermal

radiation from a finite plane-parallel atmosphere with a ground

layer. The exact and approximate solutions are given by equations

(11-204) and (XT.-235) respectively. The numerical evaluation of

the latter is straightforward but, of the former, less so due to

the numerical integrations involved in evaluating the direction

integrals of the reflection and transmission functions. For

simplicity we shall consider the case of no scattering and normal

incidence only. Furthermore we shall restrict ourselves to the

case of n = 1.0 because the limiting range of the tabulated X- and

Y-functions does not cover the case, n = 10 , and only permits
3 <4-

solution for extremely thick atmospheres of % = 10 and 10 when 
«•

n •■= 10 . Also, when n is unity the numerical integration of the

reflection and transmission functions can be omitted and replaced 

by analytical integrations whose solutions involve the standard 

moments of the X- and Y-functions as tabulated. Fig. 34 shows 

the emergent thermal radiation from such an atmosphere as a function 

of (J, for values of % of 0.1 and 1.0 and for values of \ of 0.1,

0.5 and 1.0. It also includes the case of the finite atmosphere 

with no ground layer for comparison purposes. It shows clearly 

the ability of the ground to reflect and emit thermal radiation.
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The difference between the approximate and exact solutions is

essentially the same as it was for the no ground case. For % =

_ __ 1?- 
0.1 the agreement is good at all angles of emergence but for X= 1,0 

the approximate solution is too low by about ten percent. However, ;; 

it is consistently too low so that the effects of the parameters 

on the various solutions can be seen just as convincingly from 

the approximate solutions. On comparing the values of Gp for the 

two methods it was found that there was effectively no difference 

when % was 0.1 for all values of £> and A, and a small decrease in 

Gc? from the exact to the approximate method when % was 1.0.

This drop was independent of X and was of the order of one or two 

percent.
ji

In general, we may conclude that the qualitative results 

obtained by the approximate method are acceptable, and in fact, j
ii

good, but the quantitative results are good in a large number of 1

cases but a little low in certain circumstances. However, it is 5

unfortunate that the exact solutions are not available for a

wider range of values of the atmospheric parameters. When the X- and

Y-functions are extended then a full set of results will be

available. Nevertheless, the comparisons are consistent throughout 

the range of values available.

6. Summary

We have seen that it is possible to obtain analytical solutions 

of the equations of transfer for the mean intensities and fluxes of 

the scattered and thermal radiation fields in plane-parallel 

atmospheres under parallel illumination by using Eddington’s 

approximation for the two part grey atmosphere with anisotropic

scattering according to the schematic phase function. Using these
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solutions we have obtained the temperatures of the atmospheres 

as functions of optical depth, with the temperature of an element 

of mass suitably defined in Section 1.5 as the temperature that a 

black-body would require in order to emit the same total energy 

in the infra-red. This was accomplished in Sections II.3.1 and

11.4.1 for semi-infinite atmospheres and Sections II.3.2 and

11.4.2 for finite atmospheres. Results were also obtained for 

finite atmospheres with ground layers that behaved as Lambertian 

surfaces, situated at their lower surfaces. These ground layers 

added no complexity to the problem other than the lengthening

of the algebra and the introduction of the exponential integral 

and its associated functions into the analysis.

The first major point to arise in the development of the theory 

was the need to divide the stellar radiation field into its azimuth

dependent and azimuth independent parts rather than into the reduced 

incident radiation and the scattered radiation. This procedure 

was necessary to make the anisotropic scattering problem amenable 

to solution by the Eddington approximation. It was possible to 

obtain the intensity of the azimuth dependent part exactly, so that 

only the remainder of the stellar radiation field was .assumed to 

adhere to the Eddington approximation. This was a direct 

consequence of the schematic nature of the phase function. 

Consequently, the greater the absolute value of g , the closer the 

solution approached the exact solution.

The results for the mean intensities of the scattered and 

thermal radiation fields were discussed with more emphasis on the 

latter because the problem of scattering in plane-parallel 

atmospheres is a classical radiative transfer problem and its

solutions are well known. The general conclusion that can be drawn
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from the results of the scattering problem is that the mean

intensity of the scattered radiation field increases along the

line of the direction of the incident radiation until a certain

optical distance has been traversed, beyond which it decreases with 

distance due to absorption. The results for optically thick 

atmospheres with no ground were seen to be similar to those for 

semi-infinite atmospheres, the scattered radiation field merely 

being truncated at the appropriate optical depth. However, the 

mean intensity of the scattered radiation at a depth X in an 

optically thin atmosphere was drastically lower than the same 

quantity at depth X in a semi-infinite atmosphere.

The greenhouse parameter, n , was seen to be the most important 

of the atmospheric parameters in controlling the mean intensity 

of the thermal radiation field through equation (11-34) for semi­

infinite atmospheres and equation (11-78) for finite atmospheres.

The principle of conservation of energy fixed the thermal radiation 

flux, for a known stellar radiation flux so that the net flux at 

all points in the atmosphere was zero. Equations (11-34) and (11-35 

express the approximate relation that the gradient of the mean 

intensity of a radiation field is proportional to its flux, the 

gradient being measured in terms of the extinction coefficient 

appropriate to the aadiation. Thus a very small mean intensity 

gradient is necessary to maintain a certain flux through an 

atmosphere of poor absorbers, and a very large one to maintain the 

same flux through an atmosphere of good absorbers. Consequently 

the mean intensity of the thermal radiation field is constant when 

n is large, and has a rapid increase with optical depth, when n 

is small, until it reaches the depth where all the fluxes are zero, 

below which it remains constant.
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The temperature profiles of the atmospheres are given by 

equation (11-101), from which it is clear that the stellar radiation^ 

field controls the temperature when n is large and the thermal 

radiation field when n is small. Hence, when n is large, the 

temperature decreases with depth until the stellar radiation field 

is non-existent. Below this point it is prevented from falling 

to zero by the presence of the thermal radiation field. This 

situation involves the production of thermal photons that can escape 

from the atmosphere with very little re-absorption, and is the 

inverse of the classical greenhouse effect in which the thermal 

photons produced cannot travel far before they are absorbed and 

hence maintain a large thermal radiation field. This last situation 

occurs when n is small, and consequently, a high temperature is 

maintained away from the surface of the atmosphere. These broad 

conclusions apply to semi-infinite atmospheres.

To a certain extent they apply to finite atmospheres also.

When there is no ground at the lower surface of a finite plane- 

parallel atmosphere there is a non-zero flux of thermal radiation 

at all depths. In order to maintain this, there exists a negative 

thermal radiation mean Intensity gradient, again inversely 

proportional to n ? in the lower regions of the atmosphere. We 

have seen that, when n is small, the maximum temperature attained 

and the depth at which this maximum occurs depends on the balance 

of the these two temperature-gradients. Of course, when n is large,

the thermal radiation field is constant.

When there is a ground at the lower surface of a finite 

atmosphere a very interesting comparison can be made between the 

finite atmosphere plus ground system and a semi-infinite atmosphere.
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This lies in the conservative natures of the ground and the

serai-infinite atmosphere. The ground albedo, k, has no effect 

on either radiation field when the atmosphere is optically thick, 

whilst for atmospheres of intermediate optical thickness, it was 

seen that a value of k of 0.4 would give rise to scattered radiation^' 

fields similar to those of a semi-infinite atmosphere. No such 

similarity existed for optically thin atmospheres. The same ;

conclusions apply to the temperature profiles when n is large, 4

When n is small the thermal radiation field dominates the temperatures 

and it was seen that the ground albedo is irrelevant when the 

atmosphere is optically thick and the phase function irrelevant 

when the atmosphere is optically thin.

The ground also behaves in a similar way to a semi-infinite 

atmosphere; the temperatures in an optically thick atmosphere of . 

any value of k are the same as those in a semi-infinite atmosphere. ? 

For optically thin atmospheres the same is true when k assumes 

a value of the order of 0.3. The assignment of a temperature to 

the ground showed that the ground behaved like a semi-infinite 

atmosphere of greenhouse parameter unity and albedo, k.

It is only m the extreme cases of n = 10 and 10 that the

discontinuity in the effective values of n is apparent. When n 

equals unity there is, of course, no such discontinuity. Thus,
, JX

when n is 10 the ground is very much hotter than the atmosphere 

in contact with it, provided the atmosphere is not thick. The 

converse is not true when n is 10~a because in those circumstances 

the thermal radiation field dominates the temperature and the re­

emission of this is conservative in both atmosphere and ground.

Three further general conclusions were reached in Sections

II.3 and II.4. Firstly, the Eddington approximation was seen to be
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unable to differentiate between conservative scattering problems 

for isotropic incidence and parallel incidence of the same net

flux normal to the surface. This was the cause of the minima

of Rig. 27. Secondly, the introduction of isotropic scattering 

of the thermal radiation in addition to the absorption plus 

isotropic emission processes that contribute to the temperature, 

was seen to have little effect on the temperature profiles for 

reasonable values of the thermal scattering albedo when n was 

large, and no effect at all when n was small. Thirdly, the 

application of a lambda operator to the source function for the 

thermal radiation field in the cases of a semi-infinite atmosphere 

and a finite atmosphere with no ground, was seen to have little 

effect on the temperature profiles, though it did affect the mean
LL.

intensity of the thermal radiation field when n was 10 .

Exact solutions for the intensity of the emergent scattered

radiation from plane-parallel atmospheres have been available for 

many years and also those for the intensity of the emergent thermal 

radiation from semi‘-infinite atmospheres with no scattering have 

been made available more recently. These solutions were based on 

the principles of invariance. In Section II.5 these methods were 

extended to give fhe intensity of the thermal radiation from finite 

atmospheres, with and without a ground layer, but with no scattering 

It was also shown that linear scattering could be incorporated into 

the theory for semi-infinite atmospheres and forward scattering into 

the theory for finite atmospheres. These restrictions arose from 

the complex integral equation that arose when the more general 

problem of isotropic scattering was considered. This integral 

equation was neither derived nor quoted in the previous section. 

However, it was seen that, when n equals unity, the emergent thermal
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radiation can be obtained for the isotropic scattering case.

This was indeed done„ The inclusion of a ground layer at the 

lower surface of a finite plane-parallel atmosphere proved to 

require only an elementary extension of the theory.

The approximate solutions for the emergent thermal radiation

were also obtained, and compared with the exact solutions. Xt

was seen that there was good agreement between the two solutions

for semi-infinite atmospheres and for finite atmospheres with

n = 10^" . However, there was some discrepancy between the

two solutions when % was 1.0 and n was 1.0, but this was such that

the interpretation of the role of the atmospheric parameters in

controlling the radiation fields was not affected at all. In

general, the gradient, was of the same sign

as the gradient, UT/dr ; so that it is the temperature profile

that controls the angular distribution of the emergent thermal

radiation. Unfortunately, the results of this section were by

no means extensive. The X- and Y-functions were needed with 
-r

arguments ranging from zero to 120 in the case when n was 10 ,

. —3 4"and for atmospheres of optical thickness ranging from 10 to 10 

They were only available for optical thicknesses ranging from 0.1 

to 5.0 and argument values from zero to 20.0. Consequently, the

complete numerical expression of the theory for the exact solution 

for the emergent thermal radiation from finite plane-parallel 

atmospheres awaits the production of X- and Y-functions for wide 

ranges of optical thickness a.nd argument.
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CHAPTER III

SPHERICAL ATMOSPHERES

The model atmosphere to be studied in this Chapter is that of 

a spherical atmosphere externally illuminated; and the interstellar 

dust cloud with no central star, but illuminated by the interstellar 

radiation field is the astronomical object to which the calculations 

will refer- Apart from the geometrical factors, the model will 

be virtually identical to that used in Chapter XI; and the

definitions of all the particular parameters used in the model will 

be given, either by repetition or by reference, at the appropriate 

point in the development of the theory. This will be done for 

completeness,, Where it is possible the differences in the results 

due to geometry will be noted but such differences are not as 

common as might be expected because the different restrictions . 

involved in the two geometries ensure that equivalent problems 

are never realised.

The equation of transfer In spherical geometry is given by 

equation (I-IO); and the presence of a second partial derivative 

of the intensity immediately makes the radiative heating problem 

more complicated than it was in plane-parallel geometry. It must 

be remembered that the equation of transfer, (I-10) is not general 

for spherical geometry but a special case for spherically symmetric 

atmosphereso In Section 1.2 we discussed the applicability of

methods of solution of the plane-parallel equation of transfer to 

the spherical equation and saw that not many methods were readily 

adaptable to the spherical atmosphere. However, the Eddington
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approximate method is easily applied to the spherical atmosphere 

and has been so applied by Huang (1969b) to circumstellar shells.

We shall use this method,, Nevertheless, the spherical geometry

will necessitate the introduction of several restrictions on the 

model, even with this simple method of solution. For example, 

we shall see that the density function, ^?(r), will be severely 

restrictedo

We have obtained the exact solution for the intensity of the 

emergent radiation from semi-infinite and finite plane-parallel ... 

atmospheres by methods based on the principle of invariance.

These solutions were formulated in terms of the H-functions and the 

X- and Y-functions, respectively. To date, no analogous exact 

solutions are available for the emergent radiation from spherical 

atmospheres, so that no comparison with the approximate solutions 

for these quantities is possible. However, we shall see that 

it is possible to obtain exact and approximate solutions for the 

mean intensity of the scattered radiation field for certain 

scattering phase functions, and a comparison between these results 

will prove a valuable test on the accuracy of the approximate 

solutions .

1 • The Incident Radiation

In order to develop a mathematical model for a typical 

interstellar dust cloud illuminated by external sources, we must 

first investigate the nature of this illuminating radiation field. 

For typical interstellar dust clouds it consists mainly of the sum 

of the dilute radiation fields from all the stars in the galaxy and 

thus, is a complex function of wavelength, direction and position 

in the galaxy. The interstellar radiation field has been studied
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in a series of three papers by Lambrecht and Zimmerman. In the first 

of these, Lambrecht and Zimmerman (1954a), the energy density of 

the interstellar radiation field in the Earth’s vicinity was 

calculated as a function of wavelength. The method employed, 

involved the counting of the number of stars in various latitude ' 

zones, spectral type groups and magnitude groups, as found in the 

star catalogues. For each group of stars, the number of stars 

of apparent magnitude, 0*0, that would produce the same energy 

density in the Earth’s vicinity as the group in question, was 

calculated; and, by assigning these stars a temperature equal to 

the mean temperature of their spectral group, the energy density 

was calculated as a function of wavelength for each latitude zone, 

the stars having been assumed to radiate as black-bodies at their 

assigned temperatures. The results of this work were later 

improved, Lambrecht and Zimmerman (1954b), by accounting for 

interstellar reddening and using recent models for the emission 

spectra of the appropriate stars rather than black-body spectra.

This affected the energy density arising from early-type stars to 

the greatest extent because such stars emit radiation of a spectrum 

vastly different to a black-body spectrum. As well as considering 

the radiation fields from the stars in the three latitude zones, 

the individual stars,Sirius and Canop(us were treated separately 

because they were of sufficient apparent magnitude to warrant this.

The star counts show that the proportion of early-type stars 

is very much higher in the lower latitudes than in the higher 

latitudes. Consequently, the radiation arising from low 

latitude stars is very much richer in low wavelength radiation, 

despite the increased reddening and extinction for stars near the 

galactic plane. Table II gives the ratios of the energy density



TABLE II

Relative contributions to the interstellar radiation field in 
the vicinity of the Earth at various wavelengths from different 
regions of the sky..

5 0
Wavelength; A

Source

Low Latitudes Medium Latitudes Sirius

1000 5.5 3.4 1.4

3Q00 2.3 1.9 0.95

5000 1.4 1.0 0.57

7000 0.95 1.05 0.21

The figures quoted are the ratios of the energy density from 
the appropriate source to that from high latitudes. The 
latitude zones are: low (0°~30°); medium (30°~60°): and 
high (60°-90°),
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of the interstellar radiation field in the vicinity of the Earth 

at various wavelengths from low and medium latitude stars to that 

from high latitude stars. It also gives the ratio of the energy 

density contribution from Sir ius to that from the high latitude zones 

We see that the low wavelength radiation comes mostly from the low 

latitude stars and 20% from one star, namely Sirius„ However, for 

wavelengths greater than 4000A the radiation field is more or less 

isotropic and, moreover, the contribution from Sirius is very much 

smaller „

The spectrum of the interstellar radiation field from all 

stars shows a peak around 1000A, very little radiation at lower 

wavelengths, and a plateau of about 25% of the peak energy density, 

for wavelengths greater than 1200A. The form of this peak in the 

energy density spectrum is unimportant to the radiative heating 

problem, if the optical properties of the constituent matter of 

the atmosphere are grey or slowly varying functions of wavelength
. b _
in the 1000A region of the spectrum,, If they do vary considerably 

in this wavelength region, then the precise form of the peak 

is very important in the development of accurate model dust clouds. 

In this thesis the atmosphere is considered to be grey to the dilute 

stellar radiation. Consequently, it is the integrated intensity 

rather than the monochromatic intensity, of the interstellar 

radiation field that must be evaluated.

Table II also shows the directional distribution of the

interstellar radiation field. Radiation of wavelength greater than

1200A is virtually isotropic whereas radiation of wavelength less

0 . . .than 1200A is highly anisotropic, the greater part coming from low 

latitude stars, and very little from high latitude stars. Even 

though the low wavelength radiation is the most energetic part of



232

the interstellar radiation field, and hence an important

contributor to the heating of the atmosphere, the range of wave­

lengths over which the radiation is anisotropic is not very large. 

Therefore, we may consider the integrated radiation field to be 

isotropic. The relative sizes of the dust clouds and the galaxy are 

such that the integrated radiation field can be assumed to uniform 

at all points on the surface of the cloud. Hence, we shall assume 

the integrated intensity of the interstellar radiation field

incident on the surface of an interstellar dust cloud in the

galactic plane, to be isotropic and uniform over the surface of the

cloud o

The contribution to the interstellar radiation field in the 

vicinity of the Sun, from Sirius is of .sufficient . magnitude to 

render an approximation of isotropy for the radiation field, rather 

poor. In general, however, there is no reason for a particular 

star to contribute such a high proportion of the energy of the 

interstellar radiation field, so that the radiation field can still 

be considered to be isotropic. In Section IIIO7, we shall deal 

with the situation where an additional external radiation source 

such as a nearby star influences the temperature profiles of the

cloud„

The discussion so far has been restricted to the interstellar 

radiation field and dust clouds at points in the galactic plane, 

in fact in the vicinity of the Sun. The interstellar radiation 

field at points away from the galactic plane has been calculated 

by Zimmerman (1964). His calculations were based on theoretical 

formulae for the stellar spatial density as a function of distance 

from the galactic plane, and were evaluated by numerical integration 

of all sources in the galaxy. For such points away from the
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galactic plane, the stellar densities in northern and southern

latitudes are now different,, Table III shows the ratios of the

energy density of the interstellar radiation field from several 

latitude zones to that from the high northern latitudes, as a 

function of wavelength, for a point 250 parsecs to the north of the 

galactic plane. The ratios shown in this table are considerably 

higher than those shown in Table II, The galactic plane is to 'i
j

the south of the point in question and consequently, the southern 

latitudes contain many more stars than the northern latitudes and i 

in particular contain virtually all the early-type stars. The 1I
interstellar radiation field is thus far from isotropic and any 

clouds in such positions away from the galactic plane must be treated? 

in a different manner altogether from those situated in the galactic ; 

plane. We shall restrict this work to clouds near the galactic 

plane for which uniform isotropic incident radiation can be assumed. 

Finally, the interstellar radiation field at all wavelengths was 

assumed to be independent of longitude in the three papers mentioned 

hitherto,, This is a good approximation in relation to the latitude - 

approximation and simplifies the problem considerably.

Werner and Salpeter (1969) in their study of interstellar 

dust clouds, also assumed the incident radiation field to be uniform 

and Isotropic. Their calculations were non-grey and they assumed 

the interstellar radiation field to consist of the sum of three dilute 

black-body functions. Even though it is the effective temperature 

of the Incident radiation field that controls the range of

temperatures attained in the cloud, their treatment of the coherent 

scattering would have been no more complex using the real spectrum 

of the interstellar radiation field rather than an approximate 

spectrum of the same effective temperature. In our case of a grey

-A ,



TABLE III

Relative contributions to the interstellar - radiation field at a 
point 250pc north of the galactic plane, at various wavelengths 
from different regions of the sky.

Source

Wavelength
A.

Medium
Northern
Latitudes

Low
Northern
Latitudes

Low
Southern
Latitudes

Medium 
,Southern 
‘Latitudes

High
Southern
Latitudes

1000 1.6 3.1 13.3 32.0 29.3

3000 1.5 2.1 9.5 23.5 23.5

5000 1.3 1.3 3.0 6.9 6.4

7000 1.3 1.3 2.5 5.1 5.1

The figures quoted are the ratios of the energy density from the 
appropriate source to that from high northern latitudes.
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atmosphere the spectrum of the incident radiation is irrelevant 

but the effective temperature crucial.

The interstellar radiation field, as discussed by Lambrecht 

and Zimmerman is that originating from the stars of the galaxy 

and is confined to the visible and neighbouring regions of the 

spectrum,, In both interstellar and inter galactic space there 

exists the universal microwave background radiation discovered 

by Penzias and Wilson (1965). It has been postulated by ‘DicPs et 

al (1965) to be the thermal radiation remaining from the fireball 

phase of the universe predicted by evolutionary cosmologies.

Various source models for this radiation have been examined, for 

example, by Wolfe and Burbidge (1969)o It is thoughtthat this 

universal radiation is of a black-body nature of temperature 2,7aK, 

and highly isotropic. Measurements have not, as yet, proved the 

former, but have proved the latter, as shown by Boughn et al (1971). 

Nevertheless this radiation field has the same energy density as an 

undilute black-body radiation field of 2,7°K. The stellar radiation 

cannot penetrate to the central regions of optically thick clouds, 

so that, if the thermal radiation can penetrate to such depths, 

the microwave background radiation may increase the temperatures 

of the particles at those depths. The Inclusion of an additional 

incident radiation field in the microwave and far infra-red regions 

of the spectrum will be considered in Section III.7. Its inclusion 

is simple because it is definitely isotropic and uniform.

The interstellar radiation field In the visible part of the 

spectrum can be roughly approximated to the function, W. 3(1*, 

where vJ is the dilution factor and is equal to 10 . This yields

a value of <7( ID**) / 7f' for , the intensity of the integrated

incident radiation. That is, I = 10* /7T. The undilute 2.7°K
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3js

background radiation field has an integrated intensity of I, = 

cr (2„7)4/TT = 53ct/tc „ Thus, we have I( ft? 0o53I0o This ratio

gives the order of magnitude of the ratio of the two input 

parameters, Io and I, . The incident infra-red radiation may

also include thermal radiation from other clouds and dust so that

the ratio, I,/I0 , could reasonably assume a value somewhere

between 0,5 and 1.0.

The intensity of the reduced incident radiation and its 

associated moments can be obtained exactly. The geometry of the 

spherical atmosphere and the reduced incident radiation field is 

shown in Figo 35„ The intensity of the reduced incident radiation

at a radial distance, r , from the centre of a spherical atmosphere 

of total radius, R; and in direction, cos"’ p, to the radial 

direction is denoted by the symbol, . The whole

system is axially symmetric so that there is no azimuthal dependence 

in any of the quantities involved in this problem,. We shall see 

in Section IIIO3 that it is necessary to restrict ourselves to 

atmospheres in which the product, Yp , is independent of the position 

co-ordinate, r , where k is the extinction coefficient, which is 

grey for the incident radiation, and p is the density of the 

atmosphere„ We define the optical radius, X , by

r
and TT - (IXI-l)

The total optical radius of the atmosphere is % = and the

optical distance corresponding to a geometrical distance, x ? is

= kjox „ It is this quantity that introduces the difficulties 

when the density is a function of radius. We shall consider this

in Section III.6. The variable, T , is defined as an optical
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radius rather than an optical depth because the former case 

produces equations of a far greater symmetry,,

The intensity of the reduced incident radiation field is

therefore

(III-2)

where I0 is the intensity of the incident radiation on the surface 

of the cloudo The n th moment of this intensity is defined as

•H

I„ b) » i J f f») dp

-i

4-1

= \ I„ I j*" e Jp. (in-3)
ii

These moments can be found analytically by changing the variable 

of equation (111-3) from p, to , whence

r= - ( To1 - r1) + fx
at

and C V - x*)

These two expressions result from the application of the cosine 

rule on triangle OPN of Kigo 35„ On inserting them into equation 

(III-3), and making the appropriate change of limits, we obtain
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The integrals in the above equation can all be solved analytically 

and yield series of powers and exponentials, or exponential 

integral functions, according to whether the powers of in the 

integrand are, greater than or equal to zero, or less than zero, 

respectively. Performing these integrations gives an expression 

for the nth moment of the reduced incident radiation;
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where S = 1 if n is even, and 6=0 if n is odd.

Solution of the equation of transfer using the Eddington

approximation involves the first three of the intensity moments. 

Now, U) , IQ M , and KXt are given by equation

(III-4) with n set to 0, 1 and 2 respectively,, Thus, we have

-Y- Irtfi . . T
J M ” A° 4 e 

A-r
- e

* (Ea (Xp-'fc) - (IIT-5)

H„d M - i Cro-'t + i) e • -

7
(III-6)
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and H »- (X.-'vHvi)] e.

f -1 -(^O + -X)
- 2 u + ('Vo+'tH't+o J e - C'Vo-'v) cr0-^) E2 () +-

+ (to-'t)1 h'o+'tJE'zCvotx) ± (ro+^p E-f.C'k-'t) - (?.-*)* Ei(r9+r)f . (m-7)

A form of equation (III-5) which will prove more amenable to the 

algebraic procedures that will occur in Section IIIO3, can be 

found by using the recurrence relation for the exponential 

integral functions. This is given in the Appendix. Hence, we 

obtain

U net
E3 ('’£?-%) - Ej ( %-F'C ) 4-

(III-8)

These three quantities decrease in an exponential-like way 

from the surface to the centre of the atmosphere. When % exceeds 

5.0 the mean intensity of the reduced incident radiation at the 

centre of the atmosphere is less than 1% of its value, at the 

surface, which approaches 0.5 from above, as % tends to infinity. 

For optically thin atmospheres the mean intensity of the reduced 

incident radiation field remains within 10% of Io, and the flux 

is very small at all positions in the atmosphere. The symmetry

of the physical problem ensures that the flux at the centre of



240

every atmosphere is zero.

The ratio iT(t*)/ (t) is plotted in Fig. 36 Tor

several values oT % . It is clear that any attempt to ,1

approximate this ratio to the constant value oT 3.0 would be good Tor] 

optically thin atmospheres but poor Tor optically thick atmospheres. 5 

In Tact, Tor very thick atmospheres it is approximately 1.0 at most >' 

points in the atmosphere. We shall be using the Eddington

approximation Tor solving the equations oT transTer Tor the

scattered and thermal radiation Tields. The results oT Fig. 36 3

show that the reduced incident radiation Tield does not adhere 

to Eddington’s approximation, so that the solution Tor the 

scattered radiation Tield would be more accurate than that Tor the 2

' Jtotal stellar radiation Tield. ThereTore we shall consider the i' 34
reduced incident radiation Tield as a separate radiation Tield whose | 

moments are given by equations (III-6) to (III-8). J

2. The Role oT the Greenhouse Parameter

We shall retain the deTinition oT the greenhouse parameter that i 

was used in the previous Chapter. That is, n is deTined as the 

ratio oT the extinction coeTTicients in the ’’stellar” and ’’thermal” 

parts oT the spectrum, the extinction coeTTicients being grey in 

those two regions oT the spectrum. To deTine such a parameter 

Tor a real astronomical problem it is necessary to know the spectral 

distribution and dilution oT the incident radiation Tield. Thi$,

Tor typical interstellar dust clouds, we have discussed in the 

previous section and have seen that it is restricted to the visible 

and nearby wavelengths and that its dilution is suTTicient to 

prevent any thermally emitted radiation occupying the same region -s 

oT the spectrum. In Tact, the two regions oT the spectrum applicable
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to the interstellar dust cloud enjoy a greater separation than 

those applicable to the planetary atmosphere. It is, of course, 

necessary to construct grey absorption coefficients for the two 

regions of the spectrum before n can be defined. This was the 

subject of Section 1.4 and it was seen there that a simple mean 

absorption coefficient such as the Planck mean absorption 

coefficient, is very acceptable for the vast majority of problems 

even though the exact derivation of a genuine mean absorption 

coefficient is a very complex procedure. Having calculated 

suitable mean absorption coefficients, we have

n » ( + <rs ) I kp . (III-9)

We allow no scattering of the thermal radiation. The relaxation 

of this restriction was discussed in Section II.3.1 in connexion 

with semi-infinite plane-parallel atmospheres and it was seen that 

scattering of the thermal radiation was unimportant for normal 

problems.

In Section II.2 we quoted values of n from various references 

with regard to several radiative heating problems, and It was seen 

that n could adopt very small values in some problems and very 

large values in others. Although very small values of n are not 

appropriate for interstellar dust clouds, they will still be 

included in the following numerical work for completeness. The 

greenhouse parameter is generally taken to be far greater than 

unity for dust clouds, but it is clear from Fig. 1 of the paper 

by Werner and Salpeter that its precise value is extremely variable, 

depending on which of many grain models are used.
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The greenhouse parameter was assumed to be independent of 

optical depth for the plane-parallel atmospheres of the previous 

Chapter. We shall assume it to be independent of position in the 

spherical atmospheres also. Now, we have seen that the reduced 

incident radiation could only be expressed analytically when the 

absorption coefficients and density were assumed to remain constant 

throughout the atmosphere. In the light of this assumption the 

constancy of the greenhouse parameter follows naturally. In 

Section III.6 we shall relax this restriction and allow the density ' 

to vary throughout the cloud, though still retaining the spherical 

symmetry. We shall see that a greenhouse parameter,n (r) can be 

accommodated by the theory. However, it will serve no purpose to 

allow n(r) to vary with the aims of the thesis those given in .

Section 1.7.

The greenhouse parameter is the most important of the 

atmospheric parameters and it will be expedient to summarise its .

effects on the temperature profiles of a semi-infinite atmosphere.

The temperature is defined to be the fourth root of the source 

function for the thermal radiation, given by equation (11-30),

which is the energy balance equation, (1-55), applied to the model 

atmosphere of Chapter II. However, it is not the greenhouse 

parameter itself that is important in this context but the product,

Y\(l -w ), which is the ratio of the absorption coefficients, Ks / .

It is this parameter that controls the relative weights of the

two radiation fields in contributing to the temperature. When n(i-ca

is large the absorption of the thermal radiation is poor so that

the emission of the thermal radiation, and hence the temperature,

is controlled by the absorbed portion of the stellar radiation field.

Conversely, when n(l - w) is small the emission is dominated by
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the absorption and re-emission of the thermal radiation field.

When n is large this is the only way in which it controls the 

temperature; that is, through However, when n is

small the value of A(l- £>) is unimportant but that of n is 

important by its control of the mean intensity of the thermal 

radiation field as seen in equation (11-33). We conclude that 

when n is small it is the value of («51 crs )/kp that is important, 

and when n is large it is the value of K4/kp . This conclusion will 

be endorsed by the results of this chapter.

3• The Source Function

We have already obtained expressions for the intensity of the 

reduced incident radiation field and its moments, so that we can 

now proceed with the solution for the scattered radiation field. 

All radiation fields are axially symmetric so there is no need 

to construct an azimuth dependent linear radiation field as in 

Chapter II. All the radiation fields are independent of azimuth 

in this situation. The atmosphere is grey to the stellar 

radiation and the scattering is anisotropic according to the phase 

function (1-29) whose azimuth independent form is

(III-10)

The emission coefficient for the scattered radiation field consists

of that radiation scattered from the reduced incident radiation

field plus that radiation scattered from the scattered radiation 

field. Following the equivalent arguments of Section II.3.1, we

obtain
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js(-r’/A)= J f •t5^r* r') + I«* (r, jA')]o/p'.
-I

Using equation (III-1O) and integrating, we obtain the source 

function,

~ fo<j3j(r) + £> ( Ts (t-, p) + & ls(r,-p) +

+ to c<tT (r ) 4- £> ((*-<*) X C r, p) 4 £> G~/)<i-y£) 1^4 fr -y« ) , ( III -11)

and the equation of transfer, (1-10), becomes

ia J I $ ( r, k) + (i~ <3 Is ( rt ) 
Tr r

( Ks + CTj)^Cr)

^ ) + Co ot tTj (r) 4- bi (l-<)y$T$(r,^t) 4- Co ( l-et) ( I ~ Jj fr , ~p ).

* £e{ b"^Cr) 4 & 6“*)^ 1^1 & (III-12)

In Section III.l it was seen that X"r4\(r) could be expressed 

analytically only when (k$ + 0's ) p (r) was independent of r .

Even though J (r) can be evaluated by numerical integration 

for any density dunction, } a variable density function still

introduces further complications. Dividing the equation of 

transfer, (III-12), by (K5 + (Tf) p (r) gives both (, ks + crs) yoCr1) dir 

and 4-°'s in the denominator of the left-hand side of the

equation. The former usually defines d-T or -d't , but the latter,

A; z-
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if it is to be expressed as a function of 2? will depend on the 

precise form of the function, ( Kc, t Os') p (r) o Xn Section III. 6

we shall consider the problem in which ^o(r) is a function of r , 

but in this section we shall assume that Ks , and p are all 

constants. Thus, we define

( K s •+• crs) p Jr , (111-13) i

and hence -t = Ck, + <r5yr ,

as in equation (III-l). With this definition of the optical 

radius, T, the equation of transfer, (III-12) can be rewritten as

» jA ) + <21$ t j*) - Ts -i-
T

+ £ (i-x) p lx (%t p ) 4. & (t-cC) (a-jS) +

4- $©LvT^ Gt) * 4 O-&t)G-y0) (III-14)

We shall solve this equation by the same method that was 

employed In Chapter II. Applying the integral operators, L,o and L, 

defined by equation (1-15), we obtain

-■ + &XSGx), (in-15)

z

"t-J
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and o!I<s(%) + j. [ 3ksft) -= -yHs(-t)+ (i-*)H,Ji ft),

It *

respectively, where jf =x | — a> ((-«<) f 2 p. -1 ) •= |~ g f (III-16)

g being the asymmetry parameter. Applying the Eddington 

approximation, (t) = (1/.3 ) Js (, to the second moment equation,

we obtain

Jr?(x) = - 3y Hs(t> + 3(i-y) (t). (ixx-17)
otr

Differentiating this equation and using equation (III-15), we obtain 

the following second order total differential equation for the mean 

intensity of the scattered radiation field.

i1 +1 aJrifx) - rsf-r) = -sf

dt't* X dr

In constructing this differential equation we have used the relation

cW M ~ ~ (III-18)

cH Z

which is derived from equations (III-5) and (III-6). It is 

convenient to change th'e/var iable Js (r) to /t.Js (*t) by using the 

relation

V' + 5.D? Pit) = 1 T>* Z jV't)
* J r j

so that we obtain

[l>x - €* ] [ r <Ts(ac)] - - Xt tfUU't)
(III-19)
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where G2, “ % ( I- to *) and X s (II1-20)

We have now converted the integro-differential equation for 

the intensity of the scattered radiation field into a total 

differential equation for the mean intensity. Equation (I11-19) 

is the spherical analogue of equations (11-23) and (11-65) for 

semi-infinite and finite plane-parallel atmospheres. However, 

we have y (*t) as the variable for the spherical atmosphere rather 

than J, (*t) which was the variable for the plane-parallel atmospheres 

Hummer and Rybicki (1971) have claimed that (t:) is the most

appropriate variable for problems in spherical geometry. Their 

work was concerned with conservative problems with a central source 

for which hm was constant, and in such cases their conclusion 

is true. As we shall see later, our differential equations for 

the thermal radiation field, which constitutes a conservative 

problem also, can be expressed with either tJp (*v) or 't1Jp(,v) 

as the variable. It is the presence of the factor, i/t; , in the 

source functions Bs(*t) and Bp(-t) that makes t (t) and t:jp(r) 

infinitely more preferable as variables than rAJs(ft) and 

Thus we see that it is the external radiation that controls the

choice of the most suitable variable.

The most convenient form of (x) to use in equation

(III-19) is that given by equation (III-8), so that

(III-21)



248

the general solution of which is

fc'-v
Ys « Ci C + Ct 6

r efx.-x) r -j
A £> s $ F3 i-“ 6 , J
k G (.

-eC'To-M -
e. F3C e, (-to-T:) 1 - e J e x

«Ff e, (%+^)3 +r.
eCto--cV 
e. Fa

~e.Cr„--c)
e Fxte,(Tte-x)JL

GCXo4X)
- e F,. C~e,

-cCTo+T)
e. FtlX Cr.’+x)] (III-22)%t-x)3 +

The two constants of integration, C, and Cx, are determined 

by the use of two boundary conditions. The first of these is,

that the mean intensity of the scattered radiation field must not 

be infinite at the origin. It is convenient to express equation 

(III~22) in the form

t" T — Gi
s Ce t G e. - P(x) . (m-23)

£{-G

The indeterminacy that arises in this equation when r is zero is 

surmounted by application of L’Hopital^s rule, because f(a) and 

<AJ (V/h l0 are zero also. Hence, the first boundary 

condition can be satisfied only if

CjX « ~ Ci . (III-24)

The second boundary that we apply is the Eddington approximate
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boundary condition

orsaj = iHsCyJ. (III-25)

Using equations (III-17) and (III-23) to (III-25), we obtain

- (III-26)

I ( er.
er„)e - (i-bn + et,)e

— & Vo

A glance at the function J ( t0) shows that it includes terms involving 

the exponential of 2 £ To . The equation for Js(r), equation (III-23) 

involves the subtraction of two terms of this dimension, so that, 

on inserting numerical values for the relevant atmospheric

parameters into this equation, a considerable loss of significance 

occurs when % is large in a computer programme designed to 

evaluate the function Consequently, we rearrange equation

(111-22) into a form more suitable for yielding numerical values.

Such a form is:

= XL f & 6t° ee* f (J -er.)% (f, [-e , (Vt> ] - 
bet I

[-e, (ro+r^] - F3 [ e , 2r»l 1 -
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x [ (’S + s'u) % (F,. i e , (%-x)] - Fx[e,2rJ ) + (s + ez,)„ 

x t £, (t„-t) 3 - F3 [ e,2td ) ] + e-2er° e [ (J + e t,) r» x

y ( Fa. I €, (%+■¥) ] - Fi [ 6,2to] ) + ("ii+Gti) { Fj [£, (ti+ic) ] -

- Fj E e, 2rJ , ] + eer L (\-e%) (z> Fx[e , te-r) ] +

+ Fj [e, (%-^)]) - (■$ + et) ( to Fi E-e, +

+ F3 E~e, (To-ft)] + e-6<t [ (’S + €TO) f r. Fa f-e, (r„-t)] +

+ F-j [-e , ) - ( $ -cu) (to + F3 [£,(%+•*)])]-

~ [ eer ~ e"^] [ i -Xto* - (uo-^i) e~AUJ ? /

XX

( }-€ t.) e " (in-27)

where 5 = I - 3 K To / £ •
7 (III-28)

and we have used the relation

e 9
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which is an elementary reduction of equation (II1-6).

It is necessary to evaluate Js (tj) tor several special

cases. It will suttice to record the appropriate solutions. 

Firstly, at the origin

TsCo) = pi, [ ( 5-et.)fu(Ft[-e,T.] - 5

Fj E-e, t.1 - F, [-€,.20 ] - e"a6r° (5 + et.) [ r. (F«[e,O

- F» [e , ) 4- F3 [6, - F, [e,«.] ] +

[ Fx [ a, rj + f3 f e, r„T ] - ( 5 + er.) [ ^. Fi[-€,rd + 

i-f$E“6, r,-]] - 3gX±j) I - czr.+ i) e ] ^ /

/ ■ % fi %
u - e U ) e ( 5 + £ r.) e”

secondly, at the surface

is M “

+ Fj[-e, ^r.l] -6% r+ e [

X Tp
f (V€Tj£S% ~ (J +•

[ n h [-e 2t.] 4

(III-29)

[ % 5 [e , itJ + f3 [ e,r

/-2TP

(III-30)

Thirdly, we .'find that an indeterminacy exists for conservative
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scattering, for which e =0, Reference will be made to this 

solution later, but it is not important in the study of radiative 

heating because, in such problems the scattering is necessarily 

non-conservative. An indeterminacy would also exist were 

(H-nt.'le. = Cl + er.)ac' ; but this condition is never fulfilled.

For large values of % , this is clear because the parameter, £ ,

is not an exponential in . For small values of % , such that 

q" = { ± £% , it is necessary that 5 is unity for the

indeterminate condition to be fulfilled. However, for J to equal 

unity it is necessary for either V or % to be zero, neither of 

which is possible for non-conservative scattering. Thus, the 

indeterminacy never arises in practice.

The source function for the thermal radiation is the same as 

it was for the plane-parallel atmosphere with no ground, which is

K(-e) - + tr£(t)].
(XII-31)

The equation of transfer for the thermal radiation in a spherically 

symmetric atmosphere is thus

a + (i -/«*) SIp (r, p

-c 3 k
-± TfC-v, h) <•

+ + ti-coE tau ,
kA 1 (III-32)

where ~ ( Ks + OT') Jr as before .

It will prove valuable to solve first the special case in

which there is no scattering. In this case w ~ 0 and J& ('£) = 0, 

and equation (III-32) reduces to
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«cl5(r,p + = -±Ij>(Y, m) + ±XpW + (in-33)
e)Y r K h

The first two moment equations derived from the equation of transfer 

in the normal way, are

ot (y)
dr.

(III-34)

and d (r) « -3. H?Ot) , (III-35) I
dr * :i

i
where we have used the Eddington approximation, Kp (x) - 0/3) in

j
forming the second of these. Equation (III-34-) can be solved 

directly when expressed in the form

<P ( vhp<*)) = Ct) , ?

je :

but it is algebraically simpler to solve the second order differential 

equation formed by combining equations (III-34) and (III-35), which 

is

'J}2' E r trj, (-t*) 1 - - Sr (r). (in-36)

This equation is the simpler 

dependence of

C'V) given by equation

to solve on account of the I / 'K 

The solution of equation (111-36) with 

(I1.I-8) is
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(III-37)

CT* ('c') ~ - 3 Io V - £5 (ro-vt) + %

1]F^C’t'o+'V)J \ -vCaCi/t ,

where the superscript zero is added to denote the condition, lj - 0. 

The boundary conditions that we must impose are the same tor all 

radiation fields in the atmosphere, namely that the mean intensity 

cannot be infinite at the origin and that ( yTo') » 2 Hp (%') f

which is Eddington’s approximate boundary condition. The former 

ensures that is zero and the latter gives an expression for Ct.

We now consider the case in which o is not equal to zero.

The two moment equations derived from the appropriate equation of 

transfer, equation (III-32), are

JRp(r) + 2- H P Cr) = tfyCr) + (a:)] , (m-38)

- 3 Hj»
n

and
dr

(III-39)

where we have again used the Eddington approximation. Again, these 

equations may be solved independently, but the 1/r factor in 35('£‘) 

and CT JS Cr) make the algebra simpler if the two equations are 

combined to give

T>
a[ic TP(-r)] « [ ysA)-i- (t)]

(III-40)
v\

4 + ""
-a tl^

J- A. ....  -A' *
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/v* |jU/

(III-41)

/-

or = C, + C^/x - 3G-CG-c) f
J

- 3(i-O f 
VAX J

x <5(x)c/l<t .

The double integral of T 7*^5(t) has already been evaluated, so 

that the first term in equation (III-41) is (1 - ('V) where

the constants in equation (III-37) are both set to zero, 

can be absorbed into the constants of equation (III-4-1).

algebra involved in the double integral of '£Js('fc) is involved but 

leads to the simple relation

They

The

r
'Y \Fs Cr.) t - Ut X,° (*t).

3e3

Thus, we can express Jp(^) in terms of J* (^) and Js ( q;) . That is

XW « C,+ Ci/r -- [ trGe) - sifA+e1) X’fr)].
(III-42)

iA

Again, the boundary condition at the origin that Jp(0) must 

remain finite demands that C2 equals zero. Before applying the 

second boundary condition, which is Eddington1s boundary condition, 

Jp(%) = i- Hp ( % ) 5 we must ensure that energy is conserved in the 

system. This is the same as insisting that the net radiation flux 

at any point in the atmosphere is zero. The flux of the thermal 

radiation is found from equations (III-38) and (III-42), and is

c?lX •3
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Now, we have ~ 3 K Hs ■*- (-t) #

and (!--£»)/ « I / 3 X ,

from equations (III-17) and (III-20) respectively. Therefore

Hp('t) « -U$(a) -v (t~y) HkI - * C \*€*) J37(r).
* 3.3tf dir

Comparing equations (III-34) and (III-38) we see that

Rp° (r) ~ ~ (-t) ) (in-43)

and hence, we have

dkfp0 (x) ** 3_ H Mo( (*t). (III-44)

*

Therefore Mp (y) ~ - Ns f't) 4- (( - ff) Ok) — C A -e C'fe) .

Now, A. + £*■ = 3} so that we have

HP(v) + Hstr) 4- H‘“l M . o , (III-45)

and we have ensured that energy is conserved at all depths . 

The second integration constant, which is found from Eddington’s 

approximate boundary condition is thus given by

C, --- - 2Ms(y.) - On) + ± f rs(O _A r/On) J .
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a

(III-46)

Thus, we obtain our final form for Jp (?) , which is

X(-t) = C, - [ rs(.x) - „ T/Cr)].

There are no special cases for which this equation is not valid.r' v * ' P*'& .
When to = 0 it does reduce to equation (III-37); and the parameter,Y 

is always non-zero.

When considering plane-parallel atmospheres in Chapter II it 

was found necessary to separate the azimuthally dependent part of 

the scattered radiation field from the azimuthally independent 

part because the solution of the equation of transfer by Eddington’s 

method is only possible for azimuthally independent radiation fields 

The azimuthally dependent part could be found exactly for the phase 

function chosen. As we have seen, the spherical symmetry of the 

problem annulled the need for such a procedure in this Chapter. 

Nevertheless, this process can still be implemented, and it will 

prove a useful comparison with the standard method described above. 

Moreover, for the case, a = 0, the second method will give the 

exact solution for the scattered radiation field and a comparison 

of this with the standard method will prove rewarding.

We must first derive expressions for the intensity of the 

radiation field that consists of the reduced incident radiation plus 

the radiation multiply scattered in the spikes of the schematic 

phase function. As in Chapter II, this radiation field will be 

referred to as the linear radiation field and its intensity moments 

will be designated the symbols, , He* (t) and Kto, ('t).

The general solution for the intensity of radiation scattered in a 

one-dimensional medium was developed in Section II.3.2. In this 

case there is radiation of intensity, I , incident on each end of
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the ’’line”, so that the constants of integration, C, and Ca, of 

equations(11-49) and (11-51) are given by equations (11-55). 

That is

c, = ( to - E I--ode-0” ’ J

£ El - £/$ +cr"3 e.0"** ~ Jj“£-crle °J

(III-47)

and C., - Ia - c, .

Where tD is the optical length of the ’’line of transfer” in question, 

which in this case is achord across the atmosphere and is given by

X,
y Z^t2- (i -p2)

(III-48)

Thus, if oc is the distance along that chord at which the intensity 

is described, and is related to % and xo by

x k i x * -{- T; ja 5 (III-49)

the mean intensity of the linear radiation field is

Tu-J't') - ±
2.

[c(€ [t-cj/SG-ot)+cr'3 + Ca e L l~&cr] J

crx -cr.x
Ci (t -v Ci €1 J ptj (III-50)

The nature of x and xo as functions of p,, together with the form of 

the constants C, and CA , make the analytical integration of equation

r

4. i

£> Ci-oO(i~ T

* , .'fS *■$$$
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(III-50) impossible, unless (3 = 1.0 when the equations adopt 

special forms. Otherwise equation (III-50) can be integrated 

easily using a mechanical quadrature or similar form of numerical 

integrationo Now when (3 = 1.0 we have

and hence

It,-. , p = Io e
[ i~ Co («-*)]'K

(III-51)

where V = I- £ (l-eO . (III-52)

The emission coefficient for the remainder of the scattered 

radiation field is comprised of the radiation scattered isotropically 

from the linear radiation field and the radiation scattered

anistropically from the scattered radiation field. By analogy to 

equations (11-19) and (III-14) the equation of transfer for this 

part of the scattered radiation field is

(I ~ p* ) ( V, p)

dp
= - *

•V fa (sc) t £ £ (r) -v co T5 (III-53)

where now refers to the intensity of this partially

scattered radiation field, and. we have set (3 to unity in order to 

use the analytical expression for CT(^v) . The first two

moments of equation (III-53) are
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'"A

J Hs -{- 2_Us(^) - - (,t-<3) 5s(-c)+«e< (t) , (XXI-54)
<A*v t

and aysG*) = -3* HsCv) , (III-55)

where y - i — co (i *- c<^ ~ .

In forming equation.: (III-55) we have used Eddington’s approximation-,.*'; 

Ks(t;) = (1/3) J5 (t') •> We must note that this is not the same |

approximation as that used in the first method. In the first 

method we applied it to the whole scattered radiation field, but

here we apply it to only part of the scattered radiation field. m
■Ias

Combining equations (III-54) and (III-55) we obtain d

j
1

On changing variables from to , we have

<£ - ez]l fc- CC£(fc). (xxx-56)

. J

This equation must be solved with two boundary conditions which are, 

that Js(o) is finite, and that Js() = 2HS(^). Now by the first 

method we derived equation (III-19), which is
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r r
(III-57)

and was subject to the same two boundary conditions as equation 

(III-56). The solution of equation (III-57) with its two boundary 

conditions was (t) as given by equation (III-27), where the 

superscript, unity, refers to functions derived by the first method. 

The similarity between equations (III-56) and (III-57) and their 

boundary conditions shows that the solution of equation (III-56) is

CT,(fc) - CTS'(t)
Av*

Ts(t) = 3tS^y xs’ (vt) ,
AV*

(III-58)

where £a , which appears as a constant in Jg (is now given by 

3 ff G - to ) X .

The equation of transfer for the thermal radiation is unchanged 

from equation (III-32) and again reduces to equation (III-40), 

which in this case is

n L A _

Substituting , we have
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Now -1 (^) X/Cy) ,

where Jp('E) is given by equation (III-37) with the constants .

therein set to zero. The solution Tor the case of no scattering 

is, of course, the same for each method. We have also seen that

-1 f f x fs' Mdh = -rs‘ (v) + a* r/c-t).
« J J n£’ 6*

Therefore fcTp(t) = Cz + et - 3(i-t5)3£.u fc r;g) +
n Ae* v2

•+ ao~£>) Sut/fr + 6-5) t oyrt) . (m-59)

By cancelling the appropriate constants in equation (III-59), we 

obtain

STp(-r) = C, + c, /* - _L |
nff L

The two constants of integration 

as in the first method, and are;

C, = -2Msh.) - 21-1'“4 (.W,} +

This completes a solution almost

one, but one in which a different approximation has been made, and 

whose limit in the forward scattering case is exact.

S'sf't) - n r/b’t) (III-60)

are found in exactly the same way

C 3 =0 and

(III-61)
n* L •

identical in form to the earlier
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This last method was possible for p =1.0 only, because 

equation (III-50) could be integrated analytically in this special 

case alone. This restriction arose from the complexity of the 

integration of (^1^) to give J (1?) • However, when ct

is zero, the linear radiation field is the only field in the 

stellar part of the spectrum, and a solution is possible because the 

relatively complex equation (III-53) is not required in this case. 

The exact solution for the mean intensity of the linear radiation 

field is found by integrating equation (III-50). A Gaussian 

quadrature is the most appropriate method of integration, and it
■

gives satisfactory results provided that special care is taken.to 

account for any directional peaking of 1, j*). Thus, we 

have the exact solution for (T) , and for the scattered d

radiation field after subtraction of , for linear ”

scattering which covers the complete range of values of g. The 

thermal radiation mean intensity is found from equation (I11-41) 

with Js (•£) equal to zero and J (t:) replaced by J(*fc) .

The construction of this equation involved the Eddington approximation 

and its form as a simple integral arose from the conservative

nature of the transfer of the thermal radiation. Thus we obtain 

dp (t) by a double numerical integration of (*£) •

The special case of conservative scattering deserves mention, 

even though it is not directly concerned with radiative heating.

In this case we have £ = 1.0, 6= 0.0 and k = 3.0, so that

equation (III-19) reduces to

C r TsCt)] = - Cr) . (IT.I-62)

This equation is independent of the parameters in the scattering phase
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function other than the albedo which we have equal to unity. •*

The same could not be said of the equivalent equations for the ’•?

plane-parallel atmospheres of Chapter II nor of the solution by -s

the second method of this section, because in both cases J ££ (?)

was replaced by J (^) and the Eddington approximation was applied ■ 

to only part of the scattered radiation field. Now, equation -4

(III-62) is identical to equation (III-36) when n is unity. The I 

boundary conditions for the two equations are the same, so that we

have the result J

= 3'p°(ic)no| , (XIX-63) j

where Jp(Q:) is given by equation (III-37). This result would be

expected for isotropic conservative scattering which is identical 

to the transfer of the thermal radiation when n Is unity. It is not 

an obvious result for other phase functions, but is a consequence 

of the combination of the axial symmetry of the problem and the ••

Eddington approximation, It is only an approximate relation •’

because we have the exact solutions for the cases with a equal to 

zero and these solutions are different. It is, however, an exact 

relation when a. is unity and the scattering isotropic.

Before discussing the results of this section it will prove \

valuable to repeat the foregoing theory for a general phase function. ?
f

The value of this was intimated in Section 1.3. Consider the general 

phase function given by equation (1-26), of which the form suitable 

for axially symmetric fields is

Pt ( p) Pl C |a‘ ) .
1,0

(III-64)
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We have seen that the albedo and asymmetry parameter of this phase 

function are given by &o and w/3 respectively. The emission 

coefficient for the scattered radiation given by equation (III-ll), 

with the phase function of equation (III-64), is

+t

/*)
a

r A P«.(r)PL(^)[rs(r,u-)t l£(r,f')Lb
L«o 1 *

and the equation of transfer, (III-14) is

|A a /* ) + ~

«o

° -1
(III-65)

Applying the moment operators, and L, , to this equation and using 

the orthogonality property of the Legendre polynomials, we obtain

and

4-

ct't

4 OvJ 4* x

- ~(t-&o)ys0d + 57S(^), (i.n-66)

“ = -5*Us(r)-e

where fr - 1 ~ I ~ . (III-67)

Equations (III-66) and (III-67) are the same as equations (III-15) 

and (111-16). The thermal radiation field depends on the 

scattering phase function through Js (^) only. Therefore, the 

solutions for J6(^) and Jp( r) are the same for the general phase 

function as they are for the schematic phase function with the same
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values of albedo and asymmetry parameter. This result stems from 

the axial symmetry of the atmosphere and radiation fields, and <•

also from the Eddington approximation which is used to solve

equations (III-66). Were a higher approximation available that '

utilised three moment equations then the two phase functions 5

would still give identical results but three parameters would 

need to be fixed by the three parameters of the schematic phase 

function. The similarity between the solutions for two different 

phase functions actually shows the limitation of the Eddington i

approximation to handle highly anisotropic phase functions. However,!
a• 4

we have already seen from the similarity relations that the phase 

function is not important beyond the albedo and asymmetry parameters, J- 

so that this apparent limitation on the Eddington approximation is 

not serious. In considering the general phase function there is :

no way in which part of the scattered radiation may be treated

exactly as was possible for the schematic phase function.

We shall now discuss the results of the foregoing theory and

ascertain the nature of the influence that the individual atmospheric 

parameters exert on the radiation fields. Naturally, this 

influence will resemble that seen in the study of plane-parallel 

atmospheres in Chapter II. Where the results in the two cases are 

very similar they will not be repeated here. The parameters will 

be given the same values as their equivalents in Chapter II, which 

were tabulated in Table I. In the ensuing discussion it must be 

remembered that the optical scale, di , refers to optical radii whereas 

It referred to optical depths in Chapter II. Hence, d; = 0 refers 

to the centre of the atmosphere.

The mean intensity of the scattered radiation, as given by 

equations (III-27) to (III--30), Is a function of the optical radius
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of the atmosphere, the albedo, the phase function for single

scattering and position in the atmosphere. Figs. 37(a) to (c) 

show Js (q;) for three values of % ; 0.1, 5.0 and 50.0. Each 

is for isotropic scattering and each gives a family of curves of 

parameter £> . They show essentially the same features as the 

equivalent curves for plane-parallel atmospheres. As the optical 

depth increases, Js (qj) increases due to the conversion of the 

reduced incident radiation to scattered radiation. Then, if 

the atmosphere is sufficiently thick, Js(-fc) decreases as the 

scattered radiation is attenuated by absorption. In Fig. 37(a),

% =0.1 and a maximum is never attained, while in Fig. 37(a), % =

50.0 and the maximum occurs very close to the surface, in fact 

within the outermost hundredth of the radius. As increases, so 

Js (q;) increases as a natural consequence of the definitions of w and 

the optical, depth scale. Furthermore as w increases, the maximum 

of Js(qs) occurs deeper in the atmosphere. This is seen clearly in 

Fig. 37(b), and is due to the greater penetration of the radiation 

when w is large. The attenuation m these atmospheres of inter­

mediate optical radius is much weaker than that of their plane- 

parallel counterparts due to radiation crossing the atmosphere.

The limiting case of w = 1.0 is also shown. It is greatly different 

from the case, = 0.9, when the atmospheres are optically thick, 

because in such atmospheres, attenuation is very important, and, of 

course, when w = 1.0 there is no attenuation.

Fig. 38 shows the effect of varying the phase function in an 

atmosphere of total optical radius, 5.0 and albedo, 0.9. It is 

much simpler than the equivalent graph for plane-parallel atmospheres 

Fig. 5, because it forms a one-parameter family of curves, the
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parameter being g, the asymmetry parameter. Now g = to G-( 2. jS-0 , 
so that it takes values ranging from -1.0 to +1.0 when (3 runs 

from 0.0 to 1.0 with a = 0.0. The one parameter nature of the 

curves is due to the axial symmetry of the incident radiation as 

has been suggested earlier. It can be seen that the curves

intersect at %■ ^0.95 % . This occurs for all the values of % 

that were used. The gradient, an n.gvJg is greater than 

and less than zero when t is less than and greater than 0.95 

respectively. When g is positive the scattered radiation penetrates 

deeper into the atmosphere and consequently the scattered radiation 

field is built up more in the interior of the atmosphere but 

depleted near the surface. This depletion near the surface occurs 

because the fraction of the scattered radiation that is scattered 

into the outer shell decreases as g decreases. This effect is less 

well marked in the spherical atmospheres than the plane-parallel 

atmospheres because the incident radiation is isotropic in the 

former case and hence enters the outer shell directly. The effect 

of anisotropy increases as % increases. When 'b = 0.1 there 

is very little change in Js (7;) but when % - 50.0, Js(d) is 

significantly non-zero when (a, (3) = (0, 1) and hence g = +1.0, 

whereas it is effectively zero for all the other phase function 

parameters considered. In this case of complete forward scattering 

the value of Js (£•) at the surface of a plane-parallel atmosphere was 

zero. This is not true in a spherical atmosphere because the 

scattered radiation can reach the surface by penetration right 

through the atmosphere, though for optically thick spherical 

atmospheres Js(%) is very close to zero because the penetration 

across the atmosphere, even at grazing angles to the surface, is very 

small indeed. In this respect such atmospheres can be regarded as

■j!:
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plane-parallel. .

The results given so far have been those found by the first I

and more general method. A second method involving the exact 

solution for part of the scattered radiation field has also been «

outlined. The two methods will be referred to as methods I and II 

respectively, and in the latter the field referred to as the r

scattered radiation field will not be Js(t) but the true scattered 

radiation field whose mean intensity is given by

UscCx) « J’sC'fc) O~itk (“fc) ~ (III-68)

For method I, JSc (q<) = J£ (• We now compare the results from the

two methods remembering that method I applies to either the general 

or the schematic phase functions whereas method II applies to the 

schematic phase function only, and then only for the cases when 

a is zero or p is unity. - .

Fig. 39 shows the function JGc (*t) for co = 0.9, (3 = 1.0 

and % = 5.0 for a variety of values of a. The value of 5.0 is 

chosen for again because the results are best portrayed in this

case. We conclude that, as a approaches unity the results of the 

two methods approach each other and in the limit when a = 1.0 the 

two methods are identical and give the same result. In general 

there is some discrepancy between the exact and approximate 

solutions for cl = 0.0 but not sufficient to create any ambiguity . 

in qualitative conclusions drawn from the results. This discrepancy 

is not systemmatically dependent on . When • cl is zero, method 

II gives the exact solution and Jsc(o) by method I is too low for 

'to = 0.1, 1.0 and 50.0, and too high for % - 5.0 and 10.0. The

percentage error in method I is greatest for X = 50.0 whereas the
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absolute error is smallest in this case. In absolute terms

method I involves the greatest error lor medium values of , 

but in percentage terms it involves the greatest error lor extreme 

values ol % .

We have seen that the exact solution is available by numerical 

means lor all values ol (3 when a is zero. Fig. 40 shows the exact 

and approximate solutions lor the same atmosphere as that ol Fig.

39 but lor a = 0 and several values ol (3. It shows that the 

approximate method is most accurate when (3 is zero and least 

accurate when (3 is unity.

The exact solutions ol method II also provide exact values ol 

the ratios, J"sc and vTsc (%)/ HscCx) , which were

assumed to be 3 and 2 respectively in method I. We shall denote 

these ratios by the functions r ('t) and rp ( %) respectively.

The ratio, r (>&) is plotted in Figs. 41(a) to (c) as a lunction ol 

t: , lor % = 0.1, 5.0 and 50.0 respectively. Each ligure shows 

a lamily ol curves with values ol (3 ol 0.0, 0.5 and 1.0, each lor

& =0.9 and a,=0.0. For optically thin atmospheres we can see

that r (tc) is equal to 3.0 at the centre ol the atmosphere and 

decreases slowly to a value close to 2.0 at the surface. This

behaviour is independent ol (3 o When 'K, - 5.0, r('t) still does not 

depend on (3 but remains much closer to 3.0 lor most ol the atmosphere 

When % = 50.0, r(t) is between 1.0 and 2.0 lor most values ol but 

is 3.0 at the centre and at the surlace. In general, we conclude 

that r(^) = 3.0 is a reasonable approximation lor all but very 

thick atmospheres when r (*t) is closer to 1.0 than to 3.0 lor most 

points in the atmosphere.

These results are complemented by Figs. 42(a) and (b), which 

show R, and R9 plotted as lunctions ol % lor the optical radii,
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% =0.1 and 5.0. The quantity, R, , is defined as the ratio

• /A ‘of the outward intensity, 15C C '"c , + u , to the traverse intensity, 

and Rx as the ratio of the inward intensity, Tsc

to the transverse intensity. They are defined for all values

of T and are measures of the asymmetry of the scattered radiation 

field. When R, = Ra =1.0 the radiation field is isotropic 

and this is the situation at the centre of every atmosphere. i

Both figures are drawn for w =0.9 and (3 = 0.0, 0.5 and 1.0.

The transverse and inward intensities of the scattered radiation 

field at the surface of the atmosphere are both zero, so that, 

by definition, R, is infinite at the surface, and R2 indeterminate. 

However, by application of T’HopitalTs rule, the latter becomes zero. 

We consider first the case for which (3 = 1.0 in Fig. 42(a). As 

increases, the radiation field becomes progressively more peaked 

in the outward direction. This corresponds exactly to the deviation 

of r ( «e) from 3.0 in Fig. 41(a). The radiation is peaked in the 

outward direction because the scattered radiation increases as it 

passes deeper into the atmosphere until a limiting optical path 

is reached. This limit is never reached when % = 0.1fso that the 

outward flowing radiation at any point has traversed a greater

optical distance than the inward flowing radiation at that point,

. fcand consequently is the larger of the two. In Fig. 42(b) i^ can be 

seen that this limit is approximately 'b = O.9T2>. For values of "V 

less than this limiting value in optically thick atmospheres, the 

radiation is peaked in the inward direction because the inward 

flowing radiation has been attenuated less than the outward flowing 

radiation at that point and consequently is the greater of the two. 

Near the surface the intensity of the inward flowing radiation has not
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built up to the intensity of the attenuated outward flowing

radiation, and consequently the scattered radiation field is peaked 

in the outward direction. For atmospheres of optical thickness 

greater than 5.0, the region in which the scattered radiation is 

peaked in the outward direction becomes progressively smaller as 

ns, increases or w decreases., both of which reduce the flow of 

radiation across the atmosphere. When U = 50, R, is effectively

zero and Rx very large indeed, and hence the field very strongly 

peaked. This peaking is so strong that r('t) of Fig. 41(c) is 

approximately unity. When % = 5.0, R, and Rx remain close to unity 

and r(i;) in Fig. 41(b) stays correspondingly close to 3.0. When 

to =0.1 the values of R deviate from unity to a greater extent.

For example, Rx reaches a maximum value of 3.3 for % ~ 5.0. 

Nevertheless, the ratio r(*t) remains close to 3.0 in this case also. 

This is because the relation, r (t:) = 3.0 does not depend on the 

radiation field being isotropic but expandable in terms of certain 

Legendre polynomials. Thus, we have evidence to show that R, and 

R^ must deviate considerably from unity in order to produce a 

significant deviation of r (r) from 3.0.

We now consider the cases in which {3 is less than unity.

The effect of [3 in Fig. 42(a) is negligible, and in Fig. 42(b) 

still small. However, (3 plays an important role when % = 50.0.

When (3 is unity, R, is approximately zero, but as p decreases, R, 

increases to very large values. However, Rxalways remains greater 

than Rj , the ratio of Rj/R, being about 5/2. When both R * and R 

are large the radiation field is peaked in both inward and outward 

directions with respect to the transverse direction. For most

points in an optically thick atmosphere the optical distances to
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most points on the surface are much greater than that to the 

nearest point, so that radiation at a particular position in the 

atmosphere has come mostly from the nearest point on the surface.

Since the scattering is linear the radiation scattered from this 

radiation remains in this direction and we find a radiation field 5 

highly peaked in both inward and outward directions. Such a 

radiation field produces a value near 2.0 for r('fc'). Hence, the <

lower the value of (3, the closer r(r) is to 3.0 as seen in Fig. 41(b) J
s

The ratio, %) is plotted in Fig. 43 as a function of

for w = 0.9, and for values of (3 of 0.0, 0.5, 0.9 and 1.0. For j

optically thin atmospheres ) -is independent of (3 and the

assumption that this ratio equals 2.0 is in error by as much as 30%.

For optically thick atmospheres the approximation of this ratio 

to 2.0 is good unless (3 is greater than 0.9, when it is rather an

.underestimate. j
'-I

We are now in a position to make a comparison between the 

results of the two methods, examples of which are shown in Fig. 40.

The error in method I is independent of (3 for - 0.1 (not shown), *

and dependent on (3 for larger values of where the cases in which 

(3 equals unity provide the greatest errors. These errors are <

complemented exactly by the variation of r (t) and ro ( X) with (3, 

as discussed above. In general, we conclude that method I is a j

little inaccurate for optically thin and optically thick atmospheres, •
2

• . i
but adequate for intermediate atmospheres unless (3 is unity. j

Although method II is only available for certain phase functions, 

the use of method I for other phase functions will include errors 

that will not deviate greatly from those discussed here. Hence, 

we can give a qualitative estimate, both in magnitude and direction,
•j

of the probable error of any quantity evaluated by method I. However,
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the results of the two methods are always very similar so that

qualitative conclusions based on the results of method I will

suffer no distortion from the errors in the absolute values of

the quantities concerned. Before considering the thermal

radiation fields we must stress that the scattered radiation fields

for which method I is in greatest error are those for % = 0.1 and 

Ti = 50.0. In both cases the scattered radiation field is very 

small and in the former case it is almost negligible in comparison

with the reduced incident radiation field.

Both equations (III-46) and (I11-60) indicate the form of the 

mean intensity of the thermal radiation field as a function of 

optical depth. We shall consider first the case in which n is large? 

Both these equations then reduce to; Jp(l:) & C1 . The function, 

j;w, is given by equation (III-37), in which the constants are 

zero, and this function is clearly very small when n is large.

The constancy of (t;) when n is large was also a feature of the 

radiative heating problem in plane-parallel atmospheres. For the 

case in which n is small such a reduction occurs only at large 

values of 3;) . In this case, the functions Jp°('t) and Js (^)

are both very small. This was another feature of the problem in 

plane-parallel atmospheres, so it is reasonable to enquire whether 

the equation for the mean intensity of the thermal radiation in a 

plane-parallel atmosphere could have been expressed in a simple 

form such as equation (III-60), this being the resulting equation 

from method II which was the method used in the previous Chapter, 

though then out of necessity.

The function Jp(b) the solution for the mean intensity of 

the thermal radiation field in an atmosphere in which there is no 

scattering. For a semi-infinite atmosphere this can be shown to
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to Fe.
-X/fv

A- n

The parameter, y , in equation (III-60) is [ 1 - U>(1 - a)] which 

equals cr as used in Chapter II for the case (3 = 1.0. Therefore

_ n / h a
fP 6>t) = - 3 p. Fe . 

A* vi

Now the final term of equation (11-40) is

3p? e.
-crr/^o

h-Y\S~

= - lZ2 e

when (3 = 1.0. Thus equation (11-40) can be re-written as

X(O = C, - _L [ - nX’Ot)]
(III-69)

which is the same as equation (I11-60). Furthermore, for isotropic 

scattering, equations (III-46), (III-60) and (11-40) are identical.

Now equation (III-60) is valid for (3 = 1.0 only, because it Is 

only In this case that J(x) can be expressed analytically, and 

the equation above is only valid for the case, (3 = 1.0, because, 

for other values of (3 the right-hand side of equation (11-40) 

is not equal to -3p,oa exp ( - Hi 0 )/ima Y „ We conclude by stating 

that the simple form for Jf (g;) in terms of Jp(x) and Js ('e) is 

valid only when the whole of the scattered radiation field is 

subject to the Eddington approximation. In method I this

condition applies to all phase functions so that equation (III-46) 

is true in general, but In method II, whether in spherical or 

plane-parallel atmospheres, the condition applies only to isotropic
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scattering or scattering with (3 = 1.0. The latter can be

accounted for within this condition because the radiation scattered 

within the spike is effectively not scattered at all.

The functions, (t) do not vary greatly from those functions 

derived for plane-parallel atmospheres, with regard to their 

dependence on the atmospheric parameters. We shall postpone any 

discussion of Jp(t) whenn is small until the temperature profiles 

are discussed in the following section because Jp('V) dominates 

the temperature m that case. Now when n- 10

rP(’V)«= c, ®

The reduced incident radiation field is independent of both albedo 

and phase function for single scattering, and is negative in sign.

The scattered flux is positive in sign and of smaller absolute value 

than the flux of the reduced incident radiation. Therefore, the 

dependence of Jp (ze) upon w and g is opposite to the dependence of 

Hs (%) upon those parameters. Hence, Jp (ts ) decreases as increases, 

and increases as g increases. The difference between the results 

from equations (III-46) and (III-60) for (a, (3) = (0, 1), for which., 

the difference should be greatest, is small. For w = 0.1 and 0.5, 

method II gives the larger values of (t) but these only differ 

from those of method I in the third significant figure. For zu = 0.9 

method II gives the lower values of Jp (q^) and the difference occurs 

in the second significant figure but only of the order of one unit. 

The differences do not, of course, depend on 'X. , in this case. A

general comparison of the two methods will be given later.
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4. Temperature Profiles

The temperature of an element of matter in an atmosphere 

was defined in Section II„4 to be the temperature of black-body 

emitting the same total energy in the infra-red part of the 

spectrum. Equation (11-97) arose from this definition and is

crV*/it « . (in-70)

For the plane-parallel atmosphere problems of Chapter II, the 

source function was always proportional to the quantity, F,.which 

measured the flux in the incident beam of radiation, and we defined 

an effective■temperature for the incident radiation in terms of this 

quantity. In the case of spherical atmospheres in a uniform 

isotropic radiation field of intensity, Ia , we adopt a similar 

convention and define the effective temperature of the incident 

radiation field, Te, by

0 ~ O’ ie / TT . (III-71)

Again, we shall measure the temperature of the atmosphere in units 

of Te so that we have

T* - 'Bp(r) . (in-72)

We shall now discuss the form of the temperature profiles for 

the spherical atmospheres whose radiation mean intensities were 

given in Section III.3. as derived using the first of the two methods 

of solution of the equation of transfer. This was the method in

which we assumed the Eddington approximation, Ks (t) =• (l/3 ) fx)
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to apply to the whole of the scattered radiation field; and was j

the one that encompassed all values of the schematic phase -?

function parameters, a and (3. It was also applicable to a general a 

phase function, as given by equation (1-26) for specified values 

of « and g. We have, from equations (III-31) and (III-72), -J

T* = , (111-73) j

where is given by equation (III-46), Js(^) by equation •

(III-27) and jS (t) by equation (III-8)O
. . !

Before discussing the temperature profiles of the atmospheres ;|
j

we shall discuss the temperatures attained at the centres of the '
i

atmospheres. Figs. 44 and 45 show these central temperatures, T(0),; 

as functions of % and go respectively, both for the case of iso- i

tropic scattering and n = 10 . In Fig. 44 the family of curves "i

has (o as its parameter and in Fig. 45, % „ For optically thin

atmospheres the central temperature gradient, dT(o)/dw, is negative >5
' ■ i

because it is (1 - w) that is the fraction of the stellar radiation ’"j 

that is absorbed., The limiting case of conservative scattering 

gives the result that the temperature as defined here, is zero. ;

The same albedo dependence of the central temperature arises in very « 

thick atmospheres, These atmospheres are sufficiently thick to 

prevent any significant amount of stellar radiation penetrating 

to the centreo Hence, the central temperature depends solely on the 

mean intensity of the thermal radiation field. This latter field < 

is virtually constant throughout the atmosphere and the value of

this constant is governed by the boundary conditions. A larger
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emergent thermal flux means a larger mean intensity tor the thermal 

radiation field. A small albedo results in a small emergent 

scattered flux, and, by conservation of energy, a large emergent

large, as well as small, values of „ However, this gradient 

is not negative for all values of « in atmospheres, of intermediate 

optical radius. In these cases an Increase in the albedo permits 

greater penetration of the scattered radiation, which .is the 

dominant term in the expression for the temperature, as given by 

equation (Til-73). Therefore, is frequently positive

for such values of % . We have implied that the gradient, c(T(o)/ 

is negative for all values of for optically thin and optically 

thick atmospheres. This is true for optically thin atmospheres,

% =0.1 and 1.0; but not so for optically thick atmospheres.

In this case the gradient, though negative for most values of w 

does become positive when co is close to unity because, even for 

very large values of X there is a value of W , though extremely clo 

to unity, that will allow penetration of the scattered radiation to 

the centre of the atmosphere„

Figs. 46 and 47 are the equivalent graphs of Figs. 44 and 45 
-.2.

for the case of n = 10 . The central temperatures of optically 

thin atmospheres are low because little incident radiation is 

absorbed, and the gradient, dto is negative because the

fraction of the incident radiation that is absorbed is (1 - w). 

Nevertheless, the temperature is maintained closer to unity than 

would be expected from considerations of the thermal radiation 

field alone, which is the dominant radiation field in determining 

the temperature when n is small. This is due to the contribution

from the stellar radiation field, which though an unimportant term
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is still not zero but in fact is far larger than the thermal

radiation field in optically thin atmospheres. In the same way 

as described in Chapter II, a positive gradient, Co} / d %

is maintained as % increases until the term, C
and the radiation fluxes become effectively zero. Then

is almost zero itself. As the albedo approached unity, the range 

of values of % in which the gradient dTM/tfa, is positive, •­

increases and hence, the central temperature increases. In fact, 

the gradient, dTM/dt, } though very small, is negative when 

is very large.

The effect of anisotropy on the central temperatures is shown 

in Figs. 48 and 49. These figures show the central temperatures 

plotted as functions of % for n= 10 and n = 10 respectively, 

and for values of the phase function parameters, (a., (3)' = (0.0, 0.0), 

(0.4, 0.0), (a, 0.5), (0.4, 1.0) and (0.0, 1.0), where the case ’

(a, p) = (a., 0.5) gives the same results for all values of a. 

including unity, the case of isotropic scattering. Both figures 

show the functions for W =0.9, but Fig. 48 also includes the case 

of w =0.1, which shows clearly that anisotropy is unimportant 

when the albedo is small. Anisotropy is also unimportant in 

optically thin atmospheres. It is clear from Fig. 48 that the 

phase function asymmetry parameter is very important in the range 

of values of % where the scattered radiation barely penetrates
if.

to the centre of the atmosphere. For n = 10 it is the stellar 

radiation that is the major contributor to the temperature, and a 

forward scattering phase function allows a large scattered radiation 

to penetrate to the centre of the atmosphere. When 46 is very 

large, no scattered radiation reaches the centre of the atmosphere 

and the temperature depends solely on the thermal radiation field

• A‘ J?”',-/
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at that point. This is not strongly dependent on the phase

function. However, less scattered radiation is lost through

the surface with a forward peaked phase function than with an

isotropic or backward peaked phase function. Hence, the central 

temperatures of very thick atmospheres are fractionally higher for 

forward peaked phase functions than for backward peaked phase 

functions. The results of Fig. 49 correspond closely to the 

equivalent results of Chapter II. The gradient of the mean 

intensity of the thermal radiation field is given by equation
.j

(III-39) and is large by virtue of the factor,. 1/n. The greater 

the asymmetry parameter, the greater is the penetration of the

stellar radiation and the greater is the inward flux of thermal
... 1 

radiation. By conservation of energy, the outward thermal 

flux is then greater so that the temperature increases rapidly 

as the asymmetry parameter increases.

The temperature profiles are shown in Figs. 50 and 51 for n =
4

104" and 10 respectively. Both show families of curves for which

the phase function varies, and also the value of % . The albedo -j

.is 0.9 in both cases. The results of Fig. 50 need little discussion. 

The surface temperatures are dominated by the stellar radiation 

field whose surface value does not vary greatly with either % or 

(a, (3)a Optically thin atmospheres naturally have a higher surface * 

temperature than optically thick atmospheres on account of the 

radiation that has traversed the atmosphere. Backward scattering 

phase functions cause more scattering but of the atmosphere than 

forward scattering phase functions and consequently yield higher 

surface temperatures. The central temperatures we have discussed, *
4

< . Sand the temperature profiles link the central and surface temperatures!
3

« — Xaccordingly. When n= 10 , as in Fig. 51, the surface i4
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temperatures increase as increases because, as % increases, 

so the emergent stellar flux decreases and the emergent thermal

flux increases to maintain the condition of zero net flux. ■

Again most of the properties of Fig. 51 stem from the results already 

discussed for the central temperatures.

Only two values of n have been considered up to this point.

Fig. 52 shows the central temperatures as functions of n for the 

five standard values of % . Fig. 53 is a cross-section of this 

showing the central temperatures as functions of for several 

values of n . Both are for the case of no scattering. Fig. 52 

shows an intersection point of all five curves. This occurs at 

n - 1 but. is not an exact point of intersection. When n is larger 

than this value, the stellar radiation dominates the temperature 

and optically thin atmospheres show the highest central temperatures; 

whereas when n is lower than this value, the thermal radiation 

field dominates the temperature and optically thick.atmospheres 

show the highest central temperatures. Had the same diagram been 

plotted for isotropic scattering of albedo, 0.9 a similar inter­

section would have been noted but this would have occurred at a

value of n close to 4.0. The value of n at which the intersection

occurs is controlled by the scattering and the relative importance 

of the ratios, ( Ks -r- trs ') /Kp and Ks/Kp in determining the 

temperature. Its precise value is determined by a complex balancing 

of the different radiation fields of the problem. One final point 

of note is that n is unimportant when % is large provided that n is 

greater than unity. This can be seen from Fig. 53, but It will not 

be strictly true when scattering is present, because, for a very 

large value of n , even a very small scattered radiation field will

make a significant contribution to the temperature.
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The results described in this section have been those obtained ; 

by the more general method of solution known as method I, in which 

the Eddington approximation was applied to the entire scattered 

radiation field. In the previous section it was seen that, for 

certain phase functions only, an alternative method, known as 

method II could be developed, in which the Eddington approximation 

was applied to only part of the scattered radiation field. The 

results of these two methods are compared in Figs. 54 and 55 for 

values of n of 10 and 10 respectively. They show the

temperature profiles of atmospheres of certain optical radii In 

which there is anisotropic scattering. In Fig. 54 the curves are 

shown for values of % of 1.0, 5.0 and 50.0, and for values of (a., (I) 

of (0.0, 0.0), (0o0, 0.5) and (0.0, 0.1); and in Fig. 55 for

values of % of 1.0 and 10.0, and values of (a, p) of (0.0, 0„0) 

and (0.0, 1.0). The first of these figures involves temperatures 

that are dominated by the stellar radiation and hence the

differences between the results from the two methods bear a strong 

resemblance to the differences between the functions, J6 ( q>) , as 

discussed in the previous sectiono However, when is less than 

or equal to unity the reduced incident radiation field is greater 

than the scattered radiation field so that, not only is the 

temperature almost independent of the phase function, but independent 

of the method used for its calculation. There is a definite 

difference between the results from the two methods in those regions 

of thicker atmospheres where the scattered radiation dominates the 

temperature. That is, at all optical depths when ~ 5.0,

but only in the outer shell for which T is greater than 0.9A&, when 

= 50.0. Nevertheless, the discrepancy between the temperatures 

derived by the two methods is not great. When n = 10the thermal
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radiation field dominates the temperature, so that Fig. 55

essentially shows differences between the results from the two

methods for the mean intensity of the thermal radiation field.

This was not discussed in the previous section. It can be seen 

that there is no difference between the temperature profiles of 

optically thin atmospheres but there is between those of optically 

thick atmospheres, in which case it is no greater than 2%.

This is smaller than the maximum difference for the case, n. = io , 

which is 7%. In general, the difference between the results from 

the two methods are much smaller in the temperatures than they were 

in the mean intensities of the scattered radiation field.

5. The Emergent Radiation

It was seen In Section 1.1 that the intensity of the radiation 

field in any medium can be found from the integral equation that 

is the formal solution of the equation of transfer, provided that 

the source function is known. The emergent radiation from a 

spherical atmosphere can be found from this equation, equation 

(1-7), in an analogous manner to that used to derive the approximate 

solution for the emergent radiation from a plane-parallel atmosphere 

in Section II.5.2„ Fig. 56 shows the geometry of a spherical 

atmosphere pertinent to this derivation. Measuring optical 

distances in terms of the extinction coefficient for the visible 

radiation, and with % the total optical radius of the atmosphere, 

OP; and fc, the optical radii, OS and OT; , the optical

distance RP; and U , the optical distance TP, equation (1-7) 

becomes

Is(o,r) = I. +
-tx

(t) e dtx (III-74)
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$for fhe emergent stellar radiation and

(III-75)

thermal radiation. It is more convenient tofor the emergent

evaluate the emergent radiation as a function of ns , where X is 

the optical distance OS, at intervals of nj/% of 0.0(0.1)1.0; 

rather than as a function of p.

Approximate solutions for the two source functions were 

obtained in Section III.3 for certain types of scattering. Whilst 

the mean intensities of the radiation fields were found for all

values of ci and p, the schematic phase function parameters, the 

source function for the stellar radiation field was found only when 

a was zero or unity, the cases of linear and isotropic scattering. 

The source function for the thermal radiation field is isotropic 

for all phase functions and therefore was found in Section III.3. 

for all phase functions. Equations (III-74) and (III-75) can only 

be usefully applied when the source function is isotropic, as for 

the scattered radiation field when the scattering is isotropic, and 

for the thermal radiation field.

However, when fhe scattering is linear only, the intensity of 

the scattered radiation field is known exactly everywhere. The 

emergent radiation is a special case of this solution which is 

given by equation (11-52), and is

O'X’k
■f (III-76)
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C> = I.

and ~ X»2-'£2' . (III-78)

This exact solution tor the emergent stellar radiation is 

given in 'Figs „ 57 and 58 tor linear scattering with p =0.5 and 1.0 

respectivelyo Both show tamilies ot curves whose parameters are 

% and w which take the values ot 0.1, 1.0, 5.0 and 50.0, and 0.1, 

0.5 and 0.9 respectively. The majority ot the curves are only 

shown tor values ot £/% ranging trom 0.0 to 0.9. The remaining 

ten percent is omitted to preserve clarity. All the curves do rise 

to unity at the limb which means that, at the limb ot every

atmosphere the intensity seen is that ot the incident radiation only 

We shall consider first, Fig. 57, In general it can be seen that 

Is M is smallest for small values of w and large values of .

This is to be expected. Small albedos give rise to smaller 

scattered radiation fields and thick atmospheres prevent the passage 

of radiation across them. In the latter case there Is very little 

increase in Is (t) as a function of until % /'Xo approaches unity. 

For example, when % is 50.0 and V/% is 0.9, is approximately

45.0 so that even at such a high value of t/% there is very 

little penetration through the atmosphere. As % becomes large 

so Is(o) becomes independent of and dependent on & only. This 

happens because the major contribution to the emergent radiation is 

that reflected from the outer layer of the atmosphere and this 

will not depend upon % or V at all, if Tx* is sufficiently large 

to prevent radiation penetrating across the atmosphere.

, 3.-S -
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Fig. 58 for the case of (3 = 1.0 shows similar results to 

those of Fig. 57. The main difference is that the emergent 

intensities from optically thick atmospheres are considerably 

smaller than their counterparts in Fig. 57. When the parameter,

{3 is equal to unity then there is no backscattered radiation 

anywhereo The emergent radiation must have entered the atmosphere 

at the opposite end of the line of transfer so that the emergent •

radiation will be zero if the optical length of the line is |

sufficiently large. The two figures show that the emergent 

radiation from an optically thin atmosphere does not depend 

crucially on the phase function of the scattering.

The emergent stellar radiation can be obtained from equation i 

(III-74) in the case of isotropic scattering. The source function 

is given by a reduced form of equation (III-ll) but still involves 

equation (III-27) for (T) which is a very complex function of 

optical radius. The exponent, fcx , is not an elementary function 

of optical radius either, so it is necessary to integrate equation 

(III-74) numerically. This procedure is simple for optically ■

thin atmospheres in which the source function is a slowly varying 

function of optical radius,.but rather more complicated for optically 

thick atmospheres in which the source function has a large maximum 

near the surface of the atmosphere and is effectively zero for a 

large region in the centre of the atmosphere. In these latter 

cases the range of values of T that dominates the integral is the 

outermost few units. Thus, care must be taken in applying the 

numerical integration to ensure that the important part of the 

range of integration is treated accurately and also, that the source 

function is closely tabulated over the range of values of optical 

radius through which it varies rapidly. In the calculations
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employed the source function was obtained by interpolation on a 

table of values of the source function evaluated at values of T /% 

0.0(0.1)1.0 and 0.90(0.01)1.00. The direct evaluation of the 

source function is a relatively lengthy process so that where 

many values of the source function are required, as in a numerical 

integration process it is very much quicker to use an interpolation 

scheme on a precalculated table of source function values.

The results for the emergent stellar radiation from an 

isotropically scattering atmosphere are shown in Rig. 59 which is 

quite analogous to Rig. 57. In fact, the results are very similar. 

This is because both phase functions have an asymmetry parameter 

of zero. Certainly the similarity between the two sets of results 

for optically thin atmospheres is very striking. Three slight 

differences are evident for optically thick atmospheres. firstly, 

the optical thickness of the atmosphere is more important in the 

isotropic scattering case, particularly when the albedo is high. 

Whereas the emergent radiation from the centre of the atmosphere, 

which is the equivalent of saying the emergent radiation normal 

to the surface of the atmosphere, was independent of % when » was 

0.9 and (a. j3) was (0.0, 0.5), it is not so when (a, J3) ~ (0.0,1.0). 

Secondly, the emergent radiation from the centre of the atmosphere 

is smaller for the isotropic scattering case; and thirdly, the 

emergent radiation from the outer region of the disc projection of 

the atmosphere is much greater in comparison with the emergent 

radiation from the centre of the disc, for the isotropic scattering 

case. All these phenomena are due to the relative amounts of 

radiation scattered away from the direction of the incident 

photons. In the case of cl equal to zero there is no radiation 

scattered ’’sideways’1. We have seen that in the case of linear
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scattering with (3 equal to 0.5, the emergent radiation is

independent of % and if is greater than a certain optical 

distance. The radiation emergent from the centre of the atmosphere 

is made up of contributions of radiation scattered by elements 

of matter at all points along the line of sight, which in this 

case is the diameter of the atmosphere. The contribution from 

a point at depth is dependent solely on the values of T* and w 

when (a., (3) = (0-0? 0.5) because it scatters radiation that

initially entered the atmosphere at the same point whatever the 

value of % . However, for isotropic scattering the element of 

matter at point 't1* scatters radiation incident upon it from all 

directions into the particular line of sight. As X changes so 

the radiation incident upon it in a particular direction must change 

accordingly. Hence, we observe that I5(o) depends upon x even for 

large values of X . This is an effect due to the changing 

curvature of the surface nearest to the point V . The second and 

third differences between the results for the two phase functions 

are complementary. The isotropic scattering causes more radiation 

to emerge at high values of the angle of emergence, c.os“' p, but 

less at low values of this angle. We have already noted the reason 

why I$(t) is independent of p and hence,'V , for <0.9, % =

50.0 and (cl, (3) ' = (0.0, 0.5). For large values of X and isotropic 

scattering the dominant contribution to the source function at a 

particular point is radiation scattered from the radiation incident 

along the line of shortest distance to the surface of the 

atmosphere. The source function at all points on a line of sight 

near the edge of the atmosphere is consequently going to be greater 

than at points on a parallel line further from the edge.

Consequently the former case will yield an emergent radiation that
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increases towards the limb. Hence we understand the differences

between Figs. 57 and 59.

The source function tor the thermal radiation is isotropic, 

and the emergent thermal radiation is evaluated by integrating 

equation (III-75) numerically. Again, a great deal ot care must 

be exercised in performing this integration. When n is unity the 

same measures that were necessary for the accurate integration of 

equation (III-74) must be used. When n is 10 , the attenuation 

factor is almost negligible and the dominant term in the source 

function is the stellar radiation field mean intensity which, for 

large values of % , is virtually restricted to the outer shell of 

the atmosphere. However, contributions to the emergent radiation

arise from both sides of the shell because the attenuation factor

is so small. When n is 10 the dominant term in the source

function is the thermal radiation field mean intensity. However, 

the attenuation factor is now very large, and contributions to the 

emergent thermal radiation arise from a very thin shell near the 

surface. Thus, the choice of the range of application of the 

numerical integration procedures is a complex function of n , X

and T . There is no incident thermal radiation. Therefore the 

emergent radiation from the limb, “Y: X and Tko = 0.0, is zero.

The thermal radiation emerging from a spherical atmosphere is 

plotted in Figs. 60 to !62 as a function of 'V, the fractional 

optical radius of a disc projection of the atmosphere. It is 

dfawn in Fig. 60 for isotropic scattering of albedo, 0.5, for 

various values of To and n . For optically thin atmospheres, of 

% =0.1 and to a lesser extent, X =1.0, the value of % is 

important in determining the emergent thermal radiation, and the

value of n is 'almost immaterial. When the atmosphere is optically
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thin, only a certain fraction of the incident radiation is absorbed 

to form thermal radiation, and this fraction increases as ns, 

increases. Hence, is very small when is 0.1. The mean

intensity of the thermal radiation at the surface is independent 

of n , by virtue of the boundary conditions. When n is large, 

the emergent radiation is comprised of photons emitted from all 

elements of matter along the line of transfer because the 

attenuation coefficient is then very small. However, for large 

values of n- the source function is a very weak function of position 

and is approximately equal to the boundary value, and hence 

independent of n . Moreover, it is simple to show that 

for large values of n . For small values of n the attenuation of 

the thermal radiation is large, even for small values of X . 

Consequently, the emergent radiation is dominated by the emission 

from the outermost layers which, as we have noted, is virtually 

independent of n . Hence, the greenhouse parameter has little 

influence on the emergent thermal radiation from optically thin 

atmospheres.

For optically thick atmospheres, the emergent thermal radiation 

does depend critically on n, but less so on % . When n is small 

the emergent thermal radiation arises from the outermost layers, 

and as we have seen, the source function near the surface does not 

depend significantly on % , provided it is large enough to prevent 

the penetration of the stellar radiation right across the

atmosphere. In such atmospheres the temperatures rises rapidly 

with optical depth from the surface. Therefore, Ip(o) contains 

a greater proportion of radiation emitted by hotter layers than 

does Ip(0o9 ; and the function I p (q;) has a maximum at T = 0.

The opposite occurs when is large and n is large. The hottest
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layers are those near the surface so that the optical path through 

the hot layers is smallest when is zero and largest when is 

of the order of 0.8 % . As % and cos “'p increase beyond a 

critical value, the optical path through the atmosphere decreases 

due to truncation at the surface and hence Ip(o;) decreases to zero 

as % tends to % . This maximum occurs at values of t/%

of 0.8, 0.92-and 0.995 for values of X of 5.0, 10.0 and 50.0 

respectively. It is an effect due to the curvature of the 

atmosphere.

In general, the functions, If>(Jt), intersect at high values of 

T/% on varying any of the atmospheric parameters. Figs. 61 and 62 

show the emergent thermal radiation for n = 10* and, values of # 

of 0.1 and 0.9. Fig. 61 shows optically thin atmospheres of 'to 

of 0.1 and 1.0; and Fig. 62 shows optically thick atmospheres 

of % of 5.0, 10o0 and 50.0. Fig. 61 also includes the case, w = 

0.5. In each figure it can be seen that IpC't) decreases as <4 

increases. The thermal source function is dominated by the term

n(i~ f , and this is the cause of the albedo

dependence of Ip('t). The ratio, Ks/Kv is given by w(l -(5 ); and 

the larger the albedo the smaller is the stellar absorption 

coefficient and the smaller is the thermal radiation field generated 

The atmosphere of % - 5.0 shows both the limiting extremes of 

behaviour. It is like an optically thick atmosphere when co =0.1 

and an optically thin atmosphere when o =0.9. This follows 

directly from the effect of the increased penetration of the 

scattered radiation when the albedo is high, which gives rise to 

scattered radiation fields typical of those of thinner atmospheres

with lower albedos. Similar conclusions can be drawn about the

effect of anisotropy. When (3 is unity the atmospheres will behave
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as though they were optically thinner with isotropic scattering, 

and vice versa for atmospheres with (3 equal to zero. The 

equivalent diagrams to Figs. 61 and 62 for n = 10 have not been 

given. The effect of varying the albedo is exactly the same 

as when n = 10 , but the functions Ip(Q;) are of different structure 

as shown in Fig. 60.

6. The Effect of a Variable Density

In the preceding sections of this Chapter we have assumed

that the density of the atmosphere is constant throughout the 

atmosphere. The need to assume a particular form for the density 

function arises in the radiative transfer problem in spherical 

atmospheres from the form of the total differential of the intensity 

which is expressed in terms of the partial differentials, 3/r 

and It was not necessary to make such an assumption in the

radiative transfer problem in plane-parallel atmospheres because 

the total differential of the intensity could be expressed in terms 

of one differential, d/(/.£ , and an optical depth scale could be 

defined by, 4^ = - (Ks <rs) „ In this section we shall

allow the density to be a function of the position variable, r.

We shall still maintain the restriction that there is no variation

of the density over a spherical surface concentric with the

atmospheric surface, in the same way that we allowed no density 

variation along a plane parallel to the surface of a plane-parallel 

atmosphere. It is convenient to speak of a density function,^ fr) 

and a constant absorption -coefficient, but a variation of the 

latter will introduce no added complication to the problem.

However, we shall still assume the albedo to be constant throughout 

the atmosphere.
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The equation of transfer for the scattered radiation field 

in; a spherical atmosphere is given by equation (III-12). We shall 

restrict the discussion to the case of isotropic scattering for 

which the equation of transfer is

To define an optical distance scale it is clear that both (Kg + <rs') -j

and (Ks + oV) pOOr are required as functions of the optical

distance. This is only possible if p (r) is a pre-defined function 

and only simple if yc?(r) is constant. Moreover, it is not possible 

for every function, p> (r) . A density function that has been used 

extensively is that developed by Chandrasekhar (1960),

(III-80)

where a and m are constants. We define the optical depth in the 

normal manner by

1

or

- * cpj$(x\ o[r

r

where R is the radius of the atmosphere. The dens i t y fun c t i on

(III-81)

t
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defined by equation (III-80) has an infinite singularity at the 

origin, which though physically unrealistic will not affect the 

results to any great extent. Combining equations (III-80) and 

(III-81) gives

Ctfs + <rs) z>(r)r (m-i)'t + b , (XII-82)

where b ■= Consh»«H= a. /

The solution of equation (III-79) with the density function, 

(III-80) and optical depth, (III-81), is solved by Eddington*s 

method and follows closely Huang's (1969b) analysis for circumstel'lar; 

shells. The first two moment equations derived from equation 

(III-79) are ?

d Hs M 4- 2Us(.r) - - (Ks+<?s)yJ7(r) 111-83) !

fltr r

and 3Ws(r) 9 (III-84)

where we have used the Eddington approximation in formulating 

equation (III-84). Differentiating equation (III-84) and using 

equation (III-83), we obtain

3 [g-c5 _ £j Cd] .
(III-85)
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Now, from equation (III-80) we have

J-
/’Cr) </r r

vT$Cr)

ctr1
so that q- (n\4-2) dd~sM - 3 CK*3 + °rs^/)*Cr) (i-£> ) 55Cr) 

“ dr

- ~3CKs*<n)%/A>) a F^tr) ,

which, in terms of the optical depth as given by equations (III-81) 

and (111-82) is

clx ^s(x) - , (.M-*a.)______ d tTs<fr) - (in-86)

dxz [ (m-»)x + b 3 dt
w -3 w

where .

Equation (1II-86) can be simplified by changing the variable to 

X, where x is defined as

= e [ t + b / (m-n J (IIX-88)

whence, equation (III-86) becomes

y$(x) - C^+2.) ctTj(x) - Xs(x) «
dr? (i~£»)(m«-i) x

Again, changing the variable Js(x) to ffx)? where

ffx),: X”V X<x) ,

X^Cx)

(111-89)
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LW Kt*)
Cl(i-S)

°7

i9 (x) x"1' ex) ix

and “ (&M+0 / , (III-90)

we obtain

+ X ~ (x2+^)^W « -£> X? y^J(x). (III-91)

dbc1 dx. (i-&)

This is an inhomogeneous Bessel equation of purely imaginary 

argument of order 7 . Its solution is found by the method of 

variation of parameters, and is

x1”* MAk +

. (III-92)

The functions, Iv(x) and I<v(z) are modified Bessel and modified 

Hankel functions respectively. Details of these functions and 

the application of the method of variation of parameters to Bessel 

equations are given by Watson (1952) in his standard work,

"Treatise on Bessel Functions". Further details and useful tables

of these functions are available in various works on mathematical 

functions such as that by Abramowitz and Stegun (1964).

The two constants of integration, C4 and , are determined by 

two boundary conditions. At the origin the mean intensity of the 

scattered radiation must be zero because we have a non-conservative 

scattering problem. That is, we require^ ( txs ) = 0. Now, Iv(oo) 

is infinity and Kv(^) is zero so that C, must be infinity in order 

to satisfy the condition that £ ( oo) is zero. Thus, the solution
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for the mean intensity of the scattered radiation field, given by 

equation (III-89) and (III-91) can be expressed as

f«Cx) « U? X [ ft Kv (x) - RCx) J ,
(III-93)

(i - £>)

where
Rtx.) . kU*) f x'"* r^(x) K(x)o(k +

+ Idx)

C3r
X*‘* Khx)ofx . (III-94)

✓

and A is the second constant of integration. This constant is 

found by the use of the Eddington boundary condition, Ja(x0 ) = 

2Hs(x0)5 where is the value of x at the surface, which from 

equation (III-88), is given by

& e b / (i) . (III-95)

The flux of the scattered radiation can be found from equations 

(III-81), (III-84) and (III-88), and is

~ £, d 3g6&) 
s cbt

(III-96)

Hence R<?(x) ~ 1 £ ~ Fv U)1[

3G-<3)

£& X* [ K,Ux) - (xn-97)

3 O ~ & )
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where the primed quantities refer to derivatives with respect to X 

The derivative of- Ky(x) is given by Abramowitz and Stegun (1964), 

and the derivative of Fy (z) is

4^
R'Cx) =

0C>

+ i'A) x'-v nwMx) ok (III-98)

Thus the constant, A, is given by

A = f(xo-a.&W3) R Cxo) - ae-x„ /3 j

f (x„ -S.6V/3) Kv Cx0) - lex, Kv' (x.)/3 j (III-99)

This completes the solution for Js(£). In Section III.l we saw 

that the reduced incident radiation could be found by numerical 

integration only, when^(r) was not a constant. Thus, the 

necessity of numerical integration for the evaluation of Fv(x) 

introduces no further restrictions to the capability of the solution 

However, great care must be taken in the evaluation of this function 

because the integrand is a rapidly varying function of x in many

cases,

The equation of transfer for the thermal radiation is

/A
*rPtr,r)

3r
4- jA) 4*

-V
Kpp6") vTp(r) 4- C(-ta) (t<st£>5)y5fr) I. vTyfr) + TM(5« (r) j .

(III-100)
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Integrating this equation in the standard way gives the first 

two moment equations, which are

JRpfrl 4- 2 Hp Cr) « (l~to ) ( Ks *<rs) Xr) (III-101)
dr r 7

and « -3fcp/>frj Hp(r) . 
dr

(III-102)

We have again used the Eddington approximation in deriving equation 

(III-102). Changing the variable r to x , using equations (III-80),S 

(III-81) and (III-88), we obtain >

J Up to - 3- - Hpbt) = -_£ L tsM* (ux-103) j

± HP6c).and
dx

(III-104)

Equation (III-103)

X? <L [ x’1? <aM I
fa

can be solved directly using the

dq(x.) - v) q(x) . 
~TV ~f~ J
dx x

relationship]

'a'4

(III-105)

The boundary condition to which this equation is subject, is that of 

conservation of energy. This, when expressed mathematically, 

involves the flux, H$(x) which we have found numerically. 

Consequently, the constant of integration cannot be specified 

exactly. However, when considering semi-infinite plane-parallel 

atmospheres it was seen that an alternative approach to the solution 

for the mean intensity of the thermal radiation field was available.

We shall now use this alternative method which will allow the
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establishment of an exact value for the constant of integration.

This alternative method involves the solution of the equation of 

transfer for the sum of the scattered and thermal radiation fields

which will be denoted by the subscript T. Adding equations (III-83) 

and (III-101), we obtain

iHrM + 2_HT(r) = ( K, + crSy(r) (r) , (III-106)

which expressed in terms of the variable becomes

d Ut(k) 
dx

2HtCx) . -J. 2Q(.x) (III-107)
Ga-i ) X

The solution of this equation, using the relationship (III-105), is

c
r -

x”'7 , (III-108)

X£

where = 2/( m ~ 1) which is a positive constant.

The intensity of the reduced incident radiation field obeys the

equation of transfer also. It is merely the expression of the 

attenuation of the field because the source function for the 

reduced incident radiation field is zero. Thus, we have

+ (i-^) 31*4 (r,H) = _(fcj *cr$)/>£r) I^Cr.u). (III-109) 

<5r r

The first moment integral of this equation of transfer, expressed 

in terms of the variable,X, is

2 (x) --
dx (fA-f)x
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the solution of which is

03

x"’ ex) <h , (III-110)

where y) = 2/( m - 1) as above, and we have used the boundary condition 

that the limit of as oe tends to infinity, is zero.

Conservation of energy demands that

Hr to = -H^Ck) ,

so therefore the constant, C, in equation (III-108) must be infinity. 

Expressing equation (II1-84) as a function of 35 and adding to it 

equation (III-104), we obtain

£
3 chc

Assuming the greenhouse parameter to 

the atmosphere,x, we integrate this

be independent of position in 

equation and obtain

m l^) + TsCk) 2
e

r |-|r(x.) clx + VIC J ,

0
■ X

or X(x1 = C, - ±tsto - 3
” Sn J

f if M ok .
(III-lll)

The constant, C,, is found by application of the Eddington 

approximate boundary condition, Tp = 2 Wp l<r>) and is given by

C, = -2 H^Cx.) “ [1 - “ ] TsCkJ .
(III-112)
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The simple equation for Jp('Y) found in Section III.3, given •> 

by equation (III-46) is not valid in this case because the function,^ 

Jp (x), the mean intensity of the thermal radiation field in the 

case of no scattering, is measured in terms of a variable, 3s, that 

is not the variable x used above. The variable, x , as defined 

by equation (III-88) is dependent on to so that equation (III-46) 

written in terms of x is not valid for this problem with a

variable density.

It is a simple matter to extend the results of this section 

to include anisotropic scattering according to the schematic 

phase function. The equation of transfer for the scattered 

radiation, (III-12) is now

P + (r, ^) = - (iVs t
r

(III-113) 4

where we assume that the parameters,w , a and p are not functions < 

of position. The analysis given above for the isotropic scattering 

problem, when applied to equation (III-113) yields

Tsbc) = - th* . [ /3«v(k)- R(x)] , (in-114)

Ct~ t»)

where Fq> (x) is given by equation (III-94), and x by equation (III-88)i 

However, we now have
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where

- 35 < 1“ , (III-115)

W(|-oO(2yS-/).

The constant A is obtained in the same manner and is

(III-116)

The analysis Tor the thermal radiation is exactly the same as before 

and the mean intensity of the thermal radiation field is given by 

equations (III-lll) and (III-112). Hence, the temperature, as a 

function of X, is

(III-117)

We shall not give a complete account of the results for an 

atmosphere with the density function of equation (III-80). The 

results are very similar in a great many respects to those obtained 

for the constant density atmosphere. This is certainly true of 

the stellar radiation fields. The mean intensity of the reduced 

incident radiation simply falls of in an exponential-like curve 

to a value of 10 m two or three units of optical depth. Results 

have been calculated for the case of an atmosphere of a = 1.0;

R = 1.0 and 10.0; and m = 2.5, 1.75 and 1.5. In general, it Is 

not possible to say that J Xa (*fc) is a simple function of m.

The curves of J (*v) lor different values of m intersect several

times though in no circumstances do they deviate very much one from



305

another. The major difference between this density function and 

the constant density is presence of the central core which is 

optically very thick and, in fact, infinitely thick at the origin. 

This core can be defined as the region of density greater than an 

arbitrary density, po . For most points at a particular optical 

depth the radius decreases as m increases. Consequently, the 

angle subtended by the core of the atmosphere increases as m increase 

In fact, the area of the core increases as m increases also, 

because is usually a high value of the density. Hence, the 

mean intensity of the reduced incident radiation at a particular 

value of T , decreases as m increases. This situation arises for 

the most part in the outer two or three units of optical distance. 

Deeper in the atmosphere the converse is true; r increases as m 

increases; the angle subtended by the core decreases and J 

increases, though is very small for these optical depths. The 

situation is complicated further in the region within 0.75 units 

of optical depth from the surface. In this case, J (t) is 

largest when m is 2.5. When R is 10.0 the densities near the 

surface are far more important than they were when m was 1.0, becaus< 

the central core is farther away. Hence, asm increases so the 

surface density decreases and the reduced incident radiation leaving 

the atmosphere at angle of p less than 0.7, increases. The whole 

process is too complicated to discuss qualitatively in any further 

detail because there are so many new variables several of which are 

interdependent.

The mean intensity of the scattered radiation Is shown in Fig.

63 as a function of optical, depth for isotropic scattering of albedo 

0.5; with a = l.o, m = 2.5, 1.75 and 1.5 and R = 1.0 and 10.0.

In general, the smaller atmosphere has a larger inward flux of
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reduced incident radiation because the densities nearer the

surface are larger and therefore less radiation can escape from

the atmosphere at large angles of emergence. Consequently, \
t

more radiation is absorbed and more radiation is scattered, so

that we observe that Js (QJ) is larger for all values of m and R = j

1.0 than for corresponding values of m with R = 10.0. Again, the 

form of these curves are similar to those of the constant density
s

case. As m increases we have smaller scattered radiation fields
J

at all optical depths. The scattered radiation cannot cross the i 

central core. The larger the value of m the greater is the area 

of this core and the smaller the radial value of a given optical 

depth. Thus J5(<£) decreases as m increases. ;

The mean intensity of the thermal radiation and the temperature ? 

are plotted as functions of optical depth in Fig. 64 for values 

of n of 10* and 10* ; a = 1.0, R - 10.0, m = 2.5 and for isotropic 

scattering of albedo, 0.5. The mean intensities of the reduced '

incident and scattered radiation fields are also shown. The scale i

of the ordinate is different for several of the functions but all are'

shown together for this one case only to show their form in a

general comparison with the equivalent graphs of the constant

density atmosphere. Whereas the atmosphere was similar to the
j

optically thick constant density atmosphere with regard to the

. . • » 1 stellar radiation fields this is not true for the thermal radiation 1 

fields in such a general manner. The core of the atmosphere is |

still optically thick and the thermal radiation is of constant mean 5 

intensity below a depth of 3 units when n is equal to or less than 

unity and constant throughout the atmosphere when n is large.

This situation is precisely that of the optically thick constant 

density atmosphere. However, ) and hence J? (x) -for n - 10 , 1
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i«
T

is closest to its value in an optically thin constant density

atmosphere. This stems from the smaller flux of the reduced

incident radiation at the surface which leads to smaller scattered

and thermal emergent fluxes and smaller surface values of the mean

intensities. The reduced incident radiation flux is smaller than 

in the optically thick constant density atmosphere because the 

intensity of the incident radiation traversing the atmosphere at

small and grazing angles to the surface is attenuated far less in i 

the variable density atmosphere. Thus the spherical atmosphere

whose density function is given by equation (III-80) is like an 

optically thick constant density atmosphere with regard to the •>

stellar radiation but unlike either an optically thick or optically 

thin constant density atmosphere with regard to the thermal radiation, 

This does not indicate a setback to the use of the constant density 

atmosphere but rather shows the inadequacies of the density function 

of equation (III-80). However, we have used small values of a and R. 

With larger values of these parameters the core region would be 

proportionately smaller with respect to the optical depth scale, and 

consequently would affect the atmosphere to a lesser extent.

In that case the variable density atmosphere would give results 

closer in character to those of the constant density atmosphere.

The effect of a variable density can be explored in another way, 

but for a special case only. In Section III.3 it was seen that 

there were two methods available for the solution of the scattering 

problem in spherically symmetric systems. The first method involved 

the application of the Eddington approximation to the whole 

scattered radiation field whereas the second involved that 

application to part of the scattered radiation field, the intensity 

of the remainder being obtained exactly. In the limiting case of
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linear scattering only the solution for the whole of the ;

scattered radiation field was exact. We have already used the '■

first method in this section, and we shall now employ the second 

to the case of linear scattering. This will not only yield the exacts*

solution but be valid for any density function. For linear

scattering the intensity of the total stellar radiation field at any -j 

point in the atmosphere is given by the solution of the equation 

of transfer in a one-dimensional medium of finite length. The 

solution of this problem has been obtained for the constant -

density case in equations (11-49) and following. Equations (11-48), 

suitably altered to allow a variable density are

and

where s is the geometrical distance along the line of transfer. The 

denominators of the left-hand sides of these equations contain the 

differential, ds , only, so that there need be no restriction on

the function p (5) if the optical distance along the line is defined 

as such that

S

(III-119)

With the optical distance scale so defined, equations (111-118)
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reduce to equations (11-49). The boundary conditions are that 

there is an intensity Io incident on each end of the line of 

transfer. The solution is thus given by equations (11-49) and 

(11-51), and the constants of integration by equations (11-55). 

That is,

Itr, u) * C, e + C* &
-era:

(III-120)

and T(r,-H= _ ' j C,e fi-w?s + o-3+ c»e [i-tiB-crji t 

S C.-/3)

Ct « Io f Ca
where

■Kr)e'rx° -

-crJt

(111-121)

*” Ci ,

and = G-- £a(i-^r

The optical distances, 32 and sq, are given by equations (III-119);

S,

( Ks + 0$) | (S') J.s'
©

£

(III-122)

and X (fc$*Os) z>Cs') cis' .

The distances s and s0 are found from the geometry of the atmospher

and are
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and

So = 2 J R * - r*7t 7 ) (III-123)

s “ rr + is<
The mean intensity, J(r) is obtained by a Gaussian quadrature 

integration of equations (III-120). For each point of the 

quadrature the optical distances, x and oq> are found by numerical 

integration of equations (111-122). The density can be any 

function of r , either an analytical function or a tabular function 

The density p( s') is easily found from p(r') by use of equations 

(III-123). The mean intensity of the scattered radiation field 

is given by

(r) = XCr) - 0'S (r) ,

(III-124)

v’

Thus, we have the exact solution for the scattering problem in a 

spherical atmosphere with a variable density function of any 

radial dependence, with the only restriction that the scattering 

is linear. This is not as severe a restriction as it first appear 

because the linear scattering problem with a value of (1 of 0.5 

gave the same results as the isotropic scattering problem in a 

constant density atmosphere solved under Eddington’s approximation. 

Moreover, this special case will give a good insight into the 

effect of a variable density function on the solutions for the

radiation fields.
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The equations for the thermal radiation field in Eddington*s 

approximation are simpler than those for the scattered radiation 

field. They are sufficiently simple to allow the solution of 

the arbitrary density function case to be continued. The flux 

of the thermal radiation field is given by equation (III-101) 

which yields a numerical integral that is easy to evaluate.

We have

(i- £>) (frs + qs) j + C«
(III-125)

The constant of integration is zero by virtue of the condition of
•1*

conservation of energy which demands that H?(r) = -H(r). It can 

easily be shown that H(r) is equal to -Hp(r) as in equation (III-125)? 

with C, equal to zero. The mean intensity of the thermal

radiation field is found by integration of equation (III-102). Thus

Tp(r) = Ci ~ 3 (ffy-t Of) (III-126)

where we have assumed that the greenhouse parameter, n, is not a 

function of the radius, X’ . Eddingtonls approximation has been 

used in obtaining this equation and the constant, C4 , is found 

by using Eddington’s approximate boundary condition. Hence, we

obtain

•'44
‘4

so that Cr) = 2. (&) 4*

1i
1

(III-127) J
i•1
j
51

J

Op(R) 3 ( K? +

3
m “ J

)HP(r)Jr .
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,1

The temperature profiles are given by equation (III-117).

Thus we have the complete solution for a general density function, 

subject to the condition of linear scattering. The solution for 

the isotropic emission of the thermal radiation is possible in 

this case even though the isotropic scattering problem introduced 

the practical requirement that the density function should be of 

the form given by equation (III-80). This is due to the

conservative nature of the transfero It is the non-conservative

nature of the scattering that introduces the term, (1 - £>)JS (r)

r *into equation (III-83) without which the complex factor,[2/i—

/ dt 3 would be absent from equation (II1-85) and a general density i
1

function permitted m the subsequent theory. ;
J

Again, extensive results are available for this method, but 

only one special case will be shown. It is sufficient to quote the 

results from one case only to show the main effects of the variable
j* I

density function. Fig. 65 shows the mean intensities of the 1"1■ i
scattered and thermal radiation fields, together with the temperature j

1
plotted as a function of fractional optical radius for an atmosphere 

in which n = 1.0, 60 = 0.9, % = 5.0, a = 0.0 and p = 0.5. The 

continuous curves show the quantities in an atmosphere of density; 

p (r) L l‘S ~ 3, and the broken curves show the same quantities •

in an atmosphere of constant density, p (r) = pa . In general, 

the two sets of curves are very similar. Certainly any 

qualitative conclusions derived from the one will be the same as 

those derived from the other. Were the fractional radius used 

as the abscissa there would be less similarity between the sets of 

results., but the optical distance scale is recognised to be the more 

important In radiative transfer problems. It is interesting to see
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how the differences are of opposite sign in the two radiation -j
fields, and hence partly cancel when evaluating the temperature.

When n is IO14' the stellar radiation field dominates the temperature 

and the differences will be similar to those for the stellar 

radiation field. Similarly, the temperature differences will be 

similar to the thermal radiation mean intensity differences when 

n is 10 . This density function provides more realistic

atmospheres than the one of equation (III-80). As we observed, 

the latter density function was neither optically thick nor optically 

thin for the thermal radiation, but could be adjusted to be optically 

thick. With this method we have a density function that can 

produce an optically thin atmosphere that has the decrease in 

density towards the surface. In general, we see that the constant 

density is a good approximation to the density function chosen

earlier.

7. Modification of the Incident Radiation

The incident radiation that has been considered in the 

foregoing sections of this Chapter has been dilute uniform isotropic 

starlight. In this section we shall consider modifications of

this. The nature of the interstellar radiation field was discussed 

extensively in Section III.l, and two elementary extensions of the 

approximate form for the Interstellar radiation field were

proposed.

The first is the addition of an undilute uniform isotropic 

thermal radiation field attributed to the universal microwave 

background radiation. Let the integrated intensity of this 

radiation be ctlo , where Io is the intensity of the dilute starlight.

The inclusion of this additional radiation field does not, of course,
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affect the scattered radiation field whose mean intensity is 

given by equation (III-27). The source function for the thermal 

radiation field is the source function for the thermal radiation 

field 'of the standard problem, a = 0, given by equation (III-31), 

plus a contribution arising from the absorption and re-radiation 

of the reduced incident thermal radiation. This process is 

conservative and isotropic so that the additional term is the mean 

intensity of the reduced incident thermal radiation, which is 

simply, aJ (tytt), the thermal radiation being attenuated by 

the factor T/yi, which equals the optical distance, r .

Thus, we have

4- Vifl-w ) [ <TgM 4 X2 t (III-128)

where the asterisk superscript refers to those functions of the 

present problem with the additional incident radiation.

The equation of transfer and its first two moment equations

are

JA (Y, 4 ((- <= -J. Tp* 4*

3^ $1*

v\
T* M + £ 7, + 5s(-c) + ( (III-129)

JHpGO + = £ Z + G-.s)UnM + , (111-130)
r *

and - ® h; m ,
(111-131)

n

where the Eddington approximation, fcp('Y') - ( I / b ) . Tp* ('V) has been
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used, in the derivation of the second of the two moment equations. =■ 

These two moment equations combine to give :♦
'SSh

f - SeiV (in-132) t

dv* "

the solution of which is

Tp*7r) = + 0 + C«/ir , (m-133)

where Jp('t) is the solution tor the mean intensity of the thermal 

radiation field of the standard problem, which is given by 

equation (111-46), and J? (V) is the solution of the standard 

problem in which there is no scattering, and is given by equation 

(111-42). The constants of integration in both equations (III-42) 

and (III-4-6) are ignored and absorbed into the two constants of 

equation (III-133).

The flux of the thermal radiation is given by equation (II1-131) 

which using equation (III-133), gives,

~ ~ - G ? (III-134)

which, in turn, on using equations (III-39) and (III-44) becomes

Ap (•*') « Hp(-t) - << (y/«) - Ci /** . (XII-135)

In order to conserve energy in the atmosphere it is necessary to have

Kp”M Ct) + = o , (XII-136)
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where aH ('t/n) is the flux of the reduced incident thermal

radiation. It was a condition of the standard problem, equation 

(III-45), that

= -HsC-t) - H£ M , (in-137)

so that equations (III-135) to (III-137) give the result that 

equals zero. This condition also ensures that the mean intensity 

of the thermal radiation field remains finite at the centre of

the atmosphere. The other constant, C,, is found by using the 

Eddington boundary condition, ( % ) - £ Hp( % ) , which gives

Cl ~ IMp (to) “ (u/n) ~ (III-138)

This completes the solution for the mean intensity and flux of the 

thermal radiation field. The temfcperature of the atmosphere is 

given, as before, by the fourth root of the source function, which 

in this case, is given by equation (III-128).

The effects of the additional incident radiation on the 

temperature profiles of the atmosphere are shown in Figs. 66 and 67. 

Fig. 66 shows the temperature profiles and central temperatures 

of an isotropically scattering atmosphere of albedo, 0.1 and 0.9, 

and greenhouse parameter, io\ The central temperatures are 

shown as functions of % by the continuous curves and the temperatur 

profiles of an atmosphere of % = 10.0 are shown by the broken 

curves with ( % - T ) as the abscissa. These latter curves are 

truncated at T/% - 0.9 due to the logarithmic scale of the abscissa 

When n is 10 the stellar radiation field dominates the temperature.



317

Consequently, an increase in the thermal radiation field will be 

important only at those positions where the stellar radiation is 

unimportant. Thus we see that there is no noticeable increase 

in the temperatures near the surfaces of the atmospheres nor 

in the centres of optically thin atmospheres, even with a. = 5.0.

At the centres of optically thick atmospheres the stellar radiation 

is effectively absent. Consequently, the central temperature of 

an atmosphere of % = 50.0 when a = 5.0 is approximately double 

that when a = 0.0. When n = 10 the atmospheres are optically 

thin to the thermal radiation so there is no build up of the 

thermal radiation. It can be seen that the albedo is unimportant 

in determining the central temperatures of optically thick 

atmospheres. It is certainly not very important in the standard 

problem, a - 0, and becomes less important as a increases, and as 

the temperature depends more and more on the incident thermal 

radiation rather than the thermal radiation generated by the 

atmospheric degrading of the stellar radiation. In Section IIIO1 

we saw that a typical value of a. lies between 0.5 and 1.0.

Thus, Fig. 66 shows that, for n = 10^ , any incident thermal 

radiation will not be important in the heating of an interstellar

dust cloud.

The effect of anisotropy of the scattering of the starlight 

on the results of Fig. 66 can be stated as simply being to change 

the limiting value of the optical depth, ( X - T )> or % at which 

the Incident thermal radiation affects the temperature of the 

atmosphere, provided that a is large enough for any change to be 

detected. As the penetration of the stellar radiation increases

so the effect of the extra thermal radiation becomes restricted

to greater and greater optical depths.
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When n is less than unity the thermal radiation field 

dominates the temperature and the extra incident radiation will 

thus be important. Fig. 67 is the analogue of Fig. 66 for n = 10’2‘
A/

However, in Fig. 67 only the graphs for to = 0.9 are shown.

Again the central temperatures are plotted as functions of X , 

and the temperature profiles as functions of optical depth, ( %~'V ) 

The former are shown for values of a of 0.0, 0.1, 1.0 and 5.0 

with continuous curves, and the latter for values of a of 0.0 and 

5.0 and for values of % of 1.0 and 10.0, with broken curves.

There is a discontinuity in the abscissa scale at the point, 

unity, due to a change in scale from linear to logarithmic. This 

permits the inclusion of surface temperatures which are important 

in this case, but were unimportant when n was 10 \ The

temperature increase with a is greatest for optically thin

atmospheres and the surface temperatures of all atmospheres are 

always increased to a greater extent than the central temperatures. 

The temperature increase with a is greatest at small optical 

depths. These increases are by no means negligible, as they were 

when n was 10 . In fact, the parameter a is more important than 

'"Co in controlling the surface temperatures particularly when it 

is greater than unity. In the centres of optically thick

atmospheres the increase in temperature with a, though not very 

large, docs not decrease as % increases as was the case in the 

centres of optically thin atmospheres. All these phenomena are 

features of Fig. 67 and are due to the very small mean free path 

of the thermal photons. This causes a great many thermal photons 

to be trapped near the surface .and hence increase the surface 

temperatures rather than the central temperatures. The thermal
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radiation derived from the additional incident thermal radiation

can be considered separately from that derived from the stellar 

radiation field. It consists of a conservative isotropic 

scattering problem in an atmosphere whose optical radius is measured 

in units of 'ty = T./n. The second moment equation, in Eddington1 s 

approximation, derived from the appropriate equation of transfer 

is

where the superscript, unity, refers to the thermal radiation 

derived from the incident thermal radiation. Now, Hp 

decreases to zero due to attenuation, so that ) is constant

with depth below the certain optical depth at which the reduced 

incident radiation field Is effectively zero. For n = 10 

this occurs at a very small value of ( Vt ). Therefore, the 

increase in temperature with a Is constant except near the surface, 

where, of course, it is greater. This is observed in Fig. 67 

from the parallel nature of the temperature profiles for each value 

of % and at most values of nc .

The second modification of the incident radiation that we 

shall investigate is the addition of radiation from a nearby star.

In Section III.l we saw that about one sixth of the total energy 

density of the interstellar radiation field in the Sun’s vicinity 

is due to Sirius. Thus a nearby star may be important in .

controlling the temperature of interstellar dust clouds. When 

such a star is close enough to contribute a certain fraction, 

say one tenth, of the total energy of the incident radiation but 

sufficiently far away from the cloud that the distance between them
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is very large in. comparison with the radius of the star, then the 

radiation from that star can be represented by a parallel beam of 

radiation incident with a uniform intensity on all points of a 

hemispherical surface on one side of the cloud. This geometrical 

approximation is reasonable if we are to ascertain the effect of 

the star on the temperature profiles of the cloud. The linearity 

of the scattering phenomenon allows the parallel incident radiation 

and the radiation scattered from it to be treated as separate 

radiation fields. Thus we shall consider the problem of parallel 

incidence only and then add the results to those obtained for the 

standard problem.

The geometry of the problem is shown in Rig. 68. Again, 

we shall consider the absorption coefficients and density to be 

constant throughout the atmosphere, and the optical radius, OP, 

to be defined as (+ <rs ) p r . We define

fx. = 2.x IN - z J~r7+

and = IP = 'K + J"Y.* +-V11 ( -1) ,

where is the total optical radius of the atmosphere, 

incident radiation is a parallel beam of net flux, 7rF* 

unit area normal to itself, in the direction, p, = +1. 

is still azimuthal symmetry but the complete spherical

of the standard problem has been lost. The equation of transfer 

is now more complex than that of the standard problem because the

(III-139)

The

, across

There

symmetry

intensity at point P is now a function of two position variables
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-p and <9 , and two directional co-ordinates & and 0 . The

equation of transfer for a completely general problem in spherical 

symmetry is given by Uesugi and Tsujita (1969). In our problem

it reduces to

Cos 0 <)I (r 0') + sua & cos ft' c)I ( r z 00 •:
3^ X d 0

- Sm 6 <)I ( X, $, 9ft' <3l 
3$z x tbuA & 5ftz

= . (III-140)

The solution of this equation is very much more complex than that 

of equation (1-10). This sub-section is included merely to show 

the effect of a nearby star, so we shall consider the case of 

pure linear scattering. When the scattering Is linear the 

radiative transfer is linear also and the one-dimensional equation 

of transfer provides an equation much easier to solve than equation 

(III-140). The approximation of linear scattering of (1 = 0.5 gave 

results close to that of the isotropic scattering problem, so the 

approximation will give results of the correct order of magnitude. 

However, they will not be as good as in the standard problem 

because that was spherically symmetric and the radiation was incident 

in all directions giving rise to a normal radiation field within 

the atmosphere. This is not true in this case because the 

resulting radiation field will be linear also, which is not 

physically realistic.

The solution for the total stellar radiation field in a one
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dimensional medium is given by equations (11-49) to (11-51) and 

equations (11-53). Thus, if I (T, |x3 p/ ) is the intensity of 

the total stellar radiation field at position, (T, p), and in the 

direction, p/ , due to the incident radiation, trF*, then

and

I*(t, , +p') = [ Ge err,, -<r-cK
+ Cx e

I* (-t,r f C, (l-^-cer) e

-o'-vx n
+ Ci (l-£f/3-<r)e J ,

<rxK

(111-141) i

]

where p/ > 0, and there is no azimuth co-ordinate by virtue of 

the definition of the co-ordinate axis. In equations (III-141) 

the constants are given by

Ar-a = (i- «*

C, = ( I - w - cr ) 7T F £ (III-142)

{ ( I - to & t cr) £ 0 - U ~ ~ <y) e

and rr F* - C, .

The mean intensity of the stellar radiation field is therefore

]cr (x, C, f i - -<-tr j e +

4-r<» z?)

r T - or
+ Cz L l~ £ - crj £ (III-143)



323

The thermal radiation presents a greater problem because the 

emission ot radiation by the particles in the atmosphere is 

isotropic. However, the value ot n is generally considered to 

be large for dust clouds, and when n is large the thermal radiation 

is unimportant in determining the temperature. Consequently, 

we shall not attempt to solve the problem for the thermal 

radiation when n is less than or equal to unity but shall adopt 

a very rough estimate for the mean intensity of the thermal 

radiation field and calculate the temperature profiles of the 

atmosphere for the case, n = 10*, only. The mean intensity of the 

thermal radiation field was constant throughout the atmosphere 

in the standard problem and was of the order of 0.5 for optically 

thick atmospheres. We shall assume the same values in this case. 

Fig. 69 shows the temperatures measured in units of Te, for an 

atmosphere illuminated by parallel radiation only. It is for the 

case of scattering with albedo, 0.9, (3 - 0.5, = 10.0 and n = 10*

The temperature Te is the effective temperature of the incident 

radiation given by the fourth root of irF*/cr. Fig. 69 shows the 

temperature contours, with the radiation incident on the lower 

hemisphere. The temperature is strongly dependent on J*(t,p) 

and clearly shows the attenuation of this quantity across the 

atmosphere.

Fig. 70 shows the temperature contours of an atmosphere of 

parameters, X = 10.0, n= 10 , co = 0.5, and (3 = 0.5, with both 

isotropic and parallel incident radiation. The temperature is

measured in units of Te which is defined as in Section III.4 as 

L TTloZ0 J • The incident parallel flux is related to the

incident isotropic intensity by the parameter = F/Io. In 

Fig. 70 the value of is 2.0, which is large. The contusion that
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we draw from "this, is that the contours are translated in the -i

direction of the incident parallel radiation so that the centre 4

is no longer the coolest part of the atmosphere. Consequently 

we see that, for a dust cloud in the vicinity of the Sun, Sirius, -J

for which A* is about two thirds, does not alter the magnitude 

of the temperature contours to any significant extent, but does 

move them in position relative to the centre of the cloud.

8. Summary • '

The mean intensities and fluxes of the scattered and thermal 

radiation fields within a spherical atmosphere of constant density 

situated in a dilute uniform isotropic stellar radiation field, i

have been obtained as functions of position in the atmosphere, 

subject to Eddington!s approximation, by means of a simple algebraic 

analysis analogous to that developed in Chapter II for plane- ’■

parallel atmospheres. The scattering was assumed to be non- *

conservative and anisotropic according to the schematic phase 

function, (1-29)., In the previous section we saw that such an <

analysis is possible for the case of uniform, isotropic radiation 

only. This is, however, a good approximation to the radiation 

incident upon an interstellar dust cloud situated near the galactic j 

plane. The reason for the restriction on the density and the .

absorption coefficients was seen to be a consequence of the presence 

of both a length and its differential in the denominator of the 

total differential of the Intensity in the equation of transfer, 

though it was only effective in the case of non-conservative *

scattering. Furthermore, the moments of the reduced incident 

radiation field could only be expressed analytically in constant i

density atmospheres. -X
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The analysis was executed in two ways. Firstly, Eddington's 

approximation was assumed to apply to the whole of the scattered 

radiation field. This assumption could not have been made in 

the previous Chapter for parallel incident radiation because the 

radiation fields were dependent on azimuth for anisotropic 

scattering. There is no azimuth dependence in the spherical 

atmospheres of the standard problem of this Chapter because we 

enjoy complete spherical symmetry. Secondly, the fraction of the 

scattered radiation that was scattered continuously by the delta- 

function spikes of the schematic phase function was treated exactly 

and the remainder of the scattered radiation was assumed to obey 

Eddington’s approximation. It was this second method that was 

used for plane-parallel atmospheres. It possessed the advantage 

that part of the solution was exact and the disadvantage that 

simple solutions were available for the phase functions, (a, (3) = 

(a, 1.0) and (0.0, (3) only. The former were completely analytical 

but the latter partially numerical. The restriction was due 

to the geometry of the problem and did not arise in the work on 

plane-parallel atmospheres. A distinct feature of the general 

method was that it was independent of the shape of the phase 

function for any particular values of and 0 . This was a direct 

consequence of the Eddington approximation combined with the 

spherical symmetry of the problem.

Another important feature of method II was its solution for 

(i;) in the case of linear scattering only. This solution was

exact, and hence provided a measure of the validity of the results 

of method I found by use of the Eddington approximation. It also 

provided exact values of the ratios that were ascribed certain 

constant values in the Eddington approximation. Furthermore, it
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gave information about the exact directional dependence of the

intensity of the scattered radiation because the exact solution 

-was a solution of the equation of transfer for the intensity in a 

one-dimensional medium, and was a solution for the intensity 

itself. It was found that the intensity distribution could 

deviate considerably from an isotropic distribution without causing 

a significant deviation of the ratio, T"(x) = U* s ('t) / K £ (%) , from 

3.0; and that r (t) = 3.0 was a reasonable approximation for all 

but optically thick atmospheres. It was also seen that the ratio, ~

n>(X) ~ H€(%)/J6( %) > could be satisfactorily approximated to
I

2.0 for all but optically thin atmospheres. Thus, the results 

for the scattered radiation field by method I were poorest for very 

thin and very thick atmospheres. However, in the former case the 

scattered radiation is negligible in comparison with the reduced 

incident radiation, and at most optical depths in optically thick 

atmospheres the scattered radiation is very small so that the 

temperature profiles derived by the two methods do not differ 

greatly. It was also seen that the approximate results improved 

as g decreased because this created radiation fields that were 

more isotropic.

Both methods yielded the same simple expression for the mean 

intensity of the thermal radiation field and it was seen that that 

form was also valid for plane-parallel atmospheres but only for those 

phase functions for which method II was applicable. It was 

concluded that this simple expression for Jp (T) in terms of Js('t) 

and the mean Intensity of the thermal radiation field which

would be generated in the absence of scattering, arose when the 

whole scattered radiation field obeyed Eddington’s approximation or 

when any part of the scattered radiation field that did not, was
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scattered with no change of direction. This latter situation 

corresponded to the former with a new scale of optical distance.

The result was proved by integrating the approximate expression 

for (-v) • However, it can be proved without resorting to 

this long and tedious process. The pairs of moment equations 

for the scattered and thermal radiation fields are equations,

(III-15) and (III-17), and, (III-38) and (III-39), respectively, 

and the pair of moment equations for the thermal radiation field 

that would be generated in the absence of scattering is equations 

(III-34) and (III-35). Adding equations (III-15) and (IIX-38), 

and using the equation of conservation of energy or constant net 

flux, equation (III-45), we obtain the result

Hs('t) + Hp('t) ~ ~ - WlZ (•*) J (III-144)

and, adding equations (III-17) and (II1-39) we find

JL Jg('t) 4” n Oj, (.%) « C + 5^ [ ~ .

With the aid of equations (III-35) and (III-144), we obtain the 

desired result;

Xf-t) = C, - _L t Ts(%) - W f (v)]. 

nif

In this derivation we see clearly the dependence of the result upon 

the form of the second moment equations as amended by the Eddington 

appr oxiima tion.
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The results of the analysis are based on similar principles s-

to those of Chapter II for plane-parallel atmospheres. The 

scattered radiation increases with optical depth until it reaches 

a maximum and then decays away almost to zero if % is large.

The mean intensity of the thermal radiation is constant and small 

throughout the atmosphere when n is large because the thermal 

photons have a very long mean free path; and increases rapidly '

with depth, when n is small, in those regions of the atmosphere 

where there is an inward flux of stellar radiation, to assume a *

large constant value in the central regions of optically thick 

atmospheres where the flux of the stellar radiation is approximately 

zero. The differences between the results of the two chapters 

are essentially due to the different incident radiation fields 

so that very little information can be obtained about the effects 

of the geometry per se . It is in the realm of the emergent 

radiation fields that differences are most noticeable, for there is 

very often a radiation field of significant magnitude, which crosses 

the spherical atmosphere. This is an obvious result for the 

reduced incident radiation in an optically thin atmosphere but 

perhaps a more important feature of the sphericity of the 

atmosphere is inherent in the thermal radiation emerging from an 

optically thick atmosphere when n is large. This emergent radiation 

has one source region on the near side of the atmosphere and 

another on the far side. This is because the main source of the 

thermal radiation is the stellar radiation, which is restricted to 

the outer layers of an optically thick atmosphere and once generated 

suffers very little absorption on passage across the atmosphere.

The fact that the main source of the thermal radiation lies in the 

outer shell in this case also gives rise to the higher intensity
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of the radiation emerging from the outer limb. We may conclude 

that a cloud whose infra-red emission is brightened in the limb 

is optically thick and has a high value of n. A cloud of almost 

uniform brightness may be either an optically thin cloud of any 

greenhouse parameter or an optically thick cloud with greenhouse 

parameter, unity. A cloud with strong limb darkening may be 

either an optically thick cloud of small greenhouse parameter or 

a cloud of optical radius of the order of unity with any greenhouse 

parameter. Thus we may obtain a good idea of the values of X 
and n of a cloud by an infra-red surface brightness map. The 

above conclusions are very general and do not apply very close to

the limb because all clouds are limb darkened in the infrared at

their extremities.

The density of a real spherical atmosphere decreases towards 

the surface. it was found that the theory could be modified to 

cope with a density function that was given by an inverse power 

of the radius. However, this produced an infinite singularity- 

at the origin and precluded a variability of optical thickness.

When n was small the thermal radiation in such an atmosphere was 

seen to be similar to that in an optically thin constant density 

atmospheres, as was the stellar radiation; but when n was large 

the thermal radiation exhibited features typical of both optically 

thick and optically thin constant density atmospheres. The 

special case of linear scattering in an atmosphere of a general 

density function was solvable by method II, and its results showed 

the precise form of the density function to be unimportant in 

controlling the results of the problem, and especially the 

qualitative conclusions.
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Finally, additional radiation sources were considered. An 

additional thermal radiation Field, said to represent the micro­

wave background radiation, was Found to have little eFFect on the 

temperatures oF atmospheres with large values oF n , which are 

those typical oF interstellar clouds. It did have a signiFicant 

eFFect on the surFace temperatures oF atmospheres with small 

values oF n . Consequently, it will be useFul to investigate 

the possible inFluence oF an incident thermal radiation Field on 

the temperatures oF planetary atmospheres. The eFFect oF a nearby 

star was seen to be both very important and relatively unimportant. 

It is very important in creating a situation that is not spherically 

symmetric thus necessitating the use oF a more complex equation 

oF transFer. It is relatively unimportant in changing the 

temperatures oF typical interstellar clouds. This was seen by 

a rather rough approximate technique, and the main eFFect oF a 

nearby star was to oFFset the temperature contours From the centre 

oF the atmosphere. The problem is completely diFFerent in the 

case oF a reFlection nebula whose incident radiation primarily 

stems From one star, which in most cases is very much nearer than 

that considered in the context oF a nearby star perturbing the 

temperature proFiles oF an interstellar dust cloud.
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CONCLUDING REMARKS

The primary objective of this study was to gain insight into 

the role and importance of each atmospheric parameter involved in 

the problem of radiative heating. This was stated in the 

introductory Chapter and it was proposed that it could best be 

achieved by adopting a simple mathematical model for the physical 

problem and solving the equation of transfer by approximate 

analytical means. The atmosphere has consequently been treated 

as grey with respect to any incident radiation derived from stellar 

sources and grey with respect to infra-red radiation emitted by the 

atmospheric constituents, the ratio between the extinction 

coefficients in the two parts of the spectrum being n , the green­

house parameter. The transfer of the radiation in these two parts 

of the spectrum has been solved using Eddington’s approximation, 

which is generally the best approximation that will permit an 

analytical solution. The algebra involved in these simple 

solutions has been complex in places and, although we have tried 

to simplify the model sufficiently to reduce the variables to a 

tractable number, there are still sufficient to make the qualitative 

results discussed in the main body of the thesis, lengthy and 

intricate in places. In these concluding remarks we shall 

endeavour to indicate the tenor of the results as a whole, by 

making several general statements concerning the roles of the 

important atmospheric parameters in determining the temperatures..

Firstly, it is clear that the fundamental parameter of the 

radiative heating problem is the greenhouse parameter, n . It is

a measure of the reciprocal of the mean free paths of the photons
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in the stellar and infra-red parts of the spectrum, so that a 

large value of n allows the infra-red photons easy escape from 

the atmosphere, and a small value of n prevents escape of the 

infra-red photons. W"e have seen that this stems from the need to t 

maintain an energy density gradient inversely proportional to 

the mean free path of the photons in order to produce a certain f lux 

through the atmosphere. The flux of the thermal radiation that 

must be maintained through the atmosphere is determined from the & 

fluxes of the stellar radiation fields via the restriction that 

energy must be conserved in the atmosphere, which is equivalent to f 

maintaining a condition of zero net flux. Hence, a small value f

of n gives rise to a large thermal radiation field and a large i

value of n to a small one, the latter being constant throughout 

the atmosphere and the former constant at points deeper in the >

atmosphere than the penetration depth of the stellar radiation. ?

As well as controlling the magnitude of the mean intensity of the 

thermal radiation field, the greenhouse parameter controls the 

relative importance of the two fields in determining the temperature ■ 

of the atmosphere. The source function for the thermal radiation 

is, in general, proportional to the fourth power of the temperature ' 

and equal to the mean intensity of the thermal radiation plus the > 

mean intensity of the stellar radiation multiplied by the factor,
zv/ . . *Y\ (1 - W ) . This is the energy balance principle as expressed by 

equation (1-55), applied to a two part grey atmosphere. A high 

value of n means that the emitted radiation is emitted poorly, and t 

the temperature, high, and dependent on the main source of 

absorption, the stellar radiation. For a low value of n the infra­

red radiation is emitted easily so that the stellar radiation is 

unimportant in controlling the temperature. Thus, we see that a
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spherical atmosphere is brightened in the infra-red near the limb 

when n is large and darkened near the limb when n is small.

The behaviour of the limb-brightness in the infra-red when n is 

unity depends strongly on the other parameters. Thus, we see
i1

the two-fold role of the greenhouse parameter, in controlling the

energy balance in the element of matter and in controlling the ;
i
j

transfer of the infra-red radiation relative to the visible
I

radiation. j
.1

Another parameter whose value is very important is Xo , the
I4

total optical thickness or radius of the atmosphere. It is

extremely critical when it is below a certain limit. At distances

sufficiently far from the surface of an atmosphere the stellar 

fluxes, and hence, the thermal flux and temperature gradient, 

are all zero. Consequently, % has little effect on the 

temperatures of such atmospheres. However, it is most important 

if it is sufficiently small to permit some radiation to pass 

through the atmosphere because it then measures the amount of 

absorbing material in the atmosphere, and hence Is proportional in 

some way to the temperature. It affects the emergent thermal 

radiation to such an extent that the greenhouse parameter is 

unimportant when % is small.

The albedo is a very important parameter, and like the 

greenhouse parameters, enters into the problem in two ways. Firstly 

it enters into the energy balance condition. It is the ratio of 

the absorption coefficients that is important in this context

rather than the ratio of the extinction coefficients, and this 

ratio is Y\,(l ~o) .. That is, the albedo controls the relative 

weights that the two radiation fields exert when controlling the

temperature. When n is small its influence in this way is
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negligible, but when n is large we can say that the fourth power 

of the temperature is roughly proportional to the fraction, (1 - ) .

The other role of the albedo is to enable the stellar radiation

to penetrate deeper into the atmosphere. Consequently, between 

one and ten units of optical distance from the surface,the 

scattered radiation depends critically on the value of the albedo. 

Hence, the albedo is very important in controlling the temperature 

at those optical depths when n is large. It is In these cases 

that the optical thickness of the atmosphere is very important 

because the amount of scattered radiation able to penetrate through 

an atmosphere depends critically on both £$ and % if % is one of 

these intermediate values. In optically thin atmospheres the 

largest part of the radiation lies in the reduced incident radiation 

field and it is only in the first mentioned role that the albedo’s 

control of the temperature is manifested.

We have seen that the only other Important parameter in the . 

phase function is the asymmetry parameter. This has only one 

major role and that is to control the penetration of the scattered 

radiation. A high value of g effectively reduces the optical 

thickness of an atmosphere. Apart from its most obvious effect 

in controlling the scattered radiation and the temperature when n 

is large, the asymmetry parameter is very important in controlling 

the internal temperatures of optically thick atmospheres when n 

is small. This occurs through the very steep temperature gradient 

being maintained throughout a greater depth when the stellar 

radiation is given greater penetrating power. This has a sub­

stantial effect in planetary atmospheres. The asymmetry parameter 

also plays a minor role in controlling the energy lost through

the surface by back-scattering.
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A further parameter, this time only applicable to the plane- 

parallel atmospheres, is cos'1 jji0 , the angle of incidence. We 

have seen that this merely reduces the temperatures by a factor 

close to , due to the change in energy flux entering the 

atmosphere. Again, there are minor effects which are important 

in the temperature profiles only in certain limiting cases such 

as those involving grazing incidence.

The. final parameter, again only used in association with 

plane-parallel atmospheres, is the ground albedo, A. The ground 

was seen to behave like a semi-infinite atmosphere of greenhouse 

parameter, unity and albedo, A. Consequently its effects were 

dependent on n and & according to whether they were above or below 

unity and A respectively.. In general, the presence of a ground 

layer at the lower surface of a finite atmosphere made the 

temperatures of the atmosphere more akin to those in the equivalent 

uppermost layers of a semi-infinite atmosphere.

These are the major roles of the various atmospheric parameters 

of the radiative heating problem. There are many minor aspects 

of the influence of these parameters on the radiation fields, 

and these have been described in the body of the thesis. We may 

conclude that the approximate treatment used, has provided a 

satisfactory framework for Illuminating these aspects of the problem

We have also furnished useful information concerning the 

parameters in relation to their future use in accurate model 

atmospheres. The analytical theory has made it clear for which 

ranges of values they are at their most critical. The albedo is 

most critical near unity, and it is close to unity in planetary 

atmospheres though not in interstellar clouds. Consequently, 

the albedo must be known exactly for accurate models of the former
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but less so for models of the latter. The asymmetry parameter 

is most important when it approaches unity, particularly when 

n is small. Again, this is the case for planetary atmospheres. 

Therefore we must establish accurate values of g for these 

atmospheres. This conclusion is not in conflict with the earlier 

idea that the phase function is unimportant. The phase function 

need not be treated accurately in the transfer problems but it must 

be known accurately to allow an accurate determination of g, which 

must be made by numerical means for physically realistic models. 

Thus, we are not excused the evaluation of an accurate phase 

function, but merely its inclusion as an entity in the radiative 

transfer calculations. The greenhouse parameter can assume any 

value in a wide range of possibilities and, in general, it is 

important in every part of that range. However, in certain 

limiting circumstances its precise value is not important. If the 

atmosphere is optically thin, the emergent thermal radiation is 

virtually independent of n , as is the central temperature of a 

spherical atmosphere when n is small. Again, the central 

temperatures of optically thick spherical atmospheres are 

independent of the exact value of n provided it is large. However, 

n is very important in most cases.

The final point of consideration must lie in the realm of the 

possible extensions of the work. A great many approximations and 

simplifications have been made in order to gain Insight into the 

physics of the problem. It will be necessary to ascertain which 

of these can be relaxed and made more physically realistic. In 

Section'III.6 the restriction of constant density was relaxed and 

it was seen that an analytical solution was possible for a density
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function that xvas an inverse power of the radius. Such a density 

function was seen to be less realistic in a number of ways than 

the initial constant density function. A general density 

function was used for the special case of linear scattering and it 

was found that the results were very similar,to those of the 

constant density atmosphere. Consequently, further efforts on 

this line will not be particularly fruitful. It would be 

possible to introduce depth dependent albedos and greenhouse 

parameters but the Eddington approximation treatment used in the 

theory would not warrant such an elaborate extension of the model. 

Again, the penultimate section of the final chapter showed that 

the inclusion of perturbatory incident radiation fields could be 

accounted for satisfactorily by approximate techniques. The effect 

of these radiation fields were minor except in the case of infra­

red radiation incident on an atmosphere of low greenhouse parameter. 

Consideration of this additional feature to the planetary 

atmosphere problem would be simple by use of the methods of Chapter 

II and would be a worthwhile enterprise. The present theory 

would need extensive modification in application to objects with 

non-axially symmetric radiation fields, such as reflection nebulae. 

The subject of anisotropy has been treated schematically, but we 

have shown that aunofe exact treatment of complex phase functions 

would be futile in the Eddington approximation.

The main line for future work must, lie in tackling the 

frequency dependence of the radiative transfer, in particularly 

that of the infra-red radiation. We have already intimated the 

trivial extension to monochromatic coherent scattering as predicted 

by the Mie theory. The validity of this type of scattering must be 

checked for real grains, If it is false,the frequency dependent
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transfer problem will be very much more complex. The infra-red 

transfer problem depends very much on the value of n defined in 

terms of appropriate grey absorption coefficients. If n is very 

large, then the non-grey problem can be treated in an approximate 

manner similar to the perturbation method used by Werner and 

Salpeter (1969). However, estimates of n show that is not 

large enough for this treatment for many grains; and certainly n 

is small in the planetary atmosphere problem. Consequently, the 

frequency dependence of the infra-red radiation is the most 

important aspect of the problem to investigate. It is of :

sufficient importance to warrant the continuation of an approximate 

method of solution of the equation of transfer, which should show i 

its effects on the solution to the greatest extent. This, 

together with the results presented in this thesis will provide 

enough background information to enable a more complex, exact
1

method of solution to be formulated, and thus, produce accurate 

temperature profiles for model planetary atmospheres and interstellar s 

dust clouds. Nevertheless, we have here, an extensive set of

approximate solutions for the radiative heating problems of

planetary atmospheres and interstellar dust clouds, large sections of

which were hitherto unavailable.
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APPENDIX

1. The Exponential Integral Function

The exponential integral function occurs very frequently in

radiative transfer problems and is defined in all the standard 

reference texts. The more important properties of this function 

are quoted in this Appendix for completeness. Further details 

may be found in those works by Chandrasekhar (1960) and Kourganoff 

(1952).

The nth exponential integral, E"n(x)? for positive real arguments 

is defined by

E„(x) e
t"

= x”'1 I e S<

S"
(A-l)

r
These functions satisfy the following recurrence relation;

-x
« e -xE„M ' (A-2)

so that every exponential Integral function can be reduced to the 

first of the series. Their derivatives are given by

E’m., (x) t ) ; F,7x)= /x , (A-3)

and their values at zero, by

Ev, ( o ) I / (n - < ) ( n. r ) 4 (A-4)
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The first exponential integral can be expressed by a series 

expansion for small values of jc and an asymptotic expansion for 

large values of x . That is, ;

GO

EW-I «
(“0 X /h.hI , (A-5)

J n-i

for small values of x , where & = 0.5772156............ is the Euler

Mascheroni constant; and

r,(x) « e
-x

4- ... (A-6)1 “ -JL
X

- 6

for large values of x . In practice it is easier to use a 

polynomial or rational approximation for E,(x) . Several such 

approximations are available; and the ones employed in the 

calculations used in this thesis were those given by Abramowitz 

and Stegun (1964) . For 0^x41

< a,x * a* k*
+ € Ck) ,

(A-7)

where J <S(x)] < 2. . fO-7 and

a 0 ~ -0.57721 566, a! = 0.99999 193 1
1

ax = -0.24991 055, a 3 = 0.05519 968
J

= -0.00976 004, and. as = 0.00107 857

for | x C 00

F,(x) « A-<- b,?? 4- feci? b3x + bit____+ £fx) f

X *1* C. X -s- Ci, X - *4' C j, X -(■ C9.

(A-8)
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where J < 2.I0"8

b, = 8.57332 87401, = 18.05901 69730,

b3 = 8.63476 08925, bq. = 0.26777 37343,

Cj - 9.57332 23454, ca = 25.63295 61486,

C3 = 21.09965 30827, and c^. = 3.95849 69228.

For negative values of7 52 the series and asymptotic expansions given 

by equations (A-5) and (A-6) were used. Extensive tables of the 

exponential integral function are given by Abramowitz and Stegun.

2. The Fn -functions

There are many functions that involve the exponential integral 

Functionj including many integrals in which it appears in the 

integrand. One such function is the integral of the product of an 

exponential integral function and the exponential function. .This 

function has been defined in a variety of ways. We shall use the 

form and notation of Van de Hulst (1948), who also gives an 

extensive list of its.properties. .

We define the set of functions

( b, x )
X O

W > I 
b <s

(A~9)

These functions satisfy the.recurrence relation

( !j» *7 = 4* Fn ( b , X )J,
Vi

(A-10)

and their partial derivations are
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bx
K(b,x) = e FM 
dx

(A-ll)

and
\ r- z X r i£S(b,x)= Le -i J-*Fn+(d>,x) . 
3b (b-i)

(A-12)

The first of these functions can be expressed in terms of the 

exponential integral function

F,(b,x) = J. f eb*E,(x) - £•, Cxd-b)] - /og(ii-H)J , [

F, (o,x) = I-£k(x) , (A-13)

and F, (l,x)= £ F,£x) 4- /og X + X ,

where & is the Euler-Mascheroni constant. If x is infinity the 

Fn-Integrals coverage only when b is less than unity,, whence

v\

F, ( b , OO ) - - J_ lo« ( i - b ) } b^o} (A-14)

and Fk ( 0 , O£» ) J .

b^O 
I ’

Another integral of frequence occurence is that of the product

of an Fh-function and the exponential function. This can be
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reduced to the -functions by the following relation:

f -
e RJb.tUfc

ax
a. - € Ft ( f>,x) . (A-15)

F„[(b-a),x]

The -functions have not been tabulated extensively, but their 

evaluation via equations (A-10) and (A-13) is simple with the aid 

of a computer. However, considerable care must be employed when 

the parameter, b, is very small, because a loss of significance 

can easily arise. This situation developed, for example, in the 

equations for the approximate solution for the emergent thermal 

radiation from a finite plane-parallel atmosphere with a ground 

layer, when the argument, b, was which was very small when n

was 10 .
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FIG, 1. The geometry of a plane-parallel atmosphere



FIG. 2. The geometry of an axially symmetric spherical 
atmosphere. p = cos 0 .

s-direction

FIG. 3. The geometrical construction around point P of 
Fig. 2 used in the derivation of the equation of 
transfer.
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FIG. 4o The mean intensity of the scattered radiation field in 
a semi-infinite plane-parallel atmosphere as a function of optical 
depth,X, for several values of the albedo.

The scattering is isotropic and the incident radiation is normal t 
the surface of the atmosphere. There is a change from a linear 
to a logarithmic scale in the abscissa,x> at X ~ 1.0.
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FIG. 5. The mean intensity of the scattered radiation field 
in. a semi-infinite plane-parallel atmosphere as a function of 
optical depth, for several phase functions.

The albedo is 0.9 and the incidence is normal. The values of (3 
are indicated on the figure and fhe curves with a. = 1.0 (isotropic
scattering), a = On4 and a = 0.0 (linear scattering) are
represented' by continuous, broken and dashed curves respectively. .
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FIG. ?’ . The mean intensity of the scattered radiation field in a
semi-infinite plane-parallel atmosphere as a function of optical 
depth, for several values of' .

The scattering is isotropic and of albedo, 0.9.
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FIG. 7o The variation of the mean intensity of the thermal 
radiation field in a semi-infinite plane-parallel atmosphere 
with albedo, for various values of optical depth and three 
values of the greenhouse parameter, n.

The ordinate is the ratio Jp (x ,o )/Jp (T, 0.1) and the abscissa 
is -log (1-w). The continuous curves represent n = 10**2, and 
the broken curves, n = 1,0. The values of % are indicated 
on the diagram. When n = 10the results are the same for all 
values of X and the same as those for x = 0 for the other 
values of n. The scattering is isotropic and the incident 
radiation is normal to the surface'.
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FIG. 8. The mean intensity of the thermal radiation field in 
a semi-infinite plane-parallel atmosphere as. a function of cl 
for several values of p and n.

The albedo is 0.9 and the incidence is normal. The scale of 
the ordinate should be multiplied by a factor of 10x for the 
case of n = 10'’3, . The values of (3 are shown on the figure 
and the values of n of 10'\ l’.O and' lCf~a are represented by 
continuous, broken and dashed lines respectively.
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FIG. 9. The mean intensity of the thermal radiation field 
in a semi-infinite plane-parallel atmosphere as a function 
of optical depth for various values of |jlo .

The ordinate is the ratio, Jp (t , |r0 )/Jp (r, 1.0) , the 
scattering is isotropic, of albedo, 0.9, and n = 10"* . 
scale of the abscissa is arbitrary.

The
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FIG. 10. The mean intensity of the scattered radiation field 
in a finite plane-parallel atmosphere as a function of optical 
depth for various values of "X . .
The continuous curves represent isotropic scattering and the 
dashed curves, scattering with (a, p) = (0.0, 0.0). The 
albedo is 0.9 and the incidence, normal.



FIG. 11. The effect of anisotropy on the deviation of the mean 
intensity of the scattered radiation field in a finite plane- 
parallel atmosphere from that in a semi-infinite atmosphere.

The quantity, [ J ~ (x) - J st ( % ) ] /J Z. (x) is plotted against
a for the three- values- of 8 indicated orr the figure. The 
continuous curves are for X - 1.0 and the dashed curves for
X = 10.0. The albedo is 0.9 and the incidence, normal.
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FIG. 12„ The mean intensity of the scattered radiation field 
in a finite plane-parallel atmosphere with a ground layer, as a 
function of optical depth for several values of and

The incidence is normal and the scattering, isotropic with 
albedo, 0.9. The case of \ = 0.0 is identical to that of an 
atmosphere with no ground.

o
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FIG, 13, As Fig. 12 but the ordinate is now the sum ot the 
mean intensities ot the scattered and reduced visible ground 
radiation fields.

Those curves for small values of hi and large values of \ are 
of too great a magnitude to be included.
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FIG. 14. The mean intensity of the thermal radiation field at 
the midpoint of a finite plane-parallel atmosphere with a ground 
layer as a function of X for several phase functions and values 
of the ground albedo, k.

The incidence is normal, the scattering albedo, 0.9 and n = 10^; 
the scattering is linear, a = 0 and the values of [3 are indicated 
on the figure. The continuous, broken and dashed curves refer 
to values of \ of 0.9, 0.5 and 0,0 respectively. The results for 
an- atmosphere''with no ground are the same as those with \ =0.0
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being the maximum value of the mean intensity of the thermal 
radiation.

o

The case of the atmosphere with no ground is now different from 
that of \ = 0.0 and is shown by the dotted curves. The dashed 
curves-now.- represent- \ = 0*. 1 rather" than \ = 0.0 as in the 
previous figure.
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FIGo 16. The profiles of the mean intensity of the thermal 
radiation field in a finite plane-parallel atmosphere with and 
without a ground for several values of „

The ordinate is the fraction and the abscissa, the
fractional optical depth, h;/x o The scattering has (cl, (3) = 
(0o0,0„5) and albedo, 0,9, the incidence is normal, and n is 10 «
The broken curves represent an atmosphere with no ground and the 
continuous curves, one with a ground layer of arbitrary albedo.
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of the albedo.

The scattering is isotropic, the incidence,normal and n. is lO^. 
The temperatures are measured in units of Te.
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RIG. 19, As Rig. 17 for n = 1.0.
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FIGO 20. The temperatures of a semi-infinite atmosphere as a 
function of optical depth for several phase functions and three 
values of n„

The phase functions are all of zero cl and have (3 indicated on the 
figure. The albedo is 0.9 and the incidence, normal. The 
continuous, dashed and broken curves represent values of n of 
10*"*2, , 1.0 and 10respectively.



n = 1,0,

The scattering is isotropic and of albedo, 0.9o The scale of 
'the abscissa is again partly linear and partly logarithmic.
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RIG. 22. As Fig„ 21 but for p,o = 0.15 and several phase
functions.

The continuous, broken and dashed curves refer to values of a 
of l„0, 0.4 and 0.0 respectively, and the values of p are indicated 
on the; • f igur'e1.



The incidence is normal, the stellar scattering isotropic and of 
albedo 0.9. The values of- wP are shown on the figure.

The broken curve is the temperature after one lambda operation, with 
&P = 0.0. The inset shows, the temperature at very large depths for 
which the behaviour of the lambda operator is most interesting.



o
o

o
vO

H'
o «I—1

O
’O

FIG® 24 „ As Fig „ 23 I’or n 1.0
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FIG. 25. The temperature profiles of finite plane-parallel
atmospheres of various optical thickness for isotropic scattering 
and n = IO1*-.

The incidence is normal and the albedo is 0.9. The abscissa is
and the values of % are indicated on the figure. The broken,

dashed and dotted curves represent values of \ of 0.1, 0.5 and 0.9 
respectively and the continuous curve represents the atmosphere with 
no ground.



FIG. 26. As Fig. 25 for n = 10*~X.

The broken and dashed curves now represent values of \ of 1.0 
and 0.1 respectively.



FIG. 27. As Fig. 25 for n = 1.0 but for the case of \ = 
only.

0.1



FIG. 28. A comparison of the temperature of the ground and 
the temperature of the lower surface of the finite plane- 
parallel atmosphere in contact with it. ' - •

The scattering is isotropic of albedo, 0.9 and the incidence, 
normal. The value of n .is- shown on? the*- figure-a.« 
The ground temperatures plotted as functions of % are shown as 
continuous curves and the atmosphere temperatures as dashed 
curves.
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FIG. 29. The emergent thermal radiation from a semi-infinite 
plane-parallel atmosphere, as a function of p, the cosine of the 
angle of emergence.

The continuous curves represent the exact solutions and the dashed 
curves the approximate solutions. In this case n = 10^ and the 
incidence is normal. The parameter, a = 0.0 and the values of 
(3 and to are. shown, on the figure... When p, = 1.0 the value of 
is irrelevant.
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FIG. 30. As Fig. 29 for n = 1.0

-3



FIG. 31. As Fig. 29 for n = IO'1 but for u = 0.5 and u.„ 
only.



FIG, 32. The angular distribution of the emergent thermal 
radiation from a finite plane-parallel atmosphere with n = 10 '.

The ordinate is the intensity and the abscissa is p. The 
scattering has a. - 0.0 and to = 0.5 and the incidence is normal. 
The broken, dashed and dotted curves refer to the approximate 
solutions for values of p of 1,0, 0.5 and 0.0 respectively, 
and the continuous curves refer to the exact solutions for the 
case of [3 - 1.0, The upper curve of each type is for % = 1.0 
and the lower for % = 0.1.
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FIG. 33. As Fig„ 32 for n = 1.0 and (3 = 1.0 only.

The dashed and dotted curves represent the exact and approximate j
solutions for linear scattering (ol = 0.0), and the continuous
and broken curves represent the exact and approximate solutions
for isotropic scattering (a = 1.0). However the lower curve
in each case now refers to X ~ 1.0 and the upper curve to % = ;
0.1. The ordinate scale for the latter is on the left-hand
axis and that for the former is on the right-hand axis. ;



FIG. 34. The angular distribution of the emergent thermal 
radiation from a finite plane-parallel atmosphere with a ground 
layer and n = 1.0.

There is no scattering and the incidence is normal. The
continuous and dashed lines represent■the exact and approximate 
solutions for atmospheres with - 0,1. and the broken and dotted 
line the same for % = 1.0. The values of \ are noted on the 
figure and the case of no ground is included for comparison.



FIG. 35. The reduced incident radiation field in a spherical 
atmosphere with uniform isotropic incident radiation. p = cos &



FIG. 36. The ratio, ’<(t) as a function of 'tr/%
for several values of % .



FIGS. 37 (a.) to (c). The mean intensity. of- the.’ scatterecb. radiation 
field in a spherical atmosphere as a function of fractional optical 
radius.

The three figures are for atmospheres of optical radii, 0.1, 5.0 
and 50.0 respectively and are drawn for several values of the albedo 
The scattering is isotropic.
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FIG. 38. The mean intensity of the scattered radiation field 
in a spherical atmosphere as a function of fractional optical 
radius for several phase functions.

The phase function parameters are shown on the figure, which shows i 
an-• atmosphere-' of 15- - 5-.0 for scattering of albedo, 0.9.
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RIG. 39. A comparison of the results for the mean intensity 
of the scattered radiation field in a spherical atmosphere as 
obtained by methods I and II.

The continuous and broken curves represent. methods I and II 
respectively. The parameter (3 is 1.0. Otherwise it is as 
Rig. 38 with the values of a indicated on the figure.
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FIG. 40. As Fig. 39 For phase functions with a. = 0. 
values oF p are indicated on the Figure.

The



FIGS. 41 (a) to (c). The ratio r(t) = Use Ct)/KscCt) as a 
.function of the fractional optical radius for spherical atmospheres 
of optical radii, 0.1, 5.0 and 50.0 respectively.

The parameters co and a are 0.9 and 0.0 respectively, and the values 
of p of 1.0, 0.5 and 0.0 are represented by continuous, broken and 
dashed lines respectively. In Fig.41 (a) all three curves are 
coincident; and these ratios are- exact.



FIGS. 42 (a) and (b) . The ratios, R, = I sc ('Y t + 1) / Isc ° ) 
and Rx = Isc (.'t, ~0 / Isc ('t, o ) , plotted as functions of fractional
optical radius for spherical atmospheres of optical radii, 0.1 
and 5.0 respectively.

These ratios are exact and are for scattering with a and w equal 
to 0.0 and 0.9 respectively. In Fig. 42(a-)- the result® aw 
independent of (3, but in Fig. 42(b) the values of (3 of 1.0, 0.5 
and 0.0 are represented by continuous, broken and dashed curves 
respectively.
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FIG. 43. The ratio ro(%,) = 0~st ('’&') / HscCoi) for a 
spherical atmosphere plotted against % .

Again the curves are exact and are for scattering with a and 
to equal to 0.0 and 0.9 respectively. The values of (3 are 
indicated on the figure.
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FIGo 44«, The central temperature of a spherical atmosphere 
as a function of optical radius for several values of the 
albedo, when n is 10 i .

The scattering is isotropic and the values of the albedo are
shown on the figure„
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PIG. 45. The central temperature of a spherical atmosphere
as a function of albedo for several values of the optical radius,
when n is IO1*.

The scattering is isotropic and the values o.f, the optical radius, 
are shown on the figure.
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The values of theFIG.- 46. As- Fig. 44-for rr = IO'"'1 . 
albedo are shown in the figure.
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FIG. 47. As Fig. 45 Tor n = 10~a 
radius are shown on the Figure.

The values of the optical
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FIG. 48. The central temperature of a spherical atmosphere when 
n is IO1*- shown as a function of optical radius for several 

ph a s e f unc t ions»

Two values of the albedo are included and are marked on the figure 
The dashed lines refer to a - 0.0, the broken lines to a. - 0.4 
and the continuous lines to a = 1.0. Those curves of T greater 
than T (.isotropic) are of (3 - 1.0 and those curves of T less than 
T (isotropic) are of (3 f= 0.0.
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RIGu 49. As Fig, 48 for n = 3.0 x . Only the -case of % ~ 0.9 
is shown and the values of (3 are indicated on the figure.
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FIG. 50. The temperature profiles of a spherical atmosphere 
as a function of fractional optical radius for n = 10 * .

The albedo is Q.9 and the value of a is 0.0. The values of p of 
0.0, 0.5 and 1.0 are represented by dashed, continuous and broken 
lines respectively. The continuous curves also represent 
isotropic scattering. The values of % are shown on the figure;



As Fig. 49 for. n =FIG. 51 10



FIG. 52. The central temperatures of a spherical atmosphere 
as a function of n for several values of n.

The abscissa is log10n. There is no scattering of the s tellar 
radiation and the values of % are indicated on the figure.



FIGo 53° •The central temperatures of a spherical atmosphere
as a function of optical radius for several values of no

there is no scattering of the stellar radiation, and the values 
or n are indicated on the figure„



FIG. 54. A comparison of the temperature profiles of a spherical 
atmosphere as obtained by methods I and II when n is 10*.

The abscissa is %/%> and the results from methods I and II are 
represented by continuous and dashed curves respectively. The 
scattering has to and a equal to 0.9 and 0.0 respectively in all 
cases, and the values of % and {3 are shown on the figure.



FIG. 55. As Fig. 54 for n = 10**a .



FIG. 56. The geometry of the spherical atmosphere to show the 
construction of the emergent radiation. |x = cos & .



FIG. 57. The angular distribution of the emergent stellar
radiation from a spherical atmosphere.

The ordinate is the sum of the intensities of the stellar radiation 
fields and the abs.ciss.a is. the.. frac-tionaT opt.ic.al radius of a disc 
projection of the atmosphere. The scatrering phase function is 
(a,(3) = (0.0,0.5). The values of % are indicated on the figure 
whilst albedos of 0.1, 0.5 and 0.9 are represented by broken, 
continuous and dashed curves respectively.



FIG. 58 As Fig. 57 For the phase Function, (a,(3) = (0.0,1.0)



FIG. 59. As Fig. 57 for isotropic scattering.
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FIG. 60. The angular distribution of the emergent thermal 
radiation from a spherical atmosphere for three values of n.

The ordinate is the intensity of the emergent thermal radiation 
and the abscissa is the fractional optical radius of a disc 
projection of the atmosphere. The values of n of 10^, 1.0 and 
10'1 are represented by continuous, broken and dashed lines 
respectively whilst values of X, are shown on the figure. The 
scattering is isotropic and of albedo, 0.5.
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FIG. 61. As Fig. 60 for n = 10 and optically thin atmospheres 
of a number of albedos.

The continuous, broken and dashed curves refer to albedos for 
isotropic scattering of 0.9, 0.5 and 0.1 respectively. The upper 
curve • in- each- ca«-e- ref:ers* to* =- 1.0' and the lower' to ns = 0.1.



PIG. 62. As Fig. 61 for optically thick atmospheres.

The values of % are shown on the figure and the curves for albedo 
0.5 are omitted.
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FIG. 63. The mean intensity of the scattered radiation in 
a spherical atmosphere of variable density function,p (r) = 
cu as a function of optical depth.

The scattering is isotropic with albedo, 0.5 and the value 
of Cl is 1.0. The continuous curves represent RT - 10 and 
the broken curves, RT - 1.0 where RT is the geometrical radius 
of the atmosphere. The values of m are shown on the figure.



FIG- 64. The temperature and mean intensities of 
the radiation fields in a spherical atmosphere of 
variable density function, p (r) - ar~n as a function 
of optical depth.

The temperatures are shown as continuous curves, the 
mean intensities of the thermal radiation fields as 
broken curves, the mean intensity of the scattered 
radiation field as a dashed curve and the mean 
intensity of the reduced incident radiation field as 
a dotted curve. The values of n are shown on the 
figure where appropriate. The scattering is isotropic, 
the albedo, 0.5, RT = 1.0, m = 2.5 and a = 1.0.
The ordinate must be multiplied by factors of 0.1 for 
the mean intensities of the scattered radiation field 
and the thermal radiation field when n is 10*, by a 
factor of 10 for the temperatures, and by a factor of 
10x for the mean intensity of the thermal radiation 
field when n is 10.
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FIG. 65. A comparison of the temperature and mean intensities of the 
scattered and thermal radiation fields in a spherical atmosphere of 
variable density ,/)(r) = Z>o (1.5 - r) with those in a constant density 
spherical atmosphere.

The continuous curves apply to the variable density atiiiosphers and; the- 
dashed curves to the constant density atmosphere. The abscissa is the 
fractional optical radius, and the atmospheric parameters are;
n = 1.0, CO = 0.9, a = 0.0, p = 0.5 and % - 5.0.
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FIG. 66. The effect of an additional incident thermal radiation 
field of intensity, alo on the temperatures of a spherical 
atmosphere.

The continuous curves represent the central temperatures as 
functions of the optical radius of the atmosphere and the dashed 
curves represent the internal temperatures of atmospheres of 
'ts - 10". 0 as' functions of optical depth. They are not
terminated because the scale of the abscissa is logarithmic.
The scattering is isotropic, n = io\ and the values of the 
albedo and a are indicated on the figure.
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FIG, 67 „ As Fig. 66 for n = .I0“a , The scale of the abscissa 
is now linear below unity and the temperature profiles of 
atmospheres of hi = l„0 and 10,0 are shown, but for £> - 0.9 only.



FIG. 68. The geometry of a spherical atmosphere illuminated by 
parallel radiation.



FIG. 69. The temperature contours in a spherical atmosphere 
illuminated by parallel radiation as in Fig. 68.

The atmospheric parameters are; n = IO4-, % - 10.. 0, W = 0.9, 
a = 0.0, and [3 = 0.5. The temperatures are indicated on the 
figure.



FIGo 70. The temperature contours of a spherical 
atmosphere illuminated by both parallel and uniform 
isotropic incident radiation.

The atmospheric parameters are; n = IO*, X = 10.0, 
o = 0.9, a, = 0.0 and (3 = 0.5 o The temperatures are 
indicated on the Figure.


