THE BAUSCHINGER EFFECT

Robert Lewis Woolley

A Thesis Submitted for the Degree of PhD
at the University of St Andrews

1953

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14606

This item is protected by original copyright

2HT BAUSGUIVGIE FEFTG

being a thesis presented by
 Robert Lewis Voolley, Zisates

to the University of Stodndrews
in epplication for the degree of

Doetoz of zhilonopiay.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10171154
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

$$
\mathrm{ms}_{1,452}
$$

DECLATATPIOM

I hereby deelare that this thesis is entirely based on the results of work carried out by myself. in the Depaxtment of Natural Philosophy: St.Ancrews University. The thesis is my own composition end it has not been previousiy presented for a higher degree.

G41

a herety nowtify thet Rotow Mevic

 swardiace the onnd tion of owdsumee 26
 sebont thit theste In spy3iartion zow the decreo of Doctoz of Phtioncoulw

- Resenceh Sugorviscan.

STATMMMNT OF CAPKHR

I matriculeted in the University of Cambridge. in the Michaelnas term 1940 , and was admitted to the degree of Bachelow of Arta in June 1943 and to the degree of Master of Arts in June 1947.
I. Was appointed a lecturer in the Department of Netural Philosophy, St,Andrews Univereity, In the Candlemas term 1946. In the Candlemas term 1948 I matriculated as a reaeanch student in the univereity of st.Andrew and commenced the fesearch which ls now described in this thesis.
conving
zuse
T General introduction
(a) Aut or ${ }^{3}$ prefece 1
(b) Ecoge of the present atualea 4
(c) Definition of the Janschincer effoct 4
22 The Pausohinger effect in polyerystalilne face-centred and body-centred cuble metals (a) Introduction 7
b) ADparatue 8
c) Femults 12
(0) Comparleon wi published reaulteof otiner worters25
Tirs Surface gtudies
(a) zumpting 20
(b) S15p $11 n e a$ 29
IV The theory of the Baugohinger effect
(a) Introauction 5
(b) Textural etressed 34
c) The rearrancement of aialocetionc 40
(a) Hieloection paise 42
(e) The exhaustion theory 45
(2) Drank-Rend bource: 48
(G) Grain-boundary alip 50(h) The ceneration of vacancies andinterstitial atoms52
(f) Discuadion 96
Themoeleatile power and the muschinger effect
(a) Introduction 54
(b) The thexpoelectric power of anbecrecute 35
(c) A theory of the themoelectric poweror a cold-worked netal30
(a) Apparatua 0
(c) Meaulte 70
(f) Discuestion 71
VI. The mauchinger effect in polyoryataline menesiun
(a) Introduction 74
b) Experiment 74
(c) Diacuseion 76
VII The Tauschinger effeot in ondmium single amotalis
(a) Entroduction B6
(b) Apparatua 66
(c) Mebuits 80
(d) Discussion 90
V1.
(a) Verticni illuminator 92
(b) single coyetal fumnece 93
 96

1
 GENERAL INRRODUCTION

I(a) AUMHOR'S PRERAGE

The author's interost in the Bauschinger effect was finst etimulatea by Dre. EF Orowan, with whom he worked in Cambridge for a few months in 1945. In 1946 the author was appointed to a lectureship in Natural Philosophy in st. Andrews University, and began some $x-r a y$ studies on biological material under professor J.T. Randall. Thite was discontinued when Professor Randall left st. Andrews. In 1947 the author wrote a short paper on the Bauschinger effect (Woolley 1948), and in 1948 resumed experimental work on this subject.

In 1948 and 1949 measurements of the Bauschinger effect in copper were made in the Mechanical Engineering Department, University College, Dundee, but the apparatus there used was not sufficientiy sensitive and the testing machines were of too large a capacity for really satisfactory sesults, A small testing machine was therefore sonstructed in st. Andrews; with which the systematic study of section II (below) was carried out. The later experiments described in the other sections below were also all carpled out
in st. Andrews.
It gives the author great pleasure to record his gratitude to professor J.F. Allen and the staft of the department for helpful criticism and discussion.

I (b) SCORE OF THE PRESENM STUDIES

If a work-hardenablemetal is deformed plastically by a tensile stress $+\sigma$ and unloaded, 1 te mechanical properties become anisotrople, in particular, though 1ts tensile yield strese 1 s now $+\sigma_{0}$, $1 t$ will deform plastically if compression otresses numerically smaller than σ_{0} aro applied. This lis known as the Bauschinger effect (Bauschinger 188).

When this researoh was commenced, very few experiments had previously been carried out to elucidate the effect as a function of the eeveral posidible variables and there was practicaliy no satisfactory theory, oxcopt perhaps that of Masing (1923), which in any case could be severely criticlised on purely theoretical grounds. It was clear that various classes of metals would probably show different types of effect. In particular the metals with face-centred and body-centred cubic lattices which deform by slip only, should show a very
different effect from that exhibited by the metals of hexagonal lattice; where twinning plays an important part in the deformation. single orystals might well show a different effect from polycrystals. In nominally pure metals the effect might well depend on grain size, elastic anisotropy, amount of previous work-hardening, temperature, purity, magnetie properties, degree of preferred orientation of a polyanystal, and orientation of a single crystal. Th alloys the situation might be even more complex, especially if more than one phase were present.

For the purposes of this present nesearch it was declded to examine the effect thoroughly and systematically in polycrystalilne metals defoming entirely by slip, and to carry out exploratory experiments on other metals and in other conditions, inclualng in particular, polycrystalline hexagonal metals and single crystals. Studies of macroscopic mechanical properties alone are not usualiz very. conclusive in establishing the mechanism of the physical processes occurring, and it seemed very desirable to obtain additional information by examining the accompanying changes of other physical properties. Some experiments on these Ifnes are discussed in sections III and V (below). The exploratory experfments of

Figure 101
A - material showing Bauschinger effect B - material showing no Bauschinger effect
sections III, V, VI and VII, were deliberately restricted usually to one metal under well-defined conditions, in view of lImitations of time. It is hoped to extend these experiments in the near future.

$I(c)$ DGFINTMION OF THE BAUSCHINGER BEGET

Figure 101, curve A, is a stress-strain curve typical of metals such as copper and aluminium which deform by alp only, The specimen starts at 0 , fully annealed. It is then stressed in a given direction by a stress $+\sigma_{0}$. The accompanying plastic strain is represented by $0 a$, and is called the prior strain. At a the specimen is unloaded and the Ilne abc is traversed. If the stress is applied again, the line caa is followed enclosing a narrow hysteresis 100p, When the stress exceeds $+\sigma_{0}$ the curve turns sharply and follows ae which is a prolongation of Da. If at c, however, the specimen is loaded in the reverse direction, the curve of g is followed. The rate of deformation increases steadily, and at the point g where the stress is $-\sigma_{0}$, it is closely equal to the rate of work-hardening observed at $+\sigma_{0}$ just before the point a, Beyond $\&$ the stress-strain curve is essentially the same as the forward curve ac.

The Bauschinger effect is often defined by baying that after plastic extension the tensile elastic limit is raised and the compressive elastic limit is lowered. The tensile elastic limit is usually tacitiy identified with the yleld point a, lgnoring the plastic deformation between c and a. The dompressive elactic limit is very poorly defined also, as there is a continuous curvature of the whole line abofg . A definition in terms of elastic limits is therefore not adequate. The only really satisfactory procedure is to compare in detall the forward and reverse stressemtrain curves after finite prior strain.

The external stress is merely the resultant of the streases in the grains of the aggregatie. As these are in eeneral unequal, it follows that when the external stress is zero there are residual non-zero stresses in the actual grains. Thus the point $0(\sigma=0)$ has no great significance, and the plastic deformation along ac must be closely related to the deformation occurring along cg . It is therefore more rational to define the Bausohinger effect as the exfstence of the finite plastic strain β between $+\sigma_{0}$ and $-\sigma_{0}$. Curve B of figure 101 shows hypothetical material with zero Bauschinger effect. In practice of course it is the strain γ which is measured directily and β is
deduced from this by extrapolating the initial part of the unloading curve.

In metals such as magnesium; which detorm by twinning and slip, substantial plastic flow occurs at negative stresses numerically smaller than σ_{0} and a reasonable compressive yield point exists; This is discussed at greater length in section VI.
II.

THE BAUSCHTNGER EFHEOM IN POLYGRYSTALLTIE
FACF-CENTRED AND BODY-GEATRED CUBIC METALS

II(a) INERODUCTION

One of the factors which has made the Bauschinger effect unattractive for experimental study lis the difficulty of measuring the strain. It is obviously desirable to use a homogeneous stress, which necessitates using a specimen sultable for tension and compression. The difficulty of making accurate strain measurements in the compression teat is well known in the Bauschinger effect the atrains are only a small multiple of the elastic strain. some previous workers used headed specimens with a length/diameter ratio of about two. Under these circumstances there is considerable inhomogenetty of strain for defomations exceeding a few per cent. The advantages of the tension-compresision epecimen are therefore ilmited. In the present work the torsion test has been used. The test-piece is a tube with a wall-thlckness/aiameter ratio of nine. This gives an inhomogeneous strain-distribution but as shown below this is not very serious, the torsion test has the adrantage that

Torsion-testing machine
the shape of the specimen remains unaltered, and the shear strain is easily measured optically.

II(b) APPARATUS
(i) Description

The dimensions of the standard test-piece are shown in figure 201. The wall-thickness for softer metals ($\mathrm{Cu}, \mathrm{Al}, \mathrm{Pb}$) was usualiy $1 / 16^{\prime \prime}$, but was sometimes $1 / 32^{\prime \prime}$ for the harder metals (Fe, Ni) to suft the Iimited capacity of the testing machine.
the tests were campled out in the simple machine shown schematically in iligure 202 and in the photograph of figure 203. The test-piece is vertical. Its lower end is fixed, and its upper end is twisted about the ventical axis by a horizontal lever loaded by weights attached by flexible steel strip passing over pulloys. The capacity is approximately $1000 \mathrm{~cm}-\mathrm{kg}$. It is estimatied that the error due to friction is less than 1\% of σ_{0}. It is possible to carry out tests at elevated or reduced temperatures by immersing the specimen in a suitable bath.

The shear strain is measured with a telescope and scale by observing the rotation of a pair of mirrors attached to elther end of the test length. The mirrors

Figure 203
Torsion-testing machine
are fitxed to the upper ends of a pair of coaxial nickel silver tubes, separated by a ball race. The lower ends of these tubes each carry a pair of pointes on one side. These points are pressed into the inner wall of the test plece by two $4 \mathrm{~B}, \mathrm{~A}$, set screws passing through the wall of the end portion of the specimen. In some experiments the gauge length was $1 / 2^{\prime \prime}$ and the points were opposite the ends of the reduced centro section of the specimen. In other experiments the gauge. length was $3 / 4^{\prime \prime}$ and the pointe were opposite the 4 B.A. screws; in this latter case an end correction is applied. The results using the two different gauge lengths were consistent. In no case was any evidence of bacinlash obtained. The angle between the infrors can be read to an accuracy of 10^{-4} radian, which corresponds to a shear strain of 0.005%. The dimensions of the specimens can be measured to an accupacy of about 1\%
(ii) Correction for finite wall thickness. To a first approximation the obseryed torquetwist diagram (τ, φ) with a suitable change of scale is identical with the stress strain diagram of the metal. Owing to the finite wall thickneas a small oorrection is needed. The exact oalculation of this
is difficult. But an upper limit an be found as below.

Consider a tube of length 1 , Internal radius a and external radius b. Let $d T$ be the torque on an elementary tube of radius and thickness dr. Suppose that initially during the forward deformation the shear stress is uniform over the cross-section and $i s \sigma_{0}$. Let the specimen be unloaded from this point and let the ensuing true stressustrain curve of the metal be $\sigma(\theta)$ where θ is the shear strain. Let a be mean radius, as yet unspecified, between a and b. Expanding as a Taylor series and neglecting powers higher than the second, we then have

$$
\begin{aligned}
T & =\int_{a}^{b} 2 \pi r^{2}\left[\sigma_{c}+(r-c) \frac{d \sigma}{d r}+\frac{1}{2}(r-c)^{2} \frac{d^{2} \sigma}{d r^{2}}\right] d r \\
\therefore \quad \frac{T}{2 \pi} & =\Delta_{3} \sigma+\left(\Delta_{4}-c \Delta_{3}\right) \frac{d \sigma}{d r}+\frac{1}{2}\left(\Delta_{5}-2 c \Delta_{4}+c^{2} \Delta_{3}\right) \frac{d^{2} \sigma}{d r^{2}}
\end{aligned}
$$

Where $\Delta_{n} \equiv\left(b^{n}-a^{k}\right) / n$
Bur oe $=q r$

$$
\therefore \frac{d \sigma}{d r}=\frac{\varphi}{l} \cdot \frac{d \sigma}{d \theta} \quad \text { ans } \quad \frac{d^{2} \sigma}{d r^{2}}=\frac{\varphi^{2}}{l^{2}} \cdot \frac{d^{2} \sigma}{d \theta^{2}}
$$

It is convenient to take $c=\Delta_{4} \mid \Delta_{3}=0,284^{\prime \prime}$ if $a=0.250^{\prime \prime}$ and $b=0.312^{\prime \prime}$. (This gives the correct scale for the strain. if some other value is chosen for c then there is a further correction term Involving $\varphi d T / d \varphi$ which automatically compensates for the difference). The approximate solution is then $T=2 \pi \Delta_{3} \sigma_{c}$, which is used to express the correction term as a function of T giving

$$
\begin{aligned}
\frac{T}{2 \pi} & =\Delta_{3} \sigma_{2}+\frac{A}{2 \pi} \varphi^{2} \frac{d^{2} T}{d \varphi^{2}} \\
\text { or } 2 \pi \Delta_{3} \sigma & =T-A \varphi^{2} d^{2} T / d \varphi^{2}
\end{aligned}
$$

Where $A=\left(A_{5}-2 c \Delta_{4}+c^{2} \Delta_{3}\right) / 2 c^{2} \Delta_{3}$

$$
=(b-a)^{2} / 24 a^{2}-(b-a)^{3} / 24 a^{3}
$$

This gives the true stress at radius c, the corresponding true strain being given by $\theta=\varphi_{c} / \ell$. If initially during the forward deformation the material is workhardening, the stress at the outer wall w111 exceed the stress at the inner wall. In this case it can be shown that the correction term is reduced, and lies between A and $A / 2$.

The correction term is very small. For $b / a=5 / 4$,
A has the value 0.002 . The correction is negligible unless there is a sharp bend in the stress-btrain curve. Figure 204, curve A, is a typical stress-atrain curve

Figure 204.
A - typical stress-strain curve
B,C - effect of finite wall thickness
determined experimentally: The conrection is too small to be shown. It is of interest to see what would be the effect of finite wail thickness with a specimen possessing zero Bauschinger effect, i.e, whose true stress-strain curve is inear between $+\sigma_{0}$ and $-\sigma_{0}$. The extreme case, for a material showing no workhardening, is easily calculated. Figure 204, curve B, shows the $T: \Phi$ curve for zero wall thickness, and curve o the curve for $b / a=5 / 4$.

II(c) RESULTS
(i) Copper, Dependence of Bauschinger effect on amount of previous cold work.

The specimens were machined out of 1' $^{\prime \prime}$ diameter draw HC oopper rod, and were annealed for one hour at $970^{\circ} \mathrm{C}$ in air at a pressupe of 0.1 mm His to remove as far as possible all internal stresaes and effects due to previous mechanical treatment. After cooling in the furnace they were electrolytically pollshed and etched. The mean grain alze was 147 grains $/ \mathrm{mm}^{2}$, each grain containing an average of three twin elements. Since twin boundaries obstmuct slip on at least six out of the twelve possible slipmsysteme, the effective grain size is taken as the number of twin elements

Figure 206
Bauschinger effect after 5.5% strain

Figure 207
Bauschinger effect after 15\% strain
per mm^{2} in this case 440 . twins $/ \mathrm{mm}^{2}$.
Three specimens were tested by applying a forward shear stress of $252 \mathrm{~kg} / \mathrm{cm}^{2}$, producing a strain or 2%, followed by reverse stresses of 164,203 and $252 \mathrm{~kg} / \mathrm{cm}^{2}$ respectively, followed by : forward stress exceeding $252 \mathrm{~kg} / \mathrm{cm}^{2}$. The resulting atress-strain curves are shown in fligure 205. In figures 206 and 207 are shown the resulta of six othex specimens tested at stress levelis of 464 and $858 \mathrm{~kg} / \mathrm{cm}^{2}$, the atreess level being defined as the fowward stress immediately before unloading begins, and denoted by σ_{0}.

Creep effects ane considerable during the forward defomation. The stress was usually changed in ateps of about $\sigma_{0} / 10$, and the strain observed after one or two minutes, when the creep rate had greatiy diminished. The observations near $+\sigma_{0}$ on the unloading curve are a little unreliable as silight oreep occurs here. However, along most of the unloading curve, and along the reverse stress curve between zero and about $-3 \sigma_{0} / 4$, no creep effects were discernable Usually a small creep was observed when the stress reached $-3 \sigma_{0} / 4$, and this became quite noticeable by $-\sigma_{0}$.

The curve munning from $+\sigma_{0}$ to $-\sigma_{0}$ is denoted by B1 (of flgure ${ }^{205}$). Thene 1s considerable resemblance between the B1 curves at the three stress levels. This

Figure 208
Copper. Bl curves of figures 205-7
replotted with reduced scale
is illustrated in figure 208, which shows the B1 curves of figures 205-7 replotted with the scale of both stress and strain divided by 252,464 and 858 respectively. The B1 curves now nearly coincide, except near $-\sigma_{0}$. This strain-difference observed near $-\sigma_{0}$ corresponds to a relatively small stressdifference. It may be partly due to the larger creep rate associated with the higher stress levels. It is seen that to a good approximation the Bauschinger strain from $+\sigma_{0}$ to at least $-0.9 \sigma_{0}$ can be written

$$
\beta=\sigma_{0} f\left(\sigma / \sigma_{0}\right) \quad \text { or } \quad \alpha \beta / d \sigma=f^{\prime}\left(\sigma / \sigma_{0}\right)
$$

The function f thus provides a measure of the Bauschinger effect independent of σ_{0}.

In the experiments described below it was found that the results for other metals and other conditions were of the same general character as those shown in figures 205-7, and by suitable adjustment of the scale could also be made to coincide with the curve of figure 208 to a finest approximation. To obtain a single parameter which would be an experimental measure of the effect in any given test, it was decided to take the strain γ at the stress $\sigma=-0.75 \sigma_{0}$ divided by the strain γ at $\sigma=0$. This ratio is denoted by ρ. The value $-0.75 \sigma_{0}$ was chosen as this is the largest
negative stress at which creep effects can be'neglected. For a material with no Bauschinger effect $\rho=1.75$. In figures 4,5 and $6, P$ has the values $3.47,3.43$ and 3.43 respeotively. The accuracy of ρ in any one test is usually ± 2 or 3%.

In the above tests the prior strain was limited to about 20%, because at larger deformations the specimens showed signs of buckling. To overcome this a greased $1 / 2^{\prime \prime}$ diameter rod was inserted in one specimen in place of the mirror assembly, and the specimen was given a preliminary twist of about 120° corresponding to a shear strain of 115%; this effectively prevented buckling. The rod was then withdrawn, the mirror assembly was inserted, and a further strain of 61% was given, the stress level now being $1625 \mathrm{~kg} / \mathrm{cm}^{2}$. The B1 curve springing from this point is shown in figure 208, with the appropriate reduced scale. The effect is relatively slighty smaller than at lower stresses; this difference may not be significant, as the specimen was constrained by the $1 / 2^{\prime \prime}$ rod during its preliminary deformation.

In these tests, and in those described below, the prior strain usually exceeded 1%. With prior strain less than 1% the Bauschinger strain β is less than that given in figure 208i β of course must tend to zero
when the prior plastic strain tends to zero. Thus the region between 0% and about 1% prior plastic strain (the material being initially thoroughly annealed) represente a transition region in which the Bauschinger strain increases from zero to its normal value as given in figuredog, this nomal value beling characteristic up to a prior strain of at least 120%

In figures 205-7 16 will be seen that the 82 curves to a first approximation are symmetrical to the part of the $\mathrm{B1}$ curve already traversed, The B2 curve apringing from $-\sigma_{0}$ however, does not usually close on the $B 1$ curve at $+\sigma_{0}$. The strain amplitude of the B2 durve between $-\sigma_{0}$ and $+\sigma_{0}$ is approximately $2 / 3$ the amplitude of the B1 curve between $+\sigma_{0}$ and $-\sigma_{0}$. The difference between these two curves measured in terme of etress is nelatively much smaller, owing to the small value of $d \sigma / d \theta$ and is only two or three times the uncertainty in the strese measurements. A similex difference was however observed in experiments With aluminium and nickel and it does appear to be signiftcant.

Qycles of etress taken between the limits $+\sigma_{0}$ and $-\sigma_{0}$ give further curves which may be denoted by B3, B4, etc. One copper epecimen and one aluminium specimen were tested, with similar results. Figure 209
shows the pesults for aluminium, The curves B2; B3, B4, etc, are to a first approximation equal. The strain-amplitude of B3, however, slightiy exceeds that of B2 and B5 exceeds B4; but this may not be stgnifleant, as the cornesponding streess-difference ie of the same order of magnitude as the accuracy of measurement. It is worth noting that in the test show in figure 209 the stress-level was sufficiently low to give no creep effects; the difference betweon the strain-amplitudes of B1 and B2 cannot therefore be attributed to ereep.

(4i) Copper. Bifect of previous reversal of direction of deformation.

In (i) the deformation preceding the B1 curve was entirely in one dipection, but it was noted that the B 2 curve springing from $-\sigma_{0}$ was very similar to the $B 1$ ourve springting from $+\sigma_{0}$. This suggested that it a specimen were stressed to $+\sigma_{0}$, unloaded, stressed to $-\sigma_{1}$, unloaded, and then stressed to $+\sigma_{1}$ $\left(\sigma_{1}>\sigma_{0}\right)$, the B1 curve ppringing from $-\sigma_{1}$ would probably be identical with the s1 cuive obtained from a specimen stressed to $-\sigma_{1}$ by untaipectional loading. this was tested on two specimens, ou 20 with σ. and σ_{1} equal to 252 and $462 \mathrm{~kg} / \mathrm{cm}^{2}$, and cu 21 with
Table 201

$\begin{aligned} & \text { Specimen } \quad \text { Cu } \\ & \text { Grainis } / \mathrm{mm}^{2} \\ & \text { Twins } / \mathrm{mm}^{2} \\ & \hline \end{aligned}$	$\begin{gathered} 11-22 \\ 147 \\ 440 \\ \hline \end{gathered}$	11 12 13 2 2 2 105 105 105	14 17 16 28 28 28 170 170 170	$\begin{array}{ccc} \hline 15 & 19 & 18 \\ 78 & 78 & 78 \\ 310 & 310 & 310 \end{array}$
$\begin{aligned} & \sigma_{0} \mathrm{~kg} / \mathrm{cm}^{2} \\ & \text { Prior strain, } \% \\ & \rho_{0} \end{aligned}$	$\begin{gathered} 252-858 \\ 2-15 \\ 3.40-3.65 \end{gathered}$	$\begin{array}{rrrr} 252 & 464 & 850 \\ 3 & 9 & 21 \\ 3.77 & 3.77 & 3.61 \end{array}$	$\begin{array}{rrr} 252 & 464 & 858 \\ 3 & 6 & 17 \frac{1}{2} \\ 3.68 & 3.37 & 3.45 \end{array}$	$\begin{array}{ccc} 252 & 464 & 850 \\ 2 \frac{5}{2} & 6 & 16 \\ 3.56 & 342 & 3.63 \end{array}$
$\begin{aligned} & -\sigma_{1} \mathrm{~kg} / \mathrm{cm}^{2} \\ & \text { Total prior } \\ & \text { strain, \% } \\ & P_{1} \\ & \hline \end{aligned}$	- - -	$\begin{array}{ll} \begin{array}{ll} 9 \frac{1}{2} & 15 \\ 3.63 & 3.39 \end{array},= \end{array}$	$\begin{array}{r} 433 \\ 720 \\ 7 \end{array} 14-10$	$\begin{array}{cccc} 433 & 729 & - \\ 6 & 13 & - \\ 3.33 & 343 \end{array}$
Mean ρ	3.49	3.57	3.49	347

Figure 210
Copper. Forward stress-strain curves, showing effect of grain size
values 4.64 and $728 \mathrm{k} / \mathrm{om}^{2}$. The resuiting reauced B1 curves at stress levels σ_{0} and σ_{1} all fitted figure 208 quite well. These observations, together with a more extensive set given below in (1ii), bhow that the "memory" of a stressereversel during defomation may be exased by a further strain of a few per eent.
(1i1) Copper, Fifect of grain size.
The specimens used in (i) were annealed again for one hour at $970^{\circ} \mathrm{C}$. mhis produced three different grain slate. These specimens were then tested as in Table 201, σ_{0} and σ_{1} having the same significance as in (ii) above. The pirst column gives the reesults from (1). The remaining columns give the resulte for the recrystallised specimens.

The values of ρ in table 201 agree to within 5%. The variations appear random and there is no significant Wartation with grain size. The range of grain size used was somewhat iimited, but it was quite sufficient to affect the prior forward stress-strain curves, shown in figure 210, In adation it was later observed with aluminium that specimens with a erain diameter as layge as 2 mm and negligible twinning gave the normal

Table 203

Bauschinger offect.
Table 201 also shows clearly that there is no systematic difference petween the values of ρ. and ρ_{1}, as mentioned in (ii) above.
(iv) Other metals.

Stress-strain curves were taken of the metais Ifsted in Table 202. Table 203 gives the summarised results, including the results for copper. With nickel, for example, five B1 curves were measured, at stress levels varying from 425 to $1230 \mathrm{~kg} / \mathrm{cm}^{2}$, corresponding to prior defomations of 11% to 16%, and the observed values of ρ were between 3.4 and 3.7.

The various values of ρ obtained for any one metal appear to be randomly distributed and not correlated with the stress level, except that ρ is somewhat low when the prior strain 1a 1% or less, as mentioned in (i) above. The variation is only a little larger than the estimated experimental error. Companing the various metals, it is seen that the values of ρ are substantialiy the same, with the exception of S.P.Al which is high, and Al which is slightly low. The fact that ρ is approximately the same for various metais is equivalent to saying that metals give
Table 204

$\begin{gathered} \varsigma \dagger^{*} z-\varepsilon * z \\ 6-4 \\ 089 \varepsilon-096 z \\ \varepsilon \\ \text { od } \end{gathered}$			\%.итватя дотас sqรa7 zo zoqumall
	$\begin{gathered} 6{ }^{\circ} z-9^{\circ} z \\ 0 \varepsilon-z^{\prime} \\ 0 \angle 6-4 \varepsilon \varepsilon \\ 9 \\ \text { TV } \end{gathered}$	$\begin{gathered} \varsigma * \Sigma-6^{*} ट \\ 9 t-1 \\ 0 L 6-z \varsigma_{t} \\ \varsigma \\ n_{0} \end{gathered}$	 [870K

Figure 211
Copper. Bl curves showing effect of temperature.

$$
\mathrm{A} \text { at }-182^{\circ} \mathrm{C} . \quad \mathrm{B}, \mathrm{C} \text { at } 12^{\circ} \mathrm{C}
$$

the same Bauschinger strain β when tested at stress levelis giving the same elastic strain σ_{0} / G, where G is the modulus of elasticity Metals work-hardened by stresses proportional to their respective elastic moduli may thus be regarded as belng in corresponding states and thus presumably have similar internal distribution of lattice defects, trapped dialocations, etc.
(v) Effect of temperature of defomation. Table 204 gives the summarised results of tests carriad out at $-182^{\circ} \mathrm{C}$. It was found that temperature has only a relatively small influence on the Bauschinger effect. The principal atfference is that for a given stress level the strain amplitude γ at $-\sigma_{0}$ is somewhat smaller at $-182^{\circ} \mathrm{C}$ than at room temperature. Figureats shows typical results for coppery effective grain size $440 \mathrm{mwins} / \mathrm{mm}^{2}$.

It is reasonable to assume that one effect of temperature is to cause local stress-fluctuations. If these are of mean amplitude s_{1} when the temperature is T_{1} and the external stress is S , the peak local stress is $S+S_{1}$. The plastic flow at T_{1} produced by the external stress ${ }^{s}$ should therefore be the same as the flow produced at \mathbb{T}_{2} by an external stress $s+S_{1}-S_{2} \quad$ The themmal component of the stress
can $b e$ estimated by observing the dependence of the yield point on temperature. Thus if an annealed specimen is deformed at $-182^{\circ} \mathrm{C}$ by an external etress $970 \mathrm{~kg} / \mathrm{cm}^{2}$, unloaded, and warmed to rom temperature, the yield point in the original direction of loading is found to be $850 \mathrm{~kg} / \mathrm{cm}^{2}$. Figure 211 curve C shows the B1 curve obtained for a room temperature copper specimen at a stress level of $850 \mathrm{~kg} / \mathrm{cm}^{2}$. Its amplitude γ at $-850 \mathrm{~kg} / \mathrm{cm}^{2}$ is approximately equal to the amplitude of the curve A at $-970 \mathrm{~kg} / \mathrm{cm}^{2}$. Similar results were obtained in a limited number of experiments with the other face-centred cubic metals. The diminution of the Bauschinger etrain at low temperatures is thus attributed to the reduction of the thermal component of the peak local stress.

Iron is slightly exceptional. At -18290 the prior deformation is accompanied by sharp clicks presumed due to twinning, and the creep component of the extension is jemky. During unloading and reverse loading to $-\sigma_{0}$ twinning noises are absent, but they recommence when the stress passes - σ_{0}. The Bauschinger strain is somewhat reduced in amplitude, but its general character is similar to that of the metals which deform by slip only. It differs considerably from the B1 curve for hexagonal metals, which are discussed in section VI.
(vi) Summary.

The results of section $I I(c)$, (i) to (v), above may be summarised as follows. In the cubic metals the strain associated with the Bauschinger effect is approximately proportional to the stress level, and the stress-strain curve representing the effect has a characteristic shape. The B1 stressstrain curves for a wide range of metals can all be shown on one graph with suitably reduced axes. The effect is largely independent of grain size, and the small dependence on temperature is explicable in terms of a thermal component of stress.

II(d) COMPARISON WITH PUBLISHED RESULTS OF OTHER WORKERS.

The most interesting work is that of Masing and Mauksch (1926) who carried out a range of tensioncompersion tests on brass (Cu 58, Pb 2), the prior strain varying from 0.7% to 17.5% Unfortiunately, very little information is given about the portion of the Bf curves between $+\sigma_{0}$ and 0 . From what is given it appears that the B1 curves are very similar to those obtained in the present work on pure metals, the stirain being a littie smalier, ρ having values between 2.5 and 2.65. Masing and Mauksch' experiments were designed to test Masing'a theory (Masing 1923, 1926) of the Bauschinger effect, which predicts that the B1 curve should be the same as the preceding stress-strain curve from zero to $+\sigma_{0}$, but with doubled scale and reversed sign. Good agreement between the observed and predicted curves was not obtained; the agreement is even less satisfactory when it is seen that these authors made their computed curve coincide with the beginning of the compression curve, neglecting the plastic deformation that occurred auring unloading. Masing's theory can hardly be expected to explain the Bauschinger strain after a prion deformation exceeding 1%, for,
as shown in section II(c), the effect in this region is quite unrelated to the prior stress-strain curve. For deformations of order 0.1若 Masing's theory probably agrees with experiment; but in this region the Bauschinger effect in any case tends to zero, and is extremely difficult to measure accurately. Later, Rahlf's and Masing (1950) examined the Bauschinger effect in torsion, using 1 mm diameter whres of various metale with prior surface strains exceeding 3.5\%. The considerable inhomogenelty of strain causes the observed torque-twist curve to deviate a little from the true stress-strain curve, but even so it is interesting to notice that the pubilshed curves are very similar to the general curve described by the present author. Values of ρ calculated from Rahifs and Masing's curves lie between 2.9 and 4.0. Rahlfs and Masing compared their results with Masing's theory and again found that the agreement is not good.

Experimental work on the Bauschinger effect has also been described by Polakowiki (1951) and Wilion (1952), who are chiefly intierested in haraness as a function of strain, and also by Kunze and Sachs (1930) whose experiments were entirely oonfined to the transition region below 1% prior strain. These results
are therefore not easily compared with those described in section II(c) above.

Before deformation

After deformation Figure 301

Figure 302

Figure 303 Undefoxmed

Pigure 305
Resultant s tsain 6%

Figure 304
Resultant mtrain 22\%

Figure 306
Resultant strain zezo
III.

SURFACE STUDTES

III (A) RUMPLING

If the surface of a specimen is inftially flat, it becomes somewhat rumpled after plastie deformation, because the individual grains do not have exactly the same shear as the aggregate (of figure 301). It was noticed that this rumpling was greatiy reauced in specimens which had been subjected to forward and revense strains of about equal magnitudes so that the resultant strain was nearly zero. Some measurements were therefore made to examine this quantitatively. The experimental arrangement is shown in figure 302. A slit 1 s flxed on the front Iens of a $1 \frac{1}{4}^{\prime \prime}$ microscope objective, parallel to the axis of a standara cylindrical torsion specimen lying on the microscope stage. only those parts of the field of view whose normal intersects this silt can reflect 7ight back into the objective. Figure 303 shows a typical reflection from an undeformed specimen with a true oylinarical surface. After a shear of 12% the appeapance is as in figure 304. A further shear of 6% In the reverse direction bilinge the resultant strain
back to 6% and gives figure 305. A further reverse shear of 6% brings the resultant strain to zero and gives figure 306. If the individual grains all had the same strain as the aggregate, then their deformation would be in the plane of the surface of the specimen and all these microphotographs would be similar to figure 303.

Consideration of the geometry of the arrangement shows that bright spots on the edge of the flela of view correspond to grains whose nomal 11 es at an angle $\psi=9^{\circ}$ to the mean surface. Analysis of observations on two epecimens of aluminium and one of copper gives the following resulte for strains below 20\%.

1. During a forward strain θ, surface rotations ψ occur, proportional to θ, the ratio $\psi_{\max } / \theta$ beling about 0.7 .
2. During subsequent peverse strain the surface rotations diminish in the same proportion, reaching zero when the resultant atrain reaches zero.

No observations were made at strains greater than 20%. The resulta above correspond to rotations about an axis in the plane of the surface and parallel to the axis of the spacimen. By tumning the slit
through 90° and tilting the specimen through a measured angle it was found that the same results apply to rotations about the traneverse axis in the surface. If the rotations about the two axes are uncorrelated, then the total maximum notation is

$$
\psi_{\max } \mid \theta=\sqrt{ }\left(0.7^{2}+0.7^{2}\right)=1
$$

We conclude that in a deformed ageregate the strain in the individual grains on the free surface is by no means equal to the mean strain of the aggragate, rotations ψ of the grains being observed, having magnitude from zero up to the mean strain θ. This result must also to some extent apply to grains below the surface, and ought to be taken into account in assessing the validity of Taylor's (1938) theory of the strain of an aggregate. Further, the fact that the change of shape of the gralns is mechanicaliy reversible would be explained. most simply if we assume that during both forward and reverse deformation the same slip systems are active in any given grain.

It is unfortunate that observations of this type are not sufficiently sensitive to give any Information on the mode of deformation during the Bauschinger strain from $+\sigma_{0}$ to $-\sigma_{0}$.

III(b) SLIP LINES

Since slip is the mechanism of plastic deformation in the metals with cubic lattice, the explanation of the Bauschinger effect essentially involves finding out where, and how mach, slip occurs during the Bauschinger strain. Unfortunately, silp is only easily studied by examination of the free surface of a polished specimen. It is not clear at present whether or not the free surface is entirely typical of the interior of a plastically deformed metal, especialiy in view of the influence of the mode of polishing (Brown and Honeycombe 1951). Even if the surface behaviour is typical of the interior during ordinary plastic deformation, it may not be so during the Bausohinger strain. Despite these limitations it is of interest to know how the surface behaves during the Bauschinger strain. A short experiment was therefore carried out to see whether or not slip lines are produced during the Bauschinger atrain.

Slip lines are not easily observed at plastic strains much less than 1\%. It is essential therefore to work at a high stress level, to give a Bauschinger strain larger than this. Three torsion tests were

Figure 307
Slip lines observed during
Bauschinger strain
therefore carried out at stress levels of 940 , 1030 and $1100 \mathrm{~kg} / \mathrm{cm}^{2}$, with oopper having about 100 twin elements per sq.em; The corresponding prior strains were $30 \%, 45 \%$ and 70% and the Bauschinger strain about 2% in each case. The prior strain was given partizy as a forward defomation and partly reverse, so that surface rumpling was minimised. After unloadng from the prion strain, the specimen was electrolytically polished in 50% orthophosphonic acid solution. The specimen was then loaded in reverse. At three points during the Bauschinger strain (i.e. while the stress was between 0 and $-\sigma_{0}$) the specimen was unloaded and examined microscopically at magnifications of 100 x and 400 x .

The qualitative observations were the same In all three cases, and are shown in figure 307. When the reverse plastio strain β is less than 1% few slip lines are seen, but as the strain increases to 2% the slip lines become more prominent, more closely spaced and visible in more grains. The general appearance of the slip lines is much the same as during the first etages of unidirectional deformation, We may therefone say that in the surface grains most of the Bauschinger strain takes place
IV.

THE THEORY OF THE BAUSGHINGGR BFFECT

IV(a) INTRODUCTION

Few theories of the Bausohinger effect have been put forward in the past, and none of these account for the results of section II, where it was shown that (1) the Bauschinger atrain is proportional to the stress level, and (ii) the general B1 curve has a characteristic shape. Masing's treatment (1923) was based on textural stresses, and is discussed in section IV(b), where it is shown that these can contribute only a small part of the observed effect. The effect must therefore be attributed to a process occurring in the individual grains and probably in single crystals also. such an effect may be explained in terms of dislocation theory as a rearrangement of dislocations already present or as the generation of new ones.

In discussing the relation between Bauschinger strain and stress level it is oonvenient to call the Bauschinger strain at $-\sigma_{0}$, divided by the yield strain σ_{0} / G, the Bauschinger ratio. This has an experimental value of about 8 . In sections IV(c)
to $\operatorname{IV}(t)$ some possible mechanisms are discussed, and it is concluded that the Bauschinger ratio has the magnitude which would be expected if the effect were due to a rearrangement of dislocations during stress reversal. The actual shape of the Bauschinger curve depends on the effective frictional resistance experienced by a dislocation, due to dynamic domping effects and to geametrical effects caused by increasing density of defecte in the lattice, and is not further discussed here.

It is not neckoned that the generstion of new dislocations contributee largely to the observed effect, as In general a Frank-Read source will generate equally well with positive or negative stresses and so produce no Bauschinger efect. This is fuxther discussed in section $\operatorname{Tv}(f)$.

Section $\operatorname{TV}(g)$ discusses a possible small contribution from grain-boundary silp, and $\operatorname{IV}(\mathrm{h})$ discusses the effects of vadancy-generation mechanisms.

The theory of Byandenberger (1947) is not discussed as it is based on very unusual ideas about elasticity and plastic deformation, and appears to have little relevance to physical reality, The theory of Nabarro (1950), which in some respects is related to Masing's treatment, refers to the length of the initial elastic

Figure 401
Grains in parallel

Figure 406
Grains in series

Figure 402
Stress-strain curve of a single grain, A - showing no work-hardening and no Bauschinger effect, B - showing work-hardening but no Bauschinger effect.

Figure 403
The BI curve predicted by Masing's theory.
portion of the $B 1$ curve, and is not further discussed here.

IV (b) TEXZURAL GTRTESSES

Masing (1923) considered essentially the model shown in figure 401, Each grain is represented by a spring in series with a friction element. The grains are regarded as ideally plastic, showing no hardening and no Bauschinger effect in the region examined, as in figure 402, curve A, Experimentally it was reckoned that this was achieved by a plastic strain to produce hardening, followed by a low-temperature anneal to remove textural stresses, the following strain being kept small, usually less than 1%, This model gives a B1 curve ABC (figure 403) geometrically similar to OA but with the scale of both axes doubled. The continuation $C D$ is identical with $A D^{*}$. This model is used by Musing to account both for the beginning of work-hardening and also for the Bauschinger effect. As Masing himself envisaged, it obviously cannot be used to account for work-hardening beyond a plastic strain of say 1\%, as in this model the finite slope $d \sigma / d \theta$ of the work-hardening curve is attributed to grains which have not yet reached their yield point
and therefore have an elastic strain equal to the overall plastic strain. For finite plastic strain ($>1 \%$) there cannot be any direct relation of this type between the Bauschinger strain and the prior strain. Greenough (1949) in discussing residual lattice strains, regarded the grains as work-hardening, and calculated the stresses which would be expected on the basis of the theories of Cox and sopwith (1937) and of Taylor (1938). His experimental results agree better With Taylor's theory, We have used a similar method to calculate the exact size and shape of the Bauschinger curve which is given by this model; as below.

Figure 401 is again taken to represent the grains of an aggregate extended plastically, During this prior strain the grains have work-hardened. They are regarded as showing no Bauschinger effect and negligible further work-hardening during a subsequent small compression, as in figure 402; curve B. Let the (work-hardened) tensile yield stress of a given grain be denoted by $\xi \sigma_{0}$ where $0<\xi<\infty$. Let the total volume of the grains whose yield stress is in the range $\xi \sigma_{0} \omega_{0}(\xi+d \xi) \sigma_{0}$ be a fraction $g(\xi)$ of the volume of the specimen. $g(\xi)$ satisfies the equations

$$
\int_{0}^{\infty} g(\xi) d \xi=\int_{0}^{\infty} \xi \cdot g(\xi) d \xi=1
$$

In practice $g(\xi)$ is non-zero only when ξ lies between Limits $\zeta_{\text {min }}$ and $\zeta_{\text {max }}$. since each grain is regarded as showing no Bauschinger effect, its compressive yield stress is equal to its tensile yield stress. The aggregate, however, shows a Bauschinger strain, owing to the range of yield strains present. Taking the origin of stress and strain at the point A, figure 403, plastic deformation begins at an applied stress $\sigma_{0}^{\prime}\left(1-2 \xi_{\text {min }}\right)$ and a strain $2 \xi_{m i n} \sigma_{0} / G$; the specimen is entirely plastic when the applied stress reaches $-\sigma_{0}$ and the strain is $2 \xi_{\text {mas }} \sigma_{0} / G$: The shape of the B1 curve between these points is calculable in terms of $g(\zeta)$, being given by

$$
\begin{align*}
d^{2} \sigma / d \theta^{2} & =G^{2} g(\xi) / 2 \sigma_{0} \tag{1}\\
\xi & =G \theta / 2 \sigma_{0} .
\end{align*}
$$

where

The theories of Cox and sopwith, and Taylor, respectively, may be used to calculate $g(\xi)$. The former treat the grains as single crystals, laterally unconstrained. The relation between tensile stress, $\sigma \quad\left(=\zeta \sigma_{0}\right)$, and extension, $\varepsilon \quad\left(=\ell / l_{0}-1\right)$ for a work-hapdening single crystal, may be derived from the equation e $26 / 3,43 / 1$ and $43 / 4$ cited by schmid and Boas (1950), in the form

$$
\sigma=f(\varepsilon) /\left(\sin X_{0} \cos \lambda_{0}\right)^{1+n}
$$

Figure 404
Relative abundance, g, of grains of different strength, $\xi \sigma_{0}$.

Figure 405
A - Bl curve calculated for grains laterally unconstrained.
B - Bl curve calculated for grains with same strain as aggregate.
C - Observed Bl curve.
where X_{0} and λ_{0} specify the initial orientation of the tensile axis, and where $n=\frac{1}{z}$ for a parabolic law of work-hardening, values of $\left(\sin X_{0} \cos \lambda_{0}\right)^{-3 / 2}$ are plotted on a stereographic projection at 5° intervals and the mean value M_{1} obtained. The ratio (sin $\left.X_{0} \cos \lambda_{0}\right)^{-3 / 2} / M_{1}$ is then the value of ξ for the orientation $X_{0} \lambda_{0}$ ((ξ) is simply the relative frequency of the various values of ξ. The frequency distribution is shown in figure 404, curve A. It is given as a histogram owing to the limited number of points computed on the stereogram. From this and equation 1 the B1 curve can be calculated; this curve is shown in figure 405, curve A.

The bl curve may be deduced in a similar way on the basis of Taylor ls theory, Greenough writes $\sigma \varepsilon=\tau_{c} \Sigma_{S}$ where T_{c} ss the resolved shear stress, es the arithmetical sum of the five shears producing a strain in the grain equal to the overall strain in the specimen, σ the tensile stress and Σ the extension. For a parabolically work-hardentng material $\tau_{c} \propto \sqrt{\Sigma} s$, so that $\sigma \infty(\Sigma s)^{3 / 2}$, Taylor (1938, figure 13) gives values of Σ computed at 5° intervals over a stereographic projection, These ape converted to $(\Sigma s)^{3 / 2}$ and the mean value M_{1} calculated. The ratio $\left(\Sigma_{s}\right)^{3 / 2} / M_{2}$ is the value of ξ for any given
onientation, Figure 404, curve B, shows the relative frequency of various values of 3 ., and figure 405 , curve B, the stressiestrain curve calculated from this with equation 1.

These models neglect the continuity of stress between adjacent grains. If we consider the model of Itgure 406 where stress continuity is preserved at the expense of unform atrain, it is easy to see that here there will be no Bauschinger effeot, the B1 curve being linear and elastic between $+\sigma_{0}$ and $-\sigma_{0}$, whether the elements be ideal as in figure 402, curve A, or work-hardening as in figure 402, curve $\mathrm{Bi}_{\text {: The real state Ifes between }}$ these two extremes, though probably nearer the case of untiom strain than of uniform stress. Thus curves A and B of figure 405 pepresent upper limits to the Bauschinger stwain.

In comparing the predicted B1 curves with the experimental reaults, it must be noted that the former refer to tension-compression; while the latter refer to shear. This difference is not likely to affect the order of magnitude of the quantities involved. Higure 405, curve 0 , shows the observed Bauschinger strain, which is decidedyy larger than that calculated. Thus we conclude that textural stresses alone are

Inadequate to explain the Bauschinger effect.
A further contribution to the Bauschinger strain arlses in the following way, consider a grain in an aggregate, initially fully annealed. Apply an increasing stress to the aggregate. When the stress is sufficiently high, plastic deformation first occurs in the ghaln by silp on the slip system with highest resolved shear stress, In general, this silp on one system alters the shape of the grain, this being opposed by the surnounding medium. Thus the plastic deformation is very Ifited until the stress rises to such a value that, together with the local restoring forces in the surpounding medium, it is sufficient to produce elip on two other slip-planes. The gratn can now defomplastically without change of shape (other than a strain equal to the overall strain of the spedimen), During a strese reversal a similar process occurs, but with doublea scale. The small plastic deformation which occurs while the stress is changed from the point where slip begins on only one plane to the point where slip begins on three planes, contributes to the Bauschinger effect. It has not proved possible, as yet, to make a satisfactory numerical estimate of this contribution. It is small if there are two
or three slip planes making angles wh the external strese not greatiy alfferent from 45°. This is uoualiy satisfied in the case of the metals with cubic tattice.

IV(c) THE REARRAYGEMONE OF DISLOCATIONS

According to maylor (1934), work-hardening Is attributed to the stress-system set up by dislocations distributed throughout the lattice. At some polnts this stress-system alds the motion of dielocations on a given allp system, and at other points opposes 1t. For subetantial plastic flow to occur, an external atress must be applied which is larger than the mean opposed Internal stress. Thus σ_{0} is epproximately equal to the mean absolute Internal stress due to the system of dislocations. If the etress is reversed, we argue that the dielocations responsible for the Internal stressgystem will themselves move to new equilibrium positions, thus giving a Bauschinger strain, as below.

Let there be N eage dislocations per co, each of length 1 cm. . Then these are separated by mean distance $r=1 / \sqrt{N}$ and the yield stress is of order $\sigma_{0}=G b / 2 \pi x=G b \sqrt{N} / 2 \pi$, where b is the Burgers vector. If a stress - σ_{0} is now applied, the
dislocations should take up new equilibrium positions and in doing so each will move a distance presumably of the same order as their mean distance apart. Thus the Bauschinger strain $\beta\left(-\sigma_{0}\right)$ is given by

$$
\beta\left(-\sigma_{0}\right)=\mathrm{Nrb}=\mathrm{b} \sqrt{\mathrm{~N}}
$$

Thus $\beta /$ yield strain $=\beta G / \sigma_{0}=2 x$.
Experimentally this ratio is about 8 . This agreement Ls fortuitousiy good, is substantial approximations are made in this theory. It does show, however, that this mechanism is capable of contributing to the observed effect.

Mott (1952) has put forward an improved theory of work-hardening in terms of groups of n primaxy dislocations on elly plianes a distance x apart which are terminated by barriers a distance 2 L apart. If these dislocations are aliowed to move a distance $\mathrm{R}=\sqrt{\mathrm{IX}}$ during the Bauschinger strain, then the siame expression $\beta\left(-\sigma_{0}\right)=2 \pi \sigma_{0} / \alpha$ is obtained. R is the mean separation of the primary groups of piled-up dislocations, so this motion corresponds to a substantial rearrangement of the primaxy stress-field, Mott aliso considers small groups of $n^{\prime \prime}$ secondary dislocations at a distance r from the primary groups, which relieve local strain

Figure 407
The horizontal component of the force between two dislocations (after Cottrell)

Figure 408
The horizontal component of the force between two dislocations (after Koehler)
by moving from sources a distance 1 apart ($\sim 10^{-4} \mathrm{~cm}$) through a alstance 1 If these are able to move back when the applied stress is reversed, their contribution to the Bausohinger strain is

$$
\beta\left(-\sigma_{0}\right)=\left\{\left(n^{*} / I^{2}\right) I b\right\}_{\text {mean }}
$$

Mott gives

$$
n^{*}=n 1 / 2 \pi
$$

80

$$
\beta\left(-\sigma_{0}\right)=n \mathrm{~b} / 2 x \mathrm{R}=\sigma_{0} / G
$$

Thus the secondary dislocations can contribute to the Bauschinger strain, though rather less than do the primary dislocations.

IV (d) DISLOCATION-RAIRS
If a positive edge dislocation be fixed at X (figure 407) and a negative dislocation y be froe to move in the sly plane $A B$, a distance h from X, the force on Y parallel to $A B$ is given by the sinusoidal dotted curve (Cottrell 1949). M and Q are positions of stable equilibrium in the absence of applied stress, While the regions $A L$, NOP and RB are unstable. We may use this model to calculate a Bauschinger effect, as follows.
on application of a suitably directed shear
stress $+\sigma_{0}$, a dislocation initially at M or Q moves to I or p respectively; if a stress $-\sigma_{0}$ is applied, the dislocation moves to N or R_{*} The stress required for this is $\sigma_{0}=\mathrm{ab} / 8 \mathrm{x}(1-v) \mathrm{h}$ where G is the shear modulus, b is the Burgers vector, and ν is Polsson's patio. Smaller stresses produce a smaller strain. Larger atresses dismpt the pair and carry Y off to infinity; σ_{0} is thus the yield stress. When the stress is neversed from $+\sigma_{0}$ to $-\sigma_{0}$, moves a distance 2 h along AB . If we had taken X and Y to be dislocations of the same sign, then NOP is the atable region, and the motion of X when the stress is reversed is $0.828 h$. Let there be N cm of dislocation per co. The mean separation of these is then $1 / \sqrt{N}$. We arrange these dislocations in pairs by assoclating each with its nearest neighbour. There are thus N/2 pairs of dislocations, each 1 cm long* For want of any definite estimate we assume that half of these pains are dislocations of like sign, and half of unlike sign. (In regions where the lattice is bent we should take them to be mostily of like sign). The mean separation of the two dislocations in any pair cannot exceed $1 / \sqrt{\mathrm{N}}$ and we take this to be the value of h. The plastic strain on reversal of stress
from $+\sigma_{0}$ to $-\sigma_{0}$ is then $N / 4$. $2 h, b$ due to the
 This we identify with the Bauschinger strain

$$
\beta\left(-\sigma_{0}\right)=\frac{2.828}{4} \mathrm{Nhb}=0.7070 \sqrt{N}
$$

The yield strain is

$$
\theta_{0}=\sigma_{0} / a=b / 8 n(1-v) h=b N / 8 \pi(1-v)
$$

The Bauschinger ratio to then

$$
\beta\left(-\sigma_{0}\right) / \theta_{0}=707 \times 8 h(1-\nu)=11.5
$$

This is a little larger than the experimentally observed value of about 8 . We have assumed that h takes its maximum value, $1 / \sqrt{N}$. If we assume that all values of n between 0 and $1 / \sqrt{N}$ are equally likely, then the Bauschinger ratio is reduced to 3.9 . Thus this mechanism is capable of making a substantial contribution.

According to Fowler (1941) the stress exerted by one dislocation on another is as show in figure 408. A like dislocation is stable on pow and contributes the same strain as in oottrellis picture. An unlike dislocation which is at P when the stress is $+\sigma_{0}$ moves past R when the stress is reversed to $-\sigma_{0}$. If we suppose that this dislocation
only goes as far as the next dislocation-pair, then It moves a distance a Itttle larger than $1 / \sqrt{N}$. Thus the Bauschinger strain is a littie larger than that deduced on the basis of cottrell's function, but is of the same orden of magnitude.

Both these estimates of the Bauschinger ratio are in a sense special cases of the general case of rearrangement of dislocations treated in section IV(c).

IV(e) THE EXHAUSTTON THEORY

It has been polnted out (Woolley, 1948) that the exhaustion theory as applied to oreep (Mott, 1948) is capable of giving a Bauschinger effect, provided the reasonable assumption is made that the stress requipe to activate a dislocation might in some cases be direction-sensitive. Exhaustion alone is however not adequate to explain the effect, for it is clear that if a specimen is strained by a stress $+\sigma_{0}$ and then by $-\sigma_{0}$, all dislocations with activation-stress in this range should be exhausted, fe. no longer available for plastic deformation in this stress range. Consequently the B2 curve shoula be linear and elastic between $-\sigma_{0}$ and $+\sigma_{0}$, which is contrary to what is observed. This conclusion holds whether the dislocations are
pegapded as originating at the grain boundaries as in the author's treatment, or at Prank-Read sources, as is now more generally supposed. some conclusions can be drawn from the shape of the B2 curves, In figure 209 at the point A there are no dislocations in the specimen capable of being activated or moved by a stress between 0 and $+\sigma_{0}$. At C_{4} after the strain B1, the number of dislocations capable of being activated and moved by a strees between 0 and $+\sigma_{0}$ is such that their motion produces the strain B2, which is about $2 / 3$ of $B 1$, Thus at of either (1) the dislocations which moved during 31 have activated a slightiy smaller number of other atslocations, and the B1 dislocations take no further part in the deformation, or (ii) about $1 / 3$ of the dislocations which moved during Bi have become trapped and the remaining $2 / 3$ simply move back when the stress is naised to $+\sigma_{0}$ again. The latter seems the more reasonable explanation. The same argument leads to the conclusion that no further substantial lose of dislocations by trapping occurs, the dislocations responsible for B 2 also producing B 3 , 84 ete. Furthemore, in figures 205-7 it is seen that the B2 curves springing from between 0 and say $-3 \sigma_{0} / 4$
have the same amplitude as the preceding part of the B1 curve. We infer that in this case there is no loss of active dislocations. The loss of active dislocations which causes the strain amplitude of B2 to be leas than that of B1 therefore takes place when the stress is near $-\sigma_{0}$. This is a reasonable conclusion, as the langer the stress the more easily nome dislocations may be pushed into regions of distorted lattice from which they may not easily escape.

The $B 1$ and succeeding B curves to a first approximation for closed hysteresis loops of twofold rotation symmetry. This implies that the external stress is needed not to activate the dislocations but to move them through a resisting lattice. For, suppose that the stress is required merely to activate dislocations, and that the lattice offers no resistance to a dislocation once it is activated and removed a mall distance from its original anchorage. During the B1 strain a certain number of dislocations would be activated and would move at once a certain distance, this giving the B1 strain, Some of these are trapped as described in the above paragraph. Unloading would be fairly elastic, but as soon as the stress becomes positive the remaining dislocations would

Figure 409

Figure 410

Figure 411
immediately move back to their oniginal positions, giving a B2 curve as in ifgure 409, curve B2a. Actually, textural stresses would probably cause the curve to be more like B2b. But nelther of these curves is symmetrical to B1 or resembles the experimental B2 curve.

IV(土) FRRANK-READ SOURCES

We reckon that there are at least two ways in which these can contribute to the Bauschinger effect.

In the fipst of these we consider a crystal containing a netwonk of cources each of length l. The yield stress $1 \mathrm{G} \mathrm{Gb} / \mathrm{l}$. When this strass is applled all the sources become sem-circles, as in figure 410 (full Iines). If the stress is reversed. the sources become semi-circles in the opposite direction (figure 410, broken lines). The strain associated with this motion is at most

$$
\frac{1}{l^{2}} \cdot \pi\left(\frac{l}{2}\right)^{2} \cdot b=\frac{\pi b}{4 l}
$$

The gield strain is $\theta_{\phi}=\mathrm{b} / \ell$, so the Bauschinger ratio is $\pi / 4$, This is decidedly smaller than the observed ratio of about 8.

A second way in which Frank-Read sources can
contribute to the Bauschinger effect is seen when we consider a source inside a grain, as in figure 411. Let the length of the source be l and 1 ts distance from the boundary be l^{\prime}. If $l^{\prime}<l$ then one aislocation is generatied when the external shear stress σ is suitably directed and $G b / \ell^{\prime}>\sigma>G b / l$. This dislocation crosses the whole grain until it is held up by the small gap ℓ^{\prime}, as shown in figure 411, fullay line. If the etress had been oppositely directed, the dislocation would have moved to the position represented by the dotted Ine. If the grain aiameter is I, then we calculate the Bauschinger ratio as follows.

Number of sources in volume l^{3}	$=$
Surface area of one grain	$=6 L^{2}$
Number of sources within a alstance of the grain houndary, per grain	$=6 L^{2} l \cdot \frac{1}{l^{3}}=6 \frac{L^{2}}{l^{2}}$
Number of ditto poe co	$=6 \frac{L^{2}}{l^{2}} \cdot \frac{1}{L^{3}}=\frac{6}{L^{2} l}$
Area each dislocation moves	$=L^{2}$
Bauschinger strain	$=\frac{6}{L^{2} l} \cdot L^{2} b=\frac{6 L b}{l^{2}}$
Yield strain	$=b / \ell$
Bauschinger ratio	$=6 \mathrm{~L} / \mathrm{l}$

This result indicates an effect which is proportional. to grain size, and therefore diakgrees with the results
of section II. In any case it is likely that this mechantsm would only apply in the early stages of deformation, when the grains are relatively perfect.

IV(g) GRAIN-BOUNDARY SLIP

In a stressed polycrystalline aggregate the applied etress produces a set of shear stresses across the grain-boundaries, Xe (1947) has put forward experimental evidence that at elevated temperatures the grain boundaries slip over each other until these shear stresses are relaxed, in accordance with the theory of zener (1941). Such silp takes place below the conventional elastic limit, and is not observed at room temperature where the effective viscosity of the grain bounderies is far too high. It produces an extra straln equal to 50% of the true elastic strain.

Duning plastic defomation, however, many dislocations arrive at the grain boundaries, and it seems possible that these woula activate local slip In the nelghbourhood of the grain boundaries and relax all or part of the shear stress system responsible for the Ke-Zenen effect.

Gpain-boundary slip alone cannot explain the Bauschinger effect, as at low temperatures such slip
can only occur as a concomftant of plastic deformation produced by some other mechanism. Besides this, the maximum strain it oan contribute is only 50% of the yleld strain, while the observed Bauschinger strain is about 8 times the yleld strain.

IV(h$)$ MHE GENERATION OF VACANCIES
 AND INTERSTTTIAT ATOMS

We reckon that the generation of defects by the intersection of serew dislocations may make a small contribution to the Bauschinger effect, as follows.

Geitz (1952) has pointied out that during plastic deformation if a sexew dislocation A crosses the axis of another sorew dislocation B, a Jog is fomed in each dislocation and a line of vacancies or intorstitial atoms is lext behind. joining the two dislocations. An extra force is required to move A, because energy must be supplied to increase the length of the line of defects. Correspondingly, If the direction of strain in revensed, a reduced force should be required to move A back toward B; because energy is obtalned by shortening the line of defecto. This gives a Bauschinger effect. The effect is very IImited however, for two reasons.

Seltz points out thet these Llines of vacancles on interstitial atoms are unstable at noom temperature, and the defects diffuse together to form sheets, which cause leas disturbance to the lattice. Also, Mott (1952) points out that the motion of a set of dishocations $A_{1} A_{2} A_{3} * *$ on the same slip plane arosising B generates a sheet of vacancies or interstitials alrect, even at low temperatures. No Bauschinger effect is to be expected if the lines of defectis are removed by the formation of eheets. We conclude that vacancy mechanisms do not contribute apprediably to the Bauschinger effect, but we note that some vacandes or interstitial atoms, not lying in a sheet, are generated when the leading screw dislocation of a slip avalanche cuts another screw.

Fage dislocations crossing a screw do not produce Lines of vacanoies of Interstitial atomb. Pure odge dislocations are pare, however, the average alalocation consisting presumably of equal screw and edge elements, so the remarks about screv dielocations, above, are essentially applicable to all dislocations.

IV(j) DLSCUSSION

In section IV we have put forward various mechandams which may contribute to the Bauschinger
efrect. The contribution of textural streases has been estimated and shown to be inadequate to explain the observed effect in polycrystalline metals of cuble lattice. Various mechantsms based on the rearrangement of dislocations are found to predict an erfect about the size of that actually observed. It is possible that several of these mechaniams are simultaneously active in the Bauschinger effect. Some of these mechanisms could operate in single cxystals (see section VII). No alscussion of the detailed ehape of the Bauschinger curve is offered. The theory of work-hardening itself not yet being in a satisfactory atate, it is difficult to suggest which mechanisms are chierly responsible for the Bausohinger effect. It would be a very desirable thing if cructal expentments could be devised to distinguish between the contributions of the mechanisms proposed.
V.

THERMOELECTRTC. POWER AND THE BAUSOHINGER EFFEECT

V (a) INTRODUCTION

Comparatively ilittle experimental or theoretical work has been carried out on the thermoelectric properties of plastically deformed metals. Crussard (1948) gives references to earlier work, and points out that it is important that the plastic deformation should be macroscoplcally homogeneous, processes such as drawing and rolling being unsatisfactory owing to the high surface strain. He determines the thermoelectric power of various metals after plastic extension, and also gives one result for the plastic torsion of a solid rod. He discusses the origin of the plastic component of the thermoelectric power, and attributes it tentatively to dislocations. Crussard's observation that elastic shear produces no change of thermoelectric power suggested to the present author a semi-quantitative theory of the contributtion of cold work to the thermoelectric power. This theory is outlined in sections $V(b)$ and $v(c)$. It also seemed worth while investigating experimentally the change of thermoelectric power when the direction of plastic strain is reversed.

Experiments with copper are described in sections $V(d)$ and $V(e)$, and are discussed in $V(f)$, where it is concluded that the results support the suggestion of section IV that the Bauschinger strain is due to a rearrangement of alslocations. already present in a work-hardened metal.

(b) THE THERMOELECTRIC POWER OF AN AGGREGATE

 Consider a set of grains in series, as in figure 501 , or in parallel, as in figure 502. If the thermal and electrical conductivities of the grains A and B are equal but their thermoelectric powers are E_{A} and G_{B} pespectivaly, then the thermoelectric power of the aggregate is$$
(1-v) E_{A}+v E_{B}
$$

where v is the fraction of the total volume occupted by B. Masing (19266) gave an elementary derivation of this result for the case in which the grains B are distributed anywhere in the material A. The present author, not belng at the time aware of Masing's treatment, deduced a different proof of this result. This proof is given below as it is mathematically more elegant than Masing's proof, though adaing litttle of interest from a purely physical

Figure 503
Sphere B embedded in A

Figure 504 Grain dissected into spheres, each equivalent to a dipole.

Figure 505
Grains of B replaced by dipoles
viewpolnt
Consider first a sphere of metal B of radius a, embedded in metal A, as in figure 503. Both metals have the same themal conductivity and electrical resistivity. The heat flow is parallel to the z axis and the isothernals parallel to the py plane. To calculate the change of effective thermoelectric power produced by the introduction of the sphere B it suffices to take the Thomson emof. per untt temperature difterence in A as zero, and the Thomson e.m.f. of B relative to A as a. The currentdensity I $_{A}$ in A is then given in terms of the potential Ψ_{A} and the electrical pesistivity ρ by

$$
\begin{equation*}
\rho \underline{j}_{A}=-g r a d V_{A} \tag{1}
\end{equation*}
$$

If we consider an element of length in in B, then we have

0

$$
\begin{align*}
& d v_{B}=-\rho J_{x} d x,-\rho y_{y} d y,\left(-\rho y_{z}+F\right) d x \\
& \rho y_{B}=-g r a d V_{B}+H_{z} \tag{2}
\end{align*}
$$

where Fdz is the increment of Thomson e.m.f. per unit length in the a drection ($F=s d r / d z$), and i_{z} is untt vection in the a drection. Slnce there is no accumulation of charge, we have

$$
\begin{equation*}
\operatorname{div} g_{\mathrm{A}}=0=\operatorname{div} \underline{I}_{\mathrm{B}} \tag{3}
\end{equation*}
$$

At the surface separating the two media we have a Peltier emf. p, which can fo taken as zero at $z=0$ and increases linearly with z. Thus $p=1 z$ where $k=d p / d T$ d $\alpha / d z$, and so

$$
\begin{equation*}
V_{A}-V_{B}=k z=k \cos \theta \quad \text { on } y=a \tag{4}
\end{equation*}
$$

Since there is no accumulation of charge on the surface of separation, the radial component of 1 is continuous i. se.,

$$
\begin{equation*}
\frac{\partial V_{B}}{\partial r}-F \cos \theta=\frac{\partial V_{A}}{\partial r} \text { on } r=a \tag{5}
\end{equation*}
$$

The general solution of equations 1, 2 and 3
is

$$
V_{A}=\frac{A n}{n}+1 \cdot P_{n}(\cos \theta)
$$

and $\quad V_{B}=B_{n}{ }^{2} \cdot P_{n}(\cos \theta)$

Equations 4 and 5 determine the values of A and B leading to..

$$
\begin{align*}
& V_{A}=\frac{F+K}{3} \cdot \frac{B^{3}}{3^{3}} \tag{6}\\
& V_{B}=\frac{F^{-}}{3} z \tag{7}
\end{align*}
$$

Equation 6 show that the sphere is equivalent to a dipole placed at of strength

$$
\begin{equation*}
\mu=\frac{1}{3}(F+k) a^{3}=\frac{F+t}{4 \pi} \frac{4}{3} \pi a^{3} \tag{8}
\end{equation*}
$$

Because of the linearity of equations 1 to 8 , the principle of superposition applies. The grains of the aggregate can therefore be dissected into a set of spheres, and each replaced by its equivalent dipole, as in figure 504. To evaluate the mean potential across a surface such as $P Q$, in figure 505, we consider first the contribution from any one dipole, which we take as origin. If as be an element of area on PQ then

$$
\begin{equation*}
\int_{P_{Q}}^{1} V d S=\int_{0}^{\infty} \frac{\mu 3}{r^{3}} \cdot 2 \pi x d x=2 \pi \mu \tag{9}
\end{equation*}
$$

Similarly, $\int_{R \omega} V d S=-2 \pi \mu$
If the area $P Q$ is S and the distance $P R$ is l, then the mean potential between $P Q$ and RW is

$$
V_{P R}=4 x(z \mu) / s
$$

where $w n$ is the total dipole moment in the volume pork. But from equation 8,

$$
2 \mu / s=\frac{F+\mathbf{K}}{4 \pi}\left(2 \frac{4 \pi a^{3}}{3}\right) / s=\frac{F+t}{4 \pi} d v
$$

where v is the fraction of the total volume occupied by B.

Thus $\quad v=(F+k) \ell v$
But $\quad F=s d T / d z$ and $k=d p / d r, d t / d z$, so

$$
V_{P R}=(d+d p / a T) \Delta T, V
$$

But $s+d p / d T$ is the thermoelectric power of B relative to A, and equals $E_{B}-E_{A}$.

Thus the thermoelectric power of an aggregate of $1-\mathrm{p}$ parts by volume of A and pants of B is

$$
\begin{aligned}
H=E_{A}+V / \Delta T & =E_{A}+\left(E_{B}-E_{A}\right) v \\
& =E_{A}(1-V)+E_{B} \nabla
\end{aligned}
$$

which is the required result.
This can obviously be extended to include the case of an aggregate of \mathbf{V}_{A} parts by volume of A , v_{B} of $B_{y} \mathbf{v}_{C}$ of C, and so on. The observed thermoelectric power will then be

$$
E=E_{A} V_{A}+E_{B} V_{B}+E_{C} V_{C}+
$$

Voc) A THEORY OF THE THERMOELECIRTC POWGR
OF A COZD-WORKED METAL

The ideal theory of the change of thermoelectric power due to plastic deformation would involve a detailed knowledge of the actual distribution of lattice defects in the metal and a quantum theoretical
treatment of their contribution to the thermoelectric power. Neither of these requifements can at present be met.

An approach to the problem may be made from Omussard's experimental observation that tensile stresses in the elastle wange produce a proportional change of themoelectric power, while shear stresses, being resoluble into equal tensile and compressive components, produce no effect. Thus in a uniformly elastically stopessed medium the change of thermoeleotric power is proportional to the change of density, $\Delta \mathrm{E}=\alpha \Delta \rho$. If the alstribution of elastic stress is non-untrom, then there are corresponding local variations of density and thermelectric power. If the accompanyling changes of electrical and thermal conductivity are small we may apply the results of section $V(b)$ The themoelectile power due to the stresses is then glven by

$$
\Delta A=\int \alpha \Delta \rho \cdot d v=\alpha \overline{\Delta \rho} .
$$

Where $\overline{\Delta \rho}$ is the mean change of density produced by the elastic deformation, averaged over the whole volume.

The defects present in large mumbers in a plastically deformed lattlice are dislocations, vacancles and interstitial atoms, Each of these
defects has a core, usually about one atom across, in which there are large straing and Hooke's law is not obeyed, and a surrounding stress fleld, in which the stivains are smaller and Hooke's law is obeyed, The contribution of the stress field to the themoelectric power can be calculated by estimating the mear change of density. The contribution made by the core of a defect is not so easy to estimate, butit is likely that it is of the same sign as the contribution from the stress field, and probably smaller, because the core of the derect.is mall.
(i) Edge dislocations

- Oalculations of the stress field of an edge dislocation by Nabarso (1947) and Koohler (1941) chow that the increase of denaity at any given point above the slip plane is matched by an equal decrease at the corresponding point below the slip plane. Thus in first-onder theory, edge dislocations contribute nothing to the themoelectric power.

(ii) Screw dislocations

The stress field of a screw dislocation is entirely shear, to first order, so these also contribute nothing to the themoelectric power.

(iii) Interstitial atoms

The stress field of an interstitial atom is such that the density is everywhere increased, and there is therefore a rirst-order contribution to the themoelectric power. If there are N_{i} interstitial atoms per cc, the mean incraase of density is mN_{i} and the thernoelectric power increases by dmN_{1}, whore m is the mass of one atom.

(iv) Vacancies

Though a vacancy and an interstitial ation neatralise each other it they dirfuse together, they are separately not complementary in their effect on the lattice. A vacancy produces a smaller effect than an interstitial atom, because adjacent atoms do not have to move to malke room for a vacanoy. The obvious extreme analogy is that it creates very littie disorder if one brick is removed from a brick wall, but considerable disorder is produced by the insertion of an extra brick. In this connection it is important to note that the density-change which appears in the thermoelectric equation is the density-change produced by local elastic strains, and does not include any change of macroscopic density due to the formation of voids. Thus it
corresponds more to the lattice strain measured by J-may diffraction rather than to a density change measured by taking the ratio of the total mass to the total volume,

It appears then that an interstitial atom produces a larger thermoelectric power than does a vacancy or one atom-length of dislocation. The observed thermoelectric power depends on the relative numbers of these three classes of defect.

From Orussarde results it is seen that the sign of the plastic component of the thermoelectric power is opposite to that produced by elastic tension. This therefore corresponds to an increase or true density and thus may be attributed to interstitial atoms. We may estimate their number By calculating α from Crussard's results. A tensile stress of $1 \mathrm{~kg} / \mathrm{mm}^{2}$ gives an elastic contribution to the thermoelectric power of -7×10^{-10} volt/ deg. The change of density is

$$
\Delta \rho=-\rho(1-2 v) \sigma / Y=-2.2 \times 10^{-4} \mathrm{gm} / \mathrm{cc}
$$

where Y is Young's modulus and ν is Poisson's ratio. Thus

$$
\alpha=\Delta E / \Delta \rho=3.2 \times 10^{-6} \text { volts } / \mathrm{deg} \text { per gm/cc. }
$$

The mass of a copper atom is $11 \times 10^{-23} \mathrm{gm}$.

At a plastic strain of 10% the thermoelectric power is about 2.5×10^{-9} volt/deg. This gives

$$
N_{i}=\Delta_{E} / d m=7 \times 10^{18} \text { per ce. }
$$

This shows reasonable agreement with selim'
(1952, p 46) rough estimate of 1.6×10^{18} vacancies or interstitial per ce.

However, the fact that an interstitial atom is surrounded by a stronger stress field than is a vacancy, is itself an argument that fewer interstitial atoms than vacancies will be formed. The theory outlined above can be criticised from this viewpoint, and further theoretical and experimental information is desirable.

Va) APPARATUS

The change of thermoelectric power after cold working is not large, and in the present experiments interest centres on the change of thermoelectric power during the relatively small Bauschinger strain. The usual method of measuring the change of thermoelectric power on cold working is to measure the e.m.f. set up in a thermocouple consisting of

Figure 506. General view of apparatus for measuring
thermoelectric power

Basic circuit

Actual circuit

Figure 508
the cold-worked metal and a standard metal, and at the same time to measure the temperature difference with an independent circuit. This method did not appear to offer sufficient accuracy, and so nulil method was employed, in which the themal e.m.f. of the specimen was compared with the e.m.f. of a standard thermocouple wowking between the same temperatures.

Views of the apparatus are show in figures 506 and 507, and the circuit in figure 508. Thick copper leads are attached to the ends of atsandard specimen of $1 / 16^{\prime \prime}$ wall thickness, forming the gpecimen couple whose thermoelectric power is denoted by E_{s}. One end of the specimen is heated electrically, and the other end cooled in a current of tap-water. A copper-constantan couple, the temperature couple, ft is in thermal contact with the specimen, al though electrically insulated from it. When the galvanometer G reads zero, then $\mathrm{E}_{\mathrm{s}}=\mathrm{R}_{2} \mathrm{H}_{4}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$.

For high accuracy it is important to avoid the effect of etray themal e.m.f. This can be achieved in accordance with the following principles.
(1) As far as possible the whole circuit; apart from the themocouples, must be kept at one temperature. The room was therefore provided with thermostatically controlled electric heaters, which maintained the temperature uniform and constant to \pm.
(1i) The low-level loop (figure 508) comprising G, R_{2}, the specimen couple and the associated wiring, was constructed entirely of copper, with copper terminals at junctions, solder and other metals being completely excluded, Residual stray e.m. F . In this loop is due to the copper in various parts of this circuit being of different purity and hardness; this stray e.m.f. may amount to more than the change of emef* to be measured. The high-level loop is less critical, and a manganin box is used for R_{1}.
(iii) since stray emif. cannot be avoided it is essential to keep it constant. This was achieved by substantial lagging and thermal shielding of all important leads and components, to give an estimated thermal time constant of at least 30 minutes.
(iv) Switching is to be avolded in the low-level circuit, as this introduces variable stray e.m.f. Fow this reason the setting of R_{2} is chosen beforehand, and balance obtained on R_{1}.
(v) Ideally the effect of stray e.m.f. could be eliminated completely by finding a value for R_{1} for which the galvanometer deflection is unchanged. when the temperature difference is altered. This method is not of use in the present experiments, for two reasons. Firstly it takes about 10 minutes for the specimen to settle down after a change of heat input, so it is unduly slow. secondly, the second-degree dependence of thermal e.m.f. on temperature ($e=a t+b t^{2}$) is different for the two couples and so the value of R_{1} for balance is slightly dependent on the temperature difference, unless E_{s} or the temperature difference is very small.
(vi) The procedure finally adopted was to find a value of R_{1} which was unchanged on simultaneous reversal of S_{1} and S_{2}. This eliminates stray e.m.f. in R_{1}, R_{2}, G and the associated wiring. S_{2} is made of annealed copper and is connected direct to the specimen couple, these leads and S_{2} being immersed
in a continuously-stinred oil-bath, so no stray e.m.f. is anticipated here. S_{1} is also made or annealed copper, and should introduce negligible stray e.m.f. in the high level loop. No compensation is provided for stray e.m.f. in the leads from the temperature couple to S_{1}, and in the millivoltmeter V; estimates of the magnitude of stray e.m.f. here show that it may be neglected.

The galvanometex G is a Paschen galvanometer with 3-ohm coils connected in series-parallel. An extra auxiliary ooil system was fitted to provide an adaitional control field, to reduce the sensitivity without altering the positions of the oontrol magnets or switching in extra resistance into the low level loop. This is very convenient When finding a rough balance. The sensitivity was usually $500 \mathrm{~mm} / \mu \mathrm{V}$. An external voltage of $0,1 \mu \mathrm{~V}$ was available to check the sensitivity if deaired.

The temperature aliference of about 200° across the specimen was obtained by heating one ond electrically and cooling the other with a stream of tap-Water. The heat input was derived from the A.C. mains and was maintained nominally constant with a constant-voltage transformer, slow variations of up to $\pm \frac{1}{2}$ degree were however observed. These

were attributed (1) to variations in the temperature of the cooling water, coupled with the 10 minute themal inertia of the specimen, and (ii) to poor frequency stability of the A.C. supply, impairing the perfomance of the constant-voltage transformer. As mentioned above, the balance value of R_{1} depends slightly on the temperature difference; a small correction was therefore applied to take account of the variation of temperature.

The temperature couple junctions were soft soldered, bent into the form shown in figure 509, insulated with cellulose tape, pressed in contact With the ends of the specimen by a pair of springy copper hoops, and lagged with felt. Preliminary tests had shown that this could record the temperature difference across the specimen to an accuracy of about 0.1%.

The specimen couple was constructed by tightly screwing two copper rods into threaded blind holes drilled in the walls of the ends of the specimen, as in figure 510. The assembly was annealed for one hour at $980^{\circ} 0$ during which time the threads at the junctions became fimmly sintered together. The lower ends of these rods were also threaded,

Figure 511

Figure 512
Showing points on
stress-strain curve at which E was measured.
and carried copper teminals which were conneoted to S_{2} by a spiral of annealed copper wire. The switch s_{2}, the two spiral leads, and the lower ends of the two rods were all immersed in an electrically stirred oll-bath.

The specimen was plastically deformed by application of a load to the rim of the wheel, W (figure 506). The shear strain was measured by the telescope and soale T, and by the mirrors M attached to the ends of the specimen.

$V(e)$ RESULTS

(1) It was confimed that in the elastic range the thermoelectric power is independent of ahear stress, within an accuracy of 7×10^{-11} volt/deg, up tra ahear stress of $700 \mathrm{~kg} / \mathrm{cm}^{2}$. [The thermoelectrla power produced by a tensile stress of $700 \mathrm{~kg} / \mathrm{am}^{2} \mathrm{Ls} 490 \times 10^{-11} \mathrm{volt} / \mathrm{deg}$. (Crussard 1948)].
(ii) Flgure 511 hows the typlaal variation of thermoelectric power during a stress reversal. The horizontal axis shows the total plastic strain. The thermoelectric power was messured at six points
on each curve, corresponding to the pointe marked in figure 512. The vertical line through each point indicates the experimental accuracy.

V(i) DISCUSSION

In figure 511 it is seen that during the Bauschinger strain from $+\sigma_{0}$ to $-\sigma_{0}$ there is relatively small change in the themoelectric power, whioh rises at the normal nate after $-\sigma_{0}$ is passed. This is taken to indicate that during the Bauschinger atrain there is little change in the number of interstitial atoms. Since these are produced by the intersection with a sorew aislocation of leading aislocations of a slip avalanche, we argue that leading dislocations do not cut each other during the Bauschinger strain. In section IV(b) it was suggested that the magnitude of the Bauschinger strain is what would be expected if each dislocation moved a distance equal to the mean aeparation of the dislocations present, of if groups of dislocations moved a distance equal to the mean separation of the groups. In such a rearrangement no leading dislocations intergect each other, which is what is now suggested by the thermoelectric power measurements.

After the Bauschingex strain is complete and the stress - σ_{0} passed, the rate of generation of Interstitial atoms rises to the value it had before $+\sigma_{0}$ was reached; this implies that leading dislocations are cutting each other as frequently as before.

A somewhat surprising experimental observation in figure 511 is that there is a small rise of thermoelectric power on unloading from $+\sigma_{0}$ to: 0 . This effect is real and is invariably observed on unloading after plastic deformation. Its origin lis at present unexplained. If at this point actress less than $+\sigma_{0}$ is applied, and unloaded, no change of thermal e.m.f. is observed.

In the theory above, and in the theory of electrical resistivity discussed by Seitz (1952), no account is taken of a possible contribution from stacking faults due to collapsed sheets of vacancies, or to sheets produced from interstitial atoms, This contribution is at present being further considered. It is likely to be of the same orion of magnitude, but somewhat smaller, than the contribution from interstitial atoms,

The accuracy of the results is not as high as could be desired; 16 is hoped to repeat these
observations with a modified apparatus in the near future.

VI.

THE BAUSCHINGER EFFECT IN

 POLYCRYSTALLINE MAGNESIUM
VI (a) INTRODUCTION

The primary purpose of this experiment was to obtain some information on the Bauschinger effect in a metal where twinning processes play an essential part in the deformation, for comparison and contrast with the results obtained with facecentred cubic metals and especially with iron. No stress-strain curves of the Bauschinger effect in hexagonal metals have apparently been published. The polar behaviour of twinning, however, makes it extremely likely that a large effect would be observed.

VI (b) EXPERIMENT
 Specimens of standard form with $1 / 16$ in.

 wall thickness were made up out of 99.98% pure magnesium obtained from Messes. Magnesium Electron Ltd. These were annealed at $300^{\circ} \mathrm{C}$ for 8 hours in air, producing complete recrystallisation with a

Figure 607
Stereographic projection of magnesium single crystal.
grain size of $220 \mathrm{grains} / \mathrm{mm}^{2}$. This temperature was chosen as being the highest at which surface oxidation was negitgible. Some preliminary experiments with tin had shown that unless the wall thickness of the specimen is very uniform there is a tendency for the specimen to twist about one of its generatons rather than about its axis, as shown in figure 601. This form of instability had not occurred in the experiments of part I. To prevent the possibility of this behaviour the specimens were fitted with a ball bearing, as shown in figure 602.

Stress-strain curves with Buitable reversals of atress were then taken; these are shown in figures 603-606. In two of these experiments notes were made of the amount of nolise emitted by the specimen when twinning occurs. These are noted in figure 606. Oreep effects were very noticeable whenever the strain rate was large, and contributed up to 30% of the observed atraln. Readings were generally taken about 2 minutes after a stress increment, when the creep rate was fairly small.

Figure 603. Superposed curves of all specimens tested.

Tigure 606. Detail from figure 603.

Figure 604: Detail from figure 603.

Figure 605. Detail from figure 603.

vi(c) pISCussion

The results shown in figures 603-6 are notably different from those given in gection II. Consider for example figure 605. puxing unloading after a prior deformation to $+\sigma_{0}$, the curve resembles those of Section II in showing only slight curvature, and substantially no plastic flow. Small negative stresses produce appreciable deformation, which increases very raplaly beyond a stress $-\sigma_{1}$, where $\sigma_{1}<\sigma_{0}$. The strain rate here exceeds the strain rate just before $+\sigma_{0}$, but after a certain further deformation in the negative direction $i t$ drops of f to a value nearly equal to the rate just before $+\sigma_{0}$. B2 curves obtained by removing the negative stress and applying again a positive stress are quite unlike those of Section II as, provided the negative strain is not too large, they show two steps, (figures 604 and 606), the second of which brings the specimen back very nearly to the point $+\sigma_{0}$ from which the B1 curve originally sprang.

These resulte are broady intelligible in terms of the mechanism of deformation. If a grain in an aggregate is to deform in a specified way, in general five distinct shear systems are required
(Taylor 1938), which means at least three active shear planes. This condition may occasionally be relaked a little for a grain whose neighbours have a favourable orientation (cf section III(a)). In hexagonal metals slip takes place only on the basal plane (0001), so that slip alone is inadequate to allow the aggregate to deform without cavitation. On the other hand, twinning can occur on the six (1012) planes, in the six [1011] airections. If a rod-shaped single crystal is subjected to tension, it can extend by twinning on axy (1012) plane if its axis lies in the area E of the stereographic projection of figure 607; but if it is compressed, no twinning can occur when it is in this orientation. The area C represents orientations in which twinning occurs only during compression, while the acea $O+E$ represents orientations where twinning can occur on at least one twin plane in tension and at least one in compression, The areas 0 , IN and $C+E$ of the pole sphere are approximately equal. Thus, in a polycrystalline aggregate with no preferped orfentation, about $1 / 3$ of the grains will be unable to deform by twinning if a specified unidirectional stress is applied. If a single crystal is twinned by the application of a stress of suitable direction,
it can be untwinned by a stress in the same direction but with opposite sign; the same result presumably applies to a grain in an aggregate.

Twinning gives extra shear planes which enable Taylor's condition to be satisfied. It is a discontinuous process, leading to large local stresses where twin lamellae meet grain boundaries; these stresses must be relieved by local slip (where possible) and by local twinning. The strain energy associated with these stresses is less if the twin lamellae are numerous and narrow, rather than few and broad; this is presumabily one reason why even heavy twinning may be invisible under microscopic examination, though visible by X-ray diffraction (Galnan and Tate 1951, Barrett and Haller 1946). Simple twinning is able to give a maximum shear of only 13% in magnesium. Further deformation can take place by silp and secondary twinning within the twin lamellae. In the present work the largest strain was 16%, so it is not reckoned that these secondary processes contribute greatly here.

In view of the complexity of the internal stresses it is not possible to give a full analysis of the present experimental results. These are
therefore discussed merely from the point of view of the contribution of twinning and antwinning to the shape of the B1 and B2 curves.

First of all it must be pointed out that asymmetry of the B1 curve will arise if the specimen is initially anisotropio, Extruded magnesium rod can be anisotropic for tenision-compression along its axis; sohmidt (1933) found tensile and compressive yield polnts of 2300 and $1300 \mathrm{~kg} / \mathrm{cm}^{2}$ respectively in an unrecrystallised Elektron AZM alloy. But in the present experinents using torsion of a tube whose axis is the axis of the fibre texture, this objection should not apply.

The positive direction of stress is defined as the dieection of etress first applied, producing the prior strain. Positive strain and positive twinning are strain and twinning taking place during application of positive stress. Positive untwinning is the untwinning of a positive twin, and is produced usualiy by a negative stress. Positive metwinning is the retwinning of an untwinned positive twin, produced by the remapplication of a positive stress. Along $O A B$ in figure 605 deformation occurs by positive twinning and accompanying slip, This twinning takes place in about $2 / 3$ of the total number
of grains, the remaining $1 / 3$ being in unfavourable orientations. Some of these latter may deform by slip, and near their edges there will in any case be local silp and twinning to accommodate twinning in adjacent grains. Along $B C$ the deformation is small and resembles the corresponding curve in the cubic metals; in particular, BC can exceed 20A without any clearly-defined yiela-point on it, showing that Masing's theory is inapplicable here also. No substantial untwinning occurs during unloading. Along $O D$ the plastic component of the deformation increases until at D there is well-marked yield where the strain rate $d \theta / d \sigma$ increases substantially, subsequently settling down to a smaller value beyond E. The part OD probably corresponds to incipient twinning in a limited number of weak grains. At D the stress is large enough to produce twinning in all grains, and general plastic flow. The strain rate along DE should exceed that along $A B$ for the following reasons.
(i) Along $A B$ we have only positive twinning, which occurs in only $2 / 3$ of the grains. But along DE these $2 / 3$ undergo positive untwinning while the remaining $1 / 3$ undergo negative twinning, both of which contribute to the total strain, Other things
being equal, the strain rate along $A B$ should be $2 / 3$ of that along DE.
(11) Along $A B$ the "hard grains, forming $1 / 3$ of the total number, will tend to 'lock' their immediate neighbours and hinder their extension. Thus the ratio of stralin rates should be less than $2 / 3$ to 1. The ratio is not likely to be less than $1 / 3$ to 1 , so we may take as a mean value $1 / 2$ to 1 . The influence of textural stresees has not been calculated. By analogy with section IV(b), however, we may say that these probably cause a 'rounding' of the field point at D, but do not affect the strain rate along DE .

Untwinning is a Iimited process and must end when all the twinned material is untwinned. Let the prion strain be $+0_{0}$. Then, assuming that $2 / 3$ of the $B 1$ strain is attributable to untwinning, a further strain of: $-3 / 2 \cdot \theta_{0}$ will complete the untwinning process. Thus at a resultant strain of $-\theta_{0} / 2$ the strain rate should be due solely to negative twinning in $2 / 3$ of the grains, and should therefore have the satie value as along AB. This is shown in figure 605, curve GF. Along EF the material 1s, to a first approximation, deforming exactly as if
it had been subjected only to negative stresses, A B2 curve springing from F therefore shows the same Bauschinger effect as a B1 curve, the strain rate along GH being nearly double that along EF, and falling off toward the value of AF at H , where this particular test terminated. It is notworthy that the strain-amplitude of GH is only about 10%, while on the argument above it should be more like 1粦 x strain-amplitude of OF; 1.e. about 19%. This discrepancy is probably due to the fact that or is slightly larger than the maximum atrain obtainable in a single crystal by simple twinning. We are here moreover considering a polycrystal, where many grains will not be favourably oriented. Part of the strain OF mast therefore be attributed to secondary slip and twinning, and these apparently limit the strain recoverable in the fom of negative untwinning. A somewhat different B2 curve springs from points along DE (figure 604, of also figure 606). Here positive retwinning and negative untwinning occur along KL. This cannot exceed the positive untwinning and negative twinning that occurred along DJ, and so must give the same strain as DJ. At L the material is therefore internaliy in the same state as it was at 0 , and so the stress-strain curve
pises till it passes through B, and then continues In prolongation of $A B$.

In assessing the observations of twinning noise It is important to note that the material adjacent to the $3 / 8^{\prime \prime}$ diameter pins, which transmit the torque to the ends of the specimen, is stressed nearly as hi ghly as the reduced centre section, and also undergoes some plastlc defommation. This must contribute to the nolse. Thus it is only the absence of nolse that is here significant. The only region in which considerable plastic deformation occurs without twinning noise is along KI (figures 604 and 606) and we may conclude that in thite region twinning takes place by the formation of very small twin lamellae and their steady growth, rather than by the sudden twinning of relatively large volumes of metal.

In figure 6031 t will be noted that the negative yield stress (P, Q and R) on the $B 1$ curve increases, the greater the priof strain. A similar effect is seen in the B 2 curves of figure 606. (S, T and U). According to Masing's interpretation of cold work and the Bauschinger effect, the reverse yield stress should decrease with increasing prion forward deformation. Thus these results ape inconsistent
with Masing's theory but would accord with the idea of the hardening of the lattice, due to the accumulation of derecte produced by the cold work. The above explanation is plausible, but it requires confirmation by other methods, such as rifcroscopic observation or X-ray diferpaction. More experimental stress-strain curves are desirable, and including other hexagonal metals and tin. These extensions are however outside the scope of the present study, whose prime object was to show the considerable difference between the Bauschinger effect in hexagonal and cubic metals.

VII.

THE BAUSCHINCER HWSECT TN

 CADMLUK SINGLE CR SHTALS
VII (a) INTRODUCTION

The experimental results of Sachs and shoj1 (1927) who found a Bauschinger effect in single crystals of $70 / 30$ alpha brass were at the time regarded as exceptional, and even in 1951 it was remarked by seitz that "irregulapities such as the Bauschinger effect are not. observed generally in exystals" (Seltz, 1952), though in late 1951 he agreed (private communtcation) that there appeared to be no experimental evidence to support this statement, It would in fact be surpsising if single crystals showed no Bauschinger effect. For with a sensitive extensometer limited plastic flow can be detected at the beginning of the extension of a single crystal, at stresses below the conventional yield point as measured with a less sensitive extensometer (Boas and Bchmid 1929). If such behaviour is observed at the beginning of plastio extension, there seems no particular reason why some flow should not occur

Figure 701
Single crystal testing machine
ot a Low strass during subsequent plaatic compression. It was thenefore dectaod to inveatigate the Bawchinger effect in single orystals of a pure metai. Gadmium, veling the Least work-hardening of the hexagonal metals, was felt to be the metal of greatest interest. If a Bauchinger orecet ooula be obsexved in oadmtum then a Bauschinger offect should also bo obearyed in the othem hexagonal metale where work-hardening is more apparent, and even more so In the cubic metals thowe slip on several planes is possible.
buring the progreas of this wort a dauschinger effect has been repopted n n aingle erystals of aluminium (Thompson 1951, private comunication) and magnesium (weinberg 1952), so that the effect aoes appear to be general.

VIT(O) APPARATUS

Hequre 701 shows details of the testing montae, the spectmen se soldered fret the brasa "olocke 3. B" which ara fixed to the theel amme AA. rheae axe pivoted oy bell race at ${ }^{3}$ bo that when a load is applied to elther of the conds caf, the
specimen is extended or compressed. The blook B carries a pair of leaf springs LL' which press a pair of needles NN" against the sides of the block B^{\prime}. These needles carxy mirrors MM'. Bxtension of the specimen rotates the mirrors, and the angle of rotation is measured with a telescope and scale. The linear magnification is 6600, i.e. an increase in length of the specimen by 1μ causes a change in scale reading of 6.6 mm . The strain of the specimen can be measured to .002\%.

The pressure of the leaf springs LIt is sufficient to exert a small restoring force on the machine and thus to influence the accuracy of stress measurement. These springe are therefore slightly curved, so that when the blocks move apart the shape and position of each spring does not change. Thus the springs cannot communicate elastic energy to the machine and therefore exert no resultant force. This is checked before inserting a specimen. The residual restoring force and the friction are negligible.

It must be noted that the block B^{\prime} does not move Inearly but rotates about the pivot R. This means that there is a smali strain-difference across the width of the specimen. At a mean strain of say 1%,

These crystals ware grown in an
these
atmospher
therefore
discussed
162, 488,
the nominal strain varies from 0.99% to 1.01%. across the specimen. This difference is reckoned to be negligible.

The design may be criticised in that the device measures the sum of the Bauschinger effect In the specimen and in the solder which attaches the specimen to the blocks BB'. This is inevitable, as it is not possible to attach a sensitive extensometer direct to a 1 mm diameter single orystal, 4 mm long. The layer of solder is however relatively smali in thickness and large in area, and the strength of the solder decidedly langer than the strength of a single crystal, and it is reckoned that the observed effect may be entirely attributed to the specimen.

VII(c) RESULIS

After several preliminary experiments two specimens were finally tested under satisfactory conditions. Limitations of time have prevented further measurements, but it is reckoned that the results indicate that a well-defined Bauschinger effect does occur.

The specimens were both cut from the same single crystal, Gd4, grown from Johnson Matthey "Specpure"

cadmium. This orystal had its slip plane at 44° and its slip direction at 47° to the tension axis. Consider first specimen calib. This was stressed cyclically several times between the limits as shown in figure 702. The alternate loading curves are denoted in sequence by $1,3,5$, etc., and the unloading curves by $2,4,6$, etc. Figure 703 shows the loading curves to larger scale. Curves 2 and 3 together correspond to the B1 curve of section II. The unloading curves, 2,4 , etc, are 1 inear and elastic within experimental uncertainty. The loading curves 3, 5, etc. are very silhilar and show a large Bauschinger strain. The axes of figures 702-5 are sealed in units of resolved shear stress and resolved shear strain on the slip plane in the slip direction. Specimen calla was taken through the cycles shown in figures 704 and 705. Detalls of the stressstrain curve were not measured during the prior strain, curves 1 and 2. Cunve 3 of figure 705 follows the finite strain of curve 1 , and is the same as curves 3 to 11 of figure 703. In figure 705 curve 7 follows the rather smaller straln of curve 5 , and has a Bauschinger effect a $11 t \mathrm{tl}$ e less than nomal. In the same figure curve 5 follows the even smaller strain of curve 3, and its Dauschinger strain is even less.

Thus a prior strain of order 0.5% is required to develop the full Bauschinger effect or to delete the "memory" of a previous stress reversal.

No significance is attached to the strain difference between the first loading curve 1 and the curves 3 to 11 of figure 703. It is extremely diffi cult to be sure that mounting the specimen introduces no plastic strain, although the process of soldering the specimen should help to anneal it. More experimental evidence would be required to establish that curve 1 is the true initial stressstrain curve of virgin material.

VIII(d) DISCUSSION

The results of the above observations show that a Bauschinger effect is observed in cadmium, and it is therefore likely that the effect is a fundamental property of single conystale of all metals.

Detailed discussion of the results is out of place here as the experiments did not cover a wide enough range of experimental conditions. It is perhaps worth observing that relative to the yield gtrain the strain associated with the offect is about three times larger than that observed: in
polycrystalline cuble metals (section II above), though having the same general character. It is thus likely that the theories put forward to account for the effect in the cubie metals (section IV, above) axe also to some extent applicable in the case of cadmium single cxystals.

VIII.

SOME APPARATUS CONSTRUGTED FOR THHS VORK

VIII (a) VERTICAL ILLUMINATOR

There being no vertical 111 uminator available for microphotography in the department, one was constructed as shown in tigure 801. It is related to the Beal-Winghton illuminator, but has one or two points of difference. The 45° glass slip, A, is placed near the eyeplece instead of just above the objective. Being thus near the primary image rather than near the objective, the optical quality of the glass slip is quite uncritical. This arrangement also allows the illuminator field stop, B, (whose image in the 45° glass slip is to coincide with the eyepiece field stop, 0) to be brought close to the body of the microscope without the use of an auxiliary lens. The light-source is a 12 volt 24 watt car Lamp inclined to the horizontal to give a source approximately 2 mm square. The condensing lens at the illuminator fleld stop, B, forms an Image of the source on the back of the objective, just filling its entry-pupil, D. The lamp-housing is totaliy enclosed. It is fitted with
cooling fins and is conneated to the microscope by a bakelite tube which is an effective thermal insulator. The incident light is permanently plane polarised by a sheet of Polaroid at P. An analysing polarold can be placed above the eyepiece.

With this type of illuminator the photographic exposure is independent of the focal lengths of the objective and eyeplece and depends only on the area of the field on the photographic plate and the reflecting power of the specimen, Witha metal of high reflecting power, such as magnesium, an exposure of 2 seconds is adequate using process plates and a field 3 inches in diameter. For visual wonk a resistance in semies with the lamp reduces the brightness.

VIII (b) GINGLE ORYSTAS MURNAOE

The furnace described here was constructed to produce single orystals by the travelling furnace method (Andrade 1937). the exact adjustment of the furnace temperature in the conventional Andrade design is usually found to be somewhat oritical. This is due to several factors. The chief of these is that the temperature gradient in the specimen is

Figure 802
Single crystal furnace
considerably reduced because the specimen is of relatively high thermal conductivity and is separated from the furnace element by the silica wall of the controlled atmosphere enclosure which is of relatively low conductivity, Besides this, the heat loss from the specimen occurs principally from the bides of the speciment and the temperature gradient behind the moving furnace and the temperature distribution vary with the position of the furnace along the length of the specimen. It was reckoned that these difficulties might be overcome (i) by putting the travelling furnace inside the controlled atrosphere tube rather than outside, and (ii) by growing the erystals not in silica quilil tubes but in grooves on a metal plate extending well beyond the ends of the crystals, so that heat can be conducted away equally well, whatever the position of the furnace relative to the speaimen.

These principles were embodied in the furnace shown in figure 802. The furnace has not been extensively tested, but it does produce ductile crystals of tin and cadmium. Figure 803 shows the temperature distribution deduced by plot ting the

Figure 803
Temperature distribution in furnace
A - near mid-point
B - near one end
temperature of a flxed point in a specimen as the moving turnace travels past. Curve A is the distribution when the cumace is near the mid-point of a specimen 18 cm long, and curve B when it is near one end. The temperature gradient is about $40 \mathrm{deg} / \mathrm{cm}$ for at least 2 cm on either side of the peak. The temperature distribution does not vary much with position of. the fumnace, and the peak temperature changes by only 8%.

MOHPREACES

Andrade, E. (1957) and Roscoe, R*
Proc. Phys. Soc., 49, 153.
Barrett, 0.S and Haller, 0.9. (21046)
Trans.Am, Inst, Minometwnge, 171, 246.
Buuschinger, J. (1862)
Zivilingeneur, 22. 289.
Boas, W. and Schind, TH. (1929)
Reit. Phys, 54, 16.
Brandenbergex, T. (1947)
Schweiz,Arch.angew.Wiss,Techne, 23, 232, 263.
Brown, A.F. and Honeycombe RUNE (1951)
Whil. Mag** 42, 1146 .
Colnan, and Mate, (1951)
J. Inst. Met* August 1951
Cottrel1. A. (1949)
Proe, Met, Myys. I, 77.
Cox, TH. Li. end Sopwt th, D. G, 9(1937)
Proce Phys, 800 : $49,134 \%$
Crusiand, C. (1948)Rep.Confostrength of Solide,Byistolk Phys.Boc.
Greenougn, $G .3 .(2949)$Proc. Roy. \$ocs, 297, 556.
Honeycombe, T, WiK. (1951)
J. Inst, Met, $80,45$.
Ke, T. 5 . (1997)Phys, Rev: 22, 533.
Kochler, a.S. (2941)
Phys. Rev. $60,397$.
Chnze, Vo and Sachs, Go, (1930)
Wetalluirtaoheft 9. 85.
Nasing, G., (1923)
Whas.Vex, a.d.siemem-tionzen 3, 231.
Masins, G* (1026)
ibid. 5, 135.
Masines G: (1926 b)ibid. 5, 175.
Masing, G. and Hauksoh, (1086)
ibid. 5, 240, Gee also ibid. 4, \%4, 244.
Mott, M, W. (1948)Rep.Conf.Strength of Solids, 3 intol; Phys.Soc,
20tt. N. 2 . (1952)
Phin. Mag*, 23, 1151*
Wabarro, 第, R, N. (1947)
roc. Phys, Soce, 59, 256.
Nabarro, 定, R.N. (1950)
Some recent developments in rheology;
Brit. Rheol. Club.
Polakowaki, M.H.; (1951)
J. Tron \& Steel 1nst* 169 . 33%.
Rehife, P., and Hasing, Ge, (2959
Zeit. Metallkinde; 42, 454.
Sachis, G., and Shoji, H*, (1927)Zeit. Thyse 45, 776.
Schund, It and Boas, Wi, (1950)PHasticity of exystals; T A. Nughes, Itd.
Schintit, W. (1933)
Zeit, Metalikunde, 25,299.
NeItz, TH (1952)
Advances Intehucics, 1, 43.
Taylor, Q.T., (1934)Proc. Roy. S00., 245, 362;
Taylor, G.I., (1938)J. Inst. Met., 62,307.
Wainberg. E . H .(1952)
T. Agp. Phys *. 23\% 1277.
Wilson, D.V., (1952)Mature, 170, B0.
Woolley, Kis. (1948)Rep.Conf. Strongth of solidebritstol: Physesoc.
Zener, 0. (1941)Phys, Rev, 60, 906.

