TRANSPORT PROBLEMS IN THE THEORY OF
METALS

Neil Charles McGill
A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1972

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14588

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/14588

TRANSPORT PROBLEMS IN THE THEORY OF METALS.

A Thesisg presented by
Neil Charles McGill
to the
University of St. Andrews
in application for the Degree of

Doctor of Philosophy.

July 1971




ProQuest Numlber: 10171153

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10171153

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346



Tgqal




Declaration

I declare that this Thesis is my own composition,
that it 1s based on research carried out by me, and that
no part of it has previously been presented in application

for a higher degree.




Certificate

I certify that in October 1965 Neil C. McGill was admitted
as a Research Student under Ordinance General No.l2 in the Department
of Theoretical Physics of the University of St. Andrews; that he was
admitted the following year as a candidate for the Degree of Doctor
of Philosophy under Ordinance No. 163 that he has fulfilled the
conditions of Ordinance No. 16 and the supplementary Senate -
regulations; and that he is gualified to submit the following Thesis

in application for the Degree of Doctor of Philosophy.

Research Supervisor.




Career

In 1963 I graduated from the University of St. Andrews with
a first class honours degree in Physics with Theoretical Physics.
I then undertook a two year course of study and research in the
Department of Materials of the College of Aemonautics, Cranfield
(now the Cranfield InstitutecﬁﬂTéchhology) and was awarded the
Diploma of the College in 1965. In October that year I was admitted
by the Senatus Academicus of-the University of St. Andrews as a
Research Student, and received financial support for one year from
the Carnegie Trust for the Universities of Scotland. In 1966 I
was appointed Assistant Lecturer in the Department of Theoretical
Physics in the University of St. Andrews and was promoted to my

present vost as Lecturer in 1968.




Acknowledgements

My overwhelming debt of gratitude is to my research supervisor
Professor R.B. Dingle who suggested the problems tackled in this
Thesis and without whose advice and encouragement the work would
never have been finished. It is he who has made me realise that
what seems st first to be impossible is sometimes not so.

I record also my thanks to the Carnegie Trust for the
UnivePsities of .Scotland for financially supporting the earlier
parts of this research.

Finally I gratefully thank my wife for her unfailing moral
support throughout and for the enthusiasm with which she has

typed this Thesis.




CONTENTS

Page
INTRODUCTION 1
I.1. Scattering of Electrons by Thermal Vibrations 2

I.2. Scattering of Electrons by the Surfaces of a Thin
Metal Film 4

Part One

SUMMARY OF PART ONE 8
Chapter 1, DERIVATION OF THE BLOCH INTEGRAL EQUATION 16
1.1 The Boltzmann Equation 16
1.2 The Calculation of ( 'Df/'c)t' ) coll. 18
1.3 The Concept of Formal Relaxation Times. 22
Chapter 2. PREVIOUS SOLUTIONS OF THE INTEGRAL EQUATION 26
2.1 The Bloch High Tempergture Approximation 26

2.2 The Bloch Interpolation Formula for the Electrical
Conductiwity &1
2.3 Elucidation of the Second Order Terms 30
2.4 The Numerical Method of Rhodes 33
2.5 Application of a Variational Principle 35
Chapter 3. FORMAL EXPANSION OF THE SOLUTION AS A DOUBLE SERIES 39
3.1 Further Simplification of the Integral Equation 39

3.2 Double Series Expansion for ¢ Suggested by the Method

of Successive Approximations 40
3.3 Recurrence Relation for the Coefficients aj 42
Chapter 4+ APPROXIMATE SOLUTIONS FOR THE COEFFICIENTS G:AND;Q;u 46

b



4.1
4-02

Approximate Solution for o

Approximate Solution for Q%m

Chapter 5, NUMERICAL INVESTIGATION OF THE COEFFICIENTS G& AND

5.1
5-2
543

Chapter 6.

Bal
6.2

Chapter 7.
Tol

T.2

e
Tk,
7.5
746

Chapter 8.

S+l
8«2
G
8.4

845

OF THE ASSOCIATED POLYNOMIALS
Numerical Check on @, and @,
Numerical Inspection of the Coefficients a%

Numerical Evaluation of the Associated Polynomials

TRANSFORMATION TO A MORE SUITABLE INDEPENDENT
VARTABLE

=
Recurrence Relation for the Coefficients Ag

Discussion of the New Coefficients Al

A
AN APPROXIMATE SOLUTION 4’(1—) IN CLOSED FORM,
VALID AT MODERATE AND HIGH TEMPERATURES

Firgt Method: Approximate Solution for a% and
Reasons for Rejection

Second Methoda\ Congtruction of the Differential
Equation for v

The Infinite Order Differential Equation for ¥ (x )
Solution for 43 as an Integral Representation
Solution for $ in Series Form

The Relation between ¢ and $

NUMERICAL ANALYSIS OF THE COEFFICIENTS A; AND OF
THE ASSOCIATED POLYNOMTIALS

The Form of A; Near £ = O
The Form of A, Near £ = n
Approximate Form of the Polynomials for X# Oand X<«

Approximate Form of the Polynomials for All Values
of X

The Second Order Terms and Proportionality Factor
for X > 1

46
48

53
54
58
59

63
65
70

13
76
80
85

89
94

97
9
102

103
105

110




8.6 The Second Order Terms and Proportionality Factor
for X < 1

Chapter 9, EVALUATION OF ¥ (X)
9.1 Bvaluation of ¥ at Moderate and High Temperatures

9.2 Bvaluation of ¥ at Low Temperatures

Chapter 10, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK
10.1 '‘Extension of Method I
10,2 Extension of Method ITX
10,3 Generalisation to Impure and Non-Degenerate Metals
10,4 Evaluation of the Blectrical Conductivity

10.5 The Problem of Polar Semiconductors

Appendix 1. SUMMATIONS INVOLVING STIRLING NUMBERS OF THE
SECOND KIND

Appendix 2, SOME REMARKS ON THE COMPUTATIONAL PROBLEMS
INVOLVED

Part Two

SUMMARY OF PART TWO

Chapter 11, THIN FILM IN A LONGITUDINAL MAGNETIC FIELD
11.1 Solution to the Boltzmann Equation
11.2 Calculation of the Conductivity

Chapter 12, EVALUATION OF THE INTEGRALS A, B, C, AND D FOR p$l
12.1 Evaluation of A
12.2 Evaluation of B
12,3 Evaluation of C
12,4 Ewaluvation of D

119

124
125
129

136
137
138
141
142
143

146

157

159
161
161
164

170
170
172
174
176

Chapter 13. EVALUATION OF THE INTEGRALS A, B, C, AND D FOR PR 1 179

79
e,



Chapter 14. COMPARISON WITH NUMERICALLY COMPUTED RESULTS AND
WITH EXPERIMENT

14.1 Comparison with Numerically Computed Results

14.2 Comparison with Experiment

References

183
183
184

188

TV




INTRODUCTION

Of all common substances, metals conduct heat and electricity
to the greatest extent. They also exhibit very readily a range of
more complicated phenomena - the galvanomagnetic, thermomagnetic
and thermoelectric effects — which result when an electric field, a
thermal gradient and a magnetic field are combined in various ways.
Any theory:of the metallic state, therefore, must explain why metals
should demonstrate these properties as well as they do,and account
for the variation of the physical quantities in question with
temperature, electric field, atomic structure and so on.

It is now well established that the simplest metals are
characterised by an energy band structure in which the topmost
occupied band is half full, so making it easy to impart extra energy
to those electrons lying at or just below the Fermi level.The
electrons in this band are loosely bound to the atomic cores, and
can readily move through the material. When an external electric
field is applied, the average motion of such electrons in the
direction of the field constitutes an electric current, while a
thermal current results (in the presence of a thermal gradient)
from the diffusion of electrons from hot to cold areas. Similar
qualitative explanations may be furnished for the more complicated
thermal, electric and magnetic effects.

Quantitatively, the key to the calculation of the transport
coefficients —~ the electrical and thermal conductivities,the Hall
coefficient, and so on ~ lies in the evaluation of the distribution
function g(igﬁ)t)'Which describes how the electrons are distributed
in (f,&) space at any time t. This function is found by solving

the Boltzmann transport equation, the mathematical expression of
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the statement that any change in.ﬁ with time is the sum of three
contributions, one for each possible cause: diffusion, collisions,
and the action of external fields. Even after simplifying
assumptions have been made about the lattice through which the
electrons move, the Boltzmann equation is, in its most general form,
a complicated integral equation , the complexity stemming partly
from the different types of electron collision which must all be
represented: collisions with thermal vibrations of the lattice,
with impﬁrities, with other displaced atoms, with boundary surfaces,
and so on. In practice relief is usually gained by considering
only one or perhaps two of these types of collision at a time,
assuming conditions which make these dominant. In the first problem
to be considered here, attention is restricted mainly to the case
where electrons are scattered by thermal vibrations of the latticey
in the second, the emphasis is on collisions which electrons make

with the metal surface.

Y.1. Scattering of Electrons by Thermal Vibrations.

Among the more complicated of the special cases of the
Boltzmann equation (or Bloch equation, as it is often called in
this context) is the one of probably greatest interest, i.e. where
the electrons move through the crystal lattice with no hindrance
save that provided by the thermal vibration of the: ions. At
temperatures higher than the Debye temperature, an approximate
solution for 6? is relatively easily obtained, as will be

demonstrated in Chapter 1.
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For intermediate and low temperatures, attempts at finding a
solution have included methods of successive approximatiogi%g
variationa’l methog'based on & minimum principleféand numerical
evaluatioﬁ? These will be examined in Chapter 23 here it is
relevant to point out that each, so faw as it has yet been developed,.
has certain weaknesses and limitations. The number of successive
approximations which can be evaluated is limited by the complexity
of the mathematics, and no proper account of the convergence of the
series can be given. The variational method does seem to yield
values of the transport coefficients in tolerable agreement with
experiment at both high and low temperaturess but it features the

expansion of a function of unknown formas an infinite series of

definite prescribed form, the coefficients being determined by the

application of the minimum principle. Convergence of this series is
once more unexaminable, nor is it certain that the true function

is one forwhich a Taylor series representation exists. Numerical
methods must of necessity assign numerical values to the pérameters
(such as temperature) which are involved, and no conclusive evidence
of the analytic dependence of the interesting quantities on such
parameters can emerge; in a sense, physical theory is thereby not
advanced.

Thus no method so far suggested may be reckoned free from major
deficiencies. There is scope for a new approach which wiil allow
investigation of the mathematical properties of the functions which
arise during the calculation, and so provide internal evidence for
the validity of the entire method. Such an approach would also
substantially assist further investigation of similar problems by
the variational method. For in any application of the variational
principle, it is obligatory 1o make some assumption about the form
of the trial function to be used, and hitherto there has existed

little evidence to support any particular assumption against
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possible alternatives. BEven partial knowledge of the analytic
properties of the funciions which occur in this particular problem
would go some way to.guide and Justify the choice of corresponding
trial functions in this and similar problems, and hence fill a gap
which still exists in this otherwise well-developed branch of physics.
A new method for solving the Bloch equation is presented inPart
One of this thesis. Briefly, the procedure consists in expanding
the unknown distribution function as an infinite double series in
the two variables temperature and energy, and the discovery of a
recurrence relation for the two--index coefficients. This recurrence
relation is then examined, partly analytically and partly numerically,
to elicit the dependence of the coefficient on the iwo indices.
Though it has not been possible to achieve an exact solution of the
recurrence equation, a sufficiently exact expression has been
determined to permit the re-assembly of the double series to yield
the required functiom. A fuller descriptive prgcis of this method

is contained in the summary chapter at the beginning of Part One.

I.2. Scatteringof Blectrons by the Surfaces ofa Thin Metal Film,

At all but very low temperatures, the "mean free path" for
electrons, i.e. the mean distance travelled between collisions,
is typioally of the order of a few lattice spacings. This means
that the influence of collisions with the metal surfaces is
practically negligible for normal sized specimens, since the
proportion of such collisions is extremely small. One is therefore

justified in making the approximation @&/ﬁz’ﬁ 0, and parameters
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such &5 the eleciurical conductivity are independent of the size and
shape of the specimen.

This simple state of affairs breaks down under a suitable
combination of (a) low temperature =2nd (b) extreme smallness of the
specimen in at least one direction. The electron me=n free pathis
then of the same order =s the thickness of the specimen, colligions
with the surface must be explicitly analysed, and one cannot assume
b,e /o1 = 0 . Depending on the extent to whish electrons are
specularly or diffusely reflected after collision, the tendency is
for the resistivity of the specimen to be increszsed beyond that of
the "bulk" metal.

To make progress with the Boltzmann equation when this extra
complication arises, it is necessary to make simplifying assumptions
about the other collision mechanisms which are operating. In
particular, it is ususl to postulate the existence of a "relaxation
time" 't"(ﬁ) ,» i.e. in the absence of external fields, the function g

always approaches its equilibrium value g; at a rate given by

oL GRS

et T(R)
It may be shown that this postulate is justified at high temperatures

(;? 9, , the Debye temperature) and at very low temperatures when
electron collisions are overwhelmingly due to impurities.
It is customary also to assume that electrons are cuasi-free,
i.e. éx m"g’/hwhere ¥V is the velocity of an electron and mT its
effective mass. This means that -g(zﬁﬁ)t)is equivalent to a
function N (I,’E.t‘) which describes the distribution of electrons
in (X,V ) space at any time t .

With these assumptions it is possible to analyse the influence
of metal surfaces on the electrical conductivity. For metal films

8 9
and wires it has been shown by Fuchs and by Dingle respectively
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that the conductivity is a function of the thickness of the specimen
divided by the mean free path. Comparison between theory and
experiment can therefore yield information about the mean free path;
unfortunately, however, such investigations are hampered by the need
to use several specimens and the uncertainty in the knowledge of
their exact respective thicknesses.lfAs pointed out by Chambers, it
is in principle possible to base all measurements on a single
specimen, but a dubious assumption is then required about the
variation of the bulk conductivity with temperature.]

Partly in order to overcome such difficulties it is relevant to
extend the theory to where there is a magnetic field present as well
ag an electric field. Under these new conditions, the trajectory of
an electron between successive collisions is generally curved, and
the conductivity depends on the momentum of the electrons as well as
on the thickness of the film or wire. Comparison between theory and
experiment is capable therefore of simultaneously yielding information
about the momentum of the electrons at the Fermi surface and their
mean free path. The conductivity increases with magnetic field
(sometimes after an initial decrease) due to the modification to the
trajectories of those electrons which in the absence of the field
would have collided with the metal surface. To observe this -~ purely
geometrical - effect, it is necessary that the normal bulk
magnetoresistance should be as small as possible,il.e. that the
conduction electrons should be nearly free. This limits reliable
comparison of theory and experiment to group~l1 metals,

Starting from a kinetic theory formulatiodcor transport
prhenomena,, Chambergohas devised a graphical procedure for calculating
the conductivity of thin wires in the presence of a longitudinal
magnetic field, but no practical method of calculatiorm appears to
exist when the magnetic field is transverse. For thin films,there

are three distinct orientations of the magnetic field with respect
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to the electric field. Solutions for the two transverse cases
have been provided by Sondheimegzand by McDonald and Sarginsoand
a comprehensive review of these and related work has been made by
Sondheimerﬁl

The presernt work, which comprises Part Two of this thesis, is
concerned with the remaining case where the fields are parallel.
The solution depends on the two ratios d/'f',5 and J/ﬂ where d is
the film thickness, ¥, the cyclotron radius and £ the bulk mean
free patﬂ. An exact analytic solution valid for high fields only
(d227% ) has been found by Koenigsberéngzbefeand Barron and
McDonald?%hile Ka;%has computed the conductivity by direct
numerical integration over a wide range of the magnetic field for
a limited number of d/e values.

Analysis of the solution for low and intermediate fields
( d< 275 ) leads, as will be shown, to various integrals which
cannot be evaluated directly. The main purpose here is to devise
analytic methods for expressing these approximately in terms of
known functions. This approach, in contrast to resorting to direct
numerical integration for this psrticular problem only, represents
a first step in the selection and development of the best
approximations to the many more complicated problems in this class.
The approximations foundprovide a convenient way of evaluating the
conductivity to adequate accuracy for all but a limited range of
the parameters. The validity of the results obtained has been
confirmed by comparing them with those of Kaoj; experimental
evidence for the effect is also discussed. -

The work presented in Pert Two has already been published in
substantially similar form. A concise summary of the methods
employed is displayed in the summary chapter at the beginning
of Part Two.

v
& ey




Part One

A NEW METHOD OF SOLUTION TO THE BLOCH INTEGRAL

EQUATION IN THE THEORY OF METALS

3
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SUMMARY OF PART ONE

The development of the argument in Part One is of necessity
somewhat labyrinthine, and it is convenient to display the connection
between the various constituents on the attached chart. The general
flow of the argument is from top to bottom, arrows indicating the
direction where there is possible ambiguity. The numbers in the
boxes refer to chapters and sections of chapters in Part One. Dotted
lines indicate where computer calculations have served as a check
on either (a) existing analytically-derived relations or (b)
hypotheses, e.g. concefning the form of variation of coefficients
with their indices. Arrows show the direction of flow of irnformation ..
provided by such calculationsge .

With the aid of the chart, the complete argument may be summarised
chapter by chapter as followss

Chapter 1 In this opening chapter the Bloch equation is set up and
cast into the most suitable form for subsequent analysis.

The chapter begins with a brief derivation of Boltzmann's equation
(§ 1.1) without explicit calculation of‘( 5{/3*)cdumww "« General
expressions for this quantity are quoted without proof in § 1.2 for
(a) collisions with phonons and (b)collisions with impurities. With
their aid, the Bloch integral‘equation then follows. It is shown
that a time of relaxation exists at high temperatures only. For
arbitrary temperatures ( § 1.3)the distribution function is re-
expressed in terms of the two'formal relaxation times" defined by

19 ;
Dingle,. whereupon the original integral equation splits into two
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separate integral eqguations for the two relaxation times. Finally,
viese are cast into a non—dimensional form similar to that adopted

by Rhodeéﬁ Mathematically, the problem is to solve the two integral
equations for the two unknown functions ¢4\ and (}g('(‘v) . [1= (B-Y&T
where E is the electron energy, § +the Fermi potential, R Boltz—

mann's constant and T the absolute temperature.]

Chapter 2 Here a review is made of previously derived approximate
solutions of the Bloch equation, in roughly historical order.

The elementary first order high-temperature approximation due to
Blocﬁ7is described in§ 2.1. Thesanm:authog elucidated the first
order term in a low temperature series for the distribution function,
which contrives to duplicate the known behaviour in the high
temperature limit. It therefore possesses the status of an inter-
polation. formula valid at all temperatures (§ 2.2%.,

The second-order terms for a pure metal at high temperatures
have been elucidated by a method of successive approximations
invented by Wilsoﬁ{ ( A previous attempt by Brillouiﬁﬂ%o findthese‘x
terms has been proved invalid - the reasons for this are diSCussed.)
A similer calculation of the second order terms for an impure metal
at low temperatures appeared in the same paper; this work was soon
extended by Dubé@

§ 2.4 comprises a description of the numerical method devised by
Rhodeg’for extending the range of validity of the high-temperature
solution. An improved first-—order approximation is found, and the
method of successive approximations then applied numerically for the
solution of the integral equation.

The final section §2.5 states the vamiational principle found by
Kohleﬁggs a condition on the reguired solutionji this has been
employed both by Kohler and by Sondheimeg to find the coefficients
in a trial expansion of the unknown distribution function when the

latter is substituted into the integral equation.
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Chapter 3 In‘§3.1 it is assumed that there is no impurity scattering
and that the electron gas is completely degenerate. ( ¥ =RT/% may
be taken to be zero.) The two integral equations for ¢ and ¢? then
become identical, so that ¢$a@3 in this approximation.

A new variable X= [+ Oj)q is selected (§ 3.2) and ‘1’(‘7)5‘— +(")

can now be expanded in the form

o o ; '
- pA3) =i "

Y(xy = S 4 2 epx (s.1)
n=e 2=0

where Y = By f1 , P, being the Debye temperature. Substituting in the
integral equation, a recurrence relation for the coefficient (22 is
found by equating equal powers of 4 and X on the two sides of the
equation (@'3.3)0 '

Chapter 4 The general recurrence relation for a% is quite
complicated, but becomes much simpler in form at the two extremities
in the range of ¢ - walues, viz. £=0 and.é=2m « An approximate
solution for ag 5 valid when "1 is large, can be found relatively
easily (§ 4.1) and a similar but more complicated argument yieldsa

%)
corresponding solution for e« (f 4.2).

- e
Chapter 5 The coefficients <L2 and polynomials 22<£} X  have
been evaluated numerically by digital computer, in the latter case

for various values of x , with the following aims and results:

(i) Confirmation of the expressions for Q. and @, derived
analytically in the previous chapter, and improvement of
the accuracy of any approximate parameters involved.

(ii) Inspection of the variation of Ci% with v and ¢ . It is
found that <i1 generally rises in value quite rapidly with
n , and reaches a peak with variation in £ at about £ﬁ=éw
In particular it is observed that, of the various

L .
contributions to @, in the recurrence relation, those
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involving CL?:’ ($=0,1.-,2n9 are dominant. This is made the
basis of an approximation to Q% , denoted by E&} yWhich is
introduced and discussed in Chapter 7. Also, the ratio of
@y to O, is, to a good approximation, (wl)g times the
binomial coefficient Czjie) o This is exploited in § Tal
to yield an approximate solution for a& A

(iii) Inspection of the values of the polynomials éfaz.xg » These
are observed to be much smaller, numerically, than the
coefficients a& themselvess despite this, they gradually
increase in magnitude approximately as (ﬁh)f, (except when
x=0), indicating that the series over h in (S.1) is
asymptotic. The limited utility of this series for direct

numerical estimation of Y is noted.

Chapter 6 The choice of the variable ¥ in Chapter 3 is, unfortunately,
not completely satisfactory, since y(x) = W (I~% ) and the
coefficients a} are therefore not all independent. The coefficients
are also much bigger than the polynomials to which they contribute,
so the process of calculating the latter is computationally =~ - ° - 4.
inefficient. Finally =0 is an atypical point in the range
O <x<| for the behaviour of the polynomials £ a’, S

A new variable X = |-2x has therefore been chosen and the

function EECX§ [:r'#ém)] expanded in the form

- 2un 2 n 2¢
._:'E(X)° i 9 g/"e X (s.2)

The recurrence relation for AZ is found (§ 6.1) from the original
integral eguation by a process similar to that for Q% described in

" a0 20
Chapter 3. From this, the coefficients A, and polynomials 2 ApX '
may be calculated by digital computer (£ 6.2). The former turn
out to be much smaller in magnitude than the coefficients a}

(for given w ) and are of course all independent. The variation
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with n of the polynomials & Ae X at X =0 is entirely typical.

Although the recurrence relation for- A& is even more
complicated than that for a} , it simplifies greatly at £ =n to
permit an approximate solution for large W . This solution can also
be deduced as a particular case of the general relation connecting
the /4L and (ﬁé coefficients, resulting from the equality of ()
and }I‘()(). When £=n , the relation reduces to

. -
By ® B (;) ) (5.3)

the coefficient C%n having already been elucidated in §4.2.

Chapter 7 The observation in Chapter 5 that, numerically, the
coefficients 02 are determined mainly by those contributions in

the recurrence relation involving the aaﬁ (8 = Q5 1,0me 2M~2)y prompts
the definition of a new set of coefficients a; through a modified
recurrence relation which retains only the most important contii-
butions. One would expect that &2 would be an approximation in

some sense to 412 and that the corresponding function

b At Ay Q i
~{A/(‘-\ s F ‘32" QZ Ge % (s:4)
nh=0 =0

would be related to the required function ¥ . Numerically, the
coefficients 34_ match the behaviour of @, with variation in n
and ¢ buf are smaller in magnitude.

It is shown in § 7.1 that a reasonably good empirical solution
for &Q s inspired by the observations made in Chapter 5 and valid
near £ =w yis nevertheless incapable of yielding a good approx=
imation to :3 . The best way to find $’ is first to construct
the second order differential equation for 3’ from the recurrence
relation for a; (§ 7.2) and then solve it. (Alternatively,
this differential ecuation can be obtained by retaining the most

significant terms in an infinite order differential equation for




Y B

\P ( § 7.3) derived from the original integral equation.) The
required solution :$ may be represented in two different but equiv-—
alent forms - as an integral representation ( g 7.4) or as a conver-—
ging series ( § T8 ) Finally the relation between‘:P and ¥ is

considered in § T ks

Chapter 8 The observation that the variation with n of the poly-
nomials Z'A'L Xze at X = 0 is fairly typical of that for X &% O
makes it desirable to elucidate the approximate dependence of A:on
n and ¢ near ¢ = O, since these are the coefficients which contribute
most to the polynomial. § 8.1 consists therefore of an anslysis of
the form of A: followed by a similar investigation of AZ for small

¢ ¥ 0. At each stage a hypothesis is made, based on the analytic
and numerical information so far elicited, which is testéd numerically
by insertion of the appropriate values of /Vk.

In § 8.2 a similar procedure is reported for the coefficients
Ap in the neighbourhood of € = n., (The form of Al itself is
already known from § 6.2, which simplifies the analysis compared
with the region ¢ % 0.) The reason for requiring this information
is that the highest order coefficients A: y Alq , etc, dominate
the form of the polynomial asg X > ©@ , Although the region of X
of physical interest is O € X £ 1, it is instructive also to
calculate the polynomials for values of X in the ‘non-physical'
region 1 < X < % , since knowledge of their behaviour in this
region is more easily elucidated and provides a valuable guide to
the expected behaviour in the 'physical' region.
By this stage there is sufficient information to calculate

the apnroximate form of the polyn-mials in the two regions X2 O
and X~> v ( § 8.3). A reasonable deduction can then be made
of the probable form of the polynomials in the two regions 0L X < 1
and 1 <X <« , the two hyvotheses concerned being checked by
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numerical analysis ( §Eh4). The analytic forms of the two functions

concerned are found by further numerically - verified hypotheses. In

58.5 the accuracy of the expression for X > 1 is improved by inves-— -
tigating the second order term and the proportionality factor, at
first numerically and then analytically. Finally, in §8.6, the cor-
responding fagtars for. X< lare found byirequiring thelexpression for-
X >1 to-carry over to that .for X < 1lwhen we analytically continue all
functions from one region to another.
Chapter 9 Now that the approximate analytic form of the polynomials
Z A?z xae is known, the way is clear to calculate the function
by summing over n in (S.2). Two procedures are distinguished, one
appropriate at moderate and high temperatures ( §9.1), the other at
low temperatures (§ 9.2). In the first, the decreasing terms of the
asymptotic series are retained exactly, the others being approximated
by our formula for late terms. The sum of late terms is interpreted
via Dingle's 'converging factors'4s, and the resulting expression for
¥ is demonstrated to be capable of yielding accurate results over
the temperature range considered.

At low temperatures, successive terms increase from the outset
and it is preferable to sum over n from 1 to<® . It is thennecessary
to include a series contribution to EE arising from the difference
between the actual coefficients of f"in (8.2) and the expression
which approximates late polynomial behaviour. It is shown that
this 'residual series' must be the most dominant component of ¥
at very low temperatures, since then the other summed contributions
are certainly of minor importance. For the particular case X = O,
support for this conclusion is demonstrated by direct numerical

estimation of this 'residue' and of its variation with temperature.

Chapter 10 Here a summary is briefly made of the main procedures

devised and conclusions drawn to date. A.few suggestions are made
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as.to how the solution obtained for ¥ might be improved and general-
ised. The principles involved in the application of the new method
to the problem of polar semiconductors are briefly discussed, and the

extremely interesting first results of such an analysis are reported.
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Chapter 1.

DERTVATION OF THE BLOCH INTEGRAL EQUATION

In this chapter the Bloch integral equation is set up and

cast into the most suitable form for subsequent analysis.

149 The Boltzmann Bquation

An electron moving through a perfectly periodic crystal lattice

has a wave function of the form

e 7 .
\h{ [j) = » u’@‘ (j") (342

where é denotes the state of the electron, + its position and the
function (Ly(¥) is periodic in the lattice. It was first shown by
Blooﬂythat ;uch electrons give rise to an unchanging current, so
that non-zero values of electrical resistivity must be attributed
to deviations from perfect periodicity. The latter is most
commonly due to (a) defects of the crystal — impurity atoms,
vacant sites, dislocations etc. — and (b) thermal vibrations of
the lattice (phonons) which displace each atom in turn from its
eguilibrium position. Thus calculation of the electric and thermal
conductivities and the other physical gquantities of interest depends
crucially on knowledge of the extent to which electrons are
scattered by lattice imperfections.

At time T, let the number of electrons whose combined (f,ﬁ )
vector lies in the "volume" element d?‘dSﬁ be

= f (&, 2,¢) P dh . (1.2)

The function { varies with time due to (i) diffusion,
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(ii) acceleration caused by external fields, and (iii) collisions,

so that
&’f (81&)014? " <§t Patds w& . (1.3}

With the aid of Liouville's theorem

d (d RY=0 (1.4)
a straightforward calculation shows that
éf) S 2 (1.5)
stdfg. Vg - ”5"_}5 )

Bhpw = #(8+ 2ore) Y L.

Here Q°Q) is the electronic charge, g and t! are the applied
electric and magnetic fields, and 4§ 1is the velocity of anelectron
in state @ o Combining (103), (105) and (1,6), we have Boltzmann's

equation

e, 9 ) /e ;
Bt H - (B tur Y= () (1.7)

on whose solution depends the whole range of electrical, thermal
and magnetic properties which derive from the transport of electrons
through the lattice.

It is well known that the distribution function é’ for

electrons in thermodynamic equilibrium is the Fermi-Dirac function
~ =]
0.(8) = [enp (g~ + lj (1.8)

where Eais the energy of an electron in state ﬁ s, S is the Fermi
potentiai, £ is Boltzmann's constant and T is the absolute
temperature. The value of § is determined by the number of

electrons per unit volume:

L
o e
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L of (1.9)
4r* Voxp (g-0)AT + |

When the temperature varies with ¥ but no net transport of electrons
occurs, we assume thet there still exists an equilibrium function
-f (8,2 ) given by the R.H.S. of (1.8) where T and § are now
functions of T .

When 8 and H are zero and e is not a function of position,
/ot is just (€7 2% Jesw. by(l.7). Under these circumstances
it is plausible, though not necessary, that 2P/2t — the rate at
which g returns to its equilibrium value - should be proportional

to the difference between g and the equilibrium function ~€° s 1.8

(ag)w& i ﬁ%% (1.10)

where “UC@) is a characteristic "relaxation time", whose functional
form may be assumed to vary with the scattering mechanism operating.

When a relaxation time exists, the solution of the Boltzmann
equation is considerably simplified and explicit expressions for
the electrical and thermal conductivities and the other quantities
of interest are easily de$ive&f even though additional assumptions
and approximations may be_required for their numerical evaluation.
However the premise that a relaxationtime exists is by no means
generally valid: where, for example, the electron scattering is
caused by thermal vibration of the lattice, it turns out to be
legitimate at high temperatures only, as will be shortly

demonstrated.

1.2, The Caloulation of (0€/0t ul.

In the case of scattering due to lattice vibrations, the
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calculation of (E)g/QTT )eotd, 13 rather long and complicated and
expositions of the theory are readily obtainablgf For these reasons
it will be convenient simply to state the result, efter an
enumeration of the (sometimes rather drastic) assumptions which

must be introduced at various stages in the argument to make it

mathematically tractable. These are:

(i) The crystal lattice is Bravais.

(ii) We may neglect terms higher than quadratic in the expansion
of the total potential energy of the lattice as a series in
rising powers of the displacement of the ions from their
equilibrium positions.

(iii) Lattice vibrations are approximately independent of the
motion of the electrons, coupling between them occurring only
through the change in electron potential energy caused by
displacement of the ions.

(iv) We may neglect the so-called Umklapp processes, those in :
which momentum is imparted to the crystal as a whole during
a phonon—electron interaction.

(v) The potential for an electron inside a given unit cell is
dominated by the contribution from the ion which occupiesite.

(vi) The function uﬁ(z ) ~ the periodic part of the Bloch wave
function (1.1) for an electron moving through a perfect
lattice (no phonons) - does not vary much with @ s 18
spherically symmetrical inside the atomic core and almost
constant outside it.

(vii) Eﬁ= ‘hzlﬁlz,./ (ZWI*) where rr?éis the electron effective mass.

(viii) Tﬁé phonon spectrum is the equilibrium one, characterised by
the Bose-Einstein distribution function [-eﬁO/&T;- £]NI, /
being the phonon frequency.

(ix) The velocity of sound does not vary with wavelength.
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(x) There exist only an electric field and a temperature gradient
both aligned in the x-direction, and squares of these
quantities may be neglected.

(xi) The number of free electrons is p2 %—(number of atoms)e
(This is the assumption which specifies that we are dealing
with metals. The other case ( <' instead of > ) leads us
to the corresponding theory for semlconductors, which does
not pose nearly the same problems as for metals, and willnot

be discussed further).

With all these assumptions and approximations, (af /ét )wuﬁ is
O/t

Qe b 3 575 (2] [{Ectmcosfemenh ][ 20 24,

R 2L ﬁ&/\r'ﬂg 'l"] Ii"@z

~0o/
e, (1.11)

Here Q» is the M component of @ ’ QDis the Debye temperature,

i oa ( B~% /BT , 2 =h?/RT and ¢ (Y) is defined by

L8) = £.(8)~ hu 2o ey (1.12)

In addition,

V,,Z
A = @?\ 4”@5%

Eor (1.13)
a2
D £ (é'ﬂzj #I
4 M*Q}' (1-14)
where M is the ionic mass, cf is the volume of a unit cell,

and C is an integral over the unit cell involving the function
LL&(I ) whose value is taken to be approximately constant.

When scattering is due to lattice impurities, the corresponding




e

calculation of (65’ /'3%‘),_0“. is considerably simpler. With the

18
assumptions (vii) and (X) above it can be shown that

gl
(%)ML: xaE 2, -- c(1) (1.15)

where .Q is the mean free path between collisions.
When both scattering mechanisms exist, the total value of
(08 /OT )eou. is the sum of (1.11) and (1.15). Now assumptions (vii)

and (x) simplify the Boltzmann equation to

_.%" ' gfé La T ?Jacbi) % 2{ = (%g)cou. :

(1.16)
Hence, combining (1.11), (1.15) and (1.16), we have
e & + ‘rs@m(-%_)+ £ %1: = J_—* EW e ol
yia 2 v
- T\L2] &F zdg_
] | oot o) 1,
~08p/T
(1s17)

which 1s an inhomogeneous integral equation for the unknown function
C ( ﬂ)o This equation is sometimes referred to as the Bloch
equation after F. Bloch who first derived and discussed itr

It is now easy to see that a time of relaxation exists only at
high temperatures. From the definitions (1.10) and (1.12), the
existence condition is that (ae,/@t ) colt . should be proportional
to € (9 ). This condition is already satisfied for the lattice
impurity contribution (1.15) and is also satisfied for phonon
scattering in the limit 90/1‘m9 O, when only the first term is
significant in an expansion of the integrand in (1.11) in rising
powers of 2 . (This corresponds to the reduction of (1.17) to an

ordinary equation for € (Q )). In this limit, the reciprocal of
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the total relaxation time ig the sum of two contributions:

T(E) N T, (E) ¥ T.ley ° (1.18)
where
T ey e J0F L (1.19)
AUNEY E'/z, P

L7 ¥
oo (_E\ s 2 kK AE 9_0 ' |
To% D ( ) (1.20)

| ¥
B2 and'ﬂa are the relaxation times for scattering by impurities
and by phonons respectively. For sufficiemtly high temperatures,
“t: > ﬁﬁd and the electrical and thermal resistance is due almost
entirely to the lattice vibrations. At lower temperatures, however,
these approximations are no longer valid, a time of relaxation does
not exist, and we must find the general solution of the integral
equation (1.17).

1.3 The Concept of Formal Relaxation Times

It is now convenient to express (1.17) in a slightly different

way. 1f, following Dingle,'q we put

ch)= = %#{ [e8+ T%ﬁ(.—?_)] T(v) + ._.‘_E- g—;r T*[vj ]. g {(1.21)

then (1.17) splits into two equations:

7 ‘
- B ETw6 . I Ty
m £ LYy 0, x

O /T n L

3 _ 2 2 + | = oz
Loty - tralen sare o)} et 2
“O i

(1.22)
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j ‘{ ELT*(‘IJ - T*[‘I +2) (E+ @T’z)‘_—E +31 8Tz -«D(‘g‘;) Zl]} :;:‘ % a2
~& /T

e +! |1~

(1.23)

The d.c. electrical conductivity, the thermal conductivity and

the thermoelectric effects are given respectively by

K, Kf-—!(g(: C s i ¢ K, (1.24)

2.
0"=-?/l'<|) W= )
Wy T K, T

where

i w ath

K:‘, .- IL'WE:*jE"+i T%(‘i) 2& dy . (1.26)
o oY

Since these expressions are of the same form as those which hold
when a time of relaxation exists:q-r and ‘gémay be regarded as
'formal relaxation times'; at high temperatures each reduces to the
relaxation time (1.18), and & = T in any approximation in which
terms of order &©,/F are neglected.

We may also display the abowvwe equations in non-dimensional
form, similar to that employed by Rhodeéi Suppose we make the

following definitionss

w s
k- (1.27)

R TS
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y= RT /s (1.28)
Vs 2 o\ 22
N 9
pe 2" gust g ¥ (1.29)
?: 22 a Ma” RO, .5..2
a0 W o (1.30)
_ 3wwt e
o= 5 M8, hy P w0, o3l
o= 3T
Mo, hy P ‘ (1.32)

Then (1.22), (1.23), (1.25) and (1.26) are transformed to

8 (eyn)® = F 9 (14 wy) ¢ (1)

\—

9 y
20 r {Pg‘(n+g7)cp(w)~ ¢('H2)[P‘6L('+5'7*“’l—f*z)"zzj} »i:l = d:, y

e+l |i~e
=9

) (1:33)
4 (nxv;)%r- £ 9 (1ram) ¢7(n)
2
P 4 2 % . " 2 q?+l ="z
- f {P‘:) (Hx‘q)¢(*:)~(H-m+x2)4>(%+2)[P%('*¥7*?—3‘)“2] KLk
=4
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. At A 4;
. _32M86, "y S Jomﬁlwma“ (1.35)
9 W Jwx C* -

2, nik
*_ _ 32ME8 Py ¢ J(HJ‘?) 9”%('1) ag

Por™ q B ier ot w 5 ' (1.36)

To a very good approximation the lower limit of integration in (1.35)
and (1.36) may be replaced by — <@,

It may be noted that p =(§ /%) (2‘12 )%— where q is the
number of electrons per atom and §,6 is the value of £ at T =0 .
Except for electrons in a narrow band, €« § and P is therefore
of order unity. '

For a highly degenerate electron gas X = 87T/9¢ is small;
Hhode§7has shown that fi@h/g is approximately 0.003 for a wide
range of metals. As is well known, this implies that in calculating
the electrical conductivity it is sufficient to retain only the
zero~oprder term in ah expansion of ‘ﬁ (ﬂ ) in rising powers of ¥ .
For the sécond order effects however - +thermal conductivity and
thermo—-electric effects - it is necessary to retain powers of Y
up to Kz , both in the calculation of ¢ (4 ) and q;‘(ﬂ ) and in
the evaluation of integrals (1.35) and (1.36).
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Chapter 2

PREVIQUS SOLUTIONS OF THE INTEGRAL EQUATION

A review will now be made of previous attempts to find a
solution to the Bloch integral equation. In all instances so far,
the solutions which heve been derived are to some extent approximate,
and most are valid over only part of the possible temperature range.'
For convenience the various methods will be recast where necessary
into a form applicable to the elucidation of the functions (b and
ﬁ* introduced in the previous chapter, so that the connection
between the methods mey be most clearly evident. This means thet
the starting point for the description of each method will be the
pait of integral equations (1.33) and (1.34).

2.1. The Bloch High Temperature Approximation

This, the first order approximation to<¢ (1) and 4;‘(ﬁ ) at
high temperaturesgywas first derived by Bloch' The argument is
closely connected with that given in Chapter 1 for the existence
of a relaxation time at high temperatures. Since Y may be
assumed small, we expand all gquantities on the R.H.S. of (1.33) and
(1.34) in rising powers of Z , including the unknown functions ;
Cb (’] +2) and SP*("] +Z ). Retaining only those terms involving
the smallest power of Z at each stage, (1.33) and (1.34) reduce to

. the simple algebraic equation

g b( e ) (2.1)
A A °. o 2.1
¢ 1) = () Fe oty G
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It is now a comparatively trivial matter to evaluate the
integrals in (1.35)end (1.36) for a degenerate electron gas,
expandiang the integrand where necessary in rising powers of the
degeneracy parameter ¥ . The electrical conductivity is found to
be proportional to % (1.0 resistivity proportional to T ), in
agreement with experiment. Because a time of relaxation exists, the
Wiedemann - Franz law, relating the thermal and electrical

conductivities, is wvalid.

2.2. The Bloch Interpolation Formula for the Electrical Conductivity

In 1930 Blochladvanced a method for ceslculating the leading .
term in the electrical conductivity of a perfectly pure metal at
low temperatures which, apparently fortuitously, reproduces
approximately the correct form of the high-temperature behaviour as
well. It therefore acts as an interpolation formula for the
conductivity throughout the entire temversture range.

We first assume that the impurity term § and all non-zero

powers of ¥ may be ignored, whereupon (1.33) may be written

o | 4t ) e f‘*’(“*z)“' 4 iz

".,3 l '}'I “ Q.Z' (2;2)
At low temperatures, we assume that the R.H.S. is small. An ?
approximate solution is then ¢! = const. Putting
$1) = o+ fl) v (1) + f
(2.3) |
where each term is assumed much smaller than the previous one, the ?

method of successive approximations yields:

4 L s
Py f[,é(‘?) fr2)] ‘“" 2tdz |y o f e+l _z'dz

M | ==l -y P | 1~
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(2.4)

e+l

&

f Loty - §(+2)] 7=

2 + | z2d2. —

+2

For any well - behaved function F (), it is easily shown that
0. (a.5)

J1-c*|

j 96 oly f [ F(y= F(ar2)]

It therefore follows from (2 4) that
="d
0= ;L L [ 2 “ ‘f M e ] 2
o of s o'+ | “ ol
e b d f n+2) = Qe
0= ;E % : 4 @( P S ’
(2.6)
The first of these determines the leading term o : .
1y L f agd f Tl zd2
=4 -y &+ | 1-¢%]
,,Lf olz =" J o
4 ee®] L@ (s
3
dz =°
T T Ay
— (2.7)
Hence
- L .4
o # Llf {é / 55‘(3) ) (208)
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where

= , Zﬂdz e
‘(j"‘(%'\ j (-2} 1) (2.9)

o

The second and following eguatious are subsidiary coanditions
imposed on the higher order terms f (9 ), ¥ (Y ) etc., which are
presumed to be solved from egs.(2.4).

At low temperatures i’g’ (4) & "J; () = 124.43 (see Wilsor:g
p.336) so that (b (Cf‘ﬂ') is proportional to %4 . With (1.24) and B
(1.35), this implies that the conductivity T is proportional to gb,
confirmed by the observed proportionality of the resistivity to "TS-.
At high temperatures, on the other hand, the leading term in ﬂs‘ (‘3)
expanded in rising powers of (a is ¥ ‘gl' go that ()> 2 1, in agreement
with (2.1). Thus, though conceived as an approximation valid at low
temperatures only, (2.8) duplicates the previously derived varistion
with high temperatures and therefore serves as an interpolation
formula yielding correct order-of-magnitude results at all
temperatures.

To complete the argument we must justify retrospectively the
assumption o »> 3> ¥ ... | Inspection of (2.4) reveals that at
sufficiently low temperatures (%"9°°), ﬁ (1) must be proportional
to %L, compared with the variation of <« with %4 . Further,

¥ (ﬁ ) =0o( B /'%l') etc., so that the series (2.3) is one in
descending powers of gz .

The major weakness of this method is the lack of any obvious
way to find the second and higher order terms 62(1 ), 5’(7 Y vews
even though the temperature dependence of these functions may be
roughly estimated. This is amajor limitation, since it means the
second~order transport coefficients (thermal conductivity etc.)

cannot be investigated.
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2.3 Elucidation of the Second Order Terms

The first attempt to find the second order terms in ¢>(q ) at
high temperatures was made by Brillouinéz Unfortunately the method
he evolwed is erroneous as well as vastly complicated, but it is
instructiwe to see why.

Brillouin expanded all quantities in the integrand of (1.33) in
rising powers of 2z, and simultaneously all functions of h in rising

powers of » . Included in the latter group was

b(1) = H0) +4 ¢ « ko 4’"(") AT (2.10)

Bquating powers of b] on the two sides of the equation, expressions
{

for ¢ (0), ¢>(O).... are found, each in the form of a series in

riging powers of % In praotice Brillouin evaluated only the

terms up to amd including (P (O), such was the complexity of the

mathematics, and with these he calculated the transport coefficients,

The flaw in the argument lies in the expansion of <P(7) in
2
rising powers of 7, as Wilson has poimted out. This expansiorm

makes it necessary to apply the well-known asymptotic formula

5 o 9. 4 1]
[ AW S« o) T I W
T 2Y b 3bo
(2.11)
in the evaluation of the integral K, in (1.35). But the terms on
the RJE.8. of (2.11) initially decrease only when successgive
derivatives ﬁ’" (0), g""'(o) etc. decrease rapidly, i.e. whem bﬂ(q)
is a slowly varying function of h . This requirement is satisfied
for the first order approximation to <#(ﬂ) expanded in rising
powers of 4 . [ From (2.1) this quantity is (]A+Kq) ] But the
second and higher order coefficients, considered as unexpanded

functions of 7 y do not satisfy the condition, and so the

L3S J
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coefficients of 4 (72| ) in the final expression for I, become
rapidly diverging asymptotic series when recourse ig made to the
formula (2.11). This is illustrated by Brillouin's result for the

electrical conductivity: neglecting terms of order’ Xz ’
EAor TP )
o= Jo [l v g (- ) + O(‘&“)J foyis)

where @, isthe first order approximation. In the second-order ( @1)

term, I/q is the contrlbutlon to the coefficient from <¢ (0 ),

~ W/72 that from (P (O), and so on. The series which begins ;

( 3 - 77/72 +e0.) is rapidly divergent and Brillouin's termination é

of this series at the second term is arbitrary and invalid, :
Turning now to more legitimate methods, Wilsoﬂzhas shown how to

find the second order terms in ¢ (49 ) and ¢f(ﬂ ) for the two cases

(a) pure metals at high temperatures, and (b) impure metals at low
temperatures.

The procedure appropriate at high temperatures starts from the ;
observation that, according to (2.1), the first approximation toc?(ﬁ ) %
when §= 0 is E

3/s.
¢;(7) it (J ¥ 8'13 (2.13)

We now put

Py = Puly+ afla) + o+ Puln) -

(2.14)
where <bn is obtained by substituting the first n terms of the series
for ¢ (1) in (1.33), making the previously described approximations
for the term involving d% but no approximation for the preceding

terms, This gives

¢, ()= Doy OV
— 2 9 T 1 e ') Qﬁ"l-l
uh f {P% C! +x‘1> ¢h~l (.1) - ¢n-'("}+2)[f)‘d (‘ +X°i V£K2)~Z _ﬁ}fz
9

'Ld_z
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By a similar argument, the higher order approximations ¢:(7),
ds (1)..... may be found for the function ¢ ().

Since ¢,(7) is of extremely simple form, ¢h(7) is reasonably
straightforward to ewaluate and can, if desired, be expanded in
rising powers of 4 . The higher order terms ?!,f¢9,... are, in
principle, calculable from (2.15), but the labour required increases
rapidly and Wilson contented himself with the evaluation of P, .
This is quite sufficient, so long as only the second order terms in

the transport coefficients are required, but termination of the

process at this early stage rules out any possibility of 1nvest1gat1ng

the convergence of the series (2 14) or of the resulting series for
¢ in rising powers of Y .

As Wilson pointed out in his paper, it is more straightforward,
oddly enough, to calculate the contribution to the integrals K,
and K: in (1.35) and (1.36) from the higher order terms $,, and
<p: (n 2 2) than it is to calculate the ¢ 's themselves, if the
main interest lies in the transport coefficients. This is because,
in the resulting double integrals over v and z, the integration over

w can be transformed by the identity
)

T F(9) dq ~ v . . 9{’
*o[ (i) () b =] ,L Loby=¢bor- )] db’ ) (2.16)
where
1 /
oy = [ Fli)ay, (2.17)

Application of this, followed by the expansion where necessary

of functions of y in rising powers of )y , enables the integration
over ¥4 to be carried out resulting in expressions for K, and Kf
in terms of the family of integrals gh(g) of (2.9). It is then

straightforward to calculate the transport coefficients up to the

' 2 2.
se¢ond order terms. — those of order ¥y and § .
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For an impure metal ( § # 0) at low temperatures, the domingnt

term on the R.H.S. of (1.33) and (1.34) is the one involving f »

Physically this means that, in this range of temperature, scattering

by impurities predominates over scattering by phonons. The first

approximation to 4’ under these circumstances is therefore

bin- [ 295 e 1. (5.18)

Once again an expansion of <P(‘1) is made of the same form as (2.14),

where Q% is now determined by

0

i

£ g (1) b (1)
g e+ > dz
f {MO*”W’“’M”‘# (‘”z)[f‘a (l+m+‘—xz‘,~-z]} ' dz
=9

Wiz, | ey

(2.19)

The expansion for ¢>(ﬂ ) is therefore in descending powers of the
impurity parameter f As before, it is not too difficult to
calculate (bz(7 ) (and correspondingly ?z(ﬂ ) ) and hence, by a
similar process to the one described above, find the second order
terms for the transport coefficients. The process has been taken
one stage further by Dubgdwho calculated <#3(j ) in order to test
the validity of Matthiessen's rule, but the labour involved in

further continuation would obviously be out of proportion to the

results achieved. There is therefore the same difficulty as before,.

namely that the convergence of the series for ¢ cannot beinvesti ~-
gateds in addition, the method cannot be applied at all to thecase

of a pure metal.

2.4. The Numerical Method of Rhodes

7
In 1950 Rhodes pointed out that a much better high-temperature
approximation than the one obtained by Blocﬂ7could be found by

¥
%
4

]

i

g
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taking ¢ (1 +z)a P (9) in (1.33), ignoring the small term & ¥=
but keeping the rest of the integrand unaltered. Putting f = 0,

the first approximation to ¢>(7 ) for a pure metal is then

3/~
b (1) = Lyt (1+yy) |
! I ol (2.20)

4T 1=

Expagding the integrand in the denominator in rising powers of 'z,
integration of the leading term only yields directly the first '
approximation to ¢ Ffound by Bloch. Significantly, however, (2.,20)
also exhibits the same variation with 3 (vizoA/ 4) as the Bloch '
low temperature solution (2.8), and might therefore be expected to %
be valid over a much greater range of temperature than (2.1). }

Rhodes devised the following method of successive approximations
for the calculation of the (almost) exact function qn(“}), starting

from ¢3. The integral equation (1,33) is first rewritten in the form

11,
v 1 2 3
P U+($’>¢u+|0))f :i:l o = %‘qq(lﬂ’ﬂ
Sy e+l {537

4
1 -
T _£ ¢v(‘7+2)[ P‘{pléluﬁ +~L;xz‘)_.;>_"~] e+l Zldz ,

2z =
S5 (1 g
(2.21) . -
where the subscripts V and V 4+ 1 identify the particular approx-— . 4

imation to ¢ (4 ) under consideration.  Starting with v = 1, the
procedure is to insert ¢0 (q ) into the R.H.S. of (2.21) and, for
fixed walues of ¥ and P and for a limited number of values of g »
calculate numerically the next approximation.<b0+1 (Y ). This ;
process is repeated until ¢gyg agrees with ¢U to within 1% for all 3
values of 7 up to ﬂ = By
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Rhodes found that in practice qh (ﬁ ) was a sufficiently good
approximation for g;; | » confirming the original expectation that

(j)' would be valid over a wide range of values of Y . For ¢Y> |,

higher approximations are required, the number of such approximations

increasing approximately limearly with 4 up to 9 =5 . -Havihg

elucidated the numerical form of ¢)(ﬁ ), Rhodes was able to

integrate numerically the K] integral of (1.35) to find the electrical

conductivity, whose temperature dependence could then be compared
with experiment over almost the whole temperature range.

In principle this method may be extended to the calculation of
¢¢-(ﬂ and consequent evaluation of the second order transport
coefficients. Compared with the previously outlined techniques, it
has the considerable merit of exhibiting explicitly the numerical
variation of <p ( and ¢*) with ﬂ » as an intermediate step in the
determination of the electrical conductivity etc. On the other hand
this is not as satisfactory as would be analytic knowledge of the
functions concerned, and the numerical variation of ¢> with
temperature (except in the region ‘j<:| ) can in any case be

obtained only after considerable labour.

2+.5. Application of a Variational Principle

Starting once again from (1.33), we define a linear operator

2 by

L(®) = §4 (1+59) d(v)

2%t | 1-e%)

4 eyl 2tz
+ J { g’ (1+59) Pln) - d?(‘?-+23[?‘a"0*“)*“2>"21]} ’
=4

{2,22)
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whereupon (1.33) reduces to

L(§) = byt (e

(2.23)
£
Kohler has shown that the solution ¢ (7 ) is such that the integral
o
i a °
| b6y L(®) a”‘q( A (2.24)

is a maximum, subject to the subsidiary condition

J by L(P) %’& dy =ty Lﬁb(‘ﬂﬁ'*”)%aéf’ % (2.25)

Similar relations hold for dﬁ (1), a slightly different operator ﬁ*
being defined in the obvious way from the R.H.S.of (1.34).

Armed with this information, it is now possible to assume a
trial form for the unknown functions ¢ (7 ) and <#%(7 ) and toapply
the variational principle above to determine the coefficients. Kohler’

2 : .
and,later, Sondheimer have each assumed a power series expansion

)= Z o4, (2.26)

pro

whereupon application of the variational principle leads to
AN
2. dpe by = ey, - (2.27)
V=0

where

it

o 0 ao
dpy i"}PL(”}) 54; 8 4 (2.28)

- PP 3,
dy= 19 i (+¥1) 4 ,5;160“1. (2.29)

2
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&3
(BEq. (2.27) had earlier been derived by Kroll but without proper

theoretical justification).

The solution of (2.27) for the coefficients ¢% clearly involves

a cuotient of infinite determinants whose elements are the (ﬂpv and

‘xp deiined orove. Tnese guantities may be evaluated for a
degenerate electron gas (for which asymptotic expansions in rising
powers of ¥y are permissible) although the final expression for dpa
is rather complicated.

\fter the eveluriion of the integrals (1.35) and (1.36) by the
usuvai metuvas, it ig an exercise in the manipulation of infinite
determinants to derive final expressions for the transport coef-
ficients of interest. Kohler evaluated explicitly only the terms of
lower order, and the first full development of the method was carried
through by Sondheimer, whose work has been regarded for the last two
Lecades 2s providing the most satisfactory general solution of the
Bloch integral equation so far obtained.

Nevertheless, a substantial measure of unease persists regarding
the validity of the methof. Since there is no initial guerantee that
the exact solution ¢.(7 ) can be expanded as a power series in 7 g
it is possible that the variational method is picking out only the
best-fit solution, selected from that class of functions which can
legitimately be expressed in this form. Again, it is unsatisfactory
that no discussion can be given of the convergence of the power series
in guestion, or of the convergence of the infinite determinants.
Breaking off the determinants at a finite number of rows and columns
(inevitable sooner or later if a numerical result is finally to be
obtained) is equivalent to the termination of the power series as a
polynomial, and no estimate can be given of the error involved in
ignoring the remainder. Hence, although the transport coefficients
derived are in generally good agreement with experimental values,

there could still be a substantial difference between the real
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functions <b (7 ) and ¢$( ﬁ) and the approximations to these
functions which are derived and employed in the way described here.
Doubts about the validity of the variational method are re-
inforced by the strong evidence for its partial failure when applied
to the problem of polar semiconductors. Here the integral equation
reduces to a difference equation, due to the phonons of the optical
mode having but a single frequency. The difference equation has
been solved by Howarth and Sondheimef;using essentially the same
variational argument as for metals. For the degenerate case, their
results for the electrical conductivity and thermoelectric power
disagree up to 15%'with the numerical calculations of Delveé“%vera
selécted range of temperature. At low temperatures they are also in
marked @isagreement with the corresponding expressions celculated by

45
Durney by an iterative method.

-
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Chapter 3

FORMAL EXPANSION OF THE SOLUTION AS A DOUBLE SERIES

3.1« Further Simplification of the Integral Fgquation ;

The ensuing analysis is simplified by the smallness of y -

typically, of order 10“3. To evaluate physical quantities of interest,
it 1s necessary only to retain terms up to second order in the é
expansion of ¢>(q ) and ¢f(ﬁ ) in rising powers of § . Indeed if %
only the electrical conductivity is reguired, an excellent approxi-— :
mation is obtained by taking the degeneracy limit ¥ ~-* 0, in which f
case both (1.33)and.(1.34) reduce to the same equation ;
9 2
7 4+ [{rodn- etoolei-21] 2t T2

[1-277

(3.1)
The solution of this eguation is an even function of i? » This

may be proved by returning to (1.33), expanding (1 + XY ) by the

binomial theorem in rising powers of ) expressing ib(”])as the
sum of an even and an odd function of ¥ , and equating the even and
odd functions on the two sides of the equation. The ecuation derived
from the equality of the odd functions reduces in the limit Y =0 to
a homogeneous integral egustion for the odd function ¢u¢g y Whose
only acceptable solution is ‘@om;(j ) = 0. This agrees with the

numerical calculation by Rhodeér who found that for a small but

non-gero value of ¥ the function ¢ (ﬂ ) is very nearly evenj; and

3
likewise with the results of Sondheimer's anslysis, in which ¥ =




~40—

nullifies the coefficients of odd powers of 1 in the trial expansion
of 49( 1 ).
For the time being we shall assume f = 0, i.e. no impurity

scattering. The equation to be solved then takes the elemental form

5o [ et S0D[pg-T} Sel _staz

Attention will now be directed towards finding a solution of this
equation, hopefully valid at both high and low temperatures. Consid-
eration will later be given to the applicability of similar methods

to the more general equations (3.1), (1.33) and (1.34).

3.2. Double Series Expansion for ¢ Suggested by the Method of

Successive Approximations

We recall that the first order approximation to <# (ﬂ ) adopted
by Hhodes, was ditained by taking ¢ (1+2) 2 ¢(4v)in(3.2) and
leaving the rest of the integrand unaltered. This approximation 4%

is therefore

-1

%
$, (v) = %.‘gq[f ) Z‘fdzj .
=3

Z ~
-err'fvf ’l\.,g,z

(3.3)

The expression on the R.H.S. may be converted to an infinite series
in rising even powers of Y by expanding the integrand in rising
powers of Z , carrying out the integration and then inverting the

resulting series. The result is

¢, (1) = |+ "31 [*‘ILR + %(i+é’j~l~ %Cnef')%-]

q 4 -2 -3 ~4 .
vy L ::%o + ey (1) = Z(1 e 4..%(“3)-%3(“8) ] *O((‘%).zl)
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Corrections to this first approximation may be made by solving (3.2)
by the method of successive approximations. When added to (3.4),
their effect is to change the numerical values of the coefficients
SE kS Yeitens sewses o2 [1e2l ) SHLeh EHEaE; i Hiss The LaRi
of the expression. We may assume therefore that the exect function
4’(7 ) may be expanded as a series in rising powers of gL, the
coefficients being polynomials of successively higher degree in the
variable (l+ ej)ﬂ %
At this Juncture it is obviously preferable to make an explicit :
change of variable from 4% to E

X = Clwa’)w' (3.5)

which ranges between 1 and O as Y runs from — © to < . As a
consequence, we must write

$(9) = Y9
(3.6)

and our assumption is that 4/ can be expanded in the form
P a5 2y :
: v 8 :
poo= Z 9 Z e x CRN
¥ =0 S=0

where the G; are pure numbers. We assume nothing about the con-— %
vergence or otherwise of this series; +this issue will be investi- 5
gated in due course, It is worth moting that in the limit ¥ = O
the integral }ﬂqgiven by (1.35) now looks like
nad 1 :
22M88, 0745 " [ yaae
q bWt o (3.8)

K =

*#
in the same limit, Ks is identical to this.

WOz 1 et v
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3,3. Recurrence Relation for the Coefficients Qs

1;
A recurrence relation which generates the numbers @, may be
found as follows. First, we transform (3.2) by the substitution
{3.5) to

U

4 dz_z" Xy - 4 -2 |
'*—fj‘g ) .j fx-&;ﬁiﬂ“we’?l {Pﬁ ¥ LPJ )4’[’“’@'(‘ "‘)] }°

(3.9)
Expanding ¥ (% ) in accordance with (3.7),

(2

-"' 3 2 2+
.8 (all ) R’w 2 O,3 ‘(. dz = ..-.. 2 { £9 _ 3 —-zL. z
‘ rx ° & st

f®

e | = - ar e (1-xd [t e (,..,é]
(3.10)
Now
= g, (=2
= ~Z
= = Z -—LP-,—M {3.21)
e -] p=c .

where Bp is the P # Bernoulli number, while expansion of the other
< Rl 3
factors is facilitated by the general formula due to Schlé’m:tlchq
2 2
(see also Jordanc) for the expansion of any function of & 1in rising

powers of Z 3

= o 2 4 ad
Z\ ) G . S
W& = 2 o of v (a«g )%_, (3.12)

-

v
where (4, is a Stirling number of the second kind, and Y4 = Q, . Hence

W M

b .ﬁ = i [ ) -
e ST = 3,5 F 060 it B (3.13)

The present theory calls for the product of (3.11) and (3.13) with

n taking the walues 1 and S+ 1 in turn. The general product is
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}

(=3 >[>¢+ :(.-u']”'l 0)2 (H)en 8. 2 el iyt :)’O 5
! :

‘¢-2_ g0 @‘l

4]

f‘ilN

o ¢ |
2’ (/, Z(J)Q’Ho I)IQ..X,) Z( )Cl) BQM W) f

{:0 den Qn ')l =

(3.14)
Qﬁ) being the binomial coefficient &!/[wm! (@-w)!T] . Now

L .Q m v _ )Q 2 Ci)
S <m>6'5 Bow Cm = €EN 5 Co | D0, (3:15)
m=v

This result does not appear to be generally known, and a proof of
it is given in Appendix 1. When V = O the summation is trivial

since; by convention,

. e [ m= 0

Com . ’ (3.16)
" 0 , wm . S :
Hence, provided we interpret (2/v) C% to mean (4)eBe when V = O, é
3y 52 = - - z 1) Q/I—H? U‘ 2 :
= xr (-] = = = C U—%S _ ;
(¢z'l)£ 5; e! ég (n~03! v ?

(3.17)

With this result we may return now to (3.10) which on substitution
becomes :
oy ] 2 2 / |
A .4 2v v 1y 2 ; oz z o/ - 0‘3 ~Z ﬂi—&’).
19 =29 2 &x efes?/,“ CC")[ {P” K

¥ =0 =0 =0

" ery

A 2
i fae 5 8 Salngded [ ()
~=0 S:0 =024 *
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) 7_& 2t
SO O x (l) V’_Q’C (—-x){ v+: )}
= R vZo éo z-o Ct') Z el ( ( qu
A @ 2=t et {

o { ‘ n-& oF zt- 4
oL L G0l 20 (S  do _foes e 0 }
- 198 4 g £ wlodfte (e - )

w=0 t=0 V=0
(3:18)
Hence, equating coefficients of powers of Y
o = | (3.19)

al’ld, fOZ!I‘ n=l,2,3’o-.o.,

2u-2t

%CL)’ 2 ub ‘ZUS p! ze- ¢’ Z(K)C’L\"‘{u_@ (\)u) ‘21’4":, zﬁi—'ﬁ)}

A ikt

n 2n-Lt '

_ -t g Z 3 1) 17/ zt_C { Vs et ol b
= @ Z .S 0 C )ZC et (Y’) 242 ( v A?él— Zt“i’lf)
{.-.- f=0 3]
et 2

2 I 2 Z ch a Z( Sl u-cu-C)){ ¢ WQ T) 4P = E("' )}
g 120 0-2u42t Vv 3 W S A

e, d (3.20) :

where *Zq‘b means that ¥ runs from the greater of @ and b +to 4
za, ~:

the lesser of ¢ and d . For £ =0,1,2,..2n, the coefficient of 3
)(,Q must be zero, from which follows :
iy o) Jlrve-v ] 5

25 =y PR 1~2ZZJ) U’zbc -( {KV* ) L |- ~ﬁ.}- 3

et @ v:0g 200k “ (2“‘” H" s
(3.21) %

;i

The R.H.S. of this equation may be simplified through the equality i
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ot gfnzb

;Eiéﬂ)OO!Zb ci&<0+s) QEL v! 2t sz(or)
)

v Y48
(3.22)

derived in Appendix 1. The recurrence relation (3.21) then reduces to

26,€ 240
) | J 25 0! 2t Y Q‘Y) 4e ! ztcf
2 Gy {(zm, 2ty ( )0 s CJ‘)' v e w- gyl Y e
t=l v=0,0-2n 12t

(3.23)
It does not appear possible to express the remaining V —summation in
any more concise form (see Appendix 1) and (3.23) is therefore the
gsimplest generator of the general coefficient Cfa starting from

(]

Q’O:l.
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Chapter 4

w
APPROXIMATE SOLUTIONS FOR THE COEFFICIENTS a‘:\ AND Qan

The recurrence relation (3.23) for Qz looks considerably simpler é
at the two énds of the range for ¢ , viz. £ =0 and € = 2n. It is

then possible to establish approximate solutions for the two coef-

ficients in question.

. o Approximate Solution for a:

Putting £ = O in (3.23), the recurrence relaticn reduces to

> B 4 w-t
noo SR M T
Cbc o cé-l @ﬂ.’ Zt‘l’lf 4] ) (4'1)
le.e,
= R u-t
0 s F =X 4. a ", (4.2)
v @D arey
Since this equation is true for all w =2 1,
o5 (4]
" Byt 4 Wt
0= S 2 a .
ég; e (@BY 2bry  ° 7 (4.3)

where X is any variable. Adding 1 to both sides,

o n-t

n
" th- Z( (v
EX) 3 é" @k). Lty ’

il

Bzé‘ /A QS
t=0 ¢=o Gy oy (4.4}

17}
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The summations over S and t may now be separated, yielding

S o | / 8(0 (4.5)

i

where
o
«S(x) = Z )Lt_ Bor 4
t= 2t) 2ev4
X X W? xﬂ
= L+sg 1270 * 75600 - 3628800 .+ coww & Lle6)

It is not possible to express the function S'(X-) in closed form,

although it is easily shown that it may be represented by the integral

‘i’)(../:'
S(’Q = -%{ f =% el z dz (447)

It follows from the Darboux theoreéwthat the late terms in the
expansion of 1 / S (x.) in rising powers of X are determined by the
position of the singularity of this function which is nearest the
origin, This means that, when & is large, oi is determined by the
zero of S (X ) lying nearest the origin. From the definition (4.6),
it is evident that this zero is located along the negative real axis,
and its value can be found with reasonable precision by truncating
the series and finding the smallest zero of the resulting polynomial.
Retaining all terms up to )d;; it is easily shown that the zero in
question is at X = -14.391169 (correct to the last figure quoted))
dS/dx at that point being 0,08911099. Hencé 'in the neighbourhdod

of this gzero,

S(x) & 0.08911099 ( x + 14.391169). (4.8)

ihraa AT W Fearlr
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Expanding the reciprocal of this expression in rising powers of X .

we see from (4.5) that, for large S ,

Q,i Ao 0 07797810 . (4.9)

(14.391169)°

It should be pointed out that (4.5) could hawe been derived
much more directly by putting X = O in (3.9). This leads to

(o) = & Q{: dz =% ]“" 5

| &-1f

so that, expanding the integrand onm the R.H.S5. and carrying out the

integration,
Z 43”(2:' = [: 2 9 &E‘ b (4.11)
o t= o % e
e ° (e 2ty

However it is still worthwhile to demonstrate for this simple case
the technique of deriving (4.5) from (4.1), for almost the same
method must be selected for the much more difficult task of finding

the approximate form of the coefficient OﬁM

4.2. Approximate Solution for Q%n

Putting . 2n in (3.23), the recurrence relation reduces to

0% S B[ (&, - )3 -

where € (n) = Ogh. It may be observed that, for large w1 , the

zt+2 (4.12)

first termin the sguare bracket is generally dominant because of the
2h)
2Lt

in slightly different ways.
Since (4.12) is true for all n > 1,

factors for this reasom the two terms will be manipulated

PO
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™M,

1

g(w x" Z Pln-¥{ [ 0o, . ge~+q)(2”)~ '?_%'EL ])

Y 2, &l

b
it

(4.13)
where X is any variable. Adding 1 to both sides,

3

ﬁ(f)_’f" . '.+Z‘:._,Zm f[""*)( 24k 2H4X ) 492 g "‘(‘_’)

wee  (amh! wet () =4 @vﬁ' Loy 26+ 2
wr e -+ oo h
Ry > .ﬂ&) 40 4\ 22 fﬂ-?)‘
e é‘ é @ss!@f\.’( 7 i) L'Pé @ é 2642

(4.14)

Separating the £ and t summations in the second term on the R.H.S.

and replacing the dummy suffix 5 by w,

- . N L
Z Ié’[m).\t o | ~ 4e o) Gn) 3 2+ 2 .

Wz CZV\).‘ °‘°

&
(?PJ’ ( Zkrl 2t+4)

(4.15)
We denote by S.(x ) the function defined by the denominator

of (4.15). Once again it follows from the Darboux T T
late terms in the expansion of the R.H.S. of (4.15) in rising powers
of X are determined by the position of the singularity which is
nearest the origin, i.e. by the smallest zero of the function S}(M-)e
On this occasion it is possible to find a closed expression for our

function, since the two summations involved are both essentially of

the type
5= er -Y -1
. ez [z 2 az=
t=0 @z-)!CZH-") )

(4.16)
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which is easily integrated by parts. Thus

Sp(x) = 2pt é,[@-p)ﬁs%z ~ (3-p) 2" cosh z + bz siwhz - b coshz 4 é-Psz
(4.+17)

Where‘22==X. It is now a straightforward procedure to determine the
smallest zero of-SP(x ) to any desired accuracy for a specified value
of P .

The value of the parameter p is determined mainly by the number
of free electrons per atom and is never very different from unity. ;
(see § 1.3). For monovalent metals, p is approximately 1.25 and this
value has been assigned to p (for the time being) whenever necessary.

From the definition of S} (x ) it is obvious that the zero of

- ) 3 A
s g Al s tatn & i

SLZ;(X-) lying nearest the origin is located along the positive real
axis. It is easily shown that its walue is x°=2.97710300694449....
and that ofS,-/dk at that point is -0.383123945939860. In the

neighbourhood of this zero, it follows that

S, () = 0:293123945939860 (x.—x) (4.18)

Hence, when n is large,

O A (4.19)

—

@n)! I 1405" 9945148999 %o

where

A = [-5’2 e il

« 20
n=xy @h)‘ t=| 2t+2 i (4 & )

assuming that this sum converges.
For reasonably small values of n, say up to n = 6, the
summation contributions in (4.20) may be calculated by hand,insert-

ing the exact values of { (n) found from (4.12) with P = 1.25. !
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Although the latter * increase rapidly with n Jhin accordance with S
our prediction (4.19)] sy the contributions to %he sum in (4.20)

decrease fairly rapidly, from 0.3721 for n = 1 to -0.0035 for n=6.
For larger values of n, it is good enough to include only the t=1

contribution in the t-summation, and approximate é’(n - 1)through

B3 aretsm c T ner e cpg T

(4.19), The equation which determines A is therefore

6 ti n ca
An j-—8F 8 2{ ﬁf:jf £ xo A sl
Wil @nS! E ate2 b0y 451483 wip 20(247D

(4.21)

the summation over n in the final term having the value
0.0399365023492673. Solving for A, we find A= -0.60126, which
yields -0.52715 for the value of the multiplying constant in (4.19).
Due to the avproximations made during the calculation, this walue
agrees with the exact one only to the first two decimal places, as
will be demonstrated in the next chapter.

It is convenient at this point to evaluate the second order

term in aghwhich will be required for the analysis of Chapter 8. %

Substituting

" Cgm)![: C of ']

L - + + o -

Qy, — ! i s Bt (4.22)
in (4.12), extending the t-summation to t=e0 and multiplying i
throughout by x"/(2n)t,

w 3

e . A, Z_*_.(é o )[u——‘-—+ d :‘[‘_;—

|+ 2 2u(2n) Py Guoy! Ve 2o u-2t @a- 28 (om-2t) A i

- _PX [_; + éf:—;. *--v] + O('J.Vf).
2un(1n-t)
(4.23)

* The exaoﬁ values of -{(n ) -(2 are displayed in Table 5.1 in the
next chapter.
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Equating the terms independent of l/n gives SP(X)=i)Whose gsolution
Tor p & 1.25 Qx°= 2.97710300694449) has just been found. Exactly
the same result is produced by equating the coefficients of 1/n on

2
the two sides of (4.23). From the coefficients of l/n2 however,

o0 ¢
¥ 2[4t - & \ .o
¢ Z (28! (zwz 24, ks

t=(

C
tH

5 = ey Slba) PR |
; (4.24) >
Taking p=1.25, and obtaining the derivative Sr%(xo) from (4.18), we ;
find ¢=1.631325858441925. If required, this process can be
continued (though with rapidly increasing labour) to give the
numerical values of the constants involved in the terms of third and

higher order.

Summarising, the solution for (i&,so far obtained is

Q) = ~ SIS (2u)! i I°631325'95244l‘325‘+o(—glj;).],
"‘ (2:67710300694 44 9) 21

(4.25)
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Chapter 5

NUMERICAL INVESTIGATION OF THE COEFFICIENTS a: AND OF THE ;
ASSOCIATED POLYNOMIALS

In Chapter 4 it was shown that the recurrence relation (3.23)
for Q; simplified at the ends of the range for f to permit an
approximate solution for al and.Q;"u Unfortunately (3.23) is much
too complicated as it stands for similar results to be achieved for

a} in general, and the next step is to seek an approximation to the
R.H.S. of the equation which hopefully might make it more amenable
to investigation and solution. This has been done here by direct
numerical evaluation of the coefficients a% and concomitant
inspection of which are the dominant contributions to’ the sum.

There are additional reasons why numerical analysis is

appropriate at this stage:

(i) It is desirable to check the form of the solutions already 3
found for al and a;h, and to improve the numerical ;
accuracy of the constant of provortionality in the expression
for Q:n-

(ii) Eq. (4.,9) predicts that al decreases steadily with n, while .
(4.25) forecasts a rapid increase for G;" . Presumably, in .
the variation of al with n, there is a value of ? at which f
there is a transition from dominance by a power to dominance é
by a factorial. It is therefore desirable to see, .at least ~

quslitatively, how Q varies with both n and £ .

(iii) When all the al are known, it is a simple matter to calculate®
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the values of the associated polynomials foﬁz Xg for
different values of x. The existence of the (2n)! factorin
the numerator of the theoretical expression for CUL,suggests
that the main series (3.7) in rising powers of g} may be
asymptotic, i.e. that successive polynomials msy incresse in
magnitude factorially, even after possible partial numerical
cancellation of terms. This is obviously not the case for
(at least) x=0 however; it is therefore necessary toexamine
how the values of the polynomials wvary with both x and n, and
whether the main series (3.7) is hypergeometric or asymptotic.
When this has been done, the worth of the series for the

direct calculation of the function 4f(x) may be estimated.

The numerical evaluation of 02 from (3.23) by hand is only
practicable up to about n= 3 or 4; beyond this, a digital computer
must be brought into service. Here, an I1.B.M. 1620 computer was
programmed to calculate from (3.23 ) all the required coefficients
and associated polynomials up to n=12. Aspects of the computing
problems encountered are discussed in Appendix 2. As in the previous
chapter, p has been taken to be 1.25 throughout.

The resulting array of coefficients is displayed in Table 5.1.
For computing purposes the indices £ and n are temporarily written
as L and N respectively, and the number following "D" in the table
is the power of 10 by which the listed value should be multiplied

to give the value of a"‘e .

“
5.1. Numerical Check on <f1 and aa

The theoretical result (4.9) for al derived in the previous
-4
chapter implies that ( — @& /a%) should tend to 14.391169 asn- <,
Table 5.2 lists values of this quantity for n between 5 andl2.
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TABLE 541

i% N S
THE @ COEFFICIENTS UP TO N=12

L

gL

N= 1

=0.955555555555555D~-01
0.066666666666666D0 00
~0.666666666666666D 00

N= 3

.~0.2618557711150300~03

0.,2488580246913%80 00
~0.540209876543210D0 01

0.2848425925925920 02
- ~0.5968657407407400 02
0.945333333333333D 02
=R ABLTTTITIXTTITTEY,. 02

N= 5

-0.126332890480001D-05
. 0.965674350120324D~01
-0.2197710035638530 02

0.0616595334104062D0 03

-0.001391053218650D 04

0.2825056396366100 05

~0.734037593399101D 05

0.111473632587448D 06
~0,986530510040048D 05
0.471897619047619D 05
~049437952380952370 04
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N= 2

0.3780864197530860~02
0.398148148148148D 00

~0.239814814814815D Ol
~ 0.400000000000000D 01 %
-0.200000000000000D 01

N= 4

0.,181835760151109D~04 -

0.1550002041282900 00 -
~0.110449616238814D 02 .
0.1408699691358020 03

~04691458248456789D 03 =

0.165046273148148D 04

- =0.205887893518518D 04 -

0.1293192592592590 04

.m043232981481481480 03 =

N= 6

0.601617501637262D-01
-0.433666774921737D 02

0.256541353432640D 04

~0.461615891613371D 05

 0.381545053262119D 06 °

~0.174005176187918D 07

C 0.479999502776549D 07
-0.836113373110030D 07

 0.926842640657332D0 07 .
~0.634802170511536D 07 *

 04245145623116402D 07
~0.408576038527336D 06

RO PIRA R DE, - .. e B

 0.877815112292487D-07 -
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N= 7

=0.0099611415041535-08

0.374809685380402D
~0.8535062215574650
0.1043118432925880
=0.3328741392525200
0.456760649508997887D
~043370704359436620
0.150486407084395D
=0.4340256151493450
0.8369362435772920

=04 1091072278488010D

0.950578543354474D
=0.0307217116396780
0.171827055883354D
~0.245467222690505D

N= 9

{13

02
05
06
07
08
09
09
09
10
09
09
09
08

-0.7945155262947380-10
0.145476026354700D-01

~0.3299719598895660D
0.1678669199933720D
-0.1.58864605128432D
0.549217074678967D

=0.939240630417977D

0.934626266484204D
~0.0958712678210200
0.2585470833735250
=04 7933340031679490
0.1761946846812260
-0.2864970173186690D
0.341305049592782D
-0.294614072770505D
0.1793888818739200
=0.730776092699128D
0.178778820125904D
-0.198643133473227D

03
06
08
09
10

1% .

12

=R

13

14 .

14

2

14

“l4.

15

14 .
12
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L=10
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N
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~0.167841221006272D 03 .

-0.232125646723021D 07 .
0.5110324859145750
~0.582534948066312D 09

~0.165954901052604D 12 .
0.118991242198339D

N= 8

0.4238426843972050-09
0.233507652121383D-01

0.4195557568269490 0%

08

0.395693360300432C 10
-0.173850450700695D 11
0.518991365276004D 11
-0.108260899805473D 12
0.159672761649740D 12

12

~0.560553150345169D 11
0.156226264596159D 11

-0.195282830745199D 10.

N=10

0.204650113978591D-11

- 0.906320373691876D=~02 .4
 =0.6486635165752510 03
0.669925689070226D 06

~0.107563637383397D 09

0.5758190664654420 10 -

-0.144885446412141D 12

0.205982791392290D 13 . =

~0.184673927548587D 14

0.111985341697707D 15.. -

~0.481054373093481D 15

0.150955784434933D 16.

~0+.3528835037576980 16
0.621145808658254D 16
~0.825523441348744D 16
0.823814971376252D 16
-0.6076898631220060D 16
0.321449292638163D 16
~0.115336196719565D 16
0.251430343101024D 15
~0.2514303431010240D 14
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N=11

.~0.142205330662719D~12
0.5646405392503970-02

-0.1275118328970833D
0.267018336057155D
-0.723748474306810D
0.594353266270133D

=0.2170941491838160D

0.433344966687060D

- =0.5346557326485290

0.4412732491027230
-0.256928974122513D
0.109465395598825D
=0.3499727750494370
0.853779227678126D
~0.100509757006411D
0.233420627965509D
~0.,.261956544095479D
0.224742497628228D

. =~0.14406782475704530

0.676390030087061D
~-0.216823188138930D
0.4262405289434960D

-0.387491389948633D

04
07
09
11
13
14

15,

16
17
13
18
18
19
19
19
19
19
18
18
i
16

i

N=12

0.988142981312182D0~
0.351772891600214D~

~0.250655901181916D
0.106361913078389D
=0.485191694907410D
0.607370907573478D

- =0.318999635668414D

0.882912420164143D

=0.147594714530204D

0.162706830396094D

=0.125537369831846D

0.706748667720161D
~04299054191249490D
0.971300938613223D
~0.245666734929883D
0.488265191455337D
~0.765815950035890D
0.947429648056929D
-0.919343581768975D
0.691390165360424D
~0.394729111261921D
0.1653143761393380
~0.478870500077063D
0.857177487617625D

~0.714314573014688D_

1% .
02
04
08
10
12

14 o

15
17

18
19
19
20
20
21
21
21
2
21
21
21
21
20
19

18-
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Evideuery e approach to the limitis

rapid, and application of azny one of

e the standard technigues for acceler-

ating the convergence of a sequence

! (e.g. the non-linear €,— transform, se
Shankgrl) confirms that the limit in
question is indeed 14.391169, correct
to the last decimal digit quoted.
Similarly, a list of (—14.391169)”a2
values shows that the multiplying
constant in (4.9) is correctly taken
to be 0.7797810,

L

1 S

5 14.3933840
6 | 14.3917424 |

7| 14.3913284

8 - 14.3912155

14.3911830

10 14.3911734

% 8 14.3911704

12 14.3911694

Table 5.2

The corresponding theoretical result (4.25)for O:M likewise
predicts the value 2.97710300694449 for the limit of the sequence
-1
on(2n-1) Qo / QA4 "

to this limit is extremely slow, and here the £, transform proves

Table 5.3 demonstrates that the approach

n

D e I R

O O 5 O

10
11

12

en(2n-1) af', /@,

é. G

| 3.0829 60387 89688
i 3.0491 50211 49083
3.0293 59203 11171
3.0167 59498 05276
3.0082 36185 32402
1.0021 98930 67945
2.€977 65151 06753
2.9944 12480 60954

Table 5.3
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comparatiwvely ineffective as anaccelerator of convergence. This is
because successive terms in the sequence vary approximately linearly

with l/n, and the e transform operating on any sequence of the form

Q. = QR + le\- + ©Q Ct”) (5'1)

n
yields

elay= ot o O (k) (5.2)

Probably the most efficient technique for determining the limit
of a sequence of this type is Salzer's modificatioﬁ$7of the well é
known Lagrange interpolation formula. This extrapolates to 1/n==O
the known sequence values fitted to polynomials in the variable l/ne
For the figures in Table 5.3, the 4-point formula based on n= 12
(i.e. utilising the sequence values from n=9 to n=12 ) predicts
the limit 2.97687, while the more accurate T—point formula *
(utilising the values from n=6ton=12) yields 2.97709. This
adequately confirms the theoretical value, and provides a guide as ;
to how accurately the sequence limit may be estimated from the :
numbers produced by such formulae, in later applications where the é
theoretical 1limit is not already known.

To verify the walue of the constant in the second order term

in the ekpression for aﬂw , we first note that (4.25) implies

9 W2 [’ e O 2 ?77!030053‘1449 = |631325 859441925 + O(’,L,;) 2
Ogie BBEEEN) (5.3)

* To obtain full accuracy Wlth the T-point formula, the sequence
values must be known to approximately (& + 8) significant figures,
where # is the number of significant figures required in the limit.
This is why many of the "raw" numerical values have been quoted to
up to 15 decimal digits,
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Successive values of the L.H.S. have been evaluated, whose limit
estim.ted "y the T-voini Szlzer formula agrees to five significant
figures with the theoretic-1 velue on the R.H.S.

The constant of rromoriiovality inm (£.25) is or = i #ferent
footirg from the ovwker corsre-ncy de-'t vith so far, becuuse approxi-
mations vere introduced in ius evaluation and the resulting erroris
difficult to estimate. The best way to find an accurate value for

this constant is to calculate successive values of
-1
oo T -
a‘; (2,-777|o,3006944£,‘}) { 4 - 631325858 L1992y ]
Cgh)f g b

(5.4)
and extrapolate to 1/n==O. Tavle 5.4 exhibits the sequence values

obtained by this proceaure, and the 4-point and T-point Salzer

Estimate of

n proportionality const.
5 ~0.52294 35766 24191
6 -0.52280 80231 04123
7 -0.52272 63650 44587
8 ~0.52267 33653 42369
9 ~0.52263 70124 49697
10 -0.52261 09931 58134
11 -0.52259 17286 58208

12 -0.52257 70663 74184

Ta,ble éeé
formulae applied to these predict limits of =-0.522499260 and

—0.522499791 respectively. We may safely conclude therefore that

a more accurate version of (4.25)is
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5.2. Numerical Inspection of the Coefficients <13

When calculating the numerical values of 02 by hand for small
n , it was noted that by far the greatest contribution to (13 in the
t—-summation in (3.23) is that for which t=1. For instance, the
value of- ai,is -59.686, the contribution from t=1 being -49.285.
As n increases, the t=1.contribution becomes increasingly dominant,
so that CU} is determined to an ever-increasing extent by the cxg”
coefficients alone. This observation is the basis of an approxi-
mation to (11 [and correspondingly to 4/(x)] which is derived and
discussed in Chapter 7. '

Inspection of Table 5.1 reweals the general tendency for the
Cﬂ} coefficients to increase rapidly in magnitude with n, reaching %
values up to « 102' forn=12. For £ = 0 and £ = 1 the coefficients
decrease, somewhat slowly in the latter case; at £ = 2 they slowly
increase with n, and thereafter the increase becomes more rapid. j
There is a fairly sharp, asymmetrical peak in QZ for fixed n and
varying 2 s the maximum occurring at about f:: 3/2 n.

It is interesting to note that (—l)2 Q,he /Q,“», is roughly equal 3
to the binomial coefficient (the) , at least for £ 2 n, as is
illustrated in Table 5.5 for n= 7. This serives as the basis for
an approximate, empirical solution for OQ which will be discussed
further in!Chapter T. It will be shown there that such an approxi-
mation is unfortunately inadequate for further application.

Essentially this is because there is a high degree of cancellation
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on'dl fay (NZ!)

0,000
0.000
0.000
0.000
0.014
0.186
1,373
6,131
17.682
34.096 21
44,449 35
38.725 35
21621 2l
T7.000 1
1.000 1

S

O 0~ ot W = O

I =R ST S
N w oo = O

Table 5.5

L !
of contributions if the polynomials E{OQ,I (see next section), ¢
so that any error in the estimete of the individual coefficients

causes a large error in the estimate of the sum.

5.3 Numerical Evaluation of the Agsociated Polynomials

2

Table 5.6 lists walues of the polynomial S oy for n = 7
and values of x in the range O to O.5. [Since ¢ (Y )= <P(‘7), (3.5)
and (3.6) imply that 4'(x)= ¢ (1-x). There is no need therefore to

cover also the range 0.5 to 1, other than as a check for possible

Ny AP ynd B T g B IR

computational errors.j




Iy

% 2% G:z >(,e
0.00 ~6.0996 x10 |
0.05 0.01480
0.10 -0.29133
0.15 0.20826
0.20 1.17812
0.25 0.56707
0.30 -1.56052
0.35 ~-2.,69727
0.40 =15 10573
0.45 1.94922
0.50 C 3447973

Table 5.6

Comparing with Table 5.1, it will be observed that the values of
the polynomial are generally séveral orders of magnitude smaller
than the corresponding coefficients, indicating almost complete
cancellation of contributions. This feature is found for all other
large values of n.

More detailed evaluation of the polynomial for intermediate
values of x reveals an oscillatory pattern of behaviour, the reason
for the variation in sign of the numbers in Table 5.6. The amplitude
of the oscillation is largest for x:=0.5 and decreases with increas= -
ing . rapidity as x decreases, becoming extremely small near x=0. At
the same time the period of the oscillation increases, so that the
majority of the zeros of the polynomial are nearer x =0 than x=0.5.
For n=7, 5 bt has 7 zeros in the range 0 < x < 0.5. (The
other 7 obviously lie in the range 0.5 < x < 1). In general the n'th
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polynomial has n zeros in this range if n is odd, and (n-1) zeros if
n is even, an additional zero lying Jjust to the left of the origin.
Considering now the variation with n, the general tendency is
for the magnitude of the n'th polynomial to increase with n after
an initial decrease, in accordance with the conjectured factorial
behaviour. Table 5.7 below illustrates this for x=0.5. In Chapter
8 it will be shown that the n'th polynomial contains a multiplying
factor QZn)!,confirming the generally asymptotic nature of the series
, (3.7). The point x=0 (and correspondingly x::l) is exceptional in
this respect; at this point, the polynomial reduces to the single

term Q, ‘whose form is given by (4.9).

. 2 oy ()

€=0

1.0000
1,1111 %10
-2.1682 x10
2.3903 x10
-4.3956 x10
L« 3043 %10
-5.7208 x10
3.4797
-2.8022 x10
2.8854 x10
-3.,6971 x10
5.7684 x10
-1.0766 x10

O O 3 o U1 B o O

o
N - O

Table 5.7

We may now note the rather:'limited utility of the series (3.7)

for numerical estimation of theé function ¢ , if it were simply to
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be broken off at the least term and the remainder discarded. For

x = 0.5, the coefficients of ¢ are the numbers in Table 5.7. Now

the error in the estimate of & function, retaining that part of its
asymptotic expansion for which successive terms dectease, is of the
order of the last term included in the summation. If our criterion :
of utility is that the estimate shall be within l% of the exact value %
of the function, it will be seen from the above table that this is ‘
achieved only in the high temperature region ¢4 < 1. This con-

clusion is unchanged for other values &f x in the range 0 < x <1.
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Chapter 6

TRANSFORMATION TO A MORE SUITABLE INDEPENDENT VARTABLE

There are a number of reasons why we must now revise our
original choice of x as the independent wariable.

Firstly, the coefficients (i& are not all independent. As
pointed out im § 5.3, the fact that ¢7(q ) is an even function of 1
implies that Y (x )= xk(l—x), so that

A = 2 2:‘:'3 ,4 ¥
2 Q’.Q X = Z _a’ﬂ' (i"xj ° (6.1)
£ =0 b=¢

Expanding the R.H.S. in rising powers of x and equating coefficients

of equal powers of x on the two sides,

@), = il :%2 o @) . (6.2)

For fixed n, there are n non-trivial equations of this type so that
only (n+l) of the (Zn*l) coefficients (ﬂl are independent. We there-
fore have to enquire whether a better choice of ‘wvariable could not
be made for which the corresponding polynomial would have only (n+1)
independent coefficients.

Secondly, the coefficients <ﬁ; are typically many orders of
magnitude greater than the polynomials to which they contribute.
For such mighty contributions to sum to such a (comparatively) puny
answer smacks of inefficiency, not to mention the computing diffi-
culties when there is such wholesale cancellation of termsy; and one

would hope that the coefficients associated with any new variable




would be considerably smaller in magnitude.
| Thirdly the origin x=0 is an atypical point in the range O<x<1l.
Whereas the general tendency is for the n'th polynomial to increase
with n through the eventual dominance of the (2n)! factor, only at
x=0 (and, of course, at x=1) does it consistently decrease. This
refleota the peculiarity of the coefficient ag and suggests that the
determination of the form of 02 im Chapter 4 is unfortunately not
likely toibe of great significance in the eventual calculation of the
function qru Hopefully, the two extremities of any new set of coef-
ficients should not only be eonducive to analysis but also of hénefit
to‘the calculation of 4/ .

All these expected benefita may be realised, although accom-—
panied by one drawback, if we choose as a new independent variable

the quantity
Xﬂ Iw‘z)(' = R i s , . (603)

Clearly the physically interesting range for X is -1 £ X € 1. Writing
v = F(0, | (6.4)

it is evident that ¥ is an even function of X, so that only even
powers of X can appear in the warious polynomials which arise.
Correspondingly, it will be sufficient to investigate only the region
0 € X €1,and the integral in (3.8) which we must finally evaluaﬁe

is, in terms of the new wariable,

i {
4 JI(X)O‘X - J"_{(x)o{x ; (6.5)

In comparison with (3.7), our expectation is that the equiv-—

alent expansiom of ¥ will be




Iw=-29 Z A

(6.6)

and we must now substitute this into the integral equation to find

-
the recurrence relation for the coefficients Ax .

¢
6.1l Recurrence Relation for the Coefficients:A;

b 5
The derivation of the recurrence relation for A is similar to
but somewhat more complicated than that for O; o We begin by expres-— é

sing the integral equation (3.9) in terms of the new function_ff s %
K

Y dz s "Y n ?.-‘21, LHXW "(! X) j }.
" 4 £ C0=x) +<lo]1-<7) {P” (0-ei=% [awse "+ (1-x)

(6.7)
Expanding F (X) in accordance with (6.6), %
- e i % % ;
P I o) [ N | G SIS
¥=0 S= ~y = e ""l )LL_}_X)‘Q +(1=X) [L"’XSQ +U_X)]Z»!
(6.8)

Recalling that (3.12) provides a recipe for the expansion of any

z
function of & in rising powers of gz,

3

25

[N

[{ngX);':“f”x%m. = 4 v," OZ ¢! oledYivx) Zc ) X
+X)e +(1~X N =

lol
2
o

(6.9)
Combining +this with (3.11)and taking advantage of (3.15),
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On substitution, (6.8) becomes
4 f_
0 i e ~ 2 ) Vg Y ¢+ :
n £ 4T AL Sl £y | daz
¥zo L f:0 V=0 -y [z :
o o " O
'{P‘a --(P‘a Z)zé') (!} 2.3'“)"“ X" JZ b

Ww=o
s o X < £
542 A X Z g 0 4 ex) £
*30 § =0 02,0 - V=0
¢4 44 -
% Py . PY _ | J\/28+V~n
{ 2 ( %) ZW)EC )(J( )

[(L+x) & () ~)<):{ l i

[C Ix)e *L_‘x)jzm

5 Qe gmz o 0)

¥ E1) (0)(23%0 -0 X“ a
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a0 =0 t>0 @.L’)!
23,0
4 ./ _4e - ¢ O\ (2840 -] 0
X{zmz <2,H2 m)éat’) ("‘)( v X }
R [ n-t
20 n-~t 2,.?
by S 2 S AR Skt e,
nze =0 [ £-7 V=0

(6.11)

A, =) (6.12)

t=0 8=0 e
; 4? » (t‘; - v 25'“) W
= { 242 (un, u-+¢( ZC‘) (m)( ) :
(6.413)
Now
2t 2t v
0 v 0 i g [V 2 v
2 ! G2Y (4x) %:C = go‘(é)zzuoé)x %tcu—
o =0 =
2 3
5 & 5 pleaVae 2
= X c
é:’ s 25 WL #
(6.14)

It is shown in Appendix 1 that the final summation over | is zero

if 4 is odd. This also follows from the easily demonstrated fact

A

oy bt
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that the R.H.S. of (6.8) is an even function of X, so that only even

powers of X can be invblvedJ Hence

Z‘ An—t‘)(&Si 0((1 é.f)() 9.6 C =

0=
wt et s oo 2F ( v ¢
- SAXS X E e ()
S= Y=0 V =2y
" ¢, 2 -
_ z xze Z Ae : g 0'(Cl) ab (;l) '
B=0 Y:O/Q'Vh-t" =2y
(6.15) }
Similarly,. :
28,V
Z o! 1Y (ax) 2 ¢ WZOQI) 4 g i
2t ) y _
= < ol(;l) %7 Zég(ﬁ)‘x éz;(_[) )(?Sif wj,X "
2 B -l 0\ / 2847~ :
- sl e, 2 X A A )
7o Fesas) mes,-d ;
ot ot ) 001 U el
. S X S i) ¥ 7 il AN )
g=~29~2t VYU wee
(6.16)

The double summation over | and m must be zero if 9 is odd, since

the R.H.S. of (6.8)13 even in X and so only even powers of X can
be involved. Hence
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n-t 25V
i )
AT X Z VIEES xS 2, ZC” Gl PR e
S=o
-t t 2t 23,0,V -2
ST S K S e, 3 E e i
£ 30 v==8,~t u*l?v’ W =0,~2y
o .0 2 2€-2v,|) V-2v
: . V-
= XzeZ) A.‘ = Z '7(615 ?J."C Z C') Cy‘+2Y Xze e M)
=0 -r:»—t)e-vnt‘ V=l2yf u‘-o,—zv

(6.17)
Combining (6.13), (6.15) and (6.17), and equating to zero the
coefficient of in the range 0 £ ¢ < n,

u—
D= §C2b3{zezz v’() ()
e y=o, e-n+t— V =2y

28-2r, ¥, V-2v

_ E';% th,,) Z A!L—v Z\)lclj" Zf‘czt ZC'3m(m.+zv)(£)(ze—2;+vwmj }v.

Y~tye-ugt V=i m=0,~2v
(6.18)
It follows that the recurrence relation ig
20-27, v, V~2y
= -~
Z ( jf IG) 2*c ZC ) (mz,) g)(&@ 2;“] )
~@bd] A2 '“""') v 2v] 2
==t, 2-n+t nERer
n t—,Q et
L _4¢p 5 (-4 ?.t- cY
- Z’C'u—)! 2642, Z Agov vZ—; viCs ) 2t ZY
5 2 o =Y
-r—o)Q a+t (6.19)

It does not appear possible to express the remaining summations

over ¥ in more concise form (see Appendix 1) and (6.19) is therefore
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n
believed to be the simplest generator . of the coefficients AQ start-

ing from K: = 1.

v
6.2. Discussion of the New Coefficients Ag

The recurrence relation (6.19) is more complicated than (3.23)
for a&, there being one additional summation to carry out. The two

sets of coefficients are related through the requirement
. w Z.Q ¥ w“n .2
£ AeX = 2 @yn (6.20)
£-=0 20

Since x=%(1-X), we may expand the R.H.S.in.rising powers of X which

yields, on equating coefficients of the even powers of X,

iy = 2 a,, é)w-(:;) - (6.21)

m=20

In particular,

AI:" Q:;M @)z.n ) (6.22)

Using the prewiously derived walues for (ﬁl s these equations serve

as a numerical check on the values of‘,{L calculated from (6.19).
Putting £ = n in (6.19), the recurrence equation for /V;

reduces to a form very similar to (4.12) for Q:M e This is just

as expected of course, through (6.22). We deduce from (5.5)and'

(6.22) that

AN & 522499 (20! n[' 4 1-631325‘;;9441925‘4(0(#)],v:_;:-
(i-a62 41202 227 79¢) %n

(6.23)
Unfortunately there is noequally drastic simplification in (6.19)
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on putting £ = O3 the coefficients AZ do not depend on the lower
order coefficients A: alone. Consequently it is no easier to find
an approximate solution for EZ than it is to solve for ﬁz in general.
It will be shown by numerical analysis in Chapter 8, however, thatin
spite of the complexity of the recurrence relation, the approximate
form of A: for large n is the same as (6.23)but with different
numerical values of the constants.

An IBM 360 computer has been programmed to calculate the coef-
ficients A} from the recurrence relation (6.19) together with the
associated polynomials -8 Al Xae from n=1 to 20, starting from
KZ = 1. Again, p has been taken to be 1.25 . As with the previous
coefficients, the K} increase quite rapidly with n, but not nearly so
fast as the a% « When n=10 for example, the maximum of the range
AZ ( £ = 0,2,..n) ise ~ 10° ,compared with Aflds for Cik. It fol-
lows that the extent of numerical cancellation of contributions on
the L.H.S. of (6.20) is nowhere near so great as occurs in the R.H.S.

Unlike the other coefficients, there are no values of £ for
which ﬁz decreases with increasing n. However there is again a fairly
sharp asymmetrical peak in AZ for fixed n but varying £ , the maxi-
mum occurring this time at about £ = 2n. This is illustrated by
Table 6.1 which lists the coefficients Ay , £ = 0,1...7.

4 I

o
0 3.4797 x 10
i ~1.6802 x 10"
2 1.5555 x 10°
3 -5.9704 x 10°
4 1.1699 x 10*
5 1.2388 x 10"
6 6.7666 x 10°
7 1.4982 x 10°

Table 6.1

mrdp Do < Wimmcs se 4 gace we Naewt 0 i e
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Summarising, selection of the new independent variable X has
resulted in fewer, independent coefficients in our trial expansion
of the function ¥ . These new coefficients are, on the whole,
smaller in magnitude than the old ones, and give rise to lesser
computational problems associated with the almost complete cancel—
lation of very large terms. There is every reason to believe that
X = 0 - the new origin - is a typical point in the physical range
of interest (0£X €1). (In Chapter 8 it will be shown that X = O
is indeed a specially important point). All this is achieved at

the expense of a rather more complicated recurrence relation (6.19)

than we had previouslyj; for purely numerical work, this is immaterial...

i
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Chapter T

' A
AN APPROXIMATE SOLUTION Y (x) IN CLOSED FORM, VALID AT
MODERATE AND HIGH TEMPERATURES.

In £5.2 we noted that the dominent contribution to Q& in the
summation over t on the R.H.S. of (3.23)is that for which t = 1; the
extent of this dominance increases with n. Exactly the same is“true
for the Az coefficients generated by (6.19), as might have been
predicted from (6.21). C'For convenience, most of this discussion
is in terms of the original variable x with corresponding coef-’
ficients Q& s equivalent conclusions are just as easily reached
when based on the corresponding quantities X and A; ].

This observation suggests that yet another set of coeffigients,
analogous to Q% and denoted by && , -may conveniently be defined,
the definition being the same as (3.23) except that only the first

term in the t-summation is retained. Thus
)

A n { o
s 3 am e {ea(l 2 ¥3alit)-rr sy,

+:0, Q2M+1 Ver O 3

(7.1)
A
with 01 =1, If ¢ is not equal to 0,1,2n or 2n-l, this may be

written as
A'd o AT A A ny . Ah~t Ao /\.1.4]
Gy = "ip &y tFQ, -Za + V(“')EQ a,” - 2(e-yo, +(8-2) 9, ,

(7+2)

where

(7.3)
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When £ does assume one of these special values, the only terms in
the expression for 6% which are retained are those on the R.H.S.
of (7.2) for whigh the lower suffix of a, lies in the allowed range
0 £ suffix £ 2n-2., To avoid having to write each of these special
cases separately, it is convenient to allow ¢ in az to assume all :

integer valueg from - % to + % and define

Lo { I, m =0

Wy = 0, m¥0 . (7.4)
Successive applications of (7.2) for n = 1,2..+ then yield the
correo’c values for G,Q when 0 £ £ € 2n and zero when 4 lies outside
this range.

From the manner of their definition, we expect that the coef— ¢
ficients &Q will be approximations, in some sense, to the original
coefficients CLZ . This 1s horne out by computer evaluation of a“‘
by (7.2) with p = 1,25¢ a¢ matches O.,e very clogely in itévariation
with n and ‘s although it is generally smaller in magnitude, the
difference 1ncreasing with n. 5¢2 we remarked that ae was
roughly equal to -1) <2h~g ) 0’29\ y at least for £ 3 n, A
corresponding relation is observed numerically for a‘e 80, combining

the two, we get

Aa -

Qg ™ a |

Aa “n 2 (7'5)
CLM Qg

To illustrate how closely this approximate equation is satisfied, §
" Table 7,1 lists values of the L.H.S. for n = 7 and ¢ = 0,1.,..14.,
As n inoreases, the corresponding values steadily approach 1 for
all values of £ except £ = 0 and 4 =
Corresponding to the new coefficients 3,2 s we define, in

analogy with (347), a new function

b FA%) g A ¢
¢(x) ¥ nz-o 25 ..Ezco i g (7.6)
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A .
7 7

e ;. G :
Az 7

au, Qe

g

0.80252
1.04233
1.03414
1.02136
1.01344
1.00857
1.00547
1.00344

1.00210
1.00122
1.00064
1.00028
1,00008
1.00000
1.00000

W NN AW N O

i
B W N EH O

Table 7.1

and we shall investigate the circumstances under which this is an
approximation to the original function ¢ . Numerically, the poly-

A
nomials 2 a5 x* show the same wariation with x and n as the

polynomials éf'a%,x? discussed in § 5.3, but are generally
slightly smaller in magnitude. In view of (7.5), it is tempting to
assume
2n
ai x "
=0 7 ~ |
zy. s, «
Q% x£ a;ﬂ
g=0




T

Table 7,2 shows calculated values of the L.H.S. for n = 7, demon-
strating the essential correctness of this surmise. (This is some —
what surprising, in view of the large-scale cancellation occurring

in each summation.) As n increases, the corresponding values tend

= L.H.S. of (7.7)
for n = 7
0 0.8025
0.1 11,0090
0.2 0,.,9985
0-3 0'9645
0.4 0.9976
0.5 0.9766
Table 7.2

to approach 1, but do not do so uniformly., This is due to the oscil-
latory variation of the polynomials with x3 atypical values of the
L.H.S. of (7.7) occur when by chance the value of x we select lies
close to a zero of either polynomial,

There are at least two methods by which a more or less exact
solution for ¢' might conceivably be obtained. The first is to
find a reasonably accurate solutiom of (7.2) and then to Garry out
the double summation in (7.6). The second involves demonstrating
that ~$ (x) is the solution of an inhomogeneous differential equation
of second order. The first method proves far inferior to the second,
but it will nevertheless be briefly discussed to emphasize the
difficulties and dangers when there is widespread cancellation of

terms as there is in (7.6).

7.1 First Method: Approximate Solution for@l and Reasons for Rejection.

A
Any approximation to G&_ is likely to be most accurate at one
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or other of the ends of the range for ¢ , viz. £ = 0 and £ =

and to be progressively more in error as £ moves away from these

2n,
values. These end-points for £ are the only two values in the

neighbourhood of which (7.2) simplifies sufficiently for a solution

to be readily calculable, e.g. @

. o

ge0: &= ), (1.5
A p-

f=2n a;h = [-2% +y(}u+t)(2m—l}] a:.uz

= 4p (v f)(n-§-

2 (7.9)
where
- b N
§(g+4)= %+ L p ;P-,; ° k)
The solutions are therefore
aL e EaYy (7.11)
5 le P) ®+§>,Cu~§~%)! (7.18)

R
The difficulty with £ = O as an end-point on which to base
an approximation for 3& is that a% (like Q: ) is completely
atypical in its variation with n (e.g. decreasing instead of inc-—
reasing as n increases through large values.) As the value of the

Zae’x

average magnitude of the same polynomial for small but non-zero

walues of x.

polynomial at x = 0, it bears né comparison with the

A
Accurate knowledge of @j near £ = O only matters
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therefore when calculating +the polynomials in the unimportant range
of vanishingly small x; outside this range the higher coefficients
are quickly dominant, and they are very unlikely to be predicted
accurately by any approximation which is most accurate at £ = O

The qther end point £ = 2n is hardly much better. Given an
approximation for azh'which is most accurate for £ 4 2n, only in
the'non-physical'region x >> 1 do the contributions of the accu= -
rately known coefficients dominate in the evaluation of the n'th
polynomial, so only there is the walue of the latter likely to be
predicted with small error. In the 'physical' region 0 £ x £ 1,
the contiributionassociated with every coefficient ét% is important,
since together they almost completely cancel each other out. Any
inaccuracy in the estimate of any of these coefficients is likely to
produce a large error in the estimate of the n'th polynomial.

As an illustration of the trouble which this introduces in
practice, we recall the observation made earlier in this chapter

~that numerically,

A 14 n An
ay &« (0 (szﬁ) G A (7.13)

With a;h given by (7.12), it is easy to check algebraically that
this 1is a.satisfactory approximate solution to (722) when n is large
) and { ~ 2n. There are ways of improving the accuracy of this
solution, e.g. by taking the R.H.S. of (7.13) as the first term of
a series in which the (3 + 1)th term is proportional tq (gnfleus ),
the coefficients being found by substitution in (7.2). However -
such efforts are to no avail in the prediction of accurate values

of the polynomials. For if we take the first approximation (7.13)
and nalvely extend its validity to the whole range O < £ < 2n

(on the dubious grounds that it predicts at least the numerically

largest and seemingly most important coefficients with fair aocuracy),

S A A RIS AR DR Ay, | A

oo Y o a bR ko o

3w

b
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we get
29 A A 2 ? ¢
n
a; & oo an S C"”(zm-e) .
L'#D .e:.b i
1]

(7.14)

Not only doés this completely fail to reproduce the observed oscil-
lations in the n'th polynomial as a function of x, but the magnitude
of the two sides of (7.14) are nowhere remotely equal; e.g. when
x = 0.5and n =7, the L.H.Sc. and R.H.S. are equal to 1.134 and 499.9
respectively..

The difficulties described are not appreciably reduced by
changing to the independent variable X. In place of (7.2) we have
a recurrence relation for the new coefficients XQ derived from (6.19)'i

by retaining only the t = 1 terms

) P Anl At A A A
A =~ £ 20 n 904 n-l n-l
(3 A Aa-, 3 Ae % 'E"l (z) Ag..( -2 7")/\@ -c-GQQZJA l.

2+
(7.15)
. aw . . -l

Putting f = 0, we see that A, is expressed in terms of A, and.
Awi A

Ar so, unlike Q% y cannot be derived as an exact special case.

A

Putting 4 = n, we get almost the same equation as for Qj, and

consequently encounter just the same difficulties.

Ideally we require an approximate solution for K: for small £,
since this would yield accurate walues of the polynomials in the
representative region X & 0O, The obstacles to finding an analytic
solution do not of course prevent an attempt to find a solution by
numerical methods. If resorted to, however, one might just as well

examine straightaway the form of A; and pay no further attention
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to A, .+ This is done in Chapter 8.

: A
T.2 Second Methods Construction of the Differential Bquation for ¥

.

A
We first prove 41(x) to be the solution of an inhomogeneous

differential equation of second order. Combining (7.2) and (7.6),

A i ol e A .
b= 10 2 &0 T4 87 18- 14 L o fedyaendy vendg])

L2

12T S AR 38 efediaei i)
hz0 g:0
euta
= |+ 4t Te-50) P +py Z 1 2 »(@”)[Q% ~2(0493 €28, ],
h=0
(7.18) .~
Now
i 2 % - £ 4
2+ 2n
5 (erdeyx = (L% v o )S ap -
ioe €-o (7.17)
AL i on
" A
Z Q,_eﬁz(e“)((l-z £ = at( %03‘ t 2 ,;ar(x) (’Z Q; x v
=@ {=0

whereupon (7.16) quickly reduces to

;
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\P&)[H 9 ("' “‘—"‘-'X.#—' )] = ! 3= p(a?'[)(_z([—)c) 3._ ZuO—x,y( zx)é#']

(7.18)

The solution of this equatiom will shortly be found in the two '
forms (i) as an integral representation (§ 7.4) and (ii) as a conver-— é
gent infinite series (f 7.5)« Before doing this, however, it is y
interesting to demonstrate (§ 7,3) that (7.18) is the first order 4
approximation to an infinite order differential equation obtained

from the original integral equetion {301

7.3 The Infinite Order Differential Equation for ¥ (x) é

We first rewrite the original integral equation (3.9) as

4 4 9
dz =z & 4 " dz z° (Y —z) 1 \Hx)}
He )f (v &)l 17 . Cau-e,(!—x.ﬂ [1~¢ ] { [ Wt @ a-»s]

(7.19) :
or, since ¥ (x) = ¥ (1 - x), é
i d 4 d L( - ‘l) s ‘

( % 2 % 4+ij z =z (Y2 £ [ I B —‘]

\}/x’lg 12l (e *"’)( - * 1zl -0y (&~ ) +(xiz+l~x> Ho),

’ (7.20)

As a special case of the result established in (3.17),

i z
-2 ; =
w2 +bM.<fﬂ)

Ty

{7.21)
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The integral on the L.H.S5. of (7.20) involves

2
O{Zz‘”f: 9 43@,—!9 /(244) 4 £ 9.0%)
o (7.22)
{ ocd .

i
S

)

The L.H.S. of (7.20) therefore equals

o

1L 4 1\ vl 2 (7.23)
W) % 2 (,3‘ ze+4 biou) o2t 0

Turning to the R.H.S5. of (7.20), our main problem is to expand the
quantity im the square brackets in rising powers of z. Once again

we apply the recipe (3.12), yielding

\}/( +|-) (1) “Z Lz) Z (dg)‘}’(mwl«u l = .

(7.24)

I+ is now helpful to choose a temporary new wariable

[—>
W & ———— (7.25)

xtaH-:L

% 29
whereupon Schlomilech's formula enables us to write

4 v« & S B0
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o e Ll (0

i chf l")L)‘Hd A
(7.27)
Hence, putting 4 =

¥ (i)~ ¥ -
2"0 =) Z Z [40 x.)] ‘)’(l%) v Cl)x (1~ x)( )

=i n !
0 w W
<& & é“”‘*&z & olen(Vsl) o

= é ¥ E"["*ﬂ S_Zo C, ey (r 1)

(7.28)
Combining (7.21) and (7.28), the integral on the R.H.S. of
(7.20) is pProportional to

=t

i(:_'). ZQCD ol 4 C . ZL__ 4’ ("3["0”"3] Z c @”5103 (r+.$’~!) i
€. =0 wz{ V\ YE
.gm %w.“gl C:)g%, (J) gl m e é&(ﬁ[ﬂ-@—x)]v ércrsﬁ”)!é'yé*gg\')f

P A ]

Z (_' Z ‘l’(x,\[x(hx)] Z(m EC,) v{mn ‘:- LZC (745}'(;)(~l+s ’)JL‘
sy ™

(7.29)
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1}
Pv\f

Wiy J=o S=o V=0 S=0 VN SY4S (7.30)

and, from (Al.34) of Appendix 1,

m-V v s D+ ¥HS=) Veres
Z (V:)(m~n) Cinmia Ch = m( +0~| )Cm {7.31)
nsr+s
Hence (7.29) is equal to
Z’o-c mZ ».ﬁ@,)[x(l—x)] ZG')@"'), 02‘24;”(_0 CN-S’—-i) (+1+3~) CJ+H:
mzi m = ”
® W Y m-t ¢ 04v
S e s Y Exa—xs] S el S e (L) )
s M! ~ = 0-0 §=0
= S 2 ¥ (U[%‘"‘g Z 3 Cl) @+Y),<T+) o
= ! 2 + ! Lan Y
{1 32)
The integration over z involves
‘j. dL_z_m_iz_U)wzl z’\ w9 s __E_ e ) m even
12) B mi2 meh) T
-9
, modd ,  (7.33)

= 0

Hence, dividing throughout by & taq' , (7.20) finally reduces to
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p 2t 2t
Vo 5 8 4 nolze e’ 0 -
e=0 (20! 24 o T
+ E it‘( 4. @ )Z \Pcﬂ(x)[x(hx)] Z— ex) @+ “CM@)
= Gl v R iy .y o

(7.34)

which is the required differential equation.

The zero order approximation W = 1 results from retention of
only the t =0 term in the t-~summation, while (7,18) is yielded if
terms up to t = 1 are retained, The gummation index t in (7.34)
therefore playe the same role as the same index in (3.,23),

Similar equations result if we recast the theory in terms of
the variables X and ¥ ., At any stage in this chapter it isstraight~

forward to replace ¢ by ¥ , 4/ by EE and x by %(1-%) to find
equivalent relations,

A

Te4 Solution for ¥ as an Integral Representation

As a preliminary, we change to the new variable

= 4x(\->‘-) ) (7.35)

so that the relevant range of t is 0 £ t €1, Putting

N

Joy= Alt), (7.36)

the differential equation (7.18) takes the more convenient form

20ty A + (4-s¢) bA - ("‘.“X*)A “p ra, (7.37)
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where
< 2 1 o2 - Z .
A P,at(l+18’<9) y, B= e ¥ 3y (7.38)

and a dot indicates differentiation with respect to t. The boundary
conditions to be imposed are found by first solving (7.2) for aﬁ,and
aﬂ . Already in (7.11) we have the solution for a: . For i%}the

recurrence relation is

a:‘ = (~& +2p) é";" v = av;_' 5 (7.39)
whose solution is
An ~.L n n
Q7= g [ CGlerapy- (). (7.40)
Hence
= 2 I
o~ “ Ay R
Pld= 5> 4 &, = R (7.41)
w=0
Ve 5481 - —32
oy = i =% T = ¢
Y= 2 (et 01+ (203 g ] (1.42)
In terms of the new function A(t),
. gy ( :
= ~ e i - : 7&"43)
A s Blw A )

The first step in finding an integral representation for A(t)
is to solve the homogeneous equation derived from (7.37) by omitting

the f3 term. The exponents of the singularity at t = O are
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ce = ¥ [=12 (1+2:) 7 (7.44)

P

whereas the corresponding exponents of the singularity at t+ = 1 are
O and 4. Hence, to convert the original homogeneous equation into

standard hypergeometric form, we write

Aly= ¢ ult) (7.45)

which yields the following differential equation for u 3

(-t w + [(2e,+2)- ($h+2¢)t]d + (¥/z - Ec,~ci)u=0,

(7.46)
One solution of the homogeneous equation is therefore
C
A= t Fle,b;et) (7.47)
where
2 - Ao & e k3 (7.48)
i - 4 2 (142a) 7 (3+8y) , )
¢ |+ (14 28
= + 4 2ot
4 (7.49)

and F is the hypergeometric function .
To find the solution of the inhomogeneous equation we next
subgtitute

A({') - Ao (l’) U(t) (7.50)




B

in (7.37), yielding

(-t)t Fo + {2(1-%)1-15 * e —[cwbu)l*]l:}t} = ~f

2 .

(7.51)
One integration can now be effected by the method of integrating

factors, resulting in

& lthF T "ii..f Fla,bjes x).x ol
ITTL (7.52)

It may be shown that the boundary condition for A (0) is incorp-
orated by setting the lower limit of integration equal to zero.
Integrating again, and substituting the resulting expression for U{(+t)

back into (7.50), the required solution is

g
[e)-~£t Flabsc: r)f dy J Flab; %) xX oy )
o Flaybsesq) 4 Ny =

(7.53)

where the boundary condition for A(0) is likewise incorporated by

(o]

setting to zero the other lower limit of integration.

From (7.48) and (7.49), c=a+b+%. In conseguence,

o =¢ I=C
a })'C' o= ¢ i 2 - o
Flabiege)= 27 Ml o™ B (15 (7:54)
where Pi is the associated Legendre function of the first kinéu.

Hence (7.53) may alternatively be written as

Al = - £ 7/ | { p";’(m;dx
TR %J'“w [FJ (ﬂ"gx] Jx (-9 ’

(7.55)




where

iy Y-
= (142a) V= 2(9+4¢fy) - L .
P ’ ( * (7.56)

Although these expressions for A(t) are exact, they are extremely
inconvenient for numerical evaluation. We proceed therefore to find

a solution ford in series form, more suited to numerical computation.

A
7.5 Solution for ¥ in Series Form

Starting again from (7.37), we substitute

o

A= S ot (7.57)

)
¥=0

and equate to zero coefficients of successive powers of t on the L.H.S.

This produces

a, = P/« (7.58)

and, for v 2 1,

27%-Y-!-'X

Q.=
= 05 i Do i

Y- 5 *F 2rfrr) ,  (7.59)

The series (7.57) is absolutely convergent for O & t <1, the whole o
of the range of interest. The boundary conditions (7.43) are
obviously satisfied by this solution and, it should ‘be noted, would
not generally remain so if there were added on to this solution any
linear combination of the two solutions of the corresponding homo-
geneous equatiom. Although the differential equatiorn (7.37) has
singularities at t = O and t = 1, the solution we have obtained is
analytic everywhere in the range 0 € t+ €1,

The convergence of the series (7.57) may be improved by the
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following procedure. The recurrence relation (7.59) is first solved

to give

£ ceeen! @-d ) (r-dy)!
“ CdM (=d)N! (reeyllr-ep] (7.60)

i

Q,

where c, are given in (7.44) and

de = 4 %= +(9+8x)" (7.61)

Since

(ds + d_>~ (C+~LC;) s 34 (7.62)

)

and, when T is large,

rray! & ¥ "Q) (7.63)
C~dNG@-do)! | (o340 (7.64)
(v=e.5) [rece) ! v !

The R.H.5. is the first term in an asymptotic expansion of the
L.H.8., of the form

@-d-){@‘d’rﬂ . - 3/:—)' { por Fi % Fa =3 ___}
(v-c ) (v -l Yl Gridlred) Cr+l)(‘f*3)(¥r33 2

(7.65)
where expressions for coefficients Fi will shortly be derived.

Breaking off the series at the (s+1)th term, we define

@, « B e G -3h)) {} + By R : Fs |
1+ (143) ;

LR AR T @t G

(7.66)

£ AT ¥ U ST . R
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— 3+3/
The difference between G. and. Ck is therefore of order ¥

when Y 1is large. Now
b " s
% ¥ v
Z a*t + Z@W'q’y)b
Y=0 Y >0

< B Geee cgf T, oo
o (_d-)!(d»A' {C L)t [' Al 63/ )(r) [C PB 5;{—]

R p— (e 2 (9] ] Ferayt,
D L5y 2T « 2

(7.67)
and the only infinite series now appearing on the R.H.S. is rapidly
convergent.

It remains to calculate the coefficients F, . Taking the
natural logarithm of both sides of (7.65) and noting %hat

JQMCT*Q")I =(@+e- Yy —v + T On2w + 82.[“) .l = 33(0') _L

2 2.3
(7.68)
where Bn(a—) is the n'th Bernoulli polynomial, and that
Bu(i-a) = (=1)" Bu(a) , (7.69)
é%‘ [-' + _Ei_ ¥ __jii___ + Fs 4 _,_:} "
] @'H Wv+2) Gt )r+2)(r+3) B
P < G G
¥y F g F O Ree (7.70)
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where

|
Cu = ey [ Boer 43 # By (403~ By (€3 = By (€ =B (30) + By (0]

| {7.72)
Putting x = 1/r, this is the same as
G‘bc+Gaxz+—-.- = ﬁ»\[l T it _.@3_‘_1__ + _,_]
b +x (LHL)[1+2x5
(7.72)
= €~\[: I+ Hyx 4+ W, o & -- ;] 5
where (see Jordarfo > PL175)
n z C__.')y CY [
Hu = 0 & w e (7.73)
Y= {

Expanding the R.H.S. of (7.72) in rising powers of x, equating

coefficients and solving for H, ,
Hy= &,
—1 p
H,-: Gy * 3 ¢, ;

sz Gg-—} Gl62.+ ‘J‘; G

5 2 2
Hq ) Gl" * G‘GJ £ 2 Gz % '7L. G,y G-z, ~+ 3.171 Gll' )
; G-Fv‘ Gpn.' PZ. Pl
n = G &
3 - 2 t
Hu 2% l ’ )
Bsba- B, R“'zw- i lﬁ! ﬂf

(7.74)
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where the sum is over all combinations of integers P satisfying

2. sh = n, {1:15)

- = G, 5
(7.76)
ar gt gl g
;? w Gy = O Gy "
FV\ = f) ' Pn " P ) | - C‘v,) Zéljvctd F;
0P P ! Fyeps = g« Nl Yz 2
a2 o ns 2.
( Esf=nd

It is interesting to note in passing that the expansion (7.65) may

be generalised as followss

(wr—oq).’ - waug)f Lo (e oty 4 Byt 5@)} r h
G~ i == - el ! s 2 gl ]
LT}

where the F's are given by (7.76) and the G's by

G'V\ ko “;z;i“ro‘ [Bwﬂ b") Woamm A By (d.z)"&wl (M 95052 BMI (pa) ~ By ("‘34"'- = pe) + B”ﬂ (0)] .

(7.78)
Alternatively, the same method may be employed to generalise the

s
result of van Engen's lemmas~to

CT““Q!-W,CT~aw\! de‘”.* 8, [ . ..
G pdl (= el v ¢ ]
(7.79)

where the c's are generated by equations of the same form as (7.76),
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the corresponding G's being given by
i
o = o [ B (4 B (K= B (83 =By (8]

. (7.80)
7.6 The Relatiom Between Y and

It will now be shown that the function A(+) discussed above is,
at best, an approximation to 4’(x) at high but not at low tempera~ -
tures. In the former limit, Q, = ﬁ,ﬂx is approximately unity, ot
and ﬁ being individually very large. This ensures [see (7.59)]
that &, << a,., , at least for small values of r , so that A(t) is
equal to 1 in zero'th approximation, the property possessed by the
exact function 4’(x). At very low temperatures, on the other hand,
Y>> 1 so that o « constant. This means that Qy /Oy-. is essen—
tially independent of Y » so the %2pendence of A(t) on temperature is
the same as for Q, , which is € %4 . This contrasts with the known
proportionality of VY(x) to %”ax very low temperatures [ see (2.8)];
there is thus no possibility of A(t) = $(x) being an adequate approx-—
imation to Y (x) at this end of the temperature range.

The relation between VY and i: at moderate -or high temperatures
is established5by first noting the approximation established early

in this chapter:

29 e v n P 0

Sy % & %u SNy (7.81)
A

=0 0';“ 40

When p = 1.25, (7.3) and (7.10) yield 7/24 and 0.814860822 for the

values of 1Y and f respectively. With these, (5.5)and (7.12) tog—
1'\

ether imply




_.95...

% L 0522401 g3 (14 o®)]
3,‘;,1 (297710300694 44,9)" [+ P %
24 ;
- ¢ 9 [ | 4 (’)Ct)] ,
(7.82)
where
c = 1.157977, 9 = 1.07314812265697 . (7.83)

Recognising explicitly that 4'(x, ﬁ) is a function of 4 as well as

of x, the relation between J and ? may now be expresseds

R 2m 29
" Na £
\’/Cx,v()) S $(x51<3) + z— %%[éd"@xﬂ cﬁf eés(} Qg ] )

(7.84)

where hopefully the bulk of the R.H.S. is now concentrated in the
C ¢ term, and where it is sufficient to terminate’ the sePies in
riging powers of Y at the least term.

The success of this procedure depends on the extent to which
the coefficients in the square bracket in: (7.84) are numerically
smaller (for a given value of x) than the original coefficients

Z a% ¥ . Table 7.3 1liste these coefficients for the Tepre—
sentative value x = 0.5, and it will be observed that they are
considerably smaller than the values of the original coefficients
displayed in Table 5.7+ Numerical computation of c($ Cx,ig) for
% up to 1.5 and x = 0.5 yields walues generally greater thanabout 2.
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2w

v . A
. 2 Gts- e 2 4 (-5
0 21.5798 x 10"
1 ~3.7065 x 10
2 L i
3 -1.8094 x 10677
4 10078 & 10
5 ~2.6486 x 10°
6 9.3521 & 10
T -4.8385 x 10
8 3.4086 x 10
9 ~3.1263 x 10
10 EI5T & A0

Table 7.3

The smallest term in the series in powers of Y j11(7.84)is never
greater, therefore, than ~1% of the total value of the R.HeS., the
major conmtribution to which is indeed concentrated in the c $ term.
Similar conclusions apply for other values of x. For ¢ 2 1.5
however, the smallest term in the series in (7.84) soon becomes

greater than 1% of the value of the R.H.S. and the procedure fails.
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Chapter 8

NUMERICAL ANALYSIS OF THE COEFFICIENTS E} AND OF THE
ASSOCIATED POLYNOMIALS

As pointed out in the previous chapter, accurate knowledge of
the form of the coefficients A; near £ = O should enable us to
predict with fair accuracy the values of the associated polynomials

2 Az xge in the representative region X & 0. We now seek
thigolinfOrmgtiah by. numerical analysis of those coefficients Az
for which £ is small.

It turns out that knowledge of the ,behaviour of the polynomials
in the 'non-physical' region X » 1 is of considerable value in guiding
the corresponding analysis in the 'physical' region 0 £ X € 1. For
this reason we will investigate also the form of the coefficients
ﬁ; near ¢ = n, those whose contributions increasingly dominate the
polynomiafls as X~p oo ,

Once the approximate form of the polynomials in the regions X&x0
and X~>2 has been established, it will be shown how the exercise of
intuition supplemented and checked by numerical computation success-—

- fully elucidates the approximate form of the polynomials for all walues
of X. The remaining part of this chapter is devoted to improving the
degree of approximation of the expressions obtained and determining

the proportionality factors.

8.1 The Form of Az Near £ = 0.

The wvalues of Kz at £ = O merit proportionately more attention
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than those for small but non-zero values of / s, since the former
determine directly the polynomials 3. Az,%fe at X = 0. For this
value of X, it might be guessed (rightly, as later evidence confirms)
that the form of the polynomial is especially simple. We begin there-—
fore withan analysis of the coefficients A: .

Recalling the general remarks made in §6.2 about the variation
of A% with n, and the proportionality between K: and (Zn)l times
a constant raised to the power n, our first hypothesis is that the
approximate variation of Ag with n might be

A = (an)! P (8.1)

©

where f is a constant. If this is sos

Q, = A, {
A, ZQ(Znﬁ) (8.2)

should tend to the value f as n—=>a , Table 8.1 ligts values of
Qh for 6 € n £ 20 and shows the surmise to be correct with £ approx-
imately -0.0340.

These figures do not exclude the possibility of the factorial
factor in (8.1) being, more accurately, (2n + o )! with« aconstant,
since the limiting value for @, would then still be f/ . However

there would also follow
n (Qu/p =1) = «+0(%) (8.3)

but, as will shortly be demonstrated, one finds in practice that
n2 (Qmﬂﬂ - 1) tends to a constant as n-» o , indicating the value « =0.
The 1limit of the sequencé in Table 8.1 is best determined by

Salzer's extrapolation method47, the principle of which was explained
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n Q,

6 -0.03322 89807 88385 4
7 ~-0.03342 06111 93108 8
8 -0.03355 41979 14926 6
9 -0.03364 93625 89810 6
10 ~0,03371 91370 56176 3
3 M -0.03377 16695 72261 8
12 -0.03381 21463 70579 2
13 -0.03384 39645 04405 9
14 ~0,03386 94138 96056 6
15 -0.03389 00794 99445 5
16 -0.03390 70847 09560 3
17 -0.03392 12428 59166 8
18 -0.03393 31540 71726 9
19 -0.03394 32687 38117 5
20 -0.03395 19300 75444 7

Table 8.1

in §5.1. The 4~point formula based on n = 20 predicts a limit of
~0.03403288 whereas the more accurate 7T-point formula yields
-0.03403388 when n = 15 and -0.03403349 when n = 20. This justifies
the conclusion p = -0.0340335, correct to the last digit included.
Evidence will be adduced later in this chapter for the belief that
a much more precise estimate of 2 is -0.0340334826863540.

To find a better approximation to At sy We now assume the more

general version of (8.1) to be

A: = K(Zh).’/ﬂ" [l + f—; + O("&ﬁ)j, (8.4)
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This implies
20 (1=Qu/p) = ¢+ O(L) (8.5)

from which c¢ is determined by extrapolating to l/n = 0 the sequence
of walues of the L.H.S. Having found ¢, K can be similarly evaluated

by extrapolating successive values of
"
Ao
@nd! 2" (1 + ¢/24)

To determine ¢ and K with maximum accuracy, the assumed precise value
of f has been inserted during these calculations.

The results of this procedure are shown in Table 8.2 which lists 4
the extrapolated values resulting from application of the various
Salzer formulae. From these, we may reasonably assume the true limits
for ¢ and K to be 1.9691 and -0.6652672 respectively, correct to the

i

| Extrapolation Boscs T
formula 5 X
= 20, 4 point 1.96932 ~0.6652 6976
= 15, T point . 1.96837 -0.6652 6649
= 20, T point 1.96908 -0.6652 6717

Table 8.2

last decimal digit quotéd.  Summarising, our estimates of the three

constants in (8.4) are

£ = —0.0340334826863540
Sy | (8.6)
K = -0.6652672 ,
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We next consider the form of the coefficients Az for small
but non-zero values of £ . At this stage little informationm exists
about how Ag might vary with ¢ , other than that provided by inspec-—
tion of the appropriate numerical values. There are a number of
possible expressions involving factorials and powers which will quali-
tatively reproduce: (for example) the observed initial increase of
Az with £ 3 which of these gives the best numerical fit can only be
discovered by trial and error. Fortunately we do not have to find
the form of AZ to the same degree of accuracy as is inherent in (8.4)
for A: s even supposing the same accuracy were attainable. Our main
interest lies in discovering analytic expressions for the polynomials,
and analysis of the coefficients ﬁ} is of value only insofar as it
helps to achieve this end. The result of this section of the analysis
will merely be stated, therefore, with only an outline of its numerical
support.

The trial expression for ﬁ; which fits the data most

accurately is

A"2 s K C2h+2e>! /,V' 0'2

; 2 swmadd .

where @ 1is a constant, approximately equal to —0.40528. When test-—
ing this expression against the actual values of K} it is convenient

to examine the variations with n and £ separately:

(a) Variation with n. Numerical analysis, similar to that already

described for ¢ = 0, confirms that

w

Ae /
Ay (naze)(enr2e~1)

tends to the wvalue P as n-» o0 . Agsuming the factorial factor in

A

Forrm

X
3
3

L
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the numerator of (8.7) should more accurately be [2n + 20 -+a(-€)J!,
the demonstration that & (£ ) = 0 for ¢ = 1, 2, ... proceeds along 3
exactly the same lines as led to & (0) = O.

(b) Variation with € . When £ = 0, (8.7) reduces to (8.4) as it %

must, leaving aside thé higher order terms in the latter. Extra-

polation to 1/n = 0 of successive values of

Ay 20¢(2e-1d
Ay, (wne2e)(2nc20-0

yields the value ¢ for £ =1, 2, ... .

n
8.2 The Form of Ap Near ¢ =n

Again we seek a better approximation to ﬁz at the end point
\ of the range for £ , this time { = n, than for neighbouring values.
In (6.23) we already have an excellent approximation to Aa $ this
can still be improved a little however in respect of the accuracy of
the proportionality constant, now that values of ﬁ% are available

up to n = 20. Repetition of the argument in £5.1 leads to an

extension of Table 5.4 by eight more entries (from n =13 to n =20)
and, by extrapolatiom, a more precise estimate of -0,522499625 for -
the proportionality constant. The expression for ﬁ& may therefore

be written

9

A

i

K@wlp [T+ & v ok ] (8.8)

1

0.0839742526264095 ,
1.631325858441925 (8.9)
-0.522499625
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To find the approximate form of AZ for neighbouring values
of ¢ , we again resort to trial and error checked by numerical comp-
"
utation. The conclusion reached is that the variation of A, withn

and ¢ for {&n is best represented by

| , s SM@“)

Al = K‘<2h+55! P"Gf

s &1 (8.10)

where O is a constant approximately equal to =0.33333. This is

justified by the observation that

) n
Ah-S ! O-Vlvd AV\-,S s
| v
S~ 2h+ S
Ah—l-g @“ +S)(:2h+ ‘) Ah—Sf'l

tend respectively to the constants f, and g, as n— & for small

values of g.

8.3 Approximate Form of the Polynomials for X &« O and X—> ©°

It is conwenient at this juncture to denote by A,,(X) the n'th

polynomial derived from the coefficients A} s thus:

4] " 20
An(x)= Z Ae X | (8.11)

For very small values of X, An(X) is dominated by the contributions
n n
associated with A:, Ay, A, eee , which are fairly accurately expressed

by (8.7). Hence we have, to a good approximation,

- y o C?-”‘_"?-":.}!(gxaﬁe
Ac(X) = Kp QZO e}
(X2 0)
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- kel oS s, (o

where

@': +M:"[J‘:ETX] ¢ (8‘13)

On the other hand, when X becomes very large, A,(X) ie dominated by
n @ n
An ’ Ah-] ’ An-z

We then have

An(XS = Zf An- ”‘2‘

$=20
(X-> o)

eeee 5 Which are fairly accurately expressedby'(8;10);’?

w 2 sz ! @\/XZ)

20

(8.14)

\
=
o
=
>
-3
4/_\
1l><
SN————

It is easy to check numerically that (8.12) and (8.14) are good
approximations to A,(X) for X & 0 and X> % respectively, and that they
fail for intermediate values of X. Far more important than this,
however, is that (8.12) predicts exactly the right form for An(X) in
the region 0 € X £ 1. In Chapter 5 we described how AW(X) oscillates
with wariation of X in this region, the amplitude of the oscillation
decreasing as X increases from O, becoming wanishingly small near
X = 1, with the period of the oscillation simultaneously increasing.

All these features are inherent in (8.12) provided © is an increasing
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function of X with values O and.Tr/2 at X = O and 1 respectively.

The required value at X = 1 is not satisfied by (8.13), of course,
but we are entitled to hope that the actual form of A, (X) when
finally elucidated might be hardly more complicated than (8.12),where
G(X) meets the specification described above and is approximated by
(8.13) when X is small. Similarly it is a reasonable expectation
that a slightly modified wersion of (8.14) might be the correct form
for A, (X) for the region 1 < X < ¢ , the principal modification
consisting of replacing X/(l— G}/Xz )by a more general (and, as yet,
unknown) function of X, one which reduces to X (1-—<R/X’2 ) in the limit

of very large X. These hypotheses we now put to the test.

8.4 Approximate Form of the Polynomials for All Values of X

Following the discussion of the previous sectiom we assume A,‘(X)

to be given approximately by

Auley @ @)l P"(cos 0) cos(zmide , 06X €I, (g0

@ 2h
An(x) € @) [W(®] , 1 <Xx< =, (8.16)

where © (X) and h(X) are to be determined.
'The simplest way to find € (X) is to locate numerically the

zeros of A, (X). These occur at approximately

- -

(Zus1d O = X5, 3% , 5 : (8.17)

ol

prproximately, because (8.15) is inexact — higher order terms will

shift the zeros slightly from these positions.:f For given n, (8.17)

'™




Si0be ;

determines: the values © an;), © (Xn2.) ... corresponding to the

N7 L taRbe W

observed zeros X, , , Xns+es OF Av,(X). When we plot all the values
of O (X) versus X for all the diffement values of n, a continuous
~curve will résult only if the original hypothesis is. correct.

Fig.l displays the.plot of (2/7) O(X) versus ¥, incorporating
data corresponding to values of n.bétween 4 and 20. The curve is
quite smooth, and it is easily confirmed that 0 (X)« tan*‘( J ~a x) :
for X £ 0:4. As X—1, the gradient of the curve increases rapidly i
and it is not easy to find the. value of ©@(1) by extrapolation; how- ;
evér, the curve is perféctly oqnsistent with our expectation €)(1)£ﬂ72.;i

To find the function h(X) numerically we calculate values of i

An(X)
An-i (X) 20 (2n=1) £y

for fixed X and variable n and extrapolate to 1/n = 0, repeating for

other values of X. Consiétency between the limits predicted by the

various Salzer formulae serves as a guide to the true limit for that

value of X. Table 8.3 displays the values of h(X)/X for a selection

of values of l/X. Due to the difficulty of accurately computing high—

order A, (X)nearX = 1 (at this point numerical cancellation is prac—

tically complete) the estimates of h(X) gradually decrease in

precision’as'l/X rung from O to 1. The number in brackets after

each entry indicates tﬁe likely error in the last significant figure é

quoted. As expected, h(X)/X a .l/(l-— gy /x*) for 1/X £ 0.5. 1
We now require to find the analytic form of € (X) and h(X).

Happily we possess one important clue to this problem, in the numer-

ical walue of the constant which appears in the approximation to h(X)

for small 1/X. Since T = -0.33333,

W) & —X . ' , L sieall

- 2% &)+« 33333 (3)° X ? (8.18)
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3 a(X) '

X % X tanh'(1/X)
0.00 1:0 1D

0.10 0.99665 7731 (1) 0.99665 77309
0.22 0.98365 2988 (3) 0.98365 29883
0.34 0.96020 0998 (5) 0.96020 09988
0.46 0.92497 395 (5) 0.92497 39780
0.54 0.89380 95 (5) 0.89380 94711
0.62 0.85516 6 (1) 0.85516 64125
0.70 0.80710 2 (1) 0.80710 20109
0.78 0.74615 0 (5) 0.74614 69056
0.82 0.70885 (5) 0.70884 13039
0.85 0.6766 (1) 0.67666 92649
0.88 0.6396 (1) 0.63964 28901
0.90 0.6113 (1) 0.61132 18894
0.92 0.5789 (1) 0.57897 06840
0.94 0.5408 (1) 0.54083 61982
0.96 0.4935 (2) 0.49334 24086
0.98 0.4268 (3) 0.42653 94731

Table 8.3

suggesting that 1/h(X) can'be expressed-as ' a power séries in odd
: - ; =) 4.=3

powers 16Ff X- ' commencing X 4+ &K # seeess .

tary functions possess this property, but all but one of the most

A large number of elemen-

obvious fail to match the numerical values of h(X) given in Table 8.3.
el B
The exception is tanh‘xa,'and the hypothesis

n(x) = g8 (8.19)

tanh™' (1/X)
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is consistent with both (8.18) and Table 8.3, agreement in the latter
case being explicitly demonstrated by inclusion in that table of a
list of values of l/tktanh“'(l/Xil The conclusion is, therefore, that

in the region 1 < X <%0 ,

!
(o™ (1/x5] B

to first approximation. ' i

An(x) € @n)] (a,h (8.20)

With this information, it is relatively easy to elicit the
analytic form of @ (X). Comparing (8.15) with {(8.20) in respect of
the quantities raised to the power 2n, we see {75'/tanhq(1/X)'turning
into J:F cos O (X) on crossing over from X 2 1 to X < 1. The function é
tanhhl(l/X) cannot be expected to carry over as it stands since it #
has a gingularity at X = 1. However, since tanh"(l/X) = + (/2) i+
_tanhmI X, tanh“‘(l/X) can reasonably be supposed to be replaced by
[71‘7'/4 + (tann™ X)z:l 2 as we pass from X > 1 to X< 1, since all the

numbers we are dealing with are reals Our surmise then is

£
ey %39 o
D “-2./4 '+G Z"x)," (8.21)

which, putting X = O, impliesto = -Awﬂ/TTz. Taking the exact value
of B, from (8.9), the value of ~4p /m*is -0.0340334826863540 which
agrees admirably with our estimate £ = -0,0340335 established indepen-—
dently in §8.1. It is now a simple matter to check that the curve in

Fig 1 is an excellent fit to the function

_ ) /o '
9()‘)—- Cos ,£\!*n“/¢, +(+ML“'?()’”Y

< dau (2 4l . o (8.22)

T
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The origin of the constant ¢ in (8.7) and (8.13) is now
explaineds 0 (X) is approximately tanu'(2X/1T ) when X is small,
and — G therefore equals 4/w> . The approximate walue — g = 0.40528
found in § 8.1 agrees excellently with our new analytic prediction of
4/1m" = 0.4052847300e

To conclude this section, we verify that the two functions each
denoted by © (X) in (8.15) are one and the same, as has so far been

tacitly assumed. To do this we calculate

An(X) ' | _ cos (2n-1)0
A,\..\(X) 2.n(2m~l)p Cos= O Co$ (,2h+l) ¢ (8.23)

Value of (8.23) for
- X = 0.10 X = 0.75

8 0.9857 1.0447

9 0.9882 16337

10 0.9895 0.9112

i} 0.9877 1.0240

12 1.0394 1.0555

13 0.9645 0.9132

14 0.9926 1.0167

15 0.9948 1.1663

16 0.9958 0.8351

17 0.9964 1.0137

18 0.9968 0.8542

19 0.9972 1.1462

20 0.9975 1.0136

Table 8.4
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for different walues of X and n, the function @ (X) being given by %
(8.22). The approximation (8.15) predicts the value unity for (8.23), g
and this is roughly what is found in practice. Understandably, ;
however, marked deviations from unity occur in the neighbourhood of :
zeros of cos[(Zn—l) e (X)] and cos [(2n+1) ¢} (XX} ,where the second :
order terms (to be discussed in the next section) are locally
important. These deviations become larger and more frequent as X—> 1; )
This may be attributed partly to the increasing frequency of zeros, C
and partly to the generally increasing relative magnitude of the
second order terms in this region. These features are illustrated
in Table 8.4, which lists values of (8.23) for X = 0.10 and 0475
and n varying between 8 and 20. Allowing for deviations from unity 2
for the reasons given above, the figures amply confirm the validity

of the first approximation (8.15).

PR RO SR Y ST

8.5 The Second Order Terms and Proportionality Factor for X 2 1

Except for proportionality factors, the expressions (8.15) and
(8.20) are the first order approximations to the polynomials AN(X)
in the regions X< 1 and X > 1 respectively, and suffice when n is
very large. We now investigate the form of the second order terms,
i.e. those of order l/n, and determine the factors of proportionality.
Just as (8.20) is simpler in form than (8.15), so the second é
order terms for X > 1 are more easily investigated than those for
X< 1. We assume (8.20) to be the first term in an expansion of
the form

An(X) ¢ (@n)! [:%%J «{[»1» _@_(_x_,) " OC;J«’%)},

2

(8.24)
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where £ is a function of X. To find B for any given X, values of . :

X A Frah™ )34 7 )
2 — = + O f
n [ ' Ah-, ()() S CZM -I)C-;f\wz ] /3 "‘) (8.25) .

corresponding to successive integers n up to 20 are extrapolated to ;
l/h = 0 by the Salzer formulae, consistency between the various ‘
answers obtained serving as a guide to the true limit for that value
of X Just as for the figures in Table 8.3, the resulting estimates
of ﬁ (%) steadily decrease in precision as l/X increases from gero, 3
so much so here that the region Lb( > 0.95 is effectively inaccessible
to investigation.

The results are exhibited in Table 8.5 for a selection of values
of 1/X in the range 0 to 0.95. As before, the numbers in brackets é
indicate the probable limits of error in the last decimal digit :
quoted. Although we cannot calculate A,.(% ), the value of B (*°) is
known from (8.8) and (8.9) to be 1.631325858441925.

From consideration of the form of the first order term in (8.24),
we would expect B (X) to be proportional to tanh“|(1/X) or [tanhq(l/XXf‘}
or perhaps even a combination of both. Direct attempts to fit the ?
data in Table 8.5 by simple functions incorporating one or both of
these are somewhat awkward, due mainly to the lack of precision in
the known values of B (X) in the region where this function is most
rapidly varying. BEspecially if a number of adjustable psrameters :
are included, it is perfectly possible to find an interpolation i
formula which, though adequately matching the numerical data in-Table
8.5, is nevertheless of quite incorrect analytic form. An example
of this type, discovered early on in this investigation by trial

and error, is the comparatively simple

(b- a,Xz)[’f’ v(‘/x)]z + oo BX32E ..

\o @

(8.26) ?
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1/X B (x) R.H.S. of (8.27)
0.00 1.631325858441925 1.631325858441925
0.10 1.628762 (1) 1.6287624
0,22 1.618516 (2) 1.6185167
0.34 1.598881 (4) - 1.5988826
0.46 1.56627 (3) 1.566275 .
0.54 1.53383 (5) 1.533850
0.62 1.4881 (2) 1.48814
0.70 1.4208 (5) 1.42092
0.74 1:375 (2) 1.3744
0.78 1.315 (2) 1.3142
0.82 1.234 (3) 1.2334
0.85 1.149 (4) 1.1516
0.88 1.038 (6) 1.0399
0.90 0.935 (8) 0.9388
0.92 0.79 (1) 0.803
0.94 0.59 (3) 0.606
0.95 0.45 (3) 0.468
Table 8.5

with @ = 0,55 and b = 0.1124, this formula provides numerical values
in excellent agreement with ﬁ(X) except for small discrepancies in
the region 1/X 2 0.85.

The best method for eliciting the analytic form of B(X) depends
on prior knowledge of the proportionality factor in (8.24) yet to
be discussed. Although a full description of the details involved
must necessarily be postponed, it is convenient to report here the
result, that strong evidence points to the correct form qf f?(X)

being
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By = 1431325 X +akli/x) = 07920398 [tad /T
(8.27)

Values of this function are displayed alongside those of f?(X) in
Table 8.5 and agreement is seen to be excellent.

We come now to the question of the proportionality factor in
(8.24). This relation, which states the function of m and X +towhich
An(X) is”" proportional for X > 1, gives complete information only
regarding the variation of A (X) with n, as a review of its origin
shows. Consequently the factor of provortionality must be assumed a
function of X, not just a constant.

From the discussion in § 8.2 on the form: of the coefficients A:_, :
the value of the proportionality factor is K, (= ~O.522499625) for
X=> % , Accordingly we put

2h

p) = e [ETE T M oty
Fanl' (/%) i
(X>1) (8.28)

so that € (1/X) will reduce to unity at 1/X = O. This function is
found by direct numerical solution of (8.28), numerical values of
all other quantities being inserted un to and including the terms in
1/n just discussed¥. For given X, this yields a number of estimates
of‘-g(l/k) corresponding to different values of n, and the best

estimate is obtained by extrapolating these to l/n = 0 either via

*To counter the possible charge of circularity, it should be pointed
out that in the numerical determination of {(I/X) described here,it 4
hardly matters whether-ﬁ(X) is represented by the-analytically correct -
(8.27§, by an interpolation formula such as (8.26 or just by the raw
numerical values themselves (i.e. the middle column of figures in :
Table 8.5). Indeed it is not absolutely necessary to include the second !
order terms at all — if omitted, the walues of £(1/X) can be estimated
only with somewhat coarser precision, but the conclusion which is about °
to be drawn regarding the analytic form of {(1/X) is completely E
unchanged . ‘ , :
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the Salzer formulae or ( if inaccuracies in the'raw data prevent this)

graphically by plotting versus l/nz. Table 8.6 lists the walues

found for -g(l/X) by this process.

1/% ¢ (1/%) [j’,'(?_‘,' +Mu“'(./x\]'
0.00 1.0 1.0 ;
0.10 1.0016 78708 (1) ©+ 1,0016 78708 O :
0.20 1.0068 64173 (1) 1.0068 ‘64172 5 g
0430 1.0160 43724 (1) 1.0160 43723 7 :
0.40 1.0301 8266 (1) 1.0301 82657 :
0.50 1.0510 538 (2) 1.0510 5373 3
0.60 1.0820 21 (2) 1.0820 213 ;
0.70 1.1301 71 (5) 1.1301 689 :
0.80 1.2137 0 (5) 1.2136 52 §
0.84 1.2678 (1) 1.2677 5 :
0.88 1.3468 (2) 1.3466 9

0.90 1.4027 (3) 1.4024 7

0.92 1.4775 (5) 1.4772 1

0.94 1.5856 (7) 1.5852 2

0.96 1.762 (1) 1.7619 4

0.97 1.905 (2) 1.9070

0.98 2.140 (5) | 2.1434

Table 8.6

We now have to determine the analytic form of f’(l/X). Here
we are assisted by a criterion whose consequences will be explored
more fully in the next section, namely that the expression for Ah(X)
valid for X > 1 should go over in some simple way to the corresponding

expression walid for X < 1 as we pass from one region to the other.
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Now tanh (1/X)= tsnh X 1-ug' which may formally be written as

G L0
2
CXRY : (8.29)

Fauk (1K) =+ 0

Ml

where 0 is defined in (8.22). Since the first order approximation
to AK(X) for X< 1 involves cos(2n + 1)@ , it is a fair supposition
that tanﬁ#(l/X) appearing in (8.28) is actually raised to the power
(2n + 1) not 2n, and that the cos(2n + 1)@ factor then results from %
taking the real part of LXp[*@u+0) . We assume therefore that :
(AN = [4-0«,@.“(!/)()]—' . Since the separate factor ¢ in (8.29)

will also be raised to the (odd) power (2n + 1), it will be helpful

if the other factors in»g (l/X) yield a purely imaginary quantity as :
we go from X > 1 to X< 1. This criterion, together with the conditions -
(a) . g (0) =1, (b) . f (1/X)“>2°0"as 1/X > 1 (strongly suggested
by examination of the graphical representation of the data inTable8.6),
() £ (/%) a1+ $£(3/%)° for small 1/X (the coefficient T is
suggested by further inspection of the figures in Table 8.6) lead

without very great strain of the imagination to the hypothesis

|
T - .
€(x> X~ 1 tanl(11x) (8.30)

This function has all the reguired properties and, as is demonstrated
in Table 8.6, it matches splendidly the numerical values of g (1A%, i

in every case to within the stated limits of error.

{

To conclude this section we return to the question of the function
4] (X) and set out the reasons for supposing (8.27) to be correct.
Equipped with knowledge of the proportionality factor, it isa straight-—
‘forward exercise to expand AW(X)'in descending powers of X2 starting

260 ]
from the term in X . In this expansion there is involved
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29
® @ [l By 32 1.]
& 4
. o (8.31)

|
" 2+l
=1 [l 068]
where
9, = z — T (2n+1),

39., = % — é—%(zn-w) + Tg(2n+e)(2n+2) ,

P O 2
33 L ¥y (2n+1) 4 Y (2n4)(2n+2) — ,512- (2v+1)(2n+2)(2nt3)
= 22 1823 (204) + 34U fnul(ewe2) — 23
34 = oy (201 B (2ati)( ) v (2nt1)(zat2)(2n+3)
i
il (2nei)(entzy(2ned ) 2n+y ) ,
%_5 B s s ww .
(8.32)
The corresponding expansion for [ (X) must be of the form
F(K): ﬂo =+ «-(i'- e &3 A e (8.33)

X* X4

where @, = 1.631325858441925, with presumebly similar expansions

for the higher order terms. The complete expansion for A, (X) is now

PO TR S

3
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A = K@ml(TiP) A7 [0+ _i_rz t %]

r |+ (go*'fi/)(?'+ fz/X“+--- . OC‘A"L) j N

- 2,

(8.34)

2n
The coefficient of X in this expression is of course none other

than our original formula'(8.8) for A:. However the coefficient of '%
an-2 n
X » Wwhich we know must equal A, , is

A K’@n)!gpf))zﬂ{ 9, (1 = éi +o["£;,)] + [ 5@, + O(zf.»,)]}

o~

. (8.35)
= 9, An + A, [-g,'-, * OC'&")] 5

from which

f= un| L= 3,] + O(#) . (8.36)

2n-4 2in-6 2n~2
Similarly from the coefficients of X 5y A g K sevoey Which
L n
we know must equal Aza y A“__3 ,.Aw% +ss0s respectively, we derive

A gz vy 4"
= 3 T "‘(3’"3;):2_;"3“ - 633~23,32 + 3,3)]+O(EL))
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) A A 2 AL :\ An %
By = 2w[‘~34 ~ 9 w2 - (3.~ ) Doz ~(§, -29,9, +¢ ) E2 g
AV‘L | A‘:' 2 | A"h (3 fSL | Av:q ~
z &
4 C‘;}q‘zﬁ, ™ de *3‘3%31"‘ % ) ] 2 O[‘%) )
(8.37)
and so on. DBxtrapolation to 1/n = 0 of the R.H.S. of each of these

expressions yields

-0.205762 (1),
-0,15314 (4). (8.38)

@ = -0.2542645 (1), Ao,
f3 = =0.174835 (1), £y

1l

It is now possible to select trial analytic expressions for /?(X)
involving 'tahhﬁj(l/X)'. raised to some low power(s) and, for each,
see 1f the parameters can be adjusted so that the coefficients in the
expansion of the function in powers of (I/X)z exactly correspond to
those in (8.38). Ngturally it is necessar& to employ fewer adjustable
parameters than the number of coefficients known (in this case four,.

" excluding £, ) so that a test of the function can properly be mades
-the hope is that only one or two parameters will prowve to be involved.
Since g (X) is even in X and tends to the constant fo a8’
1/X~% O, it is reasonable to suppose it to he somehow constructed E

from the following individual terms:

e el (4]
contant 3 aXdol(F) 5 rex)lelB] ; @xreX )fad (]
(8.39)

(Hopefully, there should be no more complicated expressions playing

a role, otherwise the number of parameters would be unwieldy). §
. i

Combining these in pairs, expanding in rising powers of (1/X) and

matching coefficients to those in (8.38), complete success is
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obtained when the second and third are combined with @ =,@° and

c = 0. DMFor then we have

o 3 * 30,+b ' 24
b X Pl R) + b [ bl (W] = fo + T2 Ef 0 Xq +
4 =a o+ 225 4l
1 Eal < *(’T" 4 %90‘" ios & 4 O(;(LIO),
X &2 (8.40)

-2,
Equating the coefficient of X  to gy » b= -0.7980398 (1). With

this (the only) parameter fixed the next three coefficients are

Lp, + Tp = -0.2057614
3 g v b = -0.1748405
%—ﬁ04-i£§ b = -0.1531582

(8.41)

which satisfactorily agree with (8.38), allowing for the errors noted.

8.6 The Second Order Terms and Proportionality Factor for X < 1

Rather than carry out a similar (but in practice much more
awkward) analysis for the second order terms and proportionality
factor in the region X < 1, it is more profitable to use the
corresponding results for X > 1 derived in.the previous section to
predict a trial solution which can then be checked numerically. To
do so we apply the criterion that the expression for An(X) valid
for X > 1 should transform into the corresponding form for X < 1
when we analytically continue the function tanh*'(l/X) through the
singularity at X = 1.

S
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We start from our expression for A,(X) vslid for X > 1:

Ay = Ko @nVCW7 {
Jxl._,[ », 2+ I

ol -1 =
t I b [+aud, (i/x)
¢ foXted (U + b C]+o&4}
. 26

(8.42)
Taking the upper of the two sign possibilities in (8.29) and noting

thet Jai-i = —( Jj~u¥z , this is formally equivalent to

Ah X -3 2“‘ 2&1){00 9) ? 4"")7’8 s
( ) J'_...(, (Cos /0 { | ¥
(X >1)

. o "y s D 200
¢ BORIXncOE s E T opy ],
2.h

(8.43)
If now X is supposed to be less than 1, the R.H.S. of (8.43)
becomes complex, and the expression corresponding to the choice of
the lower sign possibility in (8.29) becomes its complex conjugate.
Since there is no reason to prefer one sign to the other a2nd since
An(X) for X < 1 is sctually real, it is reasonable to suppose it
to be derived by adding the two contributions in guestion, eguivalent

to taking twice the real part of (8.43). This yields

An()() = ——ﬁ—'—— (2n \.I ﬂh (cos © SMH { cos (2u+)\ 8 +
Ty l=-x2
x<1) (8.44)

—~ Bo(T/2.) X 52c0 Stu 2«9;‘5 @,z/q) s2c© cos(2n-1)0 " O(‘&L)}.

Ay
k5 &
i

&
9
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The most readily verifiable constituent of this expression is
the outer multivlying constant 4.H:/GT &« IF (8.44) is to reduce
to the simple form (8.4) at X = 0, it is necessary that K = b /.
Taking the value of K, from (8.9), the value of the R.H.S. is found
to be -0.665267185 which agrees very well with the estimate K =
-0.6652672 established independently in (8.6). From now on the more
precise value will be assumed.

Continuing the comparison between (8.4) and the special case of
(8.44) for which X = 0, the condition for equality of the second
order terms is C = —bW/4 . Taking b = -0.7980398 (1) established
in the previous section, the R.H.S. is 1.9690843 (2) which is perfectly
consistent with the value 1.9691 for ¢ estimated independently in

§ 8.1%. From now on, the more accurate value will be sssumed.

We now examine numerically the second order terms for general
values of X and compare them with the prediction (8.44). Here the
best procedure is not analogous to that for determining the cor-
responding quantity for X > 1 (c.f. (8.25)), since the ratio of
An(X) to Ay (X) would now involve the quotient of cosines. (In
other words the first order term cos(2n+1l)@ cannot be guaranteed
to be dominant over the entire range of

Probably the most efficacious method for isolating the second
order terms is simultaneously the most direct. We first write (8.44)

.in the form

* In retrospect it is evident that ‘the third individual estimate of
¢ in -Table 8.2 was more accurate than seemed likely at the time.
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20 AV;CK) \H-Xz m@n_‘,l)QF &
K@h)!loh@gse)zn“
= = p(X)swm200 + (1) con (200 + O(%)
(8.45)
where, if our hypothesis is correct,
Z
Ry = fo T X el , N —b T sco (8.46)

For fixed X, P (X) and ¢ (X) have been determined by extrapolating

to 1/n = 0 the successive estimates of these functions obtained by
solving, for successive neighbouring paifs of n-values, the two
simultaneous equations which eqﬁate the actual numerical valuesg of
the L.H.S. of (8.45) to the theoretical form on the R.H.S.

The best estimates of P (X) and 4 (X) found by this procedure,

divided Tespectively by X sec® and sec ©

, are shown in Table 8.7.

X P(x) _‘?,_Qf)_
X $ec © et @
0.10 2.6 (1) 1.97 (2)
0.20 2.6 (1) 1.96 (2)
0.40 2.54 (4) 1.98 (2)
0.60 2.55 (3) 1.97 (1)
0.80 2.56 (3) 1.97 (2)
0.90 2.57 (4) 1.97 (2)
0.95 2.57 (4) 1.97 (4)

Table 8.7
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Agreement with the theoretical values fB,7/2 = 2.56248.... and
—~bw* /4= 1.96908.... is once again entirely satisfactory. »

It may be noted that we have now automatically verified the outer é
proportionality factor cos @ /(1~Xz)V1 in (8.44). For the success of :
the above procedure for isolating the second order terms depended
critically on this factor being correctly stated;'any error here would ;
have caused a large deviation from the proper value of the L.H.S. of
(8.45). It is of course possible to check the proportionality factor
directly, by the same method which elucidated the numerical variation
of g (1/X) in the previous section. Although the accuracy in this
application is poor compared with the precision of the g (1/X) values
quoted in Table 8.6, the figures, imprecise though they are, are
uniformly consistent with the theoretical form assumed. This evidence
will not be adduced however, since the success of the method for
eliciting the second order terms provides a much more sensitive test
of the proportionality factor in (8.44).

Finally it is necessary to justify the particular choice of
tanh X + iw/2 to replace tanh ' (1/X) in (8.42), and the neglect ;
of the alternative forms tanh™ X +iZ /2 , tanh™ X %i5w/2, eto.,
all equally valid through the multivalued nature of the function j
tanﬁgl. This is accomplished by showing that each of the additional ‘
possible contributions to AH(X) for X < 1 is negligibly small for
large values of n and for all but an insignificant range of X. For
example, . Y X , 2}9

,}.M"X +~ L 3We = v ;"5? —g’;:c—é- [ b+ 2 ces ¥ (8d?)
the same relation as for “banh X+ vF/2 except for replacing cos 8
by cos 9/(1+2 cos B o ) Slnce this function is raised to the
power 2n+l , the contrlbutlon to AW(X) is, for ‘the representative
point X=0, of magnltude 3 “)gmaller than those which have been
counted 'hithertd.
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Chapter 9

EVALUATION OF ¥ (X)

The late polynomials A, (X) for X < 1 have now been established
to be of the form

n (%) =

e (,2")'/“ (cos0) | cos(2a+1)®

LR L TR
2n

= n 3 -0 ~2(0
M pes 0 R & ”9{, g+ aoe m@;}}, :

2n

-m(4.‘2
Jm

(9.1)

where ?2 denotes the real part. We are now equipped to carry out

the summationr ower n and thereby find an approximation to

Th= & g Au(x)

(9.2)

The best way to do this depends on the value attached to Y , and we
therefore distinguish two procedures appropriate respectively to

(a) high and moderate temperatures, and‘(b) low temperatures.
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9.1 Ewsluation of ¥ at Moderate and High Temperatures

Since at high temperatures Y is reasonably small, successive
terms of the summation in (9.2) for P (X) will initially decrease
before they eventually increase due to the dominance of the (2n)!
factor in A, (X). We therefore retain § terms exactly and approx-—

imate the rest through (9.1), leading to

S AP 1
"(x\ = Z g A, (xy + Kees® 0 2n)!
EE ( = W R 2 Vé Q___zly"

{1+ ieoch 1™ L ok |

24
(9.3)
where
| © 0
=l e - eosU o
> 9 (9.4)

48
Dingle has shown that the late terms in an asymptotic series may
be summed provided the n'th term is known and is one of a few

standard forms. For the case above, this permits the interpretation

Z @” S @5‘3‘ M s (2 2 | phz] < T"/:z)
nes &2 =) (9.5)

where the 'converging factor' 'wl(z) is defined to be
g s

N (=) = y :
s ) ks (9.6)
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[
: & "
Similar interpretations hold for é%(!“°‘)!/Q§-21) from the

correction term O(l/n) in (9.3), and for corrections of higher i

order, The final result for ¥ is therefore

s .
F (x\ = 2 %ZlAm ()0 4+ KeosB @ (9 @33/ .
I( 3 e W W e GZZSS { r"zs( )

. ! w. —-9
4 cp(x)efe+1(x>g/a l‘“]zs@‘(z’) + O(Ws) ;

23
g K o5ocliencot oz @ E5t0i0 [
= Z ‘azhAu(x} 5 j—"—-"‘”‘;@ £ 25){(c0s©) 9 RQ, {”zs(z)
h=0 =

. .10 -2
R L N AR YA }

23

(9.7)
where it will normally be convenient to break off the series of exact
terms at the contribution which is numerically smallest,

Although values of r7s(2) for real 2 are listed in ref.48,
tables for complex z do not yet exist, which vaises an obstacle
to the numerical evaluation of this expression for general X.
However =z is real when X = 0 (i.e. 0 = O) and it is then possible
to examine the range of 4 for which a partiaily - terminated expan-—
sion of the above type yields an accurate value of ¥ . This par-
ticular choice has the advantage that the polynomials A, (X) then
reduce  to the single coefficients A% of particularly'simple.form,
allowing the straightforward numerical determination of some of the
higher order terms.

. . N v
Extending our previous expression (8.4) for A, , we assume
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"o [ n P - e .
Ao K@) r [ I+ 2 2v (2n~t) N 2n (2u~ty{2u-2) :
+ e d s j °
2 ((2n-1Y(2u-2)(24-3) (9.8)

Of the constants ¢, d, e and f s C¢ is already known from the analysis
of the previous chapter to be 1.9690843(2). The others are best
determined by extrapolating to l/n = 0 the estimates d(ﬁ),.a(n), f(n)
of these quantities defined by

c(n) = zu[—K—E%T;;-—t])
dy = @n-> [ ew~c]
e = @u-2) [d(m-d] (9.9)
g0y = @n-3) [e(w - <], Q
The values obtained are
c = 1.9690843 (2) , d = -0.94036 (8) ,
e = -2.107 (4) , f =-0.64 (j) ; (9.10)

Here the estimates of the errors in the later coefficients are
based on the supposition that all previous coefficients have been
exactly determined; the absolute errors may well be much greater,
especially for f o

For X = 0, we can now both simplify and extend (9.7) to read ?
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Z g A+ wfe 7 I ey e 2o, (e

+ d (o (2) + e MMyss(ze) e B Mas—a () -
2.5(25-1) 23(2s-1)(2s-2) 2s(2s-1)(25-2Y25-3) }’

(9.11)

where ‘2:'= J;; % +» For given Y , the smallest term in the
original asymptotic series determines § , the number of terms to be
retained exactly. The correction terms displayed in (9.11) themselves
form an asymptotic series which here must necessarily be truncated at
the fifth term; the magnitude of this contribution indicates the t
approximate error in the total value of ¥ .

Table 9.1 llsts, for g = 0.5,1, 2 and 3, the appropriate values
of & ZA 4" and the best estimete of ¥ (0). For y< -0, ¥ (0)

. e
Y $ ;‘ZA 4™ T (o)
0.5 6 1.02675179 1.02669062 (6)
1.0 3 1.08942901 1.0998 (2)
2.0 3 1.09753086 1.37 (1)
3.0 2 2,0 170 (7)

Table 9.1

is determined with very good accuracy, the error'amounting to
&~ 0.02% for Y o= 1 and rapidly diminishing as ¢ decreases. By y=2
however the error has increased to A 1% and gradually rises as Y

increases further, amounting to 4% for Y= 3
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9.2 Evaluation of 1()() at Low Temperatures

At low temperatures ( Y>> 1), a clearer description of the
variation with temperature of the contributions to ¥ can be giwen
by summing from n = 1 to @ over the function found to represent late
terms followed by examination of the residual series. We therefore
write

e T | . ) ~2t0
Tl = 1+ Kesb g 0 5 2a). Lpx)e +X)e
(XEI) Ji-x Bs wel (ezt)! L= 2n j

< - ) peos ® <@t )0 P()‘)SM2“9“'Q(X)“"(2H)8}
T TSP Y

. (9.12)

A standard result is

4 i = (2u-1)!
Foenl Loz | 2 UL el e,

< oy "t (-zt)
(9.13)

where

plzy= Citdsimz — si@ sz = L[5 iay_ 2 (2]
(9.14)

: i -tz ; iz "

3(2) = Cilz) cosz— Zi(Z)Sm2 3 ): Ei(+i2) + & E,(LZ)].
(9.15)

Here &i(z) = si(z)+T/2 and Ci(®are the sine and cosine integrals

and E, (:z) the exponential integral, the definitions of which are

St gt
t J

Si(=) =

O\-—:N

(9.16)
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4
Ci(zy= y+ dnz + f_“wst."__l_ dt [phzl < T
t
o]
(9.17)
Bl | = 4 parsT,
> b (9.18)

where Y is Euler's constant. The second term on the R.H.S. of (9.12)

therefore equals
K cos © L0 R
r——ni;a Ro {2 £(z) — | ~3(z)£tp(x>z v e ] } (9.19)

It .is now possible to examine the way in which this contribution
The expansions of Ci(=)

varies at low temperatures, where )21 <<1,
st(2) in rising powers of = are

._z?jn
Cilz) = y+ &z + 2 _?;%E;\T' ) (9.20)

w=|

and

Z Chat ‘ (9.21)

T
2 o (@at1)(2n+1)]

st (2) =

It follows that the dominant terms in {(z) and 3(2) for small |z] are

(2 ~y -~z + T 2, (9.22)

Ozy o T +z(¥~1 + Inz)

which implies that (9.19) is then approximately

Ji-x?%
(9.23)

. . (6 -2
gty Re ‘9{’ Tz~ + (y+Lnz-% Z)[LPCXSQ,( ~+‘2(x)e29]},

i




_131_

Now the Bloch low temperature law is W <@ 'gll o0 l“«’l“l‘L which
indicates that the contribution to ¥ in (9.23) is of minoxr
importance at wery low temperatures.

The inference to be drawn from this result is that the dominant
contribution to ¥ at very low temperatures is concealed in the

residual series
{A (x\~
(9.24)

whose origin lies of course in the inexactitude of late~term formulae

(zh) s i [c’.os(zml)e L = P(x)Sin 200 + 9x) codu-1)p }

2h

when applied also to early terms. To investigate this supposition,
it is conwenient once again to restrict further discussion to the
special case X=0. (The theoretical conclusion (2.8) is that ﬂ? is
independent of X in the low temperature limit.) Knowing the higher
order coefficients given in (9.10), we can subtract out from the
residual series (9.24) more: of the terms which we know to be more
slowly varying than %“’ at low temperatures, so facilitating
investigation of those which remain.

To determine the extreme low temperature behaviour, we there-—
fore modify (9.12) for X=0 to

T(0)- 2,9 A,

a2 ;i (3“) + _d 2 ? ];
= | T 4 + 4— [' 2n(2n-1) " Ln(20n-1Y 2n-2) +1m(2u~!)(%2,(&'3)

> e &
i - V 2 ,f & : & d e f
¥ wé_ q {A° {@n) ' [ [+ * 2u(2n-1) N 2 (2u-1)(2n-2) ¥ 2n(2n -|j(zw-z)C2n—2}]}‘.

(9.25)
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Inwoking (9.13)9

Z (—n - Zo f(z‘°> =i # —9;5- )
nz=2

2> o

"

Z @n-0)! - 3=+ L )

w2 ng')m el

20 2/ (9.26)
A G TR I

-y szf)"

DD A

w2 Gzi' Bh Ze

o (ae-) A

Z— B = z'; glzc’)
ta = 62‘9) ¥

none of which wary faster‘%han zo Cw ) for small Z, (large y) For

3?(0) to wary as A!% at low temperatures therefore, such variation

must be contained in the residual series

f %%{A K(gm)l(f"[’ + 7 + -d b gt + i

~g 2alan-1y  2n(aa-)(2s-2)  2a{20-1)(zn-2)(24-3)

(9.27)
Table 9.2 lists for n hetween 2 and 12 the values of the coef-

® cients KL and of the residual aoefficients of 5”'in (9.27) -~ i.e.
thoge o *“2r subtracting from A; our approximation for a late term.
Although the latter are very much smalleir than the former, the
difference in order of magnitude increasing with n, it is clear that
the series (9.27) ig asymptotic. For ‘3—6'3, its approximate wvalue
may be obtained by truncating the series, adopbting here the empirical
procedure of including only half of the least term, known to produce

accurate results for similar asymptotic series in which successive
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{ n Ay; Coeff. of %{m

in (9.27)
> ~0.216821 x 10" 0.234917 x 10
3 0.239029 x 10~ ~0.218816 x 10
4 ~0.439558 x 10° 0.448605 x 10 '
5 0.130427 x 10° ~0.167672 x 10
6 -0.572084 x 10° 0.160277 x 10t
i 0.347973 x 10' ~04337616 x 10"
8 ~0.280223 x 10" 0.120455 x 107
9 0.288537 x 10° ~0.630792 x 10™
10 ~0.369711 x 10° 0.450128 x 10
11 0.576842 x 10" ~0.418050 x 10"
12 -0,107664 % 10 0.489175 x 10°

terms alternate in sign.

Table 9.2

The error introduced may be roughly estim-

ated by comparing the chosen value with the values corresponding

to the retention of one extra or one fewer term in the series. The

4

S(4)

s(9)/ 4

1.0
I~
1.4
Lob
1.8
2.0
2.2
2.4
2.6
28
3.0

0.002166 (5)
0.00436 (2)
0.00780 (9)
040127 (1)
0.0197 (5)
0.029 (1)
0.042 (1)
0.057 (4)
0.074 (13)
0.09 (3)
0«21 €7)

0.,002166 (5)
0.00210 (1)
0.00203 (2)
0.00194 (2)
0.00188 (5)
0.00181 (6)
0.00179 (4)
0.00172 (12)
0.0016 (3)

0.0015 (5)

0.0014 (9)

Tablev2¢3

DT P AV




number of terms in the sum is 5 for %:& 1, dropping to 2 for 9 ﬁ’3)
this being the approximate upper limit of applicability. The
resulting walues of the sum (9.27) denoted by S(Y ) are shown in
Table 9.3 together with those of S(y L/%q.
From the slow decrease of the figures in the last column it is
evident that <S(‘g) veries in this range of 9 a little more slowly
than s 43"3 a graphical plot of log$S versus log o reveals the
approximate variation to be M'Cag'?; over the region 1 £ 94 < 3
except possibly near g_: 3 where S (y«) is rather uncertain anyway.
The proximity of this to Azgﬁ is encouraging in view of the none-too-
large values of 9 which have been employed.
It is also noteworthy that the general magnitude of S (Y )/tg“

is of the same order as the theoretically expected value. For (208)
predicts the variation of J in the low temperature limit to be
F ~ 34y 1s(~) = 0.002009 y4*. Tt is true that the figures for

S (% X/gq shown here suggest a limit (supposing that such a limit
exists) considerably smaller than 0.002009. This is not unduly
disturbing, however, since the data in Table 9.3 prove to be rather
sensitive to the values assigned to the constants c, d, e, f etc.
As remarked in the previous section, the absolute errors in the later
coefficients are probably very much greater than indicated in (9:10)s
Their magnitude is difficult to estimate, but analysis of the effects
caused by slightly adjusting ¢, d, and e to a different but mutually
congistent set of wvalues indicates that the absolute error in (
may be of the seme size as the guoted value for f itself. If we
now argue that g’ is so unreliable that it may Jjust as well be
omitted, the same calculation as before but putting-@ = 0 yields a
new table for S (4 ) and S (y )/‘g"’ whose values are approximately
20% larger than those corresponding in Table 9.3. (This does not
mean that uncertainties in these coefficients must affect our
estimate of YW , since any change in the contribution S (g ) will

be exactly compensated by an equal and opposite change in the value
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of the third term in (9.25)). Thus the evidence is that the extreme
low temperature behaviour predicted by Bloch is indeed contained

within the residual series.




~136-

Chapter 10

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

A convenient point has now been reached for summarising the
results achieved and suggesting the lines along which future work
might profitably piroceed.

The central core of the new method of solution to the Bloch
equation is the expansion of the'solution as a double series in rising -
powers of non-dimensional temperature an& energy variables. Insertion
into the original integral equation then leads to a recurrence relation-
for the two—index coefficients Qz_(if the independent variable X
is selected) or A? (if the alternative variable X is preferred).

From then on, the complexity of the recurrence relation neces-—
gitates resort to approximate methods. The two technigues which may
be employed to re-—assemble the series are contained mainly in Chapter
7 and in Chapters 8 and 9 - for brevity, these will be called Methods

I and II respectively. The main feature of Method I is the approx-

A
imation of the gcoefficients Q% by the similar set (l; s without

systematic investigation of the dependence of either on the indices
n and £ 3 this yields eventually the result (7.84) -in which the
required %?lution ? is expressed in terms of the corresponding
function ¥ « By contrast, Method II concentrates on finding the
approximate functional form of the polynomials 2{ a% u} or
ZA1 Xa'e , whose outcome for ¥ or ¥ is (9.7) or its low temp-
erature equivalent.

It should be emphasized that neither of Methods I and II has

yet been developed to its full potential; ways of doing this are

noted in the next few sections. BEven though the analysis is
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incomplete, however, the results already obtained in Chapters 7, 8
and 9 show that the new technique displayed in' this thesis for finding
the solution to the Bloch'equation is capable of yielding the func~
tional form snd numerical value of the solution: &t both high and low

temperatures.

10.1 Extension of Method I

There are two ways in. which the determination of the solution
in Chapter 7 may be further improved. The first is to define yet
another set of coefficients, GFE say, which approximate Cﬁ% even
better than 63, . The definition would be similar to that for éil
(see eq. (7.1)) except that the first two terms of the t—summation
in (3.23) would be retained instead of just the first one. The

corresponding function jﬁ , defined by
@ = 2 2
5 § : no.
wn=0 =0

is the solution to a fourth order differential equation obtained
from the infinite order differential equation (7.34) for 4! by
retaining only thet =0, 1 and 2 terms in the summation over t. This
equation may be solved by the method of successive approximations,
but the analysis proves to be rather messy and the advantage obtained
is probably small in proportion to the labour involved.
The other way involves the analytic study of the 'residual' ¥ g d

series in (7.84):
ov P 5 s " e 2n i An 2
Z 4 [Zaa”‘“ci > g% ] (10.2)
nw=0 L0 =0

w @
Here the polynomials Zi Q, x are identical to the corresponding

polynomials 5 Az_xfe studied in Chapter 8. A similar analysis
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for -3 a%‘x, would enable the analytic form of the coefficients

of gm to be determined, so enabling the summation over n to be
carried out just as in Chapter 9. Since the coefficients 632 mimic
the wariation of (ﬁ% with n and { y it is highly likely that the
polynomials é{fi} xP will prove to be of the. same analytic form
as éz'anxf y but differ in the numerical values of the constants
which occur. However although this procedure might well produce the
most accurate answer possible at high temperatures, it is hardly
likely to better Method IT at low temperatures, since the C\P con—
stituent of (7.84) no longer contains the dominant contribution to

V¥ . (Recall the conclusion of j 7.6 that \ﬁ,» gfz at low temper—
atures, contrasting with ¢ ~ ?. .) Since the procedure for
finding ¥ by first calculating \y is certainly more long-winded than
the more direct route of Method II, and is likely to be superior to
the latter only when the latter is perfectly adequate anyway (i.e..
at high temperatures ), we conclude that Method II is a more suitable

candidate for further development than Method I.

10.2 Extension of Method II

The most obvious improvement to Method II as it stands would i
involve eliciting the terms of third and higher order for general
values of X, not just for X = 0., This would be accomplished for
x<£1 by first finding the corresponding terms for X > 1, following
the pattern established in § 8.5 and §8.6. Expanding the third order
term ¥ (X) as '

¥xy= ¥, + —glz ¥ % 4o (10.3)

analogous to the expansion for f?(X) in (8.33), the coefficients (}

may be found by a simple extension of the procedure for determining
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the coefficients f; in (8.36) and (8.37), almost certainly with less
accuracy due to the greater degree of cancellation involved. Whether
it proves possible to fit ¥ (X) to a formula constructed from ;
individual terms such as those in (8,39) depends partly on how many
terms and’ parameters there prove to be actually involved. The
elucidation of ﬁ (Xﬁ was rendered convincing in_f8.5 because the
precisely evaluated coefficients {%, F,, Az--- comfortably outnumbered :
the parameters eventuslly found.jrlﬁ(X); this happy state of affairs

is unlikely to apply to the same extent with 3’(X), and the whole
procedure could well break down if applied to the fourth order term

S (x).

If it transpires that further numerical énalysis for general
values of X is incapable of elucidating the higher order terms to the
same extent and precision as for X = 0, it is still possible under
such circumstances to improve the numerical evaluation of EE at high
and moderate temperatures by the use of 'modifying factors', a tech-

nique devised by Dingléss. To illustrate its application to the best

approximation for A,(X) so far found, we rewrite (9.1) in the form

A (x) = ﬂ-%_%@m!,o“@sef”' bu(x) {m(zw:)e

~ PV Sin 200 4+ 9[X) cos(20~1} }
2

aa (10.4)

which constitutes the definition of the 'modifying factor' IDM(X).
Inclusion of this extra factor means that instead of (9.5) we are

obliged to evaluate

Lz f:)"‘ b (%), & (10.5)
n=g -2

For fixed X, IDH(X) will obviously tend to unity as n increases

through large values, so differences of these quantities will be small.

o R
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It is then advantageous to expand bh(K) by the Gregory 'backwards !

difference formula'f

B h-S s I -

ba = by + %T?V(gs " X;"S*)vb + -, (10.6)

where
z

Vbs = b5 = L_s,_, 5 v LJ = Vbs bt VLS,' - .Q).'C. (10.7)

This enables (10.5) to be evaluated ewentually as
[ 2.5 )! -
Z @n)! b., (x) - CS),“ bs(X) L M. (2 -
w=g Lz«») C___zlx
-2 ﬂzs (2 V by (X) S 2" l—) (z) \7 b (Z() g w 7 g
b bs(Xx)
(x> (10.8)

() (2)
where ], Tl ,.... are reduced derivatives of [] . A similar

expression holds for %é;(zm-f>!bn(X)/%§z‘)" so the final result
for P in place of (9.7) is

I(M Z ‘8 “A. (_K)‘?J___ 14 @_53 “ @;95 b (X)CR LZSH)LO

{[:nzs(z} g P(X)O:L f?l)‘); i_l-a.sq (z)] = M)[ n“ @ +
2s bs (X)

. o 0 : 5 y
+ L?(K)O«L *‘2(5)9, rz (zJJ+ ZVBS(,K)[rf' (=) + LP(X)° +$(Kle N U CZ)] }

2s bs (X)

(10.9)
Though obwviously an improvement at high and moderate temperatures,
this formula fails to provide much advantage at low temperatures,,
since s is then small and the sequence by , Vb, Vt(os,.,.. may not

be uniflormly decreasing in magnitude.
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10.3 Generalisation to Impure and Non-Degenerate Metals

We now recall that two fairly drastic assumptions were incorp-—
orated into the Bloch integral equation at an early stage in our
treatment: that the metal under scrutiny is completely degenerate
( x¥= £7ﬂ/@ is mero) and completely pure ('f = 0). Generalisation
of the methods developed in this thesis to the case where neither
assumption need be made is possible in principle but is accompanied
by additional complexities of varying severity.

Extension to the case of an impure metal is reasonably straight-—
forward, except that retention of the imourity term in (3.1) means
that the solution ¥ can no longer be an even function of 94 . The
expansion of q, as a double series in rising powers of g and X
analogous to (3,7) must now include odd as well as even powers of 7)
and the recurrence relation developed for the coefficients will
involwe the parameter f in addition to the original parameter p .

In all other respects there is no apparent reason why the analysis
should not proceed exactly along the lines laid down for a pure metal. -

Extension to the case of a non-degenerate metal is unfortunately
much more complicated. To observe how the main difficulty arises,
it is sufficient to consider Rhodes' first approximation (2.20) for a

non—degenerate metal:

3
A %
|+ &
¢, (1) = =4 ( 1) - (10.10)
ﬁ‘.&+: 2% dz
~y Q:Hz-{vl ] 1- @.z!

As was noted at the begining of §3.2, expansion of the R.H.S. of

this expression omitting the (1 + XY )yi factor leads to a result
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of the same form (though with different coefficients): asg was later
found to represent the complete solution (for a completely degenerate
metal). Retaining the (1 + ¥ )&& factor therefore and recalling
the relation (6“3) between Y and the preferred independent variable
X, we see that the coefficients of the powers of % in the series

expansion of the R.H.S. of (10.10) will no longer just be polynomials

in X, but will be infinite power geries in X; the same must obviously
be true of the expansion representing the complete solution for ¢
or ¢¥*. It looks then as if extension of the theory to non-degenerate
metals possesses new and possibly less pleasant features than were
encountered for g . degenerate metal, and no attempt has so far

been made to develop the theory in this direction.

10.4 Evaluation of the Electrical Conductivity

The main purpose of this work was not so much to evaluate the
transport coefficients of interest as to elucidate the analytic form
of the distribution function from which such coefficients are derived;
Since in addition the second order effects such as thermal conduct-
ivity depend on non-zero powers of Y being retained in the Bloch
equation, it is inappropriate to attempt anything more than a brief
discussion of how the electrical conductivity mighf be evaluated for
a perfectly pure metal.

The electrical conductivity was originally stated to be deter-
mined by the transport integral K, defined by (1.25); after the
numerous- subsequent transformations, simplilfications and changes of
variable,.this is found to be proportional to I£ ¥ (x)alX , the
coefficient of proportionality being displayed in (3.8). Direct
integration of any of the final forms for ¥ - eq.(9.7) for example~—
is hardly practicable. Probably the best technique is simply to
integrate the polynomials appearing in the exact expansion of the

function I 2
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X (10.11)
n
The single - index coefficients 52141//626+l) may now be eval-
uated and analysed to discover their dependence on n, enabling the
summation over n to be carried out by a method appropiisteto the
temperature range under consideration — analogous to the procedure

demonstrated in § a.l. or § Q.24

10.5 The Problem of Polar Semiconductors

As remarked towards the end of Chapter 2, the Boltzmann equation
for polar semiconductors reduces to a difference equation instead of
to an integral equation due to the assumption of a single frequency
L% for the dominant phonon optical mode. The other physical assump=
tions are similar to those for metals, and it is interesting to see
if the method of solution developed for the latter can also be
applied to polar semiconductors.

Just as for metals, care must be exercised in selecting the
most appropriate formulation of the equation whose solution is desired;
Starting from the difference equation for each of the two formal
relaxation times’T'(q ) and'Tf(j ) (see for exampde Durney4; ) 4%
is easy to show that in the 1limit of complete degeneracy - is

proportional to T , the difference equation for T being

Iy, 4 ¢

- 3 e lenTe- wTvaep |

| qu*" [@ ’..k)‘r( - o T
i 91 o9 ") ('1”'33] 5 (10.12)
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with
- '
g = .l:% y k= Lw29T -4
B¢ "\00 (10.13>
U T T

From a glance at this equation, it is evident that 7T(ﬂ ) is primarily
a function of Qﬂ and of Q? rather than of Y and 4 which makes it

appropriate to select the new wariables

l‘
2 - | 9.
X= == Y= &2, (10.14)
e +i @+ |

Defining a new dependent vamiable ¥ by

T(1) = Q‘AL “fizii T, (10.15)

A

the difference equation satisfied by ¥ is found to be

-~ .*, g x-—
=Xy s @t E (D= (1= x7) T (EEY) = (e x T (E55).
(10.16)
The first order approximation to P (X) at high temperatures,
analogous to Rhodes' first approximation to <p (ﬂ ) for metals, is
obtained by setting ‘y’= O in the argument of ¥ but leaving all

other quantities unaltered. This yields

e L 2,,2
Z, b= 1=xY. (10.17)

Correction terms ¥F,(X), QS(X) .+s may be determined by the method
of successive approximations, examination of which reveals the
probable form of the expansion of EE(X) as an infinite series in
rising powers of >/ . As part of a research project directed along

these lines, ChriStianhas shown that the correct expansion is
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F(x) = 2 yzh Z dv; Xze) (10.18)
) £ =0

of exactly the same form as (6.6). Substituting in (10.16) ,. expanding

in rising powers of )/ and X and equating coefficients of equal powers

on the two sides of the equation, a recurrence relation is readily
obtained for the coefficients d; . After the evaluation of the

| first seweral dozen of these by digital computer, numerical amalysis

analogous to that im Chapter 8 may be carried out to reweal the

approximate form of the polynomials éf<j1 Xzo + Although this has

not yet been carried through to completion, the startling result has

emerged that the first order approximgtionr to these polynomialsg is

identical in form to that of the polynomials £ Ap X°° discussed

in Chapter 8. Thus

; 20
7 il e ST ] il ]

= 2 *‘XZ"‘ [+_0m0\..l0/x>}zn+l
LX) (10.19)
= ol W e _ﬂ/_@,h),‘ 7@,;5)&“”. cos (2n+1)0 + O( %)
QZ:; " T"’I—XL f { })
(X< 1)

(10.20)

where // and K/ are constants and © is defined in‘(8.22); hence the
same mathematical functions must he involwed in the tmg physical
problems. This result, for which no explanation is immediately forth-
coming, implies automatic advantages in respect of the straightforward -
application of the methods of Chapter 9. to.the problem of calculating
the function ¥ 3 it also demonstrates how the twin problems of
transport im metals and in polar semiconductors are more closely
connected than would be revealed by simply comparing the integral

and difference equations in terms of which they are formulated.

e nee el s Sl AR
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Appendix 1

SUMMATIONS INVOLVING STIRLING NUMBERS OF THE SECOND KIND

In this appendix we derive various summation relations involving
Stirling numbers of the second kind. These relations were quoted and
applied in Chapters 3, 6 and Ts but do not appear to be generally
known. We also discuss why other summations encountered in these

chapters apparently do not sum to simple and conwenient forms.

ALl Starting from the well known relation

ot | o e % )
2€ g] Cg 27 = (=1 >

Al.l
=y ( )
we differentiate with respect to z, yielding
o O ~f
{ v 2~ 2 z
- X ;27 = Ve (€=1
o 2!
0.
“ W z </ - 2
= L(e-1)/=
* S (zz-l)
A \)( 9 o0 g .
= Y Yo, = - 1) z
Z :go m! " ég; v!
2 e-t %
=" LY ¥ g-u
5 W Z = Z ol(a) cr By €1
V) L] v =V

(A1.2)
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e

Equating coefficients of z ’

¢

: ¢ 9
S (E)en " Bpu Cu =GN 5 © V# 0,  (a1.3)
mzy

Similarly,

- -l v et
Z' Q,......’..)_ C:Q ,ze = C@z"|)

ot 2!

3!

(A1.4)
Equating coefficients of z “i,
¢
L ) £ -l
Z <Wa) Bow €4, = v Ce-, ; U#0 (A1.5)
M=)
Al.2 Consider the quantity
LY : ¢ e v
T = 3 5 <0,1,)(-e~ -1y (A1.6)

vay
This may be expanded as an infinite series in rising powers of z in

~2
two distinet ways, arising from different treatments of the (& ~|

)0
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factor. Firstly,

SFY'
T = *(V, ZCI)“_‘L' e
w=y !
o0 S5 n
. 5 = co g@ Sl e, | (31.7)
W=7
On the other hand,
= v 4 © ., n " v
(%) = (-<) _ 5 2 c"“(i (~4)
CZ)‘} weo ! e " v 47
£
= 5 =25 clwm-nles ()
an Bl i (41.8)
Hence
Sty ' “Q -
£ 78 z" " A
L = é ¥ fes) m_Z = Cu b= 1) "C;l)
A =V Coms P
<o @ " f"’”“"
— zZ WA (7]
= & 0 g eemlern s (()
ob " y..
= B S S HRINGT)

(A1.9)
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Combining (A1.7) and.(A1.9),

5 g J Fau S475m
2 Ch(l)"l),’@'l) <;+SS) (—l) 2(‘)”’)I<v r M .
vV =y
(A1.10)
When s = O we have the special case
4] v ¥
S Caly-n!E) (3) = e Ca (A1311)
Var

We can now identify the obstacle to summing either side of(41.10)
for = % O. Each side is proportional to the coefficient of z” in the
expansion of the function I and this will be of simple form oénly if I

is a reasonably simple function of z. We first rewrite (A1.6) as

2 il ;Z 7 () Y

(A1.12)

The troublesvme.( ¥ + r) factor is best expanded as a Newton series:

)
oo’
T (Al QAW =e-E Gy G
(41.13)
Hence
| i / > 3 S C'\w
T = G-0l@2 )y S Z(J 11y

Via= 0 G""")I v =t @"’ )’

(it

el % L ~ 45
R

- Se-0lET ) s ch (s
@HSS =0
(a1.14)

&
arat -

AfFaety oL
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The sum over é? is a truncated binomial series which is related to

the hypergeometric function F(a , b o x) in the following way
3

(See Erdélyi et al>t, p.101):

Crzs) CQZ_"‘)Q C~+: F(— ‘e )

(A1.15)

Hence
Y -5z z
T & uL (Q ~1Y} 2 F(}s,l;v+ljt~c ). (A1.16)

The transformation properties of the hypergeometric function allow
this equation to be written in many different ways. However none
of them is any éimpler than (Al.16) and none will allow the coef-—

ficient of z' +to be extracted in any simpler form than is given by
either side of (Al.lO). This is excepting the special case s = O:
the function I is then just

o ¥

. 1 ;
.- e Lem-1), (42.27)

which is responsible for the simplicity of (Al.ll).

*
A1.3 Starting from (Al.11), we multiply both sides by [—%(1%&2]

and sum over r from 1 to n:

h ¥ “ "
e Ze-nleen(i) - Zeaf £ cle-njen(?)
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A <"~'>-'é'>"é"7 @"‘(f—;—*)"@)

L)

" ;E{ w'\lc_‘) [f(l*-x

Ve
(A1.18)
Putting X = 1, we deduce the well known relation ¥
1 4]
v vV
S ¢, G-y = o, (41.19)
V=t

whence
Vv V
(,3) Z Q)—()/C Ll)('_"_’_).(..) zc (‘7").{6')<1¥). (41.20)

Expanding each side in rising powers of X,

w L] 5 > 'J
aar X & @ﬂ)/(‘-anﬁ’if(;) = goéX)eél@ﬂ)/Ctﬁi)Gj)

q=0 V29,1
(41.21)
from which there follows
! L '}-—O h+¢  ockl
Z 0-n! ¢, &) N > { (A1.22)
V=9
Al.4 It was stated in Chapter 6 that it does not appear possible

to express either of the following two summations in more conc1seform.

* Strictly, this deduction can only be made for even values of n.
But the result is true for all n, e.g. see ref. 30, p.189.

BRI
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ot
- Jg oV )]
T & Z @"‘)«Iéi) Cot (24

V=2y . (A1.23)
2925001r % e
2v 4
Z (M"'“C 5 Cat 2_. C)cn+2r)( (2 J
V= [2+] Mm=0,-2y
(A1.24)

To justify this, we first investigate the summation over ¥ . Since
(A1.23) is a special case of (A1.24) with £ = r and r positive, it
is sufficient to show that (A1.23) is intractable.

It follows from (Al.1l) that C:t is equal to (2t)J/IJ!times the

2t
coefficient of %  in the expansion of (e - 1) . Thus

2t .U v
— A LA (_u')/ (e ~1) da
T = uiarw S )(2*) ZN io =
G’-")’ . olie = w,
= oS |-
2wt S {,{,QH' 022;_ (&Y)( 2 )
- (2v! ol = e
P 2t+( Z (2V‘~I)( 20’)
2 B e M- g
e/ i 2r
e T e Ltedi g ] © (1.25)
w=0

where the path of integration is round a small circle enclosing

the origin in the complex u-plane. We require therefore the coef-
ficient of u?t in the expansion of (tanh u/2)zr in rising powers of
u. Unfortunately this quantity cannot be expressed in any simpler

form than that originally given in (41.23).
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Turning attention to the summation over m in (A1.24), it is
possible to express this in terms of the generalised hypergeometric
3

F, defined by Erdélyi et alﬁ » PalB2%

function 3

| B [ A, %, 4, )' z = 3 @'t)u@«z)n@-:s)u Z“
= f’ ) f"' mn=o c{ol)u (f&)w n ! (A1-26)

3

where, as usual,

@), = a(a+1)... (a+n-1)

PN
Q%?flwfg: y Q positive ,
Q= 2.
(a1.27)
] , .
= (-1 & o)! , @ negative.
(~a~wn)!

With these definitions,

2 pl D L)

(:0“" 0‘ ').’ @3-27..._(7-—(,,.)!
) (_Wl-t 27) !Q)‘M“2r5! MJ(Q*‘M)! \J!@e_z‘r-m).{

o (22-2v )/ = (2v V) V), Cv-20), 1"
@)@ -2)!@e-29! 73, (28 + 2v-0),, (Zv+i),, wm!

(0)(2@-2”.0) r [27-0,_9) 2v-28 1 -|
- 2¢ v 3 e ~20 1+ 2¢ -V, 2¥+] g
(A1.28)

However the generalised hypergeometric function is in this case

neither Saalschutzian nor well poised. (For definitions of these
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terms, see Ref.34, p.188). This means that it is very unlikely to
be summable unless it can be reduced to one of the few known special
cases, which does not appear to be possible.

Another general method for summing products of binomial coef-
ficients involves expressing the summation as an integral represen-—

tations

Cl) (Vu+2f (m (2@ g W‘)

v v ofi
(_?hb)'? Z §5[,‘Sg dx oy dz (1+x) 1+ 4) (1+2)

m*itil et 28~2¥ —m+|

4

§S§ § dx dy dz (lf.n,} (,Hg) (l+z)

C%"‘)3 21#1 202
(‘4 T ) |
: ? ) ~t~V
= . | & dx dz (1) (xe2) (1 +2)
! .
(ami) 2 W 22.8-211-1

(A1.29)
This cannot be further developed without expanding terms in the

numerator, which effectively reverses the order of the argument.

Al.5 Finally, we derive a relation which is needed in 57.3.




o0
WP m-p
2: 2" (m+p ! C, - Gf_,l)
V= imd-pP n -f

f
A 1
N
7
§-n
(@)

% 2
™M
N
«
D

-in‘

£ im & Y=g ¥
0 n~F
=" ") e ¢
= 2 :‘, 2 (f)m Ct P Cn-t J
N =t P totEm

(A1.30)
Equating coefficients of powers of z,
n-p
n w) P ~ (m-l-f’) witp
Z (t—) C¢ cm~t - P C n ¢
5 (A1.31)
This result may be extended by the following argument.
nt " ) P +P s f
i o w 2 -~ w
Z f)@°t)c*’ ot 7 WC“JPJCM ~n S (Y;»'t)cr Cot
t= L=
= m
(a1.32)
Now
n—p n~~| p
W | wm _f (e'W m
Z (t—'—l)ce— Cor = 2 t-)ct*l Cn-peg
taim =~
W~ Py
- n-| ! m 4
- Z <6)(Ci‘ + m Ci—) Ch-(»-'
b=t

n-9-|

= w1 +p m~l P . n=1| wm e
( P )C A Z (t')ce C s
t=w

n-i
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- m~{ 4+ m=t+p P P
Y 34
( ° ) n-i * W ( P ) Cy]~’

o tt 0~ +p
< ) Cm ’
G n

(41.33)
Hence, combining (A1.32) and (81.5%),
= M+ p~ |
: n ¥ia r e ™ P
2 (t-)c""b) Ct Coe = ¥ 1 ) Ca . (41.34)

t=im
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Appendix 2

SOME REMARKS ON THE COMPUTATIONAL PROBLEMS INVOLVED

The initial computational task was to calculate successive coef-
ficients az from the recurrence relation (3.23)‘and, later, the
coefficients ﬁ% from the corresponding relation (6.19). After
calculation, each set of numbers was stored in punched card form, the
card deck being used as data for subsequent investigation of the form
of 03 (or Kl ) and the calculation and analysis of the associated
polynomials.

Apart from simple algebraic functionsy the recurrence relations
involve binomial coefficients, Stirling numbers of the second kind
and Bernoulli numbers. These are best computed in separate subpro-
grammes at the beginning of the main programme and are thereafter
available for +insertion in the main calculation.

In the first subprogramme, the binomial coefficients are gener-—

ated by successive applications of the simple recurrence relation

(;) B (;l) ¥ (5:'1), (A2.1)

with obvious modifications at the end points é = 0 and 1 = .
Reference to either (3.23) or (6.19) shows that the Stirling numbers
Cz; always occur multiplied by the factor (4 —| )!/(25-- 1)/, so it
is convenient to compute: the array of numbers

A ._. , ._
p? - é_*..__"s_’ &t (42.2)
2143
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instead of the Stirling numbers themselves. The latter satisfy a
recurrence relation

|

W
cn = €, vw Gy (42.3)

|
and the recurrence relation generating the D, is easily proved to be
4 | 3-2 -l 2 4 :]
I T - % S YD, # -
(42.4)
For given L ’ j runs from 1 to 2t . The apecial cases of (A2.4) at

the end points are

1 D.
b, = b VR (a2.5)
@i-1)(2i-2) '
i 2
32D, +4D;
D% = £ = A2.6
. (i-1)(2i-2) Wiieo
2t~
D, = Lo, (42.7)
2L ‘
DY = I . (42.8)

A second gubprogramme has been developed to compute the array of
numbers D? by successive application of these relations.

By the convention established in Chapter 3, D? is taken to
mean Bzi/(2€)! when -& = 0, where B, is the n'+th Bernoulli number.
This set of numbers (i = Os 1y «v.) is tabulated in standard ref-
erence tables and is best entered directly into the programme as a

set of constants.




Part Two

THE BELECTRICAL CONDUCTIVITY OF A THIN METAL FIILM IN

A LONGITUDINAL MAGNETIC FIELD
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SUMMARY OF PART TWO

As for Part One, it is convenient to summarise the development

of the argument chapter by chapter.

Chapter 11 The Boltzmann equation is solved for thin film geo-—
metry under the following assumptionss: -

(a) Alrelaxation time T" () exists.

(b) Electrons are quasi-free (ﬁ ==m*3{/h where m¥ is the

- effective mass).

(o) Scattering of electrons at the boundary is wholly diffuse.
The electric current density is then evaluated, leading to an expres-—
sion for the electrical éondﬁctiVity'd‘ involving a triple integral.
In the "high-field" region d/2%, » 1 (d = thickness of film, T, =
cyclétron radius), the limits of integration permit evaluation of
all three integrations, yielding ¢ in terms of elementary functions.
For smaller fields hoﬁever (d/2*;-< 1), only one of the integrations
can be carried out, and the final expression for I involves four
functioné deroted by A, B, C and D; the firs+t. three are expressed as
single integrals and the fourth as a double integral. The problemis
now to devise methqu for expressing these approximately in terms of

&

known functions.

Chapter 12 Each of the integrals A, B, Cand D is a function of
=~} ]
the. two parameters ©, = sin (d/2%; ) and Kk = 4/ (£ is the bulk

mean free ﬁath), and the magnitude of each determines the most
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appropriate method of calculation. The interesting values of K 1lie
in the range 0.01 § K £ 1 so that for a large range of K , 8, values,
Y =B(/25inQD4§ 1. It is then convenient to expand the exponential
appearing in each integral in rising powers of M and integrate term

by term.

Chapter 13 For sufficiently small 6, , M becomes large and the

resulting predominance of the exponential term allows the integrals
A, B. and. C to be expressed as asymptotic series. Though intended
primarily for the range P # 1, these series are servicable also for
P £ 1,though with less accuracy. The exponent in the integrand of
D exhibits different behaviour as ©,~> O compared with those in A, B
and C, and a Taylor expansion in descending powers of p yields the

most suitable approximation.

Chapter 14 Here the conductivity calculated by the methods des—

cribed in chapters 12 and 13 is compared with the correspondingvalue
found by Kagm by direct numerical integration. Close agreement is
obtained between the two results, except for a few small ranges of
the two parameters involved.

The theory is also compared with the limited range of
experimental results so far available. Unfortunately experiments on
thin films, compared with those on wires, have not been very numerous.
Of those which have been reported, some are unsguitable as a test of
the theory because the metal does not comply with one or more of the
conditions implicit in the theory, e.g. that the Fermi surface shall
be spherical. Theoretically, the best metals for experimental
observation of the effect would be the alkali or noble metals. The
experimental results -of 'Gaidukow 'and «Kadletsdvé;'probably cons—
titute the most convincing evidehce, imperfect thdéugh it is, for the

existence of the effect analysed in this thesis.
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Chapter 11

- THIN FIIM IN A LONGITUDINAL MAGNETIC FIELD

11.1 Solution to the Boltzmann Equation

Consider a thin film lying between the planes g = 0 and % = d.
We assume that the electrons are quasi-free with effective mass m¥*,
Amagnetic field H and an electric field E are applied in the z

direction. Let
N (v, g\ dxdydz do doy, Ay

be the number of electrons in the volume element dx'd% dz - with

velocities in the range v, and v, + dv, ,e.e3 N is to be determined

X
from the Boltzmann equation

aN A ; ?_ﬁ! . 24 o - N"'/\/o
Py ¢ Y R (11.1)

where T is the relaxation time and N, +the equilibrium Fermi-

distribution. Since
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When E and H are zero, N must be the equilibrium function N, .
Hence 8Ah>/a€1 = 0, i.e. N 'is not a function of position. Putting
N-N, = n(g', y) and replacing N by N, in the term involving E, we

have as a very good approximation

DH o N oN on ]
i Cand N # . 0 — o = -_ __IQ..
°% 'a‘f & ((r% 50, X 2 3) -
(EE:%)
Since N, = N, (v, + v; + y: ), this reduces to
My 2 oMo w: H & ] n
2y m* [E v T (”‘3 v X b%) S
(11.4)
Putting
- QET a - s O
"(Y;Z) o 2 0 Trg*[,Jrg(/ox’ ‘3)‘3)])
(11.5)
we obtain
— ot [ <K = + = .
Yy 3‘3 ( blha > ¢ 2 VL)

where & = eH/m¥c.

Let us now transform to spherical polar coordinates in velocity

space:
A, = Ocos® | Uy = U SwmOcos¢ | Uy = VS € St
Then (11.6) becomes
A S © sw.cfa + e + 4 = o . (11:7)
TENRE
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The subsidiary equations for solving this equation are

fi

2

4 ¢ . _ o dg
AF S\ 0 sin oL 3 (11.8)

of which two independent solutions are

g e m(;(-(b/dT) amd cos § + 2% < coust,

- Sin®

The general solution is therefore

g —emp {= 5L @ (g 55)T | (11.9)

where -2 is an arbitrary function which may include v and © as
parameters.

We assume that electron scattering at the boundary is wholly
diffuse, which implies that n = O for those electrons which are
moving away from the boundary just after collision. Thus g = -1 for

y = 0, vg 2 0 and also for y = d, v%-< Qs These conditions yield

“Exf"[* (¢~ms 8\)] 4 >0,

[}
n

Qo
1

~ @x9[~ = (b-27 + e 8)] y %5

(11.10)

where

S L T )

W5t © A 3m ©

However these equations can only be true provided (&}, &) < 1.

Geometrical considerations to be discussed in the next section
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show that the complete solution is:

(a) Forvﬂ> O(O<q>$ ™ )e

~{
q- - exp[ -k (d-cor'e)] e <
c e [ L (breee)] | 631>
- O ) £|?"J 82 é"l; ;
{1111
(b) For vg <O‘(Tl"<¢ < 2m ):

- o[ F G et} s
P

oo
1l

i

- eXp [" o?L*c(‘P" Cof(g‘)] , a1 g <

0 gs <1, & 2 1, (11.12)

n

11.2 Calculation of the Conductivity

Writing the solution obtained above in the compact form

3 = —exp(- ¥/« T ) where F appears in full in (11.11) and (11.12),
the current density in the z—direction is
‘} -7 Q’fff'vz Vl(’g')tg)d'(rx d“‘e‘r d 0z
) w W
2 x ~¥
= - Q'E fd,'l)‘"t 'U? ?-.,.l-}" fo{@ C(V-)?'Q s O [DRP(I" < /d-c)‘
% v
m
o ] e}

(11.13)
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Averaging the current density over the cross-—section and expressing
the resultant effective conductivity T =1} /E as a fraction of the bulk

conductivity <, ,

bA )y
- ¥/ur
}G':,, = 4Wd[d«3 Jﬂd@wseswgfdcfb(I—- )
s = ¥/
B 23.—! fdg ws(—)souQ[dcbe, . ) (11.14)

The geometrical interpretetion of I is as follows: Under the influ-
ence of the magnetic field in the z-directioén, the trajectory of an
electron travelling at an angle @ to the z—axis is a helix whose pro~
jection on the x — y plane is a circle of radius 7 = rosinG where
T = m¥*ve/eH is the cyclotron radius. Then since cos ¢ +hy/v sinb =
=cos ¢ + v ¢ - ooé4£. is the angle (¥ ) traversed round this
circle by an electron moving between a point on the surface y = Oand
a general point in the interior of the metal at which the instantan-—
eous direction of motion is 0O, ‘P sSee fig. i

Similarly when 0 < ¢ & s P+ cos Ez is the angle traversed
éinoe an electron collided with the surface y = d. The significance
of the inequalities in (11.11) is that, for an electron currently
travelling with positive Vy 9 the surface y =0 was the one last invol-
wed in a collision if €, < 1. If €, > 1, but &, > -1, the previous
trajéctory last intersected the surface y = d and avoided collision
with the other surface. If §.2 1 and €, € -1, however, the pre-
vious trajectory involved collisions with neither surface (¥ =0 )
and the out-of-balance term n(y, y) in the distribution function is
the same as that in the bulk metal, for this combination of 8, ¢ ,¥y
walues. Asimilar ‘argument holds for (11.12); for those electrons

currently moving with negative v, Hence the interpretation of(ll.l4)

%.
is that ¢ - I, depends purely on the -reduction in free path of

those electrons whose trajectories intersect the bounding surface.




Fig. 1 The electron orbit projected on the x-y plane.

(a) (b) (c)

Fig. 2 Projected orbits corresponding to the maximum possible
value for \I/ for given values of € and ¢ s When
B <OKT/9 and ¢ lies in the ranges (a) O to ¢° ;
(6) g to ™ , (c) T to T + .
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16,44
This is the formal justification for Chambers' kinetic theory approach‘.l.

By symmetry, the two surfaces contribute equally to the decrease

in the conductivity and for convenience we write

- o i 2
S T - 3 ' 2 : — ‘P/o('r
o, | = J‘O"} Jol@ cos O s 0 Jddn e , (11.15)
o 0 o
where
¢ = p-cse, | & < |
= o , & 210 ¢ (11.16)

2

i.e. we now consider only those orbits originating from the surface
el

¥y =0. Now (4T ) = m¥c/eHT = To/ L = M, say, ? Ybeing the mean

free path. Changing the variable from y to  and noting that

\l'(43,9)¢>) = y(4,-6, ‘P>)

; A 2y "
_6: = i Sfo (3 By = v
a, l e jd@us@ S(MQJ”dq;fd\]; S’m(ci)-\}*BQ, , (11.17)
° o

Here, the upper limit of 2w for ¢ is applicable only if no tra=
-Jectory which would otherwise contribute to the integral in (11.17)

is disallowed by virtue of its previous intersection with the other
surface, this being the case when d > 2, . The limits for ¥ in
(11.17) are then O and ¢ for 0°< ¢ < 7w and 2(¢ - ) and ¢ for

m < ¢ < 2w . The integrals in (11.17) are then elementary, yielding

G 2 ~ 27y
= & 4 2 l+ 2 v ~ @ y A3 2w (11.18)
0 6 K [_‘_4“1. )

Ty 16

where K = d/.e s the result previously obtained by Koenigsberg, Azbel

2l
~and Barron and McDonald.
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When d < 2%, , define sin®, = d/2% .. For 0 <6 <€ 0, (2+ < 4)
collisions with the upper surface again do not occur, but when
0, <@ < /2 (2+ > d) the upper limits for ¥ are reduced due
to the impossibility of an electron trajectory lying partly outside
the film. Defining (bc =co§|(l V4 i cos':l(l - 2 8in®, /sin O )3
the limits for the -—in’cegra‘tion in (11.17) are as follows:
For 0 S P < 0, ¢ '

>

0 anmd ¢ oS¢ g
2($my amd ¢ T <Y

b

g 2w,
For O, < @ & T/2 (see fig. 2):

O amed ¢, 0P P,

O amd ¢~cos (cosd +dit) | dos b,

2(¢-T) amel ¢+ P~ | T ¢ < TG

the maximum allowed value of ¢ being T + ¢q
Hence, performing the integration over ¢ and as much of the
integration over <[> and © as is possible in closed form, (11.17)

reduces to

~omp ;
L . )3 ot (1+8p)— @ (40~ swmbbo)
o IamwkK | + 4,))'
-2 [_'—' (AL~ 25006, 8, +4ps&.{leo C2_> -
L b pt+)
- 4
e CA'"“"“QOB"’PSW;&OC)] B =2 ; o< 2x,
B 210 St B (P+1)

{11.1%9)
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where
s pe
2 g - (3
" 20
A 9J 4B Rax @ 5P = ; (11.20)
T,
1 : ~V
- 3] 9 s 2
R jd cos & sunl o 3 i3
9,
T,
C = fd@ Cos @ sw@(&w&—sw@)[& - P
o ) (11.22)
~p($-cos’u)
A0 cos® seu’® fd(b w—-p(1- oty
J: LBl j‘?' ’ (iv.93)
wW(®,9) = Cos ¢ + 25000 /5B (11.24)

and where the subscript 2 denotes that p in (11.20)-(11.22) is to

be replaced by 2*}.
It is worth remarking that as 6, = 0, A, B and C all vanish

and (11.19) reduces to

T,

-(-rc-]-: = | — e g A fd@ o5 © gun © fol‘bstn&b MP(“K/S‘MQSW‘D

= |~ g;% + pac jd@mgswo fd¢]sw¢|%p(~k/sw9{sm¢l)

(11.25)
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{
sin® d0® d¢ replaced by sin® 4aof (i¢/ leads immediately to the
expression for ‘the conductivity of a thin film in the absence of a
8
magnetic field found by Fuchs .

/
The transformation cos § = sin o coscpl, sin O sin¢ = cos O with
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Chapter 12

EVALUATTION OF THE INTEGRALS A, B, C AND D FOR ¥V & 1

12.1 Evaluation of A

Considering first the integral A, we rewrite (11.20)as

~pT . e ‘ : Va,
A = ep Jd@eosl@ s B _axp):zpsw'a»xw@,/swe) ]
O,
o0 )M
S 3 @s =
= & [ w . (12.1)
=0 ;|
where
b v iy "
DN -l & sl -
Zn = d0 cos © st'[S’u\,"(l-—-swoo/m\e} "] . (12.2)
6,

" -4 . . /2.
Expansion of the sin  term in rising powers of (1 — sin 8, /sin @)
yields

L ® T, ,

4 2 5
= T, + 3 T S PR == Y + 35 § SR
 ® Ty T S I Tt

2L, = ~+ “+ J‘T’ + 8 4 2%

S v VS —
- ' 2 8 A T
A G ) i 3229
+ ¥ SR LS A BEe ye & G
. : *'f 7 de ¥ e+ " -




B

7 o 2 e 32¢
f
Zy & 1@ S ¥ 7
3 £ vy vz o+ L g g
Z 2 Tz + 1\4 + 3? Y .-
b 2;? s /
= Y 7
227 % + ~Z.-ri faos
-3
Zg < "('(_‘ + %—‘Tr + - )
Z? # Mg kmws {12.3)
where
A
= t e S . P
= fde c05® (|~ $00,/5:0) | (12.4)
0

When p is an integer, the calculation of 7, is elementary, while the
Yo of half-integer order may be exactly expressed in terms of tab-

ulated elliptic integrals. Thus

¥ A
- 2y

i

h {C—Zl,s ¢ 208 <105 ~15st)K + (205 B P T ol Lt
+ (b ~245 + 15s") B ])
s, * b [@ 2us +845  « bs +9s* )UK+ (545 -94s"-95°-9s") E
+ (k3+ 725 =9sY)p ] y
- h [("‘21(3 +14 8 s¥= 206 8 =15 54 ) K +(-U{3’S -1 5L+:S’:3+:>“sz‘)6

+ (k? + 305" +15s") p ]) |
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T 7 h [("24 s +2128-]2105 46354 YK+
+<—~ZI‘).3 - 212 8 4663 5+ 663&9)5 +( 4y +%4o Sb‘log'sl‘)ﬂ ]
2
Tyt [('2’” +27657-32008 — 2639 s¥ 1256 T YK

+ (2765 -270 5" #2439 Fro039sYE (48 +1S12 sT- ‘7493")‘87
Pl

Ty T weta

il (12.5)
where s = siILQ, s h = (1 + s) i /192, K and E are complete elliptic
integrals of the first and second kind respectively, each of argument
k= (1 - 8)/(2+ 8)1"% ang g = (7/2)(1 + 8)* A,(7/4, R,) where
/\o is Heumann's lambda—function. — For definitions, see ref. 38, pp.
9, 10 and 353 tables are listed in refs. 23 and38.

12.2 Ewaluation of B

The "integral B differs from A only by a factor sin @ in the

integrand, and the method of calculation is similar. Thus

PR o (2
B= < éo 'U' ym

v (12.6)
where
LA
$ - e e ‘/ “
Y. - [ 48 co™0 cc0 [ sin™! (1~ 50 /5] ] (12.7)
0

0

When m = 1, (12.7) may be related to tabulated elliptic integrals
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without approximation. A preliminary integration by parts yields

{ R 4
WO § Z cos 1© o6
y! = 5 S™m % J : PN
5 Stn 0 (SwO= 506, (12.8)

L]

which may be reduced to
ity
V=T L= A (e, )] + Qq‘—j [(5-s-4HK=(21-2HE ]
S

,,a (12.9)
where K = K( R, ), E=8(R), R, =[(1-2)/2] and g, =

4
= sin“’[Es/(l “+ s)]1 . For other values of m, Y, is given by the
R.H.S. of (12.3) with Y, replaced everywhere by

WA

: , P
s, = fd@ cos B Fin@ (150, /3u:0) .

(12.10)
0,

When p is an integer, $, is again elementary, while for p =(integer+s)
we have

w
o
)

s o= N[ Cbhs=lbs-24 IR+ (6 +bhs + 245" +245°) E

+ (~sa268) ]

(%
W
n

h [(—643 +2725 + 24 K + (b +bls -24 FaudVE

4 (-298s -245) B ]
S = h [ (045 + 90l s+ 08 TYK + (64 +bUS ~b48 s> 44z ) E

+ (=4¥os +i205") @ ]
A
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S h [@GHS + 20008 +1976 8 — 256" K

o ©

+ (64 +64s -1920S5 19762V E  + (~6725 + 840 5°) ] )

+ 4
S'i/a ) _l’._‘_ [ (“‘3203 +17200§ +20424 33“"6““‘ S ""7("?SS-) K
S

4 (320 +3208 -20424 sz-.ZOQ‘u‘S? + 762t 768 S Y B

-+ (-n(ﬂzo.f +12600 33)(3 ],

Sufy = ====

where

E=-R& ), E-E(&),

12.3 Ewaluation of C

Treating the integral C in the same way as for A andB,

- .Tr -] w
C = 2 P Z @V’) X‘M ,
m =0 LU
where
W .
il e
Ko = fd@ cos'® Sin O CS“‘Q-S&"%)‘EM‘O- ok @6/%‘934115.] )
e, ‘

{12.11)

(12.12)

(12,13)

: ™ " . ;
Expanding the sin term, X,, is given by the R.H.S. of (12.3) with

T} replaced everywhere by
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T,

¥, P4+
‘tp = 5 deo cosLQ S B (1« s»‘nea/gu‘.‘O) &.

(12.14)
O,

When p is an integer, this may be reduced to

3/, ; ‘
t, = 2 [(S‘+85~sk—433)K ""‘(""(73-1-833)5])
lo5
23/2. ” - ;
.tl = —— [(S‘+2‘is +2751—'353)L< 4’(_5—85"63)':])
O
t. = 52.% 2 q 3 3
= LoE [(l0+1005 + 1805 —l20s SK +(~200s +303)E ~los s g])
VS
sk :
hy = 2 [(2o+zsz,s +7525 <1192 =210 F YK+ (=5ees+ 314 ) E
oS
~735 sgy]
s
-5 . .
"‘74 = . ((20);%72: + 851308 < 3058 ¥ —39305" +Z¢205’~)K
oS

+(~2944 s + (2982 s*YE + (= 6biS " +4205” ) Y :{)

r (12.15)
WhereE=E(ﬁz), K=K(@;_) r:ur1dY='rl’(2$)z [1-- /\o(Ql,‘ﬁ.z)].

When p = (integer + &), we find similarly

3

) = 2 — 2
e, loy[(s*+2;s)ﬁ~42sﬁ + (lo+ GSSJ’])

2%,

2 [($°+£42s +35sVF - §4s E + Clo--S’sL) by ]}

|os™

"

t 3,
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3fa
1:% = Tg—b:-[(r-fés’s P!O;SL"lors?)F +(~126s 1~z;c”,v")r:-
- :
+(l\0-162$)8])
3l

+ w 2 - s
%, wr,[CS+2mS+zwflazof~3;ﬁ)F +(~18%s +&408)E

+ (lo~5265")§ 7)

3
2

H

/s, [CS“HOS"S r350s <j0s0s ~ 175 s vo sT\F

los

v (~210s +21005 ~42)YE + ({0 =115 slwzsl')é"]
J

"6'“/3. = LS N B
(12.16)
where F and E are the incomplete elliptic integrals F( . » 1/ \ré) and

E(O, , 1/§2), O, = sinw’(l - s)%' , and § = [—%s(l - sa)]%.

12.4 Evaluation of D

Considering now the integral D, we change to the new variable
(

P = £ - ¢ ) and. drop the dashes immediately, whereupon (11.23)
becomes ) S §
7, q
- ‘PTr J‘ 2 ) ¥ f '
Be St | H8 wer aee j“ﬁb L1-29 —2p (3- 9" T exeLap($ 450 9"]
0 ¢

]

(12.17)

{ . ta. 2
(1 - sin6, fsin® )2 and 9 = sing - sinL<i> .

where Ct = sin"'

Expanding the exponential in rising powers of P and Writizng




(12.18)
where Dm is independent of p , we obtain
/.
j‘ dO cosgswefolqp([ 233 23«,“9 >/I .Slm 90 o *
0 (12.19)
0
The next coefficient is
Tl ‘
l/,_
D= 2 [ dOeos’d sin’® fokb [C2g)(rse’ §) <3-4" T |
O
(12.20)
g il v (b E 2
Expanding sin 9 and (g -9 ) in rising powers of ¢ ,

(-29)(¢+w'9™) = (5-9")" = (293¢ = 4 g% (1 + B g + L 37+ --).

(1g.27)

Now
q = S g - Sum §

(8- 1~ 33 + 2 (TP g) - 3—,‘;(1‘+147+1¢"+¢"j+]

(12.02)

.’. 33/1(| + _iLo3 I, 32 + -*_) -

250

2 2 \3h 2 2
G A AR TS S PR RN pRt o |

(12.23)
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Integration over ¢> may now be performed, yielding eventually

& . Y, ¢ cia ar :
o+ 2ty ~2ate X 2 sy, ~E(% iz e bz, o)

(12.24)
Carrying out similar calculations for D, and D, , we find
D * -2 ..,532‘4_;_:? ~ 44 L
Dy = ~(F+&)z, ~ (= + 4 Sac 22
3 & 1 2y + — 4+ = Z, o
2 ‘l') ¢ (320 Q;‘) 2
(12.26)

The series (12.3) for 42, and the corresponding series for X,
and Y,, converge rapidly when m is small, the convergence deterior-
ating as m increases. For a given number of terms included in the
summation, a more accurate estimate of the walue of these integrals
may be obtained by applying the nonlinear €, transformation (e.g.
Shankgz ):  for Y‘ , whose value is known exactly from (12.9), re-—
tention of the first 5 terms in the appropriate series gives a result
accurate to 0.03% when 0, = 200, compared with an accuracy of Oﬁlﬁ%
without application of the transform. The various series in rising
powers of P such as in egs. (12.1) and (12.18) are rapidly conver-—
gent for P £ 1, particularly for @, close to w /2. The series in
(12.24) - (12.26) converge well for 0.5 £ sin®, £ 13 though less
speedily convergent for gin ©, < 0.5, their applicability may again

be extended by employing the €, transform.

N part Y
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Chapter 13

EVALUATION OF THE INTEGRALS A, B, C AND D FOR M > 1

Substitutingsin @, /sin® = sin ¥ in (11.20),

L3
: b : Yo _2pX
A= 2 5“4;ﬁpjlﬂz COgX (Shﬁc(—fmﬁﬂg) o
S. q% 2 (1301)
Ko ™
where sinz X, = 8in®, . Amr asymptotic series may be obtained forA

by expanding all factors in the integrand except the exponential in
rising powers of (){ ~;(°) with the upper limit of integration rep-—
laced by o8 (which can at most introduce an exponentially smallerror)°
However, the first few terms decrease rapidly only for p >> 1 which

is the case here only for very small values of O, . This is because
(sin)ﬁfﬂ varies at least as rapidly as exp(—2’J)') in the important
part of the integratiom range i.e. ;(-~;Zo . A series which is
computatidnally useful for a much wider range of P values may be

found by first writing

—_— -9 bog s} — X2, <ot Lo
Sml) = 2 - i T2
§ e [ 142 -2y (o)~

i1,

3 £
-3 (PH0Y + f(rx (190t 18601 87) ¢ o] L (13.2)

where Vv = cot ¥, . Expanding the other factors except the exponential
in rising powers of‘(‘x'—-)g ), combining and integrating with the top

limit of integration replaced by <0 ,
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- A
30-5'0’ P 45‘30?'+25‘o+2w

2p +99 122 (2p+qv)”

Y2 —2pA
A= an™pTe e

(2p+q0)"™

L1+

¢ fw

-] -
. 165 430°- 80705 U +3 0"

ol 2 = - b
L 2 10243350 +15 268600 +758074 + ¥2140V + 495y . j
32768 @uravd

(13.3)
The versatility of this expansion may be judged from the fact that

even taking the limiting case } = O when integral A reduces to Z,
of the previous chapter, (13.3) yields a result to within 3% of the
exact walue of this integral for small values of @, .

The corresponding asymptotic series for B and C are
.
: ' i ~2pf
B= 2 Sb‘nt(x(; Jd)’ cost LSW“X~SW(‘Xo) o
1 Su«?/t
¥

~2p Ko /
£

3 . o
= 297 = v & l 2 % e ”S“.'.).. + ..E 357 UL+!5'£, c21d 2
(2p+70 )" b el 22 (ap+7v)?

~ o
L a5 470 ~ 197230 < 12830 +9y°
lo24 @pe7v )’

+

2.1 635535 v+ 901980 0" + 45183 +6L980 u'ﬂms* o1 ]
+ - - -,

(13.4)
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X,  SwX
iy 3 ~20Xo ‘ = " +M“)~z
= 27 cost, V e , +% 30-9v | & 4osv &2 f
204 81 (2 2prgP)
(?P+QV)WL 20+ 81 @pregv
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+ 35 130 =396V —20370 —75 v
1PN CYTR LN

e

~ -4t
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3276 & @P‘I’?v)q

(13.5)
The exponent in the integrand of integral D shows different
behaviour as O, O from that of integrals A, B and C, tending as
it does towards (- K /sin 2] sin<# ) instead of increasing without
limit. Since K is usually rather small, an adaptation of the theory
given above for A, B and C is not immediately possible. It is impor-
tant on the other hand to obtain an accurate estimation of the
integral D for small O, , since it alone determines the conductivity
ratio at zero field, ( O’/ To ) 0,=0 * The most natural procedure
for approximating D therefore is via a Taylor expansion in rising
powers of sin O, (i.e. in descending powers of p ). Since D itself
varies as l/sin ©, as B, 0 it is convenient to calculate instead
the integral D sin &, :
T w
D sb, = jd@ 08’0 §im @ I dp sm P exp (—K/swes»;t;;)[_-,g,( .
o

o
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+ 4 sl (- —2 oty K ’"_‘“K—““
$0 @ sws § SmB S 28w 0 st d bsw @ suid
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+ ; s 9, ( ____Eﬁ_f_ + ~—~i-—~—— B gl o sl
h K 5umd s’} K Sl @ sutd S0 suld 25wt 0 sl
X
..__K_ s >+ O(me)j
10 sWiBst® P Ggufes ¢ (13.6)

which may be reduced to

D swb, = __{EQ“K (6~1ok ~K +x’) +(,12K'L-K1')E,U<)j

_L_L [, Q'-'K( €~ 6K “S'K”A-S'Kg) 1"(‘13"‘(.‘—-5'»(") E, (K3 j

+ & p
+ [ & (=135 ~135K +3K> + 477 +5%5 ) — 30 K" E‘(MB]
{20 Pq‘
g
+ ol V") })
(13.7)
where
N ~ X
B (x) = [ dx e |

b b &

For the small values of K which occur in the present theory, (13.7)

is a good approximation for D sin®, when p R 1
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Chapter 14

COMPARTSON WITH NUMERICALLY COMPUTED RESULTS AND WITH EXPERIMENT

14.1 Comparison with Numerically Computed Results

The conductivity ratio 0]/05 is given by (11.18) for 4 =2 27,
and by (11.19) for d < 2%, 3 in the latter case, the integrals A,
B, C and D are evaluated by the methods of Chapter 12 or of Chapter 13

according to the walue of Y in question, the changeover occuring

at p~ 1, i.e. at d/*, ~ K ., Conveniently, the validity of these
expressions may be checked by comparing the walues obtained with the
corresponding values computed by Kaamzby purel& numerical integration.
Fig. 2 of Kao's paper shows 2 /Po (= To/a ) plotted against 4/,
for a number of wvalues of i< in the range 0.01 to 1.5. It is found
that data exhibited for d/ﬁ,?} 2 correspond precisely with (11.18),
as expected. In the evaluation of (11.19), calculation of the
primary series for A, B, C and D in rising powers of M has been
carried out up to and including the cubic terms; for all other series,
up to and including the terms exhibited. For 1< d/¥, < 2(0.5<

sin 6, < 1), the "small 1% " theory of Chapter 12 yields the same
curves as- in Kao's fig. 2, for all X . ForK = 1.0 and 1.5, the
results for the remainder of the range (d/¥, < 1) are reproduced by
the "1arge ¥V " theory of Chapter 13. For W = 0.5, the region

0.4 % d/?o,$ 0.6 involves a slight error not exceeding 7% in the
value calculated from (11.19); below and above this range the large

p and small ) theories apply respectively with negligible error.
For K = 0.1, the small M theory appears valid for practically the
full range of Qﬁn , and as confirmation it is found that (11;19)
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gives a result in agreement with the appropriate curve computed by
Kao right down to d/+, &/ 0.1 with a magimum error of 5% near the
bottom end of the range. The final case K = 0.01 is somewhat less
successful, due to the fact that when Vi /ﬂo becomes 1arge) any
error in calculating the value of the integrals occurring in (11.19)
appears as a greatly magnified error in /46% . Whereas the series
deweloped for N £ 1 are perfectly walid for virtually the full
range, the agreement between the two sets of results becomes less
exact for 4/, £ 0.75, the error amounting to 20% for d/+, = 0.5.
The approximate methods developed in this thesis proviae therefore

a value for the conductivity in excecellent agreement with the numer-
ically computed solution, except for a few small ranges of the para-—
meters, principally the region K £ 0.01, d4/7, £ 0.5. They thereby
serve as an encouraging basis for inwestigation of the many more
complicated size—effect conduction problems in which a magnetic field

is present.

14.2 Comparison with Experiment

The theory presented above makes certain assumptions whichmust
be tested against the properties of real metals before an experi-
mental verification of the theory can properly be made. PFirstly,
it is assumed in the derivation of(ll&lS) that the free-electron
theory is valid and hence that the Fermi surface of the metal is
spherical. DNot only does non-sphericity invalidate to some extent
the applicability of the theory, but it is also the cause of bulk
magnetoresistance, observed even in the group-l1 metals for which the
Fermi surface is a good approximation to the ideal spherical shape.
It is preferable, therefore, to choose for experiment those metals
for which bulk magnetoresistence is small (e.g. the alkalis) or

saturates in quite low fields (e.g. Al, In, Zn, Pb) if the
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sige—effect contribution is to be easily distinguished. Alternatively,
it may be possible to extract from the crude data the size-—effect
constituent by analysing the way in which the two separate effects are
combined. This has been attempted by Olseﬁlfwho proposed a modifi-
cation of Kohler's rule, and by Chopra?qwho assumed that the fractiona:
changes in resistivity due to the bulk magnetoresistance and the sige-
effect are simply additive. However, rigorous theoretical support for
these procedures has not yet been furnished.

Secondly, we assumed that electron reflection at the metal surface
is completely diffuse, i.e. that € , the fraction of electrons suffering
specular reflection, is zero. Experimental evidence for this is
conflicting. On the one hand, the fitting of the size—effect theory
to experiment for several different geometries together with measure-
ments of the anomalous skin effecfm.have suggested that € = 0 for
sodiuﬁ‘and indiugywires and for caesium films% On the other hand,
evidence from measurements on thin filmg of gol£7and silve;‘favours
the conclusion that scattering is at least partially specular. The
experiments of Chopré indicate that & depends on the heat treatment
applied to the specimen and whether it is polycrystalline.

Thirdly, we have assumed that the classical transport theory
approach is validj as pointed out by Chambergi this is probably a
reasonable assumption unless the magnetic field becomes exception-
ally large.

m}n practice then, experimental verification of the theory, at
least for those materials for which zero-field size-effect experi-—
ments heve shown § = 0, should be most easily performed using thin
films of the alkali or noble metals, or metals in which the magneto-
resistance saturates.  Hopefully, it should be possible to observe
the same qualitative features in other metals, deductions from which
could supply at least corroboratory evidence for the values of the

mean free path and Fermi momentum.




-186-

1,13 ,25, 36
Compared with those on thin wires s, experiments on thin

films employing a longitudinal magnetic field have not been numerous.
Steeléw'has observed a well-defined maximum in the longitudinal
magnetoresistance of antimony single crystals at low temperatures.
However, the magnitude of the initial increase is far greater than
predicted by the present theory and is almost certainly due to the
effect of the normal bulk magnetoresistance., Without a wvalid method
for the extraction of the purely geometrical contribution from the
observed deta, the size-—effect analysed here can only be said to have
been qualitatively observed. Similar reservations must be attached
to Babiskin'gm experiments on single crystals of bismuth. The doubt
as to what the data represent is further increased by the possibility
that the walues of the magnetic field used are sufficient to cause the
onset of the longitudinal Shubnikov-de Haas effect.

More recently Kagr has noted a maximum in the longitudinal
magnetoresistahce of bismuth single crystals, but the limited accuracy
of his results apparently prevents any quantitative conclusions being
drawn. A similar maximum has been reported for thin silver films by
Chopréaq. Here, the influence of bulk magnetoresistance has been
explicitly allowed for but, as already mentioned, no justification is
given for his assumption that the fractional changes in resistivity
due to the bulk and size effects are simply additive. Indeed it is
easy to show, making only the plausible assumption that films of any
thickness tend towards bulk behaviour in the limit of very high
magnetic fields, that this postulate is at best correct only for
comparatively thick films (K 2 1).

Probébly the best confirmation so far of this particular thin
film effect has been provided by Gaidukov and Kadletsovéflwho measured
the magnetoresistance of platelike zinc whiskers. At 4.2 K, the

resistivity of a whisker 4.9 ¥ in thickness was observed suddenly
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to increase as, the magnetic field was first applied, followed by an
equally sharp drop fading into a slow decline towards the bulk value.
For samples of this order of thickness, volume magnetoresistance is
negligible. Although this excellently confirms the qualitative
predictions of the theory, detailed examination reveals a few
discrepanciesj for instance, the position of the maximum in resistivit;
was found to obey the relation th“cls constant, compared with the

- -d0'43

theoretical prediction Hmam

= constant. However, recalling the
rather idealised model postulated in the theory, the extent of the

agreement between theory and experiment is reasonably encouraging.
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