THE CRYSTAL STRUCTURE OF METHYL SUBSTITUTED 1:2-BENZANTHRAQUINONES

Robert Patton Ferrier

A Thesis Submitted for the Degree of PhD at the University of St Andrews

1959

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/14573

This item is protected by original copyright

4 Herss 88
Phothanym Fea ryits mellave of DOQinat of Pritiosorit 08 4

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10171118
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
m_{2} 135
$$

DJURARATIOR

I bacoby deolaw that the follewning thoula to Hy ora coaponsthon, that the werte of which it in a secoud has boon onrexted out by mo, and that it hao not proviously beon prosented for a Mighre degree.

I entersd arcon's Colieco, Manice in Ootobers, 2952,
 and Choalotsy. I them sead Iow boucures in Plyasces, boting cmarded Fliset olmae Howorres in Phyution in June 2953. I secotved a sle Jumee Gatvi Mraveiling Soholasahty and have completed there years sescaroh under the aupurvialion of Be. 8. Joali, duying which timo the woat contatiod in this thoule was performod.

GERTYTHTCAYS

 that in has gurevied the contitlome of orthrapoe Vio. 16 of tho Undurrasty of 5t. Andiewn, no that be 20 qualifice to eritast the following theste in appileation fors the cogroe of PA-D.

Pact
Intizoluotion -•• - \bullet 2

(a). $\mathrm{x}-\mathrm{may}$ Oemarating Uaits -•• 5
(b). Cancraa - \bullet -•• 5
(o). Structuse Feptos oelculating Mahines 3
(d). The optical Distemathanotor -• 6
(0). The Moacuruant of X-may Intomastice 6
(1). Vioual Eotimation of Yifomaltios -•• 1
(18). The Meammonat of Intcandtien Uatne the Douklo- Yom Bocosding Hsomodenalsemeter -•• 1
(811). 2ma Meammenont of x - ma Intcanitice Uning the Goleve Coverter Bpeotroneter 9
(111a). Apparatue -•• 9
(1i18). Preitninary Sotiling Fcohricquec 12
(1110). Intenalty Measurements -•• 13
 for hont Counto in Integrated Inteonitios 25
(1ilo). Rolntive Interantica 17
(1s18). Disennmion - 0 27
(1ily). Othar Unes of tho Colgue Countor 3peotroneter 18

CHAPTER IT

				Pagr
(a).	Introduction -..	-**	$\bullet \bullet$	20
(b).	109-3amsanthr rapuinose	-**	-**	22
(ब).	3-Methyl 102 -3onmathenquinono	- ${ }^{\circ}$	-**	22
(d).	4itothys 2:2-3]enamnthrequinone	-**	- \cdot	22
(ब).	5-1tothyd 282 -3macotitraqui nono	-**	-**	23
(8).	G-ithyd 202-3easmatimequinone	-**	- ${ }^{\circ}$	24
(8).	T-ituthyì $\mathbf{1 8 2 m - 3 o n s a n t h a s a g u i n o n e ~}$	***	***	25
(a).	8-Mothy 2 2 -menamblimgulnono	- 0	-**	25
(a).	20-liethy2 2,2-3emeantlusquinose	-*	-0*	26
(1).		(2nt. Doenil)	-**	27
		(2nd Forn)	-**	28
(12).				29
(2).	4°-tothy 212 -3comantlinequidoso		-*	30
CHAPTEA TIX				
(a).	Preliminary Dleousation	-**	-**	31
(b).	Wedemied Reolprocal Lattleo mhoomy	-**	$\bullet \bullet *$	34
(a).	Deteruiastion of the Approartmato 3 t	tuse	$\bullet \bullet$	37
(d).				
		quinomo	-**	50
(a).	Dicoualion of the structuse	-••	-**	7

(a). Prolindmay Dicousolion 86
(D). The Defesmination of the Appeozdmate Stzwotuse
(1) Disoot Mothod 87
(11) Mrinl and meros Mothods 90
 94
(d). Drecusaion of the Strooture -•• 123
(o). Comperincon of the struoturea of 5-10thy 102-3ensantine- quinone and 20-1tathyl 1:2-mensomblaruliono 118
GRAPTBRY

9820-D2,
(a). Provicus Warts -•• 122
(b). Preliminary Dicouegion 223
(o). Doternanation of the Apperstimite Struoture
(1) Diseet Method -•• 225
(14) Ryial and Bysor Mathois 126
(a). Conalueion -•• 130(o). Appendit. The Development of Coloux in the aryotal of
Ineallation with X-teays 132
RETHRTHCRES -•• 232

THyAODUCTIOR

The mabjeot of this theats io the determination of the arystal and nolecular Btruoture of three organto compounds. two of theae compounde, 5-methyl 212 -bonsanthraquinome and 20^{0}-mothyl 1,2 -bereenthragutpone, aso of interest beosuse of thole relationchip to the Cosreaponding methyl subotituted 1,2mbencanthrooonecs 5-mothyl 2:2-bonsanthreceno is oasoinogenic, wherens the 21 -methys decivitiv haa no blologioal aotivity (Bary ot. alo, 2935). Also is tho efructures can be dotermined coourntoly, thon usoful information will be obtained about the intesatcanc dietanoes in the anthraguinowe type of struoture. The thisd compormen laveotigated was the alompomor of 9120-dinothozy-oarbongi 9820 -dihyiroanthrecone. The interost in this compound te mainig sterzochenton, the pareat compormd 9n10-dilhydroo
 The firat atage in the doternigation of a aryatal atruoture is to dersive the unit oell, which is the repeat unit of the aryotel, and to find the selationships of the molcoules within that unit. When an z-ray bean is inoldont upon a axystal, owoh sot of parallel plasos will Gtive a aingle difrreoted wave whioh on be recosded photographion2ly as a epot. Fron an ccramination of the ponitions of these opote 10 is posaible to detorinine the atmenatione of the unit ooll. If the donsity of the oryntal and the molocular wolght of the compound ase known,
thea the mumer (n) of molecules in the unit ooll oan be doternined srow the equations.

$$
n=x_{p} \| / n
$$

shaxe II In the molcoular welght of the compound,
V Is the voluee of the unit cell,
II 1s Arogedso's mimer,
and ρ is the denatty of the aryutal.
Furthamore by obsorving ang aystematio absonces in groups of relleotions it is often posatble to desive the apaco-group uniquoly or at least to linatt the apecombroup to two, or in a few oases throe, posalbilitien. To distingulish between altermative apaco-groups other infornation mant be used.

The waves diffracted trea a set of aryutal planos have assoolated Whth thea an mplitude $F(b: 1)$, called the otruoture amplitude, and a phase. The atrroture auplitude of a not of planes ann be doternincd by meacuring the roincoted intencity whioh, after cosseotion for ourtain - geometrio faotorm, Elwe the equase of the struoture maplitude (Omp.III, seot.(a)).

The major problem in mesay arystallographic etruoture worts is one of phase dotermination. The mothode used to docivo the phase of a given otzuoture faotor thil into two main groupe - diseot and indisoot methotis.
(a) pireot itathods.

Onis one direot method wes used in this work, that
of Harses-Kusper inequalitios (Harker and Knoper, 1948). This mothod whll be disoussed in Chapter IV, ceotion ($\mathrm{b}_{\mathrm{p}} \mathrm{I}$). (b) MyMar and Byoos Mothode.

The beats of the mathod of tyial and azcors is to use any information avaliable to poutulate an atomio axrangement which oonforma With the apmoo-group aymetry and to calculate the stzuoture faotore (otruoture amplitudos) it would give for ocritain rencotiona. Froa the egrecment betweon the observed and culoulated atsroture feotoss an entimate of tho correotness of the proposed struoture oan bo obtainct. One mothod of doling this is to caloulate the sollability inder, A_{0}, thith is darined by,

$$
R=\Sigma\left|F_{0}\right|-\left|F_{0}\right||\Sigma| F_{0} \mid
$$

Whase Σ astends overe all the obseswed stsuoture seotors F_{0} (htri). The velue of in should deoresce as the structure approsohes the cosseot ans. The mothode of melghted reoipsooul 2attioes, optical tranaforms and
 to the tirlal and axpor mothod and will bo dinouseed in dotall in later ohaptere.

The dictrybution of elcotion denalty within the unit oell is pariodic and aun be reporesanted therefore by a Fouriar secien,

$$
\rho(x, y, 0)-\frac{1}{\nabla} \sum_{-\infty}^{\infty} \sum_{0}(x b y) \text { exp. } 2 \pi \Sigma \cdot(m / a+1 y / b+1 \varepsilon / 0)
$$

whare V is the volume of the unit coll.
Hence once an approydmato struoture han been derived, the phames of the

4.

calculated stzuoture faotors, together whith the obserwel otruoture seotora, aan be usod to calculate a Foupler aynthoais. The labour involved in computing a thil threo-dimenatonal Foumers serses io prohibitivo unleas an cicotsonic couphter is available and the teohnique genareliky used is to computo two-dimonatomal Fouricer projections. The positions of the macima in the olcotzon donatty plot are taken as tho atonic position and the comordinstes of the atoms can thus be dortived. These nee co-osdinatos oan to used to secaloulate the atzroture smotore and reitine the phasos. Henco by sucoesaivo Fourior gyatheses, involving an inceseasing mumber of struoture feotors, the co-andipates aun be sefined 1.0. at each stage of tho rofinosent a atruoture is obleained whioh appecortmates mose and sose alosely to the caryeot etzuoture. The othar two mothode whith wese used in this worte to seftise atconio comordinates wose,
(1) arcoonadve ($\mathrm{Y}_{0}-\mathrm{P}_{0}$) Doushior ayathoses (Coohsen, 2951),
and (2) the rethod of least equases (mugtres, 2941). The two methods mantioned above will be digoresed in dotall in Chapter III soctions (d) and (d).

5.

CHAPTBRE.

APPARATUS ATD TECMITOUSS.

(a) x-ray Gormatina Unite.

Ino phillispe merew ganorating unite were used in this sosoasch. Dao of thran wan of the oonetant output type in whioh the output voltase and oussent ase atabilimed. This undt mes usod perineipally in the dotocnimation of nocurato a-tay imtenatitios uaing a Dosiger counter spootricomor.
(1) Gmasel.
The thase typee of ximen oamases used weso,
 osolliation photographes,
(2) a Buanger Procomation amase (Buorger, 2944),
and (3) a leodo-cor maiseonborg gonicmoter sor moving fum photocrapha.

The Locolo-cori ammest was modified to give a uni-dircotional integrated opot (Stanley, 1935). In the later atagos of the researoh the manally

(a) Benuature Fagtos Ontculating Machinas.

In the initial stages of a axyotal ofruatuse detematration, a ntruoture factor machine of the type doacoribed by brage (Jmegs, 1952)
was usod. The merohine operaties on the prinoiple of momonte and an It the struoture seotor is motghodn The accursog of tho maohino, homever, is inimited. When the structure feotose wese requised nose socurately, they vore oalculated on a conte olocteyc Pacit onioulating makino.
(d) IV Ontion Miserpotionster:

The pzinoipie of the option diftreotomoter was eliset mucsented by Brage (Bracg; 2944) and dovoloped by Lipmon and Taylor (LLpson and rayios, 2951).

The moloouline model to be inventigented is sopresented by is muber of holes pumohod in an opeque mard uating the Fantocraph punoh.
 1. obmerved in the foand plame of the objeotivo lena, whese it oen bo studiad $\begin{aligned} & \text { ath the atd of a nicsoncope of photogrephically. }\end{aligned}$

The teotritgue gmocilly uoed wes to prach, not juat ons moleoulo, but the contonte of fors unit colles The moleonles mest have casotly tho sane selatlomahspy to one another as they do in the seal oryntel. The segulting trenoform oan then bo compared dispotiy

(o) The Noasumgnont of X-say Intongitios.

Theree methods of oatimating the intenaity of x-suys refleoted swou a oryetal plano meer used in the inveatigatlon.

(1) Vhema Rotimation of Intonatitios-

These refloctions from a aryotal sone wese seoorded on z-say idim uaing thr loedamour Moisoonberg goniomoter. The nualtiplo film teohnique devoloped in Robeatison (Robertson, 2943) wes
 layes of black paper, weit paoken into the ouncra. The interefim ebmorption matio was moasurod for each batoh of sin uning tho oolgor counter speotromater (Chep.I, seot. (0,111)). The intenatites wore correlated by means of this ratio. It was sound that, in gomeral, the ranze of intematition from a partioular sone oould be oovered by two axpoance, anc lonc and oso ahort. The relative intensitios of the aroflections wore eatimated by fieusi oompurison with a curtes of apote an a miltiple arposure statp, propared by taking a sot of ancosuliy timed osolkation photocraphe iside by ufte on en IRford "Indontrial $0_{0}{ }^{\prime \prime}$ zeray milmo.

Miarodenaftonoter.

This 1notsumant, mannifotused by Jojoe, Losbl and Co. Lido, and based an the doetgen dovelopod by Walker (Walkor, 2955) wan only aviliable in the later $\begin{aligned} & \text { Etages of the work. Tho prinolple of oparatlon }\end{aligned}$ Is based on a doublombena ilght ayoten, in whioh ilght from a singio source is aplit into two beans which are enttohed alternately to a
alagle photomitiplying oall. Ono bean passas through tho photographically reoonded apot from a oryital plam and the othore throuch a "grey" optical domatly wedge. If the two boum have different intematios, a difference algmal is prodnced by the photomilisiles, whiah, after mpllstoation, omuser a sexwo motos to move the optionl denasty modge so te to seduco tho inteandty differmes to save. In this mis in contimounaly belanoing ajutem is obtained and as the apot in sommod a seoost of the donntsy reaponso to obtatnod and
 alsootly to that of tho opesical metge.

The optical donaity medgea supplici whth the luatermant wace found to be notilinoen; tho departuse srow 21 noarity boting most marteed at the ande of the wedgen. For this smacon it wan doolded to oallbente the diapleocmant of the wedgos agrinot z-ray intcnatity. Only the
 The calibention nas coryied out uaing a acmios of spote of known
 unting tho congtant output s-ray genarator. The inotmunant mas sot to reeord the intmatity of the unerposed Plim at 3 cm . from the bottom of
 of medge dieplacesment and zway intossity, and graphes were drewn calliberting the wedran.

In an aotrul meacurweent of tho photographically socomide zeray intenatition smom a aryetal mon, it weo foum doalmoble to uso e

Phedn. The Galger counter apeotroceter.
 untsurin midaio postion of the opot. The values of the imtenalty at the peak of the soricetion and tho bacteground intenalty ase swa from tho graph and tho difterenoe betiven thea te the vilue of the aotual peoti interastivy.
 Sneatrangter.

The moarcurenant of photographically recosidad zeny intenalties, by Fteval ocupariaon or by seoordine micasodenaltometer, 20 subjeot to fafrly large ersoms, eepeoicily in the case of vienal
 ldenl mothod would be to dotcot diseotly the y-way gannta rellected frow a aryetal by proportiomal of solntillation countere. Sustable typee of theee counteren wrece unavallable at the that of the laveotsation and a Gelger coumters mae used. The coluser counter has owe dimarantace in that the smit of counting is limitod by the ocmporitiving lang doed-tino of the counter tube - betweas 200 and 400 aldasoseconde.
(a) Appasyitus.

The Gotgur cormiter spootranater used was deolgiod by

 The fysut maber safers to the appropirlate ohnpter and the acoond number to the anguance of dingrem or teblen within that abapter.

The prinoiplo is ono of sotating arystal and atationary detcotor. The argital zotation was obtalsed by a ooupling botwen the gonsomoter hand and a sarwo motorg in whilh the apeod could bo varited in fired sation. The ratio between the ageod of the motor and the rotatica apeod of the oryistal mas zeduoed by a gear-train located inasde the

 the imoldent y-tray bemm. The affeotive aperture of tho ootgor counter tuis is altared by vasions siste out in bwans piateo and ineorted in a
 filleare of althes niakel 8011 of unisom thicioness on pleoen of z-may Ifloed "Induetrital on sype sis.

The acometry of meny seficotion io mich that, if θ is tho binces angle for a particular plam and ϕ to the angle whith that plane mobos
 (200) or (010) or (002) plane - then the merleotion postition of the plama wth seapeot to $\phi=0$, 10 eftrea by the angie $(\theta+\phi)$ and the s-rago rarkeoted from the plane aro dotcoted at an angio 20 rith reapoot to tho
 15 Fisol,2. The $(\theta+\phi)$ counter can be sead to $\pm 0.002^{\circ}$ and the 2θ varator moale can be seed to $\pm 0.03^{\circ}$. A srugb $(\theta+\phi)$ soale is also avaliablo and to usad in the eotiling of the aryotalio.

The perlson stow the Golgers counter tube wase socorded uating

13.

 ratemoter mhich mas usad to reooud tho prortice of the oxymel
 almo unod. This combleo other the mubar of ecrate in a giver stim or the time for a speokfle muber of couats to be doteratant. IE the somite obbainod friva a doternamation of a sot of intenaltion ase to bo molitablo, the meny gupornting unit mast to of
 throughout the intenaity datcminations.

(b) Proziminaty Soteing Teohnicul.

In the dotcurndratica of tho intemation of the suflections fron a oryatal sono by Golgor counters measurononte, it mas form

 0 ($\theta+\phi)$ and 2θ ware deternilmad for ach rokiootion in tho somo (the viluo of $\phi \circ 0^{\circ}$ io amsignod to an adal oot of serlcotions) ant were than ent out, in table form, in incerpaskes antece of $(\theta+\phi)$. The argital mae now eet to sotato about the ragutrod argatal
 ocmater apeotrowoter. Hotore commonolag intanaty moacurementa, it mes ftret asoentatnod that the serlooted boan frow any secteotions the lutenatis of thich tras to be moasured, paased through the ountise of the alit plaed in fromt of on celgur cornter tubs. The cotiting of tho

FIG. I, 3
FIG. I,2

FIG. 1,4

Pricha. The experinental teobalque used to set a oxybtal on the Oeffar counter spootrometer.

Eris. 2a3. The doternination of the accurate refleoting position using the $(\theta+\phi)$ soalo.

Mrainh Theosotical solloation peoille.

12.

another and cach axe was sot theividunily in tho following mer. A sernoetion was aeleoted whioh had a 2θ viluo of appoozemately 90° and wes suah that, in the rellooting ponitiong ase asc as mear an posalblo blecoted the angle between the counter tube and the
 atty of the serfeotion man found untag the recoseling ratenoter and the
 adjuited to allow the sertcoted bean to pase therougt the milade of the alit. The thoio procose mas then repoated for the other aro. The $(\theta+\phi)$ soule wan out so that $\phi=0^{\circ}$ for the sefesceno selicoticue and the teoknigut uned the as follows. The colare oounter when to secoud an actal sefleotion of smacombile intemalty. The asyetel was alouly rotated through the rerkeoting poattion and the vilue on the $(\theta+\phi)$ noalo for murimu intenatiy mas notod. 20 obtaln a mase cocurate vilue of the serleoting positica, the crystal mae once mose sotated alowly with unifoca volooity through the sernooting poastion and the proitle reoorded on the exoording retempter. When the oryetal
 applicd to the recoster and a refaronce line was drewn on the papar. The peat was acamed and anothor seference lipe ande on the paper as shown in Fige 1,3. Free the known vilues of $(\theta+\phi)$ at which the sefarsnce lines wase made, an acourete artimate of the profile pook was mado. The aano artal rericotion will oocur at an anglo -2θ srom the firat reileoting poaltion and the Golgos counter was set at -2θ
to swoond this reflootion. The vilue of $(\theta \bullet \phi)$ at which the sorlootion ocoure wan reocerded with the eryital sotating in the mame

 roncotion an althers atide of the trie $(\theta+\phi)$ sonie seco pontilios. The $(\theta+\phi)$ counter was than act at seso tos the mean ruluo of $(\theta+\phi)$ obtaimat.

(o) Interaliy Heameramant.

If the peosize of a serkcotion ta considered (PLs.1,4), the intanalty can be measured in two mayn. Elther tho poik hotidit
 ourwo in foum. The latter "iategrated" intoratioy wat the vive meannel on the Gexien couster apeotroneter.

In an aotrual moasurensent of the intematisea from e cyyutal sone, the leweat intenselty which was to be reoconded mas deolded an the beals of a provions vieval entimation of the interaltien. The output of the =-eng gramator wal eliguated to five, in the oase of the weakent refiection a peot helght above the beokgroum of appzoxtminaly $1 / 10^{\text {the }}$ sull moale derfeotion on the lomet meale of the moonding satencter. Once the outpust of the seny geansator mes fisod, it samatrod unaltered throughout a detecmination.

The apeod at which each refleotion is moanned must be detconatned
 genernily of the ondec of 2° to 3° in two ntatice. For cemple, is
the rotation apood mes chsod at 2.6° in two mimentes, caoh plane was shent scannod theoragh the sarkeoting position and the prosile secosticd. If the proctie was nowneal, the orymith was eot baok to 1.3° stron tho paek sorlcotting poottion and a count was taken of the beckeround intenalty over a poriod of one nimite. The aryetal mas then motated at the 21 red epoed thricugh the rancoting position sew $(\overline{\theta+\phi}-2.3)^{\circ}$ to $(\overline{\theta+\phi}+2.3)^{\circ}$ and the ocumt over thes two ndrute pariod mas swoosted. Another beokerousd oovint was than takem at $(\overline{\theta+\phi}+2.3)^{\circ}$ sor one
 beckaround interatity durping the period of coen of the merleotion. Arter correotion sor loat counts dus to the counter dead-tim, the dicfermee betweon the pook and background counta gave the trwo integented intonudty.
 fradged for each reetiootion indivicually on the baila of the refleotion prartie.

The Leftegreted sutonsity of cooh roxicotion mas outimated at $(\theta+\phi)^{\circ}$ and also at $(200+\overline{\theta+\phi})^{\circ}$.

It mas some inaivisable to count at satce asocoding a martion
 2ont counts beoam too great above that wiue. The zete of count for the etronges rofleotions wee reduced below the madma wilue by outting doum the intenulty of the serfeotcd bean by fisters of etther atcten 8012 or semen stim.

At intervais throughout the doteratuation of the intoraition from a coryotal sono, the "paturel" beckground wae macoured with the Wintion of the zeray bet olomed. The mencuremente wees made over pertods of 10 marmites and the average minbor of counts per accond mo entimated.
(d) potcymination of Puiter Fotors and the Coypootion for inat Gomite
in Interantan Interallien.
Tho cugrat ras oet at tho penk solicoting pouttion for a sustable zrasleotion. The mmber of ocuste over periche of two mantes, whth and whthout a filter, wea recordod. This mas sepeatcd soverul thes to eftwo a mirflotemt mibor of counta for a seaconablo otestintioal acouracy. The indivicual veluas of counts per seoond, Whth and whthent the siltor, were cormeoted for lost counte and the gaturel beolegroum tres anbtscutod.

When the counter io swooiving zerays at a congtant sato, ithe oquation for the corrootion due to lont ocumbe can be witten in the Sorim (2ents, 2948),

$$
\begin{equation*}
x_{0}-x_{0} /\left(1-a x_{0}\right) \tag{2}
\end{equation*}
$$

N. Is the reconded mubar of counta per second,
and a Is the socolving theo of the counter tubo.
How in the filtar geotor doterninationg is
FI, is the mubce of coumte per cocond without the fliter,
E_{2} is the multer of counte per socond with tho ellicer,

16.

In is the average mabor of counte pere socond hre to the saturel beakground
ead
F Is the aboorption frotor of the filters
then

$$
\begin{equation*}
\left[x_{1} /\left(1-a N_{0}\right)-I_{2 \pi}\right]=r\left[x_{2} /\left(1-a n_{2}\right)-1\right] \tag{2}
\end{equation*}
$$

Equation (2) Is solvod foe caok pate $\mathrm{X}_{0}, \mathrm{H}_{2}$ and the mean vilue of F ãeterminat.
 the seto of correting is obnacved to viry oves the surie of $(\theta+\phi)$ coamped. The value of a in equation (2) is therefore not the socolving time of the covinter and mat be dotemetned axperimastally in the following may.
 and whsoh erve poak intenasties renging stow 250 to 400 oounta per
 a chiter of monen ebsorption footor and the mubar of counte in two misutas was roocerdod. This was sepeated sovesal timen to give a reasonable muber of ocums. The mage, speod and dixcotion of soan mest the trand in oach oamo.

Comathering each retreetion in trizn, is
Tr 1s the avreage ramber of counte in two minutes without a seites,

If Is the avasage ramber of counto par encond the to the naturel mokereomi,
a. is the conseotion factor for the integratiod intenality, and Fis the absouption faotor of the filter. thou

$$
\begin{equation*}
\left[2 \Gamma_{1} /\left(1-2 \pi_{1}\right)-120 \Gamma_{2}\right] \cdot\left[\left[\frac{1}{2} /(2-2)_{2}-120 \Gamma_{12}\right]\right. \tag{3}
\end{equation*}
$$

Using equation (3) a wen doternanged fors each of the rancotiono used and a moan value was eotimateh.

(o) Rolative Intongtifiag.

In gemarel the oorsootion for 2 ont counte in the beokground Count mas nagldgtbio and the relative integratod intenatity of any refeation of the arystal some can be weltiten,

$$
\begin{gather*}
I=F\left\{\left[\left[_{0} /\left(2-a_{0} I_{1}\right)-120 \pi_{2}\right]-\left[F_{B}-120 I_{2}\right]\right\}\right. \\
-\left[T_{0} /\left(2-a_{0} M_{0}\right)-T_{B}\right] \tag{4}
\end{gather*}
$$

Whare Fis is the average mumber of courate in two mituates of the intograted poaly
IF Ie the averago number of oornats in two mimitea from the bacteground,
an Is the ebsocmption feotor of the fllter uood.
(8) Drecusston

The prooess of moamring Intenalities on the Colerer counter apootsonoter is long and todious. The socurecy with which the reak intenaitios oan be measunsed is relatively 20 w , uniess a Ereat deal of time is apent repeating the meacruremonte to give a surflolent mimer of coumts for reasonoble statietical socureoy. Hence in an sotunl measurement of tha intenaition from a aryatal some, the atsonger
 monk intonaitios weso outimeted vimanly trom ocrui-inolination photograplas.

Detor ination of Accurate coll Dr mpatene -
The Colger counter epeotranater anobios the dimansions of the unst coll of a crymelal to bo meanured socurately.

To moacrue adtal epeotnga the mive of the bease angle θ for a anticbio axdal meincotion is moanwed by dotemaining the ameso 2θ botween the rencotige poattions at $(\phi+\theta)$ and $(\phi-\theta)$ (000 soction ($0,2 \mathrm{~B}$) of thits chapter). The axial speoing can thoo be calculated trew the hirege ogratlow,

$$
2 d \cdot \operatorname{dn} \theta=n \lambda
$$

To 1noreace the eocurenoy of the doternination, a selleotion with as lasgo a vilu of θ as ponalble abould be used.
greo angie betrean two aryctal planee ooge the (100) and the (010) an to doternaned in the rollowing may. The $(\theta+\phi)$ coale is sut so that $\phi=0^{\circ}$ for the adil mancotions (200). The vilues of the sorloetting poastion $(\phi+\theta)$ and $(\phi-\theta)$ of an axdal sporection
 the vilue of ϕ, the angle betiven the plamen (200) and (020) can be doternised.

Yenaurmont of Interyly Absospilon Satlos.

(sootion $(0,2)$ of this chnpter) the Latertile aboarption sution oan to moarned on the oatere counter apeotzomoter. The absorption sumtor of a stiter, comateting of a mando pleoe of ilford
 the teabinguo dascirtbed in paragmaph (d) of this bootton.

P1.9.2n2. The nolooule of 1,2-bonanntimaquinono, ahowing the numbering of the oaston atono at whioh methyl substitution can take place.

GHAPREAT․

(a) Tretyotrotitari

 (0ock, 2930, 393, 2933 Cock, flotimon and Oovidian, 2937).
 min undortaken mith a vien to corcolatige the ousiation - Erehotion
 Blalogion sotivity of the ocuresponaling methyi arbatstuted 202-bensenthrecenco (2ball, 2940).

On mocightalilimation maxy of the methyl ceabotitutced

 veso froo soue miltigle mplattlase

In the determimation of tho apooemprups and unit oell
 mas ent to sotate about one of the gernatpal amos. rano, finct and

photographed. It was found very bolpini in aetiting the aryotal on the Preoesstion comare if the orightma ande of zotation wein not soo ahort. All photographas ware tabon undig coppece I α rediation and meanusgonts of the sucicotion ponitions were mede uating a Cumberdge

 by the method of occtotingo Rotation and tho madive unod was an agreous solution of acimtrom boso-tungatato.

(b) 112-iensenthracuitnono.

This ocmpound was reoryntallieod from othyl sootato and
 monoolinto and the coll dimantons were moanured and are as followes-

$$
\begin{aligned}
& \text { E - } 20.96 \pm 0.03 \text { A.U. } \\
& \text { - } 11.7020 .03 \text { A.U. } \\
& \beta=96.8^{\circ} \pm 0.2^{\circ} \\
& \text { 2 - } 19.23 \pm 0.06 \text { A.U. }
\end{aligned}
$$

The cell diges of and g 110 in the discotions of the
Alagomals of the mala teoe of the plate cryital.
Shebor of molcoules in tho unit coll o 8
Volume of unit coll

- 2448.9 A.U. ${ }^{3}$

Calculatod denatty $=2.400 \mathrm{E} / 00$.
Obsurved donasty ($26.3^{\circ} \mathrm{C}_{4}$)

- $2.398 \pm 0.004 \mathrm{go} / 00$

The ayitomatle absanoes obseerved were,
(kid) abseat whem his in odd,
(ho1) aboent when 1 is add.
 mado betwoen the altammotive aproe-groups on the abow oviacmen. (a) 3eltethy 122-3innsanthrgouinone.

This comporm wan imvortheated by Mail (Toald, 2930) and the recults of hio wouts ase gumarieed below.

The asyetals woso oxtained in the form of zoodles by mecugrtaliseation from othyl sootato. Thay wame foum to be monoclinic and ahound the forms $\{023\}$ and $\{200\}$. The direotson parellel to the length of the neodias was ohosen as the 8 -arif. The dimemsions of tho unt call wese measursed and ase as fallowafe

$$
\begin{aligned}
& \text { a }-7.52 \text { A.U. } \\
& \mathrm{b}-16.81 \text { A.U. } \\
& \mathrm{g}-21.63 \text { A.U. }
\end{aligned} \quad \beta-128.9^{\circ}
$$

Thabere of molecules in the unit coll	- 4
Caloulated copolty	- 1.403 30/00.
Obsarved danatity	2.396 80/00

The mytanatio absenceo obsorved maso,
(hoi) absent when h is odd,
(olso) abount when k is odd.
Tho spaoo-gsoup is tharefose $\mathrm{R}_{1} /$ / .
(d) Allethys 1:2-3onsanthraguinono.

Thals compound was reorgotallimod mron othyl acotate. The arystala formed wese ilght-brown in colour and neodil shaped. The
cuyotals wece fount to be monoclinte and the 8 - axte man obowon
 and ane as followse-

$$
\begin{aligned}
& \text { a }=22.80 \pm 0.03 \text { A. }{ }^{2} \text {. } \\
& \text { 1 - } 25.50 \pm 0.04 \text { A.V. } \\
& \beta=227.8^{\circ} \pm 0.2^{\circ} \\
& \text { 2 - } 3.99 \pm 0.01 \text { A.U. }
\end{aligned}
$$

muber of molecules in the unt coll
Volune of the unlt ooll
calculatod donadty
Obsereved densety ($22.0^{\circ} \mathrm{C}$)

- 2
- 647.3 A. $_{0}{ }^{3}$
- 1.397 80/00.
$=1.400 \pm 0.004 \mathrm{Bo} / 00 \mathrm{e}$

The caly ayptenatio abospoes dbrerved weso, ($\mathrm{O} \times \infty$) abount mimen It is odd.
 proup $12 \mathrm{~g} / \mathrm{m}$ requirea 4 agymetrto units in the coll and the notual call contains enky two molecules which poscoss no ocatze of aymintry. Hese0 the rpaoemercup is P2.

This ocupound tas seorystallised smou othyl acotate and eave Iong straim-coloursed neodles whth a well developed sace - later Identrifiod as tho (OIO) seoe - pamilel to the meedie axds. The oall Asmonalons mase moasured and are as sollowne-
a - 24.23 ± 0.01 A. H_{0}
b - 23.27 ± 0.02 A.U.
2 - 3.94 ± 0.02 A. V_{0}
 on the Celiger cornater epeotrometer.

Inmber of moleculos in the unit ooll - 4
Volumo of unit cmil

- 2295.5 A.V. ${ }^{3}$

Caleulated denelty
Observed denatty $\left(24.5^{\circ} \mathrm{C}\right.$)

- 1.395 80/00.
- $2.339 \pm 0.00460 / 00$.

The ayatematio absences obearved were,
(bol) abount then bil is odd,
(tloo) absome thea E Io odd.

sequires 8 agyamotisto uatto pee unt oull and the abow ooll contalns

(8) Galtothyi 1,2-30nagnthreauinone.

This ocopound man reorgintallised from ang soctato and stram-ooloured modios weme obtalned. The arywtale wese sound to be tritolinio and the oall dinmatons wese meanused and are ao followat-

$$
\begin{aligned}
& \text { E }=13.22 \pm 0.03 \text { A.U. } \\
& \alpha-103.0^{\circ}=0.8^{\circ} \\
& \text { L }=13.69 \pm 0.03 \text { A. } \text { U. } \\
& \beta-94.0^{\circ} \pm 0.2^{\circ} \\
& \text { 2. } 7.68 \geq 0.02 \text { A. } 0_{0} \text {. } \\
& \gamma=83.2^{\circ} \pm 0.2^{\circ} \\
& 10.0 .1886 \pm 0.0003 \text { A.U. }{ }^{-2} \\
& \alpha^{*} \text { T } 7.4^{\circ} \pm 0.2^{\circ} \\
& \text { 5 - } 0.1162 \pm 0.0003 \text { A.U. }{ }^{-2} \\
& \beta^{*}=95.9^{\circ} \pm 0.2^{\circ} \\
& 2=0.2065 \pm 0.0006 \text { A.U. } 0^{-2} \quad \gamma^{*}=86.0^{\circ} \pm 0.2^{\circ}
\end{aligned}
$$

Mriber of malconlee in tho undt coll	- 4
Volume of the unit coll	- 2332.5 A.U. ${ }^{3}$
colculated denasty	- 2.33888000
Obcerve denaty ($23.0^{\circ} \mathrm{C}$)	- $2.359 \pm 0.004 \mathrm{Bo} / 00$

The exymel is tertalinte and hameo the apoco-group miny bo attrer P1 or FI. Ho dedurotion can be made botiven the altcrsantive apecogroup on the basts of tho ovtdence so frer obtainad.

(b) Illethy2 202-3onganthreguinone.

Many atterapts were mado, ualug different solvante, to ortals arybtale of the obow compound, thath wose large anough to emble ghocurmante to be oaryicd out. 142 efforis wese unswoceantl and socordingly so obearnitions wewe made on the aproomgrow and unit oall Atmenal ons.

(h) gatiothy 102-3ansenthraouinong.

The ouybials of this comporsid wees obtainod, on
 moodice. On prollminaxy omandmation walor the polarining nlerocoope

 pertorned co a ccymtal which was only aldetriy aplit.

The cryntale were found to be monoalinite and the $\&$ - cadis weo abomen parallel to the neodle ande. The oell asmonalions wero
monared and ase as followar-

$$
\begin{aligned}
& \mathrm{s}=10.37 \pm 0.03 \mathrm{A.U}_{0} \\
& \mathrm{~g}=26.98 \pm 0.04 \mathrm{A.U}_{0} \\
& \mathrm{~g}=7.57 \pm 0.034 . U_{0}
\end{aligned} \quad \beta=100.5^{\circ} \pm 0.2^{\circ}
$$

mubor of noloculios in the unit call - 4
Volume of the unit call - 2305.2 A. $\mathrm{B}_{0}{ }^{3}$
Calculated danaty

- $1.393 \mathrm{Eo} / 60$.

Observed danatty $\left(22.0^{\circ} \mathrm{C}\right)$

- $2.388 \pm 0.00480 / 00$.

The ajetectitlo abounoce observed vese,
(bil) abooat mime 2 is och,
(olso) aboern what it is odd.
Theretose the apeco-gacup 15 unequivocelly PR, $\underline{\mathrm{c}}$.

This compound was georymeallined ince othol acotato and yellon meedles wase obtalned. The aryutala wase fom to be moroolinio
 to haw quite mall davaloped (200) seocs. The call dimpastona weis moansod and ase as follorias-

$$
\begin{aligned}
& \text { 2. 31.78 } \pm 0.09 \text { A. } \mathrm{U}_{\text {. }} \\
& \mathrm{L}=3.94 \pm 0.024 .0 . \quad \beta=200.4^{\circ} \pm 0.2^{\circ} \\
& \text { 2 - } 23.84 \pm 0.07 \text { A.Vิ. }
\end{aligned}
$$

minter of molcorice in the unis coll 08
Volume of the undt cell - 251400 A. $0_{0}{ }^{3}$

Calcuiated denaty	$=2.405 \mathrm{80} / 00$.
Obsarved denatly $\left(24.0^{\circ} \mathrm{C}\right)$	$=1.396 \pm 0.004 \mathrm{80} / 00$.

Five ayatenatio absenoes obmarved nere,
(ha) absent when bol is odd,
(hol) absent whon is 19 och.
 made between the altansative apeoe-groupe on the oviloweo so fors obtalnad.

The oxymala, as provided, wese long gullow-ooloured noodles of mather poor quality. Oa searyatalismation srom the solvent
 argatal form was obtalnod. The reocyrotallimation mas carried out at socn semperature and the aryotels obtalnod mase noedio ahaped and
 type wece obtalsed when the sworyotellisation was carsiced out at a teaperature near $0^{\circ} \mathrm{C}$. Both forms of cryital wece amantach and the data for ench te given below.
(1) Int Fonm - Yollow meodlen.

The cergetale mase found to be monoolinio with the mocile ande co the uniguo ando Do Tho axtal learthe a and 8 and the angle β sere maacused on the 0atgue counter appotsometer. The oall dimenotons ares-

$$
\text { a - } 20.674 \pm 0.080 \text { A.U. }
$$

$$
\text { 1. } 4.06 \pm 0.024 .0 . \quad \beta=90.8^{\circ} \pm 0.05^{\circ}
$$

$$
\pm=7.768 \pm 0.008 \text { A.U. }
$$

Thelere of melcoules por unt coll - 2
Volum of unit cell - 63.0 A. $0_{0}{ }^{3}$
Calculated denatty

- $2.386 \mathrm{~s} / \mathrm{cc}$.

Obeerved decatty ($23.5^{\circ} \mathrm{C}$)

- $2.380 \pm 0.004 \mathrm{Bo} / 00$.

The only systematio absencos wown
(ano) absent when is is add.
 soquisos a soncotod molcoulo at (0ip) as wall as it (opp) and an ardal
 froup 10 FR,

The axyetale wew sound to be monoalinic primmile with coll dimenalorses followsi-

Thmber of moleoulen th the unit call o 8
Volum of the unit call - $2607.44 .00^{3}$
Galculatad donsity - 2.357 6./00.
Obmerved denatity $\left(22.0^{\circ} \mathrm{a}\right) \quad-2.353 \pm 0.00480 / 00$.

$$
\begin{aligned}
& \text { E } 7.87 \pm 0.02 \text { A.U. } \\
& \text { L-26.53 } \pm 0.05 \text { A.U. } \quad \beta=123.5^{\circ} \geq 0.2^{\circ} \\
& \text { 2 - 22.35 } \pm 0.06 \text { A. } 0_{0}
\end{aligned}
$$

The ayitematio abcomces obsesved vease,
(hol) ebsent whea 1 lo odd,
(cleo) ebsant whan kis odd.
220 日peco-group is thesutore PR, C . This epece-group sequises 4 aayncotelo untis per unit cell and hence the aaymsotyio unst mut conedet of the soleculen.

(k) 30-2tothyi in2-3onganthracuinone.

 Orages-ocloured nocileo mare obtained in the foum of a spharulitio grorth. The ergotale, whioh ware of poor quallty, were forma to be
 dimanations wowe mocesired and are an followst-

- - 22.93 ± 0.06 A.U.
$1=30.75=0.09$ A.U.
$\varepsilon=3.95 \pm 0.02$ A. ${ }^{2}$.
theiber of molecules per unit coll - 8
Yolum of und conl
- 2663.6 A. $_{0}{ }^{3}$

Culculated denerty

- $2.30080 / 00$.
obmarved dinadty $\left(20.3^{\circ} \mathrm{C}\right.$)
- $2.369 \pm 0.00480 / 00$.

The mytantlo absonoea chearyed wece,
(cia) absent whem mol is odd,
(Kmo) absest when h is odd.
The space-groum may be Pren or Py and mo distinotion oan bo mado botween those altarrattw opeco-groxps of the abow ovidenco.

(1) 4eilethys 192-llonganthreouinong.

Mamy attenptes weme mado, uaing differment solvents, to obtals aryatals of the above compound whith meet lerge asough to amable

 grout and the unit ooll dimenaions.

 chowing the iettcriag of tho atom adopted in this inveatigatican.

CHABTBR TKI.

A ilsotah of tho moicoule is atron in Fig. 3, Th The inderdag, an indloatod by tho iettering in the diagram, will be followod throughout this abapter.

The detalls of the deternanation of the space-group and unit coill dimpations are given in Chmpter II, ecotion (d). Tho

$$
\begin{aligned}
& \text { a }=14.13 \pm 0.02 \text { A.U. } \\
& \underline{\text { g }}=23.27 \pm 0.02 \text { A.U. } \\
& \text { g }=3.94 \pm 0.02 \text { A.U. }
\end{aligned}
$$

Thase are 4 molecules in the unit oell, tho molocular woigtot is 272.26 and $F(000)=568$.

The moleoule hae no contse of aymentry and hoedo the asymotitio unit to one molcoule, oonatating of 19 aaston atcos, 2 axyen atcma and 12 hydrogen stome. Heglooting the hytrogten atcos the agymetzio unit whll be defined by 63 poastional parmotern.

Bqui-dnolination Welcuanberg photocrapies wece taken cbout the rollowitg amos of sotation - b of (402): (010). Tmo upper layar ilnes seoonded weme as followe,
layer lines ace to sermo of the L - areda,
layme lines on and two of the g - asta,
Laver lines cas to four of the (401) (020) - ads.
 poandble to eatimate the intmatity of all the sorkections whiloh could be obeerved using copper If sediation. the dimasatons of the ocyntal used to secosd the of - axde sese and upper layner wese, $0.32 \ldots 0.07 x$ 0.27 Hise, whece 0.27 mene, wes the leacth of the orystal in the discotion of the rotation arde it The atrmenaions of the oryotal used to swoord the same, ftivet and scoond layters of the g - anta were,
 of the aryetal alang the moedis ads ge The intenatiou rooorded
 by the mothod twe to Albreoht (Albseaht, 1939). The arystal sises were eluh that no ebeorption cosseotions were sequised for the other interastios which were maceured. All the intonaltios wece meneured Viomally by two indoppecient observess and the inteantition of the
 apertramoter.

The Lutensitiles of the equitorill layme ware correoted fors the unul havents and polesiention twotome and the solative miuce of $\left|F_{0}(2,2)\right|^{2}$ mee obtadined. An attumpt was usio to put the selative atruoture frotoses of the (hiso) som on the absolute seale uating wilson's mothod, (Wilson, 2942).
 over mages of atn ${ }^{2} \theta / \lambda^{2},\left\langle\Sigma^{2}\right\rangle$ betag mean of the aquaries of the coattereting shotome for the planes within the erpotified sango of ats ${ }^{2} \theta / \lambda^{2}$ and $\left.\langle | p_{0}($ rita $\left.)\right|^{2}\right\rangle$ the avarnge of the aquases of the efruoture seotore of thooe planeb. The somilting graph ahould bo a otraight 1190. The interoopt of the exapls fiven the scall factor and the Alope detarmisees the appropelate tecperature faotor.
 the resulta were dicappotnting. Tho coatter of pointes on the somultigg gruph was suoh that no comaluston oculd bo mede segerding ofther the ceste ore the terperature sector. The reason for the

 sum to be a curftoteat mirber to etvo a reasonablo etatietiond dintribution. Foweover in thise perojection all the atome aro mall
 leave the atruotane factors on the reletive ceale and to determino

The oontribution of the myirogen atcon to the oaloulated etruoture faotose wes negicoted in the carly ategee of the imwestiention and an orygum atcem was agouned to have a coattceing power $4 / 3$ that of a oaston atcm. The onstion noattering curve used was that of Ecraisis ot. 2. (3argule ot. al., 2935). Hocount was talson of the themmal
motion of the atoms by applying a carroction saoter ap. $\left(-\operatorname{sat}^{2} \theta / \lambda^{2}\right)$, where 3 is the temporature swotos. In the intital stageo the value of I whes taken to be 3.7 A.U. ${ }^{2}$. The equation fore the oulculated etruoture factar then beocmes,

F- 4 (maber of molcoulios in the unit coll) $\times 8_{0} \times\left(3_{0}+4 / 38_{0}\right)$ where \& is the coattoring feotor for curten, sultably adjusted fore the temperature offoot, and S_{i} and S_{0} ase the gecnotivic motors for the carbon and oxygen atoms respeotively. S_{0} and B_{0} aro calculated from tho portulated atconic comesalnates.
 propared by Coobren (Coohran, 2948). Whe intonsitlios wero put on the same selativo soalo by couparison with those cossected savo layer Latensalty veluos of sencotions whioh also cocus on upper layer photographa.

The conoept of reoipscoul apsoe the flyat applied to aryintallogenplay by Bimid (Bmila, 1921). Reoh eot of ceyetal planea 1. repreacated by a polat in reoipsocal upaco and the reanting mosh of pointa is oullod a reoipacoal lettice. When the pointe on a coule draming of tho reoipecocil lattice aro weldeted in mooordance with the values of $\mid F_{0}$ (MA) $\left.\right|^{2}$ of the rerfoctions, tho resulting zattice io
 the reotprooal lattiou mas $5 \mathrm{mo} / \mathrm{A}_{\mathrm{U}} \mathrm{U}^{-2}$. LLpoon and Taylos (Lipmos and Taylor, 1951) have atated that, ta produoing an optical tranotary
 the melghted zeolprocal lattice. A botter agreordmation to the

 fuctorn, therety oorrecting for tho olvago in acottrasing frotor whth
 thotor is docinad int:

$$
U(1+a)-\left|p_{0}(n a x)\right|
$$

$$
\hat{\mathrm{z}}(\mathrm{nc}(\mathrm{c}) \times \mathrm{P}(000)
$$

whare $\hat{f}(\mathrm{H}=\mathrm{il})$ is tha soathoring feoter for the plano, nosmalised to sofers to an atom of unit alcotron content. Throughout this thesis all scolproond latilioes wisl be wolghted in this mamer.
 oonaldereble ancurat of information oan to deetivod disootly frow tbe
 mamgoand arrengasoat of atoes will have alx main pooks with berigomal
 togother, as te the caco in the compound under dsecosesion, and is the nolecule itas an the plane of the projeotion, them, in the reighted seolyevonal latilioe of the projcotion, the maln ponke ollis 210 at aqual intervaio asouma a ofroie with coatse the orgatin and sudius $0.83 \mathrm{~A}_{0} \mathrm{~V}_{0}{ }^{-2}$. This is the mbensene olrolen. If the moleoule is tilitod out of the plane of the projeotion, the groups will move amay strom the olsole. By finaling the contzos of gravity of the bensone

Fige 3n2e (a) The (hroo) welchted reciprocal lattice of 5-mothyl 1:2-bensanthraquinono.
(b) The optical tranaform of the correot trial otinucture in the (hoo) projeotion.
(o) The optical tranaionm of the (hko) projection of the final structure.
ying groups concomed it should be possible to reconstiruot the "mean" bensene sing which is the besis of the etructure. The mein diteioulty In determining the orientation of the bengene sing from weichted seoiprocal latticeo is that if the tilt of the molecule is too great, some of the grompe pill lie outotde the mphere of refleotion for copper E α rediation. Also, once the oricatation of the mean bensene ring has been dotorainod, it io still neoessary to ift the bensene zings together to etwo the molocule. In genaral there ase sovaral ways in which thio can be done and finiling the oosrect one may take a considerable timo.

The unit ocil of 5-mothy2 2:2-bensanthrequinone has one short axds (g - arts) of 3.24 A.U. If was expeoted thorefore, that in the - - ards projectilong, the atcras would be well resolved, because the molecules cannot so tilted vesy far out of the plane of the projection and this was latee oonflimai. The only adal sone woighted seoipsocal lattioo which geve any information es regames the tilt of the molocule, was that of the (reo) projeotion and a dreming of this weighted reoiprocai lattice is show in Pig. $3,2(\mathrm{a})$. In welghting this reoiprocel laitice the relative vivee of $\frac{P 0}{?}$ were used, beosuse the oozreot sceais lactor for the observed otruoture factors was not known.

In the (hio) projeotion thace are two paire of molecules which are mixnor imagei. Acoordinely it mas axpectad that 12 bensene sing Groups would be cean in the weighted reoiprooal lattice. In faot,

Pif. 3,3. Mio micoula model nopted in the initial atages of
the invotigntion.
 the escupe ary "eppeed out" to a oectain catent. This geans that the banmone sluge of the molcorlen, selated the miswor plene, havo the sum ordentation ore arientatione which disfor by only a fen dogrees. The contres of greavity of the groupe wese doternimed and the mean
 thled thround an angle of apporamately $2 y^{\circ}$ about a limo parellel to the 8 - adis.

(a) Detorgination of the Approsimate Struoturg.

As otated casiler, it man axpooted that the oniy paojeotion In which the atcen would be remolved was the g - arib projectione It was deosded therefore to conomitrute on thia peojection and to une the information derivod srom the woichted reotprooal lattice to attempt to flin as appesordinto struoture by trial asd arcos methode. The 2-ade projection is unfortunately mon-ocenteronymotrio, whioh manat that, ove0 the apprordmate otruoture had been demerved, the arbsoqueat coteratication of the cocurato struoture mas a wey sion procese, beomes both the atomic pareotere and the phase of the etruoture factere had to be reitinch.

The bate nalocular model ueed in the initial stages is abown in Fig. 3,3. The point whil be sereused to an the molecular ordesin thmoughout thite obapter. The loontion of the molecule alone the

Pro3alo (a), (b) and (0) show tho three posaible way in which the moleoule oan be butst up tron tho banto bencose sing domivod from the (1200) metcheted amodprocal latitice.

 and (b) dofted line show the possible orientations of the moleouls in the (hiso) projeotion.
 uncd to detasming the oosmoot oxteatation of the molecule.

Aganitag that the bemeone ginge of the patme of nolcoulen which

 five the molocule of 5-methyi in2-bensanthenquinom and these ave abown Lis Fig. 3,A(a), (b) and (o). The illt indicated by the woldhted
 factore wese oalcuiteted. in carmination of the agreomont botweon the obsurind and calculated etruoture seotore shomed that (o) In Fige 3,4 mas the oocreot molecula.

Tho agremant betimen the obwerved and alloulated atruoture fiotose
 degrees docut the 2 - ardif. Cood ariul agreemont masobtalsed in two poastions, (2) then the molecule treo sotated through 1.5° in a olockulse diroption and (2) an a sotation of 2.5° in an anti-aleolinico
 ($0 k 0$) etrnoture feotore wese caloulated for varlous positions of the moleoular contre alang the L - ande. For cach of the two molocules, the beat agrocasent wes obtatina with the moleculas contre fth of the may lioag the g - ards. It rac docided to invertignto the ortentation,
 calculated and when a conio frotor of 2.0 man applicd to the observed otruoture feotoss, the rellability indicen ware found to be,
$a(h 00)=0.20(h-0,2, \ldots \ldots, 24)$ and $z(0,0)=0.20(k=0,2, \ldots \ldots, 14)$ A mate of the proposed otruoture was pumohod and the optionl tranofors abowe seasomitie agreoment mith the wetchted reolprocel 2 attice. Stince it mac appooted that the ctrwothes was only appeordrate, the valuen of the 35 langent atruoture shotors were calculated and an overall solichilkity indes of 0.24 mes obtalnod. At this etage a pouriar eyntheats was comprited uning the obcaswed utruoture factore and the phasee destred srow the calculated otruoture sactows. ithe Fourler map weo dresm and the now comondinateo antruoted with somo difriculty. The atruoture factors wese socaloulated and the agreanant betweon the obsesved and calculated atrincture frotors mas found to bo woree and the model mas abandomod.

The other posisible oriacitation of the nolecule was now invostignted. The molcouler centive man placed at $(0.000 \mathrm{~g}, 0.125 \mathrm{D})$ and the atcatc oo-ordinutes of the moleoule ase aboun in Tablo 3.2. The option tranatom of this proposed atzuotuse eave reanonable agreanat with the molefoted reoiprocen lattion (000 Mig. $3,2(\mathrm{a}$) and (b)) and the miuca of the 6 lergeat otracture frotore were calculatod. The teapesnture faotor umed men B - 3.7 A. U. ${ }^{2}$ and a coale twotos of 2.90 mee applice to the observed stiveoture feotare. Apart sem the etzioture thotose P(2,12,0) and $F(6,20,0)$ whah were calculating muoh too low and the F(000) whith mes caiculating too Magt, the eqgecsont sotwoon the obsenved and ceiculatod atruoture ractass was remertobily acod. Froluding thase theoe atruotuce seotorn the sellability indax wes 0.25.
40.

PMTM 3. 3		
Fracticonl a and y comoratmatic.		
450\%	218.	F
\%	0.267	0.172
E	-0.267	0.079
A	0.092	0.149
c	0.002	0.279
D	0.090	0.234
E	0.102	0.258
F	-0.072	0.263
0	-0.269	0.239
H	-0.269	0.185
I	-0.004	0.256
\int	-0.092	0.098
5	-0.002	0,068
4	-0.007	0.014
\%	-0.096	-0.012
0	-0.099	-0.064
F	-0.015	-0.094
Q	0.072	-0.070
1	0.077	-0.085
s	0.174	0.@O
\$	0.269	0.062
0	0.084	0.092

P16. 3.6. The initinl Fouricer map of the molocule of 5 -mothyl 1.2-bensanthraquinone projcotod down the o - axde. Tho contours ave drain at arbitrary intervils of eleotron density.
 symtheris man oompated uning the phaseo of 68 of thsoe atruotuse motors. The Poupler map giviag the olootzon conalty Motaritation obtainod is shomin in Me. $3,6 \mathrm{and}$ tho atemile poastions ame olearly dortuod as pecito in the eleotrou damelty diatetbution.

The comandinated of tho perice in the Fourler mio of Th3. 3,6 were cirtreoted uatag the sent-amigtical mothod of Buras and Inal (Burne and Thain, 1955). The vilues of the oloctron denaty at the almo polnta about the atento peatitions are plottod on the monh of the Foupler map, drema on a lasgue coale. The martion along the meah linee are foumd uating the tablea propared in Booth (200th, 1940). The mardes aro golnod ing two amooth ourve and the intemseotion of the ourver givee the poastion of the martimin in the alcotmon denality disteribution.
 uned to celculate the mivuoture fectore of all the obearved serfeotson
 appoared that the raluo of the terpersture frotor used (3 = 3.7 A.U. ${ }^{2}$) wae too lew and an attoupt mes mado to find a move oorroot mive.

$$
\left|r_{0}\right|^{2}-\left|s_{e}+\frac{4}{3} 8_{0}\right|^{2} \times z_{0}^{2} \times \operatorname{cosp} \cdot\left(-\operatorname{sects}{ }^{2} \theta / \lambda^{2}\right)
$$

the theosetioal sargith ourwo and app. $\left(-2 \operatorname{sit}{ }^{2} \theta / \lambda^{2}\right)$ is the cocreotions to the roattering awvo for the temparature oftoot. Tho emaph of

 and the alope will give the correotion to be appiled to tho teuperature
 a tempersture taotor of 4.5 A.U. ${ }^{2}$. The contter of pointe on the erreph vas due to thereo tactoswi-
(1) the atomic co-analinstea at this otage wase not weig nogurato,
(2) 20 socount was fuken of the hydirogen contryllution to the montterings
(3) the cosreot soattaring ourw for the oxygen atoms should have bea used.

The atswoture thotors wace secaloulated uating a teapacsture swotors B- 4.5 A.U. ${ }^{2}$ und on appiging a ecele swotore of 2.80 to the obsormed
 sufleotlons mea sound to be 0.30. The phamen davivod srom thite

 ea coerflolecte the alrromenoes botwem the observed and culculated etrooture seotore. The erelleate of the Arnotion at tho atomso
 be applicd to the $n^{\text {th }}$ atom to given by

$$
F_{n}=-\left(\frac{\delta p}{\delta)_{n}} c\left(\rho_{0}\right)\right.
$$

whese $\left(\frac{\delta p}{\delta \bar{r}}\right)_{n}$ in the gradicat of the alcotzon dacuatty at the $a^{\text {th }}$ atcato ountre and $o\left(\rho_{0}\right)$ is the ourviture of ρ_{0} at this potist. In panotion P_{0} and be suplased by P_{0} and wo can write

$$
\sigma\left(\rho_{0}\right)=\sigma\left(\rho_{0}\right)=\left(\frac{\delta^{2} \rho_{0}}{\delta r^{2}}\right)_{n}
$$

and 12

$$
P_{0}(x)=\Delta \operatorname{ago}\left(-p r^{2}\right)
$$

Is the erpereastion for the alotron dmasty diutyibution at the peale, then

$$
\left(\frac{\delta^{2} \rho_{0}}{\delta r^{2}}\right)_{n}=-2 p\left(\rho_{0}\right)_{n}
$$

Hemos

$$
\Delta r_{n}-\left(\frac{\delta D}{\delta r}\right)_{n} / 2 p\left(\rho_{0}\right)_{n}
$$

In the oace of the compound under comalderation, a differenoe Pourier aymbents ahould coscoot all casbon and adgem positions and indiante whether or not the cenle and temperature faotore ase comseot.
 If a sot of viluos of Fo cveluated ualng oniy oarbons and orgoon

 ayathoado ean bo uned to eatimato hydsogon poastions. In the aneo of E noemountrongmatric sove it has been nhom that all shifts suat to misisiled by a pactor ty where

- - 12 the stoucture is comespayncotrifeal,

 (Omatcleshant, 1990).

 elcotron denality. Slnoe thic aryptal has oniy one ountronjumetio proscationy it wea dooldiod to double all shifis. The optlent dirgmetion pattern of thin now etruoture mas comined, but it lid mot

 factors showed that, whea all the y comerdinates obtainod freen the Alfturuseo Fourstor vere zeduced by $7 / 2-0.003$, the agremmant between the obsouved and calculated valuse sbowed a marteod fappovemeat as abows in 5ase 3.2.

TATE 3.2.

 and F_{c} ase the veluos after the overull ahift was applidod. The new co-ardination which are listod in thale 3,3 mase usod to meoniculate

$880{ }^{\circ}$	100\%	n
$850^{\circ} 0$	OLTO	3
$800^{\circ} 0$	$595^{\circ} 0$	8
$980{ }^{\circ}$	$910^{\circ} 0$	8
$850^{\circ} 0$	$710^{\circ} 0$	-
$60{ }^{\circ}{ }^{\circ}$	$170^{\circ} 0^{-}$	3
950 ${ }^{\circ} 0^{-1}$	coteo	0
$520^{\circ} 0^{-}$	$160^{\circ} 0^{-}$	R
$800^{\circ} 0$	$100^{\circ} 0$	18
$290^{\circ} 0$	C00 ${ }^{\circ}$	1
$060{ }^{\circ} 0$	$060{ }^{\circ}$	5
$85^{6} 0$	$810^{\circ} 00$	I
E85 ${ }^{\circ}$	2LT*O	8
LEEO	LST*	0
Sse\%	C80 ${ }^{\circ} \mathrm{O}$	-
$092^{\circ} 0$	00\% ${ }^{\circ} 0$	E
Ne\%	-10\%	d
$995^{\circ} 0$	$800^{\circ} 0$	0
TSTO	00t\%	γ
$910^{\circ} 0$	$215^{\circ} 0$	1
S9\%O	2100	8
- $2 / 2$		Oh

-cosempono $\&$ pia 2 truogqoest

Phe 3.7. The Scoond Fourices map of tho molecale of 5-nathys 1.2-bensanthreguisone projected down the g - ards. Tho contours are dram at intocrvals of 1 e. $/ A_{0} U_{0}{ }^{2}$.

 The contores ano it lextorvile of 0.2 oof $/ \mathrm{A}_{0} \mathrm{~J}_{0}{ }^{2}$ the woro contours
 theo calculated mydergon atcon poostions ase indioatod by to
 togother yith thooe reficotices outetde this 110 mit , which had hich Fo viluas. The rallebilsty hader was 0.23 comparod with 0.26 gor the correoponiling atrisoture fectors on the previous calculations a Fourler gathoale mas conprited uning the coiculated phases and a mell socolved alcotsun donatty map whe obtained (Fige 3,7). The new atonte comandinator wece extracted uaing the burna and Iball mothod and the atruoturo facters for the while (NaO) sone weve scoalculated
 troluded the viluas of $\left(F_{0}-F_{0}\right)$ for the unobserved retiection then Fome croater then tho mardmin oatimated vilue of F_{0} and all tho unobsorved rencotions weec givon mie thotr marimum value in the rumention $\Sigma \Gamma_{0}$ 。
 of all the obscmod struoture factors. Whe reaulting map of alcotzon
 $0^{\circ}, 8^{\prime}, 9^{\prime}, 3^{\prime}, 5^{\prime}$, calculated on the mosumption of a carbon-inyarogen boud leagth of 2.05 A.U., are garred by asosses and whth one owoepticn (' ${ }^{\prime}$) agee stairis wall wth the obsacmed alcotwon danalty dictelbution. The pooition of the hydrogun atome of the methy group were eatimated from the olcotroa donsety comtorse and ase shown marked with cerosess. The couble shifte were calculated and the men co-andinntes obtaliped are ahovis in mable 3,4, In the difference Fouriar map the poaitions

TABLE 3.4.
Mractional x and y comondinatice.

ATOM.	z/8.	y/3.
,	0.167	0.165
L	-0.165	0.077
A	0.100	0.249
c	0.004	0.282
D	0.004	0.232
E	0.043	0.257
F	-0.006	0.257
0	-0.169	0.233
1	-0.168	0.282
1	-0.076	0.254
3	-0.066	0.093
1	0.004	0.063
$\underline{1}$	-0.005	0.021
\%	-0.095	-0.021
0	-0.200	-0.072
P	-0.014	-0.107
Q	0.075	-0.081
I	0.077	-0,082
S	0.268	0.006
T	0.172	0.062
0	0.085	0.088

 denaty. This indicated that tho tergeratusp footore was too high and bence in the rocellailation of the etruoture faotore the contribution of the aryyen atoms men colculated roparatoly. The oxggon sonttering ourw unod was that of Bonginis ot. al., (2955)
 The etruoture flatoms were secaloulated whth and without the mydrogen oomstibution and tho comserponding in fectore rese,

$$
\begin{aligned}
& \text { H(hloo) - } 0.22 \text { (whthout hydrogen contizibution), } \\
& a(i n d)=0.20 \text { (ivoluding the aydrogen oomtribution). }
\end{aligned}
$$

At this otage it mag deotded to obook that thite was the oorreot efruoture by faveotigating the (OkI) sone. The z comondirateo wewo calculated on the eacurption that in the (miso) projection the molecule
 The flest atage mas to dotecrains the ponition of the naleouler contso sloug the 2 - axib. Thate wes done by calculating the ofruoture sootose (002), $Y(004)$, $F(062)$, for nurtous positlone of the molcoulas contice srom ${ }^{2} / 2=0$ t0 ${ }^{2} / 2=0.5$. Whan the molcoulat coutse wes pleoed at $\mathrm{z} / \mathrm{g}-0.09$, the egreonchat botwean the obecerved and caleulated otruoture fhotosm whe guite good and tho atonic if comardinates in this ponition

 format to be 0.23. The phasen derived from this catculaticu wese used

TABLB 3.5.
Prooticmal = comordinates.

ATCI.	So.
B	0.204
\mathbf{z}	-0.046
4	0.257
C	0.253
D	0.390
8	0.463
$\overline{7}$	0.462
0	0.400
H	0.259
I	0.172
3	0.000
Σ	-0,090
4	-0.252
I	-0.326
0	-0.469
8	-0.576
0	-0.498
R	-0.332
8	-0.249
T	$\cdots 0.097$
U	-0.016

Fifo 3n. The a - anto Fourior projection. The contoure aro dram at arbitrary intervalis.
 shape of tho moleoule in this projeetion was conctumad.

The etruature Peotore of the 85 obmervod reflootion of the (101) gone weo also oalculated and thatr agrocnant with the observed vilues was spasconbio. At thile point the etruature mes comasdered to be colvad.

It mas aloar that the reflpecent of this ocmpound by deak compatatica would be a lons ant tellous prooens. It mas deosded to oarry out the refinomant by the method of laest oguases uating alcotsonto ocmputing faolistion.
 1942). The thoory of arrose greatsete that if the cerrore the the
 parmotere are those whal mintinice the quantity

$$
\begin{equation*}
A^{\prime}-\sum_{q} x(x a)\left\{\left|F_{0}(x a)\right|-\left|F_{0}(x-a)\right|\right\}^{2} \tag{1}
\end{equation*}
$$

whece \sum_{q} deciotes the an over all 2miepentent tocms and (hell) in the wolche asalgen to a particular value $F_{0}($ Hal $)$.
 co-ardimates, but all quartistios whioh arreet the thive of the calculated otruoture teotorn e.g. the temperatrive sactors of the atome. In cociving the loast squares equations, oniy the ortsote of okngen in atcinio oomardinateo will be oonolderse.
amil ohanges in atomio comordinatea recult in equationo of
the type

$$
\begin{equation*}
\Delta F_{0}=\sum_{n=1}^{N}\left(\frac{\delta F_{0}}{\delta \xi_{n}} \cdot \Delta z_{n}+\frac{\delta F_{0}}{\delta \xi_{n}} \cdot \Delta y_{n}+\frac{\delta F_{0}}{\delta F_{n}} \cdot \Delta E_{n}\right) \tag{2}
\end{equation*}
$$

whese Δx_{h} otc. ase the ersoses in the poaltion of the $\mathrm{a}^{\text {th }}$ atcin. Proce cquations oan be solved for Δx_{h} to. by the mothod of least squares. Thase will be as mexy aquatlone of the type (2) as those are obsorved etruoture factore and, if a reasonable socuracy is to be dealsed, this muber ahould be constdarebly gaseter than the mubocr of indopentent comerdinate oomseotions to be dotesulned. If the molooule contatns no contse of aymotryy thite number wall be 38. The eot of aquations (2) Is zedroed to a cot of 3 equatione called the Momeal Equatione. The $\mathrm{s}^{\text {th }}$ of thoce so sormod by multipiytag both asdes of cool equation,
 lat hand sides, eiving the equation.

$$
\begin{array}{r}
\sum_{q} \omega\left(F_{0}-F_{c}\right) \cdot \frac{\delta F_{c}}{\delta x_{n}}=\sum_{q} \omega\left\{\left(\frac{\delta F_{c}}{\delta x_{n}} \cdot\right)^{2} \cdot \Delta x_{n}+\frac{\delta F_{c}}{\delta x_{n}} \cdot \frac{\delta F_{c}}{\delta y_{n}} \Delta y_{n}-\frac{\delta F_{c}}{\delta x_{n}} \cdot \frac{\delta F_{c}}{\delta z_{n}} \cdot \Delta z_{n}\right. \\
\left.+\sum_{m} \frac{\delta F_{c}}{\delta x_{n}}\left(\frac{\delta F_{c}}{\delta x_{m}} \cdot \Delta x_{m}+\frac{\delta F_{c}}{\delta y_{m}} \cdot \Delta y_{m}+\frac{\delta F_{c}}{\delta z_{m}} \cdot \Delta z_{m}\right)\right\} \tag{3}
\end{array}
$$

Whase \sum_{m} conctes the asm overull atone cacoupt the $n^{\text {th }}$. In this way = eot of 38 equations 20 obtalned, whioh oan bo nolved for the 3π unicuown comerdisate cosreotions. It ons be sbown that if the atong exe mall vesolved, quantitios of the type

$$
\sum_{q}=\frac{\delta \tilde{q}_{a}}{\delta z_{h}} \cdot \frac{\delta \tilde{F}_{a}}{\delta z_{m}}
$$

are likely to be anall compared ulth $\sum_{q} \frac{\delta F_{0}}{\delta Z_{n}}$. If the axee ase
 aico te magleoted and coprition (3) reduces to

 progirme devieod try Dre So Milladge. Thle progreane cuablea cquationo of the type (4) to be colved. The (2ho) sone was reftrad flute and the conomblates unad in tho intilil gtructure smotor caloulatlon wow thow Ehown in TMO20 384. It wa cappoted that in a plenar etruoture of thio Sype, the atcus at the ocatre of tho moleonle would viberto mod lope than thow on the outer sim ard consoquatis would kne a Lown teupurature foctor B. It mas aiso axpooted thet those oncoon atores

 chom in 5nble 3,6

TAMEB 3.6.

Tran	Atom	$\left.B\left(A \Gamma_{0}\right)^{2}\right)$
0×803	3 s .	3.7
Ontion		3.7
Carroon		4.6
Carbon	5	5.0
Itydracon		5.5

Ono ayole of 1 ceat agnares mes oarried out and the new comardinates wose obtaized. The progemme ald not repime tho inilvidual temperstuse seotoxs, but only the overall tomposature feotor. The shrot ayole inalicated that the lattet wis too low hy a factos $\Delta 3=0.3 \mathrm{~A}_{0} \mathrm{U}_{0}{ }^{2}$. Mosemover at this thmo the ntruoture of 1.5 -atohleroanthroquinone tas publishod (2alleg, 2958) and the toapecature fuotors
 catrying out further ayolee of least aquares serinomont, it man
 cot of terperatime stotoso ase shom in Teblo 3,7.

TABLE 3.7.

982	Ateat	$\left.3(104)^{2}\right)$
Osyans	2ys.	5.0
Caston		4.0
carton		4.5
Caston	8.	5.0
Hyarocen		6.0

The etruoture feotows wero recalculated uning the co-ordinates dosived tion the flyst oyote and the isotropio temperature faotose
 se compared with i 00.20 bafose the thent ajole. A surther threc oyelos of least squares mess ocmputed. The seliability inder of the

 dremen at intervals of $10_{0} / A_{0} V_{0}{ }^{2}$ and the $1 e_{0} / A_{0} U_{0}{ }^{2}$ contour is dotied.

 contoures are drawn at intervals of 0.2 e./A.U. ${ }^{2}$, the zero contour is the solid black line and the negative contours are dotted.

Phe 3n12. Graph of Bleotron donsity at tho atoaic peak ($\rho(0)$) agatnot tempersture factore (B) for a oarbon and an oxgeon aton.

54.

The oo-ardinate ahifte chring the fous ayolea ave shome in sable $3,8(\mathrm{c})$ and (b). It wan olverved that for noweril atome, the oo-ordizato shiste wero osoillating. In these oasoe the sull shifte indicated at the and of the fourth ayoio wese adjusted to telce account
 in Table 3,9.

The phases derived troe the lant set of celculated etzuoture
 Atsfacence Fourter agnthonle and the seculiting oontous mape of alootron danatiy ase shown in Figw. 3,10 and 3,12. Fron thoeo two ange an ostimato mas mado of the individuris laotsopto tempessature smotocs.

If the alactron danatiy dictribution of an atcon in projeotion io
 than, is $8(\mathrm{~s})$ is the correaponiling atonic acattering swotor, it onn be obera that

$$
\varphi(x)=\int_{0}^{S_{0}} 2 \pi \pi \cdot x(B) \cdot J_{0}(2 \pi x \theta) d s
$$

Where Bo io the realus of the 2imiting oopper aphere. Thats equation can be colved by mancolical intogration. The oartoon and oxygen conttertige ouswes uged wase thoce of Berghits ot. al. and the vilues $\rho(0)$ of the elotion desolity at the atomic coutre were destrod when
 seattering ouswes. The graphs of $\rho(0)$ plotiod against I ase shom in F13. 3.22.
55.

TABRS 3,8.

z and y co-osdinate shifts after asch oyole of loast squares refinenent of the (hico) sone.
(a) \times comorinate shifte in A.U.

A9004	Crowe Io	CYOLE IS.	CrCue III.	Crase
3	0.0432	-0.0024	0.0051	-0.0027
x	-0.0759	0.0022	-0.0172	0.0062
1	-0.0390	-0.006	-0.0057	-0.0093
c	0.0596	0.0291	0.0295	-0.0349
D	0.0496	-0.0122	0.0245	-0.0279
8	0.0747	0.0412	0.0103	0.0048
5	-0.0079	0.0318	-0.0072	0.0380
a	0.0784	0.0018	-0.0052	0.0023
H	0.0131	0.0052	-0.0034	0.0048
I	-0.006	0.0016	-0.0339	0.0229
J	-0.0382	-0.0247	0.0072	-0.0059
1	-0.0788	0.0287	-0.0404	0.0220
\%	-0.0408	0.0103	-0.0028	0.0232
1	-0.0.408	-0.0009	-0.0253	0.0200
0	0.0619	0.0239	-0.0013	0.0233
P	0.0472	0.0326	-0.0030	0.0209
Q	-0.0168	-0.0212	0.0246	-0.0236
1	-0.0850	-0.0267	0.0292	-0.0271
8	-0.0790	0.0267	-0.0023	0.0034
T	0.0203	-0.0302	-0.0044	-0.0300
v	0.0281	-0.0268	0.0000	-0.0220

TABLE 3.8.

(b) y eomeratinste matifs in A.U.

8	-0.0088	-0.0056	0.0033	0.0092
\mathbf{x}	-0.0030	0.0056	-0.0056	0.0067
4	-0.0761	0.0230	-0.0232	0.0251
c	-0.0200	-0.0065	0.0072	-0.025
D	0.0600	0.0109	-0.0040	0.0038
8	0.0593	0.0393	0.0063	0.0026
F	0.0844	-0.0172	0.0082	-0.0100
0	-0.0270	-0.0056	0.0039	0.0061
8	-0.0254	-0.0279	0.0065	-0.0006
1	-0.0638	0.0195	-0.0284	0.0066
3	0.0147	-0.0282	0.0312	-0.01.77
2	-0.0175	0.0270	-0.0316	0.0819
$\underline{1}$	0.0877	-0.0222	0.0268	-0.0893
I	-0.0629	0.0219	-0.0316	0.0252
0	-0.0070	-0.0456	-0,0232	-0.0323
P	0.012	0.0356	-0.0233	0.0182
Q	0.0575	0.0016	0.0663	-0.0044
2	-0.0124	0.0362	-0.0221	0.0896
8	0.0673	-0.0735	0.0720	-0.0268
T	0.0244	0.0296	-0.0298	0.0209
ข	0.0428	-0.0592	0.0175	-0.0809

57.

罕ABL 3.9.

Atcaic $x_{0} y$ and 3 comozinates used in the fliret apole of throeAtramalonal least oquareo sefincmento

ATOM s/6. s/b. s.
8
$x \quad 0.27200 .0770 \quad 0.0486$
$1 \quad 0.09570 .24700 .2382$

- 0.0080 .27930 .276

D 0.00890 .23390 .4189
I $0.09520 .2619 \quad 0.475$
F $\mathbf{- 0 . 0 8 7 7} 0.2560 .4864$
$0 \quad 0.16350 .2323 \quad 0.4312$
$\begin{array}{llll}\text { H } & 0.2666 & 0.2805 & 0.2815\end{array}$
I $\quad 0.07840 .1540 .2549$
J $\quad \mathbf{- 0 . 0 9 0 4} 0.0960 \quad 0.0442$
\& $\quad 0.00210 .0626 \quad 0.1097$
n $\quad 0.00590 .0061-0.2632$
I $\quad 0.0987 \sim 0.0244 \sim 0.296$
$0 \quad 0.0926=0.0762 \quad 0.4603$
P $\quad 0.0075 \sim 0.2052 \sim 0.5679$
Q $0.0730-0.0778-0.5060$
a $0.0752-0.0213-0.3292$
$8 \quad 0.1637 \quad 0.0082 \quad 0.2608$
T $0.16920 .0621 \quad 0.1260$
U 0.08400 .08760 .0043

$x\left(A, U_{0}\right)$	N(A)US)	g (A.U.)
2.403	3.833	0.746
-2.416	2.792	-0.292
2.352	3.422	0.544
0.086	4.273	2.070
0.225	5.444	1.650
2.346	6.095	2.877
2-268	5.909	1.926
-2.312	5.405	2.699
2.354	4.200	1.109
2.207	3.523	0.620
-2.277	2.235	0.274
-0.029	1.456	-0.432
-0.004	0.242	-2.037
-2.394	-0.567	-2.167
-2.308	-2.774	2.845
-0.106	-2.448	-2.238
2.031	-2.809	2.993
2.060	-0.494	- 2.258
2.323	0.288	-2.028
2.390	2.459	-0.496
2.287	2.039	0.017

In a Fourioce eymitharde, the elcotron denaity at the atomio peak oan be eatlanted and tho nowrennonding value of 8 can th read from the Ereph. This should give a good approximation to the tomporsature smotor provided,
(1) all the observed etruoture factore ase incluted and the veat majosity of the phases ase corseot,
(2) the obaccred atruoture factors are on the cosysot sonle.

In a dirferonce Fouriter, provided the comondinatea ase reasonahly cocurnte and the acale faotor is within a few perocent of tho oorreot viluo, a good approcidmation to the teimperature seotos can bo obtatnod In the sollowing rey. The valuo of $\Delta \rho=\rho_{0}-\rho_{0}$ at the atomico ponition sis alded to ore aubtrated srom the vilue of $\rho(0)$ cosseoponding to the velue of the seupecsture saotor ansumed for the atom in tho struoture fector caleulatione the new rilue of $\rho(0)$ is used to obtals the now tomperature zeotor 8 swou the graphe

The wiven of 3 dotalind frow the final Fourtier and the stmat differmee Fourles are ocupered in trble 3,20 and the avorege vilues of the individeral isotsoplo tomperature faotose usod in the initlal etnge of threo-dimenstional loant equares relimement are also Bhome.

The leant equares reflnemont of the (0.12) some prosente a muoh nore diffloult peoblon. The least aquares progreamo on tho Pagers computer is parely alegonal 1.e. It nogieote all crosb produots and in the ace of the (OKl) sone, the vilue of som of the proderots of the

TABLA 3, 10.

Comparison of the temposmber feotors derived from tho final F_{0} and $\left(F_{0}-F_{0}\right)$ Foustiar syntheses on the (hio) sone.

Ajow.	$B^{\prime}\left(4 . U^{2}\right)$	$3 "\left(4.0 V_{0}^{2}\right)$	Axarame ${ }^{\text {B }}$
]	4.4	4.4	4.4
$\underline{1}$	4.6	4.6	4.6
1	4.1	4.4	4.2
c	3.7	3.7	3.7
D	4.2	4.6	4.4
I	4.7	5.5	5.2
1	5.1	4.9	5.0
0	4.7	5.0	4.8
4	4.1	4.3	4.2
1	4.2	4.1	4.2
J	4.7	4.7	4.7
1	3.8	3.7	3.8
M	3.8	4.2	3.9
y	4.4	4.7	4.5
0	4.4	4.8	4.6
P	4.8	4.8	4.8
Q	5.0	4.6	4.9
R	3.6	3.6	3.6
8	4.2	4.4	4.3
T	3.9	4.2	4.1
U	4.2	4.0	4.1

B^{\prime} is the temperature faotor derived from the finalfo Foumer synthesia.
$B^{\prime \prime}$ Is the teapersture factor dozived from the final ($F_{0}-F_{0}$) Fourler synthoals.

The avesage value of B quoted was used in the initiel atages of theoo-dimmelomal least squares reftacment.
 in this projoetion. It mas doolded, howevar, to catzy out tho serimanant with the cadnting progrume and to uno the y co-ordinates shown in Teblo 3.9 together with the a comarinatee in Table 3.5. Oniy tho somardinateo wese allowed to ohange and after two dyoles It was obsecyed that coveral of the co-ardinate ohifts wece opoiliating and in theso casos a meen wes faboon between the comondigates obtained
 The atruoture factore wowe seonloulatod and tho raliablilty inder was foum to have droppod froe 0.20 to 0.28 . Three adattional oycles of leat aquares wese computed and the sellebility inder of tho Efructure feotore used to compute the last ogole mas it - 0.24, The comorilnate ahifts aftes caok ayole are shown in Table 3,21 and by the last ayoie the ahifts weme gulte sull. On amalgaing the ahifte 1t was observod that, whase two atcme were very olose together in thio projection, each atom had soved in the amo direction and by approxdmately the samo enount. It would appear therefore that the
 ocatres of eravity of the palse of atoas. The final somordinatos ase sbown in teble 3.9 togothar with the x and y comosdinates which were unod in the throt ayale of threo-atmenaicmal loant equares reifnemont.

TABLE 3.32.

- comaxilmate chifte after cmol oyole of loast equaros sertmomant of the (O W2) sene.

4 ATOP .	croms 1.	cyews II.	CYCHE III.	cresp IV.	Crcher
8	-0.0328	0.0008	-0.2000	0.0777	-0.0244
I	0.0373	-0.0920	0.0552	-0.0500	0.0082
A	-0.1078	0.0768	-0.0698	0.0643	0.0008
c	0.048	0.0651	-0.0530	0.0461	-0.0007
D	0.0443	0.0703	0.0260	-0.0033	0.0127
8	0.0572	0.0350	-0.0375	0.0294	-0.0003
F	0.0336	0.0372	-0.0304	0.0803	-0.0030
0	0.0534	0.0804	0.0175	0.0007	0.0108
4	0.0544	0.0754	-0.0340	0.0870	0.0033
1	-0.0908	0.0741	-0.0857	0.0740	-0.0026
δ	0.1208	0.020%	0.0592	-0.0380	0.0172
2	-0.0074	-0.2536	0.0820	-0.0772	0.0029
\%	-0.0592	0.0060	-0.3094	0.0938	-0.0108
8	-0.0030	0.1888	-0.0592	0.0694	0.0005
0	-0.0472	0.0407	0.0546	-0.0379	0.0229
P	0.0742	-0.0676	0.046	-0.0480	-0.0035
Q	-0.0402	-0.0046	-0.0426	-0.0344	0.0030
1	-0.0057	0.2548	-0.0996	0.0963	0.0080
s	-0.0597	0.0869	-0.1108	0.0929	-0.0014
5	-0.0806	-0.1760	0.0579	-0.0509	-0,0045
U	0.0083	-0.0365	0.0443	-0.0372	0.0088

The comositinates usod to cenculate the atmatrure sactoss of the thind ayole were the avarage of the comondinates derived rrou Cyale I and Cyale II.

 the Untweraty of leode ualing tho least squasea psogromed dovised
 parmoters and als amotropio virentiom pammetere for aroh atom and ane opurall sonio shator for the obenewn sterrotive seotosm. In the case of the ocriporad under constlasation onis the pasmacticse of the ourton and acyem atem wees allowed to chance, the hydrogen coatributican to the atructure fhotore muminitg the seme in cooh oysle. Thile moant that 290 pasumetces wee sectrod.
 mae obtatoed by ascundrg that the otathomary acattering seotor mas miltipited be a teana

$$
\text { exp. }-\left(b_{12} z^{2}+b_{22} k^{2}+b_{33^{2}}{ }^{2}+b_{23} m+b_{23}{ }^{1 k i}+b_{12} h k\right)
$$

 anteotropte vibentlowe of the atcoe arah that the nean memare amplitule of vilmistion in the ilvootion of the unit vootor i, with componnatis 2y, is

$$
\overline{u^{2}}=\sum_{i=1}^{3} \sum_{j=1}^{3} \mathbb{U}_{4 j^{2} z^{2}}{ }^{2}
$$

The selatloantipa botwors the UVI and the b'e aso ourb that,

$$
x_{12}=2 \pi^{2} \cdot \pi^{2} \cdot v_{12}
$$

$$
b_{12}-2.2 \pi^{2} \pi x_{12} \cdot u_{12}
$$

Truo outpert of the peogrume fives the new co-cordinatice and the now cet of $\mathrm{U}_{\text {if }}$ viluce to to used in the neat egoio. In madstion it ciso civos tho ampte and an cottmate of tho standand doviatlons of the co-andinates used to calculate the struature steotane of the
 terme. It is intarosting to mote that the staniand doviation of the initlal s co-oratisatas wore not algnipleantly hedres than thoce of tho
 the diagonal leart manarea reflmencat of the (0.1) sooe in which thowe ven mo atcoto somoluthen.

Thuree apales of leant aghares wase ocmputal uating the vilues of the 635 obsecred etrroterve reotore. The comosals nate ahlsta at each atage in the sertmand ave civen in fable 3,22 (a), (b) and (0).

 reoaloulated unting tho stmal carbon and oxycen oompritmates and
 ontimited comondsnates of all the hodrogen atcen ane ctiven in Tablo $3,25$.
 melow,

$$
\mathrm{a}_{\text {0yale I }}=0.163 \quad \text { Ryale II }=0.272 \mathrm{E}_{\text {Gyale III }} \cdot 0.231
$$

 indifithal lays itso meve sealed to the viluos of the calculated
 obtulnat and on ocmparing those with tho oakculatod otsrioture fectose of Oyale III, it was form that the mollability later droppot to 0.135. The shmal ast of obecred and calculatod etruoture fretose aro fiven in woble 3,16 cleag with tho viven of ΔF o $F_{0}-F_{0}$ and the phace areio α for cach recicotion. the mavimin ostimiced mive of the -truoture fuotoss of the unobsemved rencotion are alvo ofven in this Twbe.

TAABK 3.12.

(a) a co-ardinato ahtitio.

150:	gymas x	cyens 7 Ix	cyors 7 xT
8	0.0088	0.0033	0.0239
K	-0.0053	0.0148	0.026
4	-0.0700	0.0178	-0.0435
c	0.0949	-0.0231	0.0007
D	0.024	-0.0892	0.0094
Σ	0.0324	0.0100	0.009
7	0.0348	0.0430	-0.0003
-	-0.0004	0.0809	-0.0227
E	0.0036	-0.0222	0.0838
I	-0.0328	0.0056	-0.0230
8	0.0897	-0.037	0.020
2	-0.0264	-0.0249	0.0244
\%	-0.0429	0.0137	-0.0000
Σ	0.0390	-0.0404	0.0268
0	-0.0112	0.0037	0.0167
$?$	$0.000{ }^{\text {m }}$	-0.0043	0.0279
Q	0.0000	0.0004	0.0295
2	0.0000	-0.004	0.0276
8	0.0000	0.003	-0.0138
1	0.0000	-0.0370	-0.004
1	0.0000	0.0018	20.0247

- In the flset arole Pogaus stillot to noivo tho 2 sast squares oquatices soe atcon 8 to U_{0}

$0600^{\circ} 0$	$1600^{\circ} 0$	$0000{ }^{\circ} 0$	0
97600	9800\%	$0000{ }^{\circ}$	3
$6810^{\circ}{ }^{\circ}$	2100 ${ }^{\circ}$	$0000{ }^{\circ} 0$	8
$8120^{\circ} 0$	$9810^{\circ} 0$	$0000{ }^{\circ}$	\%
$1500{ }^{\circ}$	9550\%O	$00000^{\circ} 0$	-
C600 ${ }^{\circ}$	9750	-0000\%	8
W00\%	$1030{ }^{\circ} \mathrm{O}$	2600 ${ }^{\circ}$	0
ET100	91700°	$8 \mathrm{CrO}^{\circ} \mathrm{O}$	1
\$18000	$1030{ }^{\circ}$	04500	E
50r0 ${ }^{\circ} 0$	$6700^{\circ} 0$	0820°	\%
8580	$8900{ }^{\circ}$	$6800{ }^{\circ}$	8
Bro0 ${ }^{\circ}$	F00\%	S800 ${ }^{\circ}$	Σ
1400 0	8000°	c970 ${ }^{\circ}$	I
$8900{ }^{\circ}$	$8800{ }^{\circ}$	$4800^{\circ} \mathrm{O}$	0
c300	$8100^{\circ} 0$	$450^{\circ} 0$	d
ET20 0°	$6800^{\circ} 0$	Y200	-
\$170 ${ }^{\circ}$	1900	0010°	c
Etro ${ }^{\circ}$	(300\% 0	V160 ${ }^{\circ}$	0
croo ${ }^{\circ}$	$8000 \cdot 0$	$6580^{\circ} 0$	V
$6500^{\circ} \mathrm{c}$	$8800^{\circ} 0$	$5710^{\circ} 0$	2
0800	$8080{ }^{\circ}$	$0850{ }^{\circ}$	5
İ12	14 Ento	Tax)	0

TAMR 3. 32.
(d) oomandinnto mhtits.

ANOM	Grare	Cxirix	CY0\% ${ }^{\text {ctx }}$
8	-0.0.03	-0.0144	0.0288
K	0.0037	0.0028	-0.0187
A	0.0238	-0.0356	0.0087
6	-0.0910	0.0204	-0.047
\%	-0.020	0.0032	-0.0230
5	-0.0028	-0.0274	0.0233
F	0.0327	0.0032	-0.0398
6	0.0282	-0.009\%	0.0173
8	0.0089	0.0074	0.0438
2	0.0990	-0.0103	0.0259
8	-0.0700	-0.028	-0.0317
5	0.3384	-0.0339	0.0479
\%	0.0308	-0.0013	0.0505
I	0.0307	0.086	-0.0103
0	0.0000	0.2179	0.0443
$?$	$0.000{ }^{\prime \prime}$	0.0144	0.0283
Q	0.0000	0.0039	0.0046
8	0.0000	-0.0709	0.039
8	0.0000	-0.0082	-0.0104
8	0.0000	-0.0.08	0.026
4	0.0000	-0.0723	0.0987

TNATB 3n73.

The Final oarton and owam atomic co-ordinates.

M109	E(A.VV)		(1an)
3	2.4990	3.804	0.7948
K	-2.4237	2.7330	-0.2330
A	2.2809	3.3925	0.5979
c	0.0390	4.2438	0.9936
D	0.1152	5.4289	2.463
E	1.4002	6.072	2.8012
F	-2.0992	5.966	2.9456
a	-2.3199	5.4028	2.724
H	-2.3380	4.2897	2.0783
1	-2.1473	3.5302	0.7033
J	-1.2083	2.2000	0.0833
2	0.0500	2.4427	-0.2037
H	-0.1007	0.1128	-0.9800
H	-2.3692	-0.0191	-2.0042
0	- 2.2998	-2.0134	-2.7238
P	-0.0924	-2.4532	-2.2605
Q	2.0594	-2.7679	-2.9849
2	2.0042	-0.4542	-2.3942
s	2.2935	0.2703	-2.126
T	2.3436	2.4372	-0.5454
U	2.264	2.0396	-0.0457

NMTE 3nN

The vilues of U_{13} deetred firve tho lect ayale of there dimanatomal least equayos zerimaremt.

A50]	U_{12}	${ }^{3}$	${ }_{33}$	${ }^{18}$	7_{2}	${ }^{43}$
3	4.6	5.74	13.67	-2.59	- 4.46	-2.17
Σ	4.88	5.29	28.88	-0.17	-1.20	-2.01
4	2.70	5.74	8.44	-0.32	4.37	-3.59
-	5.23	3.96	8. 38	-0.36	3.44	-2.37
D	7.23	5.70	6.02	2.46	3.35	0.02
8	8.78	5.37	20.34	0.31	-2.39	5.07
7	8.30	4060	6.73	-0.05	-0.93	0.73
-	7.35	7.48	4.24	1.74	2.79	2.73
I	4.34	8.24	8.57	0.03	0.72	7.07
2	4050	5.98	8.40	0.82	7.01	-0.93
3	4.26	5.57	10.70	-2.55	4.68	-2.33
5	5.02	3.79	6.06	0.98	2.28	-2.99
\boldsymbol{Y}	5.86	4.12	6.04	0.82	0.818	0.98
π	5.66	6.93	8.33	-0.96	0.26	-3.73
0	6.86	6.00	9.16	-2.23	-8.83	-0.45
7	8.93	5.25	7.39	-0.43	3.26	-6.03
9	7.76	6.16	7.48	2.84	-0.45	-2.01
2	5.27	5.00	6.26	2.30	2.05	2.23
8	3.24	6.25	T.73	2.99	-0.24	0.10
5	5.54	4.54	9.27	0.93	2.43	2.93
-	3.49	5.85	6.94	0.24	4.48	2.63

TNOTR 3,25.

AsOS	E(Al7)	$z(\tan)$	S(A.UV)
5^{\prime}	-3.0608	6.9245	2.4300
0°	-3.226	3.0705	2.0014
$\mathrm{n}^{\text {- }}$	-3.2992	3.7273	0.0768
8^{0}	-2.26T	-0.1989	-0.7500
0°	-8.1984	-2.326	-3.8723
p°	-0.0839	-3.4019	-2.0077
a^{\prime}	1.9804	-2.2918	-2.3298
8	3.2773	-0.4768	-2.4413
${ }^{\circ}$	3.260	2.9286	-0.3949
m_{1}^{0}	2.6493	6.2308	2.6072
s_{2}^{\prime}	2.0301	5.4996	2.3989
8	1.2387	6.9984	2.4982

TABLE 3，16．

THE OBSERVED AND CALCULATED STRUCTURE FACTORS OF 5－METhYL

 I：2－BENZANTHRAQUINONE．| 1 | 1 | 12 | F_{e} | F^{2} | ΔF | 0° | 1 | $\frac{8}{1}$ | $?$ | F | F | ΔF | \cdots | R | t | 1 | Fe | Fs | ΔF | $0{ }^{\circ}$ |
| :---: |
| 0 | 1 | － | 84. | 8＊－ | 2.5 | －． | 4 | 6 | 0 | 48．6 | 19.6 | 14 | 89Y0 | ＊ | 6 | 0 | $11 *$ | 17 | － 6 | t． |
| | 4 | | 10.6 | 20.1 | 0.3 | － | | 1 | | 12.6 | 2－4 | 0.2 | 2760 | | － | | 9．${ }^{-1}$ | 45 | － 8 | 10．3 |
| | 6 | | 5te | 110 | 4－9 | 180.0 | | 10 | | 125 | 75 | 10 | 01.0 | | ＊ | | 76 | 7.6 | 0.0 | 110． |
| | 10 | | 4.8 | 14. | －ar | 40.0 | | 12 | | 八大 | 145 | 10 | 1006 | | 12 | | 10.2 | 11.6 | －10 | 17？ |
| | 12 | | 1068 | \＄1．2 | 7.8 | 0.0 | | \cdots | | 8.0 | PY | -1.7 | 1678 | | 年 | | 8.1 | －-1 | －0． | \＄168 |
| | 16 | | n－ | 12.8 | 0.0 | 0.0 | | 16 | | 14.1 | 14.8 | －0．2 | 354.4 | | $*$ | | 10.0 | 7. | 2.2 | stel |
| | 16 | | 5.0 | o．y | 5.2 | 0.0 | | 4 | | 12.2 | 2mo | －18 | 3174 | | 18 | | 10. | 11.6 | ＝ 0.1 | 16.6 |
| | 18 | | 3.1 | 2－9 | 0.9 | 180.0 | | 10 | | 11. | 141 | －23 | $2 Y 42$ | | 10 | | 4.6 | 4.1 | 0.6 | 188 |
| | 20 | | Y． 1 | 4.8 | － 8.9 | 180．0 | | 22 | | Y． 1 | \％． 0 | 0.1 | 4 4.7 | | 22 | | br | 0.3 | －． 6 | 389 |
| | 22 | | 2.2 | 0.6 | 1.6 | 180.0 | | 24 | | 3.2 | 2.9 | 0.3 | 218.8 | | 4 | | 4.4 | J． 1 | －6 | 10.0 |
| | 14 | | 6.6 | V． 6 | － 2.0 | 180.0 | | 26 | | 2.8 | 1.5 | －0．7 | 250．8 | | 26 | | 2.5 | 213 | 0.2 | 207－ |
| 1 | 2 | 0 | 77.1 | 4.5 | 0.6 | 41.7 | | 18 | | 2.8 | 1.6 | 05 | 6.2 | \bullet | 2 | 0 | 15.1 | 16．9 | － 0.1 | 448.4 |
| | 4 | | 56.2 | 50.2 | 4．0 | 256.6 | 5 | 2 | 0 | 81.9 | 10.4 | 5.2 | 12．8 | | ω | | J． 6 | 4.8 | －0．4 | 2784 |
| | 6 | | 3． 7 | 6.9 | 0.1 | 814.9 | | N | | In． 1 | 13．4 | 1．4 | 53.5 | | 6 | | 4.0 | 5.4 | $0 \cdot$ | 2603 |
| | 8 | | 46.9 | 4．4 | 5.6 | 181－6 | | 6 | | 97.6 | 19.1 | 13 | 84.1 | | 1 | | 2.4 | 1.2 | 14 | 101．8 |
| | 10 | | 4922 | 42．0 | 7.2 | 278.6 | | 1 | | 46.1 | H02 | 5.9 | 1．4 | | 10 | | 8.0 | $1 \cdot$ | -1.0 | 105： |
| | 18 | | 29.5 | 246 | 8.2 | 269.6 | | 10 | | 10．＊ | 10.1 | －0．1 | 275 | | m | | 6.0 | 8.8 | 0.1 | 3515 |
| | 11 | | 8．7 | 7.9 | 4.8 | 64.6 | | 12 | | 12.3 | 12.2 | 0.1 | 218.5 | | 16 | | 2.5 | 2.1 | 0.1 | 18.1 |
| | 16 | | 6.1 | 5.9 | 0.5 | 2v． 9 | | 4 | | 161 | 125 | 2.6 | 90．Y | | 13 | | 3.5 | 3.5 | 0.0 | 288．4 |
| | 18 | | 5.6 | 4.9 | ay | 5.4 | | 16 | | 6.5 | 6.8 | －0．3 | 18.6 | | 20 | | 3.6 | 4.2 | －0．6 | 2963 |
| | 20 | | 18 | 9．0 | －0．2 | 166.9 | | 18 | | 36.6 | 348 | -3.3 | 94－4 | | 12 | | 2.4 | 4． 0 | － 1.1 | 183．3 |
| | 22 | | 5.2 | 4.0 | － 2.1 | \＄．6 | | 20 | | 170 | 16.1 | 0.4 | 14.4 | | 24 | | 2.6 | 3．7 | － 8.1 | 14．6 |
| | 26 | | 11.1 | 12.8 | -1.3 | 14.2 | | 21 | | 5.7 | 5.5 | 0.2 | cos．y | 10 | － | 0 | 12．4 | 12.1 | － 4.4 | 109．m |
| | 46 | | 1.8 | 1.9 | －0．1 | 188．9 | | 14 | | 4.0 | 4.6 | －0．6 | 4＊7．8 | | 2 | | 20－0 | 11－9 | -8.9 | 2TEV |
| | 18 | | 4.4 | 2.6 | －0．2 | 32.9 | | 26 | | 2.2 | 1.3 | 0.9 | 71.7 | | 4 | | h．${ }^{\text {c }}$ | 3.1 | 1.0 | 143．m |
| 2 | － | 0 | 119＊ | 122．9 | -8.7 | 354．4 | | 28 | | 10 | 19 | 0.1 | 222.6 | | 6 | | 18．6 | 14.1 | 1.1 | 2004 |
| | 2 | | 24．5 | 12－8 | 1．） | 58.8 | 6 | 0 | 0 | 315 | 30.4 | 1．1 | 1.8 | | 1 | | 4 | 4．6 | 0.8 | 163） |
| | \cdots | | 13.6 | 10.1 | $2 \cdot 6$ | 4w．6 | | 2 | | 12．7 | 13.1 | －0．6 | 109.1 | | 12 | | 4.4 | 5.0 | －0．6 | 2859 |
| | 6 | | 452 | 44.2 | 0.0 | 183－5 | | 4 | | 16.5 | 16． V | 1.1 | 1.8 | | In | | 4.6 | b． 9 | －4 | 271．9 |
| | 8 | | 20．6 | 26.5 | － 1.9 | 10.4 | | 6 | | 26．7 | 28.0 | 8．Y | 4.9 | | 16 | | m．${ }^{\text {c }}$ | 3.3 | 1.6 | 18．3 |
| | 10 | | 12.5 | 11.0 | 1.5 | 315.6 | | 8 | | 32.1 | 26.7 | J．4 | 1＊9．6 | | 18 | | 4.9 | 6.6 | －1．1 | sect |
| | 12 | | 11.5 | 9.8 | 1.9 | 13.0 | | 10 | | 10.1 | 9.4 | 0.2 | 31.1 | | 20 | | 2.6 | 2.1 | 0.5° | 1／4．0 |
| | ω | | 13.1 | 10.3 | 2.1 | 112.5 | | 12 | | 9.9 | 4.4 | 0.0 | 1.3 | | 12 | | 3.4 | J－6 | －0．2 | 67.6 |
| | 16 | | 6.1 | 4．4 | 1.4 | 42.5 | | 4 | | 4.5 | t．1 | －az | 269.0 | | 14 | | 1.6 | $3 \cdot$ | －0．2 | 1炜3 |
| | 18 | | 10.4 | 4.8 | 0.6 | 107.0 | | N | | 25．4 | 26.5 | － 1.1 | 347．9 | 11 | ＊ | － | 25.6 | 26．1 | －0．6 | 103．0 |
| | 20 | | 4．4 | 4.2 | 0.2 | 15.5 | | 1 | | 33.7 | 32.1 | 0.9 | 353.3 | | 4 | | 5.6 | 6.5 | － 1.2 | titel |
| | 12 | | 3.3 | 1.6 | －0．3 | 382．4 | | 20 | | 4.0 | | －0．t | 223.6 | | 6 | | 2.8 | 28 | e． 1 | MV6－6 |
| | 14 | | 6.1 | 6.4 | －0．8 | 184．1 | | 22 | | 4.1 | 4.9 | － 0.8 | $3 \mathrm{m2}$ ． 3 | | ＊ | | 1－4 | ＊． | －0．6 | 10．6 |
| | 31 | | 2.4 | 5.9 | -1.5 | 242.3 | | 21 | | 2.2 | 2－6 | － 0.2 | 189 | | 10 | | 13－2 | 13.5 | －0．15 | 885．9 |
| | 11 | | 7．V | 18. | -1.3 | 298.9 | $\boldsymbol{\gamma}$ | 2 | 0 | 10.7 | 16.7 | －4， 0 | 6Y．5 | | 12 | | 51 | ข． 8 | － 1.5 | Efry |
| 3 | 2 | － | 90.1 | 66.5 | － 3 | 267．4 | | 4 | | 20.0 | 20.5 | －0．6 | 19．6 | | 4 | | 6－2 | 7.6 | －1．4 | 18．1 |
| | 4 | | 3.0 | －0 | －． 0 | 2390 | | 6 | | 63.0 | 48.2 | 4.8 | 32 | | 16 | | 1. | 8.6 | － 1.8 | 189．1 |
| | 6 | | 11－＊ | 10．4 | 0.6 | 276.6 | | － | | 18.1 | 4.6 | 2.5 | 102.6 | | 20 | | － 5 | 4.9 | －0．6 | 6.6 |
| | 10 | | 26.4 | 15.6 | 1.0 | 18.6 | | 0 | | 6.5 | 6.0 | 0.1 | 261．6 | | 12 | | 46 | A． 2 | 0.2 | －64 |
| | 11 | | 2.8 | 19 | 0.9 | 3.9 | | 12 | | 4.6 | 1.4 | － 0 | 24xay | 42 | － | － | 44－4 | cte 6 | $2 \cdot 1$ | 184 |
| | 4 | | 13.9 | 16.4 | －0．6 | 286.0 | | 4 | | T．＊ | 9.0 | -10 | 100．5 | | 2 | | －+1 | 12.8 | － 8.6 | 2018 |
| | N | | 1．3 | 3.9 | － 8.6 | 217.2 | | $\boldsymbol{*}$ | | 19.1 | 15.1 | －19 | 353．2 | | 4 | | 12 | 2.6 | － 6 | 1893 |
| | 1 | | 2．7 | 1.1 | 1.6 | 146．1 | | 18 | | 29.2 | se．t | －87 | 86－6 | | 6 | | E． | B1 | －0．3 | 119＋4 |
| | 20 | | 10 | 9.6 | － 1.6 | 312.4 | | 10 | | 4.4 | 10.0 | －0．6 | 148.2 | | － | | \％．2 | 6 | a） | ARC |
| | 21 | | 5.1 | 5.4 | －a． 3 | 35.1 | | 11 | | 6.2 | 8.0 | －0．8 | Itil | | \cdots | | 41 | \cdots | －8．1 | ses |
| | 10 | | 1.8 | 3．V | -1.9 | V¢ 5 | | 26 | | 4.9 | 2.5 | 4.4 | 1618 | | 11 | | 17．5 | 10.1 | － 1.6 | 28 |
| \cdots | － | 0 | 61.8 | 6 y ¢ | 15 | 1713 | － | － | 0 | 15.9 | 185 | 24 | 120.3 | | － | | 4 | 19 | 0.5 | 8 ml |
| | 1 | | 10 | 16.1 | 2.1 | 2540 | | 2 | | 55 | 6.6 | － 0.7 | 180 | | 10 | | 4.8 | 26 | －4 | Hest |
| | － | | － 5 | 56 | －1．1 | 19\％ | | \cdots | | 10. | $12 \cdot$ | a． 2 | 154 | 13 | 2 | \cdots | 4.1 | 1804 | －${ }^{-3}$ | H10 |

12	1	2	F	F	ΔF	α°	1	\ldots	ℓ	fo	Fc_{c}	$\triangle F$	α°	1		1	l	Fo	F.	ΔF	α°
13	4	-	4	J \%	or	2751	1	${ }^{7}$	1	174	133	\cdots	136)	4		13	1	4.4	0.5	-as	155.4
	6		2.1	4.1	-1.3	83%		8		145	18.7	08	287.			4		12	\cdots -	-48	- 0.1
	8		1.1	1.3	0.9	1490,		4		51.2	503	19	15n9			18		173	$0 \cdot$	0.1	10.
	10		5.3	55	-02	260.2		10		301	216	75	1093			16		82	6.5	iv	136.
	12		4.1	4.7	-0.5	914		'		11	86	05	1068			17		100	95	- 8	173.0
	16		23	3.0	-0.	227.5		12		10	35	-05	1155			18	-	110	12.7	-1.1	2008
	18		2.1	2.5	-0.3	839		13		39	22	19	2205			21		$4 \cdot 2$	8.7	0.8	1869
	20		2.0	0.8	12	1800		IV		153	15.5	-02	279			21		9.1	6.9	1.2	248.2
4	-	-	15	- 1	-0.8	43		15		250	231	11	745			2)		56	4.	$0 . y$	307
	2		19	2.1	-0.2	122.6		16		14.1	146	-03	3189			24		6.5	5.4	0.1	105 1
	${ }^{*}$		3.0	4.0	-10	11.9		18		66	Y 3	-0y	W9-1	5		0	1	16.0	131	29	183.
	6		36	4.	-1.3	106. 1		19		5.1	11	20	18YY			1		4.1	7.4	-13	3111
	8		13	$\cdots 0$	-1.4	308		12		4.	5.9	-0.8	17.0			2		21.4	20.9	0.8	2685
	10		2.1	2.4	-0.4	315.2		24		54	57	00	2169			3		20.0	120	-2.0	218.1
	14		2.3	1.4	0.9	991	2	1	\boldsymbol{r}	143	17.8	-25	1951			${ }^{*}$		198	191	-r	1682
	16		18	15	03	39.3		2		148	198	00	1142			5		14.6	143	-2y	148.9
	18		20	1.0	10	550		3		218	252	-24	2677			6		43	$5:$	-1.5	52.5
15	2	-	13	- 0	0.3	2583		*		134	12.2	15	1042			7		113	P\%	2.5	17.1
	8		44	59	-1.3	3472		5		184	17.0	14	450			8		153	15.6	-0.3	166.6
	10		32	-36	-0.4	68.0		6		24	11.	0.	117.8			9		80	8.8	-0.8	29.6
	14		1.1	90	0.1	2619		y		19	9.4	-05	346.			10		8.0	89	-09	1467
16	-	-	Y 5	5.3	22	143:		1		58	85	-2y	134			11		7.6	70	0.6	2823
	4		24	2y	-0.3	152		-		44	62	-16	2590			is		64	64	0.0	1124
	6		2.0	43	0.6	270.1		\%		21	Y 5	0.3	1504			14		234	24*	-10	264\%
	8		42	19	09	245.1		"		15.3	$16:$	-15	215.2			15		21.0	22.2	-12	147.1
	12		* 4	19	08	?96		12		33	32	0.1	102-Y			16		145	154	-0.9	207.1
18	2	-	18	$i \gamma$	-09	46.4		13		34	1.1	0.1	110.2			14		92	10.3	-1.1	1871
	4		39	38	0.1	4.1		14		Y 2	$4 \cdot$	2.4	209.6			18		5.9	71	-1.2	218.
	6		81	6.5	1.6	808		15		14	6.4	2.0	2761			19		98	79	19	618
	P		83	70	13	7.0		16		4.8	3.2	1.6	1870			20		154	153	0.	2680
	10		2%	32	-05	2946		14		6.1	60	0.1	94.			21		10.0	86	1 ${ }^{\circ}$	154
8	0	0	38	53	-15	$8 y^{8}$		18		$4{ }^{4}$	4.4	0.0	lyys			22		55	59	-0\%	1691
	4		26	30	-0.4	24.4		19		4.4	4.6	-0.2	1533			23		58	6.1	-0.3	3153
0	,	,	26.	179	-1.2	00		20		55	$4:$	Oy	357.6	6		1	1	142	138	04	130.
	2		596	593	03	180.0		21		13	P. 1	-0.8	11.2			1		135	121	14	1400
	3		261	25.2	09	180	3	0	,	105	11.4	-2.	176.3			1		326	12.4	02	00
	4		893	135	58	00		,		31	35	0.3	2790			$\stackrel{ }{*}$		50%	502	03	1543
	5		25%	290	-33	1800		1		184	201	-14	910			5		13	10	03	1074
	6		8γ	yr	10	1800		1		136	$14 \sim$	-00	2532			6		96	10.4	-08	2631
	Y		116	10 y	$0 \cdot$	1800		4		68	12	-10	1265			${ }^{7}$		119	132	-13	1690
	8		54,	462	$\bigcirc 9$	1800		5		32	24	05	164.7			8		13)	141	-01	3603
	9		$38:$	328	60	1800		${ }^{6}$		24.2	218	14	2815			9		442	413	21	1765
	12		- 0	90	00	1800		Y		100	9.5	05	2199			10		109	121	12	3509
	19		$16 y$	156	11	00		9		135	134	0.1	185			11		126	121	03	810
	14		155	140	15	1800		10		60	41	-1.1	1019			12		54	4.	0.4	2519
	is		60	45	15	00		"		158	166	-08	V"			13		42	-4	-12	176*
	16		10 r	123	-15	0.0		$1 /$		56	56	00.	8Es9			14		53	52	0.1	318%
	\%		39	56	-1\%	1800		15		8.	19	-17	31\%			15		231	24.	-13	386.1
	If		29	51	-12	00		i4		, ,	99	-06	2142			16		204	138	16	0%
	10		64	5.1	13	0.0		18		$5 \cdot$	52	O\%	9013			18		4%	55	-or	213\%
	21		6.	18	-23	00		3		45	4.	-04	41			19		- 0	-3	-0,	-19
	2		5.	6.4	-09	00	4	,	1	89	123	-34	1199			20		$y \%$	87	-13	1844
	In		31	1%	06	00		,		190	116	16	142			11		210	101	or	198
	26		5.9	56	03	00		1		185	10	-25	164			22		18	101	-r	* V
	$2 r$		60	54	0.6	1800		4		3	15	02	10\%	\checkmark		0	,	E*	106	-10	$3{ }^{3}$
1	-	,	'r,	16.8	03	194		5		118	35	oy	3995			,		14	49	13	2117
	1		20.1	13 N	-33	1645		6		149	14:	$\cdots 0$?	1515			t		145	216	-21	3001
	2		95.0	1090	-140	2147		y		20	169	3,	159\%			,		145	151	-07	389.1
	3		1415	158.4	-159	B2 2		,		180	149	0 -	Ans			4		148	102	0.	-4.
	$*$		65.1	680	$-2 y$	2895		10		. 65	111	11	3074			8		",	-y	1.	271.3
	5		115	116	-2.1	2823		11		106	81	19	964			9		**	18	0.6	1085
	6		20.0	125	75	68.8		it		44	30	-01	14.4			10		62	53	0.9	436

	E．	6.	48	α°	12		E．	Fs	of	${ }^{*}$			Fo	F．	of	${ }^{\circ}$
＇＂	\ldots	\because	\because	2005	13	，	，	＇＊	\bullet	2050	3 －	：	s．	4	－as	mo
＂	\because	＊	1	nor．			\cdots	＂	\cdots	8			2	M	－a，	
＂	＊	${ }^{\circ}$	18	2006	＇		＇	s	17	＂＊＊＊			＂	＋	－	m
－	6.	＂0．1	－20	${ }^{275}$	，		\％	＇	9	218：	：		${ }^{n+1}$	$\stackrel{18}{68}$	－22	${ }^{46}$
＂	7	176	－0．6	2887	－＂	2	53	${ }^{4}$	\therefore	298	；		10	\because	ar	1215
$\underset{\sim}{\sim}$	\％	\cdots	－．	${ }^{2120}$		\pm	12.6	10.4	－．，	\because	；		$\stackrel{4}{4}$	10.	－9，4	\％os．
＂	．	－	0	${ }^{16} 9$	：		19.5	2.0	－ 5.5	1260	－		10.6	1.0	－	sras
＂	4.	4	1.	\％ 1.	，		19.1	$5 \cdot 2$	4	120	＂		\sim	\cdots	－18	\cdots
10	＇＂	＂\％	2.0	${ }^{168}$	＂		18.3	12.7	2.6	1700	，		9.1	＂	20	10
＂	\％ 8	\％	－6．8．	$\xrightarrow{8.1}$	：		100	${ }^{121} 5$	${ }_{2} .8$	$\xrightarrow{0.0}$	＂		\％ 6	\％	\bigcirc	${ }^{10,3}$
：	\because	9．6	－08	nes	，		4.5	${ }_{1}$	3．0	150.0	n		11.0	17.	－2．	10.8
，	128	\％${ }^{1}$	－98	13．0．	，		12.5	＂：	\because	150．0	＂		97	n＇s	－a	＂1．
；	P．	0.1	0.5	52.5	＂		9.0	＂	02	${ }^{\circ}$			11.	1.9	－1s	1 ma
＇	${ }^{\prime}$	c．	－0．2	4	＂		13.	\cdots	μ	\because	＂		$5 \cdot 4$	＂	－9．6	\cdots
；	10.1	10.8	－o．y		＂		1.7	12.	8	$130 \cdot 0$	＂		4	\％	1.1	29.7
，	${ }^{\prime \prime}$	s．\％	0.4	156．7	19		10.9	\ldots	－0．6	0	${ }^{22}$		2.5	6	1.4	12.8
10	\because	\％	1.8	10.0	＂	2	\％	8	$\stackrel{-9}{-9}$	\％ 180.0	＂	，	8．4．	${ }_{17 .}$	－＊＊	\％12．
14	\％	${ }^{\prime \prime}$	or	20．1	${ }^{2}$		10.4	14.6	0.1	191.7	$\stackrel{2}{2}$		m．9	ins	-16	20\％
＂	＂	：	－0．4	315.7			\％ 6	${ }^{\prime \prime} \cdot$	${ }^{-1.7}$	139．4			12	14.5	－4	18.7
＂	36	54	0		＂		20.5	17.0	－0． 5	${ }^{184}$			3	${ }^{6}$	－2．1	17.
，	\％	5．6	－1．4	${ }_{\text {Is，}}^{17}$	；		＂＇80	$\underset{\sim}{20.9}$	－2．14	151.9 16.9	$\stackrel{3}{4}$		5．3	${ }_{5}^{5}$	\cdots	4
	s．r	${ }^{6}$	－1．2	30．6	＂		s．is	$9 \cdot$	－	12.9			\％	9.	0.5	278.4
：	5	، ${ }^{6}$	－0．1	1017			4	\％	＂1	265	10		2	${ }^{7}$	$0 \cdot$	109\％
；	＂	＂	\bigcirc	25，9	；		\cdots	＂，	3.0	12064			19	1.	－0	${ }^{68.4}$
＂	5	＂s	－ 1.4	so．e．	${ }^{\prime}$		\cdots	113	${ }_{6} / 4$	＂16，	＂10		19，	11／4	－20．	${ }^{2126}$
n	，	8.2	a	20	13		5.8	${ }^{4}$	－0．	1203	＊		11.6	1.5	$\stackrel{1}{ }$	19．91
${ }^{\prime \prime}$	s．＂	1.8	13	$\stackrel{10 .}{ }$	＊		6	6	－8．	10＋2	，		＂	\cdots	－97	
$1{ }^{1}$ ；	\cdots	\because	－9．1	${ }^{20457}$	＂		\because	＊$\times 1$	－0．8，	12，	${ }_{24}^{23}$		\％	$\stackrel{0}{0.1}$	$\because 0$	${ }^{19.9}$
‘	．．	\％	a，	265：	＂		14.0	13.	a	$26 \mathrm{k} \cdot \mathrm{M}$	${ }^{2}$		s．	s	\cdots	rym
＇	\cdots	5.3	a．n	10.4	＂		\cdots	14＊	－18	2847	＇		25.6	27.1	4	9
＂。	s\％	4.7 2.8 2.	－1．9	${ }^{3125}$			${ }^{\prime \prime}$	\％ 17.6	－1．6	3134．4．	＇0		\％	${ }^{11.2}$	－2．1	\cdots
，	＂． 5	$\mu .1$	2	\cdots	2		4	${ }^{1}$	－3	19.0			${ }^{12.3}$	180	27	10.5
2	207	2.4	${ }^{-18}$	16.1			9	＂	－4．0	＇67＇	＇2		21.	19	0.6	129
$!$	${ }_{15}^{220}$	210．4．	－9．9	\cdots	＊		${ }^{12.3}$	19	\because	？ 2.	＂		16.8	178	\cdots	\％
5	10.7	1．．	$0 \cdot$	$0 \cdot 6$	‘		\ldots	39.6	is	120．5	＂		\cdots	9	\cdots	\cdots
‘	10.9	9	1.	ma．	＇		$\times 4$	－＊	-19	357	n		\cdots	＂	$2 \times$	178
，	10．3	19.6	$0 \cdot 1$	22．	＇		190	P．	15	27.1	＂		\cdots	64	a	2
＂	9	\％$\%$	0	2 2ras 2620 2.0	，		＂	＂ 2		${ }_{\text {c }}^{\text {27，}} 1$	${ }_{28}^{24}$		\％	\cdots	${ }^{1.3}$	180
＂	4	5.4	－0．6	200． 9	＂		s\％	y：	－4	3， 1	\checkmark		20	20，		asy：
σ	＂＇	\cdots	－ 3	m．s	＂		＇，	$5:$	\because	306			＊	\％	0	30．0
，	\because	＂	＂．	2100	＂＇		\because	5.4	\because	${ }_{20,4}$	：	。	\％${ }^{3}$	$\stackrel{5}{\square}$	－29	ne．
＇	c，	\because	－ 5	20.3	＂		3	s	\cdots	150	＂		123	109	0	129：2
－	\％1	19	-2.0	12.	，＇	：	5.	\cdots	－－19	24.1	，		\％．0．	25.	\cdots	$180 \cdot$
；	19．4	\％ 8	13	1801			＂ 5	5.6	\cdots	23.5	13		＊	${ }^{*}$	0.5	108
！	\％ 8.4	\％$\%$			＇		6：8	\because	－-18	（17\％	${ }^{3}$	3	\％	\％		
，	－6	W	－${ }^{\text {a }}$	［8：1	s		日，	\ldots	＂	\％94．	。	2	${ }^{10}$		－ヵ．	28904
＂	${ }^{6}$	8	＂	12.	；		\because	\cdots	$\stackrel{1}{4}$	\cdots			4	4	－9．4	$1{ }^{18}$
，\％	\because	5.0	－，	156．0．			＂\％．	\cdots	8				＂	＊		104．9，
2	19.	\cdots	\because	2654	，		45	\because	．．	${ }^{116.2}$	，is		－3	${ }^{2}$	a	su9
	$4 \cdot$	159	－ 9	$\kappa 3$	＂		56	－9	$\cdot 1$	33.	，s		8.4	\％	－93	Has

1	1	l	Fe.	F_{6}	ΔF	\sim^{*}	1	1	1	F.	F_{L}	ΔF	α^{*}	k	-	1	Fo	F_{c}		OF	$4 *$
-	V	2	$6{ }^{*}$	$6 \cdot$	-08	1082	1	1	3	6.	42	-26	28.8	5	2	3	5.5	8.7		-32	∞ -
-	\pm	2	Y.	92	-2.2	1366		3		$1{ }^{1} 0$	159	-13	7iy		3		8.4	9.1		-0.0	$40 \cdot 9$
	4		121	14.6	- 0.5	100 ${ }^{\text {c }}$		4		in)	- 7	-0\%	\%at		-		5.4	$0 \cdot 8$		-3.3	10.8
	5		108	48	-0.0	138.6		6		61	Y.	-07	187.5		c		y. $\%$	8.8		-. -1	109.6
	6		10.	12.8	2.6	18.3		y		108	\% 1	10	2373		-		10.2	11.2		-1.0	129
	-		10.4	$8 \cdot$	1.6	91.4		8		4,	267	-3.7	845		-		126	46.5		-1.9	421
"	*	2	11.7	12.1	-0.5	1096		9		21.2	138	-46	263.6		16		E.	11.6		- 1.8	01
	s		6.4	Y. 9	-13	2,0		10		96	6	38	118		"		6.8	10.6		-3.7	11.
	y		15.0	12.1	29	685		11		58	9.6	-31	17.7	6	,	3	7.1	80		1.4	1048
	8		6.3	8.3	$0 \cdot$	293-3		12		5.	4.4	12	31944		2		10.0	H.*		-0.6	11.1
14	,	2	4.	6y	8.1	219.1	2	2	3	4.	6.1	- 19	3nf.e		3		5.6	6.4		-a.8	188.1
	*		11.7	10.7	10	10 nc 9		J		4	*	-1-1	67.6	.	4		7.2	6.5		0.7	171.6
	5		19.1	18.8	2.0	0.6		4		4.1	2-1	1-3	68-2	-	10		14.3	18.6		-0.8	176
	6		250	201	1.1	ive. 6		5		5.8	6.2	-0.4	18.6		14		18	12.6		-2.0	190.
	-		8.1	6.1	1.8	964		y		7.2	1.1	-0.0	127.3		18		19	106		-09	(5¢)
11	\checkmark	2	" 1	10.8	0.3	llas		8		11.0	134	-2.0	270.8	y	3	3	2.	-7		-1.7	Bers
-	2	3	10.9	117	-0.4	00		9		83	15	-0.2	76.9		4		6.1	8.7		-1.6	116.8
	3		11.7	143	- 16	0.0		10		5.3	H-8	0.5	160.		-		1.2	11.3		-21	¢1.*
	4		4.3	6.	-2"	0.0		12		5.6	$y .5$	-1.9	286.2		-		10.6	H.0.		-3.4	110.8
	5		6.)	2.	-21	0.0	3	1	3	Y/	9.6	-0.3	110.4	-	-	4	er	11.8		- 2.6	-.
	\rangle		39	6.6	-8.7	1800		2		4.6	8.0	-2.4	28.4		,		\%.0	91		-2.9	-0
	1		64	50	1.6	0.0		4		4.4	9.5	-1.1	305.8		\because		66	6.0		-6	\cdots
	9		11.4	6*	-100	0.0		10		s. $\%$	Y.4	-17	45.1		"		10.1	12.6		-2.85	180.0
	10		174	192	-20	18100		11		1.9	1.4	-1.5	1360		12		13	12.5		-42	0.0
	"		so	1.2	-4.	\cdots	4	,	3	6.3	15	-2.2	112.6		14		$s .0$	8.9		- 3.5	1890
	12		50	5.1	-a,	0.0		2		r. 1	2	-1.8	12.0		15		3-2	5.8		-2.6	$0 \cdot$
	18	-	J,	5.1	-2.0	180.0		3		6.6	1.0	-0.4	216.2	,	,	4	y ${ }^{\text {P }}$	- 9		-19	281.6
	14		42	5.6	-1.4	1890		9		12	11.1	-19	217 . 8		10		6.5	Y.1		-1.6	283.8
	15		58	6.9	- 8.1	1800		10		101	7.4	2.8	11.6		"		5.4	7. 3		-1.6	21.0
	16		45	3-4	0.4	1880		"		r-1	6.1	0.4	153.4		4		91	12.2		-31	102.0
	19		yr	86	-0.9	180.0		12		1.0	7. 8	-0.3	78.	2	9	4	4.	1.1		0.9	2680
	20		3.5	2.1	0.4	0.0		\%		48	5.0	-0.2	185.3		10		$5-6$	4.9		07	77.9
	21		28	19	-0.9	0.0		15		5.4	5.4	- 5	313.3		"		47	1.7		-10	161.7
	22		31	- ${ }^{\circ}$	-3.3	118.0	5	1	3	32	11.6	3.4	138:3								
\ldots	t	1	F_{0}	k	12	Fe	h.	6	l	F	l	$1 \quad l$	F_{0}	k	t	1	Fo	k	1	1	F.
\bigcirc		\bigcirc		-	$\text { is } 1$		\$	14	1		6	2s 1		-	1	1		10	14	1	
	16		<15		23	<2.3		20		< us		26	<2.7		4		<18		15		<4
	48		<1.2		25	< 2.1		22		< WI		27	<2.1		7		<34		16		< 41
3	8	-	< 11		28	-15		33		< M1	7	5 ,	< 3, 2		3		< mo		/		< 4
	26		<14		29	< 1.1		24		< 39		6	<3.6		10		$<\mathrm{ml}$		18		< 16
	24		<11	1	191	< no		25		<3.6		r	<34		13		< 42		14		<17
6	24	-	< 15		20	$<\mathrm{m} 2$		26		<32		22	<1.9		${ }^{41}$		< 41		20		- 4.6
	26		< 1.2		21	$<\omega_{2}$		27		<19		23	<3.5		15		< 42		22		< 28
γ	in	0	< 1.4		23	<4.1		26		<24		34	<1.2		16		< 42		23		< $8 *$
9	1	0	<1.7		29	<3.7		24		$<1 \mathrm{H}$		28	<1.8		4		< 43		240		- 1-8
\cdots	10	-	< 11		26	< 3.4	4	7	1	<4.7		26	< 24		18		< 41	11	γ	1	< 41
"	11	0	<25		${ }^{17}$	<80		19		< 42		27	<15		14		<29		1		4 48
11	16	,	< 15		18	<26		10		<4.2	8	4 ,	< 25		10		< 39		11		< 4-8
	18		< 8.4		29	<19		15		<3.5		6	< 36		12		<3.8		is		< 4-8
	8		< 0.8	2	21.	$<b_{2}$		26		<11		$1 /$	< n 。		21		<1.9		19		48.7
13	14	-	<1.5		4)	<4.		17		<27		12	< m. 1		24		< 1.1		18		- 24
is	12	0	<15		34	<3.9		28		<21		16	<43		25		<18		19		-11
is	4	-	<16		15	<17	5	12	'	<36		14	< 42	10	1	,	< 3.9		20		< 10
	6		<35		16	<3.1		24		< 16		18	< 42		4		$<\mathrm{no}$		8		44
	12		$<\mathrm{H}$		27	<30		15		< 33		21	< 17		5		< 40		81		-4
16	2	-	< 24		28	< 25		26		$\leqslant 10$		32	< 15		y		<41		33		4 4.4
18	2	0	<0.8		19	< 18		47		<25		11	-12		1		< 4	4	,	'	< 44
r	-	,	- 3.8	3	-1	< 2.7		13		<18		24	<29		10		<2		6		<4
1			< 2.6		18	<35	6	17	,	< 4 ?		25	<23		"		< 43		10		- ω
-	10	-	$\langle\alpha\rangle$		$*$	< 87		21		$<3\rangle$		26	<1.7		12		< us		\cdots		40
	1		< 1.8		16	< 19		14		< 3s	9	11	<17		13		<41		4		40

Pra3.23. Ito bond ieagths and bond ancies of 5 -nothyi nona molconlar plane aso aloo showno

(a) Dicarantan of one Bracturs:

The final set of co-asidinatice civen in Truble 3,23 was unet to calculato tho bood longthe and boad ancles of 5-mothyl 112 mbensanthrer
 In Fig. 3,23. For comparitnon, the bond lengthe calculated from the
 aro also given in teble $3,23(a)$. The man bond longthe and bond angles of the arematlo shags axe shown below.

AROMNTE BTME		ITENT BOMP AMOTS
copart	2.39% A.J.	1290980
sitamir	$1.405 \mathrm{A.U}$	$120^{\circ} 7^{\circ}$
reanope	2.409 A.U.	$220{ }^{\circ}$

Swo overill mean accuntio bose 1 ength io 1.405 A. 0 . and tho man aronstlo bond engie so $120^{\circ} 0^{\circ}$.

The prinotpie of least squarea man used to colloulate the semb molocular plang, whidh was found to bo

$$
0.0314=-0.4390+0.89153+0.9311-0
$$

THNTK 3.17.

(a) The calculated bond lengite of 5 -acoling

1:2-benmanthregutnomo and thots mtandard doviations (σ). Tho bond learth misea quoted in breckets were thomo culoniated frem tho comerdinateo used in tho initial apalo of throo-atmoantemal leact Equaros suftromoct.
(Valuos in A. IV.)

801	BOID LETIME		σ	2010	Bump hamayi		σ
18	2.247	(2.24)	0.039	Jt	2.496	(2.592)	0.026
16	1.403	(2.563)	0.022	18	2.380	(1.422)	0.024
48	2.478	(2.483)	0.022	14	2.488	(1.443)	0.024
18	2.460	(2.402)	0.028	11	1.375	(2.38.3)	0.084
P0	2.129	(2.398)	0.022	11	1.453	(2.096)	0.081
2	1.379	(2.428)	0.086	0	1.382	(2.308)	0.028
(1)	2.372	(2.293)	0.028	08	2.437	(2.433)	0.030
C	2.374	(2.342)	0.024	98	2.358	(2.307)	0.030
\pm	1.412	(2.504)	0.083	02	2.483	(2.507)	0.021
20	2.407	(1.435)	0.023	8	2.373	(2.44)	0.023
\%	2.412	(2.3n)	0.023	8	2.358	(2.380)	0.028
J	2.241	(1.270)	0.024	W	1.429	(2.432)	0.02

Mean aromatio bond leagth - 2.405 A. V.

(b) The ouloulatod bose angice of 5 -mothyl ini-homenthere quiness and the doviations of the atom smen the moan moloculers plene.

45	2180 ${ }^{\circ} 3^{\prime}$	E15
30	$180^{\circ} 23^{\circ}$	378
Wes	$222^{\circ} 3^{\circ}$	W8x
208	$48^{\circ}{ }^{\circ}$	2an
1010	289038	medt
G15	128 ${ }^{\circ} 3^{\circ}$	190
5	$123^{\circ} 37 \%$	308
015	$129^{\circ} 8$	029
850	12490	5 ma
	$187^{\circ} \mathrm{Co}$	arm
0.1	$128^{\circ} 36$	$\underline{418}$
5	1899300	2es
03	123 ${ }^{\circ} 590$	880
123	122^{988}	20
Ins	129340	Un/

Tho deviations of tho aton tree the man molcoulas plame ase given along with tho caloulated rond anglee in Fable 3,27 (b) and illuotrated

 $\infty^{0.063}$ and $\mathbf{0 . 2 1 7}$ reapeotively.
there is no duscot eatimation of the acouracy of the Mmil of atcale comordinatos, but the eatkmated atandiad doviatlome
 Tables fee X-riy Gayotallography, Vol. II) of the peovious set of atanto comorilizatea in the threo-atmenatonal rofinamont are shoma in teble 3.20 and these whll be used to deptine the upper limit of the etandard doviatloas of the final atcotio co-cordimateo.

Sinoo the otandard doviatione of the comondinatoe vary aldghtly, the etandard doviation of the bond jeagth $\left(\sigma_{L}\right)$ betwoen two

 mas calculated tron tho equation (Almod and Orutconherit, 2953) $\sigma_{1}{ }^{2}-\left(\sigma_{I_{1}}{ }^{2}+\sigma_{y_{2}}{ }^{2}\right) 000_{0}^{2} \alpha+\left(\sigma_{y_{1}}{ }^{2}+\sigma_{y_{2}}\right)^{2} \operatorname{coses}^{2} \beta+\left(\sigma_{z_{1}}{ }^{2}+\sigma_{z_{2}}\right)^{2} \operatorname{cose}^{2} \gamma$ whase cam. α, cos. β and con. γ are the durection coatises which the rom miteo whill ciyntal aseo. The standand coviations of the boud leacthe ave groted in Tablo 3,27(a).

In atsorasting the struotwer of 5-mothyl 2,2 -benaanthequinose, the

81.

두ㄴㅜㅗㅗ․ 3.28.

The cattinatod steriland doviatlicas (σ) of tho cartoa and

3 AOH	$\sigma^{\prime}\left(1, U_{0}\right)$	$\sigma_{y}\left(1,0_{0}\right)$	$\sigma^{\text {S }}\left(1.00_{0}\right)$
8	0.0123	0.0208	0.0258
1	0.0127	0.0206	0.0297
1	0.0143	0.0252	0.0276
c	0.0168	0.0124	0.0276
8	0.0177	0.0251	0.0274
8	0.0824	0.0188	0.0280
∇	0.0803	0.026	0.0182
a	0.0804	0.0872	0.0254
I	0.0280	0.027	0.0298
Σ	0.0172	0.0158	0.0873
3	0.0839	0.0256	0.0995
8	0.0280	0.024	0.0184
\pm	0.0207	0.013	0.028
7	0.0298	0.0203	0.3022
0	0.0806	0.020	0.0983
1	0.0233	0.026	0.0283
\bullet	0.0820	0.028	0.0284
2	0.0164	0.0246	0.0288
8	0.016	0.0256	0.026
8	0.0274	0.0247	0.0297
v	0.0267	0.0248	0.027
Yant	0.0183	0.0152	0.0289

apsoifted iovals of as

 abould be adopted is as soliome. Iet P to the peobability that A oculd bo obsawed eroater than B by ohanoe, dithough it is staily equal to 3 , then 12

$$
\begin{aligned}
& P \geqslant 9 \% ~ \delta i \text { de mot oigntiflount } \\
& \text { 5\% } \geqslant \mathrm{P} \geqslant 2 \% \text { } \delta 210 \text { poondiy asgatioont } \\
& \text { P } \leqslant 2 \% \text { S } 10 \text { algaistoant. }
\end{aligned}
$$

It oan to ahoma that it

$$
\delta \mathbb{Z}\left(\sigma_{A}^{2} \cdot \sigma_{z}^{2}\right)^{\frac{2}{1}} \cdot \sqrt{2 . z}
$$

then

$$
P=0
$$

 agromurt with the aingle o - C boud leagth of about 2.51 A.U. groted for this type of ctruotwe. The vilue of the bond Ieagth Al and Ix ($2.247 \mathrm{~A} . \mathrm{O}_{0}$) an efgnithoantly loager than tho valuo of tho $\mathrm{C}=0$ bond
 rilloh the value of 2.15 ± 0.02 A.U. 1s quoted as a mean for tho

 of arthearinose (Son, 2948). The vilue of 1.247 A.U. fore the bond lengthe agnes mach nose alosely with the values of, 2.25 A.U. quoted

Flise 3.34. The projeotion of the contents of the unit 0011 down the g - axds ahowing tho intcomoleoular contast of <4.20 A.U.

In strioture of diahlocoant mequinone (Maliog, 1958), 1.22 4.0. quoted in the atsuotrere of Infantheone (2niley, 2953), and 1.22 A. 0. quoted in the atructure of Mavanthrone (Stediex, 2953). The gean - - C aronatio bond length in the structuxp 1a lo.905 A.U. and uedne thio value, the bond leagth IN in much that 61 - 0.083 A. U. and
 Ionger than the moan bond iength. In the same may it can to ehowis
 The hond laastha ap and 70 aro posalbly algutricantly ahorter and the bond lancth in is posatbly steristaantly. longer then the mans.

In ocmparing tho bond lengthe calculated at the and of the two Atmoastonal 2 east achares veftmement with the fimal nives (rable 3,27(a)),

 deviation of the former get wae of the axder of 0.036 A.U.

An inveatigation of the signistionno of the doviation of the atcmo freen the man molecrilar plane showed that the deviatione of the atcons

The pacidige earenngusent of the noleculios is the unit cell is 13luetreted in PIge 3,24 and the intermoleorlas comitaots of <4.20 A.B. ase dremb. The reluos of the C O C Intarmolocular conteota as typtoni of compounto of this type and the miue of 3.33 A.U. for the c- O intermoleoular ontaot is vary otmiler to tho vilues or 0-0 intcrmoloculas oonteote repocted in structurees of dichlaroanthmaquinona,

Revarithrow asi indartinose.
 exint in the thomal motlons of the stems, int a thi asacunalon of the tomperature affoot io not poanilio at ims atage of tho reftmanoms,

 last aysio of maitnomont are mom miow.

$$
\begin{aligned}
& \sigma_{U_{11}}=0.0099 \operatorname{A.U}_{0}^{2} \sigma_{U_{22}}-0.0078 A_{0} U_{0}^{2} \sigma_{U_{33}}-0.0215 \text { A. }_{0}{ }^{2} \\
& \sigma_{v_{22}}-0.0254 \operatorname{s.v}_{0}^{2} \sigma_{v_{23}}-0.0100{\Delta . v_{0}}^{2} \sigma_{v_{23}}-0.0278 \lambda_{0} v^{2}
\end{aligned}
$$

In E Roowt pasper Inviry (inuryo 2957) ma otated that the curvon

 anpirial method san the cancoure of tho dootron domaty mew of tho vell reaniva (205) ginofeation of that compound. Fo foum thet the
 wherens the cutron cton bonded to the axyren had only 5 deotrones. It
 ghtilar attoot owcumed. The mothod used mas to caloulate tho atande proctice of the kurty ourbon and oxgrea atome hro tho quation for the doctron comaity at a dintanoe F Imon the ocatro of an atom,

$$
(x) \quad \int_{0}^{s_{0}} 8 \pi \cdot f(0) \cdot 3_{0}(2 r r a+) d s
$$

where I(s) is the vilue of the atonte eonttering hotore.

Pher 3.35. Comparison of the axyeva atconte proftres.
 ourve.
 alcotson doasity map of tho (4 two) projection.
(3) The atcrile prostle calculeted srou the Bergile sonttorking oarwo whth a tempecentur ocrreotion of app. $-\left(\operatorname{Bath}^{2} \theta / \lambda^{2}\right)$. whace 2 - 5.0 A. $\mathrm{J}_{0}{ }^{2}$.

Phe 3.16. Cosipariocn of the carton atcmio prorilen. (1) Fio atanto proflle coloulated hew tho Muris soattoming curve.

 the (2 m 0) projeotion.
 auw ($=4.0$ A. $U_{0}{ }^{2}$).

Thito dorinsto intagral vas colvol by mecericol fategration and tho
 In aldition tho atcuito gnotile of a carbon and en ougem atcon wese
 tompernturs acrroction of upo- $\left(\operatorname{sata}^{2} \theta / \lambda^{2}\right)$, where I - 500 A. $00^{2} 800$ the orygua atom and B - 4.0 A.U. ${ }^{2}$ ser the oarton atcen. Theoe two
 3,26 with the sotoul atcute preartieo obtatnod tron the comtorre of the stival election denalty map in Fis. 3,20. In cock oace the apparimontal ourw agrees mah botter with the thouetition proitic

 supocitad by Murty.

 the lottering of the etans abopted in this invortigatiock tho bond lemgthe mbema woe those used in the inftial stager of the etranoture dotecminatica.

CHAPEER I.

THS SRUCTHE OF

(a) Preliminas Dicouraton.

A alcotoh of the molecule is shown in Fige 401. The lettering as indicatod in the diagram wall be followed throughout this chapter. The poattion in the nolecule leaticated by W will be refersed to as the nolcoular ccatso. Theo expeoted bond lengthe wich were unod in the initial stages of the impantigation are also showin in the diagran.

The dotails of the apace-group and unit coll dimenaions of the yellow nocdlo-shaped ceystals are given in Chapter II seotion 1 (form 1). The opacomgroup is PR, and the coll dimomatons arot

B - 20.674 ± 0.020 A. J_{0}
$\mathrm{D}=4.06 \pm 0.02$ 4.0. $\quad \beta=90.80 \pm 0.05^{\circ}$
2 $\quad 7.768 \pm 0.008$ A.J.
Theare are two molecules in the unit cell, the molecular motedt is 272.26 and $5(000)-264$.

As In the case of 5-mathyl $1: 2$-bensantirequinomo the molecule poscesses no ountre of aymetry and hance the asymetzio unit is one moleovie, consinting of 29 ontorn atoms, 2 oxygon atame and 12 hyarogon atams.

87.

Equi-inolination photogerophe were taleen about the L and $\mathrm{o}-\mathrm{ares}$ of zotation and the stret theoe upper layor lines of the t - axde mese seo photographod. Bo photographe wase taboa about the a-azto of sotation bocause a authable orystal could not be found. N1s serleotion intongitios were meaerred vimuliy and in addstion the
 the upper 2 ayece 2 ino imtensitice of the h - adels woce macurged on the nitarodonaltonetom. Thio intanalitios wese corrosoted and put on the same scois using the toohnique dasaribed in Obapter III scotion (a). Wilmon's mothod to dotosmime the absolute scale swotor mosapiled to the intenatition of the (202) some and the reauting graph isallontod - tamperaturo fuctor (B) of appromimataly 4.5 A.U. ${ }^{2}$ and a moalo raotor of 0.86 to put the obsecred atsuoture feotore on the abmilute scale. This soale suotor was later found to be mithin 25% of the oorysot scale tantos.

(b) The Dutectration of the Apporimate Structrras

(1) pireot ruthod.

Before atarting on the long procoss of trial and acros Eethode of sinding an apporimato struoture, it was dooided to apply
 to the strecture thatores of the (101) some, in whioh the atcmes abould be mell sesolved (b $=4.06$ A.U. .

Solurartse 0 inoquailty 10

$$
\left|\int \mathrm{f} \cdot \mathrm{E} \cdot d v\right|^{2} \leq\left(\int|\varepsilon|^{2} d v\right)\left(\int|B|^{2} d v\right)
$$

whase I and e awe innotions in a space in which dy is a voluse elencent. When thic inoquality is applicd to the equation dapinine the otaructure saotor, therther inequailitios ase obtained (0 ilila, 2948). The mont usest of theoe inequalitios mas found to bo,
whase

$$
\begin{aligned}
& \left(U_{H} \pm U_{H}\right)^{2} \leq\left(1 \pm H_{H}+H^{0}\right)\left(2 \pm U_{H}-H^{\prime}\right) \\
& U_{H} \quad 0 \quad v(n, 0,1) \\
& \mathbf{u}_{\mathrm{B}}+\mathrm{a}^{\prime} \quad-\boldsymbol{U}\left(h+{h^{\prime}}^{\prime}, 0,1+1^{\prime}\right) \\
& U_{B^{\prime}}=U\left(a^{\prime}, 0, z^{\prime}\right) \\
& u_{y}-I^{\prime}=U\left(h-h^{\prime}, 0,1-2^{\prime}\right)
\end{aligned}
$$

 The application of the above relationship leads to sesulte of the typen

$$
g\left(m+2^{\prime}, 0,2+2^{\prime}\right)-g(n, 0,1) s\left(2^{\prime}, 0,2^{\prime}\right)
$$

whese 8 meang "tho algen orn.
When the above inequilties were applicd in a Eyateantio manors to the unitary struature faotore of the (201) sono, a set of 2tw equations was obtalined lanviviag the alges of oniy elovin struoture Pactors. Thoso oquations are efven in reble $4 \boldsymbol{f}^{2}$ and the solationahipo Which mase later found to be lnoosreot ase mariood with a aross, Ho phases were dotormined uniquely and the mothod talled to give anough infornation to so2ve the ntruoture. Thits mas not eurgertaing, alnoe there are relativily 80 m structure frotors whth largo unitary values. It has boen shown (Lipeon and Cookran, 2953) that, if p is the mibore of oquivaleat poaltions and a is the amber of atone in the asympetrile unit, thon when I donotes the muber of indeatioal atome in

TABIS Ans.

whare 8 moans "the algn of".

Phodn3e The roldted rookprocal lattice of the (201) projeotion.
the unit call wh have,

$$
n=p x \text { and } i^{2} \cdot \frac{2}{\square}
$$

Hocoo if I Is large, the vilue of 7 - the awange unitery etruoture feotor - will be amal asd thase will be inttio likelinood of nolving the phase peoblea by the use of hantear-Kagpes inegunitios.
(1i) gyal end Buson Hothod.
The wedrated reoipecoal lettice of the (h02) sone Is shown in Fige 4,2. The moan boneme ring was seoonstruoted and this indicated that in this projeotion, tho molcoulo man tilited through an angle of apynoinately 30° about a $12 n o$ joining the oartion atems it and J. chare are Eive poasible maye in which the molecule of 2^{\prime}-aethy 1,2 -benempluraquinone can be bust up srow the basto beasen unit and once the correot astentation bas bean deternined, the poatition in the unit cell of the molocular contre nant also bo tound.

It was thought that the boot way to obtain this information would be to compute tho Pattorson function

$$
P(u, v, \omega)=\frac{1}{V} \sum_{-\infty}^{\infty} k \sum_{-\infty}^{\infty} k \sum_{-\infty}^{\infty} l\left|F_{0}(h k l)\right|^{2} \cos 2 \pi(h u+k v+l \omega)
$$

which dotesmines the wotor solationehipn botweon ibe scatterine centros 1.e. the atoms (Pattermon, 1934). In this case, the trodimonoional (h:01) projection of the Patterson Runotion mas derived and the contour map obtained is shown in Fige $4,3(\mathrm{a})$. If the

 ef ablitiry fintervile. Sxporisposed on the map io the eniculated diaterlbutloa of peoles stion the proposed staruatures.
(b) ine proposed axrangowont of the moleculas in tho (121) projection
(c) the diotrallution of peater in the Patherson Irmotion obtalmed spoin the proposid otmoture.

91.

 of the Pattergon map may be zolativaly aagy. By camparing the
 orlentations with tho Patteracn map, it appeared that on of the poentblo axtentations mas mose 21sely than the others. One high paets (A in Pige $4,3(8)$) had at121 to be cipiatud. The ponttlon and
 votora botween comregpanding atoms in the enthriquinono parte of the two molcoules solated oy the cantro of mynutsy at the orlgit of the projection. Thio gatw the restor diataneo betweon the molecular coutrea of the two molcoulas in the unt onil. Two propomed cortertation and aremberant of the moleoules in the (r02) projeotion ase show in PLge $4,3(b)$ and the wotor dietrelbation which the proposed aterwoture pould give io chows is Fibe 4,3(e). This calculated rotor distritution 10 also mbow euperimpered on the Pattareon map in Pieb $4,3(\mathrm{a})$ and the 21 is monntimbly good.

The tilt inficatod by the metghted seoipeooal lattioe mea applica to the banio moleoule and tho comardimatas of atoms were calculated with the molocular contre at $(0.317 a, 0.105 \mathrm{~g})$, as inisanted by the
 Thale 4,2. In the inisial atages of the gtruoture daternination the hydrocon contrilurtion to the mouttoring mia nagleoted and an oxgen aton mas agmosed to how a aonttaring power $4 / 3$ that of a onrean atca.

Tabra 42.

Froctionn Σ and 5 comaxdinates.

APC:	$2 / 0$	3/0.
B	0.402	-0.21
Σ	0.238	0.36
A	0.364	-0.040
c	0.382	0.121
D	0.443	0.144
8	0.049	0.316
F	0.46	0.299
6	0.438	0.435
II	0.357	0.426
2	0.340	0.258
J	0.276	0.240
1	0.238	0.073
\%	0.197	0.036
\$	0.254	0.192
0	0.094	0.173
P	0.076	0.018
Q	0.219	0.229
2	0.179	-0.099
8	0.232	-0.235
9	0.283	-0.226
v	0.300	-0.038

Mre_Anl- The imitial Dourlce map of the (MO1) projoction. The contover aro drem at aipltrary tuturvis.

Mreach5. The mocond Fouster mapp of the (102) peojeotion. The contocise are arwan at latervile of 1 co/A.v. ${ }^{2}$, the 1 oo/A.vo ${ }^{2}$ belins colted.

The oarbon seattering ourve used was that of Bemghus et. al. eustably corrooted for the tempomature effect. The tempersature frotor used was s - $4.5 \mathrm{~A}_{0} \mathrm{u}_{0}{ }^{2}$.

The atruature feotors of tho (101) none were oomputed for 31 mellootions with sin $\theta \leqslant 0 . \%$. The observed structure factore wane scaled to the aniculated viluos by appigting a eonle feotor of 2.16. The sellability indor fow the 224 planee which wece calculated was 0.30 , whith anomed moest ancouraging. The pheses of 130 of the largest intruoture faotors wese used to compute a Fouries mythoals and the sesulting alcotson denalty map in ahom in Mg. 4,40 112 the atcos wese wall recolved and the comardimates of the peaks wese extrwoted using the method of Bumes and Monl. The now co-andinater were used to sesalculate the otruotrace feotore of all the posorble refleotions in the (hO2) sono and the sollabllity inder was forme to be 0.23. An ceramination of the phaser derived from aaloulation ohowed that only one of the otruoture factore inoluded in the first Fourior aymihoats had ohanged sign. A scoond Pourice ayntheats weo now computed inoiviting the phaces of an additional 92 atruoture faotoss. The new comondirates weso extreoted trem the eleotron dansity map (Fig. 4,5) by the toahnique alroud desocibed. The structure factoss of the (rol) sone wese reoalculated and tho rellability inder ras found to be 0.18 .

An atteapt wrea now mado to derive the atomio $\%$ comardinatee by oramining the struoture in the (hko) projeotion. Sinoo the I - arde

Is a coser axts, the moloculas coutre oan to plooed anywher along the $1-$-ards. Thee boot acroanat botwem the obsarvod and oalculatod streoture feotows mas obtalnod nhon the y co-osdinatce wase calculated on the aasumption that in the (101) peejcotion the molcoule is plamer with tilts of approstmately 30° ebout a 2 lmo Jotnting the atong A and I and of 7° about tho porpendicular to tho limo AT. the y comonilmatos cacived in thits minner avo show in Tuble 4,3. The valuac of the atruoture factore of the obecerved
 to be 0.25 .
 Befowe caurying out a seil throe-dimmatomil loast equares sortsamant, one agole of leant squares tas computed on the structure frotare of the (201) mose. Thate weo done an the Pegasus ocmputer at Morthanpton Polyteobnto. The In and acomandinater usod wece those deretvod from the seocen Fouriter map, togethor with the asounch hydrogen co-ardinatos, onloulatod on the baals of a carbon-igytivegen bond leagth of 1.05 A.U. On the assumptica that the oaston atcua at the contre of the moleoule wal viketo leas than those on the
 to the atcen as shown in Prable 4,40

TABLE 4.3.

Atonic J oo-ordinates used in the first oycle of 3-dimonsional least squares refinement.

ATO.	\underline{y} /.	$\underline{y\left(1 . U_{0}\right) .}$
B	-0.084	-0.34
I	0.084	0.34
A	-0.042	-0.17
C	-0.279	-0.73
D	-0.348	-1.41
I	0.604	2.45
F	-0.475	-1.93
A	-0.433	-1.76
H	-0.264	-2.07
I	-0.137	-0.56
J	0.042	0.17
L	0.179	0.73
I	0.348	1.41
I	0.390	1.58
O	0.559	2.27
P	0.686	2.79
Q	0.644	2.61
I	0.475	1.93
S	0.433	1.76
I	0.264	1.07
U	0.137	0.56

 The eontoums are at Autervale of $0.2 \mathrm{c}_{0} / \mathrm{A}_{0} \mathrm{~V}_{0}{ }^{2}$, the seaso consours boine the colld block 21 im and tho poastive ocontourso ase dotios.

NARHE 4.4.

TYP9	AFOU	$3\left(1.00^{2}\right)$
0;yeren	$\mathrm{B}_{2} \mathrm{E}_{0}$	5.0
Carbon		4.0
Castons	$\mathrm{D}_{8} \mathrm{E}_{8} \mathrm{O}_{8} \mathrm{Z}_{8} \mathrm{H}_{8} \mathrm{O}_{8} \mathrm{P}_{9} \mathrm{Q}_{8} \mathrm{~S}_{8} \mathrm{~T}_{6}$	4.5
Oastom	E.	5.0
Eydrogen		6.0

The sellabllity intex mes calcolatod and was foum to be $\mathrm{A}=0.24$ ocmpared with $R=0.38$ when the meruoturs factore were onlculated without the hydrogen oontribution and leastidual leotzople teaperature frotors. The loant squarea oyole was computed and the new comomisatea obtainod ase ahown in rable 4.5. The struature saotors of the (201) some were seculculated and the selisbility linder dropped to 0.212. The places of 121 the obearvod atsuoture feotore wese usod to oomperte a diffecronco Pourior aynthosis and the reaulting map of eleotron denatty is shom in Fig. 4,60 The Atriunceoc Fourice wae peopmed to conble an eotlmato to bo made of tho
 of the elcotson decasty map was the elilptialty of the contouse asound the arysen atca altoa, whloh showed that thase wes a doftinto
 seotiopio tomperatue feotors which were uoet in the initlal atage of

TAMOS 4.5.

Atomso z and oomadnatos and individual isotropio temperaturo feators usod in the flyet oyelo of 3-dimonsional least squares refinemato

490\%.	216	8/8.	Inevol.	$8(4.0 .0)$.	3.
B	0.3937	0.1588	8.239	-1.234	4.6
K	0.2388	0.3845	4.937	2.987	4.4
A	0.3594	-0.0322	7.430	-0.250	3.6
c	0.3783	0.1324	7.822	2.028	3.6
D	0.4382	0.1509	9.059	1.172	4.2
E	0.0498	0.3209	2.030	2.493	5.2
5	0.4556	0.3056	9.419	2.374	4.5
0	0.4251	0.4453	8.581	3.459	4.2
H	0.3560	0.4287	7.360	3.330	3.9
I	0.3372	0.2727	6.972	2.218	3.6
J	0.2734	0.2556	5.652	2.986	3.7
2	0.2538	0.0922	5.247	0.708	3.5
$\underline{1}$	0.1951	0.0681	4.033	0.529	3.7
1	0.2502	0.2044	3.205	2.588	4.0
0	0.0947	0.2757	2.958	2.365	4.5
P	0.0786	0.0096	1.625	0.075	4.9
Q	0.2193	-0.1226	2.466	-0.932	4.7
2	0.2778	-0.0984	3.676	-0.764	4.1
8	0.2199	-0.2382	4.546	-2.850	4.4
5	0.2774	-0.2204	5.735	-2.634	4.2
U	0.2949	-0.0481	6.096	-0.374	3.7

 the oloctricu domsity map by the mothod cutismod in Chapter 3, soction (d) and those awe given in Teble 4,6 bolev.
Tarle Ang

The indivitual iooteopio toxponature seotomo usod in the

MN0	$8\left(\mathrm{AHO}^{2}\right)$	M501	$3\left(1+H^{2}\right)$	M30]	B(A)Un)
8	4.6	0	4.2	0	4.5
\boldsymbol{x}	4.4	H	3.9	P	4.9
A	3.6	1	3.6	0	4.7
c	3.6	3	3.7	1	4.2
D	4.2	2	3.5	8	4.4
\%	5.2	1	3.7	2	4.2
?	4.5	I	4.0	-	3.7

 Deace comprter in tho Untveratty of Oimagon. The ioast equares procirame, which wes dovigod by Dr. J.S. Rollatt, serines thece pomtticmal parematers and uiz anicotmople vibeatlemal parimiterw for onah atcm and one overall soale seator fos the obsemved itsuoture faotores. Onity the pascmotesce of the curgen and earton atoms were allowid to chango, the contrithattions of the hyrinogun atcan to the oulouleted etmotiuso
 motion of the atcos mea obtaised by maming that the etatlomaty
conticring faoter was miltiplict by a tex

$$
\text { axp. }-\left(b_{21} x^{2}+b_{23} x^{2}+b_{33} 2^{2}+b_{12} x+b_{13} u+b_{23} x\right)
$$

 The output of the least squares programio ceve tho new eot of 00 ondinates and the new vilues of $b_{1,}$ to bo usod in the mant oyelo. Datis was alvo obtatnod whioh mabled an estimate to to mado of the etandard toviathons of the comoralnatice ueed in the oyele.

The comordtantion uaod in the initial oyole wore tho z and comenituate given in 2ablo 4,5 and the y comertimatee given in Tablo 403. The Intivithat leotnople temperatum saotose usod meee those civen in Table 4,6 . As thase mas sceo doubt as to whether the otruotrave thotom of the layer Itmas of the b - aste were on the seme
 coltited in the Ifyot ogrole and ouly mil-ahitita wow pernitited in tho comanilinatea. When the etrwoture factum of the intifilmal leyer ilnow vero reaculed to the viluee of the calmiated utruiture feotore, a surthes oyole of leant equases was computod using all the 863 observed etruoture feotors of the semo, flust, seoond and thise Iayer lines of the l - axic and tho millability inioz mas sound to be 0.27 . The stum oot of co-ordimene doudvod from thit oyole are gatven in 3 able 4,7 and the vilues of $b_{1 j}$ obtained wese converted to valuea or $\mathrm{U}_{1 \mathrm{j}}$ (Bmap. IXI soot. (d)) and thove ase shown in Taile 4,8. The atomite comondinates of all the hydrogen aterse aroept those of the methyl geroup wace

Tho Etmi set of obesered and caleulated atruoture fectere ase ghven in Tablo 40 20 along whth the viuce of $\Delta F=F_{0}-F_{6}$ and the

 given in Tan304,20.

TABHE A. 7.

The final oarbon and oxygen atomio comordinates.

NTOM	(A.US)	(A,U)	(A.U6)
8	8.1199	-0.2634	-3.2327
I	4.9332	0.1829	2.9367
A	7.4284	-0.2093	-0.2459
0	7.8181	-0.7377	0.9720
1	9.0327	-2. 4373	2.1466
8	1.0134	2.5068	2.4677
F	9.42a	-2.8840	2.4247
0	8. 6025	-2.7016	3.5102
H	7.3306	2.2532	3.3558
I	6.970	co.6291	2.0913
7	5.6190	0.0670	2.9338
Σ	5.2684	0.7103	0.7345
$\underline{4}$	4.0182	2.4452	0.5588
8	3.0744	1.6625	2.5434
0	1.9573	2.3236	2.3898
$?$	1.6a8	2.8144	0.0764
9	2.4240	2. 6074	-0.9940
\%	3.7050	2.9503	-0.746
8	4.5663	1.728?	-2.886
2	5.6933	2.0210	2.7042
4	6.3069	0.5148	-0.3599

 Equates motiminatio.
(Vilues in 10^{-2} A.U. ${ }^{2}$)

Ancy	Un_{18}	${ }^{4}$	$\mathrm{U}_{3 \text { 3x }}$	${ }^{43}$	v_{12}	$\mathrm{v}^{\text {a }}$
8	5.88	5.82	6.22	1.95	0.00	0.00
z	5.57	5.57	6.34	0.09	0.00	0.00
4	4.57	4.57	4.53	0.07	0.00	0.00
©	4.57	4057	4.53	0.07	0.00	0.00
D	5.50	5.20	5.82	0.08	0.00	0.00
1	6.59	6.59	1.73	0.20	0.00	0.00
F	5.72	5.7	6.54	0.09	0.00	0.00
-	5.32	5.32	5.32	0.06	0.00	0.00
日	4.94	4.94	4.93	0.08	0.00	0.00
1	4.57	4.57	5.06	0.07	0.00	0.00
3	4.0	4.68	4.11	0.07	0.00	0.00
2	4.43	4.43	4.43	0.07	0.00	0.00
\%	4.68	4068	5.24	0.07	0.00	0.00
E	5.07	5.07	5.06	0.08	0.00	0.00
0	5.70	5.70	7.31	0.09	0.00	0.00
P	6.20	6.20	3.97	0.10	0.00	0.00
4	5.93	5.93	6.83	0.09	0.00	0.00
2	5.20	5.20	5.98	0.06	0.00	0.00
8	5.57	5.57	6.32	0.09	0.00	0.00
5	5.32	5.32	6.66	0.08	0.00	0.00
0	4.68	4068	4.68	0.07	0.00	0.00

TABITS-4.9.

The oaloulatod kydirogen atconic oomarinatoo.

490\%	(A.O.)	y(A.V.)	
D°	9.6n	-3.54	0.338
${ }^{\prime}$	10.355	2.360	2.509
a^{\prime}	0.892	-2.410	4.114
${ }^{\text {a }}$	6.690	-2.046	4.180
\square^{\prime}	3.319	2.307	2.501
p^{\prime}	0.799	3.333	-0.107
a^{\prime}	2.179	2.963	2-980
8°	4.313	2.200	-2.336
${ }^{\circ}$	6.313	0.68	-2.536
z_{1}^{1}	0.068	2.452	4.090
${ }_{2}^{0}$	2.250	2.923	3.053
${ }_{3}$	1.258	1.992	3.053

TABLE 4,10.

THE OBSERVED AND CALCULATED STRUCTURE FACTORS OF 2'-METHYL
1:2-BENZANTHRAQUINONE.

1	1		F	Fr	ΔF	α	1	1	1	Fo	F	ΔF	α^{a}	6	1	c	F	6	AF	α°
1	0	0	18.1	19.6	0.2	180.0	16	0	1	< 0.				2H	-	3	2. 3	3.0	-. \dagger	-.
2			4. ${ }^{\circ}$	4.4.3	-4.1	180.0	0	0	2	14.6	15.Y	1.9	me.e	15			< 0.8			
3			11.4	11.6	-02	0.0	1			26.0	24.1	1.9	0.0	-	0	\cdots	Y. 7	8.	-0. ${ }^{\circ}$	110.0
4			1f.e	18.8	2.2	180.0	2			Y,	8.8	-1.4	180.0	1			3.6	B. $\%$	-0.1	-.
5			*.1	10.1	1.2	0.0	1			11.3	7.4	- 1.1	0.0	2			4.4	4.3	0.0	110.0
6			160	14.4	7. ${ }^{\circ}$	180.0	4			5.1	6.8	-0.Y	180.0	3			20.0	15.3	7.7	0.0
y			4.6	3.1	0.5	180.0	5			¢. Y	9.6	0.1	0.0	4			7.7	\%. $\%$	0.0	0.0
-			5.9	5.1	0.5	$0 \cdot 0$	6			8-4	9.4	- 7.0	0.0	5			10. 1	29.0	1.3	180.0
9			71	6.6	0.7	150.0	y			15.0	16.7	-0.9	180.0	6			4.1	3.6	*. 6	0.0
14			11.4	10.5	0.9	180.0	-			1.2	d. N	- 2.12	0.0	y			8.1	3.6	-1.5	183.0
"			161	11.5	1.6	-.	9			$5 \cdot 2$	6.3	-7.1	0.0	8			9.\%	d.0	-.Y	180.0
1			1-1	2.9	-0.w	140.*	10			9.5	- 4	1.4	0.0	\bigcirc			AY	0.7	1.0	180-0
11			1. 1	3.6	-0.2	180.0	11			4	6.3	0.5	0.0	10			d.y	3.1	-a. 6	0.0
4			2.1	1.4	e. ${ }^{\text {e }}$	0.0	12			< 1.1				11			1.9	1.9	-	10.0
15			1.6	-.Y	0.9	140.0.	4			8.1	0.5	1.8	180.0	12			3.1	3.1	1.1	0.0
16			10	8.6	-0.5	180.0	\cdots			8.9	3.8	-0.4	180.0	18			2.8	m. 2	-8.0	180.
/Y			<1.3				\ldots			6.4	Y6	-1.1	180.0	14			18.0	19.6	- 1.6	0.0
17			<1.4				*			3.1	1.2	1.4	180.0	18			13.4	11.3	-0.1	0.0
\uparrow			d. ${ }^{\text {d }}$	4.2	-0.8	180.0	17			2.6	2.1	-0.2	0.0	\cdots			10.6	2ay	-1.2	180.0
20			2.7	2.9	-0.2	0.0	11			*. 2	0.9	3.3	180.0	π			< 1.4			
11			1.2	2.1	0.1	-. 0	19			<1.8				18			< H.N\%			
2			< 1.8				80			26	3.0	-a.4	0.0	17			< 1.11			
11			< 1.11				11			4.9	5.3	-0.11	180.0	20			<1.3			
34			< 1.1				21			2.7	4.6	-0.9	180.0	4			<1.8			
28			<1.1				11			< 1.8				33			<1.2			
16			< 0.				24.			<1.1				21			41.1			
0	-	1	51.4	Su-8	-3.2	0.0	25			1.2	14	-0.2	0.0	3 n			<1.0			
1			13.7	12.5	1.2	180.0	26			<0.7				-	0	-	2.1	1.0	1.1	-. 0
2			124	10.10	2.0	180.0	0	0	3	82	9.2	-1.0	180.0	1			1.1	1.4	- ${ }^{(1)}$	0.0
2			38.5	35.5	- 2.0	180.0	1			<8.14				1			41.1			
$*$			15.9	98.0	-2.1	180.0	1			5.1	Y. 5	-2-1	0.0	1			<1.1			
s			8×2	dr. 1	0.1	180.0	1			$28 . Y$	28.0	O.Y	0.0	*			<1.2			
6			4	6.0	-0.2	0.0	*			41-6	39.9	1.6	0.0	5			M. 3	*.6	0.1	0.0
Y			11.Y	12.2	-0.5	180.0	5			24.8	388	1.0	1190	6			9.7	9.Y	0.0	100.0
1			8.7	10.0	-1.3	0.0	6			14	13.2	- 1.5	180.0	\uparrow			<1.3			
\bullet			3.6	31.10	0.2	180.0	y			3.4	2.0	1.2	0.0	8			41.1			
10			10.9	15.9	1.0	0.0	-			2-6	2.5°	0.1	180.0	-			1.9	1.0	0.7	0.0
"			406	$4 \pm .1$	0.3	0.0	9			2.4.4	2.5	-0.8	0.0	10			<4.3			
4			1982	$1 / 3$	-0.1	180.0	\cdots			160	16.1	-1.1	180.0	11			41.4			
1			<1.1				"			3.7	3.5	0.2	0.0	12			$\leqslant 46$			
4			5.2	3.4	1.8	180.0	4			2.0	0.5	1.1	0.0	13			$\leqslant 1.4$			
1			<1.1				11			< 1.8				10			19.2	18.6	aw	0.0
*			2.1	d. 4	- 1.1	0.0	4			<1.3				15			-4	3.1	c.b	100.
IV			8.1	6.9	-1.5	180.0	15			1.7	0.0	8.9	180.0	$*$			9-8	*) 0	-0. -8	18.0
18			$4 *$	4.1	-0.2	0.0	16			41.4				\cdots			< 61			
4			1.8	0.3	-1.5	0.0	9			1.0	01	8.9	110.6	4				4-\%	-1.8	1eos
20			1.0	1.6	-0. 0	0.0	1			< 1.1*				n			48		-	
11			0.1	2.0	-0.5	180.0	4			<14				20			2	-. $\%$	81	40.0
21			v.	x.9	-0.6	180.0	13			<1.4				${ }^{4}$			< 1.1			
13			$2 \cdot$	8.8	-0.1	0.0	21			1.0	$1{ }^{1}$	0.2	108.	32			40.9			
2)			41.2			.	2			- 8.1				13			4 4			
8			41.0				d3			<.. 2				-	\cdots	*	$0 \cdot$	4	0	n40

2		2	6	6	aF	\propto	1		1	6	F_{c}	ΔF	α	1	1	2	6	6	ΔF	x°
1	\bullet	6	$4-6$	4.3	-1.2	0.0	3	\bigcirc	9	- 1.2				2II	0	2	2.2	2.5	-0	0
2			< 1.3				\cdots			< 1.2				58			< 4			
1			1.5	2.1	- 1.3	0.0	5			< 1.1				\pm			< as			
-			8.8	4.	- 0.5	180.0	6			< 1.1				7	-	3	21.9	28.4	0.0	-.
f			C. AB				Y			< 1.1				5			7.3	s.3	a.	100.
6			0.0	18	-0.2	180.0	*			1.4	1.0	0.4	180.0	5			5.1	8.6	1.5	1800
V			8.4	8.0	-0.0	0.0	1			<1.0				-			15.8	4.4	1 -	- -
-			4 1.0				10			<0.1				5			11.8	1RO	0. ${ }^{1}$	$0 \cdot$
9			< 1.4				11			<0.7				5			38.7	$3 \times$.	2.9	0.0
ω 。			$\leqslant 1.3$				0	-	10	< 0.6				\bar{j}			35.	3 m	12	Tene
H			1.9	0.0	1.9	180.0	1			3.4	$4 . Y$	-1.3	0.0	E			22.6	20. ${ }^{1}$	1.6	190.
4			1.9	2.4	-a.9	0.0	2			<0.7				5			14	-1	48	-. 0
4			1.8	0.5	1.0	0.0	T	0	1	41.1	41.9	-0.8	0.0	π			6.4	6.3	2.1	180.0
14			< 1.4				$\overline{2}$			21.5	23.6	- 1.1	180.0	π			2.6	3.8	-8.d	100.0
15			< 1.3				5			14.3	14.6	-0.8	0.0	$\underline{12}$			3.4	॥. 1	-ay	180.0
N			< 1.1				\%			16.0	16.4	-0.4	180.0	13			< 6.5			
IV			4-5	4.8	-0.8	180.0	5			12.7	12.6	0.1	0.0	\%			4.6	3.1	0.1	0.0
18			2.6	0.1	2.2	0.0	$\overline{6}$			s.y	9.5	-1.1	180.0	$\overline{15}$			2.8	0.1	2.2	180.0
17			<1.8				7			14.3	13.9	0.6	0.0	$\overline{6}$			< 1.4			
26			< $0 . \%$				E			11.2	9.4	1.1	180.	$\overline{71}$			15.0	12.5	2.5	0.0
21			< O.Y				$\overline{7}$			4.5	3.1	1.4	0.0	$\overline{18}$			5.6	7.0	- 1.4	180.0
0	0	y	1.9	5.2	-3.3	0.0	6			14.4	15.4	-1.4	0.0	17			4.6	4.5	0.0	180.0
1			2.9	J.0	-0.1	180.0	π			.6.7	4.3	2.4	180.0	5			2.2	$2 . Y$	-0.5	0.0
2			- 1.9	1.7	0.0	180.0	$\bar{\square}$			2.2	2.5	-0.3^{1}	180.0	$\bar{\pi}$						
3			< 1.6				$\sqrt{3}$			2.4	3.4	0.1	0.0	$\bar{\Omega}$			2.6	1.1	0.8	0.0
*			3.1	*.6	- 1.5	180.0	$\overline{01}$			1.7	2.0	-0.1	0.0	J			3.2	18	0.4	180.0
5			< 1.4				13			1.4	1.5	0.1	1800	5			< 1.4			
4			< 1.4				$\sqrt{18}$			8.8	8.7	0.1	0.0	5			<1.1			
7			6.4	7.9	- 1.5	100.0	$\overline{17}$			4.9	5.3	-0.4	180.0	T	-	4	< 1.0			
1			3.1	2.5	0.6	0.0	$\overline{81}$			7.4	6.4	1.0	180.0	J			3.0	3.7	-0.Y	180.0
9			6.8	7.3	-0.5	0.0	π			7.3	1.5	- 1.2	180.0	5			2.0	¢.Y	-2.Y	0.0
\cdots			3.2	3.9	- 0.9	180.0	5			2.1	3.4	- 1.3	180.0	-			1.2	4.3	- 1.1	0.0
18			< 1.4				$\sqrt{11}$			2.2	2.4	-0.2	0.0	5		$\stackrel{ }{ }$	<1.0			
4			< 1.4				5			2.4	2.4	0.0	0.0	5			16.1	13.9	2.2	0.0
63			< 1.4				$\overline{3}$			1.4	2.1	0.3	0.0	$\overline{7}$			2.6	3.2	0.4	0.0
id			< 1.3				20			<1.2				\bar{T}			8.8	Y. 1	1.4	180.0
15			< 1.2				55			< 1.1				\dagger			2.5	2.0	0.5	0.0
16			< 1.1				$\overline{5}$			<0.1				10			2.7	$\cdots \mathrm{m} 0$	- 1.3	180.0
Ir			<1.0				7	0	2	31.6	29.5	1.1	180.0	$\overline{7}$			9.0	1.2	0.8	0.0
18			< 0.8				$\overline{2}$			15.4	15.5	-0.1	0.0	$\sqrt{2}$			8.5	1.4	1.6	180.0
1			< 0.4				3			$\cdots .7$	4.7	0.0	0.0	\%			< 1.3			0.0
0	0	-	< 1.4				$\overline{4}$			20.	21.0	-0.2	180.0	Im			2.6	4.1	- 2.2	0.0
1			< 1.4				5			7.5	6.4	1.1	0.0	$\overline{18}$			3.2	3.4	-0.6	180.0
2			3.4	1.6	-0.2	150.0	$\overline{6}$			6.1	6.7	0.1	180.0	$\sqrt{16}$			41.4			
*			1.6	0.6	1.0	0.0	$\overline{7}$			12.5	12.9	-0.4	180.0	$\sqrt{14}$			4.9	5.3	-0.4	180.0
-			1.7	0.9	0.9	0.0	\%			12.7	10.7	2.0	180.0	$\sqrt{18}$			< 1.4			
5			1.1	1.9	- 0.9	180.0	$\overline{7}$			8.9	7.1	1.1	180.0	19			4.5	4.5	-0.2	0.0
6			2.3	0.3	2.0	0.0	$\overline{10}$			2.6	0.1	1.8	0.0	$\overline{20}$			2.6	2.8	-0.1	180.0
7			d. ${ }^{\text {d }}$	1.4	-0.5	180.0	"			2.0	1.1	0.9	0.0	51			2.0	1.9	0.1	180.0
-			5.6	6.1	-0.5	0.0	$\overline{1}$			12.2	11.4	0.1	0.0	$\sqrt{2}$			2.8	2.8	0.1	0.0
-			2.1	1.5	-0.4	0.0	$\overline{13}$			3.7	SY	0.0	130.0	35			2.1	1.9	as	180.0
\cdots			<4.8				\%			8.8	9.1	-0.5	0.0	$\overline{24}$			<0.1			
\cdots			< 4.1				$\sqrt{5}$			5.6	5.4	-0.1	180.0	T	-	5	1.9	mod	-2.	0.0
12			$\leqslant 4$				$\overline{16}$			18.4	18.7	-0.3	0.0	$\overline{2}$			s.7	6.1	-a.n	180.0
is			$<\mu$				7			15.7	15.8	-0.1	0.0	5			6.9	5.2	1.6	0.0
ω			< ap				E			21.4	29.1	00	180.0	4			*. 6	8.0	-0.4	160.0
π			<0.				$\sqrt{19}$			2.0	2.2	-0.2	180.0	5			4.9	10.2	-at	180.0
\bullet			<0				20			\% 2.4				5			6-3	5.4	a)	180.0
-	-	9	< 1.2				I			- 1.1				7			4		00	1000
1			18	J. 6	0.3	0.0	I2			< 8.3				5			142	4.9	25	∞
2			2.6	2.1	4.5	0.0	$\overline{35}$			< 1.1				5			1.4	2.4	-ab	100.0

1		1	F	F.	ΔF	α^{0}	k	k	ℓ	F_{0}	Fs	AF	a°	1	1	ℓ	For	F	ΔF	$9{ }^{\circ}$
11	1	,	4 3-4.				12	1	\cdots	* ;				T	,	1	$4 . Y$	$6-1$	0.6	490. ${ }^{\text {a }}$
20\%			<20				13			, ,				5			1-1	3.0	* ${ }_{\text {+ }}$	31.7
-	1	\cdots	8.1	8.5	2.8	1ヵ9*	14			< 31				10			4.0	-	a)	1880
1			- 25				15			<30				\bar{n}			7.2	8.6	0.	313.1
2			9.2	10.0	0.8	11.0	16			1.9	1.6	1.3	295.2	矿			5.6	6.1	0.	\%-*
3			< 2.6				17			3.Y	2.4	1.3	30.6	13			2-1	4.3	8.8	1 1rev
$\stackrel{ }{*}$			3.6	6.4	1.1	190.6	18			<9.3				16			4.2	3.8	0.6	12\%.0
5			6.6	4.6	1.0	254.2	19			<2.0				15			3.4	25	0.9	29m.6
6			15.6	14.3	1.1	2946	20			< 1-8				16			1.7	6.7	1.0	151.8
v			17.1	14.3	0.5	68.8	0	1	7	14.3	16.6	2.1	280.4	$\overline{7}$			3.6	4.2	-6	78.6
8			10.6	10.3	0.2	140.1	1			12-1	12.4	0.2	11.1	18			9.0	40	3.8	38.1
1			3. ${ }^{\text {c }}$	6.1	2.2	238.4	2			Y.0	5.9	1.3	130.6	18			8.2	42	2.0	150.1
10			< 3.1				3			< 3.m				20			11.	11.4	0.	20.6
11			18.2	15.9	2.5	198.0	4			< 3.4				$\overline{11}$			5.6	3.6	1.6	304.1
12			18.0	11.4	24	96.8	5			6.0	6.4	0.4	245.1	$\overline{22}$			3.6	2.5	1.1	$5 \cdot$
13			11.8	14.4	2.6	$34 \times .4$	6			6.1	Y. 9	1.8	116.1	23			2.4	1.7	1.0	23.6
14			6.9	8.0	1.1	246.3	4			<1.3				$\frac{74}{24}$			3.0	1.2	1.8	11.6
15			< 3.4				8			< 3.1				25			2.8	2.1	0.4	2.67 .1
16			3.1	4.4	1.2	259.1	9			<3.2				T	1	2	13.0	11.9	1.1	178.8
'r			19	4.3	0.4	$1 / 0.6$	10			< 3.2				$\bar{\square}$			<1.4			
18			4.0	4.6	0.6	11.9	11			<3.1				$\frac{1}{3}$			5.1	4.2	0.9	237.2
19			W. ${ }^{\text {d }}$	5.1	0.1	160.4	12			< 2.9				4			2.1	6.5	3.6	19.6
10			< 2.8				13			<2.8				$\overline{5}$			5.1	4.4	1.1	241.7
21			< 2.4				14			<2.6				6			15.9	11.0	4.9	$1 / 6.2$
3			< 2.0				16			< 3.4				$\overline{7}$			15.0	2.8	6.1	350.5
\therefore			< 16				16			3.4	3.0	0.4	55.6	T			8.Y	6.4	2.3	143)
¢	,	5	3.1	5.1	2.2	38.8	19			2.4	1.5	0.2	309.\%	\square			15.5	15.1	0.4	258.1
			3.4	5.3	1.9	144.3	18			<0.9				10			14.4	10.9	18	32,.-
;			2.9	3.4	0.5	155.1	\bigcirc	1	8	< 3.2				11			10.2	8.6	1.1	41
			5.6	5.8	0.1	3.4.5	,			< 3.2				$\sqrt{18}$			<2.9			
4			3.4	3.9	0.3	234.18	2			< 3.1				$\overline{13}$			9.9	11.2	18	80
\checkmark			3.4	2.6	0.1	135.6	3			<3.1				14			12.3	18.2	0.9	2 yer
6			61	5.4	0.9	3588	4			< 1.1				15			14.2	15.9	1.4	ivis
Y			5.0	4.2	0.8	88.9	5			< 3.1				16			7.7	r. 3	0.4	18.8
2			3.2	2.1	0.9	151.0	6			<3.0				14			5.8	4. ${ }^{\text {¢ }}$	0.9	122.8
*			< 3.3				y			< 2.9				$\overline{18}$			3.7	\%. 3	0.6	19.4
10			< 3.4				8			< 2.8				14			9.4	Y. $\%$	1.4	109.0
if			4.9	4.7	0.2	16.2 .1	9			< 2.4				20			8.7	9.0	0.3	214.1
12			3.9	40	0.3	33.0	10			2.4	3.0	0.1	218.9	31			8.5	3.2	0.3	328.7
13			< 3 n				11			4.1	4.1	0.0	299.5	21			3.3	3.3	0.0	54.6
$1 /$			3.5	2.6	0.9	314.1	12			<2.2				23			<26			
15			< 31				13			<2.0				$\underline{4}$			3.3	18	0.5	su.
16			6.6	Y.i	0.5	23 y .13	14			<1.9				28			3.3	3.7	0.11	286.8
14			4.1	8.4	0.3	330.3	0	1	4	< 2.5				7	1	3	5.2	3.1	20	189.6
18			9.2	9.3	0.1	83.4	1			4.Y	2.4	2.0	283.7	$\overline{2}$			6.4	3.3	2.1	300.4
19			4.5	4.4	03	187.0	2			<2.4				5			14.4	18.2	1.8	325.Y
so			< 2.3				${ }^{3}$			<1.1				4			253	24.3	1.0	1Ye.9
3			<1.9				4			<8.3				5			8.3	9.1	0.1	118.5
12			< 1.4				5			< 2.2				6			8.6	10.1	2.3	60.5
-	1	6	3.4	4.4	43	131.5	6			<2.1				$\overline{7}$			2.1	6.4	0.4	14 Y \%
1			10.0	10.6	0.6	335.1	v			< 2.0				\%			12.7	12.6	0.1	Nes-4
2			< 33				8			<1.8				$\overline{9}$			9.1	8.8	1.4	18 ± 2
3			< 31				9			<1.6				Io			18.9	40.3	1.4	
*			< 1.4				10			< 1.1				π			11.5	10.9	0.6	35
5			< 3.0				i	1	1	11.4	Y. 4	3.5	10.5	$\sqrt{12}$			< 3.1			
6			< 3.4				इ			4.1	3.3	0.9	23 y ¢ 5	is			10.9	2.4	2.3	25
\checkmark			< 3.4.4				5			158	129	1.9	263.4	im			10.5	40.9	at	-mite
\bullet			< 3.6				4			1r. ${ }^{\text {P }}$	11.3	5.6	48.8	$\overline{15}$			11.5	10.0	0.	1854
1			d.0	4.8	2.1	/r2.p	$\overline{5}$			53	8.0	: $\%$	171.1	\%			12.4	125	4	Mes
10			< 3.4				6			Y. 8	4.6	J 1	27e.Y	77			*.*	13	4	3en
\cdots			\& 1.4				7			- 0	10.3	2.8	13.9	18			<34			

6	4	l	Fol	F	ΔF	$\alpha^{\bullet y}$	h	\ldots	l	F_{0}	F	ΔF	α°	1	1	1	Fe	F_{8}	ΔF	\sim^{-}
17	,	3	< 3.3				$\overline{12}$,	6	*.	1.2	\% $\%$	117.0	11	2	0	\cdots	25	$2 \cdot$	12010
20			3.9	1.6	8.3	148.1	T			< 3.1				12			2-3	2.9	-0.	cos
21			-2*				$\sqrt{4}$			<12				13			5.4	-3	4	118-6
$\sqrt{23}$			< a.y				15			3.3	3.4	-0.0	3.1	14			*-	3.0	$0 \cdot 0$	-80.0
33			< 3.8				$\overline{16}$			3.6	2.4	0.Y	161.1	15			* ${ }^{\text {d }}$	4*	-0.5	183.1
24			<2.0				I7			< 2.7				16			4.3	0.5	-a. 1	cees
i	1	4	0.1	6.1	2.1	346.	$\sqrt{81}$			< 9.5				14			m-m	6.3	-8.\%	68.
5			0.1	0.8	1.3	$34 \% .3$	$\overline{17}$			<2.2				18			<21			
5			9.1	10.0	-0.9	337.0	20			< 1.8				19			< 1.0			
$\bar{\square}$			2ay	20.4	0.3	253.1	7	,	y	8.1	0.1	0.0	7tes	20			<2-1			
3			th.m	12.1	2.3	110.1	$\overline{2}$			$0 . \%$	4.0	0.9	-0.0	21			3.8	0.6	8.7	155.5
5			5.8	4.4	0.8	\%1.6	3			< S.4				11			4.6	1.7	0.9	10.5
$\overline{7}$			6.5	4.4	2.1	268.2	\%			2.4	3.4	-0.7	16.1	23			2.5	1-4	1.8	1 M
$\bar{\delta}$			3.0	m. 2	-1.2	17.1	$\overline{3}$			4.2	5.4	-1.2	1say	24			1.9	2.	-00	10er
F			2.8	2.\%	-0.2	185.5	$\overline{6}$			w.4	4.9	-0.5	190.*	0	2	1	6.6	\%.	-x. 3	2me.t
10			68	7.2	-0.4	91.2	\bar{Y}			3.9	3.0	0.9	6.6	1			0.5	0.9	-0.0	167.5
11			2.6	1.6	1.0	301.6	8			5.0	2.0	3.0	2Y2.4	2			6.3	\%.\%	-1.4	110.1
12			4.3	2.9	1.4	250.5	5			<3.3				3			14.3	-.1	1.2	3425
13			3.6	1.9	1.9	53.1	10			4.6	3.4	1.4	64.5	-			20.1	83.5	-2-4	186.1
π			3.2	4.0	-0.8	100\%	/1			3.0	3.r	0.1	485.6	5			41.8	48.2	-6.4	ars-y
13			< 8.4				$\overline{7}$			3.0	2.6	0.4	102.9	*			-0.2	32.9	4.r	3 mec 5
16			3.1	1.9	1.2	193.7	π			< 2.9				γ			15.2	18.9	-0.9	108.8
IV			5.5	2.8	0.Y	229.6	$\overline{17}$			< 1.7				-			4.6	4.1	0.6	188.0
18			3.0	0.6	2.4	68.2	75			- 2.5				1			10.0	4.1	2-1	109.1
19			2.3	1.9	0.9	341.8	π			<2.3				10			3.0	2.1	0.1	56.0
20			< 2.9	-			17			<1.0				"			3.1	7.3	-3.4	me. 5
21			< 2.6				$\overline{18}$			< 1.6				12			4.5	4.1	-0.0	168.7
$\overline{21}$			<2.3				7	,	8	4.Y	2.4	2.1	310.2	13			3.0	1.9	1.3	s 10.7
$\sqrt{3}$			< 2.0				$\overline{7}$			<3.2				/4			e 3.1			
i	1	5	3.4	2.4	1.3	261.0	$\overline{3}$			<3.1				15			6.7	4.9	-0.2	165.6
$\overline{2}$			6.3	5.6	0.9	161.5	$\overline{4}$			<3.1				1%			3.1	0.2	-0.9	188.1
5			4.6	4.5	0.1	16.3	3			<3.0				\%			5.8	5.9	-0.6	4.0
$\overline{4}$			1.2	f.4	-1. 2	108.9	$\overline{6}$			<2.1				18			< 3.1			
3			6.0	6.5	-0.5	2248	$\overline{7}$			<2.9				19			< 3.0			
${ }_{6}$			7.9	6.0	-0.1	252.4	5			<2.8				20			< 2.9			
\bar{Y}			2.8	3.4	-0.7	286.4	$\bar{\square}$			< 2.6				21			< 2.6			
8			6.6	5.8	0.1	7.0	10			<2,5				22			< 1.3			
7			5.1	5.5	-0.4	338.4	$\overline{17}$			<2.1				38			<2.0			
$\overline{10}$			4.4	4.3	0.1	354.0	$\bar{\pi}$			< 2.1				34			< 1.m			
$\overline{7}$			$\leqslant 1.0$				$\overline{3}$			<8.9				0	2	2	11.4	14.Y	-3.8	124.0
$\overline{12}$			< 3.t				Im			<1.5				1			8.0	8.8	-0.8	88.0
is			3.6	1.3	0.3	153.9	7	1	9	6.3	$\mu .2$	2.1	9\%.	2			9.0	8.8	3.8	198.1
π			3.1	2.9	0.1	31 Y .8	$\frac{2}{2}$			-2.4				3			8.2	1.1	6.4	18.08
13			8.9	8.6	0.4	18.1	3			< 2.4				4			14.	18.8	2.0	190.7
16			5.0	4.5	0.5	176.0	4			< 1.3				5			13.4	9.6	8.9	38E.8
芹			6.6	5.5	0.1	2vi.9	5			< 2.3				6			11.0	10.4	0.6	9.8
18			<1.0				$\frac{6}{7}$			<1.2				y			4.0	3.2	0.8	-6.Y
$\overline{19}$			< 1-8				\bar{Y}			<2.1				8			6.3	5.5	a,	**.1
5			<2.6				-			< 2.0				9			2.4	4.5	-1.6	101.1
21			< 2-1				$\overline{9}$			< 1.8				10			< 3.9			
$\overline{3}$			< 1,7				10			< 1.5				11			4.9	3.6	43	816.8
T	1	6	J.4	2.4	0.5	210.7	0	2	-	12.6	18.4	-5.	40.1	12			<3-0			
$\overline{2}$			1.3	0.4	-0.1	128.1	1			Y 5	9.9	-2.4	179.Y	13			2.0	0.Y	8.8	204-4.0.
3			*.*	3. ${ }^{\text {c }}$	1.8	201.8	${ }^{2}$			11.4	8.4	2.4	85.0	14			-. 0	0.0	2.	0 \%6
$\overline{4}$			14.4	18.4	-1.0	67.0	3			14.3	10.0	m. 3	173.8	15			Y. 7	e. 2	-0.6	1960
\%			4.0	18.2	-2.2	105.7	*			-. 6	19.Y	- 8.9	80.6	16			6.5	20	-1.6	3080
5			15.9	15.Y	0.2	252.5	5			28.0	24.4	3.6	296.8	17			5.8	8.1	ay	26-9
7			8.0	6.8	0.2	4.1	6			20.4	25.9	-1.5	159.6	18			< 8.8			
T			< 8.0				*			1319	11.0	2.9	89.3	19			< 2.4			
Φ			4.3	4.5	-0.8	85.4	1			31	3.1	-0.8	240.5	20			< د.\%			
$\overline{10}$			8.8	* 2	-1.4	sus.	1			5.1	7.3	-8.1	M. 5	21			< 2-5			
$\overline{7}$			8.2	8.1	0.1	266.0	10			2.5	\leq	- 8	280.5	22			-22			

1	1	6	F	F	ΔF	$\alpha{ }^{\circ}$	1.	1	1	Fe	F	ΔF	α°	R		2	F	Fs	ΔF	
23	2	2	< 0.1				15	2	5	<19				\#	2	,	4.1	$4 *$	4	1984
-	2	3	1. ${ }^{\text {c }}$	9.0	-v.1	672	16			< 21				5			10.7	15.	-0.8	5.8
1			2.4	3.4	-15	349.2	9			<25				6			5.7	3.4	2.3	met
2			-6.	8.9	-as	150.0	18			<25				7			10.0	18	1.2	18.5
3			< 2.3				19			41	3.1	1.0	218.4	$\overline{8}$			6.5	5.	$0 \cdot 1$	137*
4			Y. 5	8.3	-0.t	18.0	20			4.	5.4	-0.9	291.	T			3.1	1.2	ay	Ne.
F			6.2	5.8	0.4	135.8	0	2	6	<12				710			0.6	3.3	1.3	156.4
6			<2.6				,			6.5	5.8	dry	189.1	π			5.1	46	as	20.4
y			8.8	2.6	0.9	31.9	2			<3.1				72			5.6	2.4	1.1	11.4
8			8.2	Y.1	0.1	10.7	3			5.5	5.6	-0.1	388.4	73			5.2	3.5	d. 7	10te
-			16.0	14.3	-2.3	1886	4			4.1	4.9	-0.8	219.3	140			3.4	80	-1.6	85.5
10			18.4	19.8	-4.4	109.9	5			< 3.2				15			4.0	3.5	0.5	261.3
11			10.0	10.2	-0.2	Y¢. ${ }^{\text {\% }}$	6			< 3.1				4			< 21			
12			5.8	4.9	0.4	333.2	y			< 9-2				$\overline{7}$			< 4			
13			3.2	4.0	-0.0	16.12	8			< 3.2				T			<1.1			
16			$\leqslant 3.1$				1			< 3.1				$\overline{19}$			1.1	2.1	1.1	278.3
15			2.5	1.4	1.1	184.4	10			< 3.1				20			2.6	0.9	1. $\%$	3ns.0
16			J. 4	3.0	0.8	15b.t	11			<3.0				$\pi 1$			s.y	4.3	1.4	2 m .6
Ir			< 1.2				12			<3.0				π			6.2	6.2	0.0	308.8
18			< 2.9				13			< 2.9				T			5.5	5.9	-0.4	58.9
19			< 2.7				14			<2.Y				$\sqrt{3}$			4.1	4.7	-0.6	150.8
20			< 2.5				15			<2.6				T	2	2	16.9	14.9	-10	214.1
21			< 12				16			< 2.4				$\overline{2}$			14.2	16.3	- 21	2185
22			< 1.8				19			< 1.1				3			6.6	7\%	-0.4	40.4
23			<11				18			< 1.9				$\overline{5}$			14.0	10.0	4.0	1371
0	2	4	6.3	6.3	0.0	2 บท.Y	0	2	y	< 3.1				3			4.4	3.6	2.1	182.1
1			50	4.9	0.1	83.2	1			4.2	3.5	$0 . Y$	28.7	5			3.5	4.2	-0.7	218.3
2			6.	4 H	2.1	32 ma 9	2			3.6	4.4	-1.1	309-2	5			7.1	4.8	2.1	191.4
3			2%	40	-1.2	104.3	3			10.8	13.0	-1.2	2649	5			2.3	20	0. ${ }^{\text {a }}$	154.0
4			< 2.8				4			6.5	5.1	1.4	3345	$\overline{7}$			2.Y	5.1	-2.5	2351
5			< 28				5			3.9	3.0	0.9	191.2	10			$2-0$	2.8	-0.8	818.1
6			<29				6			3.0	2.9	0.1	231.1	π			13.2	10.5	2.4	260.3
y			< 10				\%			< 2.9				12			1.2	9.2	-1.0	63.7
8			6.9	14	-0.5	314.1	-			< 2.8				7			14.8	$11-8$	1.2	111.8
9			16.3	19.6	-4.3	266.4	-			< 2.9				m			6.6	4.4	2.2	1060
10			74	10.3	-2.9	111.6	10			< 2.6				15			1.5	4.2	-ay	25.6
11			70	8.6	-1.6.	12.3	11			-2.4				$\overline{6}$			< 1.8			
11			3.4	1.9	1.5	1850	12			< 2.8				9			< 2.1			
13			< 9.2				13			3.3	2.5	0.1	104.1	18			< 3.1		,	
11			< 3.1				14			2.3	1.3	-1.0	118.0	19			< 1.9			
15			< 3.1				15			2.1	1.4	-0.6	17.9	2			< 2.1			
16			< 1.0				0	2	5	<2.6				21			< 2.8			
18			< 2.9				1			3.0	2.1	0.9	89.5	$\overline{515}$			5.1	6.1	-1.0	36\%o
18			< 2.7				2			8.1	6.6	1.5	140.3	73			<1.8			
19			2.4	2.3	0.1	1.5	3			6.8	6.6	0.2	213-2	34			1.6	3.1	-8.Y	18.4
20			3.0	1.5	-0.5	266.4	4			5.8	N. 3	1.5	35.3	5	2	,	18-4	18.2	0.2	166.1
31			<1.9				5			<2.4				2			Y. 9	1.8	0.1	28.1
0	1	5	<30				*			<2.3				3			6-6	6.9	- 0.1	46.8
,			< 3.0				\boldsymbol{r}			<2.2				π			6.6	1.5	5.1	1r.\%
1			<3.0				\%			< 2.1				5			3.4	4.8	-1.4	16.0
3			$\leqslant 3.0$				9			<1.0				6			${ }^{4.7}$	3.6	0.9	3 mos 2
-			<3.1				10			<1.8				$\overline{7}$			<2.6			
5			< 3.1				11			< 1.6				$\overline{8}$			< 2-Y			
*			<3.1				0	2	9	< 1.6				$\overline{9}$			8.0	6.6	-0.8	251.6
\%			< 3.2				,			<1.6				$\overline{10}$			6.5	5.1	1.6	37.1
\%			5.3	3.6	1.4	2084	2			<1.8				$\overline{17}$			15.6	19.9	-2.3	190\%
-			9.1	5.6	1.5	354.	3			< 1.4				$\sqrt{2}$			13.8	18.0	-1.6	107.1
10			3.4	4.2	-0.8	63.9	*			< 41				13			12.8	16.1	- 8.8	se.
/1			7.8	6.3	1.8	156.4	5			< 0.9				矿			3.0	4.2	-1.2	887.6
12			3.0	4.0	-1.0	57.3	T	2	,	7.5	14.3	-4.180	16.2	15			3.6	2.8	1.3	\%m. 6
13			< 1.1				J			4.	2.4	2.2	3245	76			<2.1			
14			<3.0				$\overline{3}$			4.4	3.4	1.0	56-9	π			< 3.1			

11	6	l	F	F	ΔF	$\alpha *$	1	1	l	F	F_{6}	ΔF	α°	x	1	ℓ	F	C	ΔF	\cdots
7	2	3	-10				$\overline{18}$	2	6	< 25				,	1	1	2-6	40	$1 \cdot$	103
π			-11				π			<11				2			<10			
18			41.0				7			<10)			55	1.1	16	1188
51			< 1.1				π			<16				4			3.5	31	48	1as
11			$\leqslant 19$				T			< 01				5			8.1	83	0.2	1301
I			2.2	2.9	0.7	184.1	7	2	7	< 1.1				6			$2-8$	3.1	$0 \cdot 1$	1389
$\overline{7}$	2	4	12.6	12.9	0.1	218.6	T			- 3.1				7			8.4	110	2.	.1546
\bar{J}			10.0	13.1	3.1	118)	J			< 1.1				1			12.1	4.	3.1	248.1
I			5.	y. 8	8.4	113	5			< 1.0				9			4.5	14.9	0.2	338.8
$\overline{4}$			3.1	2.1	18	1504	$\overline{5}$			3.7	1.2	1.5	316.2	10			m.Y	3.8	An	13.1
$\overline{5}$			18	3.1	0.Y	\$.0	5			5.8	2.6	1.2	1596	11			< 1.1			
6			< 18				7			J.4	5.0	1.6	14.9	12			3.2	2.1	0	18.7
F			< 19				5			$\omega .1$	* \%	0.4	1840.7	13			2.1	1.8	10	260)
5			<10				5			<21				11			1.0	A.7	a.s	61-6
5			<31				$\overline{10}$			< 8.7				15			< 48			
10			51	5.5	0.1	100.7	T			< 2.8				16			1.9	1.4	4.5	1184
Π			4.0	2.9	J.1	9610	π			< 2.4				17			419			
II			7.6	7.8	0.2	817.2	T			< 1.8				11			< 1.6			
π			5.6	5.6	0.0	185.1	\cdots			< 8.0				19			< 1.1.1			
π			6.6	4.5	1.0	5.6	75			$<1 . y$				20			< 1.2			
15			28	0.9	1.9	9.6	$\sqrt{16}$			< 1.1				21			< 1.0			
7			3.3	1.3	2.0	17.2	5	2	8	<16				0	3	2	1.3	0.1	2.6	217.1
IV			3 E	J. 6	2.2	201.5	T			< 2.6				1			1.8	- 0.9	0.9	1868
T			13	3.5	0.0	29\%.0.	5			<2.5				1			1.6	2.4	0.8	1Y8.
$\bar{\square}$			4.5	1.0	1.6	350.1	\%			<2.6				1			1.9	1.0	1.1	10Y:
50			<22				5			<2.8				\cdots			4.2	2.6	1.6	exy
21			< 18				5			<1.4				8			6.8	4.6	1.1	102.0
72			< 1.3	*			7			<13				6			9.4	Q. 5	0.8	87.6
-	2	$\%$	8.1	$0 \cdot$	$1 . Y$	26y.y	T			< 2.2				\boldsymbol{Y}			9.4	8.2	15	$13 \mathrm{m}$.
7			36	5.2	0.4	cer.y	7			<2.1				8			19.6	10.9	A)	2 \%M. 2
$\overline{7}$			28	1.1	1.5	56.1	5			< 1.9				\bullet			5.8	3.4	4.1	9.2
-			48	30	4.4	109.6	$\bar{\square}$			< A				10			8.8	2.8	30	69.1
5			65	31	1.3	3F3-6	$\bar{\pi}$			< 1.14				"			2.1	1.0	0.1	Y.
5			71	64	-.Y	128.4.	7	2	,	2.2	0.3	1.1	48.4	12			2.0	1.8	0.1	YH2
5			105	11.4	0.9	24.7	\%			3.1	2.4	a.)	48.9	13			< 7.1			
$\overline{7}$			13Y	142	0.5	دめc!	5			2.6	15	0.9	169.0	4			< 18			
7			6.1	s.y	0.5	-1.	$\overline{6}$			<1.8				18			<1.9			
$\overline{10}$			59	3.4	18	1166	$\overline{5}$			< 1.8				16			$<1 y$			
π			45	J. 2	1.3	148.9	6			< a.y				19			<1.6			
$\underline{\square}$			< 11				1	3	0	4.2	1.4	15	189.9	18			3.2	1.8	0.1	14918
n			2.9	2.3	0.6	940.8	2			8.1	10.6	1.4	142.5	19			2.9	4.4	0.15	881.4
$\overline{16}$			36	2.5	1.1	$19 \% .0$	3			8.6	1sy	8.1	151	20			2.7	2-6	0.1	18.1
15			1.0	2.4	0.4	152.9	-			2.3	11	0.5	154.t	21			< $8 . Y$			
16			46	1.4	0.9	3 smy	5			4.3	2.5	1.8	1rve	0	1	3	2.6	2-6	0.0	174.0
$\sqrt{7}$			11	2.5	0.6	1360	6			N. 5	2.2	2.3	185.9	1			2.1	d.t	0.1	1431
18			3.0	10	0.0	dicy	γ			5.3	2.Y	1.6	19m.	2			2.1	8.2	0.1	IS8
17			3.9.	m. 0	0.1	Juse	*			3.2	2.4	0.3	315.7	3			4.2	1.0	8.4.4	118.1
50			2.5	2.3	0.8	W-1	1			2.3	3.0	o.y	svort	4			3.0	28	0.2	68.
1	2	6	< 3.2				10			2.2	1.3	0.9	159.4	5			4.5	6.6	2.1	1\%8.2
\bar{T}			< 1.2				\%			2.8	19	0.9	31.4	6			12.8	18.1	4	30.6
5			-12		-		12			3.5	4.4	0.9	405	v			10.1	-18	4	108-6
$\bar{\square}$			3.4	4.0	0.6	1868	13			4.2	56	in	248.Y	-			6.5	10.1	3.8	دme.8
3			- 11				4			2.4	4.5	8.1	218.6	1			b-6	12	0.4	100.1
6			4.8	5.3	1.1	2.2	is			< 18				10			3.4	4.2	4.8	110. 9
7			60	8.1	2.9	2465	16			< 1.Y				11			2.0	2.0	00	18s.e
T			189	13.1	2.1	280.1	14			$<1 \%$				12			4	ay	12	41
I			7.1	91	0.1	Y\%. 9	18			< 16			*	13			<1.8			
10			- 3.1				19			<15				in			< 1.Y			
π			<30				20			<11				15			< $1 Y$			
$\sqrt{2}$			<29				21			<1.1				4			<1.6			
13			<2.1				22			< On				'r			3.6	1.4.4	0.2	Anct
110			427				0	3	-	: 1	$\therefore 6$	0.8	118.Y	18			<18			

h	k	1		F_{0}	\downarrow	k	l		F_{0}
$\overline{4}$	$\overline{8}$	H		5.1	\bar{y}	$\overline{3}$	4		14.6
	$\overline{7}$			9.1		प			5.3
	10			5.1		$\overline{5}$			Y. 1
	π			10.4		$\overline{6}$			Y. 3
	$\sqrt{2}$			1.6		$\bar{\gamma}$			Y. 2
	$\overline{13}$			4.8		$\overline{8}$			4.3
	14			4.8		$\overline{9}$		$<$	
	15		$<$	0.4		16			6.1
	16		$<$	0.Y		II			4.6
$\overline{5}$	7	4		2.4		12			4.0
	$\overline{2}$			2.4		$\sqrt{13}$		$<$	0.6
	3		$<$	1.0	$\overline{8}$	T	4		8.4
	$\overline{4}$			11.4		Σ			3.3
	$\overline{5}$			11.2		$\overline{3}$			9.1
	$\overline{6}$			4.8		$\overline{4}$			3.6
				1.9		$\overline{8}$			1.9
	$\overline{8}$			2.4		$\overline{6}$			2.9
	$\overline{9}$			1.Y		$\bar{\square}$			1.2
	10			8.2		5			1.4
	π		$<$	1.1		$\bar{\square}$			1.2
	$\overline{12}$			3.0		$\overline{10}$			1.1
	is			4.4		π			ay
	14			1.6		$\bar{\pi}$		$<$	0.2
	15			2.1	$\bar{\square}$	T	4	<	1.2
$\overline{6}$	T	4		Y. 1		$\bar{\square}$			8.6
	2			2.9		$\overline{3}$		$<$	1.1
	$\overline{3}$			1.9		$\overline{4}$			2.4
	$\overline{4}$			4.4		5			5.6
	5			5.6		6		$<$	1.0
	$\overline{6}$			Y. 8		\bar{y}			2.6
	\vec{y}			13.0		$\overline{8}$			4.1
	$\overline{8}$			4.3		$\bar{\square}$			3.2
	$\overline{9}$		$<$	1.2	10	T	4		2.6
	$\overline{10}$			6.3		$\overline{2}$		$<$	0.9
	$\overline{11}$			2.6		$\overline{3}$			4.3
	$\sqrt{2}$			3.6		$\overline{4}$		$<$	0.4
	$\overline{3}$			4.8		\bar{s}			1.1
	In			1.2		6			3.0
\bar{y}	T	${ }^{*}$		6.0		$\overline{4}$			1.2
	$\bar{\square}$			6.3					

 1,2mberamitrraquinove. 2ne doviations of the atcose from the man molecuins plan ano aloo indicated.

$$
113 .
$$

(4) Dagornsion of tho Struotuse.

To stmples the subecquent oalculatsens, the momoolsuto comondinated $(24,8)$ Givas in Table 4,7 mase comvarted to

$$
\begin{aligned}
& s^{\prime}=\Sigma-\operatorname{soc} \beta^{\prime} \\
& y=\delta \\
& s^{\prime}=\operatorname{sen} \beta^{n}
\end{aligned}
$$

Fros than comondinstes the valuos of the bond Iongths and bond anelco

 bond langth and bond angeres of the anomatio riago Drowno, wirime and EnTOPQ aro (2.407 A.0., 2 $29^{\circ} 98^{\circ}$), (2.430 A.0., 29020) and (1.394 A. U. $219^{\circ} 57^{\circ}$) seopeotively. the ovesull mann bond leacth for tho theo aromatis ertage is 1.406 A.t. and the man bond angle 10 189 ${ }^{\circ} 99^{\circ}$.

The peinolplo of lead equares was usch to oulculate tho man moleculat pleno, which ta fount to bo

$$
-0.4562-0.8980-0.23300+3.2592-0
$$

The dordattons of tho indivional atom tren the sow plan are ctran
 deviationg ocour in tho atoms x, Fo and Io th whto the deviatlone ax

 cuntation 10.044 Ant.

Tring AR.

(a) Tho calculated bond leagith of 2^{\prime} mothyl

(Valuos in A.V.)

80919	BCOD MEWMAT	\checkmark	200	BOM LiPMext	σ
A	1.225	0.020	7	2.458	0.085
10	1.319	0.093	13	1.398	0.023
48	2.510	0.028	IT	1.447	0.026
03	2.42	0.026	01	2.300	0.030
88	8.429	0.023	$0{ }^{1}$	2.40	0.028
213	2.405	0.027	02	2.432	0.029
5	2.376	0.025	©	2.339	0.028
81	2.48	0.057	08	2.458	0.028
45	2.403	0.026	\%88	2.490	0.053
52	2.35	0.026	85	1.343	0.058
Jx	2.200	0.020	2	2.488	0.083
$\int 2$	1.402	0.025	tr	2.402	0.013

TABR日 An3.

(1) The celoulated hond angles of 2^{\prime}-methys 2,2-hemanthergatmone and the covitition of tho atcon from tho man moleculas plavo.

TAM 4.4212.

Tho maniand doviations $(\sigma$) of the atcate co-oodinatce uned to calculate the ptruoture factore of the laet ayole of threomadmanilicani leart sequares refimmant.

MrO°	$\sigma^{\prime}\left(1,00_{0}\right)$	$\sigma_{y}(1.01$.	σ_{5} (A.U. ${ }_{\text {a }}$)
3	0.0127	0.0205	0.0126
I	0.0215	0.0284	0.0116
A	0.0283	0.0284	0.018
-	0.0257	0.0241	0.026
D	0.017	0.0232	0.0107
8	0.0802	0.0327	0.0208
$?$	0.028	0.0898	0.0288
a	0.0168	0.0089	0.0273
8	0.026	0.0874	0.026
2	0.0158	0.02go	0.0263
3	0.0162	0.024	0.026
5	0.0257	0.0232	0.0152
1	0.0259	0.0232	0.0266
E	0.0269	0.0814	0.0272
0	0.0385	0.0293	0.0182
\%	0.0190	0.0889	0.0297
4	0.0186	0.0869	0.0286
8	0.086	0.0880	0.0276
8	0.0180	0.0850	0.0283
5	0.0173	0.0174	0.016
1	0.0259	0.0232	0.086
max	0.0166	0.0536	0.016

117.

The otandand doviations of the atomto comositnates wowe coiculatol from equation of the type.

$$
\left[\sigma\left(\frac{x_{i}}{a}\right)\right]^{2}=\sum \omega \Delta F^{2} /(n-s) \Sigma \omega\left(\frac{\delta F_{0}}{\delta \frac{x_{i}}{a}}\right)
$$

whate in 10 the muboe of infoperient etructure fuotons and is the minber of parmotumo which aro surtmod. The oatlmated staniand dovistlons of the comonifmates voal to caloulate the lat oyole of loant gouarea goftranant tre Ehome in Table 4,12 and thoge whll bo urad to ductuo tho upper Lintte of the atominnt doviatione of the Itrm ont of stade eos ordiante ant tho bord leagthe celoriated from thowe somonilnates.
 coviation of the atcutio comgralnatee are not cqual and honoo the -taniart dovitition of the bean leagth botweon two gumetrionis Ipiopenicat atoses was oalculatod uning tho mothod outlinad in ohapter III seotion (o) mit tho valuen aro civen llan with calculated lond iengho in 2nd $4022(0)$.

Tho etationtoal lowis of nightiounoe magacted by Orateichmate (Ohapter II seatton (0)) wee uach in the havertigntion of the Algilicance of the bow loagthe and the doviatlona of tho atom trom the moan molcoular pleno.

Tho 0 - O bond lengthe AB and JI are not stanifloanty Aficrons from the valued sourd tor 5 moothyi Ios-bonanathregusrond. The most eurpeladus fonture of tho btructure to that the bond leogthe 10 and if

 ningie - O boed longths AU and 5. A theoretioal reason ser this

Pe. Ans. The projection of the contents of the unit coll dome the

202-benoanthrequinono, the boni lengthe 10 and if may change eristo
 coubt about the ootimated atandard doviation of the atcalo comadinateo.

An invoctigation of the olgnitioanae of tho doviations of the atcmo from the meen molecrlar plan ahowed that tho doviations of tho atcm $\mathrm{X}_{\mathrm{y}} \mathrm{J}_{0} \mathrm{~F}$ and F are all atgatrioamt, wharsas tho doviations of tho

The paciding axrangonant of tho molcoules in tho unt coll is
 aso drame. The vilues of tho whont $0-0$ and 0 - C intcrinoleculer contate ase very afrellas to tho velues foum in the staroture of 5 -mothy1 2,2 -bmananthsequatnono.
(o) Compartsen of the struotrusea of 5-Mothys 2:2-3onomathrequinone

The mont marked cheperence botwion the two starcoturen is in tho
 algrafloanstly shoutcer than the correoponaing bond lengthe in 5 -mether 1,2-mananathragutrona.

 II and 0 and there la a dietinot posalbility that this is asuced by the overowonding in tho oterrotuse of the aryoun atoa at I and tho oarbon atom and its ascoolated kyitrogen atcon at I. Som mork has beom careled out In scount years on owesoronded atructures (Berbatels and soluldt, 2954)

 appropriate atoms.
end in a papar to the Erimilo Sympoatum, Coulsoa (Oculson, 1956) has discomeed the pesatbility of overesonting is otructure of the

 bond angice ase ararmed to bo 220.0° and tho bond 2 enctive ave on efven in Fig. 4,1) and atrelea segremonting tho Van det Weale aphoses ase dsum for the mothy' gmotep the axyen atcens 3 and I and tho hytrogen

 eothy grow at I axd the oxgem atcur 8 . The calculated dictence botwear the atom X and If an the abow motol 102.51 A.V., wharean the observed dietance te 2.76 A.U. with a ntandard doviation of 0.023 A.U. In the aeme way the calculated diotence botwoen the atome Fo and I 102.76 A.U. and the value rosing the estimateci co-ardinntea of the inplrogen atcie It mould be 2.05 A.U. It io therefore poesible
 difpleced from the moan molecular plane, the atcra 0 and P aleo bolags dioglaced but to a losecs antent. The cotual alfrecence in the doviation of tho atome If and $\times(0.32$ A.V. $)$ does not acocunt for tho whole of the diffortese botwoen the celculatad eni tho obeerved vilues
 tho boud leagth in poestibly atgaificently longue than tho meen asometis bond longth and it soame 2anely that both the deviatlons from the man plame and the adfugtnents of the bond leagth in the partioulas segion of
the moleoule talo part in holping to rellow tho ovesomiling. Tys theonetical distance betmen the cartion atcin it 8 and
 2.70 A.U. With a ctandast coviattion of 0.023 A.U. The BLene of the deviations of the atom srom the moan molcculas piasp are the
 betwean the boai leactho in and De 10 ebout 5° and 10 might bo that the overerondits has boen cesod by an edjuatmont of tho bond anciea in the segtion MCDE, of the molecule the atoma I and s boing puobed agart.

In viow of the posatbility of ovesoremeting of tho atom In $^{\prime \prime}$ and I
 loagth if ta digntifoantly shortes than the normal viluo for a C - C shapio bond learth. Thio actual distance between the atons X and II Is 2.7T A.U. with a Etandand coviation of 0.02 A.U. ocmpared with the calonlatod vilue of 2.54 A.U. Although the deviations of the atome
 The angle botween the two bouds JK and ier is hovovec 22°, whioh io fatriy large and it eoomo wory likely that thece io an adfustmant of tho boud angien in the ragtion of the molcousle whion ach that the atcen I and II are puabod apart.

Since the procooding anjuanaite are not conalugive beomse tho nocurecy of the ebructuresis ifinited, it whl be very intereating to see whother the seme erfeots aro obserwod when the structuree have been anternined as accurately as poasiblo.

 anthracos, shoring the lettering of the atoms adoptial in the Luscotigation.

CHAPTER V.

(a) Proxtan firmat.

A alcotoh of the molcoule is chown in Fige 5, Tho The The indoring an indicated in this dlagram will be followod throughout thits ahapter.
 anthracone maleoulo ia not planar but io beat about the inn Joining the carbon atces 9 and 10 to predree a foldod ntruoture (F1g. 5,2). Bockott and hulley (Hookett and Mulley, 2955) have stated that whit this type of molecula thoce ase two geonetrically dintinot carbon-iydrogen bonds in the seso or 9,30 carton positions. Tho of thoce bonde are orlcutated in a direotion opponito to which the molecule is folded and ase almot perpenilacilar to the 11 mo joining the aurbon atoms 9 and 20. They designated those bonde 'perp' bonde. The bonds of the other palt ase direoted amey from tho ocntive of the molocule and ase doalgnated ' $12 \mathrm{In}^{\prime}$ - abbreviation for 11mear - bonds (FLB- 5,2). They have also otated that if two ofmilar groupe in whioh matually ropulesto forces ase operstive e.ge two anthoug-oarbomyl groups are aubstituted in the 9,10 pondtiona, the oismonfiguration would tend to favour tho ${ }^{\prime} 1 \ln -1 \mathrm{ln}^{\prime}$

Prge 5n? The foldod moleoulo of $9: 10$-dihydroanthraccuo.
F - "posp" poaiticna.

L-" $1 \mathrm{sm}^{n}$ poaiticas.
poaition in which thome would bo groatce group eoparation than in the 'perp-parp' form. Howovr an approsimate weatcertal sumention of monents inifoates that the satio of dipole monents of the triaso to
 be 200 if the two methougnoartomy groups are both 'lin' in the olecompound and apprordmataly 0.7 if thay are both 'porp'. Theo dipole momoatig havo bean macowed (Bngmann and Wotmaris, 2938) and the ratio Is apperadeately 0.65 . Thare is theretore conaddamble ovidence that, at leant in solution, the nothoxy-oartongl eroups are in tho 'perp-pery' poaitions.

The sample of the ofe-smoner of 9,20 dimothongmcartongi 9,20 -dibydroanthrecone wean aupplised by Br. A.li. Becteot of the Sohool of
 olear equidimonatonal axystals with many prominoat facos. The apoco-
 are as follomsio

$$
\begin{aligned}
& \text { a 8.379 A.U. } \alpha=99^{\circ} 40^{\circ} \\
& \text { b - } 13.201 \text { A. } 0_{0} \text {. } \\
& \beta=126^{\circ} 37^{\prime} \\
& \text { - - } 7.554 \text { A.U. } \\
& \gamma=8 \gamma^{\circ} 50^{\circ} \\
& d_{100}=7.486 \text { A.U. } \\
& \alpha-80^{\circ} 15^{\prime} \\
& \text { *010 - 13.005 A.U. } \\
& \beta^{\circ}=63^{\circ} 21^{\prime} \\
& \mathrm{a}_{002}=\mathrm{G}_{0} 656 \text { A.U. } \\
& \gamma^{\circ}=87^{\circ} 33^{\prime}
\end{aligned}
$$

Thaber of molecules in the matt coll	- 2
Volue of the unit call	- $307.9 \mathrm{~A}_{0} \mathrm{U}_{0}{ }^{3}$
Obseewed denaty	- $1.33880 / 00{ }^{3}$
Caleulated denalty	- 2.338 80/00. ${ }^{3}$

Thase are no eyoternatio absouces and the repoomgroup is oithor EI 球。

(b) Preilininnaxy Invoatlaration.

The arystels wese amminod and tho rosults guoted by llackay for the apaco-grow and unit cell dimenatome wise complrmad.

Equi-ABolination wotesonberg photographe wese taksen about tho
 shoubohodrai-masped aryatal of asde appiondrately 1.0 tm . Three 212ma
 "Yoduatisial O.", Inford "Yndustrial D.", IXford "Ynduatrial C.". Tho Interefila absorption yetios wace found by internal cocralation of the Vacraily entimated intanaition. These zathos wece foumd to be,

$$
0.3 \text { - 3.5i2 } \mathrm{BaC} \text { - } 3.8 .2
$$

Unang a sail equsdiacomionil oryutal and copper $\mathrm{E} \alpha$ zediation, equifrolination woleseriberg photograple were tabon as followassero layer and upper laver 11 nes one to form of the 2 -ads,
 geso layer and uppor layer limas one to otght of tho b-aria. Fian did not pocmit tho oatimation of the intenaitios of the upper layer

1imon of tho g and b - axen. Tho rellcoted imtenosties on the other photographs were ostimated vieually and in addition the stronger Intonatitos of the (his) and (OLA) sonea were moasured on the Golgur coumter speotrenstar. The naro layer IIm intensitles mare oorrooted for tho unal Lowants and poiamieation factore and the intenaltios of

An attcant was made to pat the rolative values of tho oomreoted intomastes of the (hiso) son on the sbolute sonle using Wilson's mathol. The sontter of points on the reculting gerph was ench that mo conolumion could be made regarilng the sent factore A poasible ceplanation of the failure of Wileon's mothod is that there may be ovarlapping of tho atoris in tho methosymonrtomyl groups in this projection.

By couparison with the parent compoumd 9810udinyironatirecono,
 The rolative intensitlas wore souled such that tho highost unitary atiructure faotor in the (ho) son had a vaiue of 0.6. In the instial atages an arygon atom was ascumed to have a conttering power $4 / 3$ that of a onvton stom and the soattering curvo ured was that of Bockinis ot. No, for oarbon aistably anjuated for teaporature offoot.

The $m(z)$ test (Howoils, Phil21pe and Rogers, 1990) mes applied to the dats in the three main gomes in ontor to toet for a contre of aymintry. The roilcotions weme divided into equal groups of gin θ

Fan 5n3. Osaphs bboulng the reunte of the $I(Z)$ toat on the thaoe

and the avarage veluo of $\langle I\rangle$ was calculated for seoh group. Rook Intomalty was then cupsessed as a Ergoticn $z=I /\langle I\rangle$ of tho avernge intenalty for tho cosrosponding eroup. Two frections If (z) of reflections whose intenaditios ase leas than or equal to 2 arog

$$
\begin{align*}
& 2^{z(z)}=1-\operatorname{axp}(-z) \tag{2}\\
& \mathbb{I}^{1 z}(z)=\arg \cdot\left(\frac{2 z}{2}\right)^{\frac{2}{z}} \tag{2}
\end{align*}
$$

For the mon controsymmotyic and ocntroaymantric oceos seopeotivoly.
 the theoretioal curves (1) and (2).

The reanite axt abom in Fige 5,3 and cloarly indlato that aoch sone in in fact centrongmentrit and hance the oryistal was assigned to the repeo-froup pI.
(o) Deteratratson of the Aproydmate Struatuse.
(1) Dascot Yothod.

Tho dirsot method of Harkos-leaspoe relationahipe
(Chap.IV, soot.(b, L)) was appliod to the date colleoted from the (hoo) sone in whioh there was a poasibility of recolution. As before, the zelation

$$
\left(U_{\mathrm{H}} \pm \mathrm{u}_{\mathrm{B}}\right)^{2} \leq\left(2 \pm \mathrm{u}_{\mathrm{H}+\mathrm{I}^{\prime}}\right) \quad\left(2 \pm \mathrm{u}_{\mathrm{B}-\mathrm{B}^{\prime}}\right)
$$

was the only inoguality which proved unotus. Soverul alge rolationahipe were found and are show in sable 5,2. No algns wero dotermined uniqualy and the mothod sailed to solve the struoture. Thase is a dogree of doubt about some of the relationahipe boouse of tho unoertainty in the geale feotos.

(b) The mitgteod meotpeosal lattice of the (0.2) sane.
(c) Stee melgitod reotprocal lattloo of the (H01) sone.

2ughe 5,2.

 (hio) sone.

$$
\begin{aligned}
& s(950) \quad-\quad-8(\overline{3} 50) \\
& s(9200) \quad s(600) s(3200) \\
& s(7240) \quad-\quad-(5140) \\
& \text { S(S } 280)-S(7280)-8(600) S(5180) \\
& s(380) \quad-\quad-3(580) \\
& s(1080) \quad s(600) s(780)
\end{aligned}
$$

there \mathbf{S} means "the sign oft.
(14) Trial and Exeros Mothoin.

Theoretical consideretions indioate that the most probebio struoture is that in which the anthracono moleus is polded and the mothoxg-achourl grotips axe in tho 'peryp-parp' poskstons. This howver does not exolude the posaibsility that in the axyrtal form the nothomp oaxbonyl gerups ane 'IIn-2in'. It is aleo posalble that the anthemsen moleus way have a btreinod" planne atruoture, and in tho intilal stages all there pounibilitien waeo aramined.

The waightod reoipsocel 2 nttices, of the threa orinl somes, walghted in accordmoo whth the unitary etruathre factore, were drawn out

Pha. 5.5. (a), (b) and (o) nhow the threo ways in thioh the anthreoge past of the molocule oain be butlt up from the basto bonseno ring derived from the welghted reatprocel lattice of the (h01) 8000.
lattice of the (hion) sone ormiblted mill dofined bensone ylug eroups and it was dooided to conomertrate on this projeotion in the indtlal stagus. The oantres of gravity of the bensece ming eroups wece obtimated and the 'mean' beasene ying man culoulated. Thare ase threo posaible waye in which the anthreosse maleus can be built up from tho basic unit and those aro shom in F1g. $5,5(\mathrm{a})$, (b) and (0).

The Felasenberg photogeraph of the (heo) some taken Fith nolybdemem sediation showed distinot dipheo regions of soathering around the bensone ming groups and theso difite regions antendod well bayond the limit of the nosmal copper reatition. The shapes of these difrivo regions ase ahom by dotted innes in Fige 5,4(a). The -longation of those ragions in the direotion be beanod to indicato that the length of the anthracone molens ahould ise along the direotion aning. This oriontation indicated by (a) in Figo 5,5 mas iavosticnted. Attempts were made to fit a folded struoture mith the methoxg-carbomyl groups in the 'porp-perp' position and in the ' $2 \ln -1 \ln ^{\prime}$ position Whthout suocess. A turithos attempt to fit a planar atzuoture mas almo uncucoesatul.

The ardal otruoture faotors are arch that $F_{0}(010)$ has a very 10 w viluo. This indicateo that if the mothozyl-oastongl groups ase to be placed reasonably aymetrically with roppeot to the anthreocen moleus, the moloculas contro oarnot 210 vomy the smon the position $y /$ ondin $\alpha=0.25$ in the atreotion bala α_{0} The value of $F_{0}(600)$ is

Pro 5n6. The intith Fourter map of tho (2m) progootiono the 2 eo/A.V. ${ }^{2}$ contorrs la dottod and tho othar contourre are drewn at arbiteary intervais.
solativaly high ant the ata θ valuo of tho reklection coireopends to
 mut 180 alose to ano of, z/atin $\beta=0.000,0.083,0.167,0.290,0.333$,

 but without auccas.

The thisd poeskble orsentation of the anthreoone molers wan mon Lavertigatod and the onis measonalle git botween the obsorved and calculated struoture factors of the rencentions with low indiono wea

 onrbon atoces 9 mal 20. The nolcoular coutre man placod at $(0.033 \operatorname{asin} \beta, 0.220$ bath α). The comantmates of the woicoule the this poaltion are shom in fioble 5,2. The phacea darived frow a

 mop momed gaste comouragtig although it mas olear that tho atome and V were not in the oorreot poultion. Sovaral atteapts ware mio to serine the etruotume efthourt arocons.

Heviag fallod to oitata a colution in tho (hio) projcotion, it tee doolded to invertlate the other two ardal somes. Howower mainiy the to the unocitalinty cbout the opientation of tho moleoulo, no userfil

PABLS 5.2.

Atcato x and y oomendinate.

A50.	Veatas	$37 \mathrm{main} \alpha$
A	-0.067	0.277
8	0.103	0.327
c	0.113	0.423
D	0.290	0.400
5	0.423	0.423
F	0.420	0.318
c	0.263	0.272
Σ	0.237	0.277
3	0.057	0.312
π	0.060	0.022
4	-0.220	-0.025
$\underline{1}$	-0.200	0.022
1	-0.260	0.120
P	-0.097	0.177
Q	-0.117	0.352
T	-0.193	0.242
U	0.403	0.292
X	0.40	0.273
8	-0.187	0.410
8	-0.030	0.300
∇	0.473	0.238
*	0.333	0.250

Fig. 5.1. The Patterson map of the (h100) sone. The $|P(000)|^{2}$ term has boon omitted and the contours are dram e at arbitrary intervals.

Leformation mat dowivod.
In view of the great difficuily in dotermining the orientation of the anthreome moious, it was deolded to comprate the twowdimennicnal
 The Pattaricon aynthoale was ocmpated and the coatour map mas dravin (Fig. 5,7). Aithough no dofinite indication of the orientation of the moleoule wan obtatnod fren tho Pattonvon map, thece ware two latereoting Scatures.
(2) The vectos distance $2.4 \mathrm{~A} . \mathrm{V}$. In setinfosced in the direction AB. This would appoar to indioato that eoveral of the bonde of mothorgmoarionyl eroups ilo in this dipeotion.
(2) The atrongent poak in the voctor field is at B. The veotos
 be the gum of themmolecular veotors. The nost itsoly emplanation io
 in the anthreonse partis of the molecules related througt the ceatre of aymotiry at the orxigin of the projection. This would mean that tho molcoular oantre ta at apprecestmately (0.075 amin $\beta, 0.160$ batia α). Atteapte wero made to Itt a moleoule nth 1te comter placod at the polint, but the rive of the $F(020)$ etsuoture factos almage calculatod mach too Macho

(d) Conolumen.

The antempt to find an apperorimate struoture indicaten that,
oven when the arleatation of the anthreovse moleus is darived, the methoaymarbongl groups nuat be pleced whth reasonible socursoy is a IIt is to be obtained between the observed and calculated strueture faotors. It is hoped that a shree-dimenaional Putlecson aynthouis will be coaputed at a later date and that the intorpretation will land to a solution of tho etrueture.

Appanail. The Dovelopenent of Colous in the Cuystals of 010-9810-Dinothoay-Gurtomy 9020-Dimparoanthrecone on

Teppaliation with Xmanc .

Aftee prolongod thendiation whth merayog it was oboerved that ive

 Alreotice of the optio ards perpendicular to the (200) plano. To algrizloant Aifresease could be dotceted between struoture factors moarred Fith a new coyotal and with the same argotal after it had abanged colours.

The emot reacon for the axpect is not gut known, but it in prombly due to tho formatica of treo shaliale and the oryotals ane boing etudied by Ds. D. Bigl of the Physios Dopertinat of 8t. Andreme
 The monits of this moste were not avallable at the thme of wertinge

TABLE 5,3

THE OBSERVED STRUCTURE FACTORS OF CIS-9:IO-DIMETHOXY-
CARBONYL 9:IO-DIHYDROANTHRACENE.

\ldots	1	1		F	l	＊	1		F	h	1	ℓ	F_{0}	k	k	ℓ	F	6	t	1	Fo	\ldots	\downarrow	1	5
6	e	－		8.1	3	3	1		131	2	$\overline{3}$	1	21.0	6	4	1	32	5	Y	1	53	3	－	，	＜ 11
	－			0.7		4			18.4		4		59		\＄		3.3		8	－	5.8		5		－ 4
	10			5．4		5			4.4		5		155		6		2.0		9		＜ 11		6		31
	11		＜	0.5		¢			1.0		5		2.2		$\overline{7}$		118		10		5.5		7		＜ 10
	18			2.3		Y			2.6		$\overline{\mathrm{Y}}$		Y． 9		8		<4		11		5.1		8		4.4
	13			AY		8			8.9		5		10.6		9		4		12		<12		－		－ 0.1
\bar{Y}	1	0		4.7	4	，	1		1.1		9		7.8		10		<1.1		13		2.4		10		$\leqslant 46$
	2			4.0		2			30		$\overline{10}$		4.4		＂		<09	$\overline{4}$	1	1	115	$\overline{7}$	1	1	<10
	3			4.0		3			1.0		71		89		$\overrightarrow{4}$		25		2		214		2		ir
	4			4.1		4			12.1		－		7.3		13		28		1		27.		1		32
	5			2.8		5			2.1		13		3.6	y	i	1	xy		4		165		4		33
	6			5.6		6			1.1		14		6.1		a		<1.2		5		14		5		17
	r			2.2		y			2.9		15		4.1		3		＜ 1.2		6		43		6		<0.1
	8			0.8		8			1.2		$\overline{16}$		＜ $0 . Y$		4		$3 y$		Y		10.5		y		＜ay
	P			2.2	5	1	1		2.4	3	T	1	Y．$\%$		5		<1.1		8		15.6		8		1.1
	10			0.9		2			2.4		3		5．Y		6		<1.1		4		11.6	50	1	1	<0.5
	＂			10		3			6.6		3		22.2		\bar{y}		3.3		10		53		2		so
	12			2.9		4			1.9		4		23.5		8		<0.9		11		<1.2		3		＜ 0.3
	13		$<$	2.4		5			6.1		5		14.4		γ		<0.9		12		＜ 11	T	T	1	29.0
	14			3.5		6			23		6		2.8		10		13		13		<10		$\overline{2}$		7.6
8	1	0		1.4		y			2.4		$\overline{7}$		5.1		＂		1.0	5	1	1	16		I		1.2
	2			20	6	1	1		4.3		$\overline{8}$		4.1	－	\cdots	1	<1.0		2		<1.0		π		$\boldsymbol{\gamma} \cdot \boldsymbol{Y}$
	3			3.5		2			6.5		9		＜ 1.1		2		26		s		＜ 1.0		5		\％．f
	4		$<$	as		3			3.6		$\overline{10}$		12.8		3		＜0．		4		＜ 10		6		15.4
	5			29		4			8.0		7		44		－		36		5		22		$\overline{7}$		9.8
	6			25		5			2.4		12		8.0		5		2.9		6		15		¢		4.7
	y			16		6			1.9		$\sqrt{13}$		1.9		6		＜ 0.8		4		30		$\overline{4}$		6.6
	8			2.5		4		$<$	1.1		I＇4		3.9		\bar{y}		12		8		34		$\overline{10}$		6.0
	9		$<$	0.3		$\%$		\leqslant	1.0		15		2.8		$\overline{7}$		1.1		4		6.9		π		18
	10		$<$	0.2	y	1	，		1.8		16		<0.5	9		1	<0.5		10		<1.2		$\sqrt{12}$		<1.2
9	1	0		J．4		2			34	4	T	1	16		2		1.4		11		4.0		13		－ 1.2
	2			2.4		3			1.1		$\overline{2}$		4.1		$\overline{3}$		2.1		12		<1.0		析		65
	3			3.0		4			22		$\overline{3}$		4.9	T	1	1	266		13		－ 10		新		17
	4			5.9		5			1.0		4		1.2		λ		318	6	1	1	119		16		16
	5			S． 9		6			1.0		5		8.6		3		39.0		2		\＆ 1.1	コ	1	1	95
	6		$<$	0.2		y			5.2		6		1.5		${ }^{*}$		19．1		3		100		2		d8．8
	7		\leqslant	0.1	\％	1	1		25		\bar{y}		4.1		5		29.5		4		28		3		6．）
10	1	0		2.6		2			1.4		$\overline{8}$		4.8		6		31		5		26		4		19.2
	1			3.8		3			18		$\overline{4}$		8.1		\checkmark		7.1	．	6		30		5		1.6
	3		$<$	24		4			1.9		10		85		8		100		y		3.8		5		<04
	4			3.1		5			23		11		4.0		9		4.4		8		－1．2		\bar{y}		＊．4
	5			2.4	9	1	，		1.6		12		3.5		10		1.6		4		Y2		8		1.2
	6			3.0		2		$<$	0.4		13		1.6		＂		4.4		10		<1.1		$\overline{9}$		6.7
	y			3.8	1	T	1		5.5		III		2.4	2	1	1	26.1		11		－ 1.0		10		10．8
	8			4.8		$\overline{2}$			13.7	5	T	，	3.4		2		3.4		12		<0.9		＂		10.4
	9			4.9		5			1.0		З		1.8		3		<0.6		13		<08		12		2.8
1	1	1		5．$\%$		π			Y． 1		3		1.9		＊		5.8	\bar{y}	1	1	153		is		$2 *$
	2			23.1		5			4.4		4		<1.1		5		6.1		2		52		M		18
	3			25.0		6		$<$	0.8		5		1.6		6		2.4		3		4.2		$\sqrt{18}$		3．Y
	4			3.4		\bar{y}			4.8		6		43		γ		Y． 1		4		5.6		16		3.3
	5			4.5					8.9		\bar{y}		5.0		δ		3.4		3		<11	3	7	1	3.0
	6			6.9		$\overline{9}$			3.6		\vec{B}		5.9		4		＜ 1.1		6		51		$\overline{2}$		38.6
2	1	1		184		70			36		3		1.9		ω		50		4		4.3		3		10.5
	1			37.9		$\overline{11}$			3.1		5		19		＂		<1.2		8		19		4		26
	3			66		$\overline{2}$		$<$	1.2		II		<1.1		11		3.4		4		5.6		5		9.6
	4			203		11		$<$	11		11		<1.0	3	1	1	iny		10		3.4		6		1.0
	5			64		14		$<$	1.1		1.1		4.3		，		4.3		1		56		\％		6.6
	6			4.0		15			6.2		14		3.4		1		126		11		1.1		8		1.8
	Y			2.3		14			2.6	6	7	，	61		＊		8.6	$\overline{8}$	1	1	40		7		8.1
3	1	1		21.1	2	1					$\overline{2}$		18		s		23		2		12		in		16\％
	1			14		Σ			3.3		3		9.4		4		100		3		－ 0.1		π		3.1

1	1	l	6	1	$\underline{1}$	l	${ }^{*} F_{0}$	2	\ldots	l		F_{0}	6	k	l		F	6	k	1		F	6	\％	6	For
こ	$\overline{10}$	3	H． 5	i	1	3	12	$\stackrel{ }{*}$	$\stackrel{1}{4}$				$\stackrel{ }{*}$	In	$*$		0.4	$\stackrel{\square}{*}$	6	4		c．s	$\overline{7}$	5	\cdots	24
	＂		4.4		7		4.4	5	1	4	$<$	1.4		左			2.3		y			8.	$\overline{10}$	1	＊	5
	Ia		4.1		5		4.1		2			11		$\sqrt{3}$		＜	at		8			6		2		A
	$\overline{4}$		2.1		ii		v．f		3		$<$	10	5	7	4		4.1		4			es		3		4
	2		4.5		\bar{I}		4.4		4		$<$	1.0		$\overline{3}$			3.3		10			2.0		a		4．
	$\sqrt{5}$		$\leqslant 40$		3		26	6	1	4	\leqslant	0.9		3			4．4		＂			4		5		＜ 06
	$\stackrel{7}{4}$		20		16		1.0	t	T	4		6.9		π		$<$	4		12			4.6	T	T	＊	at
5	T	3	2.4	\bar{y}	T	，	9.6		Σ			1.4		3			2.1		13			1.7		$\overline{3}$		4.1
	I		4．V		3		$\leqslant 4.2$		5			9.3		$\stackrel{7}{6}$		$<$	1.0	5	1	4		－0．		1		27.1
	I		y．）		3		12.9		$\stackrel{4}{4}$			2.0		\bar{y}			4.8		2			a．$\%$		\％		48
	$=$		2.5		4		5.4		5			5.9		5		$<$	1.0		3			$4 y$		5		16
	5		16.7		5		2.6		$\overline{6}$			4.5		$\overline{9}$			2.2		$*$			－ 8.		5		2.1
	\％		m．Y		4		2.9		\bar{y}			6．y		$\overline{10}$			1.9		5			23		\bar{y}		$\leqslant 4.0$
	$\overline{7}$		＊． 9		\bar{y}		4.8		$\overline{7}$			1.2	6	T	4	$<$	a．t		6		\leqslant	4.2		5		＜ 1.0
	T		4.2		T		23		7			x^{4}		I			1.6		\boldsymbol{r}			2.0		7		4.0
	7		2.1		7		23		$\overline{10}$			10.0		5			1.0		1			27		16		8.1
	10		$\leqslant 1.2$		$\overline{16}$		4.		11		$<$	1.2		π			2.1		9		¢	12		π		54
	$\overline{7}$		6.1		π		1.8		$\overline{12}$			J． 2		5			6.5		10			4		石		2．4
	$\overline{1}$		<4.2		$\overline{1}$		＊．4		$\overline{13}$			5.2		$\overline{6}$			4.2		＂		6	1.0		3		2．7
	$\overline{3}$		4.1		$\overline{13}$		<0.6		14			4.3		\bar{y}			2.8		12			h． 2		\％		41
	$\overline{\text { w }}$		＜ 4.2	$\overline{8}$	T	3	as		$\sqrt{15}$			3.3		T			2.6		13			1.0		$\sqrt{3}$		＜ 0.9
	$\sqrt{5}$		1.8		2		8.2		$\overline{16}$		$<$	ay	\bar{T}	，	4		12.3	$\overline{6}$	t	4		1.9		$\overline{16}$		＜a．t
	$\overline{16}$		＜o．r		3		5．）	2	T	4		60		2			82		2			3	$\bar{\Sigma}$	T	ω	ner atcoces
4	T	3	52		${ }_{4}$		31		】			8．8		1			2.0		3			4.0		1		2.9
	J		9.2		5		83		I			2.5		4			\％．${ }^{\text {a }}$		4			4.6		5		6.8
	3		8.4		$\stackrel{\square}{4}$		4.2		4			0.1		5		\leqslant	1.0		5			6.1		π		2.4
	4		18		\bar{y}		A）		5			11.0		6			8． 2		6			4.0		5		4.1
	5		9.5		$\overline{7}$		s．		$\overline{6}$		\leqslant	1.2		y			$5: 1$		y		＜	1.1		7		3.1
	5		<4.0		$\overline{7}$		4.4		\bar{y}			5.4		t			6.2		1			${ }^{2.9}$		$\overline{7}$		H．＊
	$\overline{7}$		3.6		$\sqrt{10}$		35		$\overline{8}$			4.6		9		\leqslant	he		9			1.1		\mathbf{F}		2．4
	T		＜ 12		＂		2.9		$\overline{4}$			s．y		10		\leqslant	4.2		10			4.0		$\overline{4}$		4.5
	$\frac{4}{4}$		$\times 1$	$\bar{\square}$	T	3	1．4		10			3.6	$\overline{\text { I }}$	1	4		165		＂			1.0		$\overline{10}$		1.6
	$\overline{10}$		5.4		\bar{z}		6.4		II			2.9		2			2.2		12			3.6		II		<4.1
	$\overline{11}$		4.6		I		2.9		$\overrightarrow{1}$			$1 . \%$		1			14.0	\bar{y}	，	ν		2.1		$\overline{1}$		b，
	II		2.5		$\overline{4}$	－	4.2		13		\leqslant	1.0		4			＊． 0		2			6.3		$\overline{1}$		＜ 1.2
	$\overline{13}$		4.9		5		<4.8		Im			3.5		5		\leqslant	1.0		3			2.4		\％		2．y
	III		2.9		5		6		$\sqrt{5}$			1.1		6			E．）		＂		\leqslant	1.1		$\overline{15}$		1．4
	$\overline{15}$		$\leqslant 08$		$\overline{7}$		<1.0	s	T	4		6.9		y		\leqslant	1.2		5			1．4		$\overline{16}$		＊ 0.6
	$\overline{16}$		0.8		－		4．${ }^{\text {\％}}$		\％			7.8		1		\leqslant	1.1		6			1.2	5	T	μ	4.2
5	r	3	Y． 1		$\overline{9}$		1.3		${ }^{3}$			6．${ }^{\text {r }}$		9			2.4		v			1.8		$\bar{\square}$		15.0
	2		4．2	10	7	3	1.9		$\overline{4}$			5．0		10			4.5		5		\leqslant	1.1		I		4－0
	3		9.4		I		4.5		5		\leqslant	1.2		11			5 y		9		4	1.0		$\overline{6}$		／5．4
	π		<1.0		3		＊ 0.1		$\overline{6}$			5.3		12			2.4		10		$<$	0.9		$\overline{5}$		16.1
	5		1.0		\％		5.4		7			1.6	3	1	H		4		11			4.7		5		7.4
	$\frac{7}{6}$		6.5		5		1.2		8			2.1		1			4.0	$\overline{\mathbf{i}}$	1	4		4.5		$\overline{\mathrm{y}}$		1.4
	$\overline{7}$		9.9		$\overline{6}$		31		9			1.6		3			2.6		2			4.7		5		3.4
	I		5.4	，	1	4	5.1		$\sqrt{10}$			3.5		H			14.6		3			1.6		9		5.5
	$\overline{9}$		12.5		2		8.4		$\overline{11}$			4.6		5			6.8		4		＊	1.2		$\stackrel{70}{10}$		6.1
	$\overline{10}$		6.0		3		5.1		$\sqrt{12}$		$<$	1.0		6			4.8		5			1.4		\％		\cdots
	＂		2．y		4		3.9		$\sqrt{13}$			26		y		\leqslant	1.2		4			1.8		\bar{n}		5.5
	$\sqrt{2}$		2.6	2	，	4	<4.1		$\overline{4}$		$<$	as		5			1.4		y			1.6		$\underline{16}$		3.3
	5		461		2		4.9	4	T	4		5.5		9			2.2		1			5.5		π		＜ 1.0
	π		2.3		3		12.4		I			1.4		10			3.1		9			${ }^{4}$		$\overline{15}$		29
	$\sqrt{5}$		1.4		4		4.12		I			2.4		＂			6.1		10			0.5		$\sqrt{6}$		\cdots
5	7	3	4.1	3	，	4	$\leqslant 42$		5			5．4＊＊＊＊＊＊＊）		12			1.4	$\overline{9}$	，	H	4	4	4	T	\cdots	40
	I		8.1		1		2.9		5			4.0		13		4	a，		2			3		I		4.2
	1		13		3		4．7		τ			1.4	\square	1	4		2.4		3		，	10		I		20.1
	$\bar{*}$		5.1		4		4.1		$\overline{7}$			4.		2		\leqslant	at		4			2		＊		10
	3		4.0	4	，	4	2.9		$\overline{7}$			2.1		1			\＆ 3		5			2.4		5		4.4
	\underline{T}		4.5		2		2.5		$\overline{9}$			2.1		＊			43		4			24		$\stackrel{\square}{6}$		ey
	F		6.3		3		3.8		5			51		5			2.7		y		$<$	av		$\overline{7}$		2.4

ESprenisuces.

Albecolat, O. (1939). Rov. Sot. Inate. 10, 221. Ahme, Fol. and Orusctabart, Donoj. (1953). sota. Gyput. \& 305. Batiey, II. (1935). soti. Oryut. 8, 182. Balley, I. (293). A0tme Gyyt. 18, 103.
 Keraniny MoL. (2935). Proo. Rey. Boe. 2127.326.

 and Vowamalal, A.J. (2955). Nota. Gyot. 8) 478.
Booth, A.D. (294). Wourter Techatgmes etc." O.V.P.

Bragg, ToL. (1952). AOta, Gayit. 5, 472.
Buargor, INJ. (2944). Mphotograph of the Reotprocal Lattion",

 Cookerin, W. (1948). So Sos. Znots. 25. 253.
Coolviens ‥ (2952). Aota. Cryent. It 82.
Cock, Jow. ($2930,2932,2933$. J. Oben. Soo. 3030, 2007
1933. 456 2933 1932.
 193. 393.
 of the Kelmile sympoatu, London. 1558, 49.

Crusormank, Dollis. (1949). A0ta. Gayst. 2) 63.
 Grutchechank, Dolve. (2950). Aota. Ougnt. 2) 747.

 ad21ib, J. (2943). Aota. Gryit. is 76 and 2740

A 273, 37.
Hastars, D. and Kaeper, 30 (2940). Aota. Ozyst. 20 TO.
Horbeteiz, FoI. and Solmat, G.I. (2954). J. Ohem. So0. 393, 3302.
Hownlig, B. Ro, FMilipa, D.C. and Rognes, D. (2950). Nota. Oryot. 3, 22

Iball, J. (2940). Amoce Jous. of Ganons. 38, 372.
Heall, J. (2959). Unypilliemod.
Leuks, W.B. (2948). "Electzleal Countinis", O.U.Po

Lipson, Ho and Tay20x, O.A. (2952). Aeta. Gryet. \& 450.

Lurty, D.V.R. (2937). 3. Set, and Ind. Ree. 10, 304.
Paktervong A.J. (2934). Phye. Rov. 46 372.
Robectaca, J.l. (2943). J. Sot. Inate. 20, 275

Stadles, HoP. (2933). Rota. Geryt. 6540.
140.

ACKIOMREDARESYS

I an indabted to Profeasors C.D. Pzention and A.D. Walith, in Those leboratcopten thite zraceroh mes casried out and to 2r. J. Inall tho mporvisoat the nemt.

I with to tharis soveral nambars, and formar nembars, of the stapt

 My thatis axe aleo tho to Mre. H. Stott for ohociding the intenatity
 Stert foe hie work on the Alagoens.

Hy gratertil thanian aso due to the Computinc Laboratorien of the Forthmption Polytoolmiog the Univaraity of leade and the University of
 Rollett for the use of thetr progemmeo. My thanks ase also dyo to Dr. J. Milledey of Univecraity College London and to Mr. D. Whtecn of the Univaratty of alaggow for tholr belp is moling it ponatble to use eleotronic digital ocaportere.
 Truot for tho amand of a Boholarghip, without which this reacaroh would not havo boan unfertabran.

