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Abstract

We give a b rie f review o f geometric quantisation up to  and including the B la ttner-K ostan t- 

Sternberg kernal. In  general th is leads to  sym m etric operators th a t are not essentially 

self-adjoint so m otivating a study of H erm itian operators as observables in  a generalised 

quantum mechanics. We show tha t a generalised squaring axiom can reproduce the results 

o f B lattner-Kostant-S ternberg quantisation. We also show tha t quantisation w ith  respect 

to  polarisations w ith  compact leaves gives results tha t conflict w ith  the nonlocal nature 

o f quantum  mechanics.

We develop a fron t form  quantum mechanics o f a free scalar partic le  using geometric 

quantisation. The fron t and instant forms are related v ia  un ita ry  maps derived from  the 

pairing which intertw ines quantisations w ith  respect to  the these forms. The fron t form  

position operator has a m axim ally sym m etric component so we are compelled to work 

w ith in  the fram ework of a generalised quantum mechanics; th is results in  there being no 

Hegerfeldt type instantaneous spreading o f in itia lly  localised wavefunctions in  the fron t 

form . F in a lly  we show tha t this model can be lifte d  to a many particle  free fie ld  theory.
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Introduction

This thesis is divided in to  three Chapters.

In  Chapter 1 we give a b rie f review o f the theory of geometric quantisation both  

the basic scheme, th a t concerned w ith  the quantisation of classical observables linear in  

momentum and the formulae o f Bao and Zhu and of Tuynman based on the so called 

B lattner-Kostant-S trenberg Kernal. We show tha t the methods o f Bao and Zhu and 

Tuynman are inequivalent and in  any case often give results th a t can equally w ell be 

obtained using the basic scheme and a generalised squaring axiom. The fact th a t they 

lead to  operators tha t are not essentially self-adjoint m otivates a study o f sym m etric 

operators as observables in  a generalised quantum mechanics. Chapter 1 also contains, 

among other things, a comment on the problems pertaining to quantisation w ith  respect to 

polarisations w ith  compact leaves which seems to give a theory th a t is local and therefore 

in  conflict w ith  E.P.R type phenomena. This is essentially the content o f a paper published 

in  Algebras, Groups and Geometries [79].

In  Chapter 2 we apply the theory o f geometric quantisation to  obtain a fro n t form  

quantum mechanics tha t is surprisingly consistent. The spectra o f the operators are con­

tained in  the range o f the classical observables they represent and the instant and fron t 

form  pictures are u n ita rily  equivalent via maps derived from the pairing. The fron t form  

position operator is m axim ally sym m etric, its  role as a well defined observable is assured 

by the methods o f Chapter 1. F in a lly  we show that the front form  is free of Hegerfeldt 

type instantaneous spreading o f in itia lly  localised wavefunctions. Chapter 2 also contains 

a critique of the point form  and a b rie f analysis of the dynamic and kinem atic subgroup 

structures o f the various forms. In  particu lar we show tha t the generators o f the kinem atic 

subgroups o f the instant and fron t forms, as well as the Ham iltonians, can be quantised 

in  either picture to  obtain representations that are u n ita rily  related by the pairing maps. 

Some o f this work w ill also appear in  The International Journal o f Theoretical Physics 

[80] and the Proceedings of The T h ird  W igner Symposium [93].



Chapter 3 contains a fron t form  field theory o f a free scalar particle. Since the La- 

grangian is singular we are led to  define a D irac bracket tha t modifies the usual equal tim e 

com m utator; the expression we derive in  th is way appears as an ansatz in  other fron t form  

fie ld theories. We show tha t the theory is re la tiv is tica lly  invariant despite our breaking o f 

manifest covariance in  its  form ulation.

We conclude w ith  a discussion of the problems th a t prevent a stra ightforw ard gener­

alisation o f th is  work to  d irectly  interacting particles.



C hapter 1

..a ll science aspires to be like physics, and physics aspires to be like mathemat­

ics.

L e w i s  W o l p e r t ; The Unnatural Nature Of Science.

1.1 The Essentials of G eom etric Quantisation

1.1.1 Polarisations and Densities

A

I

The phase space of a classical system is a sym plectic m anifold (M , w) where M  is a 2n- 

dimensional m anifold and w a non degenerate closed two-form . As a prerequisite the 

form alism  o f geometric quatisation requires th a t we are able to  construct a complex Her­

m itian  line bundle B  over M , the prequantum bundle, i.e. M  must be identifiable as the 

base space o f a fibre bundle where each fibre Em (m  a point in  M )  is a one-dimensional 

vector space w ith  an inner product ( , ). Let F (M ) denote the set o f a ll sections o f B  ^

over M  and r ‘” (M ) the set o f a ll smooth sections over M . Let V {M )  denote the space 

o f real vector fields over M .  The inner product of the H erm itian line bundle is required 

to  be smooth, i.e. if  s € F °°(M ) then (s, s) is a smooth function over M . We require also 

a connection V  on B  w ith  curvature uj/h. The H erm itian structure must be com patible 

w ith  the connection, i.e. if  s and s' € T °°{M ) then

x (s , / )  +  (a, v % y ) V X  G y (M ).

I t  is always possible to find a suitable B  when M  is a cotangent bundle ([5] page 11) and 

in  tha t case there also exists a global triv ia lisa tio n  o f B  ([2] page 122) and so a global u n it 

section sq o f B  ([5] page 11). Any section s G F °°(M ) can therefore be w ritten  as

s =  4>so



I

(f) e C °°(M ) where C °°(M ) denotes the set o f smooth complex valued functions on M . 

We have the follow ing

T h eo re m  1 On any 2n-dimensional symplectic vector space (V,uj)  there exists a natural 

2n-form called the Liouville form  where

, -w  A . . .  A w .  «
n! A

The wedge product is repeated n times.

Consider the set H  o f a ll s G T {M )  such tha t the integral o f (s, 5) 6̂  over M  exists and 

is fin ite . 7i is then a H ilbe rt space (the prequantum H ilbe rt space) w ith  inner product 

< j > n  where

<  Si, 32 > n ~  /  (a i, 82)€w 81, 82 E H . (1.1)

We could take H  as the state space of our quantum theory. We require a natura l id e n tifi­

cation o f classical observables /  G C °°{M ) w ith  operators f  on H .

fs  =  - ih ^ X fS  +  f s

([4] page 59 and [2] 5.4.1 page 121). I t  can be shown tha t if  /  has a complete H am iltonian 

vector fie ld then there exists a subspace o f H  on which /  is self-adjoint. Otherwise /  is 

sym m etric and whether or not there exists a domain on which /  is self-adjoint must be 

established by other means. I t  has been shown tha t th is pre-quantisation scheme, as it  is 

called, gives rise to  h ighly reducible representations o f the algebra o f classical observables 

([3] page 38 and [2] page 133). I t  is therefore necessary to  m odify the formalism . The 

quantisation is now to be dependent on the choice o f a particu la r real polarisation P.

D e fin itio n  1 The vector fie ld X f  defined by

X f\u )  +  =  0

where f  G is called the Hamiltonian vector field generated by f.

In  a canonical coordinate system, which shall be available globally in  the cases we consider, 

i t  is easy to  show tha t
y  _  ^  a _  ay a

^  dpi dq^ dq^ dpi '

Classical observables /  G are associated w ith  operators f  on H  via the prescription



D e fin itio n  2 A real smooth distribution F  on M  is a map that assigns to each point 

m  e M  a subspace Fm C Tm M  such that k=dim  Fm is constant and there exists k smooth 

vector fields that span Fm at each m

page 290 [2] or page 4 [5). For a real d is tribu tion  we can define integral surfaces as follows.

D e fin itio n  3 An integral surface o f a real disribution F  is a connected submanifold N  o f 

M  such TmN  =  FU V m€ N .

D e fin itio n  4 A real k-dimensional distribution F  is integrable i f  there exists a coordinate 

chart ...x^") such that the surfaces

_  constant, ....x^" =  constant

are integral surfaces o f F . These coordinates are said to be adapted to F .

D e fin itio n  5 Let (V, w) be a symplectic vector space. Let F  be a subspace o fV . Let F^  

denote the annihilator o f F  i. e.

F^ =  { X  G U  : u {X , y )  =  0 V y  G F }.

F  is said to he a Lagrangian subspace i f  F  — F ^ .

We can now define the notion o f a real polarisation which is fundam ental to  the theory o f 

geometric quantisation.

D e fin itio n  6 A real polarisation is a smooth distribution P on M  which is also integrable 

and where Pm is a Lagrangian subspace of TmM.

D e fin itio n  7 Two polarisations P  and P ' are said to be transverse i f  Pm +  Pm ~  '^m M

fo r  all m  G M .

Let V {M ,P )  denote those elements X  o f V {M )  sucli tha t Xm  E Pm- Let P )

denote the set o f polarised sections tha t are covariantly constant along P  i.e.

P ) =  {s  : s G r°°(M) : V x s  =  0 V X  G V {M , P )} .

Now since we wish to obtain an irreducible representation of the algebra o f classical ob­

servables from  the reducible representation given by pre-quantisation we must reduce the 

size o f the quantum H ilbe rt space H . We m ight choose a polarisation P  and associate



the classical observables w ith  operators on tha t subspace o f H  consisting o f sections co­

va rian tly  constant w ith  respect to P. However we cannot take as our state space the set 

o f polarised sections w ith  inner product given by ( 1.1) since for polarised sections the 

in tegra l (s,s)ecj over M  is never fin ite . We could escape th is d ifficu lty  by defining the 

inner product as an integra l over Q =  M /N  (sometimes w ritte n  Q =  M /P )  bu t there is 

no natura l measure on Q. We shall show tha t there exists an integral o f a canonically 

defined density on TqQ and th is observation w ill indicate how we should m odify our state 

space.

D e fin itio n  8 Let V  he an n-dimensional real vector space. A n r  density, r  G R , is a 

map V from  the set o f bases fo r V  to the complex numbers which obeys the follow ing  

transformation law

=1 defC r  [/{A *}

where C  G G L (n , I l) .

The set o f a ll r  densities over V  is denoted A r{V )  and is a one-dimensional vector space. 

D e fin itio n  9 Let

A r { P ) =  U  Ar{Pm)
m&M

This is a line bundle over M  where each fibre is A^(Pm)* The sections o /A r(P ) are called 

r-P-densities.

I t  is common practice to  abuse th is notation and denote the set o f r  — P-densities also as 

A r(P ). I t  is possible to define a p a rtia l covariant derivative tha t acts on the set o f smooth 

r  — P-densities [5j. This is achieved via  a partia l connection.

D e fin itio n  10 A partial connection on P  is a map

V  : y (M , p ) X y  (M , p )  y (M , P )

also w ritten as

( % ,y ) - .V x y

where V % y is defined by the relation

V x y jw  =  X J d (y jw ).



Less abstractly take n ~  2 and suppose tha t (p, q) is a coordinate system adapted to  P  

then i f  X  and Y  6 V (P , M )  we know tha t

^  =  A :(p ,g )^  and Y  = :Y { p ,q ) ~

and

V x Y ^ X ( p , g ) ^ { p , ç , ) A

D e fin itio n  11 Suppose V  is a partia l connection on P  and u a smooth r-P-density then

where X  G V {M ,P ), is a smooth r-P-density defined by

(V x W {A :i} =  (1 .2)

where X { is any field o f bases fo r  P  satisfying

Vx%i =  0. (1.3)

D e fin itio n  12 Those r  — P-densities that satisfy

V x r/ =  0 V % G y (A l,P )  

are said to be polarised with respect to' P.

We now indicate how r-densities are related to more fam ilia r geometric objects.

T h e o re m  2 Let V be an m-dimensional vector space and e an m-form on V then e de­

termines an r-density | e on V defined as follows

I 6 r {A:l, ..Xm} = (ml I ..%m} I)"
where {X i,  ..X ^ }  is a basis fo r  V.

I t  turns out tha t the densities on a given vector space are in tim a te ly  related to  those of 

its  subspaces. In  particu lar we shall need the follow ing

T h e o re m  3 Let W be an m-dimensional subspace of o f a 2n-dimensional vector space V. 

Let {Y i} be a basis fo r  W, {Z i}  a basis fo r  V /W  and {.Y i} a basis fo r  V  such that

and

{FXm +l, ...IX 2 n } ~  {■^1, •*••̂ 271.—m} 

where I  is the projection I  :V  V f W . Let p G A r(V ) and v G A r(W ) then

defines an element of A r { V j W ) .

9



Now

TqQ — TmM/Pm  (1.4)

where m  is any point in  M  such tha t 7r(m ) =  q (tt the projection from  M  to  the quotient 

space Q). Therefore

A i( ]l;Q ) =  A _ i(F U ) ® A i( i;^ M )

— A _ i/2(Pm) ® A_]^yg(Pm) ® Ai(Tm AF).

Using th is i t  can be shown th a t i f  v  and u' are ~  P -densities covariantly constant 

along P  and s and s' are likewise polarised sections of B  then

(s, S

is a A i(T gQ ) valued class function on M  i.e. is independent o f the particu la r choice o f m  

so long as 7r(m ) =  q. W hat is more we clearly have a canonical choice for the A i(T m M ) 

I.e. j [.

1.1.2 H a lf  D ensity  Q uantisation

We are now in  a position to  define the state space Tip for the ha lf density quantisation 

based on a polarisation P . Elements of Tip  are called P  wave functions ([5] page 19). An 

element a =  s.u of the vector space <S> A _ i/2(P ) E T ip if  s and y are smooth polarised 

sections o f B  and A _ i/2(P ) respectively and

exists and is fin ite^. On th is set Tip we can define an inner product <  , >?Yp

j (  1

Tip is actua lly the completion o f th is pre-H ilbert space w ith  respect to  the inner product 

<  ) > H p ‘ We wish to  find a natura l correspondance between classical observables and 

operators in  T ip.

^We define the notion of integration of densities as follows. Let Q be an n dimensional manifold and 

suppose e €  A i(TQ ) then we define the integral of e over Q by

where g' are coordinates on Q.

10



D efin ition  13 A vector field Y  is said to preserve the polarisation P  i f

[y ,x ]  € y (M ,p )  V X  G y (M ,p ) .

Let C °°{M , P, 1) denote those /  in  C °°{M ) such tha t X /  preserves P. Any /  G C °^{M , P, 1) 

defines an operator /  in  T ip  according to

f{sM )  =  { - ih V x fS  +  fs ) ,v  ~  ih .L x fV

where L x f  denotes Lie derivative. Later we shall give a less abstract expression fo r /  

at which tim e we shall also discuss the domain of the operator and the conditions under 

which it  is sym m etric or essentially self-adjoint. We must have /  G P, 1) because

only these classical observables give rise to operators /  tha t leave T ip  invariant. I t  is easy 

to  determ ine the generic form  of the elements o f C °°{M ,P ,1 ). I f  /  G C °°{M ,P , 1) then 

in  a coordinate system adapted to  P

/ ( p , g )  =  C (^ )p  +  77fy) j

where (  and 77 are smooth functions. A  classical observable not d irectly  quantizable in  P  ^

i.e. not in  C °^{M ,P ,1 ) may be quantizable in  another polarisation P '. A  discussion o f ]

how we may obtain from  this a quantisation o f the observable in  P  must w ait u n til we j

have discussed pairings.
I
i

1.1.3 G eneral Form  of Polarised Sections I
1

I f  we choose a so called connection potentia l =  pdq then we can define a connection w ith  

the correct curvature by

V xsq =  ——(XJ/3)so. (1.5) j

Now any s can be w ritten  in  the form (j)SQ. Since
-I

'^x(f>{p,q)so~ X{(j})so +  (p'VxSo ]

we see tha t for A  G y  (M , P ) j

V x0so ~  X(ç!>)so *
- I

so tha t, in  general, sections polarised w ith  respect to P  w ill be o f the form  4>so where (f> is 

a polarised function, i.e. a function such tha t |

x<^ =  o v x G y ( K P ) .
Û

11 i



In  a coordinate system adapted P  th is restriction becomes

c{p,q)-~(f){p,q) =  0

so th a t the polarised functions are those tha t in  a coordinate system adapted to P  have 

the representation 4>{q).

1.1.4  R elationship between C ovariantly  Constant Sections of Transverse 

Polarisations

I f  P ' is transverse to  P  then

s'o =  exp{if /n)sQ

is a u n it section polarised w ith  respect to  P ' where f{q , q') is a generating function between 

the coordinate system {p ',q ') adapted to P ' and the coordinate system (p,q) adapted to  

P , i.e.

p = ^  and p = - ^ .

Proof: A ll vector fields G V (M , P ') are o f the form

Now

Using ( 1.5) this becomes

c (p ',ç ') |^ e x p ( iy /a ) s o  +  e xp (iy /a ) (^c (p ',q ')-~ ]pdq 'j sq

=  c (p ',q ') ^ ^ e x p ( if /n )s Q -e x p ( if /n ) - ^ c (p ',q ')  (^ -^ ]pd q "j S q .

Prom the usual transform ation rules for 1-forms it  is easy to  show tha t

Using th is  and the fact tha t

M g =

d £  ^  dq' d f
dpf dp' dq dp' dq'

we have

=  c { p ' , q ' ) ^ ^ p e x p { i f  /n)sQ -  c { p ' , q ' ) ^ ~ p e x p { i f I Î i )sq

=  0

as required.

12



1.1.5 G eneral Form  of Polarised H a lf  Densities

There exists a canonical choice o f -^-density on TmM  namely | | " L  Also there exists a

natura l ^-density on T q Q .  Suppose th a t from  Riem (Q) (the set o f a ll Riemannian metrics 

on Q )  we select a m etric G  then from  the volume element on Q  i.e.

e  =  y /g d q ^  A  . ..  A  d q ” ,

where g denotes the determ inant o f the m etric ([78] page 14), we can construct a ^-density 

I e 1 /̂̂  v ia  T h  1. Because o f ( 1.4) we are led to  a canonical choice of — P  density on 

T q Q  i.e.

Co; 1 .

Suppose dim  M  =  2 then in  a coordinate system adapted to  P  we have

^  =  (f?(g))^^^ I dp

([5] page 49 or 53). We now wish to  show th a t u is polarised w ith  respect to  P . A ny basis 

for P  w ill be o f the form  c(p, q ) ^  and o f course any X  e V (M ,P )  w ill be o f the same 

form . We require the generic form  of elements of the set o f a ll bases for P  th a t satisfy the 

aux illia ry  condition ( 1.3) i.e. Y {p ,q )-^  such tha t

V

■jp

dp
dY

dp
0 .

Clearly these are given by Y {q )-^ . Prom ( 1.2) we have

=  c(p, q) 2
dp (9)

d

dp\Y{q) 2
dp

- 1/2

=  c (p ,q )~ [(q (q ))l/^ Y (q )l 

=  0

and therefore y is polarised w ith  respect to  P . Now a general smooth ha lf density is o f 

the form 4>y. Since

=  c (v ,q )(9 (g )3 ‘̂ Y { q ) ^

13



-::v

we see tha t (py w ill be a ha lf density polarised w ith  respect to  P  when 0 is a polarised 

function i.e. when u has a representation o f the form  <j){q)y in  a coordinate system adapted 

to  P . This is precisely the condition imposed on (j) to  obtain polarised sections o f B. We 

can therefore w rite  any polarised section o f B  0  A _ i / 2(P ) as (j){q)so.y where so and u are 

the polarised sections defined above. This follows from  [1] equation 5 page 28. O f course 

not every section o f B 0  A _ | ( P )  o f th is form  6  H p. O nly those tha t are square integrable 

are P  wave functions. Th is can now be stated as follows. Suppose

then cr 6  Tip  i f

2?r% J q

which by defin ition is the requirem ent tha t

cr =  0 (q)(q(q))^/^SQ. | dp |

J \d p \  1̂ dpAdq

(1.6)

< 00

^0 (g )< ^*(g )(g (g ))2  I dp | ^ j d p A d q |  | ~ | d q < o o .

Taking

Id p '
2
dp

d_
dq

in  T h  3 this implies

f  1 0(g) P {9{q)Ÿ̂ ^ 2
dp \dp

- 1
dq <  cc

or

(f>{q) p  d q  <  C O .

S im ilarly we can see th a t in  a coordinate system adapted P  the inner product between 

two P  wave functions

0-1 =  0 (g)(g(g))^/'^8o | dp

0*2 -  d^{q){g{q)Ÿ^'^so 1 dp

becomes

< o r i,(T 2 > n p ^  [  0 (g)V'*(g)(g(g))^^^cJg- ( i.7 )JQ

In  th is way the quantum H ilb e rt space associated w ith  a given polarisation is identified 

w ith  a space o f square integrable functions on Q.

I

14



1 .1 .6  P a ir in g

To compare quantisations carried out in  different polarisations P  and P'  we shall require

a map between Tip and Tip» . A  pairing is a map

<  ) >PP'- Tip  X Tipi —

and is only defined for com patible polarisations ([5] page 20 defin ition  1.6.6). We shall

res tric t ourselves to  polarisations tha t are real and transverse. These are autom atically 

com patible ([2] page 160). Since

TmM =  Pm ® Pm 

TmM  _  Tm M

Pk

we have

so

A i(3 U M ) =  A _ i(F ;;,) 0  A i (2U M ) 0  A _ i(F U ) ® A i(2 U M ) 

A ^ ( i;^ M ) =  A _^(l% ,) 0  A _ i(P U ) ® A (? U M )

Ai(TmM) = A_i(P^) 0  A_i(Pm) 0  As (TmM).

Therefore

is a well defined 1-density on Tm M  and we can define a pairing <  , > p p i between P  and 

P ' as follows

<  (T, a ' > p p i=  s')m^m^'m I ?ra  ̂ •

Using the canonical representation ( 1.6) o f P  and P ' wave functions we obtain

<  a, a ' > p p i— [  (f)(j)'*exp{-if /U) j €w e e'
j m

=  /  0 0 ' e x p ( - f y / a )  I e' .
JM

From the defin ition  o f in tegration of densities the above becomes

I I ' / '  I .  |i/2 I  I /  |i/7 { A j d î d g '

A f 00 ''e x p (-'iy /R ) I Ew p /2 I ^ J d q  p/2| - ^ \d q '  p/^ (q (q ))^ /'^ (y (ÿ ))^ /% d q '

=  ^  00» '"exp (-iy /R ) I Ew p /2 A  j  (q(q))^/'^(y(q '))U 4dgdq\ (1.8)

15
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Now
1/2

dp

1/2

2
dp

=  1

1/2

Since
d _  dp d dq d

dq' dq' dp dq' dq

we see th a t the transform ation from  the basis natura l to  (g, p) to  th a t na tu ra l to  {q, q') is 

described by

1 0 ^
^  ^  y

SO det(T ) — &  and since | is a ha lf density we have b y  de fin ition  th a t

dp

dp
dq'

1/2

1/2

Therefore ( 1.8) becomes

<  0-,> ^  ^  i9 iq)Ÿ^'^{9'{q ')Ÿ^‘̂ dqdq'. (1.9)

Form ally the pairing leads us to  consider two maps

Uppt : Tip  —+ Tipf and Upip : Tipt —̂ Tip

p a rtia lly  defined by the requirement tha t

<  (^^Upfpa' >M p=<  U pp ia ,a ' >M p,=<  a, a ' > p p > .

W riting  these out e xp lic itly  when P  and P ' are transverse using ( 1.7) and ( 1.9) it  is easy 

to  see by inspection th a t i f  we put

Uppf(f>{q)so.u =  ( f) '(q ')sQ .i/ '

and

U p p xp  {q ) S q m '  =  (j>{q)sQM

16



where

and

a V
dqdq'

1/2

{9{q)Ÿ^'^dq

<̂ (9) = ( j  ̂  (f '̂iq') exp{if/n)
a ^ /

dqdq'

1/2

i9{q'))\2 'kU )

then the relations are satisfied. Sometimes Uppi and Upip  are u n ita ry  maps and in  tha t 

case they provide a means of quantizing classical observables in  P  when /  ^  C °°{M , P, 1) 

hut f e C ^ { M ,  P ',1 ).

1.1.7  Form  o f Operators

Suppose /  =  Ciq)p +  v {q) then

Since

fs .u  =  {—i/iV x fS  -f- fs ),u  — iU s .L x f^

=  ~ihWxf{(l>{q)so).u +  f(p{q)soM -  ih^{^/gC{q)),q (l>iq)soM 

(^-in{Xf{(j))so +  (pVxfSo) +  /</>(?)so) .i/ -  ifi^ iV 9C iq )),q  (p{q)so.

where prim e denotes d ifferentiation w ith  respect to  g, we obtain

fs .u  =  - i n  (C iq ) -^  +  ( - ^ ) p C ( î ) ^  (psoM-i-{(^{q)p+r]{q))(l){q)soM-in^{y/gC{q)),g(l}{q)so.i'

=  (^ - iK iq ) -—  -  pC{q) +  pC{q) +  p{q) -  % % ^(V^((g)),g)  (/^{q)soM

+  ^(VpC(g)),q ) )  +  77(g)

ag ‘ " '2

/  A 1 \  1
(p{q)soM

This operator is symm etric on C ^ {Q ).  I f  X / is complete on M  then /  is essentially 

self-adjo int on C ^{Q ). We can weaken this to  prove tha t /  is essentially self-adjo int on 

C7o°(Q) if f  is complete, where * denotes push forward.

17
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1.1.8 Q uantisation  on Com plex M anifo lds

We have described the ha lf density quantisation scheme as it  applies to  real polarisations 

and showed tha t it  yields sym m etric operators for observables linear in  momentum or self- 

ad jo in t operators if  additional c rite ria  are met. In  this section we discuss ha lf density and 

also ha lf form  quantisation as it  applies to complex manifolds and complex polarisations.



O ur treatm ent o f the ha lf form  scheme is very cursory. We only m ention it  because 

Tuynm an’s method, which we shall examine in  section 1.3.3, is usually stated in  terms 

o f h a lf forms although a ha lf density treatm ent is also possible. Complex m anifold theory 

on the other hand is mandatory for an understanding o f Tuynm an’s work.

To discuss d ifferential geometry on a complex m anifold we shall need to  know a litt le  

complex linear algebra. Let y  be a real vector space. Its  com plexification is the 

complex vector space such tha t

1. X  +  iY  & \ ^ iS X , Y  e V

2. (X i +  iY i)  + X i  +  iY i =  +  X 2 +  i{Y i +  % )

3. (a +  ih )(X  +  iy )  =  aX  -  i>y +  i( i)X  +  a y ) X ,Y  € V  a ,b e R .

I t  is easy to  show th a t the above im p ly tha t is a vector space overC. On th is  complex 

vector space we define the notion of complex conjugation of a vector by

X  +  %y =  X  -  %y.

The dimension o f is the same as V  because if  is a basis for V  then it  is also a

basis for l / '  since

X  +  %y =  X^6k +  iy^'et =  (X^ 4- %y )̂ek.

Complex Structure on a Real Vector Space

Let V  be a vector space o f dimension n  over H. Then an endomorphism J , i.e. a linear 

mapping J  : V  V  such tha t =  —/  is called a complex structure. Le t V  be a real 

vector space w ith  a complex structure J  and le t denote its  com plexification. Then 

define two subsets o f as follows

ybo =  2 : 2  =  X -  iJ {X )

yOd =  z  : Z  =  X  +  U (X )  (1.10)

x e y .

I t  follows th a t y^ '° and y °d  are subspaces o f and if  X 6  y^ '°  then Z  G V^'^. For this 

reason y ^ ’° and y*^d are said to be complex conjugates o f each other. I t  turns out tha t

yC _  yl.O  0  yO.l

18



so the existence o f a complex structure on V  im plies tha t can be w ritte n  as the d irect 

sum o f two subspaces th a t are complex conjugates o f each other. J  defined on V  can be 

extended by lin ea rity  to  act on as follows

j ( x  +  %y) =  j ( x )  +  % j(y ), x , y e y .

W ith  th is  extension we can define the subspaces and o f as

=  Z  : J {Z )  =  iZ

Complex Symplectic Vector Spaces

The com plexification o f a real sym plectic vector space gives rise to  a complex sym plectic 

vector space. The two form  on the complex space, which we shall also denote by w, is 

defined by extending the real two form  by linearity  as follows

w (x  -I- iy , X ' +  iy ')  =  w (x , X ')  -  w (y, y ')  +  %w(x, y ')  +  %w(y, x ') .  ( i . i i )

I
1
s;
Î

2  : J [Z )  =  - i Z  

Z e \ ^ .  I

Suppose we have a two dimensional vector space V  w ith  basis

( -\ d p ’ d q )

A t th is stage V  is actua lly a rb itra ry  but the notation suggests tha t we have in  m ind tha t 

V  — Tm M  and in  fact th is  w ill be the case th a t is of most interest to  us. There is a 

canonical complex structure Jc on V  defined by

Compatible Complex Structures
1

A  com patible complex structure on a symplectic vector space (V, w) is a complex structure  j
- 'I

such tha t
1

w( j ( X ) ,  j ( y ) )  =  w (x , y )  V X , y  G V. j

Obviously we need a two form  on the complex space to define things like a Lagrangian 

subspace (defin ition 5) o f a complex vector space. For example we can show tha t

1 - 4
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is a Lagrangian subspace o f the com plexification of the real vector space V  spanned by

\ 9 p ’ d q )  ■

To see this we must id en tify  the annih ila tor o f ( 1.12). This consists of vectors o f the 

form

I

which satisfy
, d ^ . d  ^ . (  d ^ , d \  d  .a  ,

Using ( 1.11) th is  becomes

, d d d \  f  d , ,d  . /  a , , 9 a \ , . / 9  _,d d \  „
+ % ' T p )-^  [ %  + % ' V“9  ̂+ % '  “ Si 1 %  + % ’ Tp) = °

which is only true if

b — c -j- ia -h  id  =^0

i.e. i f  6 =  c and a ~  —d. Therefore from  ( 1.13) consists o f vectors o f the form

d . . / d  . a

\ d p   ̂dq )  ^ \   ̂d q ^  dp 

which is ju s t a complex m u litip le  of ( 1.12) so =  F  and the space is Lagrangian.

Kahler Lagrangian Subspace

For a complex sym plectic vector space ( l/- ,w ) we can define a special kind of complex 

Lagrangian suspace called a Kahler Lagrangian subspace. We shall not give the general 

de fin ition  o f a Kahler Lagrangian subspace but merely show how to  construct them . 

Let J  be any compatible complex structure on V  extended to by lin ea rity  then the 

Lagrangian subspace ÜT o f defined by

K  =  { x e \ ^ : X r = { j  +  i)Y, y e v ^ }

is a Kahler Lagrangian subspace. I f  F  is any Lagrangian subspace of V  then

X  =  {X  : X  =  ic X X t -  U X i)  : X^ a basis for F, c* GC}.

Suppose

- 4
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then F  is a Lagrangian subspace of V. Choose J  =  fy . In  th is  case

1 / 9  . .  / ^ \ \

_  1 / 'j9  _  .a

so this choice o f Lagrangian subspace o f V  generates the Lagrangian subspace o f 

discussed above which has now been shown to be Kahler. I f  X  =  (J  +  i ) Y  then J X  =  

J (J  +  i)Y  =  —Y  +  iJ Y  =  i { i  +  J )Y  =  iX  so clearly we have

K  =

so tha t

X  n X  =  0 i.e. =  X  @ X .

Complex Polarisation

Let (M ,w ) be a 2n-dimensional sym plectic m anifold. A  complex polarisation is a smooth 

complex d is tribu tion  F  on M  such tha t

1. F  is integrable

2 . Fm is a complex Lagrangian subspace o f m Ç. M

3. Fjn n  Fm n  Tm M  has constant dimension.

I f  in  addition Fm is a Kahler Lagrangian subspace of for each m e M  then F  is 

Kahler polarisation. O f course when F  is Kahler F  f l F  =  0 so Fn H Fw H Tm M  has 

constant dimension zero. |

Much of the structure we have described on the complexified tangent space to  a sym­

plectic m anifold can be examined in  a more straightforw ard way. Suppose we perform  the 'i

coordinate tranform ation !

z ~  p +  iq z ~  p ~  iq. ,

We may transform  the sym plectic two form  uj =  dp A dq in  the usual way. The inverse 1

coordinate transform ations are I
'I

z  z  z  — Z
p =  — q 2i

Therefore

dp =  ~ d z  4- — ^dz  +  ^-dz
oz az 2 2
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so
1 1 1 1  

d p A d q -  ~dz +  -d z  A ~ d z  -  —dz

1 1
=  ——dz A cJz 4- -r-d/z A dz 

4î  4d

=  —~ d z  A dz
2i

— ^dz A dz

which describes the extended two form . C learly if

%
9 =  ~ -z d z  (1.14)

then u) — dO. Using the usual transform ation rules for vectors it  is easy to show tha t

_6 ^  A
&z 2 \d p  ^dq 

and

A  =  1 ^ 2  __ -
dz 2 Vdp ^d q ) *

Prom what has gone before we know th a t ^  is a Kahler polarisation. ^  and ^  are a basis 

fo r V^. Using th is  basis makes manifest the direct sum decomposition discussed above.

H a lf Density and H a lf Form Quantisation on a Complex M anifold

The h a lf density scheme gives untenable results when used to quantise some systems^. 

The ha lf form  scheme often succeeds where the ha lf density scheme fails but is much more 

complicated although superficia lly the two schemes are quite sim ilar. In  the ha lf density 

scheme the quantum H ilbe rt space comprises sections of the line bundle B(g) A _ ^2  th a t are 

covariently constant along some polarisation F  while in  the h a lf form  scheme it  consists

of polarised sections o f a new line bundle usually denoted B  <S) 6_ i .  The precise nature o f

^Physicists motivate half form quantisation by pointing out that half densities lead to the incorrect 

spectrum of the simple harmonic oscillator while mathematicians observe that half densities give only 

projective representations of Lie algebras of classical observables. In fact Wan and McKenna have shown 

that the half density scheme can be used to quantise the harmonic oscillator if we use a modified connec­

tion potential and it turns out that the same method can be used to obtain proper i.e. non projective 

representations (see Appendix 1),
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the objects in  the vector space 6_ i need not concern us. Suffice to say they are the ha lf 

forms from  which the scheme derives its  name . We shall only be concerned w ith  the case

I t  turns out th a t as for real polarisations, a rb itra ry  polarised sections o f B  A _ i and

V x^o  — “  -zdz)sQ. (1.17)

In  both the ha lf form  and ha lf density schemes the classical observable c is quantised to 

give c where

c4> — ( —îT tV x c S  +  c s ) m  — iR s .B x g i / .

The difference between the two schemes comes about because o f the difference between 

the Lie derivative o f the canonical ha lf density and the canonical ha lf form . I t  can be 

shown tha t

Lx.23  |d z | - i= 0

ccf) — {2h[A  +  B z ) ^  +  {Az +  D)(i))so.i' (1.18)

([2] page 139). However

L x ^2 ? (d z )-; =% B 22(dz)-^ 
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B ® 6_ i can be w ritte n  (/){z )sqM where here, and in  what follows, z/ w ill represent e ither the 

canonoical ha lf density \  | dz or the canonical ha lf form 24 (dz)-& . No confusion should 

arise. The nature o f z/ in  a particu la r expression should be obvious from  the context. The 

state space H f  can be identified w ith  the set of square integrable holom orphic functions 

i.e.

^ i  /  / 1 ( “ i )  <  ° ° }  •

I t  can be shown th a t classical observables c G C °°{M , F, 1) are o f the form  j

c =  Az -{- Az Bzz D  I

and

X^ =  - 2 i{ A  +  B z A  +  2 i{A  +  B z ) ^  (1.16)

([5] page 72). For the canonical choice o f connection potentia l ( 1.14) the expression for 

the covarient derivative o f a section sq is

([5] page 114). Using ( 1.17) we obtain 5



so for the ha lf form  scheme we have

c(j) — [2h{A  4- 4~ {Az 4- B  4* hB)<p]sQ.u (1.19)

( [2 ]  p a g e  2 1 2 ) .  

1.1.9 A n Application of Geometric Quantisation and th e Pairing Con­

struction

Consider the configuration space JR w ith  global coordinate q and m etric g{q) — 1. The 

cotangent bundle M  — has the canonical coordinate system (p, g). Wan and Sumner 

have demonstrated tha t every classical observable o f the form

m n

^ n ^ J ^ Y ^ a i j q y  (1.20)
i= Q  j —0

can be quantised locally if  the leading coefficient

m

Cn =  ^  ' 0>inq 
i = 0

is nowhere zero [10]. In  th is section we seek to generalize th is result to  the case where the 

leading coefficient can vanish. We denote by P  the vertica l polarisation, the d is tribu tion  

th a t at each point (p, g) of M  assigns a vector in the subspace o f T^pq){M) spanned by 

Tip IS then the space o f a ll functions 0 over R  such tha t

2 ^ /^  I 0(3) I=rf3<oo

([5] page 84). Consider the canonical coordinate transform ation

p' — ap +  bq q' =  cp-{-dq (1.21)

where a, 6, c and d are constants, c ^  0 and d ^  0 and ad ~  be =  I  ([5] page 82). The 

inverse transform ation is

q =  aq' — cp' p =  dp' — bq'.

Let P ' denote the polarisation for which (p% g') are the adapted coordinates, i.e. P ' assigns 

to  each po in t in  M  a vector in  the subspace o f T(p_g)(M) spanned by 74p/ consists of 

functions 'ijj over Q' — M jP '  such tha t

2^ L  I I' < “ •
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As a result o f the transform ation ( 1.21) a classical observable o f the form  ( 1.20) acquires 

a coordinate representation
m ' n '

X—0 j= 0

or more e xp lic itly

C learly the leading coefficient is

where s +  j  — r  =  n +  m. I t  is easy to see tha t the solution o f th is  equation is unique 

and the leading coefficient is a m n (-c )^ (d )’  ̂ i.e. a constant ^  0 . Let C '(g') be a localizing 

function w ith  support consisting o f any in terval in  the q' coordinate curve [10], A pplying 

the local polynom ial quantisation scheme o f Wan and Sumner we have

This operator is essentially self-adjoint on the domain C ^ {R )  e H p/. The pairing con­

struction  leads to  a un ita ry map U '.H p  -^H p>  given by

= ( & )  ! Z “ 'p I '  I ' '

(C/“ V )(g ) =  J i ’ iq ') exp j I c r&  dq'

[5]. I t  follows tha t the observable in  the (p, q) coordinate system is

i „  =  =  C /-1  g c ; ( , ' ) ( - m X  ( c ' ( î ' ) ^  +  u  

=  E  u - ‘ c K ÿ )u  [ u - H - ^ )  ( c '( 3 ') A  +  ™ )
7=0

We have

q' =  U ^q'U =  —îhc™  +  dq,

where q' denotes the self-adjoint m u ltip lica tion  operator in  74p/, and

( c ' ( î ' ) ^  +  +  - A 'W )  -  l e w
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([5] page 119) so tha t

=  E  ( f )  g ( ( ' , y  W ) +  % 'C '(5 ') -  k ' w Y  ■
7=0 ^ c c

The physical in terpreta tion o f localisation in  Q' is p a rticu la rly  straightforw ard when c =  1 

since in  tha t case (g, q') is a canonical coordinate system so we are sim ply localising in  

momentum space,

1.2 Symmetric Observables

I t  is generally assumed tha t a quantisation rule must consist o f an algorithm  associat­

ing w ith  each classial observable a unique self-adjoint operator, unique so as to avoid 

any arbitrariness in  the resulting quantum theory and self-adjoint so tha t the sta tis tica l 

in terpreta tion  be stra ight forward v ia  the pro jector valued measure. Th is idee fixe has 

caused the subject to  founder somewhat but recently a new scheme has been proposed 

which promises to  overcome the present impasse. In  a sense it  m ight be said tha t the new 

scheme adm its symm etric operators as observables. The form o f these sym m etric opera­

tors w ill usually be suggested quite strongly when form al quantisation rules are applied to 

the algebraic functions representing classical observables. I t  is hoped tha t the sta tistca l 

in terpreta tion  can be carried out because an e n tity  very sim ilar to the pro jector valued 

measure defining a self-adjoint operator can also be associated w ith  a symmetic operator. 

We begin w ith  a b rie f outline of the relevant mathematics in  abstract. These results are 

taken from  [27] and [9].

S ym m e tric  O p e ra to rs  and T h e ir  E xten s io n s

We shall often be concerned w ith  the existence and classification o f sym m etric extensions 

o f a sym m etric operator A  w ith  dense domain in  a separable H ilbe rt space 74. The theory 

o f deficiency indices w ill therefore play an im portant part in  what follows. I f  R  denotes 

the range of an operator then we have the follow ing

D e fin itio n  14 Let A be an arbitrary non real number. Denote by M \ and Afy R (A ~  X) 

and R(A — X) respectively then the deficiency or defect spaces N \ and are given by

A7\ = 74 0 M x iV̂ = 74 0 Afy.

I f  m=dimNx and n=dimNx then we say that m and n are the deficiency or defect indices 

of A.
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D e fin itio n  15

%  =  {0  e D (A ') ; (A * - 1 ) 0  =  O}

and

={(;!> G D (A *) : (A * -  =  0}.

There exists a general method for constructing a ll the closed extensions o f a closed sym­

m etric operator A.

T h e o re m  4 Every closed symmetric extension A ' of the closed symmetric operator A  is

determined by an isometric operator U with domain D jj (a closed subspace of N ^ ) and

range Ru (a closed subspace of Nx)- More precisely

D a’ ~  E — (f-h'ip -Uifycf) e DA,tp E D u }  (1.22)

and

A 'ÿ  =  -f. A ^ -  (1.23)

The deficiency spaces o f A ' denoted N'x and iV l are related to the defect spaces o f A  by

N'x — Nx © Ru  and N'^ — Nx 0  D u .

C learly then w ith  an obvious notation

m! =  m ~  dimRu  (1.24)

n ' =  n — dim Du- (1.25)

For the case o f m  and n  fin ite  we can obtain a less abstract expression for the generic 

form  o f the extensions A' of A. We illus tra te  the method for the case m =  n. Choose an 

orthonorm al basis (fi for Nx and an orthonorm al basis (f>\ for Nx where 7 =  1 —> n. Now 

every isometric operator between fin ite  dimensional spaces is un ita ry and can be associated 

w ith  a un ita ry m a trix  W ij which determines its  action according to the follow ing equations 

where we have used the E instein summation convention

U(j)i =  Wik<t)k‘
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l i i f  =  ei(j)i then Uip =  U€i<l)i — eiUcfi =  and equations ( 1.22) and ( 1.23) become

(/>' "  (j) +  €i4>i — eiWik4>'k 

A'(j)' =  A(f> -}- Xei(f>i — XeiWik(f>k'

Equations ( 1.24) and ( 1.25) reduce to

m! =  m  — d im D u  and n' — n ~  dim Du-

Perhaps one the most fam ilia r results from  the theory o f deficiency indices is the follow ing

Theorem 5 A closed operator A is self-adjoint i f f  both its defect indices are zero.

In  fact the self-adjoint operators are a subset o f the m axim ally sym m etric operators. These 

w ill play an im portant part in  what follows.

Definition 16 A closed symmetric operator A is maximally symmetric i f f  at least one o f 

its defect indices is zero.

T h  4 serves to make the follow ing results im m ediatly obvious.

Theorem 6 Maxim ally symmetric operators admit no proper symmetric extensions.

The construction given in  T h  4 tr iv ia lly  fails to provide any proper sym m etric extensions 

o f a m axim ally sym m etric operator.

Theorem 7 A has a maximally symmetric extension.

To see th is take D u  =  i f  n  <  m  and Ru — N \ i t  n >  m. O f course if  A  is m axim ally 

sym m etric th is  gives A  as its  own m axim ally sym m etric extension. The de fin ition  o f U  is 

s till largely a rb itra ry  so in  general there exists no unique m axim ally sym m etric extension 

o f a sym m etric operator A . T riv ia lly  the m axim ally sym m etric extension o f a m axim ally 

sym m etric operator is unique.

Theorem 8 I f  m ^  n then none of the extensions A ' of A is self-ajoint.

Suppose the contrary. Then, from  T h  1, m ' =  0 and n ' =  0 so tha t from  ( 1.24) and 

( 1.25)

m — dim Ru  =  0 n — dimRu — 0

w ith  m ^ n , m > 0 , n > 0  which clearly leads to a contradiction.

U n til now we have ta c itly  assumed tha t A and its  sym m etric extensions A ' ( if  they 

exist) are operators on the same H ilbe rt space 74. We propose the follow ing generalization.
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D e fin itio n  17 Let A be a symmetric operator on H  and let 74+ be a be a H ilbert space 

such that 74 C 74+ then every symmetric operator B + on 74+ such that A  C B +  is called 

a symmetric extenion of A.

Clearly

D a C D q+ n  74 C Dp+.

This gives rise to  three d is tinct cases depending on which of these inclusions is proper and 

which im proper.

D a  C D q+ n  74 =  D q+ Type 1

This corresponds to  the case o f extension w ithout exit described above. The genuinely 

new situations occur when

D a  =  Dp+  n  7f C D q+ Type 2

and

D a  C Dp+  n  74 C Dp+. Type 3

I t  is not d ifficu lt to  see tha t

T h e o re m  9 A maximally symmetric operator admits extensions of type 2 only.

B y defin ition such an operator has no extensions o f type 1. Suppose an extension B +  o f 

type 3 exists then by restricting  J5+ to 74 we obtain an extension o f type 1 and derive a 

contradiction.

T h e o re m  10  Every symmetric operator A defined on an Hilbert space 74 with arbitrary  

defect indices (m ,n) can be extended to a self-adjoint operator B + on 74+ D 74.

The follow ing results are very im portant in tha t they demonstrate to what extent general • |

sym m etric operators resemble self-adjoint operators. |

D e fin itio n  18 A resolution of the identity is an operator valued function F  on R  such ^

that F \ is a bounded positive hermitian operator where [

F \ i >  Fa2 Ai >  A2 

F \ =  lim  V A G JR ^
A'—A-O !

lim  Fx =  0 and lim  F \ =  I .  |\  y QQ

- 1
29 i
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Following N aim ark [9] we use the term  H erm itian to denote a sym m etric operator whose 

dom ain is not dense. This is not an essential d istinction  bu t i t  is conceptually usefull 

in  dealing w ith  symm etric operators w ith  extensions w ith  exit. Notice also tha t positive

operators are understood to  be symm etric but again we follow  Naim ark and say positive

sym m etric operator. The resolution o f the iden tity  is clearly a generalisation o f the or­

thogonal resolution o f the id e n tity  or orthogonal spectral function one meets in  connection 

w ith  self-adjoint operators. S im ilarly the positive operator valued measure defined next 

generalizes the concept o f spectral measure.

Definition 19 A positive operator valued measure (or P.O. V measure) is a map M  which 

assigns an element M(b) of {P } (the set of positive symmetric operators) to each element 

b o f the Boolean a algebra B o f the measure space (R ,B ) (where B  denotes Borel sets) 

such that

M { R )  =  I  

00

where M {b j)  =  w-lim JO j^i M {b j).

I f  A  =  ( t i,  the operator P (A ) =  F ti — Fg is a P.O.V measure on R .  We have the

follow ing integral type representation o f symmetric operators

Theorem 11 Let A be a symmetric operator in  H  with a self-adjoint extension B+ in  

74+. Let be the orthogonal spectral function of B+ and P+ the projection operator of 

74+ on 74. Put

Ft =  P + F f*  (1.26)

then fo r  f  G D a  o,nd g e H  we have

/ oo
id {F tf,g )  (1.27)

-oo

and

/oo
M F t f , î ) .  (1.28)

-OO

We make the follow ing

Definition 20 I f  A is a symmetric operator and Ft a resolution o f the identity such that 

(  1.27) and ( 1.28) are true V /G  Da and g G 74 then Ft is said to be a spectral function  

of A.
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Notice tha t a general sym m etric operator is not associated w ith  a unique resolution o f the 

identity. Theorem 11 shows tha t every self-adjoint extension o f A  generates a spectral 

function o f A  v ia  ( 1.26). T ha t a ll the spectral functions o f a sym m etric operator A  are 

generated by its  self-adjoint extensions in  this way is the content o f the next

T h e o re m  12 Every spectral function Ft o f a symmetric operator A on H  has the form  

P+FO+ where F f^  is the orthogonal spectral function of some self-adjoint extension B +  

o f A in  74+ and P+ is the projection operator o/74+ on 74.

For m axim ally sym m etric operators the situation is somewhat different in  tha t

T h e o re m  13 A symmetric operator has a unique spectral function i f f  i t  is maximal. This 

spectral function is orthogonal i f f  the operator is self-adjoint.

Note tha t a m axim ally sym m etric operator tha t is not self-adjoint has many self-adjoint 

extensions of type 2 each associated w ith  a d is tinct The remarkable fact is tha t

a ll the operators P +F ^^ on 74 are identical. Therefore any self-adjo int extension o f a 

m axim ally sym m etric operator w ill generate its  unique generalised spectral function. We 

should also notice tha t in  contrast to  self-adjoint operators the domain o f a sym m etric 

operator generally defies description in  terms o f an integral representation w ith  respect 

to  an a rb itra ry  resolution o f the iden tity  which w ill natua lly tend to overestimate it .  

C erta in ly
(•oo

t ^ d ( F t f J ) < o o  y  f ç D A/:r—oo

bu t, in  general, also for many more /  besides. In  fact it  can be shown th a t

I

oo
t  d {F tf, / )  <  00 iff f  e  D b + n 74

oo

where of course S+ is the self-adjoint extension of A  generating Ft. Since D a C D q+ 

we have D a  O 74 C C 74. Since D a f l 74 =  D a th is im plies D a C B 5 + (174 w ith , in  

general, proper inclusion. However for a m axim ally sym m etric operator A  each self-adjoint 

extension w ill be of type 2 so tha t D a =  f l 74. We therefore have the follow ing

T h e o re m  14 For any maximally symmetric operator A there exists a unique spectral 

function Ft such that (  1.27) and ( 1.28) hold and

L ê d (F tf , f )< < x >  i f f  fe O A -  (1.29)

For an a rb itra ry  symm etric operator the situation is not entire ly hopeless since
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Theorem 15 For a general symmetric operator there exist spectral functions satisfying

For any sym m etric operator there exist self- adjoint extensions o f type 2. A ny such 

extension w ill generate a specral function satisfying the required conditions.

Symmetric Observables and Generalised Quantum Mechanics

Q uantisation schemes generally lead, in  the firs t instance, to sym m etric operators tha t are 

not essentially self-adjoint. I f  the operator has equal (non zero) defect indicies it  w ill have 

many self-adjoint extensions. I f  the symm etric operator is not m axim ally sym m etric and 

has unequal defect indicies then it  w ill have no self-adjoint extensions at a ll but i t  w ill have 

many m axim ally sym m etric extensions. We have seen tha t m axim ally sym m etric operators 

resemble self-adjoint operators in  tha t they are associated to  a unique resolution o f the 

id e n tity  th a t weakly determines the operator and describes its  domain. This resolution 

o f the id e n tity  or the concomitant P.O .V measure allows us to define what it  means to 

measure a sym m etric observable. Following Born we say tha t

< (j),F(A)(f) >

II <̂ 11

represents the p robab ility  tha t the measurement o f a prepared state (j) w ill re turn  a value 

in  A . I t  would appear tha t we can regard m axim ally sym m etric operators as quantum  

observables so tha t there is no more d ifficu lty  in  handling a sym m etric operator w ith  no 

self-adjoint extensions but many m axim ally symm etric extensions than there is in  dealing 

w ith  a sym m etric operator w ith  many self-adjoint extensions. To quantise an observable 

we apply a quantisation rule. I f  the resulting operator is not essentially self-adjoint or 

m axim ally sym m etric then we determine its  maximal symm etric or self-adjoint extensions. 

In  general there w ill be no way of deciding which extension should actua lly represent the 

observable. The expectation values o f a ll the extensions w ill agree on most states anyway. 

O f course if  we allow for extensions w ith  ex it and are prepared for an even more a rb itra ry  

quantisation scheme then Th 10 te lls us tha t we can always obtain a self- adjoint operator. 

However it  is probably best to  take the view tha t extensions w ith  ex it should only be used 

as a means o f realising P.O.V measures o f m axim ally symmetric operators and tha t vectors 

in  the larger H ilbe rt space are, as it  were, non physical.
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1.2.1 Sym m etric  D iffe ren tia l O perators

The application o f form al quantisation rules to  classical observables yields only form al 

d ifferential operators. Fortunately there is a proceedure for constructing well defined 

operators from  form al d ifferentia l expressions. The main reference for this section is [6]. 

Consider the form al d ifferentia l operator

o f order n  where &%( ) € C °°{I)  for some interval F o f JR. I f  >  0 V æ G /  we say r  is 

regular. Suppose th a t A ” (J) represents the set of functions /  which have n -  1 continuous 

derivatives in  I  and for which is absolutely continuous. Let i ï ” (J) denote functions 

in  A " ( I )  such tha t /  and r f  are in  L ^ (I) and le t H ^ ( I)  denote those functions /  in  A ^(J ) 

such tha t /  and are in  Let H q { I )  denote the set o f a ll functions in  H ^ { I )  which

vanish outside some compact subset o f the in te rio r o f / .  From r  we define two operators 

To(r) and T i( r )  as follows

D(7b(T)) =  B ?(F ), 3 h (T )/ =  T /, /G D m M )

and

D (T i(T )) =  B :(F ), T i(T ) / =  T /, /G D (T i(T )) .

The form al adjo in t r *  of r  is defined to be

3= 0

where

I f  r  =  r *  then r  is said to be form ally self-adjoint. When r  is regular and form ally 

self-adjoint we have tha t

TbW  C T i(T ) =  2?(T)

so To(r) is symm etric.

T heo rem  16 I f  r  is form ally self-adjoint the spaces N \ and consist precisely of those 

solutions of { r  — i ) f  0 and ( r  +  i ) /  =  0 which belong to L ^ {I) .

A boundary value for a sym m etric operator T  is a continuous linear functional on D {T *). 

In  the case o f a form ally self-adjoint form al d ifferential operator this can be expressed as 

follows.
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D e fin itio n  21 Let r  be a form al differential operator on an interval I  w ith end points c 

and d. A boundary value fo r r  is a continuous linear functional A on D {T i{ r ) )  which 

vanishes on D (T o(r)}. I f  A f  =  0 V / G D {T i{ r ) )  which vanish in  a neighbourhood o f c 

then A w ill be called a boundary value at c. S im ilarly boundary value at d.

T h eo re m  17 The space of boundary values fo r  a form al differential operator r  is the 

direct sum of the boundary values fo r  r  at a and the boundary values fo r  r  at b.

T h eo re m  18 Let r  be a form al differential operator o f order n on an interval I  w ith end 

points c and d and suppose the end point c is fixed (i.e. <  oo). Then the functionals 

A i f  =  F (c ) 2 =  0 —>• n — 1 form  a complete set o f boundary values at c.

D e fin itio n  22 An equation B f=0  where B is a boundary value fo r  r  is called a boundary 

condition fo r r .

T h eo re m  19 Consider a form ally self-adjoint form al differential operator t . Suppose 

T o(r) has fin ite  defect indices. Let A \...A p be any complete set of boundary values fo r  r .  

I f  we introduce on D {T i{ r ) )  the following bilinear form

bPi,i^2] =  +  (1.30)

then i t  turns out that under these conditions
V

=  Y2 aijAi'tpiAj'ip2

where a ij =  â jî .

T heo rem  20 Given a complete set A i...Ap of boundary values fo r  a form ally  self-adjoint 

form al differential operator r  we find  that the a ij appearing above are uniquely determined 

by any set o f elements ipi...i)p of D {T i{ r ) )  satisfying det{Ai'ii)j) ^  0 according to the 

equations
V

H  bPk,'^l]hibij 
kj.—l

where bij is the m atrix inverse to Ai'ipj.

D e fin itio n  23 A set of boundary conditions =  0 i  =  1 —> k is said to be symmetric i f  

the equations Bi'ipi =  Biip2 =  0 => [tpi,'tp2j ~ 0.

T h eo re m  21 Let T  be a symmetric operator with equal fin ite  defect indices (=  n say). 

Then the restriction o fT *  to the subspace of D {T *) determined by any symmetric fam ily  

of n linearly independent boundary conditions is a self-adjoint extension o f T  and A N Y  

self-adjoint extension of T  is o f this form.
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E xa m p le

We can illus tra te  these results if  we consider the special case

. dT — I - — I
dx

[a, 6].

r  is then form ally self-adjoint and regular. We can therefore define a sym m etric operator 

To (r) as follows

and its  adjo int

D (T o (r)) =  f f ^ ( i) ,  T o (r) / =  iE /_  f  e D {T o(t ))

D (T i{ r ) )  =  T , { r ) f  =  i ~ f  /  6 P (T i( r ) ) .

We wish to  determ ine the defect indices of To(r). W ith  r  and I  as given in  ( 1.31) it  is 

tr iv ia l to  show, using T h  16, tha t the defect spaces are spanned by the vectors

(1.32)
ipi =  e® 

ip2 =

so tha t T q ( t ) has defect indices (1,1). We wish to determine a ll the self-adjo int extensions 

o f T o (r). O f course the result is well known but the methods imployed in  te x t book 

treatm ents are add hoc and require fam ilia rity  w ith  obscure properties o f various function 

spaces. A lm ost certa in ly more complicated examples could not be handled in  th is  fashion. 

O ur derivation w ill be essentially algebraic and more generally applicable. Theorems 17 

and 18 te ll us th a t for r  =  and I= [a ,b ] a complete set o f boundary values are

A i f  =  /(a )  and A g / =  /(6 ).

We require the most general sym m etric boundary condition tha t we can construct from  

these boundary values. The i f i  and -02 appearing in  ( 20) can be chosen to be the functions 

in  ( 1.32). To see this notice tha t ipi and -02 are in the defect spaces o f T o (r) so obviously 

V'l and 'ip2 C jD (7 o (r)) by defin ition  15. B ut D {T q {t)) =  D {T i{ t ) )  since r  is form ally 

self-adjoint so -ifi and -02 satisfy the firs t condition o f theorem 20 i.e. th a t they should 

belong to  D {T i{ r ) ) .  Now

Ai'ipj
 ̂ Ai'tpi Ai'ijj2 ^

A2‘01 A 21P1

(

so

det(A x'F ) =  exp(o -  6) -  exp(5 -  a). 
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Clearly then A i i ) j  ^  0, Aiipj  is singular only in the degenerate case a — h. The inverse 

m atrix  is

1  ̂ o~~b o~0' ^

(exp(a -  6) — exp(6 -  a))

We can proceed to calculate the a i j .  We require the terms For example

Hp^ r}p^

=  —2 y* (—2)e®e®da: 4- 2 ^  e^ie^dx

=  —2 J  ê ®dcc 

=

Similarly we find that

bp2,fp2] = , l'ip2 , ’ipi] =  0 and = 0.

Then

g2o _  g26  ̂  ̂ g—2d  g—26  ̂ ^

(exp(a — 6) — exp(6 — a))2̂  * (exp(o — 6) — exp(6 — a))̂  ̂   ̂  ̂̂

= (-expCa -  6)-\xp(6 -  a))4"’̂P 2(« -  &) -  2 -  exp 2(6 -  a))

Similarly we can show that

0 :22 = —1 and 0:21 = 0=12 = 0.

A general boundary condition is of the form

A2 4* (3Ai = 0.

We wish to determine the conditions on (3 for this boundary condition to be symmetric. 

We have

[/) 9 ] — o : i i A i / A i g  4- a ^ A i f  A 2 Q 4- 0i 2 \ A 2 f  A i g  4* oc2 2 A 2 f  A 2 g

=  a i i f {a )g {a )  4- 012/(0)5(6) 4- 021/(6)5(0) 4- 022/(6)5(6). (1.33)

From definition 23 we require tha t if

A 2 / 4 - / ) A i /  =  0
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I.e.

f{b )  +  =  0

and

A 25 +  p A ig  =  0

i.e.

g{b) +  I3g{a) =  0 

then ( 1.33) should be zero. C learly th is is true if

O !ii/(o )g (o ) +  0 1 2 /(0 )  (~ /?5(o )) +  021 ,9 /(0 )5 (0) +  022( - i 9/ ( o ) )  ( - /3 5 (a ) )  =  0 ( 1.34)

( o ii — 012^  +  012^4- [ (3 P 022) / ( o ) 5 (o) =  0 

(o il — Ol2yd 4- 012^ 4- I /3 P O22) =  0.

S ubstitu ting for o^- from  above gives

I l'= 1.

1.2.2 Q uantisation: Applications

Consider the two dimensional phase space JR̂  w ith  coordinates {p ,x) and the classical 

observable

x^p. (1.35)

Deceptively simple as they may appear these observables have attracted much a tten tion  

recently since they serve to  illustra te  a number of problems th a t arise in  passing from  

classical to quantum mechanics (see Zhu and Klauder [77]). We wish to  determ ine the
I

quantum analogue o f this observable. Geometric quantisation or the sym m etrisation rule |

suggests tha t th is  is in  some way related to the form al d ifferentia l operator I
Î

i% f  k d d k \  '

or

The properties of th is form al expression were investigated by Wan and Sumner for the 

case 1=1 and k >  1. i.e. j  an integer >  1 [28, 10]. They showed th a t in  th is  pa rticu la r case 

( 1.36) d id  not lead to a unique self-adjoint operator. We shall show tha t th is  remains true
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 ̂ even when j  but tha t in  the context o f generalised quantum mechanics discussed in  

section 1.2 the expression ( 1.36) can give rise to sensible quantum observables. We shall 

consider only the case k and I >  0. Now ( 1.36) is not a form al d iffe ren tia l operator in  

the sense o f section 1.2.1 i f  J =  JR since then xT ^  C°°(JR). In  any case r  is not regular 

when 7 =  JR and we would like to avoid this i f  possible. We therefore remove the o rig in  

from  the configuration space and consider ( 1.36) restricted to the positive and negative 

real axis. The quantum  observable then emerges as a d irect sum of two operators. We 

find th a t in  the case k even and I odd we are led to associate w ith  ( 1.35) the operator

which has defect indicies (1,1). We shall show how to determine the self-adjoint extensions 

o f th is opertor using the Neumann formulas. When k is odd we quantise ( 1.35) as

i + ê I * 1+0 ® + i^ + 0  •
When k >  I the defect indicies o f th is operator are (2,0) and when k <  I they are (0,2). In  

th is  case we obta in  m axim ally sym m etric observables . We shall show how we can derive 

the associated P.O .V measures in  a sim plified case. We now tu rn  to the detailed analysis. 

F irs t consider the case I  =  (0, oo) i.e. r  on JR+. I t  is a tr iv ia l m atter to  check th a t r  is 

form ally sym m etric. We associate w ith  r  the symm etric operator Tq(t ) . We can use T h  

16 o f section 1.2.1 to calculate the defect indices of T o (r). N - i  consists o f those functions 

4> such th a t (j) e L^(JR+) and

The general solution o f this equation is

In  Appendix 2.o we show tha t lor k >  I, (f> ^  7,^(JR+) while for fc <  7 0 E L^(JR+). N i

consists o f functions cf G L^(jR +) such tha t

^The geometric reason for this is obvious. Suppose m  \  then the integral curve of x "^d (d x  is 

X =  [(t -1- c )(l — m)] i-"' where c is a constant. Clealy the vector field is incomplete. When m  is even 

the solution exists for ail t but reaches the origin at finite time. We shall see later that we are forced to 

exclude the origin to ensure regularity. When m  is odd x  becomes complex for some t. I



The general solution of this equation is %

(f) =  A x  2j exp
n { i - k )  J  ■

I t  is easy to  show tha t îor k >  I, (f> e but lo i k <  I, <p ^  Therefore we

have tha t fo r A; >  Z the defect indices of To(r) are (1,0) and lo i k <  I the defect indices

are (0,1).

I f  we now consider the form al d ifferential operator formed by associating w ith  r  the 

in terval I  =  (—00,0) then in  general th is operator w ill not be form ally self-adjoint since xT 

need not be real. However for the case I odd we can choose the real roo t o f this expression, 

i.e. we define

x T  = 1  X  |T  ( -1 )* ^ . ( 1 .3 7 )

Case 1: For k even x T = | z  | f  and we are led to consider the form al d ifferentia l operator

i h (  k d d I a; I t  \  
n  =  — h r < -7-  +2 V dx dx

on H  . Since

th is becomes

k
d \ x \ ' i  _  /c , _

dx I
- -  Ur !

n  =  - « ( | x | f

This operator is form ally sym m etric. We have

Therefore

I I— J .Tbk I Io i =  —III I æ I « and oq =  2—  | x 11

, -  ^ -  00 — Oo — - j- o i
dx

^ | x | M _ m | ( _ i ) | x | M

ihk  1 X j (

and

so r  =  r .

bi =  —ai =  —ih  1 X j i'
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We seek the defect indices o f the associated sym m etric operator T o (ri) on B (ro (r i) )  =  

N T  consists o f those functions (j) G L^(R ~ ) such tha t

.* ih d k , ,k A
“  j 0 - » 0  =  O- (1.38)

The general solution o f this equation is

0 =  A  I X exp • (1.39)

We can easily verify this. Since

and

from  ( 1.39) we obtain

I

i - ' ' ! * ' " ’  ( 4 1 '  r ' " ' + 1 '  n ) } « p  I +

Let W  =  A  exp Using x | x j~4~^=  -  | x  |“ ^  we have j

Substitute in  ( 1.38) . I

~  I X  r ®  I X  1"®-1 - 4  I a; | - ‘  TV I X | - a  +  I X  | " t  TV
k — 1X r A  j

as required. In  Appendix 2.6 we show tha t for k even and >  7 G L^(R ~ ) and for k even 

and <1, (j> ^  R ~ .

N )  consists o f those functions 0 G L ‘̂ {R~) such tha t
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The general solution of this equation is

When k even and > f ,  and for k even and <  I, (p e L ‘̂ {R ~). Therefore when

k even <  I the defect indices o f the sym m etric operator To (n )  are (1,0) and when k >  I they 

are (0,1).

Case 2: W hen k is odd we have from  ( 1.37) tha t

-  I I -XI =  — I a; I i

so the sym m etrization rule leads us to consider the operator

iU f  . k d d j a; |T \
( - 1 ^ 1 '  d ï — d ^ )

which is form ally symmetric. The proof is exactly the same as tha t given for r i.

We now determine the defect indices o f the sym m etric operator T o (t2) on 

consists o f those functions (j) E L^(JR“ ) such tha t

~ i? i  1 X  |T —  4- ^  I a; (f> — i(f) ~  0.

The general solutions are

, . I ,_A f l x \ x  |“ T
(j) ~  A \ x  \ 2i exp

R(Z -  A;)

For k odd and >  Z, ÿ  0 L ’̂ {]R~) while for k odd and <  I, (j) G L^{R ~ ). N f  consists o f 

those functions 0 € T^(JR~) such tha t

~ ih  ^  ^  I a; ( j) - \- i(p -0 .

The general solution is

<I> =  A \ x \ -2i i x l x l " !
h(l -  k)

For k odd and >Z, L ^(K ~ ) while for k odd and < ! ,  ^ 0  L^{R ~ ). Therefore for the

case k odd and >  I the defect indicies o f To(t2) are (1,0) and for k odd and <  I the defect 

indicies are (0,1).
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1

We can use these results to  classify the quantum observables representing ( 1.35). For 

the case o f k even and >  I we are led to  associate w ith  ( 1.35) the sym m etric operator î

T  =  T o (n ) © T o (r) =  - a  ( |  X 1̂  ^  -  I  I X | ! - ' )  © - »  ( x f  4  +

w ith  dense domain H q{R ~) © JTo(B+) C L ’̂ {RT) © T^(jR +). The defect indices o f th is 

operator are (1,1). The defect spaces N i and iV_i are spanned by the normalized basis J

vectors

and

respectively. We would like to  use the Neumann formulas (Th 4) to determine the form  

o f a ll the self-adjoint extensions o f T ; however tha t requires the determ ination o f T , i.e. 

the action and domain o f the closure o f T . O f course

D ( T )  =  D ( ? b ( T i ) ) © D ( T b ( T ) )

([9] page 209). We shall show how we can determine T o(r). Notice th a t T o(r) exists

since Tq{t ) is a densely defined symm etric operator. To(r) w ill be a sym m etric extension 

o f Tb(r) and so w ill be a restriction o f X i( r )  to some domain determined by a set o f i

symm etric boundary conditions on D (T i(r) )  (lemma 26 page 1236 [6]). This defines the 

action o f T o (r). Consider now the operator r  restricted to  the intervals (0,c] and [c, oo).

The defect indicies o f these operators are (1,0) and (1,1) respectively. Denote by r '  the 

operator formed by restricting  r  to [c, oo). Using T h  20 page 1299 [6] we see th a t r  

has a boundary value at oo since r '  has a boundary value there. We know th is because 

the set o f boundary values o f t ' are a 1 dimensional vector space consisting o f the direct 

sum of a complete set o f boundary values at c and a complete set at oo (see T h  17). 

r '  has a boundary value say R  at c, i.e. R{ f )  ~  /(c ) and so one boundary value at

oo. Therefore r  has a complete set o f boundary values consisting of a single boundary 

value B  say at oo. I t  has no more boundary values since the complete set o f boundary 

values of r  is a 1-dimensinal vector space its  defect indices being (1,0). C learly there is 

only one sym m etric set o f boundary conditions (up to equivalence) namely B { f )  =  0 and

so the sym m etric extension this induces must be To(r). We can give a m arginally less

abstract characterisation o f D (T o (r)) since the precise form  o f B  is known ([6] pages 1287 

and 1303). In  general one associates w ith  any form al d ifferentia l operator r  as defined in
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section 1.2.1 the n x n  matrix
n—l—1 ^1-3

(T) =  0 j  +  1 >  n — 1 

where 0 <  Z, j  <  n — 1. I f  we define the bilinear expression

Ptif,g) = E  Pt^{r)f‘ {t)gm
Uj—0

then a ll boundary values B  a t an end point a of J, not nessarsarilly fixed, are o f the form

B{f)  =  lm F f( /,u )  (1.40)

where v =  - r p ,  g being a solution o f t *tq +  p =  0 such th a t g 6 D ( r i( r ) ) .  In  our

pa rticu la r case it  is easy to  verify tha t we must have

fe (  I x ^ - i  
g =  A x I exp

n{i -  k)

then
fc / Ix ^ - f

V  =  - i A x - r  exp I . (1.41)

Therefore T o(r) =  T i( r )  restricted to  tha t subset o f its  domain consisting o f those funtions

/  satisfying ( 1.40) w ith  u given by ( 1.41) and a =  oo. T o (ri) can be determ ined in  a

s im ila r fashion. We shall le t denote a vector in  D {T ) where -0i G D (T o (ri)) and

■?/> 6 D {T o{r)) then a vector in  the domain o f an a rb itra ry  self-adjoint extension o f T  w ill 

be o f the form

V-x ® ̂  + a { / Ï  1 ». r  A exp j  ® 0 + /3 (o ® e x p  }

=  a J \  I X exp ( 1 © +  (3 a \f^x ~ ^ i exp ^

where a  is an a rb itra ry  complex number and /? is a complex number such th a t | /? 1= 1.

W hen k even and < Z the defect spaces o f T  i.e. N{ and N - i  w ill be spanned by the 

vectors
/2  _A /  Za;M0 © W —a; 21 exp

% "^\%(A;-Z)

and
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I f  we le t 02 © V’ deonte an a rb itra ry  vector in  D {T ) =  D (T o (ri)) © D (T q{t )) where o f 

course 02 € D {T o {ri)) then the domain o f an a rb itra ry  self-adjoint extension of T  consists 

o f vectors o f the form

(0 2  +  c ip J r  I ^  exp (  ̂ 7;^  \  jA  I  © I 0  +  a \ [ ^ x ~ i i  exp ^ '

where \ p  \— 1.

W hen k is odd we are led to associate w ith  the classical observable 1.35 the sym m etric 

operator

Ti =  To(t2) ®To(r) = - i / i  ( -  1 X 4  +  A  I X © - in  ( x f  A  + A x T ' A  .

W hen k is odd and >  I the defect indices of this operator are (2,0). W hen k odd and

<  I the defect indices are (0,2). To carry the theory through we should calculate the

P.O .V measures o f these operators but tha t seems to  be very d ifficu lt. I f  we re s tric t 

the configuration space to  we can determine the P.O .V measures o f the m axim ally 

sym m etric observables. For example, consider the classical observable x^p whence ( 1.36) 

becomes

— ~ifLX^~— iî ix  (1.42)
dx '

on (0 ,00). Now define the map XJ : L ‘̂ {{0,oo),dx) —>• L^ ( (—00, 0),ds)

This map is invertib le. Its  inverse is given by

.VKs.

This is easy to  check

Us J J 

1 \

=  /(z ) .

U  is also an isom etry since if  in
poo
/  f{x )g *{x )d x  
Jo
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we make the change of variable a; =  —l/7 is  we have

OH) '  ~ T s )

UsJ y/fis

7 —00

_1_
Tis

Therefore U  is unitary. Now

U D U   ̂ =  U i -~ihx^ ~ —  iUx 
dx

=  Z7

= iVnu

( k S g iUx 
H—

dx \ y / h x ^  V  Z i æ ) )  ' y/Ex 

1 /  IN N

i))
O '

<2 d 
^  dx U ® f ix  J J _

=  iV Û
y/hs

-O') 1

P ut ly — —l/%s

Since

hx

+  iV h

the above becomes

ds
dv

i
ds

i (s O ..
s V ds

=  Us"

ds '

^ { - à )

UDU ~^  is s till m axim ally symm etric of course bu t it  has an natura l self-adjo int extension

i.e. —id /ds  on JR.. The Weyl Kodeira theorem shows tha t the spectral function o f this 

operator is precisely w hat we m ight have guessed from a form al generalized eigenfunction 

expansion so th a t by Naimarks theorem (Th 12) the P.O.V measure o f UDU~'^ is

(-^ (^ )/)(s ) =  [  e(A, s) <  e(A, s '), /(s ')  >  dX
7 — CO
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where s G (—oo,0), /  G L^(—oo, 0) and

rO
< f , 9 > =  /  f*gds.

7—00

The P.O .V o f ( 1.42) is therefore

i ( U - ^ F iX ) U ) fO )  =  £ e x p  ( a . - O )  <  exp(A, / ) ,  ^ / ( - ^ )  >

where x G (0, oo) otherwise symbols as above. We could also have considered the classical 

observable æ&p on in  which case we would require the P.O .V measure o f the m axim ally 

sym m etric operator

=  - ih x ^  ~  (1.43)
dx 4:

on (0, oo). Define the un ita ry  map U : T^((0, oo),dz) —>■ L^((0, oo), ds) by

%^s^\ /  fi'^s\ ^
m o )  =  / , 4 , ,  2

Again we find tha t the image of the operator ( 1.43) is

.d

so we can proceed to get the P.O.V measure as before.

1.3 The B .K .S M ethod

In  th is section we discuss the B lattner-Kostant-Sternberg (B .K .S) m ethod which can be 

used to quantise observables /  in  a polarisation F  even when /  0 F, 1). We shall

see th a t the scheme is unsatisfactory in  many respects.

I t  is quite d ifficu lt to  obtain an explicit expression for the operator representing a given 

classical observable using the B.K.S method since th is  requires tha t we are able to  eval­

uate certain lim its  tha t are non triv ia l in  general. I t  has been known for some tim e tha t 

the B.K.S m ethod can give exp lic it results when used to quantise observables o f the form  

+  V (g). In  th is case the operator obtained form ally agrees w ith  the Schrodinger oper­

ator derived using canonical quantisation. U n til recently this was the most conspicuous 

success of the B.K.S method. The paucity of examples tha t could be handled using the 

scheme has meant tha t its  significance has been d ifficu lt to  access. However, recently, Bao 

and Zhu have shown tha t the B.K.S method can be carried through to obtain operator
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representations o f classical observables o f the form f{q )p^  where f {q)  >  0 and Tuynm an’s 

w ork has essentially completed the task o f quantising observables using the B.K.S scheme.

I t  is therefore apposite tha t we should review the B.K.S method and indicate some o f its  

demerits. %

F irs t we should observe th a t there is no geometric crite rion , analogous to  the complete 

H am iltonian vector field result described in  section 1.1.7, th a t allows one to assertain if  

a classical observable w ill yie ld  a self-adjoint operator when quantised using the B.K.S 

method. We shall show in  sections 1.3.2 and 1.3.3 th a t such a result would be useful 

because in  general the operators produced by quantising classical observables using the 

methods o f Bao and Zhu and Tuynman are not essentially self-adjoint.

The quantisation scheme o f Bao and Zhu is derived using elaborate geometric argu­

ments bu t it  turns out tha t it  is nothing more than a special case o f a generalised squaring 

axiom which we shall describe in  section 1.3.4. This generalised squaring axiom has the 

added advantage tha t it  allways produces self-adjoint operators. In  some cases we can also 

recover the results o f Bao and Zhu using a m odified pairing map. F in a lly  we show tha t 

Tuynm an’s method and tha t o f Bao and Zhu produce different operators when applied to 

the same classical observable i.e. they are contradictory. 4

We begin by recalling the defin ition  o f the pairing or B.K.S kernal as it  is often called 

in  th is context.

1.3.1 T h e  B .K .S  K ern a l

Let F i and Fg be a pair o f compatible polarisations on a phase space M .  Let H f i  and 

H f 2 he the state spaces corresponding to F\ and Fg respectivly, i.e. those subsets o f the 

set o f a ll sections of the usual line bundle over M  tha t are covariantly constant along the 

relevant polarisation and square integrable. There exists an in trin s ica lly  defined map

<  » >F\F2 - Tfpi X

called the B.K.S kernal or pairing. This map <  , >FiF2 induces a linear map

UF2F1 : ULf2 — 'f^Fx

via

<  (X\,(J2 > F i F2 =  <  CTI,Uf 2F i <X2 > H f  ̂

where a \ G ULfi ^2 G T ifg.
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Q uantisation

Recall th a t when we quantise a classical phase space we choose a polarisation F . Th is 

determines a state space H f - Consider a classical observable g. Suppose g generates a 

complete H am iltonian vector fie ld  and so gives rise to one parameter group o f diffeom or- 

phisms o f the phase space denoted 0*. Let T0* denote the derived map o f 0^. We have 

th a t g preserves F , i.e. g € C °°{M , F, 1) if

Ft =  T tk lF  =  F.

I f  g preserves F  then we define the operator g on K f  by

(1.44)

a G H f > This is nothing more than the in trins ic  description o f g given in  section 1.1.

Notice tha t here we have abused our notation somewhat since in  the above 0* actua lly 

denotes the lif t  o f the action o f 0^ to Tï f - This lifte d  0^ is a vector space isomorphism ([4] 

page 103) i.e. 0* is a one parameter fam ily o f un ita ry  maps o î H f  onto itse lf. C learly g is 

self-adjo int since it  is the in fin itesim al generator o f this one param eter fam ily o f u n ita ry  

maps.

Now suppose tha t F t F , i.e. g does not preserve the polarisation F . Let HFt be the

H ilbe rt space associated w ith  the polarisation Ft. Suppose th a t F  and F t are com patible

fo r (0 <  t <  e). Then, as described above, we can introduce a B.K.S kernal

<  , >FtF'' UiFt ^

which induces a linear map Uf iF TiFt UCf ’ For each t  G (0, e) define ; 'H /r —> 

by

$t = Uf iF<PI (1.45)

Now 0* is a un ita ry  map H f  Uipt 9 generates a complete H am iltonian vector fie ld.

$ t w ill be a one parameter fam ily o f u n ita ry  maps on F  when Uf iF is unitary. In  th a t 

case the operator defined by ~|

9 =  Z a ^ $ t  k=o (1.46)

w ill be self-adjoint. However in  most cases the operator Uf iF derived from  the B.K.S 

kernal w ill not be un ita ry  and g w ill not be self-adjoint. O f course we could use any 

un ita ry  map Tipt UCf  in  place o f UptF in  ( 1.45) and th is would give a self-adjoint
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operator but the point is tha t UptF is derived intrinsically using geometric objects In  

general i t  is very difficult to prove tha t UptF is unitary. Usually we use ( 1.46) to define 

the operator g on some dense domain and then attempt to find a self-adjoint extension. 

We shall see an example of this approach later.

1.3.2 T h e  B .K .S  M e th o d  a la Bao and Zhu

Suppose tha t F  is the vertical polarisation P. I f  the function g is such that P  and T 0 *P  

are transverse then g may be quantised in P according to the prescription described above 

and what is more in  this special case an explicit expression may be derived for the operator 

g [4]. I t  turns out that

gij) =  (in) ^Hm (ih )"5  J  dp exp ^  ^  {9}Xg -  g)4>~^ds [detw(Xg, 0 gXg)] 2^ ( 0 ^g) (1.47)

(See equations (6.49) and (6.50) [4]). We now restrict ourselves to a discussion of observ­

ables o f the form

9 =  /(q)p^

where /(g )  >  0 . In  Appendix 3 we show tha t in this case

f ' ( q ) (1.48)
4 16/(g)

as given in  equation 21 of a paper by Bao and Zhu [14]. Using this we may formally 

quantise the classical observable qp^ to obtain the operator

( v +è “ ?)
where A: =  1/4. This formal differential operator is regular on (0, oo). We can show that 

To(r) is not essentially self-adjoint by calculating its defect indicies. To this end we require 

the solutions of the following equation

d?" d
(1.50)

Notice tha t ( 1.50) is a Bessel equation since the most general form of Bessel’s equation is

0 (1.51)
d 1 — 2n d 

dx^ X d x '^

Notice that when g preserves the polarisation the pairing becomes equal to the inner product on TYf

i.e

< 0"1, erg >FtF= ((71, erg) = ((71, UfFCT̂)

SO then U f f  — I  and ( 1.44) is the same as ( 1.46).
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(Eq 16.1 page 516 [8]) and putting  o — 0, c — 1/2, b =  2x/X lh  and p =  2k we recover

(1.50). The most general solution o f ( 1.50) is therefore a linear combination of

and N i  {
2 \ a ^

Suppose we consider the operator ( 1.49) restricted to (0 ,a j. As ç 0 we have

r(i) V ^
where P  is a complex constant. This can be w ritten as

,  ( 2 V \ q i  
H  n l " m v h

1 A4 1 22 5 5
Ç4 -f R — \4q4

^2

=  riA4^4 -f rQEA^gf

where r i  and rg are real constants. Therefore

2

~  ( r iA ^ g î +  r2PA4q4)(nA^g5 -\-r2RX^q^)
 ̂ (2VXq^
i  \  n

Clearly

Also as q —» 0

r f  I A | î  + T i r 2 2 R e { x h i R ) g i + r l  | JÎ P |  A | i  q i .  

f2 V X q i^  '
n dq <  oo.

iV i
2

' 2VÂ i r(i)
7T 2\ZXq&

+  R-

Therefore

O O '

- H A y / n x - k q - j  4.
^  h2

~  r iA “ 4g~4 -f-r2PA4qï.

r f  I A q - O r i r 2 2 R e ( R X ~ h ^ ) q i  + r l  | i î  I 'l  A |#  q l

Since

[  q 2 dq <  00 
Jo

we have

dq <  00.
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Therefore the defect indices of ( 1.49) on (0, a] are (2,2). Now (1.49) on (0, a] must have 

two boundary values at a (see cor 23 page 1301 and T h  19 page 1298 [6]), therefore it  

must have two boundary values at 0 (lemma 21 page 1234 [6]). Hence ( 1.49) on (0,oo) 

has two boundary values at 0 (Th 20 page 1299 [6)). Now consider the operator (1.49) 

on [a, oo). We could express any solution of ( 1.50) as a linear combination of the Hankel 

functions

ff '.
V I

Let denote the asymptotic approximations o f the Hankel functions given above as 

q —> oo. We have

ocq 4 exp

(see table page 525 [8]). Suppose X =  i ~  e xp [^ ] so that y/X =  exp[Z|] =  ^  Then

oc q 4 exp
2q2 JL  +  A  

n V\Æ  V2

Now
poo  

1. 1 ^+,i q 4 exp dq.

Put u  — q 2 so that dq =  2q2du and the integral becomes

'2POO

Jy/E 2q 4q2 exp u

2q4 exp u

=  r 2« è e x p [ v f «
'y/â

which clearly diverges. On the other hand

du

du

du

du.

Put

so

du =  \ l  ~2xdx

and the integral becomes

4 /  1 exp[-æ^]da:
2 /  ^
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<

'

I
ï  
::

' IfOO
. 4 / a; exp[ — 5̂ 

4 /  70
I

R\ 4 fOO

When A =  —Î we have

1
=  q 4 exp

2J 2-k

<  OO.

^ 2q&
\ \ / 2  V 2 ,

We can investigate the square integrability o f these solutions as we d id above for the case 

A =  i.  In  this way we deduce tha t the defect indices o f ( 1.49) on [a, oo) are (1,1). Now 

( 1.49) on [a, oo) has two boundary values at a so no boundary values at oo. B y lemma 

10.5.13 page 273 [7] the defect indices of ( 1.49) on (0, oo) are

(2 +  1 - 2 , 2 4 - 1 - 2 )

= (1,1)

Therefore (1.49) is not essentially self-adjoint. I t  has a one parameter fam ily of self-adjoint 

extensions and the quantisation is not unique.

We can give an explicit expression for the domain of the self-adjoint extensions. This 

w ill follow from standard Sturm Lioville theory. Define the bilinear form <  , >  on 

D (T i {t )) as follows

<  f ,  9 > -  lim  -h ^ q U 'g  -  fg ')-

We have the lim it circle case at 0 and the lim it point case at oo so the self-adjoint extensions 

are obtained by restricting D { T i { r ) )  to those /  such that

<  f ,  9  > = 0

where g G T i( t ) ,

< 9 ^ 9 > = 0  (1.52)

and g linearly independent relative to D {T q{t )) (Th 10.5.2 page 268 and T h  10.2.18 page 

260 [7]). Notice tha t following example 10.5.12 page 272 [7] we can take

9 — c\h\-\-  C2/12

where hi =  q4 and hg =  q~4 near 0, h i and /iq vanish at infinity. I t  is easy to show that 

r h i  ~  r h 2 =  0 so h i and ho are in D (T i( r ) ) .  From ( 1.52) we obtain

- r O  (( - (Ci4 + - 7?-̂)) =0 I
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 — (cicg “  C2Ci) =  0.

This is satisfied i f

ClC2 =  C2C1 =  (C1C2)

i.e. C1C2 =  R  where P  is a real parameter. I t  is easy to show tha t this is equivalent to  

(c2/c i)  =1 C2 1̂ /P  =  1 / tan^  say. The domains of the one parameter fam ily o f self-adjoint 

extensions comprise /  G D {T i{ r ) )  such that

( (  f  -  + 5 2 9 - 4 / ' )  =  0

or ^

^ ^ t a n ^ ^ ------------------ /  -  (ta n ^ q i =  0 .

In  Appendix 4 we show how we can quantise qp^ using a modified pairing map. The 

operator we obtain formally agrees w ith  that derived by Bao and Zhu but is positive 

definite and essentially self-adjoint.

1.3.3 Quantisation a la Tuynman

In  section 1.1 we gave explicit formulae for the operators representing classical observables 

G F, 1). These were derived using the notion of a partia l connection although they

could have been obtained using the B.K.S method. The quantisation o f observables tha t 

preserve the polarisation is a rather triv ia l example of a situation where the B.K.S scheme 

can be carried through to yield explicit expressions. Bao and Zhu identified a larger class 

of observables for which the kernal could be found in closed form but recently Tuynman 

has shown tha t the B.K.S scheme can in fact be used to quantise any classical observable 

w ith  respect to  a Kahler polarisation. Tuynman’s quantisation of an a rb itra ry classical 

observable /  is in  two parts. The B.K.S method associates w ith  each /  an operator L /  

tha t acts on the space of holomorphic sections, the elements of the quantum H ilbert space 

o f the canonical Kahler polarisation F  ( 1.15), according to

+  d>{z)soM. (1.53)

Notice that this reduces to ( 1.19) when /  G F, / ) ,  i.e. /  =  Az -\- Bzz +  D.

Since this at least makes the result plausible we shall om it the proof. A second stage in the 

quantisation proceedure is necessary because in general Lf{g{z)sQ.u) is not a holomorphic

53



section since the factor m ultip lying 0 (z) on the right hand side o f ( 1.53) may not be 

independent o f z. Tuynman proposes the quantisation /  —> /  where

f4>{z)so.u — ELfE<f>{z)sQM — ELf^{z)soM.

E  is the projection onto the holomorphic part of a function, i.e.

{Eg){u)  =  h~^ J g { z , z ) { 2h)-2  exp exp dpdq.

Therefore, droping the sqm factor which shall be understood, we have

M o = [ i y j exp g ) m - i e x p ( g

/zut

dpdq

(1.54)

(1.55)

(Appendix 5). We note that the transition to complex coordinates given in section 1.1.8 

is a canonical coordinate transformation (page 40 [5]) and the generating function for this 

canonical transformation can be used in the pairing construction to  give a un ita ry map 

U : H f  Uip where P  is the vertical polarisation. Suppose z ~  p-\- iq .  We have

(M )(q) . f a - J  0 (p +  iq) exp 1 - “ ( /  +  -  2ipq) ] dp (1.56)

and

( U - '0 )(Z) =  6- ŝi f  7 
27T J 0(4exp ( +  4itz +  2t^) ) dt

where 7  =  1/7%. This allows us to  find the quantisation of /  in the vertical polarisation. 

This is given by

U /U - ^ 0 (q)
2(7rTi) I / dz\dz2dt exp

exp
1

- ^ ( ( 9  -  Z2Ÿ  F { t ~  Z2Ÿ ) 0(4 (1.57)

(Appendix 6) where z ~  z\ +  iz2 and for example

02
A^i —

dz i^ '

Q u a n tis a tio n  o f qp2 a la  T u yn m a n

We shall see tha t Tuynman’s scheme leads us to associate the following formal differential 

operator w ith  the classical observable qp2

^2r%2 (1.58)
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We show tha t the defect indicies of this operator are (1,1) and find the one parameter 

fam illy  of self-adjoint extensions. We show that Tuynman’s result can be obtained more 

easilly by quantising qp^ in the horizontal polarisation and using the pairing map to 

transform the operator back to the vertical polarisation. We observe tha t the quantisation 

o f qp2 obtained using Tuynman’s method differs from that obtained using the formula of 

Bao and Zhu.

The derivation of ( 1.58) is rather involved and appears in  Appendix 7 . As yet we 

have not specified a domain for this operator. Tuynman does give a description of the 

maximal domain of the operators generated by his quantisation scheme but in  general 

they are rather d ifficult to handle except for the special case of a compact Kahler manifold 

w ithout boundary. For this reason we prefer to use Tuynman’s method to obtain a formal 

quantisation and analyse the domain later. This is probably the best way to proceed here 

since the phase space has a boundary. This arises because of the restriction q >  0. We 

can show tha t the operator ( 1.58) does have self-adjoint extensions. We shall do this by 

finding its defect indicies. We require the solutions of

dq2 dq

or

This is a Bessel equation. To see this take c = 1/2, p = 0, a = 0 and b — y/X2/Ti in  ( 1.51) 

and recover ( 1.59). The linearly independent solutions are therefore

which at large q are proportional to

-1q 4 exp I ± î . ^ - q 2 j  .

These are identical to the functions we considered in  connection w ith  the operator of Bao 

and Zhu and so we know that the defect indices of ( 1.58) on [ ^ ,  oo) are (1,1) and therefore 

( 1.58) has no boundary values at infinity. We could also express the solution as a linear 

combination of
, i ]  ^ 1

aad 9 »

We can analyse the J o  solution in the same way we did in section ( 1.3.2) for J i . This
2 f

shows tha t Jq is square integrable at 0. Now as q —+ 0 we have ;■

V  , ( 2 - / X  L
N o  DC In I ~ ~ j ^ q -
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according to whether A =  dci. N q is square integrable at 0 since

£
In^ ( ) dq <  oo.

To see this put
1

When q =  0, u =  00 and when q =  ti =  0. Also

= J (T)
Now

exp(-AAï) =

Notice that we have chosen this branch for the inverse of ( 1.60) so tha t q <  Ç . Therefore 

/o '

roo
/  \ /ü  exp(—2 \/ü)d%i.

Jo

n? 
T

I f  we let V ~  2y/v, this becomes

;2

The integral on the r.h.s of the above is fin ite because

roo
/ exp(—u)dD <  CO.

Jo

!

I:b
: 5.

This is sufiicient as follows easily by repeated integration by parts, the boundary terms 

vanishing because

lim  expf—n) =  0u—*oo

([8] page 39). Therefore the defect indicies of ( 1.58) on (0, h2/4] are (2,2). Since there 

are 2 boundary values at ^ 2/4  ( Lgg) has 2 boundary values at 0. The defect indicies 

of the m inim al operator associated w ith  ( 1.58) are (1,1). Tuynmans method leads to a |

1 parameter fam ily of possible quantisations of qp2 jus t as we had w ith  the method of 

Bao and Zhu. Also it  would appear that Tuynman’s operators w ill have the correct i.e.
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positive spectra. ( 1.58) is form ally positive ([6] definition 6 page 1439) so at least the 

essential spectrum of the self-adjoint extensions w ill be positive (cor 7 page 1439 and cor 

3 page 1437 [6]).

We can obtain the explicit form of the self adjoint extensions as follows. I f  we define 

the bilinear form

<  f ,  9 > = -  lim  w^q{fg -  fg' )

then the self-adjoint extensions of Tb(r) are given by resricting T i( r )  to tha t subset o f its 

domain consisting of those /  such that

< f ,  9 > ~ 0

where g is any vector i n  D ( T i ( t ) )  such tha t <  > =  0  and g is linearly independent

relative to D{To{r)).  Suppose we put

9  =  C l h i - \ -  02^2

where h i =  c near the origin, c a real number ^  0 and /%2 =  In q i near the origin, h i and 

/i2 vanish at infin ity. I t  is easy to show tha t r h i  =  r /%2 =  0 near the orig in so tha t h i, /%2 

and g are in D {T i{ r ) ) .  I t  is also easy to show that

, ,<  h i, h2 > —

Since h i and h2 real we can immediately infer from this that <  h2, h i > =  —h^c/2 . Using 

lemma 10.2.17 page 259 [7] i t  is now a simple matter to show tha t g is linearly independent 

relative to D (T o(r)) i f  jus t one of ci or C2 is nonzero since i f  ci =  0 we s till have

and i f  C2 =  0 then

< 9^9 > — 0 is equivalent to

, cih^c , „
<  q, h2 > =  —-— ^  0.

lim  h qq—>0
y g  ^{cic +  C2\iiq2) -  {ciC-\- C2\nq^)~q  ^

iirn[c2Cic+ | c? Inq^ — cicc2— | C2 In q ^  =  0

lim  (c2Cic — C1CC2) =  0
q—̂O

I.e

C1C2 — C1C2 =  C1C2 i
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so we must have ci/cg  =  tau0. The domain o f the self-adjoint extensions of To(r) then 

comprises /  G D {T i { r ) )  such tha t

lim
g->0

/ ( c i c  +  C2 ln q 2) - / ^ q  ^

or

- r ... . I  a o .
J‘is « f '{ ta.a9c +  \n q i )  — J q  '

We can see tha t ( 1.58) differs from the quantisation of qp^ derived by Bao and Zhu. 

The two schemes are contradictory.

The quantisation of qp2 obtained by Bao and Zhu was lent support by the fact tha t i t  

could also be obtained by working in a polarisation transverse to the vertical polarisation 

and using a modified pairing construction. Tuynman’s result can also be obtained using 

the pairing construction. Consider the coordinate transformation

p =  —q' and q — p'.

This is a canonical coordinate transformation w ith  generating function

/  = -q'q.

For the time being we drop the constraint q >  0. S trictly speaking ( 1.58) does not apply 

when q >  0 anyway since in  deriving i t  we set integrals of odd functions over R  to zero. 

Now qp2 =  q'^p' and so G C °° {M ^ P \  1). Therefore

=  - iU  ^ q '^ ^  +  q'^ . (1.61)

The pairing gives a unitary map Up>p \ Hpt Up. Upip is un ita ry since is jus t the 

Fourier transform. The form of the operator ( 1.61) m H p  is

/ ' i d  \  1
_  in  ^(9) exp(ig9')d9

I I  4  i  + "') ̂̂̂Hg')dq
i f l  r o o  2

=  0 (g)(?' %q +  q') exp(iqq')dq

=  0 (g) {- ' i)U ~q  -  iUq'^ exp{iqq')dq
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which is the same as ( 1.58).

1.3.4  Squaring A x io m  for Sym m etric  Operators

In  conventional quantum mechanics, where observables are identified exclusively w ith  self- 

adjoint operators, i t  is taken for granted that i f  the classical observable g is quantised to 

give the operator g i.e. g g then

G(q) —)• G(q) (1.62)

This is sensible because G(q) is a well defined self-adjoint operator. However in quantum 

mechanical theories that adm it symmetric operators as observables the situation is more 

complicated because there is no operator function calculus for symmetric operators to 

compare w ith  tha t for self adjoint operators. However, i f  we consider the special case 

G(p) =  g"̂ , whence ( 1.62) corresponds to the squaring axiom, there does appear to be a 

natural generalisation to the case of symmetric operators as follows; i f  g is quantised as 

the closed symmetric operator g then we propose g^ —+ g*g. This operator is self-adjoint 

(Th 5.39 page 124 [11]). Notice tha t when g is self- adjoint we recover the squaring axiom 

of conventional quantum mechanics. The restriction that q be a closed symmetric operator 

is of no consequence since a symmetric operator has a unique m inim al closure that we can 

identify as the quantum observable. We shall see how this works in the following example.

Consider the case of a particle in  an in fin ite potential well, over an interval J =  [o, b] 

of R . Suppose we want to determine the allowed energy states. C learly we require 

the Hamiltonian. The traditiona l treatment of this problem would be as follows. Let 

Ti =  —ifid jdx .  The momentum p is quantised as To(ri) then since classically H  =  -p̂  we 

expect H  to be related to the operator T2 =  r f  on C ^ { I )  i.e. To(t2). However To(t2) is 

not essentially self-adjoint. Its  self-adjoint extensions are obtained by restricting T i ( t 2) 

w ith  a set o f symmetric boundary conditions. Physical arguments are brought to bear to
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determine the most sensible restriction. We require tha t the wavefunction be continuous. 

Since the wave function vanishes outside I  we are led to the following quantisation

H  =  T2, D { È )  =  { /  : /  6  £>(Ti(t2)), / (a )  -  f {b ) -  0}.

The question now arises as to whether or not we can obtain th is result w ithout using the 

nature o f the wavefunction outside J i.e. w ithout involving the environment o f the in fin ite  

well. I t  so happens tha t the modified squaring axiom leads us natura lly to the operator 

H  given above. T o (ri) is a symmetric operator. We know tha t

% ) *  = T i(T i) .  (1.63)

Now an operator and its closure have the same adjoint so

2o(Ti) = T i(T i) .  (1.64)

A ll symmetric extensions of T o (ri) are obtained by imposing symmetric boundary condi­

tions on T i( r i )  therefore

To(ri) C T i( r i) .  (1.65)

Consider

=  Tb(Ti) To(Ti) =  T i(T i)To(T i).

As we have seen this is self-adjoint. We have

D (T o (n )) =  { /  e D (T i(T i)), / (n )  =  /(b ) =  0} (1.66)

T h  6.31 page 162 [11]. Now

=  { /  E D(To(Ti)), T o (T i)/ e D (T i(T i) ) }  I

i.e. using ( 1.65) and ( 1.66) j

D (# ,g ) =  { / : / €  D (T i(T )), / (n )  =  /(b ) =  0, r i ( T i ) /  G D (T i(T i) ) }  (1.67) |

so that I

Hsq — T2

D (R ,g ) =  { / : / €  D (T i(T )), / (n )  =  /(b ) =  0, / '  G D ( T i(n ) ) } .

Now recall D (T i( t i) )  =  ~  where the last equality follows from the top of page

1288 [6]. So we can write  the domain of Hsq in  a more explic it form namely D{Hsq) 

consists o f functions /  such that
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1. /  is absolutely continous and /  and f  6

2. /(n )= /(b )= 0 ,

3. f  is absolutely continuous and f  and / "  G

Obviously not all of these properties are independent. S im illarly we can give a less im p lic it 

definition for D {È ) .  In  fact D [H )  consists of functions /  such that

1. /  is continuously differentiable and /  G L'^{I)y

2 . / ' i s  absolutely continuous,

3. / "  G L2(Z),

4. /(n )= /(b )= 0 .

We can show that D { È )  D D{Hsq) . This is obvious since /  absolutely continuous and 

so continuous. The rest are stated explictly. We can also show that D{Hsq) D D {H ) .  / '  

is absolutely continuous so continuous. Every continuous function on a closed interval is 

bounded therefore / '  is bounded and /  is absolutely continuous (page 78 [12] and page

299 part d [29]). Also we clearly have /  G A'^(I) f l  L ‘̂ { I)  so by T h  6.26 [11] / '  G

The others are stated explicitly. Therefore Èsg =  È .

The Generalised Squaring Axiom  and the Formula of Bao and Zhu

Using this generalisation of the squaring axiom we can quantise observables o f the form

C(î)p^ (1.68)

C(q) >  0. This is the classical observable considered by Bao and Zhu. Formally the 

operator we obtain corresponds to tha t given by Bao and Zhu but is now a well defined

self-adjoint operator. W hat is more the operator is positive so its spectrum is identical to |

the range o f the classical observable. 1

Since Ç{q) is positive we can w rite  ( 1.68) as I

(C 49)p)^- ,*

Consider the observable ("s {q)p. I f  we assume that C(q) is sufficiently smooth then (2  (q)p ç 

C °°(M , P, 1) so that 4

C t p = - i f t ( Ç l ( q ) ^  +  i ^

61 .̂ 1
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is a symmetric operator. According to the modified squaring axiom

Cp2 =  (^2p ( 2p

where we have taken the closure of the symmetric operator More specifically this 

operator is

dq dq

dq 16

^dq2 2 dg 4 ^ d q  4^ 8 ^ ^ 4 ^ 0 q 16

îd -C(g) d
dq^ 

=  h?' - C f ?  -  C '7  -  i c "  +  4 ç - » c '“- 'A
dq

A .
dq^ dq 4 ’  ' 16

which is identical to ( 1.48). The generalised squaring axiom associates w ith  the posi­

tive classical observable qp^ a well defined positive self adjoint operator tha t is form ally 

equivalent to that obtained by Bao and Zhu.

I t  should be noted that i t  is not d ifficult to obtain the closure o f a formal symmetric 

differential operator r .  We can simply use the boundary m atrix  discussed in section 1.2.2 

to  obtain the boundary values Bi of r  then restrict T i( r )  to tha t subset of its natural 

domain determined by the strongest ([6] page 1236) set o f symmetric boundary conditions 

i.e. B i f  — 0. This determines the m inim al closure of To(r).

1.4 Polarisations w ith Compact Leaves and Quantum N on­

locality

In  this section we discuss the relationship between quantisation w ith  respect to polarisa­

tions w ith  compact leaves and nonlocality. This work also appears in [79].

Sometimes a polarisation F  w ill be associated w ith  a quantum H ilbert space Tip  that 

cannot be represented as square integrable functions over a simply connected manifold. To 

elucidate the nature of the quantum H ilbert space associated w ith  a general polarisation 

F  we must study the topology of the Bohr Sommerfeld variety of F.  We say tha t a point
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X G M  belongs to the Bohr Sommerfeld variety of a polarisation F  i f  the integral surface

of F  through x  can support smooth sections o i B  ® A _  i . Then
2

'H.p “  ®n~lhin

where Hn  consists of smooth polarised sections of F  w ith  support in  the connected com­

ponent Cn of the Bohr Sommerfeld variety of F .  When the Bohr Sommerfeld variety o f 

F  is simply connected there is just one component in  the direct sum and we recover the 

usual representation oî Tip  in terms of square integrable functions.

Consider the case of the classical observable H q representing the Hamiltonian of the 

simple harmonic oscillator i.e.

^ 0  =  +  g^)-

Introduce a new canonical coordinate system

 ̂/_2 , _2\ /I f  qHo =  ~{p +q^ ) 0 ~  tan
2 \ P

([5] page 148) and consider the polarisation

Suppose we wish to quantise this classical system w ith  respect to the polarisation ©. We 

must identify the quantum H ilbert space H q . The Bohr Sommerfeld variety of © is not 

simply connected. F irst notice tha t the integral surface (definition 3) or curve o f © passing 

through any x G M  w ill be a circle w ith  centre the origin. This follows immediately from

the fact tha t H q is the coordinate adapted to © so the integral surface is given by H q ~  c.
'1Not all of these circles w ill be able to support smooth polarised sections of ©. The circles |

Cn that can support smooth sections are those tha t satisfy the Bohr W ilson Sommerfeldt 

(B.W.S) condition

(j) HodO — 2'KÎin.
Jcn

Since the integral surfaces are all level sets o f H q the B.W.S condition is

Ho{cn)2TT =  2TThn

i.e.

Ho{cn) =  Un

Clearly

Bohr Sommerfeld variety of © =
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and this is not a simply connected set. The connected components are the circles Cn and

"Hq =

We would like a concrete realisation of He-  Unfortunately a rigorous description would 

require distributional wavefunctions and we wish to avoid any more technicalities. We can 

give a heuristic argument to support the idea tha t H e  is the space of square summable 

sequences denoted Ẑ . Suppose we were to quantise our system in the polarisation

The Bohr Sommerfeld variety of is M  since the integral surfaces of H  are given by 

q =  kp. We therefore have the usual representation of H n  as functions 0 such that

•27T

I
I (f){9) f  d9 <  oo.

0

From standard harmonic analysis we know that we can write

0 (0) =  ^  an exp(m0)
n

where
'•27T

and

I f  we make the identification

0,71= /  0 (0) exp(—in 0)d0
Jo

oo

^  1 an  f <  OO.
0

H e  =  l^

then the above represent a sort of discrete version of the pairing map V  between H q  and 

H n  (which we would expect to be a Fourier transform if  there were no B.W.S condition) 

i.e. Y'.Hq  -+ H n  where

— {ûn} and V {a n }  =  exp(m 0).
n

Hence the identification H q  — Ẑ . We must now identify ©, 1). Naively we might

expect tha t C °°(M , ©,1) would consist of functions of the form Ç {H q)9  +  r/(i7o) but 0 

is not a continuous function so in fact a classical observable is in C °^(M , ©, 1) if f  it  is 

of the form H ow  should we quantise these classical observables? Recall that the

Cn are level sets of H q, in fact on Cn we have H q ~  nh. Since H q is really the spectral
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representation space of È q we expect H q to act as a m ultip lication operator on The 

obvious candidate for H q is

Ho{an}  =  {nUaji}

so tha t Hq has a pure point spectrum consisting of the numbers nU. Obviously

T}{HQ){an} =  {T?(n^)an}-

Suppose tha t rj{Ho) =  Hq in some disc D  around the origin containing the connected 

components Cn, 1 <  n  <  m, o f the Bohr Sommerfeld variety of © and is merely some 

arb itra ry  smooth function of Hq on M  -  D .  Clearly the values On, 1 <  n <  m, are in  the 

spectrum of ^{Hq)  and w ill be unaffected by arb itrary alterations oi rj on M  ~  D .  This 

s tab ility  of the spectrum of Hq under localized and potentially remote perturbations of 

Hq is disconcerting since quantum mechanics is well known to be non-local [25] . I t  is easy 

to  see tha t this situation w ill occur quite generally when the Bohr Sommerfeld variety o f 

the polarisation w ith  respect to which we quantise the system is not simply connected. 

On the other hand the following example w ill serve to show that classical observables tha t 

are locally equivalent can give rise to very different quantum observables when quantised 

in  polarisations w ith  simply connected Bohr Sommerfeld varieties.

E xa m p le

Suppose H i  is given by

H i  =  ~{p'^ +  e{x))

where e{x) is a smooth function equal to x"̂  for j 2; | less than or equal to some positive 

number a and decreases monotonically to zero for |z |e  [a, b], remaining zero \/x  such tha t 

|a:|> b. Clearly we have H i  — Hq for |z {<  a. Using the B.K.S method we can quantise H q 

and H i  in  the vertical polarisation to obtain the following formal differential operators

H q — and H i  — (p^ +  e(æ)).

When acting on their respective natural domains these formal differential expressions 

define two self-adjoint operators in the H ilbert space T^(R ). The classical observable H i 

is identical to iJo for j 2; j<  a but H q and H i  are very different. H q has a purely discrete 

spectrum whereas, because e is bounded, positive and of compact support, the spectrum 

of È i  has no discrete part (page 119 and 226 [26]).

We could quantise H i  and H q w ith  respect to the polarisation © .  In both cases the 

Bohr Sommerfeld variety of © w ill contain, as connected components, the circles Cn where
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n now labels jus t those integral surfaces of 0  in the region R E  M  such tha t | p |<  a, | æ |<  a. 

Ho and È i  both have the values nh  in  their point spectra. This w ill be the case regardless 

o f the form of e outside R,

This example shows tha t quantisation w ith  respect to a polarisation w ith  a simply 

connected Bohr Sommerfeld variety reflects quantum nonlocality whereas the remarks 

in  the previous section indicate tha t quantisation in  a polarisation w ith  a non simply 

connected Bohr Sommerfeld variety is essentially local. The problem arises because in 

quantising w ith  respect to a polarisation w ith  a non simply connected Bohr Sommerfeld 

variety only the nature of the classical observable on the isolated connected components 

contributes; the global properties o f the observable are largely irrelevant. Contrariwise 

conventional geometric quantisation is more holistic; the requirement tha t the classical 

observable /  generate a complete Hamiltonian vector field probes the nature of /  on all 

o f phase space.
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1.5 Append ices

Appendix 1: Group Representations

Geometric quantisation is quite adept at providing operator representations o f certain 

groups. I t  turns out that the half density scheme is not sophisticated enough to generate 

proper representations. In  general i t  leads only to projective representations. The half 

form scheme on the other hand does give proper representations. We shall illustrate this 

w ith  a discussion of the representations of the group of all linear canonical transformations 

i.e. p : y  —> V  such that

w (p (A ),p (y ))  =  w (A ,y )

(pages 2 and 172 [2]). I t  possible to  regard y  as a flat Kahler manifold w ith  canonical 

coordinates p, q. The tangent space at each point o f this manifold can also be identified 

w ith  y .  A  vector in V  can then be w ritten as

I t  can be shown that

/  =  -  Dpq -  (1.69)

(F) D  and E  constants) generates the linear canonical transformations. For example take |

/  =  F / 2p^ then ']

The integral curves are solutions of

^ = O a a d ^  =  Fp  !
dt dt

so this observable generates the following 1 parameter group of diffeomorphisms
I
-4

p p, q Fp t  S|

which can also be w ritten  as "j
1

p p  +  t l ~ p ‘̂ ,p \  and q q  +  t  I —p'^,q

Let
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j
then I

- x ^ - ^  +  x ' ^ ~ \ y ' ^ - ^ + y ^ - ^ \ { d p 0 d q ~ d q ® d p )

i d  2 ^ i l j  2 j
=  ^  ^  +  ^  Q^lv d g - y  dp

2 1 9 1=  X — y X .

Using the usual expression for the push forward of a vector field we have

uj(p{X), p{Y))  =  +  {x^F t  +  A  +  +  x ‘̂ )-~ {dp ® d q - d q ®  dp)

=  +  (ai^Ft +  x ^ )~ \y ^ d q  -  +  y'^)dp

=  -o ;^(2/^ F i +  +  {x^F t  +

2 1 9 1
=  X y —

as required. We cannot quantise functions like /  d irectly but i t  turns out tha t i f  we work 

in  the half density scheme and use the B.K.S method then we must put

/  =  ( 1-^0)

where

H  =  — (F  F  — 2iD)

and

U =  ^ { F - E ) .

We can show that this gives a projective representation of the symplectic group algebra. 

We have

( / ' /  -  /7 ') 0  =  +  A ' t g  +  n u . ÿ )  -  / / '

+ a y '^  (  J  ( z ' g  +  2# )  +  +  n u  +  -  / / '

dz^ dz

*■*' (î ( ' - S 4  - *-‘S  - ('S - s  * g)) !
+ « r .  ( t  ( . i g  +  2 . , )  +  +  S ) )
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Tî^k'

+nu'z + 2̂ )̂ + + nu + § ; ) ) - / / '

=  + a f̂c'^g + n'^k'hU2 +  w ' z u u ^  ^ +

( ^ n u z  + â fc'Lz + hu'z^z'^ + nu'zhu] ^ +  
y 4 4 4 J dz

{n̂ k'nuz + nu'zh^k)^ + r?k'n^k^ + f + â a'^2 + nu'zj2z^ -  / / '  

2n^Uk'^+n^k'kz^+(n\''^ + acr'^g) # |  f ^ a ^  + + a^z^c/u') ^ +
"  2 "  ^  4 ' 4 ' ;  &

îz^FiJ + ^z^kc/' + n^zu'u] ^  + (a^Fcfz + r?ku 'z )^+
4 4 J d z  dz^

+  16 *''='} -  " ' •

Clearly f f  can be obtained by interchanging primes in the proceeding factors. The terms 

in  the curly brackets all have coefficients that are symmetric under this operation and so 

vanish. Hence the above becomes

{2%^uk’ -  2 r ? k u ' ) ^  +  { f?k 'kz  -  a ^ F z ) ^  +  fa ^ fc 'l +  a y ' | g  -  a2f c |  -  n u t Ç j  <j> 

=  2 h ^ { U k ' - k U ' ) ^ + z n ' ^ { k ' k - k W ) ^ +  ( ^ { k ' k - k ¥ )  +  ^z '^ iU 'k  -  U ¥ ) ^  <t>. (1.71)

Now

| i iT 'p 2 _  a 'p ,  _  1 & Y ,  -  Dpq -  i  V }

=  {F 'p — q){—Dp  — Eq) — [~~D'p — E'q)(^Fp — Eq)

•F'Dp^ -  F'Epq  +  D'Dqp +  D ‘Eq^ -  { -D 'F p ^  +  D'Dpq  -  E 'Fqp  +  E'Dq"^) 

=  {D 'F  -  F 'D )p ‘̂  +  {E 'F  -  F 'E)qp +  {D 'E  -  E 'D )q -

~ — p"̂  — X>pq ~ —q"̂ . (1.72)
^  f

2

Quantising this operator according to ( 1.70) we obtain as the coefficient of (j)̂

=  ^ z ( F - 6:)
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=  |z [2 (D 'F  -  f 'D )  +  2(D'E -  EfD)]

=  n z ( D 'F - F 'D  +  i y E - E 'D ) .  (1,7 3 )

According to ( 1.71) the coefficient o f (f)' is given by

zH?{h'k — kk’)

=  2%:̂  +  F" -  2 tD ') l(F  +  F  +  2iD) -  1 (F  4- F  -  2%D)1(FX +  F" +  2iD')

=  —  (F 'F  +  E 'F  +  2 iD E '  +  F 'E  +  F 'F  +  2 iF 'D  -  2 iD 'E  ~  2 W 'F  +  4 D 'D -

E E '  -  E F '  -  2%D'E -  F E '  -  F F '  -  2 iD 'F  +  2 iD E '  4- 2 W F ' ~  4jD'D) 

zK^
=  — {U D E '  4- U F 'D  -  AiD 'E  -  A iD 'F )

=  z n \ D E '  4- F 'D  -  D 'E  -  D 'F )  

and this is equal to —i%x{ 1.73). Also we see that ( 1.71) gives the coefficient o f <l>" as

2n^{Uk' -  kU')

=  2n‘  -  B ) i(S ' +  F ' -  2iD') -  1(B' -  B ') i(B  + F -  2iD)

=  ~ ( F E '+ F F ' - 2 iF D ' - E E '~ E F '+ 2 iE D ' - F 'E - F F + 2 iF 'D + E 'E + E 'F - 2 iE 'D )  

=  K ' [(F B ' -  F'E) +  i (E D ‘ -  B B ' +  B 'B  -  B 'B ) ] . (1 .74)

When yon quantise ( 1.72) on the other hand you get

n^K, =  — ( £ 4- F - 2iF )
2

=  — [~ 2 {D 'E  -  E 'D )  +  2(F 'F  -  F 'D )  4- 2 i{E 'F  -  F 'F ) ]

=  n \ - D ' E  +  E 'D  4- D 'F  -  F 'D  4- i { E 'F  -  F 'E )] .

M u ltip ly  this by —iU and i t  becomes the same as ( 1.74). According to ( 1.71) the coefficient 

o f (j> is

^z'^(U 'k -  UV)  +  y  (k 'k -  kW)

Ti o
r

^ \ ( F  -  B ' ) i ( B  - F  +  2 iD ) -  i ( B  -  B ) i ( B ' +  B ' +  2iD ') +  y ( f c ' f c - k F )

A y2
—  [ F 'E + F 'F + 2 i F 'D - E 'E ~ E 'F - 2 i E 'D - { F E '+ F F '+ 2 i F D ' - E E ' - E F ' - 2 i E D ' ) ] ^

fp-   __
— ( F ' F - F F ' )
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hz^ t 2
=  —  [2F'S +  2iF'D  -  2E'F -  2iE'D -  2iFD' +  2ŒD'] +  ~ { K ' K  -  K W )  

=  ^ [ ( F ' E  -  E 'F) +  i(F 'D  -  E 'D  -  FD ' +  ED')] +  | (isT'l? -  1<W).

On the other hand quantisation of ( 1.72) gives as the coefficient o f 0

\)Cz‘̂ - ^ ~ { S  +  F  +  2iD)

,2 1
= - - [ - 2 ( f f E  -  E'D) +  2(D'F -  F 'D) -  2 i(E 'F -  F'E)]

,2
=  - j [ - D 'E  +  E'D  + D 'F  -  F 'D  -  i {E 'F  -  F'E)].

M u ltip ly  this by —ih  and it  becomes

^z^[(F 'E  -  E'F) +  i {D 'E  -  E 'D  -  D 'F  +  F'D)].

A ll this goes to show that we have

or
:2

*1/. / ')  =  a [/ ,7 'l +  " ^ { K ' K  -  K K ' )  (1.75)

and since the last term in the above is clearly real we see by 12.82 page 475 [30] tha t we 

have obtained a projective representation o f the algebra o f the symplectic group.

Now it  turns out tha t i f  we work w ith  the half form scheme and apply the B.K.S 

method then we are compelled to quantise the classical observable /  ( 1.69) as

=  / + | f

W ith  this new quantisation scheme we have

[iil = + + + /7'

-  V.h * H. u ,'.y A  +

+  D'^~U(I> — symmetric terms

[/, f  I 4- + y

U '— K - ^ ~  4- 4- ~U'U(j>  — symmetric terms.
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In  fact the extra terms are symmetric under interchange of primes so

[/J'l = [/,/'].

Applying the new quantisation rule to ( 1.72)

[/,/'l = [/,7'l + |w

=  [/.7'1 + | (B 'F  -  F 'D  +  D 'E  -  E'D) 

=  [ f J ' ]  +  ^ i { K ' K - K T C )  

so
»2 i

n [ f J ' ]  =  h [ f J ' ]  +  - i { K ' K - K K ' )  j
= <[/./']

=  i Ù J ' ]

where we have used ( 1.75). This shows that the half form scheme leads to a proper i.e. 

non projective representation of the symplectic group algebra.

We now investigate the effect of changing connection potential. The ha lf density quan­

tisation scheme is well known to predict incorrect values for the spectrum o f the Hamil­

tonian of the simple harmonic oscillator. The half form scheme gives the correct values 

and this was taken to indicate its superiority over the half density scheme. However Wan 

has shown tha t a modification of the half density scheme ensures tha t i t  also gives the 

correct spectrum, all that is required is to employ a different connection potential. In  fact 

the same method can be used to ensure that the half density scheme gives a proper i.e. 

non projective representation of the symplectic group algebra. Suppose we change the 

connection potential ( 1.14) to

— Xzdz +  f{z)dz.

This is clearly admissible since taking the exterior derivative o f the above gives the symm- 

plectic form. We now have ï

Vxso =  - ^ ( A j  -  ^zdz  -f f{z)dz)sQ.
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W hat effect w ill this have on the form for operators? Well

c0 =  ( — iU V x c S  +  c s ) m  — i h s . L x c ^ -  

The Lie derivative of the half density i/ s till vanishes so

c(j) =  {—ih'Vxc^  +  cs).z/

=  ( - îW x c (0 5 q )  +  C^Sq)m 

— { -% T iX c { ( i) )s Q  -  iT i(i> V X c ^ Q  +  c4>s q ) m .

Now remembering tha t (f> is holomorphic (independent of z) and using ( 1.16) this becomes

C(j)— B z ) ^ s o ~  ^ { 2 i ( A + B z ) ) ^ ^ ' z - \ ~ f  (zjjso+(Az+Az-\-Bzz-]-D )(l>s^u

=  2%[A 4* B z) - ~ sq — (l)2i[A 4* Bz) ^ / ( z )  — — ^ so 4- {Az 4 * Az  4- Bz~z 4- F )0so j

=  (zR (A  +  B z ) ^  +  <i>{Az +  D ) -  2 i{A  +  B z ) ^ )  sqm.

As a check we can see tha t i f  / ( z )  =  0 we obtain ( 1.18). I f  we are to recover from this 

modification of the half density scheme the irreducible representation we obtained using 

ha lf forms we need only choose /  such that

- 2 i { A  +  B z ) ÿ -  =  Bn
oz

i.e.

f  =  - ^ A n { A  +  Bz).

I t  appears tha t the use of half forms is inessential in  obtaining non projective group 

representations.

Appendix 2.a

Consider

Let u = then x ~ '^d x = jzq^du. Now suppose k >  I then J

1
X =  oo => u — 0 I

and %
I

3/ — 0 U/ —" OO '̂1



so ( 1.76) becomes

'OO — ^) ^ \ h { k  — I)
2lu

exp I — -----— 1 du
r  l_

Joo {I —

—  /  ,
I — k Joo \  ?i(̂ k — I)

Ti(̂ k — I) /  2lu

exp : du

I — k 21
exp

exp

\7i(/û — I) 

2lu

Since >  0 the integral diverges. Suppose k <  I then

X  =  CO = 4  n  =  OO

a; =  0  =»  l i  =  0

so tha t ( 1.76) becomes

Jo r:i«=̂[nôrr7)j* = -2
Since <  0 integral converges.

exp
2lu

-  Z)

Appendix 2.b

Consider

/ ° I-È f  2 lx  |x | i \
-CO

Put u =  — X  so above becomes

L
2lu^ i

00“  H k - i )
du

~  L
This is almost the same integral as we considered in  Appendix 2.a. B y symmetry we 

deduce tha t integral converges for fc >  Z and diverges for Zc <  Z.

Appendix 3: Derivation of 1.48

Since 6 =  pdq and

Y =  ^  —
^ dp dq dq dp

we have
~4

f f ]X ,  =  g p .
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We consider only observables o f the form

9 =  P^H q)

f {q )  >  0. In  this case 9\Xg =  g and since g is invariant under (f)~̂  it  is constant as far as 
the integration in  ( 1.47) is concerned so tha t

#  =  ( a ) ^ ^ ( a ) - i  y  dpexp ^ p ^ f {q ) t  [detw(Ag, (^gAg)l^iAWgg). (1.77)

Now using a Taylor series expansion we have

71=0

The differential equations describing the integral curves of the Hamiltonian vector field of 

g are

â i  == f  = (1-'^»)

By repeated use of these equations it  is easy to show that we can always w rite

7 " ’ = /3n(?)p" (1.79)

for some /?n(^)- Therefore

Now

,? =  E  —̂ J -0 n { q ) p V .  (1.80)
11=0

— X^tq.

The Hamiltonian vector fields of functions q and are easily calculated using the stan­

dard formula and ( 1.80) so that

» ( X „  j : . . , )  I  -  I  ( ç f c Æ » . , * . , . )  I

- " (4- (S 5 - s (I i) I
which we can w rite  as

/  d  ̂ a g \  i
^ [ - d ^ ’ % - l ^ T p )  I

w ith  the obvious definitions of A  and B. By definition this is i

(dp ® dg -  dg <g) dp)J -  ^ J
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A.

Notice tha t A  can also be w ritten  as

Substituting this in  ( 1.77) and putting  u =  tp ([4] eq 7.24 page 118) we obtain

d
4->o d r  '  J

I Cdu
exp

i

V o

1 Z M „2
ft t

OO ( 1 \n

Now w riting  p " 4 "   ̂ =  (p t)""^  =  and taking out the factor o f t  from the second 

square bracket (which w ill aquire a factor o f 1/ 2) we obtain

{iTi){ih) i  lirn  ̂J dut & exp E  P ^ 0 n { Q ) u ’'- ^

1 /(« ) u

We have
d i
dt*  “ " ’'p

la-

i>{B) 

ip{B)du. (1.81)

P ut s ~  u and a — f{q)/T i and ( 1.81) becomes

1 d?
~{iK ){ ih ) h i m  Jdu-^

Now using 

this becomes

t  2 exp
' OO / 1

lim  t  i  exp { ia — 
i—<-0+ I t

G - ^ 6(g)

( n ) ( « - t ( ( m ) '/(g)
À

E 7 ^ - ^ / 3 n ( î K - '

V-(S)

5

(î/i)('m 27r)-iri(7 rh )2 (eT )-è  /• ,     I (lllQ
d if2 (a ) J4^/2 (g)

■>KB)

f { B )
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i U ~ h ~ h h 7 : \ n ' K \ T A i - \

4 î / 2 ( g )
j  duô"

OO / _ i \ n

iV2if 
(m )^ f  1

i l
duS'

■’ è

Y/-'«[çYtS
( i^ ) ‘
4/ /  «"(»)

l " - !

^  (~ 1) " ~ ' A l(g ) ^n_l

i>{B) 

f { B )  

■<P(B) 

rji{B)du.

We can write this as
(tft)' / du
4 /(g )

d2

d'^6{u)

4 /(g ) du^

du^ 

W ( B ) ]  |«=o

.  { i h f  ( j ^ d^i’ (B) , „ d D d i,{B )  , ( f B
4/(?) dt.2 +  ^ d« %  ' """ d»2 j

_ ( £ C f _ (  d ( d B d i j i \  d D d B d i i  d?D \
4 /(g ) y d u \ d u  dB  )  du du dB  J

(ifi)2 (  ( d B  d di> , ( f B d i > \  d D d B d i j i  cPD
B  I   +  -T-S-—  I +  2-  ; +  - j - ^ i p i B )  |„=o

4/(« ) du du dB du^ dB J du du dB du^

d^B 
du^

d B Ÿ  cPi> , ( r .d ? B  , „ d D d B \  d f  , d^B  , , „ , V  
4 / ( î )  r  V * T j  ^  +  Y  j  dB  +  ) 1 - ° '

(1.82)

Now

5  =  E  =  /Î0 +  E
0 n = l

SO

' " . f a . A . Tt— 1
du

n = l
ni (1.83)

Therefore

and

du tt=o — /3i

du )  (x=o
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Also we can easily see that

Therefore

(since F (0) ~  Pq — q)

Now

Now from ( 1.83)

so

=  /?!
,2

.2/ .

PI

(2/) 4 - 1

_ 2/ A A / ) f  

(2/)#

2%

d D _ l l ^ ( - l ) " - i / 3 , ( g )
du 2 D  ^  (n — 1)! 2/(g )

=  J L A ^
2D d u ^  (n -  1)! 2 /(g)

n —2

=  _ 1  A M
2 \  A  V 2/(g )-

A (iE.
du \ d u  J du

n = 2
n!

OO / i N n
=  E

n = 2

e e
du^ u=0 A

Combining these results we see that

1“ ” “ =
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Now

S Y ( Y ç Y 9 l i ' " - ‘ >“
n —2

i n - ' l + Y E

=  I n - I —  y " ¥ Z iZ
9. d u  ' (f) —

(n -  l)u "   ̂ |+% I ^

( n ~  1)! 2f { q )  

(n -  1)! 2 /(g )

(n -  ( - l ) F■«-2 1 r _ n  n - 2] ^  
du

.dD
du

2

so that

d^D.
dv?

.a-3^ 1 r^-2dP  ( ~ 1) "   ̂ A (g )
du ^  { n -  1)! 2/ ( g )

1 /2 /(g )\&  (-I):" A(g)n 1 ^2/(g )\ 7 1 \ 7 2 /(g )y  A W  A

1 A z w V  _ ± J L  p/(g)
4 /(g ) V f t  /  16/^ ( î )  V f t

f t  / f t \ - s  1 0 i
16/ 7 ?) V2/ ,4/  \ 2 f

Because

e.t.c we see tha t ( 1.82) becomes 

( i h f /?2 f  P l \  2
4 /  I 2/ j  16/2 \ ,2/

ijj

I t  is easy to show from ( 1.79) and ( 1.78) that A  =  2 /,  A  =  2 / ' /  and A  =  4 /" /2 .  

Substituting this in the above gives ( 1.48).

Appendix 4: Quantisation of qp  ̂ Using Modified Pairing Construction

We can quantise qp^ by working in  a new polarisation and transforming back to the vertical 

polarisation using a modified pairing construction. We seek a canononically conjugate 

coordinate system of the form

g' =  ((g)p^ and p' =  g{p,q).
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so (1.84) is exact i f

— d p A d q -  ^ d q ~  ^ 2 e { q ) p d q  A  d p

A / . ^P'<1 -  €%g) +  ~^2e{q)p  =  0. (1.85)

Suppose we consider the special case ((g) =  g i.e. the classical observable gp^, then ( 1.85) 

becomes

We can get a particular solution for this i f  we assume tha t p '  is independent of g since in 

tha t case the above becomes

‘ - - ■ I
for which p ' — —p ~ ^  is a solution. We therefore have new canonical coordinates

q ' — gp^ and p ' =  —
P

The generating function /  for this transformation is

f  =  2 q '^ q i

I.e.

Since

a /  , y a /p = -  a u d p = - ^ .

dqdq' 2

we see that the pairing between the polarisations P ' and P  is

w ith  the corresponding expression for the inverse. Unfortunately in this case the pairing 

construction does not lead to a unitary map. However there exists a natural amendment

80

By Cartans criterion p' and g' are canonical coordinates iff

p d q ~ p 'd q '  (1.84)

is exact. Well

d { p d q  — p 'd q ')  =  d p  A  d q  — d p ' A  d q ' |

=  d p A d q -  ( ^ d p  +  J d g )  A ( ^ d p  +  ^ d g )

- d p A d q -  ^ ^ d p  +  ^ d g ^  A ^2e(g)pdp +  ^ p ^ d g



to  the pairing construction tha t does give a unitary map. Suppose we add to the kernal 

o f the integral operator its complex conjugate. The new map is

{v~'^(f>'){q) =  4>{q) =  ^  ^ sin dq'

and

{V(l)){q') -  ^  <!>{q)q~h' ^ sin dq.

There does not appear to be any compelling geometric justification for this ansatz but it  

does lead to sensible results as we shall see. In  the polarisation P ' we quantise q' =  qp^ as 

the m ultip lica tion operator on F^(0,oo). We cannot quantise qp^ d irectly in  the vertical 

polarisation but we can infer its quantisation from the modified pairing. I t  is easy to see 

tha t the operator so obtained is formally equivalent to tha t obtained by Bao and Zhu. 

Proof:

V dq'

d
dq

g 4_g _g ,c o s |^ -g  ^ g m j^ -g  g^

g 4_ g r -_ g  . c o s ^ y g l 1 _5 . 72 1-g  4 sin I ~q  g2

V
g'^g I

n

, 2 y& 1cos [ - g  ga

Y ^ g  4 sin(2g '^g2)^  dg'

4-

g 2g-
n cost -g '^g s i  _ 5  .-q  4 sm - g  ga 1 - 5  .- g  4 sm

i g  I  cos Q g '^ g a ^  ~ 2g '^ ig  ^ ~  ( ~ i )  ^ 4 s in Q g '^ g ^ +  ^g '^g  ^ cos Q g '^ g ^  ] -

1 - I  .
4^ “ sin ( ^g '^g â ^ -  -^ g  t  sin f^ g '^ g ^  ) ) dq'

V  - A r ^ ' ( g ' ) g ' - ^ ig ^ ^ s i n  (§ g '^g ^
rp

2 A  i \  g -g  4 cos t - g  ga )y -%
4a"

1 _S . / 2  , i  i \  1 _5 . f 2  A  1
- Î  '  sm I - ,  ? y - Y ^ g  ' s m f - 9  ?" dq'

I
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^ q ïg 's in  
_ dq'

 ̂ I (fg

2 / 2g \ 2
n

dq'dq.

Now put

then the above becomes 

,y /TivP \ (  hu'^

q — so dq — \ / ^ (¥) du

Tvu? ̂ roo roo

' ^ J o  Jo ^ \  2 j \  2 I \  2

2 
7T

7^  ,, (  nu'i  Jo * (-
=i©rr*

a 700 700^, /  au'" ‘

n J o  Jo ^  I t

m (« 'u )s in (ti"« )\Z 2 ft ^  'T f t  P Y \ d u d u '

sin(u'u) s in (u "ii) dudu'
'U u 'h ^  f n u " h  4

, (  nu \  yii ^ sin(u'u) sin(u"u)dudu'

A v!'~

a 7T 7°« 7°° /  au'
^ 2  Jo Jo ^ u' u J 1 (u'u) J i  (u"u)dudu' (1.86)

Now from 16 and 17 of [81] page 6 we have

/ ( a )  ~  J  X a ' f  {a ')J i,{a 'x )da ''^  Ju{oLx)dx

so tha t ( 1.86) becomes
a ,2 , (  hu'^
2 “ ^ ( t

=  | | ? Y ( ? ' )

=  g'0 '(g')-

In  fact i t  is easier to obtain this result by noticing tha t the modified pairing map is 

simply a Hankel transform which is well known to be the spectral transform of the Bessel 

operator ( 1.49). Notice that this method yields a well defined self-adjoint operator whereas 

the B.K.S scheme gives only a formal differential expression tha t on its natural domain 

is not essentially self-adjoint. Notice also that the operator is positive so its spectrum 

matches the domain of the classical observable.
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A ppend ix  5: Derivation o f 1.55

Splitting up the integral ( 1.54) we obtain

Since

dpdq ~  dzdz

this can be w ritten  as

("i) (“i) ®̂p S)
h  (7+ (-i) (i)

Integrating the first term by parts w ith  respect to z this becomes

{%p̂P (-©) ( 1 )  (-i) «’'P ( 1 )

h  (7+'"S) ̂®̂p (-1) "̂p (i) 
= (i (-&) '"p (-i) +"p (-i) S) (II)

( - 1 1 )  exp ( g )  d ^ d m - g ( f  +  n ÿ j j  g^exp ( - g )  exp ( g )  dpdq 

=  f t - g z g ÿ e x p  ( - g )  exp ( g )  d p d g -2f t - g f t g g 0 exp ( - g )  exp ( g )  dpdg-

The first and 

1.55.

A !
2i

\  zn /  \ z t i  J J ozoz \  Art J \An J

p ("i) "̂'p (1) +̂Sk) (-1) ®̂p (i)
the th ird  terms cancel and the second and the fourth terms combine to give

A p p e n d ix  6 : D e r iv a tio n  o f 1.57

i f { U  V ) ) (W  =  ^   ̂/ dzidz2exp ( j  ~  ^

e“ “  J ̂(^) exp +  4%tz +  2t ^ ) l  dt

where 7 =  l/7 i. Using ( 1.56) we obtain

U { f{U  ^^)(wg) =  64 exp Y Wg — 2%wiW2)^  h  ̂x
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Jdzidz2exp
z{üJi-{-iuJ2~z'

/ (z ,  z) — n _
dzdzi

2 i  /  7  \  26 4 '
2irJ

(1.87)
Now

so

9 7  _  1 z 9 . d \ i  f  d  . a  ■

^  -  2 l â i l  ~ W  2 lâ iT

=  ( Ê L + i K
4 \d z i  dZ2/ W Z i dZ2.

4 yôz i^  dz\dz2 dz2Ôzi dz^p-

=  1  /  4. f /
4 \  d z i^  dz2^

f { z ,z )  -  -  f { z ,z )  -  +  A z J / .

W ith  this ( 1.87) becomes

\ è )   ̂ J f /(•^i “  ^ ( ^ z i  +  ^ z z ) / exp ^ (^ 1  *h ^2  ~  2%wiW2)^

exp ^ exp ^ - ^ ( - z ^  +  4îtz +  2f ) ^  ÿ (t)

h dwi dzi dz2 dt

exp 4- ^ © 2  -  z ) j  exp +  Aitz +  2t ^ ) j  (j>{t)

/ ( z ,  z) — ^ ( ^ Z l +  ^ z z ) /

7,

exp f +  ~ 2iLû2UJi —

/(z ,  z) — ^C'^zi +  A 22) /=  (^2^  ^  ^y&uiJ d z ijd z 2J i t

exp (^— 4- Y exp ^ —^ ^ 2  4* ^(%W2 -  z) — ^ - z ^  +  4 itz  Y 2t^)^ (j){t).

Completing the square in the argument o f the first exponential this becomes

n  ^ I  d u j i  I  d z \  I  d z 2 1 d t / (z ,z )  — ^ ( ^ z i  4- Azg)/

exp 7 2 W 7 .  j _ Y \
,%W24-

-yh j J exp^% w ^ +  ̂ ( w 2t -  z ) - +  4%(z 4- 2t^)^(^(t)

exp

h dio\ dzi dz2 dt 4 -A z J /

exp Y^2 +  ̂ ( ^ 2  ̂— z)~ ^{~ z '^ -hA itz  Y 2t^ )- f~  ^<jj2 +  -~ j^

(1.88)

::

%
I

4
■<

I

(^(t).

Now if  we put

W  ~  uji ~  i iuj2 +
■yh
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then

/ d c i exp /e x p

dW

{")'
using ( 1.98). Therefore ( 1.88) becomes

dt

dW

f { z, z)  -  +  A z j) /

exp — — z) — 4- 4 itz 4- 2t^) 4- “  ^%W2 4-

Now the argument in  the exponential is

4;̂
1

7^2  4- — (W2% -  Zi  -  izg) -  ^ ( “ (^1 +  -̂2:2)  ̂ 4- 4 it(z i +  tZ2) +  2/^)4-2h

1 \ -  
^W2 4" ^ ( z i  — izg) j

' 2%— — zi ~  iz2) 4- ^ Z i  4- iz2)^ — y4^/(z i 4- iz2) — ^2/^4-=  - ju j2  4-

(-(*^2 +  ^ W 2(Z1 -  %Z2) 4- W  -  ;̂2:2)'

y p 4 - ^ ( i o ; 2 Z i ~ - z f — î Z i Z 2 4 - Z 2 o ; 2 + î Z i Z 2 — Z 2 ) 4 - 7 ( z i + 2 î Z i Z 2 — z | ) — 7 t ( î Z i ~ Z 2 )  — “ 2 t ^ +

1  4- ^ ( % z i  +  Z2) 4- ; ^ ( % i  -  i2ziZ2 -  z |)^  .

In  the first bracket the terms involving iz\Z2 cancel and we are left w ith

i2z\Z27  / 2 , ^2W2Z1 , 2W2Z2 , z f
4 r “ 2 +  ~ w  +  Y T  +  Ÿ F  f Y '  ~

(1.90)

The imaginary part of this expression is

W2Z1 , 7 Z1Z2
2Tl 2

UJ2Z1

y z it  +
UJ2Z1 Z1Z2

h2 2yTi^

y z \t  +  I ^ Z1Z2
A ' ' ' ' '  ' V2 27%^

Remembering that 7  == l/7 i we see tha t the last term vanishes and the above becomes

(W2 — t ) .

4
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The real part of ( 1.90) is

Z2W2
2R 4

7^2 , 27W2Z2 , 7z f__— I-----   1---- 7 4
AyU Ay'^fP Ay'^fP

UjI z \ Z2W2 z | z \ z l tZ2

Ah 2h 2h 2n An An n
A  „  ^4 , ^ 2%2 , £ i. _  f l  
2h Ah 2h nA An'

The 1st, 9th. 2nd, 5th and 11th. 3rd and 10th. 4th, 6th  and 12th combine and this 

expression reduces to
Wg Z20J2
2n n

— _j_ '̂ 2W2
2h n

Z2 tZ2
n 2h n

tZ2
2n 2n n
::2

2n

“ ■ ^ [^ 2  ”  2W2%2 +  z | +  — 2tZ2 +  z l]

“  —^ [ ( ^ 2  -  Z2Ÿ  {t — Z2)^]

SO we see tha t ( 1.89) can be w ritten  as

2'ïï 7  /

exp

dz\dz2dt 

1

n
/(z iZ 2) - - ( A z ,  Y A z J / exp

nZl{uJ2 -  t)

2h
{{u>2 — Z2 )  +  {t — Z2) )

P ut h =  27rTi and W2 =  g and we obtain ( 1.57).

Appendix 7: Derivation of 1.58

The observable we wish to quantise is of the form f { r ,s )  =  g{s)r'^. Substituting this in 

( 1.57) we obtain

=  y y ^ x p  ^ ( g  -  t ) ) e x p { - ~ { { t - s f  +  {q ~ s Ÿ )^ ( r ‘̂ g {s )-^{2g {s )+ r'^A sg )^(p {t)d rdsd t

=  — ^ yyexp(ir(g  -  t)) e x p ^ - ^ ( ( t  -  s)^ +  (g -  s)^)^ (^g{s) -  ^A ^g ^  (f){t)d rdsdt-

1 H2 

2(7rTi)t 4
JJJexp{ir{q -  t))  “  a)^ 4- (g -  s)^)^ g{s)4>{t)drdsdt. (1.91)

The first term can be w ritten  as

=  ~ 2 ^ ^ '̂  exp (ir(g -i)) exp ^ - ^ ( ( t  -  s)  ̂+  ( g -  s)^)^ (g {s) -  (p{t)drdsdt

n̂  rrrd?
2(7r/i) 2 

2(7r5)

®^p(^^(g-^)) ~  (g(^) -  é{t)drdsdt

Ï y y ^ ^ P ( ^ ^ ( g - 0 )  e x p (^ -^ (g  -  s)2^(^g(s)-^A sg A . e x p ( - ^ ( t  -  g)^)<^(t) drdsdt

86



2{7rh) 

d 
dt

Î  -  s f '^  (^g{s) -  -A ^g

~  c x p ( ~ ^ g  -  5)^)]drd5dtdt
d
dt

2
271

Tî

2 { . n ) i ~  *”  (» (") -  i ^ » p )

exp(-g(t -  sf) ,̂<Pit) + 24exp(-E(t _ + ^(t)^exp(-E(t -  .)^)

I f  we let

z — r/U

then the second term in the above becomes 

;2

drdsdt.

(1.92)

(1.93)

h^(27r)?i

J_
2h dt

dzdsdt

(ttTî) 
;2

d<j)
dq

(ttTl)

Integrate by parts

= " i S i î /  é  h  { - h  -  h  (" -  "P { - h  -  h  " 'S

~ ? S  /  H  ( -& ( " -  I  (" -  % © + ( «  -  I '" P

e x p ( - ^ ( g - s ) 2^ ds
d^
dq

“  ' (S ) î/ “ P ( " J fs^^~
d<̂
dq

2%̂

(tt/I)
d(f)
dq

2(7rTi)

Now we consider the last term in ( 1.92)

j j je x p { i r { q - t ) ) e x p ( - ~ { q  ~  a)^^ ̂ g(s) -  ̂  Aag^<^(t) ̂  exp^- ̂  (t -  s f^d rd td s .
2 (7rTi)'
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M aking the substitution ( 1.93) this becomes

=  ~  -  s f ^ d t d s

=  “ ) © / ' " p  -  h  -  Î M  “ p (-A ("  -  ') ')

=  ( r h  -  -  i ©  6  "’ p̂ (-& (^  -  h
The firs t term  in ( 1.92) becomes on making the substitution ( 1.93)

"  '))  “ p (-A (" -  h  -  Ï ©  ^

exp & )4  ~<f){t)dzdsdt

== ~ ( "  2Ŝ ’  -  ' / ) ( '( ' )  -  ""p ( -& ( ' -  * / )

= “ ^ / ^ " p  -  ' ) ' ) ( ' ' ( ' ]  - 1 ©  " ' 3 -
In  our particular case g — s and this becomes

7 f  1.  ,2 \  J d?J>. | e x p ( - i ( g - Y ) a d » ^ .
(Tra)^

In  its  entirety the first term in  ( 1.91) i.e. ( 1.93) becomes

.2 r /   ̂ \  j 2j, t 2 d<̂
dg- © & / " p  -  h  { - h  -  h

— I exD I —~ l a  — s)^ 1 ^
(7ra)

The last term  in ( 1.91) w ill give

2(7ra)
I I I -  4 )  exp -  s)^ +  (g -  s)2)^  g{s)(l){t)dzdsdt

Ti2

4(7ra)
h I I e ^ P ( - ^ ( ( ^  ~  s)^ +  (g -  sf))g {s)(l){t)dsd t

U2 T  J exp “ (g -  s f ^  sds<j){q)
4(7ra)’

Substitu ting this and (1.94) in  (1.91) we deduce that j

'p' -  ( © t / ^ 'p  -  h  y  $ - ( ) ;& iï / " p  y  § -  I
1
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Put

u — s — q

Ti2

4{7tU)
T /  '  s )^^adsy(g )

then the coefficient o f (f)" in  the first term in the above becomes

V ttK
(u +  q)du

rPq
yfïïh

du.

Now

J  exp dx ~  y/a.

P utting  a =  Trh in ( 1.98) we see tha t ( 1.97) becomes

— ^ = I = \ / ^  =  —Tpq.
V irh

S im ilarly we can evaluate the coefficient o f (j)' in the second term

a '

(Tra)
exp du

Prom ( 1.96) obviously we have

A .
ds

du d d
ds du du

which enables us to w rite  the coefficient o f (p' in the th ird  term  as

^2 f  /  „ 2 \  w2 /  .,2

V irâ
/e x p  ( -

VttK/
2u \

A
du

u
f i“ p

exp — du

u f  2u
n y - 2h.' '"P 2ft

~2E

+  exp

du

A \ i
2Ti ) a

(1.95)

(1.96)

(1.97)

(1.98)

du.

Expanding and discarding odd functions (multiples of u  and u^ to  be precise) which w ill 

integrate to  zero
a '

%/ÇâI exp —
n

u^ , 1
â  a

qdu
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exp ( ) du +  [ exp ( !  du

^ ^u^ exp ( - ~  1 d u +  hq. (1.99)
V ^ v  a ^

Now by differentiating ( 1.98) under the integral sign w ith  respect to a we obtain

/ Y e x p ( - V ) d x  =  |¥ ,

Taking a — irh  gives the integral tha t appears in  ( 1.99) which becomes

f  1 (7ra)t
V t̂  27T 

7ra

+  a

2. + ' ^

qU_  y .

The coefficient of the fourth  and final term in ( 1.95) is

%2

(1.100)

4(7ra):

Ignoring the odd part of the integrand this becomes

hq

2(7ra)
- v T

hq
T ' (1.101)

We can see from ( 1.100) and ( 1.101) tha t the th ird  and fourth terms in  ( 1.95) w ill cancel 

so tha t
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C h ap ter  2

Form s o f R e la tiv istic  Q uantum  

M echanics

I  am continually trying to find  out why people find my procedure obscure... I  

cannot seriously believe that I  ever atta in the obscurity that D irac does.

A r t h u r  E d d in g t o n

In  1949 Dirac published a paper in  which he outlined various ways o f combining special 

re la tiv ity  w ith  the Hamiltonian formulation of mechanics [75]. The models he proposed 

were referred to  as forms. I f  we let M  denote Minkowski spacetime then each form was 

associated w ith  a particular slicing or product decomposition of M  tha t is in  each form 

we w rite

M  =  T x Q

where Q is a three dimensional manifold and T  is a 1 dimensional parameter space that 

defines the notion of tim e in the form. The hyper surf aces

t x Q

where t  is an arb itrary fixed point in T  are called the moments of the form and represent 

the spatial universe of the observer at tim e t. The idea is to develop a description of 

the physical world in terms of observables defined on the moments. D irac considered the 

instant form, the point form and the front form.

In  the instant form the moments are constant time spacelike hypersurfaces in some 

inertia l frame. The instant form is associated w ith  the following product decomposition 

o f spacetime

T / X Q /
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where T / and Q j  are covered by the coordinates t  and . W ith  respect to the basis natural 

to  these coordinates the metric has components r)̂ ,̂  =  (1, - 1, —1, - 1).

In  the point form the moments are the backward light cones of an arb itary observer. 

For the particular case of an observer at rest at the origin the coordinates (r, where

T =  I X  1 and 2/* =  z*

are adapted to the point form.

A  detailed formulation of classical mechanics in the point form as well as an attem pt 

at quantisation have been given by Derick [58, 59]. More recently the point form has been 

investigated by Mosley and Farina [73, 74]. We believe tha t neither of these schemes is 

entirely satifactory since the quantisation of the classical observables is ad hoc and scant 

regard is paid to whether or not the operators are self-adjoint. Also no attem pt is made 

to  ensure tha t the spectrum of the operators coincides w ith  the range of the classical 

observables they purport to represent. I t  may be that i t  is impossible to formulate a 

completely consistent quantum mechanics on a light cone. We shall see tha t various 

geometric considerations conspire to thw art any attempt to apply geometric quantisation 

to the point form.

The front form was considered by Dirac to be mathematically the most interesting. 

Here the moments are null planes called light fronts which we shall take to  be tangent to 

the and x^ axes. oc

DC

We w rite  the foliation of spacetime corresponding to the front form as |

I
Tf  X Qp. I

1
The coordinates (r, where |

T =  and =  x* Î

^We shall use Greek letters to denote elements of the index set (0,1,2,3). Latin letters from the first half J

of the alphabet, say i  and j ,  represent the integers (1,2,3) while those from the latter half of the alphabet, 

say s and t denote an element of the set (2,3). ^

j
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are adapted to  the front form. To see this notice that r  parametrizes the moments (the 

level sets of r  are the null planes shown above) therefore r  represents front form time. 

Since y* fixes a point on a given moment i t  can represent front form position. W ith  respect 

to the basis natural to the coordinates (r, the components of the metric are given by 

the m atrix  where

/  0 -1 0

“ 1 —1 0

0 0 —1

V 0 0 0

Front form field theories are well known [35, 36, 37, 38, 39, 40, 41, 46, 42, 43] but 

un til now there appears to have been no front form quantum mechanics. We shall see tha t 

geometric quantisation furnishes a front form quantum mechanics in  a natural way. The 

constraints on the ranges of the classical observables are respected at the quantum level 

and the pairing map relates the instant and front forms. We show tha t Hegerfeldt type 

causality violations are absent from front form quantum mechanics [76]. This work also 

appears in  [80] and [93].

0 \  

0 

0 

■1 /

2.1 The Instant and Front Forms in 2-Dim ensional Space­

tim e

2.1.1 Front Form Classical Mechanics of a Free Scalar Particle in 1+ 1  

Spacetim e

We may use the front form time r  to pai'ametrize the path of a particle in spacetime. I f  we 

do this the variational principle describing the dynamics of a free particle can be w ritten
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as

Since

me /
m '

dx}
d r

I  \
d r =  0 . (2.2)

and x° =  r  —

we can rewrite ( 2 .2) as

2\  2

or

« (^-m c /  ( l  -  2^ ^ )  '  d r  j = 0 .

Now r  has the units o f length so we introduce a new variable r  =  cw. The variational 

principle becomes

2 d ^ ^ 3
—mc^ y  f  1 -

c duj
dw == 0

so

me 1 -----
2dy i \  5

c dw

The canonoical front form momentum is given by

dL
7Ti =

%

=  ( - 1)
mc^

cdw

■me 1
2 dyi 
c dw

([50] page 194). Let r '  be the proper time of the particle. Now

dy^ dy^ dy^ d r dx^ , (  dx° dx^ \
=  c ^  =  c— / -  =  c— — j

dw d r

^This is equivalent to the usual variational principle

dt 1 =  0. C21)

To see this notice that we can write ( 2.2) as

2 ^
6 —me /  ( ' - ( ^ )  ( ^ )  ) = “ : " " (i -  ( ê )

and this is the same as ( 2.1) if we use = ct.

dz* = 0
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_ _  cp^
pO p i

so

(2.3)

f  2 cp̂  \   ̂ f  p ^ p ^  ~ 2p^^ ^7Ti = —me 1 ------= T- = -m e
ep^ + p ^  J \  pO +  p i

p° -  pi
-me

=  —me

pO p i

p° +  pi 
p° — p i

M u ltip ly  top and bottom  by (p® -f p i)â  and use mass shell condition to obtain

7Ti =  - (p °  +  p i)  (2.4)

or

7 r i = p i - p o .  (2.5)

Notice tha t tti is negative definite. We shall see tha t geometric quantisation automatically 

ensures tha t this classical constraint is preserved at the quantum level.

U ltim ate ly  we shall wdsh to compare the front and instant form quantum mechanical 

descriptions of the free scalar particle. As is well known in quantum mechanics different

but equivalent representations are related by unitary maps. In  classical mechanics on the

other hand different representations are related by canonical transformations. To find a 

canonical transformation tha t relates the front and instant forms we must th ink  carefully 

about the geometry of the system.

The classical descriptions of the free scalar particle in the instant and front forms are 

based on the following exact contact manofolds

M j =  T i x T * Q i  and x T *Q f

([68] page 132) which are covered by the coordinates (f ,Pi,y^) and (r, 7Ti,y^) respectively. 

I f  the two descriptions are equivalent they w ill be linked by a time preserving canonical 

transformation

F  Ho M j ^ t o x  T *Q i -^to M p  =  to X T*Q p

I t  is quite easy to  find a suitable F . We can show tha t i f  is the position o f the free 

particle in  the instant form at t  =  0 and is the position of the particle in  the front form 

a t r  =  0 then
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so

-  L '  (2.6)

Prom ( 2.4) we obtain

and therefore

Also from ( 2.4)

pu q_pj

Po -  Pi

7r f -  27TiPi +  Pi =  Pi +  (mc)^

-  ■ <“ >

(2.7)

7Ti — (mc)^PO =  P i -  TTl -     7T127Ti

7Ti +  (mc)^
(2.9)27Ti

Using this and ( 2.4) in  ( 2.6) we obtain

\  27T1 /

Equations ( 2.5) and ( 2.7) and the inverse transformations ( 2.8) and ( 2.10) define the 

canonical transformation F  between the front and instant form pictures at t  — r  =  0. I t  

is easy to see tha t the transformation is canonical. We have

d n  A  dy^ =  g - d p ,  A  +  g d p i )  .

Since dpi A dpi =  0 this becomes

dTTi A dy^ -  ^ d p i  A =  ( l  -  — )  dpi A — ^ — dq^
dpi dq^ \  p o / P o - P i

=  d p iA  dq^

as required.

The Hamiltonian id  o f a free re lativ istic particle in the instant form is given by

=  _ p , g  +  „ e = ( l - l ( g )  )  .
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Since

we have

pL

dq^
dt pO

0 l2 '
(T p̂ y

l2
cp^

(p- ) = f  *

+  (m c )^ ) :■ y
=  cp°.

Because the front and instant form pictures are linked by a canonical transformation the 

front form Hamiltonian is also cp^. A lternative ly we can proceed canonically and say that 

the front form Ham iltonian K  is
dy

■I

( -.
me1 . 2 cp + m c ^ - Q -   ̂ =  - c p i

P^ +  p^ 7Ti

I f  we use (2.8) then the above becomes

(ttj — (mc)^)
K  =  — c-

27Ti 7Ti

7rf - f (m c)^'\
27Ti j

Prom ( 2.9) we see tha t K  ~  cpo =  H . This is what we would expect. Under a canonical 

transformation the new Hamiltonian is derived from the old by taking the push forward.

2.1.2 Instant Form and Front Form Quantum Mechanics in l + l  Space­

tim e

We shall quantise each of the classical observables tt i,  y \  p\ and H  separately in  the 

instant and front forms using half density geometric quantisation and then show how the 

two pictures are related. I t  is the choice of polarisation that determines which form we are 

working in; a general polarisation F  is associated w ith  a form whose moments are M fF .  

In  this way we see tha t the instant and front forms are related to the polarisations

P = ^  and n = ^
dpi OTTi
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respectively. However this is not sufficient for our purposes since not all of tt i,  y^.

Pi and H  are f ,  1) and C '^ (toM /r,H . 1). For this reason we also associate the

following barred polaisations w ith  the instant and front forms

7 = | -  n = | -
dq dy

and we say, for example, tha t a classical observable can be quantised in  the instant form 

i f  it  can be quantised in P  or P  or both and the result is unique up unitary equivalence. 

M utatis  mutandis quantisation in  the front form. A dm itting  quantisation w ith  respect to 

the barred polarisations is quite natural since i t  corresponds to working in  the instant and 

front form momentum spaces.

Quantisation in the Instant Form

I t  w ill be convenient to introduce new coordinates (g^,Pi) where

Pi =  — and g ^ = P i -

These are canonical coordinates since they are related to the (p i, system via  the gener­

ating function /  =  —q^q. In  fact they are the canonical coordinates adapted to  the instant 

form horizontal polarisation since
d ^  d

dq^ d p i '

We have

P  ~ and P  =
dpi dpi

Since to ^d j/P  and to M /P  are diffeomorphic to H

H p  =  (JR, dq^ ) and H-p =  Û  (JR, ).

The pairing construction gives a unita ry map between 7 ip and H-p as follows

{Upp(i>p){q ) =  -  — i /  exp[iq^q^](l)p{q^)dq^
(27r?l)2 J -o o

{Upp(f>p){q^) =  -  /  exp[-%yiyi)<;6p (ÿ )d ÿ i
(27r7i)2 J~oo

which we recognise as being the usual Fourier transform. This intertwines quantisations

in  H p  and H p , For example q  ̂ can be quantised geometrically in  H p  and H p  to  give the

self-adjoint operators

Q p =  and
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ÿ  +  ÿ i dfq̂

is not complete. To see this note tha t the integral curves are solutions of

dq^ ÿ

Separating variables we obtain

dt 0° +  ■

j ( l + Ç j d q ^ = = J l d t

SO

=  t  H- /c
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and it is easy to show that

Q p  =  UppQ\,Upp.

Sim ilarly p\ can be quantised in  H p  and H p  to give the self-adjoint operators

P ip  =  - i U - ~  and P -^  =  -y ^  =  p i

and we find tha t

P\p  — UppP\pUpp.

We can also quantise the front form momentum tt i in H p. We have

n^ip =  — (ÿ^ + ÿ ° )

- ~ { p ^ + p ^ )  (2.11)

where =  (ÿ^^ -f- (m c)^)2 . Notice tha t n^p  is self-adjoint and negative definite (an 

immediate consequence of the specral mapping theorem) so i t  is a good candidate for the 

representation of tt i in H p.

Clearly tti ^  C°°(toM /, P, 1). I f  required the representation of ttj in  H p  can be taken

as

I I ip  =  UppU^pUpp.

We now consider the quantisation of front form position in  the instant form. Since

' - - A ,
(see ( 2.7)) we have y G C °°{toM i,P ^  1). However Y~ is not self-adjoint since the vector 

field
ÿ° d



or

ÿ® — (t +  A:) — çL 

Squaring both sides and using the mass shell condition gives

+  (mc)^ — (t +  k Ÿ  -  2ÿ  ̂(t -H /c) *f

and therefore

which is not well defined for all t. Geometric quantisation therefore leads us to quantise 

the front form position observable in  the instant form momentum space as the symmetric 

operator

■f +  ÿ i dq^ 2ÿ ( ÿ  + ÿ i )2 y

We can investigate whether has self-adjoint extensions or not using the methods de­

scribed in Chapter 1. I t  turns out tha t Y-~ is maximally symmetric.

Notice tha t 0  P, 1). I f  required we can take

=  UppYppp.

Clearly H  can be quantised in T ip  to give the self-adjoint operator

H p ^ c f

Quantisation in the Front Form

Define a new coordinate system (ÿ^,Wi) where

n i — -ÿ ^  and y ^ = 7f i.

The coordinates (tti, y^) and y^) are related by the generating function /  =  —ÿ^y^ i.e.

a f  , d f

100



Consider the polarisations
T T  ^  J  TT  ^n  =  - —  and n  =  7:— - .

OTTi dWi

Since is diffeomorphic to R  and toM p /H  is diffeomorphic to we have

■Hn =  P  | g i j  and %  =  i= (R + ,

H jï  corresponds to the front form momentum space but H n  w ill not serve as the state 

space of the front form configuration representation in this scheme. We define a subspace 

H n  o f Tin  as follows

H J  =  {<̂  G H n  : (j> / G H }

where H  denotes the set of Hardy class functions [82]. This is the H ilbe rt space we shall 

associate w ith  H, an element o f HjJ w ill be denoted ^n- We shall see later tha t restricting 

the H ilbe rt space in  this way is nessarsary to ensure that the classical constraint t t i <  0 

is respected at the quantum level. We find tha t the model simply does not hang together 

unless we enforce the constraint; for example notice tha t the pairing construction does 

not lead to  a un ita ry map between H n  and H p  but does give the following un ita ry  map 

between H j  and H p

{ U p n ^ n W )  =  7 — T 7 T  /  e x p (* ÿ ^ y ^ )( /> n (y ^ )-7 = = ? d y ^
{ 2 'kTï) 2  j - 0 0  v \ y  \

(% l«% )(3/^) =  7:  /  e x p ( - iÿ ^ y ') < % ( F ') \ / l^ # ^(27r/i}2 JO

In  addition we shall see tha t i t  is only because we have respected the constraint tti <  0 tha t 

we are able to  intertw ine quantisations in  the instant and front forms. In  short, geometric 

quantisation knows about the constraint and demands that i t  be taken seriously.

A ll the observables can be quantised in  H p. We have — Tfi therefore y^ G 

1) and

Since d/dy^ is not complete on this operator is not essentially self-adjoint. In  fact 

using the methods o f Chapter 1 i t  is easy to show that the defect indicies o f are (0 ,1) 

so tha t is maximally symmetric.

Now y^ can also be quantised in H j -  Geometric quantisation tells us tha t y^ should 

be quantised in  H n  as the self-adjoint m ultip lication operator
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I t  is easy to see tha t leaves invariant since

y^(f){y^) 1 d 0 (yi)

v T P l  ^47^ v U F i

(where tilde denotes Fourier transform) which clearly has support in i f  (f>{y^)/y/\ y^ | 

is Hardy class. Thus we are led to re-define as the restriction to of the self-adjoint 

m ultip lication operator. The m ultip lication operator is not reduced by and so Y^ is 

not self-adjoint in fact is m axim ally symmetric.

Internal consistency of the front form is assured because

=  ^ n n ^ ^ n n  (2*14)

Consider now the front form momentum observable tti. We have tti =  — so tha t 

H j| j  is the negative of the self-adjoint m utiplication operator in H p  i.e.

^ in  =  - t -

Since H p  — L^(JR’^,dy) i t  is easy to see tha t H^u w ill have a s tric tly  negative spectrum 

as required.

We have tti € C °°(toM p,H , 1) so t t i can also be quantised in H n

d sgn{y^)\
“  \dy^ 2\y^ \ J '

Since d/dy^ is complete on R  we know tha t H m  is self-adjoint in  Hu- The front form 

momentum observable is the restriction of this operator to  H j -  We shall see la ter tha t 

H n  corresponds to the negative spectrum of H m  and so by construction is a reducing 

subspace. Therefore the restriction of H m  to H ^  is self-adjoint and negative definite. 

The front form is in terna lly consistent because

n m  =  ^ n n ^ in ^ n n *  (2.15)

We now consider the instant form observables. Since

i _ _ 2y ^ l _ _
4- (me) 2 ^
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we have q € II, 1) and

g y =  - a  f z îT T T — ; ^ : £ r  +
d 1 _d_ /  2!7'°

+  (me)" cfÿ  ̂ 2 dÿ^ +  (mc)^

=  - i n  I - L  +  2(m c )V
(y^“ +  (m c)2) (y^^ +  (mc)2)2

We can also write  this as

p i  2( - n ,n ) °  m 2 ( M ' ( - n m )
^  ( - I^ in )^  +  (mc)2 n ( ( - 11̂ ^)^ +  (mc)^):

n 2„  +  (mc)2 n +  (n 2 +  (mc)2)2 '

QU is self-adjoint since

d
y^‘  4- (mc)^ dÿ^

is complete on JR"*'; the integral curves of this vector field are given by

=  (t  +  fc) 4- iy/(t 4- k )^  4- (m c)2

and these are well defined and contained in  for all t.

I t  is obvious from ( 2.10) tha t q  ̂ ^  C ^ ( to M p ,II,  1) so tha t cannot be quantised 

d irectly  in  H J . We can take

— ^nn^W ^nn-

Using ( 2.14) and ( 2.16) this becomes

n?n +  (X c )2^ "  ® ^ M 7 n 2 n + X ic ) 2 ) 2 -

Clearly p i e C ^ ( to M / , I l , l )  and can be quantised to give the following self-adjoint 

operator in H p
_ / y i " ~ ( m c ) 2 \

j  •

Pi cannot be quantised directly in  H ^  so we can use the pairing construction to  obtain

p ,^ _  n fn  -  (m c f

A  sim ilar situation occurs w ith  the Hamiltonian. H  can be quantised directly in  H p  

to  obta in the following self-adjoint operator

4- (mc)^

Since R  0  C °°(foM p,H , 1) we can use the pairing map to give
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Connection Between Instant and Front Forms

The coordinate systems (7r i ,y^) and (pi ,y^) are related by the generating function

/  =  -t- {m c Ÿ )^ )\/

I.e.
df , _ df

The pairing construction gives rise to a map between and H p  as follows

{ U - p p M it )  =  — — T /  </>n(y^)exp(fr(ÿ^ + 't ) y ^ )  — (2.18)
(27rTi)2 J-oo \  g /  VI Î/ 1

and

( î /p n < ^ ) ( 4 )  = - - g r  /  f e ( 9 ' ) e x p ( - i ( ç ^ + ÿ ) y ‘ ) \ / l  |d?^.
(27r/i)2 ■>'-00 \  g /

This map is un ita ry (Appendix 1).

To show tha t our scheme is completely consistent we must demonstrate tha t when 

a classical observable can be quantised in  both the instant and front form pictures the 

resulting operators are un ita rily  related via the pairing i.e. we require

Y p  — U-jjpY^Upjj^ IIjp = f/jjpllinUpi ĵ, Q p  ~  UppQuUp-j^

P \p  — U jjpP iuU p-jj^ H p  — [/jjpHnUpjj.

The va lid ity  of these relations is demonstrated in  Appendix 2.

Geometric quantisation has led to  a front form quantum mechanics tha t respects the 

classical constraint tt i <  0 and is un ita rily  related to the instant form via the pairing. The 

only peculiar feature o f the model is the maximally symmetric front form position operator 

bu t as described in Chapter 1 maximally symmetric operators are easy to interpret as 

quantum observables. I t  should be noticed tha t the restriction of H n  to H j  is not at all 

ad hoc. Suppose we were to quantise tt i geometrically in  H n  to obtain

[w - ff^) ■ I

This operator is clearly not negative definite since its generalised eigenvectors are given |

by

M y ^ )  =  A  1 y |2 exp(iAy^) I
where A  is some normalisation constant and A € (—oo, oo). To obtain a negative definite I

imomentum operator we must restrict H n  to tha t subspace corresponding to the negative I
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part o f the spectrum of I l in -  Now an element (f> of H ji is in E {R  ,n in )H n  (where 

F ( A , r i in )  is the orthogonal spectral measure corresponding to I I i )  i f

f  A  I | :  exp(iAy^) <  0 (y^) ,A  | y^ | i  exp(^Ay^) > d X -
J —oo

A I y^ exp(frAy^) <  (f>{y^),A | y^ exp(iAy^) >  dX

’—oo 

r>00

i.e. i f

or

Supp <  <^(y^), A  I y^ exp(iAy^) >  C ( - 00,0)

Supp <  0 (y^) ,A I y^ | i  e xp (-iA y^) >  C (0,oo).

More specifically we require

Supp f  1 y^ |& dy^ C (0,oo)
j —oo I y I

or

Supp f  <^(y^)- Y ^ f  )dy i C (0,oo)
J -o o  I yj- [2

which is precisely the condition tha t (j){y^)/ | y^ be Hardy class so

F (jR ,~ ,IIin )H n  =  'Rn*

2 .1 .3  A  C om m ent on H egerfe ld t’s Theorem  in  Front Form  Q uantum  

M echanics

I t  appears tha t Hegerfeldt’s theorem [76] is irrelevant in the context of a quantum me­

chanical theory developed in  the front form since there is no sense in  which a particle can 

be said to be in itia lly  localised. This circumstance arises from the nature of the state 

space As our notion of localisation we take the unique P.O.V measure F  associated 

w ith  the maximally symmetric front form position operator Accordingly a state (fyji

is localised in  a fin ite  region V  of the light front i f

<  <i>n I > — I* (2.19)

We can easily determine the explicit form of F  since we know tha t the self adjoint mul­

tip lica tion  operator on H n  is a self-adjoint extension of y ^ . The spectral function of 

the m ultip lication operator is simply the characteristic function Xv so tha t by Naimarks 

theorem (see Chapter 1) we have

f  Xv
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where P  is the projection operator on H n  w ith  range H J . I f  we substitute this expression 

for F {V )  in ( 2.19) and remember tha t P  is self-adjoint and </>n € H j  we find tha t an 

in it ia lly  localised wave function satisfies

dy^
•/-oo 1 y I

or
12

I v  (2 .20)

)r must also be normalii

</>n(r) 
y I ŷ

O f course the localised state vector must also be normalised i.e. we also require that

<Pu{y^)
oo 1 y^

However this is incompatible w ith  ( 2.20) unless the support of <̂ n is contained in  V. B ut 

0 n /  |y^ is Hardy class and the Paley Wiener theorem tells that there are no Hardy class 

functions o f compact support. Therefore there is no notion of localization on the front 

and Hegerfeldts results do not apply.

2.2 T he Instant and Front Forms in 4-Dim ensional Space­

tim e

We now wish to  generalise the results o f the previous section to four dimensional spacetime.

2.2.1 Front Form  Classical M echanics o f Free Scalar P a rtic le  in  3 + 1  

Spacetim e

The Lagrangian of a free scalar particle is given by

\ c duj du J y du

Put
2 d ÿ  1 f d y ^  1 f  d y ^ \

I t  is fa irly  easy to show tha t in  a 34-1 spacetime ( 2.3) becomes

dy^ cp*

so

A

du +p^

2 cp^ 1 1 c^p^^
cp^ +  p^ (9 - (p° 4- p^)^ (9  (p^ 4- p^)'“
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_  (mc)^
(pO +  p l)2  (pO +  p l)2  • J

Therefore
dL

7Tl

P i~ P o  (2.21)

and

’T» -  ( - 1) ( - m c " ^ ( / ) - ^  ( - | )  ^ )  

- „ | î ( A ) - è  =  - m ^ 2^  =  - p -

— Vs'

B y considering the dynamics of the free particle we can show tha t i f  q is the position of 

the particle in  the instant form at t  =  0 and y the position o f the particle in  the front 

form at r  =  0 then
j j i

+  -ôV^ (2 .22)

or

and

or

Prom ( 2.22) we obtain 

Substituing this in ( 2.24) gives

pO pO _{_ p i

so

p .

=  ( ^ )  (2.23)

<f =  y" +  (2.24)

1 P̂ Q̂
y =  w f ? -  (2-26)

(2 -2T)

In  terms of covariant momenta ( 2.26) and ( 2.27) become
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and

y» =  g» +  ^ £ 9  . (2.29)
Po -  Pi ^

Now from ( 2.21) we have

TTl -  P i  =  - p o .

Squaring both sides gives

7rf -  27T1P1 + p i  =  (mc)^ + P 1 + P 2 + P 3

Trf -  27TiPi ~  (mc)^ +  Trf +  713.

From this we can obtain an expression for p i in terms of front form momentum variables

so altogether we have
■̂1 “  "̂ 2 ~  "̂ 3 “  (rnc)^

  2.1

and

Ps — (2.30)

From ( 2.21) we have

Trf -  ttI  -  TTg -  (mc)^Po =  P i -  7Ti -  - i  - --- ---- ---- 7T1
27Ti

_  (tt^ +  (me) 2)
27T1

From ( 2.23) and using ( 2.21) and ( 2.31) we obtain

g l =  =  23^%'
 iiPHmc)^) y 7r2 4-(m c )2

27T1 _  V /

and from ( 2.25), ( 2.30) and ( 2.31) we have

(2.31)

_ (S^+(7nc)2) y TT̂ _j_ r ^ c )2
27ri _  V /

We can show that these relations define a canonical transformation between the front and 

instant forms. A fte r some algebra we obtain

dTTiAdy^ = -------- — --------^ y ^ p ip s d p iA d p s F d p iA d y ^ ---------— — dpshdq^  -  . ■ . „ -d p s A d p i
'PoiVo-'Pi) P o - P i {Po~Vi)

(2.32)

and

divt A dy* =  dpt A dpi 4- -— ^ \ ^ dp( A dpi 4- dp« A dy* 4- - - - - —— dpt A dy^
P o (p o -P i)^  { p o - p i r  Po -  p i
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where we have used dps Adps - 0  and PsPtdps A dpt =  0. Adding this last expression to 

( 2.32) gives

dwi A dy* =  dpi A dq
sj

i À

as required.

Since the Hamiltonian is cp^ from ( 2.31) we have

(ts? +  jm c f)

2.2.2 In s tan t and Front Form  Q uantum  M echanics in  3 + 1  Spacetim e  

Quantization in the Instant Form

Define the coordinates (p^,ÿ*) as follows

Pi — ~q^ and y* =  (2.33)

These are canonical coordinates since they are related to the (pi, y*) system via the gener­

ating function /  =  —y*y* where we sum over i. They are the canonical coordinates adapted 

to  the instant form horizontal polarisation or instant form mommentum space since

A -  A
dq  ̂ dpi ■

Introduce the following polarisations 

then

H p  =  L^(jR ^d^y) and H p  =  L ^ ( B ^ d ^ ) .

The pairing leads to a unitary map between H p  and H p

_ 1{Upp(f)p){g) =  -— /  exp[iq.q}(f>p{q)(Pq 
(27rn) 2 J -o o

1 r°°
{Upp(f)){q) =  — —T /  exp[-«g.y](^(ÿ)d^ÿ.

(27rn)2 J - o o

This map intertwines quantisations in  H p  and H p. For example the y* can be quantised 

in H p  and H p  to give the self-adjoint operators

Qp =  y' and Q p  =  - i f i A

and it  is easy to show that

Q p  =  UppQ^pUp p.
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Sim ilarly the pi can be quantised w ith  respect to P  and P  to give the self-adjoint operators

P%p — and P.p =  -ÿ *

and we have

P^p =  UppPipUpp.

We can also quantise the front form momenta 7r% in H p. They are represented by the 

self-adjoint operators

and

=  (2.34)

where g° =  (| ÿ  4-m ^)&. Notice tha t II^p  is negative definite so the spectrum o f the 

quantum observable coincides w ith  the range of the classical observable as required.

From ( 2.28) we have
1 t  -

y

so 6  P, 1). However y^ does not generate a complete vector field so can only

be quantised as the symmetric operator

^ 2g « V  + 5 I ) )  ■

We can show tha t this operator is maximally symmetric. From ( 2.29) we have

j
1

so the y^ can be quantised in  H p  to obtain the self-adjoint operators i

n = w  ^  2 t è + t ) )  • 1

Clearly we have

H p  =  c f .

Quantisation in the Front Form

Define new coordinates (Wi,ÿ*) as follows

TTi =  —ÿ* and y* =  Wi.

The coordinates (TTi.y*) and (Wi,y*) are related by the generating function /  =  —y*y* i.e.

a /  , _  a /

n o



Consider the polarisations

” = { é } -
We have

Mu =  7:  ̂ and « 5  =  i ^ R + x  R ^d ^ g ),

Define a subspace of H n  as follows

H J  =  {</> G H n : f  -4 W - r  exp[®ÿ.y]d^y G x d^ÿ)}.
J-oo v!  y I

Clearly^ H j  = i  H ^ 0 L ^ (B )® L ^ (B ). This is the H ilbert space we shall associate w ith  H 

from now on.

The pairing construction leads to the following unitary map between H ^  and H p

/ oo 1
0 {y) exp(iÿ .y)- j = = d \

-00 V 1 y I
poo poo poo y----------

(^nn<% )fe) =  ^  A o o A o o V I

I f  we quantise the front form position observables in  H j  we obtain

Now T ji is maximally symmetric (see Appendix 3) since it  can be identified w ith  the 

closure of iT n  ® /  <8) /  on i H j  0  L^(JR) 0  L ^ (B ) in iH $ 0 A ^(B^). Also Yg and are 

self-adjoint since they can be identified w ith  the closures o f /  0  0  I  and I  0  I  0  y^.

Recall tha t the tensor product of self-adjoint operators is essentially self-adjoint so the 

closure is self-adjoint.

I f  we quantise the front form position operator in H p  we have

Again is maximally symmetric since it  can be identified w ith  the closure of 11—0 / 0 / .  

We know tha t Y9 and are self-adjoint since y^ and y^ generate complete vector fields 

on X B  X JR.

Now consider the front form momentum observables. I t  is easy to show that

" i n  = -  f ] ^ )  “ d n ,n  =  - m ^ .

^We use an extra subscript 1 as in Hn denote a Hilbert space or operator from the 2-dimensional 

theory described in the last section.
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A ll these operators are self-adjoint since the vector fields d/dy^ are complete on IP?. Also 

H m  is negative definite since it  is the closure of i l l i n  0  /  0  J on 0  A^(B ) 0  L^(JR), 

We can quantise the front form momenta in H p  to obtain the self-adjoint operators

Clearly is negative definite because i t  can be identified w ith  the closure of i l l j j j 0 j 0  J 

and since (x{A 0  B ) =  a {A )a {B )  we have =  a - ( i l l ju ) . l  and is negative

definite^.

The fact that y* and tt* can be quantised in  both H j  and H u  does not lead to any 

inconsistency because

=  ^ n n ^ ^ n n  — ^ n n ^ iï ï^ n n -

We now tu rn  our attention to the quantisation of cartesian position in  the front form. 

We have

These can be quantised in H p  to obtain self-adjoint operators because

d 2ÿ^ÿ® d
dÿ^ iy^ +  (me)2) d^^ 

is complete on R ?  x R x  R  (Appendix 4). From ( 2.37) we have tha t

d 2y^y^ d , y^
%  -  + y +(mcf)

The remaining component of the cartesian position is given by

1 27rfy^
g

t9  +  (me)-

or
1 2ÿ^^

« =  (2.38)

We can show that can be quantized in H p  to give a self-adjoint operator because

H- (mc)2 dÿ^

is complete (Appendix 5). We have

OL =  f A  4. 1 A  f —A ! A _
^   ̂ \ V ^ - \ r  { m c ) ' ^  d ÿ ^  2 d ÿ ^  \ ÿ ' ^  +  { m e ?

‘cr denotes the spectrum of an operator
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=  _ •*  (  d {y^ +  (mc)^)2y^ -
\ ÿ  +  {m e? dÿ^ (ÿ2 +  (mc)2)2 J

^  a 2ÿ ^ ( ÿ ' +  (m c)^)\
\ ( ÿ  +  {m e?) dÿ^ (ÿ2 4. (mc)2)2 j  '

We cannot quantise the cartesian position operators directly in  H J  but using the 

pairing map between HjJ and H p  we obtain

Qn =  ^ + 2 t ^ g ^ + + ( - a ) ^ 7 ^ ^ , ( ( - n .n ) - + ( - n 3 n ) ^ - ( - n ,n ) ^ + ( m c ) ^ )

“  ^(H?, +  (m c)2 )^" ®'“ ( n 2 + ( „ c ) 2)2 ( ^ 2n +  ^ 3n “  H?n +  (m c f)  (2,39)

and

«■= î I t S î -» •

We can quantise the cartesian momenta pi in H p. We obtain we following self-adjoint 

operators

so

and =

Since pi ^  1) we can take

Pin =  % n -^ n ^ n n

and P ,„  =  n .n .
2I I in

Also H  € C °°(toM ir,n , 1) and can be quantised as the self-adjoint m ultip lication 

operator

H rT  =  C =
y +  {mey

^ 2 ÿ i  ;  '

Notice that H  cannot be quantised directly in  H n  so we are free to use the pairing 

map to obtain

f fn  =  - c ' 2 n +  M ^
2I I in

C o n n e c tio n  betw een th e  In s ta n t  and  F ro n t F o rm  P ic tu re s

The pairing construction gives the following unitary map between H ^  and H p.

{ U ^ p M i t j  =   ̂ 3 /  '!'n (!/)exp(»((? *+5°)y ‘ +  q V  +  g^y^)l - ^ > ^ 4
( 27T /i)2  J-CO \  g /  V  I 2/ 1
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and

(Bpn<?^)(y) =  y - ^ 3  /  M £ )® ^ P [-K (g ^ + g ° )2/ ^ + g V + ^ / ) l  J \  \d%
(27rn)2 ./-o o  \  Q J ^ "

We can show (Appendix 6) tha t this map completely intertwines quantisations w ith  respect 

to  the front and instant forms i.e.

Y p  = Unp^nUpjj, Upp =  t/jjpIIinUpjj, Q p  = (^npQn^n

P^p =  ~  ^n P '^n ^pn *

2.3 K inem atic and Dynam ic Subgroups of th e Point, In­

stant and Front Forms

W ith  each form is associated a subgroup of the Lorentz group which leaves the moment 

invariant. This subgroup is called the kinematic subgroup. Generators of transformations 

tha t do not leave the moment invariant are called the Hamiltonians of the form. We shall 

say tha t these generate the dynamic subgroup of the form although only in the point form 

does the cannonical choice of Hamiltonians close to form a subalgebra. I t  is im portant 

to identify the generators of the kinematic and dynamic subgroups of a particular form 

because many of them w ill have a physical interpretation. Some o f the generators of the 

kinematic subgroup w ill correspond to momenta for example. We shall investigate the 

dynamic and kinematic subgroup structures of the point, instant and front forms.

2.3.1 Kinem atic and D ynam ic Subgroups of the Point Form

For the case of the point form it  is very easy to isolate the dynamic and kinematic sub­

algebras. From formula 0.17 page 6 [47] we know that a general in fin ites im a l Lorentz 

transformation can be w ritten

where Suppose we choose a transformation where the only non zero e’s are

and of course then

- 1-

=  g° -  (2.41)

’See Appendix 7 for finite forms
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and
gl g l 4- glt'g^

=  gl _  gOigO. (2.42)

We can also express this transformation in  terms of light cone coordinates. Since r  =  ]

£ 1 i f  we put a  =  we have

r  —> t  H- aq^ +  ((g^ +  a t?  +  g^  ̂ +  g^^)2

=  i  +  ag H- (I g 1̂ 4-2o:gf)i ~ t  +  ag+  | g |

— t  +  aq+  I g j + 0! r ^  =  r  -f oig ( 1 +  Y~~t ) .
I l l  V i g l y

For points on the light cone w ith  apex at the origin we have f  =  — | g [ so that

r  —> r  (=  0).

We also have tha t =  g  ̂ so

—> g  ̂ +  CKf =  4- at.

For a particle on the light cone through the origin this becomes

y i y i -  û: i g 1= y i -  q: j y I •

F ina lly

y^ -» y^ and y^ y^

[62]. The fact that r  —> r  shows tha t this type of transformation leaves the light cone w ith  

apex at the origin invariant. We can also show this just using M inkowski coordinates. 

Supose (t, g) lies on the light cone i.e. t  =  — j g |. P ut a ~  — t hen from ( 2.41) and 

( 2.42)

t' =  gO 4- aq^

and

1 q' 1~ {{q  ̂ 4- aq^?  F  g  ̂ 4- g  ̂ )^

= (I 9 +2ag°ĝ )i =| g | ("l + =| g j 4-ay~ |

=  —(g^ +  aq^)
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since | g |. Therefore t ' — — \ ^  \ and the light cone is preserved. This effectively

demonstrates the invariance o f the ligh t cone under boosts. We shall denote the generators 

o f the special Lorentz transformations Therefore we have shown tha t the belong 

to  the kinematic subalgebra of the point form.

Suppose now we consider a transformation where the only non zero e’s are and 

In  this case

4- ~

and

I f  we interpret the transformation passively we might put

t ' ~ t ,  q ^ '= q ^ , q ^ '- q ^  +  ctq^  ̂ q ^ '~  q  ̂ -  aq^ (2.43)

where a  — I t  is also possible to express this Lorentz transformation in  terms of light 

cone coordinates. Since

T =  t - h \q \  and y =  q

we have

r '  =  t  +  [(gi -  +  g^^ +  (g^ +  aq^)‘̂ ]^

t  +  (g4^ — 2aq^q^ +  a^g^^ +  g^^ +  2oi(fq^ 4- 

=  f+  I g 1= T.

Sim ilarly
^  1/ 1 3 1 3yi. _  — gj- _  Ciq̂  =  — ay

y 2 ' =  g2' _ ^ 2 _ y 2

y^ ' =  q^' =  ĝ  +  aq^  - 2/ ^ 4-  a y ^ .

Taking the active point of view we would express this as

T  - > T ,  y ^  ~ ^ y ^  ~  - >  y ^  y ^  +  a y ^

[62]. Notice tha t we have r  r  showing tha t this transformation preserves the ligh t cone. 

We can also see this just working w ith  the Minkowski coordinate description ( 2.43). 

Suppose t  lies on the light cone w ith  apex at r  then t =  r — ] g |. Now

1 q' != +  {q̂  +  W Ÿ  +  (ĝ  -  «g^)^)^
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=  (g  ̂ +g^ +  2orĝ ĝ  +  a^g  ̂ +g^ -  2og^g  ̂+  cx̂ ĝ  )% =1 4 I .

Also

t ' ~ t

so tha t

t ' =  r -  I g' I .

Therefore (i, g) is moved to  a new point on the light cone. This démontrâtes that the ligh t 

cone is invariant under spatial rotations. The generators of spatial rotations, denoted ~T^, 

also belong to the kinematic subalgebra of the point form.

I t  is easy to show tha t none of the translations leave the ligh t cone invariant. For 

example under p i

t “ >t, g ^ -> g ^  +  o, g^ g  ̂ g^ -+ g^.

g^a

Clearly t ' — t  =  ~  \ q \ whereas

I i  1= ((gi +  Oif +  q̂  ̂ +  g3 )̂s =  (1 £ 1̂  +2g^a)^  =1 g 1  ̂  ̂ ^

The last term in the above spoils the invariance o f the light cone since w ith  i t  ^  | g' |.

Summarising we see that the kinematic and dynamic subgroups of the point form  are 

the homogeneous subgroup and the group of translations respectively.

In  a sim ilar way we can show that the generators of kinematic subgroup of the instant 

form are ~P̂  and and the Hamiltonians are and IT°.

The Front Form Operator Representation of the Poincare Algebra in Basis 

Adapted to the Point and Instant Forms

The Poincare Algebra is given by

== (2^14)

(F ’ .p ' ']  =  0

[50) page 150. Suppose we put

p '‘  =  p f, J “ ‘ = pV .  7 ’ = pV - ? V  (2.45)
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where p° =  (p ^+ m ^)2. These classical observables obey the commutation relations ( 2.44) 

under Poisson bracket { , }  which is defined in the usual way from the symplectic 2-form 

as

f  f  q l ==
’  d q ^  d p s  d q ^  d p s  '

For example

p ° ‘ , F ]  =  n«P” - r ) “ F  =  - P °

and

=  _pO _  _ p O

as required. Also

whereas

c Ps i  ~rit
=  PoOis—  ~ P i =  —p  ~  —P  .

Po

As a final example consider

[T^,P^] =  =  F

where o f course we have assumed i  ^  j .  We have

{ F , F }  -  { ~ p i ( ^  +  g 'P j ,  - P i }

— Pj^is^is *b Pi^js^is'

Since i  ^  j  this becomes 

as required.

As is well known these classical observables can be quantised geometrically in  Tirp 

to obtain an operator representation of the Poincare algebra. We can show tha t when 

expressed in terms of front form variables the classical generators are in  C °°(to M p ,n . 1) 

and in fact can be quantised to give self-adjoint operators in W hat is more the pairing 

maps effect a unita ry transformation between the representations.

In  terms of front form variables we have

~t32 _3  ___
j  - y  tt2 -
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-  g - , :

so l f  +  { m c Ÿ \ ^

i f
-rlO

-f3\J — 5—  / U * \ __
J  =  - y  7Ti -  I = ■■■ — ------  } 7T

J  =  - ÿ '^1

p O _  / 7r^ + (m c )2 \  1 _  / 7r f - 7r | - 7r | - ( m c ) 2\
^  -  (  2.1  ) '  ^   2Ï I ------------- ) '  ^

In  Appendix 8 we show tha t these classical observables generate complete vector fields 

and can be quantised to give the following self adjoint operators

^ y 2 ^ dy^J

5if-a(»‘|r  + |)
—1 f  - ÿ 2̂  -  (mc)2 \  —

^  \  2y i j  ^  ^ 2y i ^  ^

We can show tha t these operators are un ita rily  related, via the pairing maps, to the usual 

representation of the Poincare algebra in  H p . For example

== -z)*g3 ==

Clearly € C°°{toM i, P, 1) and in  fact generates a complete vector field so tha t i t  can 

be quantised in  T ip  to obtain the self-adjoint operator

® Now we shall show that

^np'-^nn ‘̂ n ^ n n ^ p n  

W ell

C % n7f t^nn =  ( - D ^ n  +

Ur,TsUr;r,J^Ur,r,U-^r, =  J ? .

’This can also be written
- t3 0  1 d ------Jp ~ —iri—p=.pQ——ypo. VPo ap3

This makes it particularly easy to see that our representation of the Poincare generators is the same aa 

appears in [94) remembering that we use a different metric on the cartesian momentum space.
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=  n M + ®  +  H ) ! ) y „ 3  +  , , ^

SO

üpf'cui'/S'z/niiffpri -- (-;;*)(--;%) (̂ gârq:̂ ;r2;=ï -H ÿ ( ÿ )  +  ÿ )

_ _ 0/ . . \  t  d f  \  i î i  ÿ
 ̂ \ d t  2gO(ÿ +  g i ) j  2 gi+gO

a , g V   ̂ ÿ

(gi +  ÿ )  agi 2 f  ( ÿ  4- gi)  ̂ 2 (ÿ  +  ÿ )

2 f { f ‘ +  q'-) { f + ' t ) )  '

*  + 1®)= - *  (î’o é + # )  '!
as required. As a further example we shall show that

^ n p ^ n n '^ n  ^ n n ^ p n  “  "^P-

We have

so

^nn*^n ^ n n  ~  ( “ ^ n )^ n  “

^n p ^ n n '^n  ^ n n ^ p n  ~  +  flp Y —

ag2 \ g i  4-^ y agi 2ÿ(gO +  gi)

dq^ \ ÿ  4 - ÿ y  agi 2 ÿ ( ÿ  4- gi)

dq2 gi 4- ^  agi 2 ÿ ( ÿ  4- gi)

;^2 ^  .* g ^ ÿ  <9 , .. ÿ ÿ
4~î7ig Tczô —  fwT ”h

ag3 agi 2 ^ (g ^ 4 -g i)

= -  ̂ w ) ' ' %)
whereas according to [94] or using geometric quantisation

as required. In  this way we demonstrate that the classical Poincare generators can be 

quantised in  the instant or front form pictures and lead to operator representations of the 

Poincare algebra tha t are un ita rily  related by the pairing maps.
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2.3.2 K inem atic and Dynam ic Subgroups of the Front Form

but this is not acceptable because

Tfl =  — -7To -  7T1.

Instead we put

p i  =  - ttq — •n'l +  Ai(-27ro7Ti -  ~  (mc)^)

and choose Ai so as to make p i  independent of ttq. I f  we put A =  — l/27ri we find that

However we can put

and

p i  =  - tti +  +  (?nc)^)

^  (7r f -  7T̂  -  7r f -  [ m c f )  
27Ti

=  —7T2 

P^ =  F  ~  —7T3

p(l =  =  - -7Ti.

(2.461

and

However we cannot put

J ^ i — F y l  — y^Tfi.

Again we follow Dirac and seek A^i such that i f  we put

j3 i  — - y i? ^  -  y ^ ( - 7To -  7Ti) +  A^i(-27To7ri -  F  — (mc)^)
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We shall now follow Dirac [75] in  calculating the classical generators o f the kinematic and |

dynamic subgroups of the front form. Basically, since we work on the light front r  =  0 

we must find generators tha t do not contain the variable conjugate to  r ,  i.e. ttq. We 

shall denote the elements o f the new basis and P*". We cannot simply take over the 

expressions given by D irac since he uses different front form coordinates.

Nievely we m ight put

p i  =  7t1

Sim ilarly we can make the assignments

r 2 3 ____ 2,.3  _ 3 _ 2 ______ _2 _  „.3 ^

JÎJÏ



then is independent o f ttq. Choose =  y^/27ri then

=  -y^TTs +  ^ ( ^ 1  -  7T2 -  TTj -  (mc)^).

S im ilarly we cannot put

=  TT^yl — y^Tri.

We must choose A^i such tha t

j 2i  =  -TTgyi -  g ^ ( - 7To -  TTi) +  A^i(-27ro7Ti -  7T̂  -  (mc)^)

is independent o f ttq. Choose A^i =  y^/27Ti then

j 2i  =  - y i? ^  +  ^ ( t t ?  -  7t |  -  7t |  -  (mc)^).

According to Dirac the generators o f the kinematic subgroup w ill consist of those 

and tha t are simple functions of the front form canonical variables, the others w ill 

generate the kinematic subgroup. We are therefore led to posit

{ p 2 ^ p 3 ^ p 0 j 0 i j 2 3 }  (2 .47)

as the generators of the kinematic subgroup and

(2.48)

as the generators of the dynamic subgroup. In  fact it  is quite easy to show exp lic itly  tha t 

the generators ( 2.47) leave the front invariant and so are indeed the generators o f the 

kinematic subgroup. We shall show that P^ =  - i r i  =  +  y i preserves  ̂ the ligh t front

qO +  gi =  0. Using 8.67 page 261 [63] we have

g° g'̂  +  CK[g°, +  y i] =  g° +  a

and

qi =  q l + 0![g i,p° +  y i] =  g^ a.

9
is the generalised eigenvector of the light front position operator with eigenvalue A (Appendix 11) clearly 

multiplying this by exp(m(g^ + q ^ ) )  gives the eigenvector with eigenvalue A +  a. This much is required of 

any sensible position and translation operators. See equations (37) and (40) pages 61 and 62 [92].
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^It is interesting to note that generates quantum mechanical translations. We have i

Now
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The effect of the generator on the other coordinates is irrelevant. I t  is obvious from  these 

expressions tha t

g i' +  g°' =  0

so that generates transformations that leave the front invariant. F ina lly  we show tha t 

also preserves the light front. Since — (y° +  P^)g^ we have

qO gO 4 . a[qO , (pO 4- p l ) q 3]

=  gO 4-a[gO,yOg3 +y ig3 ]

=  g° +  a[g°,p°g^J -  a[g°,p^g^]

=  g° +  a[g°,p°]g^ =  g° +  aq^

and

Clearly

g  ̂ g  ̂+  a [g \p °g^  +p^g^]

=  + 0'[g \p^g^]

= g  ̂+  o:[g^,p^]g^ =  g  ̂ -  aq^.

g°' +  g^' =  g° +  g  ̂ =  0

as required.

Notice tha t the generators of the kinematic subgroup generate Lorentz transformations 

o f points on the ligh t front. Consider the transformation generated by The condition 

for it  to be a Lorentz transformation is that the interval

be preserved. Under this goes to

(g° +  aq  ̂-  (g° +  a f ) Ÿ  -  (g^ -  aq  ̂-  (g  ̂ -  ct^)Ÿ  |

=  (g° +  ag^)^ -  2(g° +  og^)(ÿ  +  aq^) 4- (g® 4- ag^)^ I

—(g^ — aq^)^ 4- 2(g^ — ag^)(g^ — — (g  ̂ —

■i
=  g°  ̂ 4- 2ag°g^ -  2 (g °ÿ  4- a g °ÿ  4- ag^g°) 4- 4- 2 o ÿ ÿ

-g^^ 4- 2ag^g^ -  2(g^g^ -  ag^g^ 4- ag^g^) -  (g  ̂ -  2 a q ^ '^ ) ''
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where we have abandoned terms of order The coefficient o f a is

-  g V  -  +  ÿ ÿ  +  g^g^ -  g ^ÿ  -  gSgi +  ÿ ÿ .

This is identically zero due to g° +  g  ̂ =  0 and 4- g  ̂ =  0 so we are left w ith

g°̂  -  2gV 4-g°̂  -  ĝ  ̂4- 2ĝ ÿ -  = (g° -  g°)̂  -  (ĝ  -  ĝ )̂

as required.

In  the same way it  is easy to show that the generators ( 2.48) do not leave the front 

invariant and so are the generators of the dynamic subgroup. In  fact i t  easy to  see tha t 

we have the correct Hamiltonians since these are well known to be the generators o f the 

rotations around the two axis tangent to the front and a generator tha t moves the plane 

along its normal [64]. Now the generator moves each point on the front an equal

distance parallel to the g  ̂ axis and so shifts the front along its normal. Also we have

ZTCi

and

- y ‘ p3 -  y^p'' =  -  q^p^ =

and these are the afore mentioned rotations.

Clearly generate Lorentz transformations.

I t  is im portant to notice that while the point and instant forms have four Hamiltonians 

the front form has just three. Dirac believed that this gave the front form an advantage 

when it  comes to developing re la tiv istic ly invariant interacting field theories. Here the 

generators are expressed in  terms of the field variables. Only the Hamiltonians contain 

extra, complicated terms arrising from the coupling terms in the Lagrangian. I f  there are 

fewer complicated generators then i t  should be easier to verify Lorentz invariance®.

We wish to express the Poincare algebra w ith  respect the generators and P^ since 

they are more natural to the front form. In  this new basis the Poincare algebra becomes

PP] = g '̂PpP -  gP-PP'' (2.49)

[P^,P"] =  0.

*See also Conclusion and Prospect.
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We can show tha t the classical front form generators satisfy these commutation relations i
(see also Appendix 9). For example

=  p i  _  pO

and we have

{ j O l . p l }  =

V 4 4  )

F [m 
27Ti

_  ^  =  p i  -  po

y^T̂ z -  ŷ T̂ 2

125

^(-.y iy i-i) d ( - { txI  -  7t| -  7rf "  (m c)^)N 
(9yi d-Ki 27T1 j

as required. Next consider

[J31, _  _ ^ 3 2  J l3  +  ^12 J33 _  ^33 j2 1  ^  ^13 j2 3

=  _ j3 3 _ j_  j 2 1 ^  j2 1

whereas

U » ,  » * '» ’ -  -  ' ’ » • )

- - (-g),v. Î
_  (tt?  -  7t |  -  7t |  -  (mc)2) 2 _ TTgvrgy® i  _ TrgTTgy®
=   !/ -------

=  J 2i

as required. Also

[J02, J l3 ]  =  -y O ly Z S  +  -  g03 J l2  ^23 J io

=  J:'®

and

{ J^®} — { —y^TTt, (TUc)^) 4- y^TTg}

=  ( - ^ i )  j  -  (-y^)(7T3) -

.4



=  Æ

We have

[J °S F ° l =  -gOOpi +  glOpO 

=  - p 3

whereas

=  n  

=  - p ° .

Fina lly

[ J 0 \  J 0 2 j  _  _ ^ 0 0  J l 2  ^ 1 0  J 0 2  _  ^ 0 2  j O l  +  ^ 1 2  jO O

= y l0j 02

and

=  Trig 

=  - j 02

as required.

Quantisation of Basis Adapted to Front Form

We can obtain an operator representation of the front form generators by quantising 

the classical expressions geometrically in the front form momentum space. Notice tha t 

although and PP are linear combinations of and P^ we cannot simply use the 

quantisation of the la tte r derived in ( 2.3.1) to obtain operators representing JP^ and PP 

because the linearity axiom does not hold in  geometric quantisation i.e. i f  /  and g are in 

C°°{My P, 1) and generate complete vector fields i t  does not follow tha t f  +  g generates a 

complete vector field.

In  terms of front form variables we have

jo i  =  y^Tfi

=  V̂ TTs 
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Ji= =  _  f  - f  -  (mc)2)

po _ , i  p « _  p i  _  -  f '  -  f '  -  (n ic)2r - y ,  1-  - y  , P -- - - - - - - - - - - - 2 ÿ i - - - - - - - - - - - .

In  Appendix 10 we show tha t these classical observables generate complete vector fields 

and can be quantised to give the following self-adjoint operators

01 _  Jt /^rl ^  1
â f +  2 

J f  =

p i _  -  (m c f
n -  2ÿ i

Because the classical observables JP^, PP have been quantised geometriclly we are 

assured tha t the operators and satisfy the commutation relations ( 2 .49) w ith  

Poisson bracket replaced by operator commutator. We shall give just one example. We 

shall show explic itly  that

[4 S p i ]  =  i a [ p i - p i ] ,

The right hand side is

yP  ~  -  y3  ̂ — (m c f  _  fV P  (m c f  \

The left hand side is

P ut

then

2 f  I 2ÿ ‘

^ ^  g^ -  g^ -  g^ -  (m c f

(2.50)

2%/i

dz _  ÿ  4- (me) 2

W  ~  W
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Using this ( 2.50) becomes ( if  we imagine it  acts on a function / )

( f ' J î  +  0  ( ^ / )  -  ( f^ ^  + 1 )  /

= ~iî i

i d  z 
d y ^ ~ 2

+  (mc)^
2ÿ i

as required.

<5 i - m c  J  ( ^ ~  2s g n ( y ^ ) ^ l  d r l  =

or

I

2.4 M ore on the Point Form
1

For the purposes of this critique it  is sufficient to restrict ourselves to a discussion o f the I

point form  in  14-1 spacetime. Recall that the following expressions define the ligh t cone J

coordinates (r, g^)

T - x ° ~ { - \ x \ ,  y ^ - x ^ .  (2.51) j
The moments are the manifolds corresponding to constant values of r  and are clearly i

i
backward lightcones w ith  apex on the time axis. I f  we use the ligh t cone time r  to [

parametrize the path of the particle then the variational principle j

^  f d . ^ Ÿ V  (2.52) ]

is equivalent to tha t usually employed in describing the relativistic motion of a free particle. .1

Since

x^ — r — \y^ \ and x^ — y^ ; I
we have 1

and
dx^ __ dy^ 
dr dr

so the variational principle ( 2.52) becomes
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so 1
L  =  —m(? — sgn{'if) ^ ^  .

Now let r '  denote the proper time of the particle then

dy  ̂ _  d y ^ ______ g .  _  cp'-

We have

dw d r +  sgn(y^)p^‘

dL7Ti =  —

m c ^ i (  1 -  (s g n {y ^ ) )

•sgn(y^)mc ( l -  s g n { y ^ ) - ^
i \  ~è

c du)

=  - s g n [ f ) m c  ( l  -

P i  -  sgn(g^)po. (2.53)

Since

T T i - p i ~  -sgn{y^)po  (2.54)

we can square both sides and use the mass shell condition to obtain

Also from ( 2.54) we have

PO =  - s g n { y ) { T T i  - P i )

/  i\^i +  {mcf =  -s g n {y ^ )  — ------.

The instant and point form positions and g- of the particle at t =  r  =  0 are related by 

the equation

- y ^  +  -^sgn{y^)y^  (2.56)

Now

so

p^ _  Pi f u  (  I -  (m c fsgn{y4
po Iv r f 4 -(me) 2
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We can rewrite ( 2.56) as

qi =  y i _  ELsgn{q^)y^ =  -  ~sg n {q^ )
Po \  Po

and therefore

I t  is easy to show that ( 2.53) and ( 2.58) and their inverses ( 2.55) and ( 2.57) constitute 

a canonical transformation between the point and instant forms.

I t  w ill be noticed that many of the dynamical variables given above are discontinuous 

across the apex of the backward lightcone. This is just one indication tha t the conventional 

treatment presented here is rather formal and ignores many subtleties tha t when addressed 

force us to modify the scheme dramatically. Notice that i f  we insist on employing ligh t 

cone coordinates as a global description of spacetime then extra care w ill have to be taken 

in  overcoming analytic problems tha t may result from the fact tha t they are not even
I

related to the cartesian coordinates. This is immediately apparent from ( 2.51) since the j

transition functions are not continuously differentiable at =  0 . To avoid this we define I
two new coordinate charts as follows. The first has as its patch the open submanifold o f i

spacetime corresponding to  >  0; call i t  M"^. The coordinates (r'^,g^'^) are related to  ’

the cartesian coordinates via the transition functions

r'*’ =  +  x^ and g^^ =  x^. I

I
The second chart has as its patch tha t region of spacetime, which we shall denote M ~ , J

corresponding to x^ <  0. The coordinates {r~  ̂ y~) are related to the cartesian coordinates |

v ia  >i

and y =  x^ .

These charts are related to the cartesian coordinates however they do not constitute 

an atlas for spacetime since the world line o f the observer, the region of spacetime corre­

sponding to X =  0, is not covered by either chart. The new charts are merely the restriction 

o f the light cone coordinates ( 2.51) to and M ~  so tha t point form quantum mechan­

ics is really based on spacetime modulo the observers world line. In  1-4-1 dimensions this 

is clearly M"** x M ~ . Even physically we can see that this is the correct arena for the 

discussion of the dynamics of a free particle since i f  the particle were to pass from 

to M ~  its world line would inevitably intersect that of the observer and some interaction 

would result. A  purely kinematic description of the dynamics would l)o inappropriate.
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The presence of the observer splits spacetime into two regions tha t are classically and 

quantum mechanically disjoint. The quantum description of the entire system w ill be the 

direct sum of the representations in  M"** and M ~ . Here i t  w ill be sufficient to disscuss the 

d ifficu lty o f quantising where the phase space of the instant form is described by the 

coordinates p f  € R  and E and the phase space of the point form is desribed by

the coordinates ttJ* e and G R'^. From now on, to ease notation, we shall om it

the superscript +  which shall be understood. The point and instant form pictures o f M ’̂  

are related by the canonical transformation

or

TT? +  (mc)2 y ’ 27ri

1 Pog^
y  =  --------------- , 7T1 =  P i  -  PQ.Po - P l

2.4.1 Q uantisation  in  the In s tan t Form

Consider the polarisation P  — d /d p i then Tip ~  L^{R^ydq^). We have

d

which is maximally symmetric and

Q Ÿ  =

which is self-adjoint and positive definite as required by the classical constraint q^ >  0 . 

Introduce new coordinates (p i,g^) where

Pl  — -g ^  and g  ̂ — p i.

Since p i G B  and g  ̂ G B"^ we have g  ̂ G B  and p i G R 4. I f  we quantise in the horizontal 

polarisation i.e. w ith  respect to P  =  d /dp i so H-p — L^{R ,dq^) we obtain

P lF  =  - 9 '

which is self-adjoint and

dgi
=  - m -

which is also self-adjoint because d/dq^ is complete on B . There are two problems here. 

Notice that whereas P ^  is self-adjoint P{p is maximally symmetric. This threatens to 

make the instant form inconsistent. Also is not positive definite. However we can 

solve both these problems simultaneously by identifying the correct physical H ilbert space.
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We must restrict H p  to H ~  — E {B 4 ,  which w ill comprise those functions in H p

tha t are Hardy class. On the operator Q ~  w ill be self-adjoint and positive w hilst P t  

w ill be maximally symmetric. This is most easilly seen by noticing tha t Tip  and Ti— are 

un ita rily  related by the pairing construction which leads to the map

{U p p M iq  ) =  -  1- /  <^p(g^)exp(ig^gl)
(27r?i)2 Jo

w ith  inverse
1 roo

{Upp(l)p){q^) =  ■ — f  /  <^(g^)exp(-$g^g^)dg\
(27T?i)2 J - o o

I t  is easy to show that

Qp =  U p p Q ^  ̂ PP P ip  =  U ppP tp^pp-

Quantisation of point form observables in the instant form picture leads to compli­

cations. Since 6  C°°(toM p, P, 1) i t  can be quantised in  H p  to give the symmetric 

operator

7ï0 4 -7 ï l\^  1 . I

1

P \ - f P q ^ d q ^  2ÿ  4- y

In  fact this operator is maximally symmetric. To see this notice tha t the solutions to the 

equations

{Y p ± i)(l> p  — 0

are given by

j  e x p [ f i ( g ^ 4 - ÿ ) | .

(Appendix 11). Consider

I I
P ut 4- ÿ  to obtain

/“OO 2
/  exp{—2u )du =  -  <  OO.

Jo 2

Also

J  exp(2 ( ÿ  +  'f))d q ^  =  exp{2u^)du^ >  co

Therefore Y-p in H p  has defect indicies (1,0). O f course Y-~ ought to be positive definite, 

we shall ignore this added complication. S im ilarly we can quantise in H p  to obtain the 

negative definite self-adjoint operator

H in  =  - ( ^ 4 - g M .
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Superficially at least it  may appear that we have sucessfully quantised the point form 

observables in  the instant form but this is not really the case since for this we require 

the restrictions of Yp and f lm  to  H p  and i t  is d ifficult to see i f  these are well defined. 

I f  we cannot quantise and t t i in H p  then we cannot use the pairing map to  find their 

representations in  H p. The instant form cannot accomodate point form observables.

2.4.2 Q uantisation  in the  P o in t Form

I f  n  =  d/dy^ then

Tin =  P  ÿ )  .

We can quantise g^ in  H u  to give the self-adjoint operator

yn  =  4

which is positive definite as required. However recall that Y-^ was maximally symmetric. 

Is i t  possible tha t quantising tt i and enforcing the classical constraint t t i <  0 w ill compell 

us to modfify H u  in such a way tha t w ill become maximal symmetric? Unfortunately 

we are stuck again because the vector field d/dy^ is not complete on so we cannot 

quantise t t i in H u  to obtain a self-adjoint operator. The best we can do is find a self-adjoint 

operator tha t represents a classical observable that approximates tt i. Let 77 G C°°(B"^) 

such tha t

77(0 ) =  0, 7?(g^) 6  (0,1) for g^ >  0 and g^ G A -  Aq, p(g^) =  1 for g^ G Ao =  [a, 00) 

where a is some real constant >  0. Suppose we put

then (7 is a bijective map B*^ —> B , i.e. a has an inverse cr~^. Consider the classical 

observable 77(g^)7r i.  This is identical to t t i when g^ G Aq. This classical observable can be 

made to  approximate tt i to any accuracy by choosing a sufficiently close to 0. Now the 

vector field 7]{y^)d/dy^ is complete on B"^. This is obvious because the integral curves are 

given by g^ — cr~^()  ̂ and cr~^ is a bijective map B  —> B"*". We may therefore quantise

^We have cr{y^) — t. Differentiating with respect to t  we obtain

1 dŷ
T}{y^) dt ^

as required.
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V{y^)'^i geometrically to obtain the self-adjoint operator

1 d T}{y^) 77' (g^)'

This operator is not negative definite. To see this notice that the generalised eigenfunctions 

o f H i are given by

where A G B . These satisfy the usual orthogonality and completeness relations (Appen­

dices 12 and 13). We could obtain a negative definite point form momentum operator 

by restricting H u  to F ( B " , I I i ) B n  but i t  is diflScult to give anything more than a very 

im p lic it definition o f this space. There are other ways of constructing negative definite 

operators from but they are all rather contrived. For example we could take

H in  =  — I H i I . (2.59)

The only way of obtaining a more concrete realisation of this o p e ra to r is  via a generalised 

eigenfunction expansion. H i is self-adjoint and has the associated resolution o f the identity

( g ( A , n i W ( 4 ) =  f  0 { a , y \ U i ) < G [ a , y , n i ) \ < t > a ( y ) > H „ d a
J —00

[70]. Therefore

roo
( -  I n , I ÿn)(y') =  /  -  I A I dx{E{X,

J —00

/•OO

=  /  -  1 A I G(A, y \  n i )  <  G(A, y, H i)  | 0n(y) > h „  d \.
J  — OO

Having obtained a negative definite point form momentum operator we tu rn  our attention 

to  quantising the Hamiltonian. We have

1 (i “ ■ I

This operator is self-adjoint and positive definite^^. We can now ask wether this Ham il­

tonian leads to sensible dynamics. An in itia l state (j>̂  w ill evolve as

% ( y ')  =  ^ ° ° G ( A ,y ,n i) e - “ 5W<^'+<'"‘=>“> <  G (A ,y ,n O  | 0^ (y )  d \

“̂Notice that j 111 | has a degenerate spectrum. Its generalised eigenvectors are discussed in Appendices 

14, 15 and 16
^^Had we simply ignored the fact that the point form momentum operator should be negative definite 

we would have ended up with an indefinite Hamiltonian. This would have been difficult to interpret.
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or in  terms of the generalized eigenvectors G ( j U ,  p , w , of H j i  (see Appendices 17,18

and 19)

JpOO
o E  y^) e xp (~ irw ) <  | G(//, p, w , % ,  y) >  dw (2.60)

mĉ  III/HU

where

g^/^[27rhy;(g)] exp ( ^ ( ^  +  (g )^  -  (m c)2)(j(g ))
1/2

2

Since Yq is simply the self-adjoint m ultip lication operator there is a notion of localisation 

on the light cone. We have

(F(A,Y^)<^)n(g^) =  %A(g^)<^n(g^)

so a normalised state 0n is localised in  A i f  || F (A , Y^)(/>n ll~  1 i.e. i f  the function has 

support in  A. I t  is now possible to show that a Hegerfeldt type result holds in  this model.

T h e o re m  22 A state vector in it ia lly  localized in  A q undergoes instantaneous spreading in  

the sense of Hegerfeldt when H ji generates time evolution.

Proof. Consider a C'o^(B'*‘ ) wave function (f>̂  such that supp C Aq then 

<ÿ°(A) =  [27rTi77(g)l"^g~^/^exp(-ao-(g))0?i(g)dg.

P ut X =  <j(g) so

1 f° °  {a~^{x))~^^‘̂ (j>^{(T~^{x))exp{—iXx)
■dx.

\/2ttE J - oo 773/2 (0 —l(x))

Since supp C A q integrand becomes </>n when x 6 A q since then o-~^(x) =  x. Also 

the integrand is 0 when x G B ~  Aq. The integrand is clearly C ^ ( B )  so 0 °(A) is integrable

[71] and

exp 4>o{X) (2.61)

is integrable because absolute in tegrability <-> integrability. Therefore the inverse Fourier 

transform of (2.61) is given by

F(a:) = ^̂exp + ( m c f ) ^ <ÿo(A) exp(iAx)dA.

Notice tha t (2.61) is not entire since it  is not continuous at 0. Therefore by the Paley 

Wiener theorem we have that F (x ) is not of compact support. Now

(Puiy) =  g^^^[2Trh77(g)]~^/^F(o-(g))
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so clearly ^^ (g ) is not of compact support in

Notice tha t the instantaneous spreading of an in it ia lly  localised wavefunction along a 

nu ll hypersurface does not im ply a vio lation of causal!ty^^.

Another problem w ith  the point form is tha t some of the state spaces are not un ita rily  

related by the pairing construction. For example, although form ally the pairing maps 

between J iu  and Tip  are defined by

i f ^ n (y ')  exp(i{q^ +  f ) y ' - )  [ — j - i= fdy '-  
(27rfi)2 Jo \  T  J vg^

and

{ U p ^ f > p ) { y ^ )  =  -  ^  1 f  e M - K t  +  ' f ) y ^ )  ( 1 y /ÿ ^ d q ^  (2.62)
(27Ta) 2 J-oo \  g /

i t  is not d ifficu lt to show tha t these are meaningless. Put ~  ^  +  g  ̂ so

Using this we can rewrite ( 2.62) as

.  1
TîO

f ï î L  ( = ô ^ j  (2.63){21711)2 Jo +  g

I t  is easy to  show that
-1 _  -  (mc)^
^ 2u^

and

2iA

so that ( 2.63) becomes

r  *>■ (4# )  -(-V) (4# )  '
However

— {mc)‘̂ \  ( +  {m c )^ \^
^  2̂ 1̂  j  ;

is square integrable since

r  h  ( 4 1 = ^ )  f  ( = 4 ? = ^ )  -  f
can prove other results about the behaviour at temporal infinity of a wave function that is initially 

localised on the light cone. We can show, for example, that a state vector initially localized in Ao is a 

scattering state (Appendix 20).

136



Therefore the pairing map requires tha t there exist functions € L ^ {R 4 )  whose Fourier 

transforms are also in  Unfortunately there are no such functions. The Paley

Wiener condition [95] states tha t a necessary condition for a square integrable function to 

have a Fourier transform in  is tha t the magnitude of the function A {x)  say should

satisfy
In A (x)

L . _ dx <  00.
OO 1  +  x 2

Clearly for a function in  we have A (x) =  0 Vx G JRT so the integrand in the above

is in fin ite  on a set that is far from measure zero so the integral does not converge.

We have seen that i t  is by no means easy to develop a rigorous point form quantum 

mechanics. The many formal schemes tha t have been proposed cannot be regarded as a 

solution to the problem.

Geometric quantisation yields a front form quantum mechanics tha t is entirely con­

sistent w ith  the fam iliar instant form. The pairing construction reveals that in tra  and 

interform  quantisations are un ita rily  equivalent. Modified or physical H ilbert spaces are 

a necessary feature of the theory and result in  our being able to circumvent Hegerfeldt’s 

famous no go theorem. Constraints on the ranges of certain classical observables are 

respected at the quantum level. Contrarywise the point form is catalogue of disasters. 

Coupled w ith  the success of the front form in strong interaction particle physics and 

string theory (where i t  appears as the light cone guage) i t  is easy to see why Dirac, even 

as late as 1978, was stressing the u tility  of the front form [83].

137



2.5 Appendices

Appendix 1

Notice tha t the integral defining Upp  exists and is an element of H p  for every </>n in 

since i t  is really the Fourier transform of the square integrable function and a

simple change of variable shows tha t i f  is square integrable then so is

f i t + t ) -

We shall firs t show tha t Upp is an isometry. We have

J —OO

/I ̂  I I
1 poo TjO I 7jl , -1

X : :  i : i  /  </>n(g^)exp(-i(g^ +  g W ) (  ^  ■ ) ^ ~ i = ~ d f d q K
(27T%)2 J-OO r  v l  1

=  ÿ  4- ÿ  (2.64)

d u = ( 5 - ^ j d ç l  (2.65)

Put

so

and the above becomes

1 roo roo roo 1 1

^ / o  )e x p (« H y  - y ) ) ^ ^ ^ ™ d y  (2 .66)27rTi 70 7—00 7 —00 -v/l g j Vl™^

Since ^ n /V T P ~ f is a function of Hardy class

y

has support in  (0, oo) so ( 2.66) becomes

7—00 2

1 roo roo roo 1 1 ,

/oo roo 1 1

/  </>n(g^)0n(g^)^p = fT -7f==ÿ^ -  g^)dg^g^
-oo 7-00 V I g-*- 1 V I g I

=  roo I 0 n (g ^ )  P  1

l o o  I g:| ^
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as required. We now show that the range of Uj^p is all of H p .  F irst note that the range 

o f any isometry U  w ith  a closed domain is closed. Proof. Consider a cauchy sequence o f 

vectors G Ri/ i.e. vectors (f>m € Ru  such that

II <Pm -  (f>n\\< e V >  N.

Clearly there exist vectors pm G D u  such tha t Utpn=^ (/>n so

\ \U (p m ~ U ip r i \ \<  c n , m > N

i.e.

\\ u{prn -  ^n) \\< e n ,m  >  N.

Since U  is an isometry this gives

\\<Pm~(Pn\\<e n , m > N .

Now D u  is closed so there exist p  G D u  such tha t pm V?, i.e.

II — V? ||—+ 0.

Also U  is an isometry so i t  is clearly bounded, its norm is <  1, i.e. U is continuous. From 

[69] page 496 we see that this implies

i.e.

II <̂ n -  ^ I H  0

where (j) =  Up.  Therefore every cauchy sequence in  Ru  tends to a lim it in  Ru  so tha t Re­

is closed as required.

Notice tha t from ( 2.18) the range of Uj^p certainly contains all elements of H p  that 

can be w ritten  as

t + t 4  i / j , ,0
f i t + t )

where (f> G H .  Now take any function (f>p{q^) G H p  that is C^(]R,) then

=  {2.6-. 

is also C^{JR). Notice that since (pp{q^) G C ^ { R )  we have r]{q^) G L “ (R ) even though

+  q  ̂
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is unbounded. Now there exists a function i )  in  such tha t

simply take

where is defined in  ( 2.64) then

- + 2 t t  + g°' - (mcf \
I  2(? i+gO ) ;

I  2(gl +  s<>) )  ^ { 2 { q ^ + t )  )

=  v i t )

as required. Also since ip is C g°(B+), ip is the Fourier transform of a function cp of Hardy 

class, i.e. ip =  4 -g^). From ( 2.67) i t  follows tha t

(Pp{q^) =  y - ..

Therefore U^p  is onto G ^ (B )  which is dense in  Tip  and so, since the range of U^p  is 

closed (its domain is closed since it  is all of Ti^f), i t  is onto Tip.

We shall sketch a proof tha t we have the correct expression for the inverse. F irst we 

shall show tha t

{UpTi^U^p(pn)iy^) ~  (Pn{y^)-

We have

{UpYjUjjp(pu){y^) ~

e xp (-i(g ^  +  g°)y^) j  \ / l  \dq^ •

Let =  g  ̂4- ^  and the above becomes 

1

(2-7rfr)
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where we have used ( 2.64) and ( 2.65). Since the term in brackets has support in this 

becomes
1 foo foo , / n T/ / M y ^ ) - l ^ e x p { i u ^ { y ^  ~y^))dy^du^.

J —oo J—oo \ / \  11(27t7z.) J — o o J — o o VT̂
I f  we assume tha t we can invert the orders o f integration we obtain

/ - y )̂dŷ
j —oo \/ \  jt;-*-

=  (f>u{ŷ )

as required. Now we shall show tha t 

Well

fy -% 1  /  +:%)2 J-co ^(27r/i) 2 J - 0 0  \  Q J ^(27Ti )̂

e xp W 5 » + g °)y l)

=  6 / 1 / 1  + ÿ) -  ( f  + f  ))) j d tV -  I
Assuming tha t we can invert the order of integration we obtain

= 0(g^)

showing tha t we have the correct form for the inverse.

Appendix 2

F irst we shall show that

^p  =  ^np-^n^pn

We have

Y± =  U „p Y ^U p „ .  (2.68)

(̂np̂rîpn#) = ̂np,., «xp(-»(ĝ + g")%/') ) \j\ v'-
(27rTi)2 v-00 \  y /
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As before let

Therefore

u — so that dq^ t
gO +  gl du .

iUupYàU^n<h)  =  % M ? ' )  ^  e M ~ i ^ V )  ( = ô Ç ^ )  '  ^/h^ \du^■

Integrate by parts

1 r
{UjipYnU^^(l>p) =  t^np . 1 I

(27rn)2 VO e x p [- in ^ 2/̂ 1 a/i \du^

■oo
ex]

■CO

—oo

exi

Since

we have

ÿ t f  )  ^  ( 0  W  +  q
{U j^pY^UpY i^)  — j ^

=  —ih

— —ih

so

Ur,sYÀU-B„ =  - in

=  —ih

^ ^ q ^ J d q ^  2 ÿ ( ÿ 4 - ÿ )
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as required. Similarly it is easy to show that

IIip =  (2.69)

or

n in  “  ^ p iT ^ ip ^ iiP ’

We have

{Up^U^pU^p(l)u) =  Up^  -  i t  + t ) y ^ )  1  — l ^ d y ^

so

’d 'pa^ ipU up  =

=  I l in

as required. Finally, using these results we shall show tha t

Q t  ~  ^ n p ^ n ^ p n *

From ( 2.17), ( 2.69) and ( 2,68) we have

211— TT —

Using ( 2.11) and ( 2.13) this becomes

u  - o ' U -  =  2 (p °+ p ')^  / _ ? o ___a_ t - r  \  ^
HP n pu (pO + pi)2 + („j.)2'' + ?' %' 2ç®(ÿ> + 5')y

in2{racf + P̂ )
((p° +  p^)^ +  (mc)2)2 

_  2(po - p i ) ^ ( - t% )  /  po ^  __ (p i +  po) \  _  %a2(mc)^(po - p i )  
2po(po -  p i)  \  Po -  P i ^P i 2po(po -  P i) /  [2po(po -  PiW  

iP o ~ P i ) { - ih )  f  Po d p i +  Po \  ih{mc)~
PO \  Po -  P i  dpi  2po(po -  p i)  J 2p2(po -  p i)

I f  we put (mc)^ =  Po — Pi then we obtain

=  0 ^  I
as required. This demonstrates the consistency of our front form quantum mechanics. |

i
■‘I
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A ppend ix  3

We wish to prove tha t is maximally symmetric. We were able to prove tha t iF ~  

was m axim ally symmetric using the methods described in chapter 1. Since these were 

formulated to deal w ith  ordinary and not partia l differential operators they are o f no use 

per se in  our analysis of Although we shall give the proof for the same method 

can be used to  prove tha t is maximally symmetric directly in  H u  given tha t lY ff is 

m axim ally symmetric.

Consider the maximally symmetric operator

on D ( i l ^ )  C l  H j î  where

%  =  X R?, d \ )

=  L ^ (R + )é L ‘̂ {R^)

^ iH f ^ L ^ iR ? ) .

Let denote an orthonormal basis in  and consider the H ilbert spaces H i

H j i  ® {c i}  where {e i}  denotes the linear span of ê . Notice tha t H^f =  Let

A i  —1̂ ^  <S> /  act on H i.  Let A — Q ^ iA i  where A  acts on tha t subspace of H f i  consisting 

o f vectors <p o f the form (j) =  where 6 D (iY A ) <S> {c i}  and only a fin ite  number

o f the (j>i are non zero. This operator is symmetric and has defect indicies
/  oo oo

\ i ~ l  i = l

([65] page 338). Now define a unitary map U : H i  - ^ i H j i  by Uf<S>ei =  /  ([67] page 67). 

We have UAiU~^  —lY ^  so tha t n+{A i)  ~  1 and n - { A i )  =  0. Therefore the defect indicies 

o f A  are (0, oo). Now recall that A  is symmetric so it  has a closure tha t w ill also have 

defect indicies (0, oo); an operator and its closure have the same defect indicies since they 

have the same adjoint. This operator is maximally symmetric and is equal to Y~.

Appendix 4

The vector field
d d

d ÿ^ i t  + (me) 2) d ÿ^  
is complete. To see this we must solve

dt ’ dt ( ÿ  -t- (mc)2) ’ dt
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f
The first and last equations in this system are easy to solve and we find that if

ÿ" =  É +  ÿ§ and 

where pg and are constants in JR. Now we must solve

^ __________2ÿ'(t +  ÿ§)__________ I
dt ÿ ' '  +  {i +  ÿ§)2 +  (p=-»)2 +  (7nc)2

or ..f
dt +  {t +  ÿ f ,f  +  { ÿ t ^ f  +  (mc)‘̂  2

dÿ' 2ÿi(« +  ÿâ) ■ I

P ut

»“ =  ( i  +  F5)'

then the differential equation becomes

1 - g i  I W " T  +  (m c )\
dÿ‘  J/' J/'

We can solve this using an integrating factor l / t -  This gives the equation

which is easily integrated to give

or

so

{t +  yf^Ÿ =  y^^ -  {{y^ +  (m c f )  +  zy^

_ i -b \Zz2 4- 4[(t 4- ÿ§)2 +  (ÿ^~^)2 +  (mc)2]
^   2 ■

Taking
_ ^  Vo +  +  ( m c f  -  ÿ j"  j

Fo 1

_  v t  +  4- (mc)^ -

Fo j

ensures that the integral curve starts at pg G R ^ .  The integral curve is therefore well 1

defined for all L
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A ppend ix  5

Proof tha t
2?'' d 

t  +  (mc)2 dÿ^ 

is complete. To show this we need to  solve

p2 + (mc)2’ dt ’ dt 

The first of these is the only one tha t presents any difficulty. We have

y* 1 +  (fo +ÿo^ +  {mcŸ)Ÿ~^dÿ^ =  2(t +  fc)

or

v'- -  iVo +Vo +  ‘ =  2 (i +  fc)._

Rearranging this gives

2/  ̂ -  (t +  fc) +  y^(t +  fe)2 +  2/22 ^32

I f  we take

k Vo - V f - V f
2ffJ

then at t  =  0 2/^ — Vo- The integral curve is well defined for a ll t and t  remains in 

therefore vector field is complete.

Appendix 6

We begin by showing that

Y F = ’̂ upYnUpn-

We have

1 roo
i^u p ^n U p u < h )  =  ^ n p — 7:3 /  +  t ) y ^  +  q V  +  ÿ y ^ ) ](2?rn) 2 v-0 0

f  4 - ÿ y
t  j \ / l  y M d ^ i -

Now let

I t  is easy to show that

%  
a?

- t -ÿ ,  t  ~  and u'^

(2.70)

(2.71)

dtp
'W'

dû
â F 1 +  ^ ; ;

dû dû 0 1 0w
dû
w

dû du^ 0 0 1
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We also require the inverse transformations of ( 2.71). From the first equation in tha t set 

we obtain

=  (mc)^ +

so

— 2 u ^ t  ~  (mc)^ +  .

From this we obtain the expression for t  in terms of the u ’s so that

t  —

Since

(2.72)

A - * - d u

we can w rite  ( 2.70) as

7»0 _|, —1 \  2 

?
d u

(27T%)

Now integrate by parts

i ^ u p ^ n ^ p u ^ )  — ^n p 7 r~ 7 7 i /
(27r^) 2 V ^ ( = 0 ^ )du^ \ i

=  [/inp (27rTi)2 V I  i
e x p [ - m y ] y ^

e x p [- iu . | / ]y j p i |d^u

=  C7
"^ (2 7 ra )*

' t  +  t  ^ ^
ÿ) e xp [-% .p W | y

- f
d^q

a / i  
a^ui \ «■T  I ^ ( h )  , ÿ i p ÿ

1 1
t

Now

_Ê _  =  4 . ^ _ Ê _  _  ( 2^ H 2n^) -  (^^" -  -  (m c )2) 2 \  d
d u ^  d u ^  d q ^  d u ^  d q ^  d u ^  d q ^ y Au^'^ j  dq ^

y? +  {mc)‘̂ \  d __ f  i t  +  (mc)^ \  d
2ni'' i  dq^ dq^

q̂  ̂ +  2g i ^  +  +  q̂  ̂ 4- +  (m c)^ \  d

) W '
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Using the mass shell condition this becomes

f 2 t t  +  +  d
j  d t  I dq^

so that

( ̂ i iF

. 11
ÿ

=  —ih
t + t

¥ + ¥ ) W { i ) ^ ^ ^ \ ¥ T W ^

(?+?r)
_a_
agi

=  —ih
g^ +  gi

f  Ÿ  d d f  - f4"
t + t  I  d t  agi X t + t

tp ig ) -

Therefore

^ n p ^ n ^ p n -ih t
ÿ  +  ç ' / a ç '  lÿ ^  +  î v  2 W  +  g '

{ q ^ + t ) $ - - f i $  +  l ) \  

( î°  +  j

■ih t  \  a  ̂ i C f t + t ^ -  f t - ' f y
' T *ÿ ’ + g iy a g i  2 ÿ ( ÿ  +  gi)2 

=  —ih t i t - t )
f + t ) d t  2 f { f  +  qi)

(2.73)

Y i

as required.

We now wish to show that

: ^ = C / n p % n - (2.74)

Well

^ n p ^ ^ p n ^  “

1 roo
^ n p : :  : :3  /  y ' ^ i g )  +  t ) y ^  +  q V  +  t y ^ ) ]

(27rn)2 “'-oo

çO jzjiX  2

t V h M d ^ i

oo /’ OO fOO

(27T )̂2 do J-ooJ~oo

/  gO _j_ g l \  2
y^(l>p{u) exp[-%M.p] ■ _o

^  +  gi

=  t7,
"^(27T%)#  ̂ ^

m)
1 \ _a_
i  j du^ exp[-m .p ] ] / l  y i |d^M-

Integrating by parts

e x p [- iu.y} a/i p i Id^M
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du^ \ i )  \ ÿ  +  gi exp[-m .p|Y | y
gO d-̂ g

% p (27rTi)

TîO _i_ t;1 \  2 a t
i  j  du  ̂ \ ^  +  gi h^{u) e x p [ - i u . y ] \ / \ y

7.0 «1 \  2- I f  +  q
f

cFq

Now

t  I  du^ \  ÿ  4- gi

a agi a d t  a d t  a 2u^ a a a
au  ̂ an^agi au^ag^ au^ag^ 2̂ 1 agi ag® ag® \g i 4- ÿ  y agi

a

so

1.6.

a
dq^ i t + t ) d q \ ÿ 4 - g i

(f)p{q)

UP^U^PU

r

-ih
, f

f
f  +  t  I dq‘  2 \ - f  +  q^ i f + t f

f  y  d , i (  f  ( Y  +  g : | ^ - 9 o ( § ^ + _ i D  j
(g0 +  ?l)2

-ih a I  f t + t4“ %
dq^ ' 2 {  t  j t ( t  +  t y  I f  4 - ÿ /  agi

a

t  1 / f  4 - f
f 4- f 2 I, t  I t i t + t t

~  —ih
a g^ a

_dq^ t + f d q i * 2 ^ ‘‘ C f  +  qi) 2 ÿ ) " (ÿ  +  g i)
1 q \ t - f )

-ih
a t  \  d

4-
dqs \ f  4 - f  /  agi 2 g O (f4 -g i)

(2.75)

=  y #

as required.

We shall om it the proof tha t

— UjjpU\iUpjj.

I t  is a straightforward generalisation of the proof given in the case of 1+1 spacetime in 

Appendix 2.

We shall now consider the instant form position operator and show that

~  ^np^n^P T p 
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W ell from ( 2.39) and using ( 2.74) and ( 2.76) we have

O nvQ hU rn  =  ^ +  ( « + ) .

Using ( 2.35) and ( 2.36) we obtain

UnpQîiUpn =  "  ( ÿ ^ )  ^  +

2 iP i-po )P s  / / (  t  \  d  ( f - f )  \
((P i -  Po)^ +  p1 +  p1 +  m2) V V f  +  f  y 2 f  (gO +  g i) )

((pT -  Po): +  Pi +  Pi +  (Pi +  p 1 -  (P' -  Po)' +  W ) '  3

Since

P i  +  P3 -  P i  +  2 p ip o  -  Po +  (m c )2  =  2 p i(p o  -  P i )

and

we have

(Pi -  Po)^ +  p 1 +  Ps +  ("^c)2 =  2po(po -  P i)

UnpQhUpn -  - i n  -  2 W - P i) P o )  +

( ( ^ )  +é i f  K)) + (2wio -  P i))^

=  +  (2poto - p i ) ) 4 ^^P° -  P»PlPO +  PlPs -  PoP» +  PsPlPO -  PlPs)

=  =  Q ?

as required. Lastly we shall show tha t

— ^ n p ^ n ^ p i i '

From ( 2.40) and using ( 2.74) and ( 2.76) and then ( 2.35), ( 2.36) and ( 2.34) we have

u - o h u -  V + p T  / 7,Y  9" 9 t - f  \
U P  P n  (pO _ j_ p i)2  p 22 ^ p32 ^  +  g i  dq^ 2 g ^ ( g °  +  g i ) y

a2(pO +  p i)  ( p " ' + P ^ '  +  (mc)2)

Using ( 2,33) this becomes

iR 2(pO +pi)2  /  Po d  ( - l ) ( p i4 - p o ) \  _ \ (Po ~  Pi)
2 p o (p o ~ P i) \  (po -  P i) d p i 2po(po - p i )  y ^  ̂ (2po(po -  p i ) ) ‘̂

_  z^2(po-p i)2po  d m2(po - p i) 2 (p i  +po) ^  i n 2 { p o  - p i f j p i  +po)
2po(po -  P \ Y  d p i  22pg(po -  Pi)2 2'2p‘2(po -  Pi)2

d

as required.
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A ppend ix  7

In  ( 2.3.1) we demonstrated tha t certain generators left the the ligh t cone w ith  apex at 

the origin invariant. We worked w ith  the infinitesimal form of the transformations. Here 

we show how to  obtain the fin ite form of the transformations. Consider the infin itesim al 

transformation

= x ^  — ax^, x^' =  x^, x^ =  x ^ a x ^ . 

The infin itesim al generator o f this transformation has components

(0 ,-x ^ ,0 ,a ;i)

i.e. the generator is

.3̂ 3 A  4-^1 A .  
dx^ dx^

To get the fin ite  form o f ( 2.77) we must solve

d #  __ 
dt

dot
dt 

dx^ 
dt 

dx^ 
dt

=

=  x^.

Clearly we have

and

=  x^

x^ =  x^.

I f  we differentiate ( 2.77) w ith  respect t  we obtain

d?x^ dx^ d^x^
d^2 dt d^2

where we have used ( 2.79). The general solution of this equation is

t  ~  A  cos t  +  B  sin t.

Since

(2.77)

(2.781

(2.79)

(2.80) 

(2.81)

|o= 3:̂
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we have A =  x^. Also because

dx^

we have B  — —x^ and therefore

x^ — rĉ  cos t  — x"̂  sin t. (2.82)

S im ilarly differentiating ( 2.79) w ith  respect to t  and using ( 2.78) we obtain

Again the general solution is of the form

t  =  A  cos t +  J5 sin t.

Since

we have A — x^. Also

so B  ~  x^. Therefore

x^ |o= x^

dx^ I -1  I 1 
dt

^  =  2;̂  cos t  +  x^ sin t. (2.83)

O f course ( 2.80), ( 2.81), ( 2.82) and ( 2.83) are the fam iliar integrated forms of the Lorentz 

transformation ( 2.77) (c.f 6.63 page 151 [50]). The fin ite forms of the other infinitesim al 

transformations can be found in the same way. A ll this is well known. W hat is s ligh tly  

more interesting is to find the fin ite form of the Lorentz transformations w ith  respect to 

light cone coordinates. For example the Lorentz transformation ( 2.77) becomes in  ligh t 

cone coordinates

r  =  r, V  ̂ =  y ^ - a \ y \ ,  f  f f  f .

The infinitesimal generator is

(0, — I y 1,0,0) 

so to get the finite form we must solve

f f  .0,
Clearly

f  =  r, ÿ'  ̂ =  f ,  f  =  (2.84)
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I t  only remains to  solve

dÿ^ , .2x4

Since

we have

Now

!o= y^

^  — sinh +  sinh  ̂ f ^

sinh(x +  y) =  sinh x  cosh y +  sinh y cosh x

page 178 [66] so

Since

we have

Therefore

so

^  =  sinh t cosh ( sinh  ̂ ^  | | +  sinh ( sinh  ̂ 1 cosh t

— sinh t  cosh ^sinh  ̂ ^  ^  cosh t.

cosh z =  \ / l  +  sinh^ z

cosh^sinh-^ +  ^  =

k k k

153

4

dt

where k =  (y^^ +  y^^)5. From page 75 [8] we see that this implies s

sinh  ̂ 1 ^  j ~  t  Ar R.

r:.

y

y^ =1 y j s in h i +  y^ coshi. (2.85)

Equations ( 2.84) and ( 2.85) give the fin ite form of the Lorentz transformation ( 2.77) 

in  light cone coordinates. Using this method the integrated forms of the remaining in- j

finitesimal Lorentz transformations can be expressed in terms of light cone coordinates
i

[62]. j



A ppend ix  8

In  this Appendix we shall make repeated use of the relations ( 2.37) and ( 2.38) as well as

( f  ̂  f  ̂  f  ̂  -  {m e t )  J ÿ  +  (mc)2
Pi = -------------------^ ----------------  “ d Po =  - ^ r —

Integral curves start at =  {ÿo,ÿo,Vo) where ÿ j  G JR+ and f  and f  G JR. I f  we express 

J  w ith  respect to light front momentum variables we obtain

=  V^'^2 — f2 ^ 3 -  

This can be quantised to give a self-adjoint operator since

- 3  ^  - 2  ^

is complete on JR"̂  x H x  JR. To see this we must solve

The solutions are

f  =  Po, =  (ÿ ?  +  ÿ f  )2 cos(t +  / ) ,  Ÿ  -  - { ÿ f  -bÿ f ) ^  sin(t +  / )

where

~ iv f+ÿ iy (ÿg'+ÿo:̂
and these are well defined for all t. The self-adjoint operator representing is 

Next we have

This observable generates a complete vector field. To see this we must solve

dÿ® -  ( m c f  <#' _3 d ÿ '
1 T  =  w  ’ "dF =  " ^ ’ =

The solutions are

f  =  (p^\ÿg) +ÿo^)2 s in(t +  / )  +  p°(ÿg), ÿ -  = ÿ o , f  =  - (p ^ \ÿ q )  + ÿ n ')^  cos(t +  / )
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where

eos/ =  J  .

+  ( l o ) + 5 o )  =

and

sin /  = yl -  _  pHj/q)

Here we have used p ^ (^ )  +  P °(& ) ”  Po* The first expression for sin /  is the easiest to 

use for showing tha t the solutions satisfy the in itia l conditions w hilst the second makes i t  

obvious tha t cos^ /  +  sin^ /  =  1 so tha t a suitable /  exists. Notice tha t >  0 for a ll t 

because P^&q) is positive and >  (p^^(ÿ)^ The self-adjoint operator representing

is
- 1 3  _  Z f .  (  -  y®" -  (mcf )  d y^ _ 3  9

n _ _ a |  — ------------------ d f - ^ - y  a f iJw = - in  I ^ ^ ^ _J^_:z:3

Next consider

This observable also generates a complete vector field. To see this we must solve 

dÿ^ _  -2 dÿ2 __ (ÿ2 +  (m e t )  dÿ^

w — w-— ’ w  =
The solutions are

f  = (p°̂ (Pq) “  ÿ'o)  ̂cosh(t + / )  + pHPq)’ = -(P°\Po) -  Pf)^ sinh(t + /) , =ÿ§

where

cosh /  ^  ^ ,
(+ ( Io ) -ÿ o ') '  (+ (% )-ÿ g :^

and

sinh /  -
( P ° '( îo ) - F o ') '

The second expression for cosh/ makes it  easy to see tha t cosh^ /  — sinh^ /  =  1. Notice 

tha t we have >  0 for all t  since, dropping the argument we have cosh(i +  / )  >  0 (in 

fact >  1) so (p^^+p^^ +  (mc)^)2 c o s h (t+ /)+ p ^  >  0. The self-adjoint operator representing

is

Next Consider

7 '°  =  - f  n .

This generates a complete vector field. To see this we must solve

Î - »
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The solutions are

f  = .ÿ j exp(-è), ÿ  = ÿ o , ï f  =  Po-

These are well defined for all t  and clearly is positive for all t. The self-adjoint operator

representing is

Next consider

This classical observable also generates a complete vector field. The equations for the 

integral curve are

dy3 ( f  +  dÿ^ _ 3  dÿ2

i r  =  — w — ’ =

The solutions are given by

t  (Fq) cosh(t +  / )  +  pHPq)A f  =  Po

f  =  - (P ° “ (Po) -  Po^)^ sinh(i +  / )  (2.86)

where

( p " '( ïo ) - ÿ o  ) '  ( + ( 2 o ) - 5 o ) 5
and

sinh /  —
(P^'(Po) -  Po")^

As an example we shall show tha t these satisfy the differential equations above. The only 

non tr iv ia l case is the first equation in  the set. From ( 2.86) we have

^  =  - (p " \P o )  -  Vo)'^ cosh(t +  / )dt

whereas
y- +  (me) 2

2y^

(p°^ -  ÿ f )  c o s t j t  +  /)+2(pQ^ - y f ) ^  cosh(t +  f)p^  +  p^^-H/qV(p°^ -  ÿp^) sinh^(t +  f ) - r { m c t

2[(pO  ̂ -  Po^) 2 cosh(t +  / )  +  p i]

Using cosh^ — sinh^ =  1 this becomes

_ ^(P°^ -  V f )  CQsh^(  ̂+  / )  +  2(p°^ -  ÿg^)5 cosh(( 4- / )  +  p^^ +  yg  ̂ -  (p°^ -  ÿ f )  +  (mc)'-

2[(p°^ -  Vq̂ )^ cosh(t +  / )  +  p i]

— ^(P°^ ~  Fo^)^ cosh(t +  /)[(p°^ -  ÿo')2  cosh(t +  / )  +  p i] +  (mc)2 - { m e t

2[(pO“ - y l ^ t  cosh(t +  / )  +  p i]
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~ V q )^ cosh{t + f )  j

as required. The self-adjoint operator representing is 

F ina lly  we have

This observable generates a complete vector field. The equations for the integral curves 

are

f  ( lo ) +  Po")  ̂s in(t +  / )  +  p°®o), =  (p^^{%) +  Po")^ cos(t +  / ) ,  ÿg =  yg

where

c o s /=  ,
+  ( & ) + yo

and

s in /  =
( p ''( Io ) + ÿ o  + ' ( 2 o ) + : o

The self-adjoint operator representing is

_  ( f " - f ' ' - ( m c ) ^ )  ^
V 2yi  ay2 2 y iJ

Appendix 9

In  this Appendix we explain why i t  is tha t the front form generators obey the commutation 

relations ( 2.49). This is simply a consequence of the fact tha t we have

For example

= 7 ° +  7 ' '  =  p y  -  q V  +  pV  -  q V

or restricting this to the front

=  pV  +  pV  =  q^ipO +  p ')  =

157
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A ppend ix  10

F irs tly  we have

J®' = ÿ '7 î i .

J®' generates a complete vector field. To see this we must solve 

The solutions are

y l =  y j  exp(t) and f  =  ÿo-

Therefore the self-adjoint operator representing is 

Next consider

=  fW g.

Again we find tha t the generate complete vector fields. To see this we must solve the 

equations

f - “. + - » ■
The solutions are

ÿ* =  5o. f " '  =  ÿo"', f  =  Vot +  Vo

and these are well defined for all t. The self-adjoint operators representing the are

Consider

=  - T T i t  +  f  -  {m e t ) .

This generates a complete vector field. To see this we must solve

The solutions are

(Pq) +  Po") 2 Sin(t +  / )  +  P°(yo) (2.87)

ÿ" =  -(P^"(Po) +  Po")^ cos(£ +  / ) ,  =  Fo

c o s / -   ---- ^ ----- —  and sin /  = ------; —
(pi (Fo)+F8 )^ (p i-(F o )+ P o '" -

where /  is such tha t ^
*-■[

'1
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.,ï

YI t  is easy to  see by differentiating these expressions tha t they are solutions to  the differential 

equations. They also satisfy the required in itia l conditions. This is obvious except in  the 

case of ( 2.87). P ut t  — 0 in  ( 2.87) then

=  p H Io) +  P °® o) =Po

since

p i +  =  -TTl.

I t  is also im portant to  notice that ( 2.87) ensures that ÿ i >  0 for all t. The self-adjoint 

operator representing J i^  is

■%“  -  - »  +  ' " - « A ' - W A  _  | C ) .

Consider

=  _ÿ3^2+ÿ^W 3.

This observable also generates a complete vector field. The equations we must solve are

The solutions are given by

f  == ~(Fo" + V o ) ^  s in (i +  / ) ,  f  =  { ÿ f  +  ÿ f  )5 cos(t +  / ) ,  ÿ i  =  y j

where

The self-adjoint operator representing ig

7f  =  - ih  - 7"  J â )  ■

F ina lly i t  is obvious tha t we have

 12  o2  o2 f

J f . f ,  r i - f .  t - f .  4 - '  - J ,

Appendix 11

We have

i
y-Texp(±(g ' +g»)) ( 3 2 ^ ) '  =  Tiexp(dz +  +  î«)) '
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For example

y ^ e x p ( - Y + 5 ® ) ) f ^ V

■ i/ie xp (-(g ' +5®)) 1®

f  +  q‘ t

2 gO ÿ)2 2 ( f + f ) g O l  t

-î7 iexp (-(g i + g ° ))
n ^ Y g '+ g ® ' -  ÿ * ? '- ? ' " ) +

? '- « ®

•i? iexp(-(g '+q® ))

2(9®+?'Y  I ?°

TvO _J_ 7vl \  2

çQ3 2 (ÿ  +  g i)çO \ ÿ)

- i n  e x p (-(g i +  g°)) f 1 1 / ^  f  \   ̂ — gi^ gi  — ÿ
R 2 1?® +  ? '^  +  '*‘ Y ( ? ® + ? ')

=  - iR e x p ( - ( ç ' +  9®)) f  —■̂ ■'j 1 , ? ® - ? ' , t - f
n 2 f ( f + f )  2gO(ÿ +  g i)

=  i  e x p (-(g i +  f  )) (

as required.

A p p e n d ix  12: P ro o f o f  O r th o g o n a lity  o f  G enera lised  E igenvec to rs  o f H i in  Hu-

Consider
POO

<  G(A, y, H i)  I G ( y , y, H i)  >?Yn= yi/:^[2 ?rn77( y ) ]- i/^

exp ^^Ao-(y)^ y i/^ [27rny(y)]-i/^exp  ^ - ^ A V ( y ) ^  ~dy

=  [2vrny(y)]"i exp ^^(r(y )(A  -  A ')^ dy.

Make the substitution x — a{y) then the above becomes 

1 /"OO
2n% 7-00 "''P  ( r

as required.
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A ppend ix  13: P roo f o f C om pleteness o f Generalised E igenvectors o f Hi,

We have

I G (A ,y ',rii) > d \ ~  j  yi/^[27rnp(y)]-i/^exp ^^Aor(y)l fi/^[27rn??(f)]-i/^

exp ( -~X cr{y ')^  dX 

~  2 /i/2^/i/2  j  - 1/2 [ny (y  )]-1 /^^ (  —( f ) ,, )

y ^ y y ^ i n t y ) ]  i / ‘̂ [n7?(y')l -  y ')
I fi dy I

=  y V 2y l/2  [ay(y)] "  [%?;(y ')j " (y) M( y  -  y')

= ŷ (y -  y')

as required.

Appendix 14: Derivation of Generalised Eigenfunctions of | H i [.

We have

/ oo
I A I yi/^(27rn77(y)l~i/^exp(iAo-(y))^(A)dA (2.88)

-oo

where |

<A(A) =  /  ;4y'^/^[27rny(y')]“ i/2exp(4Acr(y'))0(y')dy'. (2.89) J
VO y  Ij

Substituting for < (̂A) from (2.89) and dividing the range of integration in  (2.88) in to  |

(—oo, 0) and (0, oo) we obtain J

( lIIi|(^ )(y )= ^J -A )y i/2 [2 7 rn 7 7 (y )]’"5 exp(iA (j(y ))^  ~y'i^^[27rn77(y')]~^ exp(A<j(yO)y)(y')dy'dA |

+  /  Ayi/^[27rn77(y)]-i/^exp(iAcr(y)) /  ^y '^^^[27rny(y ')]"i/2  exp(acr(y '))0 (y ')dy 'dA . |
VO Vo y

M aking the change of variable A —> ~A in the first integral gives |

( iH il 4>){y)-~!  Ayi/^[27rn77(y)]“ ^e x p (-A < j(y )) / ' —y'i/^[27rn77(y')]“ ^ exp(-iAa(y'))<A(y')dy'dA |
Voo Vo y  J

+  Ayl/^[27rn77(y)l~l/^ exp(4Acr(y)) ~y'^^'^[2'ïïîïy{t)]~^^‘̂  exp(iAcr(y'))0(y')d?/dA

~  f  Y l  Ayi/^[27rng(y))-i/^ exp(wAcr(y)) f  Yy'^/ ’̂ [2Trhy{y')]~^^‘̂  ex-p{ii/Xa{y'))(p{y')diydX 
Vo Vo y

and therefore

G (A ,v,y, 1 I I I  I) =  yi/^[27rny(y)]"i/^exp(wAo-(y))

as required.
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A ppend ix  15: P roo f o f C om pleteness o f G eneralised E igenfunctions o f | Hi |.

We have

/  1] y, I III |)G(w, %/, y% I H i |)dw
Vo J,

~  f  Y 2 y^^^[27rny(y)]"i/^ exp(ii/wcr(y))y'^/^[27rn77(y')]*~i/2 exp {- i i /w a {y ') )dw
Jo y

=  /  YL y i/^ y i/^ [2 7 rn y (y )]- i/^ [2 7 rn y (f) ]- l/^  exp(ww(g-(y) -  (j{y '))dw  
VO y

=  y^^^y'^^^[27rny(y)]“ i/^[27rn77(y')]“ i/^  exp(-4w(cr(y) -  a{y'))dw

+  [  y^^‘̂ y^^^[2'KÎir}{y)]~^^'^[2'Khr}{y')]~^/'^ exp{iw{a{y) -  cr{y'))dw.
Jo

Make the substitution w  —> —w in  the first integral and the above becomes

[  exp(4'ig(<7(y) -  a{y '))dw
J —oo

+  [  yi/^y'^^^[27rn77(y)]~i/^[27rn7;(y')]~i/^exp(4-'u;(c7(y) -  <j(y'))dw
VO

=  /  yi/^yi/^[27rn??(y)]"i/^[27rn?y(y)]"i/^exp(W (o'(y) -  cr(y))dw
J—oo

=  y à { y -  y')

as required.

Appendix 16; Proof of Orthogonality of Generalised Eigenfunctions of j I I i  j.

<  G (w , u, y, I H i  I) I G {w \ </, y, | H i  |) > n „ =

r°° y'/^[27rR77(ji)]"'/® exp(w/iu<7'(y)y'/'^[2irRj7(y)]” ' / ^ exp(—ii/'w'cr(y)

io  ---------------------------------------------------- ÿ -----------------------------------------------------*

f ° °  1
=  Jo ■  >''-)^(y))dy.

Let X =  a (y) and the above becomes 

1
~ r  / exp(i(u 'w ' — iyw)x)dx =  6(i/^w' — i/w).
Z'Kil y —oo

A  lit t le  thought shows that since w and w ' >  0 and u and take only the values ±1 we 

have 0{u'fjb' — uy.) =  — w') as required.
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A p p e n d ix  17: D e r iv a t io n  o f  G enera lised  E ig e n fu n c tio n s  o f  

We have

<^T(y) =  exp A +(m c)2^ <?o(A) exp(-iAcr(y))dA

where

0o(A) =  ^  y^^/^[27rn??(y)] e x p (-U (r(y ))« ^o (f)d y \

We split up the first integral as

/—me /'O pmc 1-00
...dX + / ...dX + I  ...dX + I  ...dX.

-CO J—mc Jo Jmc

In  the first integral make the substitution

A =  -  y  ( ^ )  -  (mc)2

w ith  A restricted to (—0 0 , -m e ). This map is bijective (on the range of integration) and 

has inverse

• - I 3 - +
The Jacobian is

dX
dw

(mcY
1/ 2 '

2

Since A =  — 0 0  => w — 0 0  and A =  —me =*- w =  me^ we obtain

f  ...d X — [  y^/^[27rn?7(y)j exp(ÎTw) exp ( tcr(y) ~  \  - ( m e t
J —oo Jmc^ \ C y \ C /

X y' ^^ [̂27T/l77(y')] exp f - ^ ( y ' ) <^o(yOdy^

dw
1 /2

= /Vm

y^/2[27rn77(y)] e x p (k r(y )[-^  -  ^ { ^ t  ~  ("^c)2])

(mc)̂ 1/2

y^/^[27rn?7(y')] exp(kr(y ' ) [ - 7  “  s j i ^ t  ~  (TMc)^]) ^

(me)" 1/2
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Sim ilarly in  the second integral we make the substitution

A =  - -  +
c

w
(m e t

then

dA =
dw

1/2

Now A — —me =>- w =  me^ ,A  =  0 = > w  =  ooso

f  ...dX— [  y^^'^[27rhrj{y)]~^^‘̂  exp{ irw )exp  I icr{y)
J —mc Jmc? \

- 7  +  : + )  +  (me):

( L  exp ( - w ( y ' )  ~ 7  +  ^ ( 7 )^ “  )  <l>o{y')dy')

dw

4 1 (mc)^

= /Jm

y^J‘̂ [2'Ktir){y)\ ^/^exp(^(y)[-g + y/(f)2 -  (mc)2j)

(mc)^
1/2

y'^/^[27rn77(y01 e x p (^ (y 3 [- :g  +  A/(T)^ -  (mc)2]) ^ ^

(mc)^
2 ( -T  + V (% )"-M 2 )2

1/2 -i<i>o(y')dy' exp(—irw )dig

continuing in this way we obtain ( 2.60).

Appendix 18: Proof of the Completeness of the Generalised Eigenvectors of

roo 

Jmc^ i//i

f  ^  y'^/^|27rny(y')]-^/^ exp 
Jmc  ̂ „„ R )  c

X [271̂ 77(y)] exp ( (^ )^  -  { m e t  ) <^{y)
.w. dw

4 1 - (mc)2

'm? E
i//:i

e x p ( ^ ( ^  +  vy j{^) '^  ~  (Mic)2)(o-(i/) -  (T(y)))y^/^y'^/^|27rn77(y)] ^/^[27rny(yO]

!1

'i

jç  / 1 __________ ........................
'2 \

dw.

Make the substitution Q =  ^ ( ^  +  ^ y j i ^ t  ““ (^c )^ )

1 1  1 1 /*-oo rO
=  y 2 7y2[27ry(7/)]~2[27ry(y01"2(- / exp[zQ((r(y^)-(7(y))]dQ+ / exp['iQ(o-(y )-o -(y))]dQ

J —mc J —mc
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fO roo
-  /  exp[iQ((7(y') -  cr{y))]dQ +  /  exp[iQ(<7(y') -  cr{y))]dQ)

Jmc Jmc

=  -  a{y)) =  y6{y -  y')

as required.

A p p e n d ix  19: P ro o f o f  th e  O rth o g o n a lity  o f  G enera lised  E igenvec to rs  o f  Hu-

Consider

/ :
[27ra77(y)] exp ( k r { y ) { ^  +  ~

(mc)^ (me) 2
(^ -p y ( f)2 -(m c )2 )2 ;

dy.

Let z  =  g-(y) then

■5(« +  -  (m e): -  ( f  +  P / ( f )= -  (mc)2))

(me) 2
2 I 1 (^-t'x /(f)2-(m e)2)2 4 1 - (mc)2

2 i (^-i>V(f)2-(m c)2)2

A  case by case analysis shows tha t the only non zero contributions come from 

ô t ~  +  ~  { m e t  ~  +  ^ \ j { ^ t  — (mc)^))6t/p6

Ç I 1 ________
2 I (^ -^y (^ ):'-(m c)2 )2

Ç / 1 _________(me) 2______
2 I (^-()\/($)^-(m e)2)2

and the result follows by Landau and Lifschitz (vol 3 pagel5).

A p p e n d ix  20: A  S ta te  V e c to r  Loca lised  in  Aq is a S c a tte r in g  S ta te  

Consider

Urn r l X M l f a )  \ \ y ,
r-^oo Jq y

Put
r r \ _  I x[a,b]{y) M f t ( y )Jr[.y) -  y

X[a,6)(y) M  y ^ /^ [2 7 rn ? 7 (y )]-e x p (U (T (y )) e x p ( - ^ ( A ^  +  {m e t)4 > ^ {X )d \

y

<1 X(a,6j(y) P 2TTh7]-^{y){ f  I % (A ) I dA)2.
J —oo

Now î>u{X) is integrable (see proof o f spreading) so (2.90) becomes

=  say.
my)

Then
roo rb

/  L r { y ) d y  <  /  - j - ^ d y  <  co if a >  0. 
h  Ja m y)

(2.90)

(2.91)

(2.92)
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Prom (2.91) and (2,92) we see tha t f r  is bounded above by an integrable function v.i.z 

Lr{y). Now

hm t^nW  =  0.

To see this consider ( 2.60) and note tha t the Riemann Lebesque lemma applies since

TOO _^
/  , z2 y) <  4>uiv) I G (m , I/, w,  Hu, y') > 7 i n  dw =  4>u{y)‘

Hence we have

U m /t(2/) =  0.

Therfore by Lebesgue dominated convergence

/*oo poo Î
M y )d y  =  J^ \ jm M y )d y  =  Q. ?
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C hapter 3

F ield  T heories

The idleness I  love is not that of an indolent fellow who stands with folded 

arms...and thinks as little as he acts. I t  is the idleness of a child who is 

incessantly on the move without ever doing anything...! love to busy myself 

about trifles, to begin a hundred things and not finish one of them...eagerly to 

begin on a ten-years task and to give i t  up after ten minutes.

J e a n - J a c q u e s  R o u s s e a u ; The Confessions.

In  this chapter we shall explore the possibility o f constructing light cone and light front field 

theories although for the ligh t cone the canonical approach to a second quantised theory 

w ill prove impossible to carry out. We shall concentrate for the most part on developing a 

field theory for the free neutral scalar boson and merely indicate how we m ight construct 

a field theory describing free fermions. We show that the field theory is re la tiv istica lly 

invariant and natura lly related to the light front quantun mechanics described in  chapter 

2.

3.1 Spin Zero Particles

3.1.1 T h e  Scalar P artic le  in  L ight Cone Coordinates in  3 + 1  Spacetim e

I t  may be thought that the formulation of a quantum field theory in  light cone coordinates 

should be relatively straightforward. In  this section we shall see this is not the case.

A  free scalar particle is described by the Klein-Gordon equation which in an a rb itra ry 

coordinate system is
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where (j, — me ([52] page 304). Derrick has given the expression for the Klein-Gordon 

equation in light cone coordinates [58]. The corresponding Lagrangian, which is absent 

from Derrick’s work, is

C = ^\\y\drdy^ l̂ l \dŷ J J ^
_  Z/A%/ ,

1 ^  I ayfc V dyO  13/1
2 , 2

(3.1)

(Appendix 1) where are the components of the light cone observer’s four velocity. 

The d ifficu lty in  formulating a field theory based on the light cone is due to  the explic it 

dependence of the Lagrangian ( 3.1) on the spacetime coordinates.

3.1.2 The Scalar Particle in Light Front Coordinates in 1 + 1  Spacetim e

We can deduce the form of the Lagrangian for the Klein-Gordon equation in ligh t front 

coordinates from ( 3.1). We need only observe that in  a 2-dimensional spacetime the ligh t 

front coordinates are identical to ligh t cone coordinates adapted to an observer at rest at 

the origin and restricted to tha t region of spacetime corresponding to y >  0. Therefore 

the light front Klein-Gordon Lagrangian is given by

(3.2)

Since the Lagrangian does not have an explicit spacetime dependence it  should be possible 

to derive a field theory from it. The Euler-Lagrange equation is

dy d r  d(p

I.e.

(3.3)
d yd r  dy"^

Using the results o f Appendix 2 we can show that the light front momenta are given in 

terms^ o f the field by the following expressions

py = (3.5)

([47] 2.45 page 69). The variable tt conjugate to (j) is given by

7T =  n,,7T

În this chapter we write f  ̂  and “ to denote and etc. This enables us to reinforce the

distinction between Minkowski and light front coordinates.
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([46] 2.61) where
1 dL

TT,, =M a ^
yM

(see Appendix 2) and is normal to the light front. In light front coordinates this 

becomes

1
=  7^.== (3.6)

•We could pass to the quantum theory by imposing the canonical equal r  commutation 

relations

y > i y ,  t ) ,  7r {y ' ,  r ) ]  =  [ | ^ ( 2 / ' ,  r ) ,  ( f ){y,  r ) ]  -  i Ô { y '  ~  y )  ( 3 . 7 )

w ith  a ll other commutators vanishing^. There is no guarantee that imposing these commu­

ta tion  relations w ill lead to a re la tiv istica lly invariant field theory. We must demonstrate 

tha t the conserved quantities as given by ( 3.4) and ( 3.5), w ith  the canonical commutation 

relation ( 3.7), satisfy

~ - id ^ f>  (3.8)

and

[jr*" ,,#  == __ %"6P)4, (3.9)

([57] page 367)^. Unfortunately i t  appears that canonical quantisation fails us in this 

instance. We have

[-P"", =  (U y)dy, (f>{r, y')]

=  _ i y  d y [ < p ( r , y ' ) ,  ( r , y ) ] .

I f  [B, A] is a c number then

[B ,A^\ =  2 [B ,A ]A .  (3,10)

^In this chapter we take A =  1
^For example here it is shown that a necessary condition for a field theory to be relativistically invariant 

is that the generators for the t=constant hypersurfaces satisfy

This is equivalent to

as given above.
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so the above becomes

j d y  ([<t>{T,y'), ^ { T , y ) ] ^ { r , y )  +  ~ { r , y M T , y ' ) ,  ^ ( r , v ) ] )  . 

Using ( 3.7) th is reduces to

\  jd y 2 iS { y  -  y ' ) ^ { y , r )  =

=  —id ’̂ cj)

which is the same as the result given by ( 3.8) . However

[P’>,^\ =  [ - i i  j  -  ( ^ )  j  dy,<l>(T,y')]

=  - 5 5  /  ^2/ y),<t>{-r, î/')l -  [ ( ^ )  (r , y), ÿ ( r ,  y ') ] j

=  “ M  /  %')' y) +  v M i r ,  ÿ ) ,  ^ ( r ,  J/)1

d4>
dy

i  J  dyiÔ{y' -  y )^^

i d(j)
2 â y

whereas ( 3.8) gives

(3.11)

[ f  ̂  (̂1 =

=  * ( S  + S )  (3-12)
which differs from (3 .11). I t  is not at all surprising that the canonical formalism fails. 

For a field theory whose instants are spacelike hypersurfaces the cannonical commutation 

relation

[(p{x,t),(t){x' , t)\ =  0

makes in tu itive  sense since it  derives from a need to preserve causality. However, in 

a theory based on null hypersurfaces things are altogether different. A  non vanishing 

commutator between a field evaluated at two points on a given light front does not im p ly 

acausal behaviour.
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In  the light front theory o f the scalar boson developed in  [35] (3.17) and [38] (2.15) a 

consistent field theory was obtained by taking

[<?5>(y',r), i) {y ,r ) ]  =  je (y ' -  y) (3.13)

where e{x) denotes the Heaveside step function which is equal to -1 for a; <  0 and 1 for 

2 >  0. Can we rescue our scheme in  a similar fashion? Suppose we take the equal r  

commutation relation as ( 3.13)^ .̂ Notice tha t on differentiating (3.13) w ith  respect to y' 

we recover ( 3.7) so the commutators are not contradictory. The commutator [P'^, </>] as 

calculated previously is unaltered. Consider now

=  1 + /  i[0 '. ( ^ )  Idv)

~ 2  ( ~  /  +  J= ̂ ( -  /  -  y')(f>dy + J i6{y ~ v ' ) ^ d y

Using the field equation this becomes

Perform an integration by parts w ith  respect to y in the first term

which agrees w ith  ( 3.12). We can also show tha t ( 3.9) is satisfied. For example in 

Appendix 3 we show that

o ] =  i { r { d r  4- dy) -  ydy)(j).

‘‘We shall give a much more compelling reason for imposing this rather peculiar commutation relation 

in section (3.1.3).
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This shows tha t the field theory is re lativistically invariant i f  we impose the commutation 

relation ( 3.13). In  Appendix 3 we also show tha t the generators satisfy the correct 

commutation relations.

We wish to  show tha t the Heisenberg equation of this quantum field theory reproduces 

the light front Klein-Gordon equation. We have

= ^  py

H J { ^ )  1\ d y j

2 \ V  +

2 \ 2 J  \ d y j  

The Heisenberg equation is (45.23 page 346 [60])

=  -~[Pr,4>]

11.1  
2 i

[5  J y) +  ( f ,  y)dy, 0 ( f ,  y)] (3.15)

so

d fd y

i i
2 Î2

Now i f  [A, C] is a c number then [A^, C] =  [A, C]A  +  A [A , C] =  2[A, C]A. Therefore

"  " M / *  ( V W ^ , 2 / ) , ÿ ( f , J / ) W f , î / )  +  2 [ | ^ ( f , y ) , g ( f . ÿ ) l g ( f , î ; ) )

^  ( ^ ^ ( 2 A i^ ^ % - ^ ) 4 T , y ) - 2 ^ [ < ^ ( f , y ) , ^ ( f , ^ ) ] ^ ( f , 2 / ) ^

=  M  ( 2 « A ( f , g )  +  / d 3 , 2 i f ! ( ^ g ( f , ! / ) )

= \  ÿ) + j  , y)dv

so that

which is the light front Klein-Gordon Equation.
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3.1.3 D irac ’s Theory of Constraints

In  this section we look more closely at the light front field theory of the neutral scalar 

boson. Clearly ( 3.2) is singular and ( 3.6) is a constraint. A  careful application of the 

method for handling constraints developed by Dirac [34] gives an elegant justification for 

imposing the peculiar commutation relation ( 3.13).

The constraint
d(f>

is prim ary but not first class as we shall now demonstrate. Put

=  T îV) +  %  (3.16)

= j -  y) (̂ (y) + dy. ( 3 .1 7 )

Now

I t  is easy to see from ( 3.17) tha t

S i -  w  { « < - » )  - 1 <  )

dÔ{ÿ -  y)
dy

and

(3.19)

ŜViv) d
ÔTr{y) dTr{y) \  \  dy^ J J dy y j

=  # - y ) .  (3.20)

Using ( 3.19) and ( 3.20) in  ( 3.18) we have

[^ (ÿ ), ^ (y ')l -  j  dy (^-S{y'  -  % /)^ %  ~  y) +  5{ÿ -  “  v)

j  dy (s (y  -  y ) ~ 5 ( y '  -  y) +  6{y -  y )^ (5 (y ' -  y )^  

- 2  J  dyÔ{ÿ -  y )^ (5 (y ' -  y) =  - 2  ^  dyô{ÿ -  y ) ^ ( 5 ( y ' -  y) 

= -2̂ J dyô{ÿ - y)6[y' - y) = - 2 - ^ 6 { y  - y') 

f  0.
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hence ^  is not first class. Let

d(f>d(j> d(f>d(j) i f  fd (f> \‘̂  
dy d r  dy d r

- ( tt̂  + ( 3 . 2 1 )1 
2

We must now investigate what kind of consistency equations arise when we examine how 

the constraints evolve under the Hamiltonian

H  = J  dy(H + U- )̂

where B  is a Lagrange m ultip lier. Now |

é  (y') =  [«■, H] =  [$, JdyH] +  ['P, f  dyU^].

Remembering the rule tha t describes how the Poisson bracket is to be extended to quan­

tities  involving Lagrange m ultipliers (see bottom  of page 24 and top of page 25 of [34]) 

this becomes

JdyHji-  jdyU{y)[^,^{y)] 

=  [’$'(/), J  dyH] -  J  dyU{y)2~6{y' -  y)

=  [ ^ ( y ') , y  dy?^| +  2 B W ). (3.22)

I f  we put

P  =  y  dyH

then i t  is easy to see that

(^P , . . <̂ P 27r(y) and -  ,-y • =  fT(j){y).
0Tr{y) dé(y)

Using these and ( 3.19) and ( 3.20) in ( 3.18) we obtain

[^ (y ') i J  dyH] =  J  dy -  y)' {̂y) -  {̂y' -  y)M̂ <?S>(y)̂  (3.23)

d r  2 If !\

and subsituting this in  ( 3.22) gives

* =  ^ ( p ' )  -
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Consistency requires

0

7  (!/') -  p<l>iy') +  2 ^  (y') »  0. (3.24)^ ( y ' ) _ p W )  +  2 g

According to  Dirac this is a consistency condition of type 3 (see page 14 of [34]) since it  

imposes conditions on the IPs. A t least formally we can see that

2U — Tr(y') ~~ J  (f>{y')dy' +  k

is a solution o f ( 3.24) {k an a rb itra ry constant) but Dirac points out tha t we require the 

most general solution. To find this we must obtain the solutions of the equations

j  V {x )[^ (y ), '^ {x ) ]dxP ^Q  (3.25)

(c.f 1.30 page 16 [34]) which become

-  [  V { x ) 2 ~ 6 { y  ~  x)dx Q I
J oy

1
(3.26)

Only quantities tha t are strongly equal to a linear combination o f constraints are weakly 

zero so

=  /  d x ' f { x ' ) ^ { x ' )

and therefore

y {y )  -  y J  dx 'f {x ') '^ {x ') .

This gives as the tota l Hamiltonian

•ffT =  /  dy[H +  U 9  +  „ (T )y (y )$ ]

(c.f 1.33 page 16 [34]). We have no secondary constraints (first class or otherwise) so this 

is the final form of our Hamiltonian, we do not require D irac’s notion of the extended 

Ham iltonian (2.2 page 25 [34]). D irac has given a prescription for quantising classical 

systems w ith  second class constraints. Suppose we have a solution C{x, y) o f the equation

J  dyC{x, y ) [^ {y ) ,  ^ (z ) ] =  6{x -  z). (3.27)

We define a new Poisson bracket

[C(a^),ïï(y)b =  [C(a^),T7(y)] -  y  dz J  d p [((z ),^ (z )]C (z .p )[^ (p ) ,r ;(y )]
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(2.30. page 41 [34]). This Dirac bracket satisfies the crucial identity

K M ,^ ( y ) ]D  =  [((3:),4/(y)] -  J  dz y  dp[((y), ^ (z ) ]C (z ,p ) [^ (p ) , 'l^(y)]

=  K W , Ü/(y)] -  y  dz[Ç{x), i/(z )]6 (z  -  y)dz 

=  0

(page 42 [34]).

We should demonstrate tha t the classical field equation is equivalent to  H am ilton ’s 

equation w ith  Poisson or Dirac brackets.

W ith  Poisson bracket we have

0 % [(p, H t ]

^  [<f>, J dy{H (y)  +  U (y )^ {y )  4- J '{ r )V {y )^ {y ) } ]  

y  dyn{y )]  +  [(p, J  dyU{y)^{y)dy] +  [^, J  i^ { r )V {y )^ {y ) '^ {y ) ]

^[(p ,  y  dyn ] +  J  U(y)[<ÿ,#(y)dy] 4 -X T ) JdyV (y ) [(p , ' i i {y ) ] .

Now

[ ^ { y ' ) , ^ { y ) ] - J d y
W ( y )  ^ y \ a ^

d(p
dy

-  J dy6{y -  y')6{y ~ y) 

=  d{y' -  y)

so

J  dyH{y)] +  j  U(y)6{y' -  y)dy +  v ( t )  J  V (y )S {y '~  y)dy  

«  W ) , J d y H { y ) ]  +  U{y')  +  v { r )V {y ') .

Also

l(p{y'),H{y)] =  J  dy d{y' -  y)(p{y) a7T(y) ay

d{y' -  y) ( o ^ -" (7T^(y) 4- /x^^^)

J d y 2?r(y)(y -  y)

=  7r{y)6{y' -  y)

’■(s
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and therefore

[<}>{y')y j  '^dy] =  J [(l){y'),'H]dy =  r { y ) .

Clearly

r (y ' )  4- U{y')  4- ^{r)V{y' )

so

The last term is weakly zero by ( 3.26) and using ( 3.24) we obtain

d'̂ cf) d r 1 f  d r

which is the correct equation of motion.

I t  is easy to see tha t we shall s till have the correct field equation i f  we work w ith  the 

D irac bracket since in  tha t case

[<P,Ht \d  =  ~  j  dz j  dp[( j>[y),{z)]C{z,p)[^f{p), H t ].

The second term is clearly weakly zero. To see this note tha t

1^{p) , H t ] =  [’I ‘ (p),'H(y) +  U (y )^ (y ) +  ix ( r )y (y )^ (y ) l

=  j \ '^{p)y '^ iy) 4- U {y)]dy- \-u {r) j [^ f{p ),V {y)^ {y)]dy.

Now

[’P(p),V(y)«(y)l = [4'(p),V(y)]4'(y) + V(y)[$(p),$(y)l 

and first term in this expansion is weakly zero so that

[^{p) ,Ht] ^  J[^{p),'H{y)-\-U{y)'^(y)]dy + u(r) J  y(y)[^f(p), ^^(y)]dy

by ( 3.24) and ( 3.25).

We now wish to  show tha t the Dirac bracket reproduces the peculiar commutator 

( 3.13). F irs t notice tha t i t  is easy to show tha t a solution to  ( 3.27) is given by

C {x ,y )  =  - ~ e { y - x ) .
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To see this remember that

[ ^ { y ) y  ^ (z ) ]  =  ~ 2 - ^ 6 { y  -  z )

so

J  dyC{x, y ) [ i ' {y ) ,  »(z)] =  j  dy^e{y -  x )2 -^6 {y  -  z)

^  i  A  /  ^ -  z) =  -  a:)

— 6{z — x)

as required. Now

l(p{yyr),(j){y\r)]D  =  W y ,'r ) ,0 (y ',T ))+

J  ds J  dp[<?!>(y,T),7r(s) -  ^ ( s , r ) ] ( - l ) ie ( p - s ) [ 7 t ( p )  -  ^ (p , r ) , ( /> ( y ', r ) ]

=  -  s)e{p -  s)i<5(p -  y')

=  1<3/ -  y') (3.28)

SO the nonstandard commutator ( 3.13) is the Dirac bracket. We see tha t ( 3.28) and 

( 3.13) differ by a factor o f 1/2. Previously this factor was absorbed in  the defin ition of 

the generators (see ( 3.4) and ( 3.5))

3 .1 .4  D iscrete L ig h t Front F ie ld  T h eo ry  in  1 + 1  Spacetim e

We take as the inner product on the space of solutions of the ligh t front Klein-Gordon 

Equation
r°° / d d \

{<PiM = dy

([56] equation 3.28 page 44). I t  is easy to  see tha t the normal modes are

exp[f(fc 4- (/c  ̂4- ip )^ )y  -  z(/c  ̂+  /x^)5r]
V  47T [k ^  4 - p p )  2

where /c € JR. We can check tha t these satisfy (3.3) and the usual orthonorm ality and 

completeness relations (Appendix 4). We may therefore write

4>{yy'^) =  f  ---t  ^  exp[t(/c 4- {k^ 4- p^)^)y  -  i{k^  +  / i^ )2r ] +
J V47T  p ^ ) 2

®We remark on a slight inconslstancy in the notation. Properly we should denote the field ({> of this 

section by a new symbol say (p which is related to the previous 4> by the equation (p =  l/ \ /2 (p .  Then it is 

obvious that we have \(p',<p] ~  l/2[<p',(p] =  l/4 e {y ' — y) and for example P  — J { ^ f i d y .  Also the equation 

(‘3.21) should be written Ti. — l/2 ((§~)^  +  — l/4 ((f^ )^  4- which agrees with the Hamiltonian

density in ( 3.14).
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a~ (̂ u )  ^y - 1- exp[-î(fc  +  (fc  ̂4- p^Ÿ^)ij +  i{k^ 4- pi^)W] j> dk (3.29)

or

^oof I
(^ (y ,T )= y  | , ( . ) _ ^ e x p iuy  — %

. / v?+p?
2u

+a'^{u)
y /ü \ /4 r

exp

where u  =  [k^ +  p^)^ -P k. I f  we have

[a(ti), a ^(n )] =  6 (u — û)

then to  ensure that

[(p{y,r),4>{y,T)] =  ^ € { y ~ y )

.(  v^ +  p^ 
■iuy+i \ —— —  IT

(3.30)

du

(3.31)

we must write

<^(y, T )=  /  (a (u) -j ^̂ exp
Vo I V ‘̂ v47r

\¥a+{uy
y/Üy/Âr

exp
. f  u'^+p'^ 

—iu y + i \  — r  IT
2u

>du.

(3.32)

We show in Appendix 5 tha t ( 3.30) ensures tha t ( 3.32) satisfies ( 3.31).

Expressing Generators in terms of Creation and Annihilation Operators

We wish to  obtain expressions for the front form generators in  terms of creation and 

annihilation operators. We shall use box normalisation in  a cell o f length 2L. We require 

<p{—L , r )  =  <I>(L,t ) so tha t u =  rm /L ,  n  >  0 and

where [au,a„/] =

We have

luy  — I
2u

4--T?4==exp
y/üy/2L

. (u ^  +  p '^ \

,2  . „ 2 '

+

. (u'^ P p ^ \  
-luy +  I 1 - —  j r

Since we are dealing w ith  conserved quantities i t  is sufficient to calculate P ’' at r  =  0 (see 

[47] page 51) so

= 5  L  f e

’Clearly by summation over u  we mean summation over the associated n
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P ut

so

then

w = r y
L

( 3 . 3 3 )

dy — —dw
TT

=5 L  Ç Ç { - - ^ ^  +̂ É l  - ")]+
^ § L  -  ^ S l  + ")i

=  ~  9 I  p^a-uaû<5u+û,o +  -j=-7Tauaf6u-û,o+
^ û u [ V '^Vu y/uVu

c UÛ _ + ^ 4 . e  1
/T /— u.,0 /— /Tr^u^û '^~‘̂ f i iVuy/u  y/uVU J

since L u j i r  is an integer. Now 6_tt-û,o and are never other than zero (remember

tha t u  and u > 0). ^û-u,o and 6u~û,o are non zero only when û =  u so that

4
P"" =  -  ^ ( u û u a j  +  ua'^au).

A fte r normal ordering

We now consider the operator

py

P'^ =  Y ^ u a i

11
22

OtU'

“  (S ) }

( 3 . 3 4 )

i ( & / ~ U { ÿ )  =

J  4i d̂y -  '^tia+aA .=  - i ( £  
2 I 2 ( 3 . 3 5 )

Now

/ ^ = d y = £ d y ( ^ ^ Ç ( ^ e x p ~ iu y + i
. (  U ^+ f l ‘
M —;r—\  2u

180



As before we can assume r  =  0 so

r L  1

luy  — I
2Û

a t
+  -&GXP

Vu
- l u y A i  I — :n r— I r

2Û J

a t

a t  a,y .............  a t  a t
+ - %  exp[^y(û -  IX)] +  exp[%y(-tx -  Ù)] .

V u V u  y/uVu J

We can see tha t the first and last terms in  the above can be dropped at this stage since u l­

tim ate ly they w ill generate Kronecker delta functions that are always zero. I f  we introduce 

the change of variable ( 3.33) we obtain

/ * ’ '■' -  i * "  (Ç Ç  -  *»+ â  “ 'I* -  -»))

Normal order to give

/ 2
4>^dy =  Y  - a ja * .

u
Subsituting this in  ( 3.35) we find that

- U - Z

(3.36)

=  Ç  ( ^ )
Now

F r =  =  F"- -

(formula 2.47 page 69 [47]). Using ( 3.34) and ( 3.37) it  is easy to show that

“ X .

(3.37)

2u
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The creation operator a j  creates from the vacuum’̂  an eigenvector w ith  eigenvalue ~ u  

(u >  0) of the operator t t i.  W ritten  in  terms of creation operators (s till denoted of 

eigenstates w ith  eigenvalue u {u <Q)  o f t t i  the above becomes

=  (3.38)

I t  is now quite easy to see that the field theory we have described here is simply the many 

body generalisation of the 1 particle quauntum mechanics described in  chapter 2. We 

form the Fock space

®i=o'W

where W  denotes the symmetric subspace of

Suppose as a basis for the light front H ilbert space we choose the generalised eigen­

functions Vu{y) o f the light front momentum operator r \  then we l if t  H i (suppressing the 

subscript H) to an operator on Fock space. W ith  some abuse of notation we denote this 

field operator by r \ .  We have

i r i  =  J  d y F + {y )n iF {y )

where

so that

F{y) =  and F+{y) =  J 2 v : ( y ) a [

n  =  f  d y Y ^ V ; { y ) a t n iJ 2 K ' { v ) a . i ' -
U u'

From the orthogonality of generalised eigenvectors

'^1 ~  ^   ̂
uu'

and therefore

py =  J  d y Y : v : { y ) a i i - l )  f  W  y„,(y)a„-

' The vacumn j 0 >  is defined by j 0 > =  0
^Really we should write a î„  since TTxaJ | 0 > =  (—u)ûj | 0 >  when u > 0 so | 0 > =  uatu I 0 >

when u < 0 .
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u

which is identical to ( 3.37) when the la tter is expressed in  terms of creation and annhilation 

operators of t t i (recall p  =  me). Also notice tha t the l if t  of the light front Hamiltonian K  

is given by

P r =  f d y J 2  V : ( y ) a Î K  E  K , { y ) o „ , .
U  u '

- Eu \ 2u (3.39)

which is the same as ( 3.38).

3.1.5 T h e  Scalar P a rtic le  in  L igh t Front Coordinates in  3 + 1  Spacetim e

I t  is a straightforward m atter to generalise the results of the previous sections to the case 

of a fu ll 4-dimensional spacetime. Here we shall confine ourselves to presenting formulae 

for 3+1 light front Klein-Gordon equation and its solution in terms of normal modes as 

well as indicating how we expand the generators in  terms of creation and annhilation 

operators.

L ig h t  F ro n t K le in -G o rd o n  E q u a tio n  in  3 + 1  S pacetim e 

The Lagrangian in  Minkowski coordinates is

MU
dx^

Now

and

so that ( 3.40) becomes

m

\ 2 - 2

d d r  d dy^ d 
+ d

dx^ dx^ d r  dx^ dy'  ̂ d r

d r  d dy^ d +
_d_
dx^ dx3 d r  ' dx^ dy^

A  + A
d r  dy3—  +

d r  ) - z

, A V  +2S, d<f) d(j) , f  d(f}\ -
^ 7- /  d r  dy^ ' V dy^ J

(3.40)
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d r d r ,

(3.41)

The Klein-Gordon equation is the Euler-Lagrange equation, i.e.

_j_

_a_
dy'^

,
m

+

d
dy^

A . ( (  1
dy^ K S ) ] ) 4

0 ^0  
L ag/ij 2 )

d' <̂j) d' ĉj) &̂ (f) d‘̂ 4> d'̂ <f) 2 ,
+  fj, cp — 0

drdy'^ dy^^ dy^"  ̂ dy^"  ̂ dy^dr

Expansion of Fields in terms of Norm al Modes

(3.42)

The 3 dimer^ional analogue of ( 3.29), i.e. the expansion of (j> in  terms of normal modes 

and the ir creation and annhilation operators, is

W 2 2^ ^  J i  e x p [i(F V (fc i+ M ^ )^ )^ ^ - i( fc i+ ii^ ^ )^ r+ 2 fc ^ V + ^ fe ^ V ]
J I V2(27r)2(Al +

V 2(27 r)t(^ | +  /u2):

(Appendix 6) where — ( ^ i  +  M^)^ i =  1,2 and is the four momentum

w ith  respect to the basis natural to the front form. A lternative ly we can express the fields 

in  terms of u. We have

{u^ — =  à i  +

+ ^ + w m ± A i + ^ exp[-i(fc “ ‘ 4- ( i i  -t- -h

so

u l2 2 v } - k ^ ^ +  j j? — +  k^^ +
i 2 . , , 2 2  . , , 3 2

Therefore

and

Clearly

iw "  _ „ 2 2  , , , 3 2  , , 2

y l  — 1^22 _  2^3- _  ^ 2

^ =  - I w -------------

— ^22 _  . ^ 3 2  _  ^2^ (%l^ 4- u2'  ̂ 4- 4- M“)l2_L„22_L.,32
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2u^

so

exp +  iu.y 4-

+(«) . .g  2^1•u exp

I f

V^(27r)t

[a(u),a+(û)! = 6 { u - û )

T  -  î u . y

then we must write

Hy^ T ) = y  d \
g fe )\/2

V2(2,r)#% i2
exp

{y? +  y,‘̂ ) r
lu .y - 1

2ui
a+(ti)%/2

+  — ------ Î— rGxp
x/2(27r)2ui2 2ui

so tha t

y>{y,'r), (l>{y,r)] =  - e ( /  -  f )6 {y '^  -  2/^)(5(y^ ~  y^).

Expressing Generators in Terms of Creation and Annihilation Operators

In  this section we shall have recourse to the results o f Appendix 7 where we derive the 

components o f the stress energy tensor. We shall only derive the expressions for and 

py^ since the method is rather routine. We start w ith  F irst we require an expression 

for the field in terms of creation and annihilation operators. This is given by

E - # ^ e x p l u . y  -  I
(^2 +  fP ) r

+  1 exp
(27T) 2 u19

, +  y ^ ) r
2u^

l u . y

where u =  w^jL^ >  0. Now

(3.43)

We can take r  =  0 so

a{u)iu^ , a + (u )(- in ^ )  . .T exppw.y] 4--- — 3— —  exp[~îu.|/]
t  \ { 2 L )2 u ^^

ia{u)u I 2

(21:)
—  Gxp[m.^]

I 2T)#
exp[-m.2/l

(2i:)3 (2 T )I
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=  exp[%(36 +  û )]+

j ^ ^ a { u ) a '^ {û )u ^ ^ v } ^  exp[iy.{u -  m)]+

exp[îy.(:û -  m)]- 

a'^{u)a'^{û)u^ ^v}^  exp[—iy .(û +  u)]^ .(2P)

Put

so that

7T 1 
W i =  — y

( f )  <^ni

then ( 3.44) becomes

/“  - f  \   ̂ 1 r 7,
^ Ç  exp ^ - w . { u  +  m) +

1
2

(27t)3 7T
+

î-~w.{u  — 2̂ )
7T

L  1 \
- i—w.(n +  n) j

Since
1 rzL

( 2 ^  eexp[i7n.€] =  (5m,o

the above becomes

i  Ç  ^-a(M)n(A)tt^^'û^^ (5u+^o +  a(M)o'''(i)^^ ̂
U Û

a'^{u)a{û)u^^û^^ôû-u,Q -

where, for example, <5u+ù,o is non zero only when u  ̂+  û  ̂ —0 Vi where i  =  1,2,3. Clearly 

5u+ù,o is never non-zero so

-  ^ X Z  [ o.{2&)cl̂ { u)u  ̂ <^'^{u)a{uW) •

Normal ordering gives

(3.44)

P'^ =  X ]a ^n + (ii)n (u )

c.f ( 3.34).

186



We now wish to obtain the expression for in terras o f creation and annihilation 

operators. We have

~ K w )

= I (J / (&) (0) (0) - 1  ■

B y ( 3.43) this becomes

Now it  is quite easy to see that for i  =  2,3

,,i2
=  ^ XZ T r® ’^fe)a(u).

u

We can also show that

i l
2 J l d \ = Ç ̂Ea+(a)a(«)

so that ( 3.45) becomes

=  I  -  E   ̂ («)«(%)

c.f ( 2.46). Now

Pr =  P ^ - P ^
, l2 ,92 ,,32 ,,2

= E (-S^)
These expressions for P^^ and P"  ̂clearly agree w ith  those we obtain by lifting  the operators 

of Chapter 2.
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3.2 Particles w ith  Spin

In  this section we discuss the possibility of developing front and point form field theories 

o f free fermions. The work is inchoate and is merely intended to illustrate the problems 

tha t must be overcome.

3.2.1 L ig h t Cone D irac  E q u ation

I f  we choose a tetrad [51] w ith  components satisfying

^a^bOjÀU — l?a6 (3.46)

then the D irac equation in  an a rb itra ry  coordinate system is

/Lt +  m ’F =  o (3.47)

where

7^ =  (3.48)

(the 7 ® are the usual Dirac matrices) and

w ith

=  - \ { d ^ K  +  w U h i ) g . , h iŸ - y ' ‘  (3.49)

[53, 54, 55, 56]. Finding the explicit form of the Dirac equation in  a given coordinate 

system is very complicated in general as it  requires a knowledge o f the Christoffel symbols 

and the calculation of some lenghty contractions. A  judicious choice o f tetrad can sim plify 

things considerably. For this reason one often works in the diagonal tetrad gauge i.e. 

one chooses three of the tetrad vectors to be parallel to coordinate vectors so that the 

greatest possible number o f tetrad components vanish. In the particular case of light cone 

coordinates in 3+1 spacetime, even working in the diagonal tetrad gauge, the algebra 

involved in  calculating the Lagrangian by the bare hands method is s till very involved. 

We shall therefore obtain the light cone Dirac equation in a different way, by transforming 

the Dirac Lagrangian from Cartesian to light cone coordinates and deriving the field 

equations by the usual variational method. We shall need the Lagrangian anyway to 

discuss the fermion field theory. The Lagrangian in Minkowski coordinates is
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where du — Using ( 3.67) and ( 3.68) in Appendix 1 this becomes

Rearranging gives 

i ^(i y I 7° + f%/*7° + 7 ' + ^^7^^ ^  -  mvp'p.
o r  \  v x y ^  J  d y ^

The Lagrangian in  light cone coordinates is obtained from the above by m ultip ly ing  by 

the Jacobian so tha t

L =  -y ^ W d  y_ I ( . S “  +  y  +  ^ y )  (3.50)

Clearly

aW

and
dL

which gives the D irac equations as

- ( I  £  I + y y ) $ ^ + (  v V + y + | î  -  = 0 . (3 .51)
I y I -  dr 1 y I V )  ^y* I y

Notice tha t it  is d ifficu lt to derive a field theory from ( 3.50) because i t  has an explic it 

space time dependence.

3.2.2 2-D im ensional L ight Front F ie ld  T h e o ry  of Spin 1 /2  P a rtic le

Suppose we consider the special case of a 1+1 dimensional spacetime and lightcone coor­

dinates adapted to an observer at rest at the origin then, when y >  0, ( 3.50) becomes

—«^(7 ° +  7 ^ )? — +dr dy

This expression represents the Lagrangian for the light front Dirac equation. The La­

grangian has lost its explicit spacetime dépendance so it  should be possible to develop a 

field theory. The light front Dirac equation is

î(7° +  7 ^ ) ^  +  î 7 ^ ^  +  =  0. (3.52)or oy

In  fact it  is easy to derive the Dirac equation in light front coordinates directly from ( 3.471. 

Recall tha t the coordinate transformation from Cartesian to light front coordinates is

T =  y =  xh
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From the usual transformation law of the metric tensor we can see tha t a solution o f ( 3.46) 

is given by
dr _ dr ^

h l =

h i  = h\  =

d r
dx^

dy
dx^

=  1.

Since all the components of the tetrad and metric are constants (the later ensuring tha t 

the Christoffel symbols vanish) we have from 3.49 that

From ( 3.48) we obtain

and

r ^  =  o. 

7^ =  h l Ÿ  +

=  7^

7° +  7^-

Substituting these results in  ( 3.47) gives ( 3.52). Suppose we assume a particular 2- 

dimensional representation of the Dirac matrices [38]

7 0 _
0 - 1

and 7  ̂ =

V •1 0
(3.53)

Plane wave solutions of ( 3.52) can be found in  the usual way ([47] section 1.3 page 48 

also [48] section 7.2 page 216). Suppose we express the solution in the form

# = J U{k) exp[i{k'^r — k'^y — k^r)]dk^dk^. 

Substituting this in  ( 3.52) we see that we must have

(3.54)

V V \ •1 0
C/ =  0

I.e.
—k'  ̂ +  fcy +  m k^

—k^ k^ — +  m

From these m atrix  equations we obtain

ky

\

J

0 .

jzV — kr m
T T  J  T T  ~ k ' ^ ~ mUb and Ua = ----------^ ------- Ub
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so we can only have a solution when

A;!/' =  (A;%' -  6"')^ -

I.e.

which is simply the mass shell condition in light front coordinates. Therefore

/  ( —fc^) ^

V  ̂ /

Substituting this in ( 3.54) gives

(-& * )
=  I  -  2 k y ^  - 1? )  I exp[i(fcV -  k-'y -  (3.55)

Let k i  and denote the zeros of -~2k'^k'^ — pt? then

A:[ =  A;̂  +  {k^^ +  pt^)^ and k^ — k^ — {k^^ +  pi^)^.

Also we have

dk^

Using [50] formula A.6 page 470 ( 3.55) becomes

/

/
t-t» ) \

ky~k'^+m
1

/
I 2 [k y + {ky"" +  pi“̂ )  2 -  k y ] |

f  (-feU \+  d-At^)^))
2(fcy  ̂ +  Ai^)2

/ S { k ^ - { k « - { k v  +y.'^)2)) f  (-fcu \

2{ky^ +  Ai2)2 

Now perform the k'  ̂ integral

ky—k'^+m 

1

exp[î(Aî’̂ r  — k'^y — fc^r)] dk'^dk^+

\

)

exp[i(A:'^r — k"^y — fc^r)] dk^dk^+

\
exp[%(A;^T — k'^y — k^r)]dk'^dk^

y

/
/  fcv \

y
— - T  e x p [i( r(F " -h t i-)2 -  y{ky 4- (F "  +  pi^Ÿ^))]

2{ky +A i )2
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+ /
/

- — —T e x p [z ( -r (F "  +  pĵ ) 2  -  y{ky -  (F"" +  Ai^)2))]<iA:3/
2(ky +  pjfi)2

In  the second integral le t k^ ~ky  then the above becomes

/
fcv \

-ky

- — r r  exp[2(r(F'* +  4- A&^)i))]
2{ky^ +pj?)2

-r exp[—i( r (F ^  4 -A^ )̂  ̂ -  2/ ( F  4- (A:̂  ̂ +  At^)i))]dA:%/
2(A;r 4 -Ai^)2

= J a{k' )̂u{k )̂exp[i{T,y){Lu{k‘̂ ),k' )̂] {k' )̂v{k' )̂ exp[-i{r, y)(o;(A;^), A:’̂ )]dA;̂

where

w(A;i/) =  4 -Â )̂ =

(T, %/)(w(A;̂ ), A;̂ ) =  Tw(A:̂ ) — 2/(A;̂  +  u>{k '^ ))

u{k^)
( -ky \   r

1
and v{k^) —

J

( kv

(3.56)

I t  is easy to see tha t u{ky) and v{ky) are orthogonal ([45] page 67) i.e.

(-A:%')2
4-1 =  0.

jj? — {ky^ 4- Â )̂

I t  is a far from tr iv ia l m atter to quantise this system. To begin w ith  we have to be 

careful to isolate the proper degrees of freedom. I f  we expand ( 3.52) we obtain

and

dr dr dy
I f  we add these we find tha t

. dih2 . d'lbi
I — 2— H mtpi 4- mip2 =  0.dy ay

This is a constraint and it  tells us tha t only one of the fields or ifj2 should be quan­

tised [36]. We find tha t i f  we ignore this constraint and quantise canonically then the 

commutators are contrdictory. We have not had time to develop a light front fermion 

field theory. Undoubtedly this would be worth looking into. I t  may even be possible to 

construct a light front field theory that accurately describes an interacting fermion boson
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system. This may be o f more than purely theoretical interest since i t  is likely tha t the 

Feynmann rules would be much simpler than those obtained in  field theories based on 

spacelike instants. This is a hall mark of field theories w ith  constraints. The constraints 

rule out many diagrams which would otherwise contribute to  a given process.

I

!
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3.3 Append ices

Appendix 1

We wish to  find the expression for the Lagrangian corresponding to  the lig h t cone K le in- 

Gordon equation. The Lagrangian for the K lein-G ordon equation in  M inkowski coordi­

nates is

(3.57)

The transform ation to  lig h t cone coordinates is given by equations 2 and 3 o f [59] We 

have th a t

z^{t ) ~  = \ z ~  x \  , (3.58)

I t  is easy to  show tha t 

^2°

which can be rew ritten  as

This follows from  a simple application o f the chain rule remembering tha t z is a function 

o f T only. O f course th is  also im plies

Using th is  and

we obtain

so

i f  ~  x^ — ẑ  (3.60)

d r y
dx} uxy^

where, follow ing D errick, we define

(3.61)

=  \ y \  -E-y> (3.62)

Because
dz^ _  d r dz^ dy^ dz  ̂ _  d r j
dx^ dx^ d r dx^ dy^ dx^ ̂

®In this Appendix the Einstein summation convention and explicit summations may appear in the same 

expression. Latin indices denote an element of the index set 1,2,3 and greek lettres an element of 0,1,2,3.
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we have using ( 3.61)

Prom ( 3.60) and ( 3.63) we obtain

dzÿ
dx^

dx3

Prom ( 3.58) we have

k

Using ( 3.60) and ( 3.59) and rearranging we find tha t

I y Id r
dx^ A"

Now
dz'̂  _  dz^ d r  dz^ dy  ̂_   ̂ d r
dx^ d r  dx^ dy3 dx^ ^ dx^

y  I y 
v \y^

where we have used ( 3.65), Also from  ( 3.60)

dy^
dx'^ dx°

dz^ d r  
d r  dx^

Using ( 3.59) and ( 3.65)

^ \y A *

We are now in  a position to  transform  the pa rtia l derivatives. We have

d _  d r  d dy'̂  d +
dx^ dx'  ̂d r  dx^ dy  ̂*

Using ( 3.66) and ( 3.65) gives

a
dx^

Also
d

M  f  A  _
v\y^ \ d r  d if

d r d dy  ̂ d +
dx^ dx^ d r  dx^ dy  ̂

so from  ( 3.61) and ( 3.64) we have

d y^ d d y^u  ̂ d
-  +  —  +

(3.63)

(3.64)

(3.66)

(3.66)

(3.67)

(3.68)dx^ v\y^ d r  ' dy^ ' I'xy^ dy  ̂‘

S ubstitu ting  these in  ( 3.57) we find th a t the righ t hand side o f tha t equation becomes

y .  (2y^d4>d(t>
"Y V aT dy^ \  dy^ )

d(J) /   ̂d(f> \ 2 jr
Ç  i^xy^ dy^ V a%/* ^
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'■1

The lig h t cone Lagrangian is obtained from  the above by m u ltip ly ing  by the Jacobian i.e. 

so th a t

V  ( ( ÊÈ. Ÿ\  _  V  f  iË È \  _  2 ,2
.  fc \ l  K  1 dy^ \ y \  \dy '^J )  ^ \ y \ d y ^ \  d y O \ y \ ^ ^

(3.69)

(c.f 3.1). We can check tha t th is is the correct expression for the Lagrangian by showing 

th a t the Euler Lagrange equation coincides w ith  the ligh t cone K lein-G ordon equation 

derived by Derrick. To begin w ith

dL

so

9 ^ “ ' 

2 /

y  d<l> „ d4> uxŷ  y. 2y'° d4> ,
J ÿ  1 9t  9y’’ 1 y I ^ I y 1

9y'- 2

, v \y^

+I y I dy’’dT | y 12 11 y! y  1 -
d<l) d(f) 1

\ y \ J  d r  d y ^ \ y \ dy^ \ y \

•E E ̂ ( l  E1
k l ^ P V -  1^1

dy^dy^J \ y \

y
\ y \

Now from  ( 3.62) we have

so tha t the above becomes 

y^ d̂ (f> 2
I y I dy^dr | y p (13/ r  - /  )

di^xy^ ^  _ 
dy^

2.d(j) d(j) 1

I y  I

d r  dy^ | y p \ y \

y k y T

Ç  1 1/ I dy^dy^  | y 1 dy^ ^

and therefore

t^°y''

.1 :1

d(f)

+  1/'

1

^xy'
\ y \ j  dy^ \ y

dy J \ y \ ^ (1^1 ' - / ) -  !/
,• d‘̂ 0
dy^dy^ J \ y \

y

E ! #
dy^

1 a | ^  2 d(f) d(j) 1 a ÿ  y\y^ d’̂ 4>
y \ -  dy

+ + 4- 4-
1 y I a r  \ y \ ‘̂ - ' d y  \ y \  ' dy \ y \ ^ ~ ' d y  \ y \ d y ^

1 a /  a,̂ 1 a<5£> 1 a^
(/.— 4-1— 7ô{E-y)y>

d<l>\ 1 d [  d(j)

"  “  [ - %I ^  I ' dy \ y \ ^  ~ ~ d y  I M  \
In  the above the 3rd, 5th and 9 th  terms cancel. The 7th and 11th combine to give

1
\ y \ ^ '  dy ' \ y \  d r  \ y \  d%£- 

I t  is not d ifficu lt to see tha t

4-
2 d(j) v\y^ d'^à d(j)

13 \ ~ d y
2 _  2
y \~dy

d</)
dy

(3.70)

a / d é \ a / d(f>\ d(p
~ dy I “ ■ dy J -  dy ( dy j  ~ dy
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so ( 3.70) becomes

l g | -  %  | y  | 9 T  | y | 9 y 2  | y |  d y [ ^ ' d y ) '   ̂ ^
Also it  is easy to see tha t

a i, 1 a<̂
iV'd §  I v l ^ ' d y

so

dr  I y  1 -̂ ay •
From ( 3.71) and ( 3.72) we have

a Æ - a # :

(3.72)

V  I ^   ^  ^
^  d y ^  d r  \ y \ ~  d y  \ y \ d r  | ^ |  a g ^  \ y \ ~ d y  d y

F ina lly, since

d<t> \ y \

the Euler equation is now easily found to  be

which agrees w ith  Derricks expression.

Appendix 2

The energy momentum tensor is given by

T i^  =  ir y 'a e < l> -9 '‘ ''L

where
1 az,

'I
([47] 2.41 page 68 and 2.15 page 63). For for the tim e being =  r .  I t  follows th a t

,3.73, I

and

so

r - ’- =  4 g ”^ds4> -  +  g'‘^dv4>)

d(f>'̂  ^
a y '  (3.75)
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and

=  Trlg^yd9(f> -  g'^^L =  7rl.{g'^ydr(j) +  g'^^dy(f>) -  g' '̂^L

^ - ( ? ±  / _ — - ^ 1 + 1  
.dy V d r dy J 2

.dy

We note in  passing tha t the stress tensor is symmetric. For example

2 J.2

. d r  dy.
a ^ _  1
dy  2

U y J  )
=  r^ y .

There is no reason why the stress tensor should be symm etric in  general ([47] page 69).

A p p e n d ix  3

We have

[J"". =  M r'T ’' -  yT ^ , 4''])

=  \ J d y { T [ T ' y , < l , ' ] - y l T ^ \ 4 , ' ] )

-  (4) ’

= - l l f d y  (r ( ^ i^ V ,< t> ']  -  [(g) .^'l)+M(g)\^']

= J dy é'] + (2y - T)l(g) , 0']̂
- \ \ I  ‘^ y  +  (2y -  T ) [ ÿ ' ,  (g ) ij

^ W h ' ^  + ( 2 y  -  t)2[(/>', g ig )

- y')4> +  2(2y -  r ) i S { y '  -  y)g) .

Using the field equation

U
22 a?/ dy

2r i<:(y  -  y') ( 2^  +  ^ | d y  +  2(2y' -  r ) g
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In tegrating by parts

" " H  -  V’ '> (2g  + g ) ( ^ E  + 2 ( V  -  T )g )

+ * y ' w  ~  ^’■ 0 )

=  - ^ ( - ^ ( f r  +  g ) + î / g ) -

On the other hand ( 3.9) gives

[ry,<t>] =  - i{T d y  -yd-^)<t>

=  -i{rgy^de -  yg'^^dy)(f) -  -iir{gy^dr  +  g^^dy) -  ]jg'̂ ^dy)(()

=  —i { —r { d r  +  ^ y )  +  ydy)(j)

which agrees w ith  the above. In  th is  way we show tha t, w ith  the new com m utator, the

fie ld theory is re la tiv is tica lly  invariant. We can also show e xp lic itly  tha t the generators 

satisfy the correct com m utation relations. For example consider

1 1  f  ( __2±2 / J 1 f  f  d ( l) \ ‘̂
IP ’' . n  =  ( g y  ( mV  -  ( g ) 1  y  ( g ) ^ y ' !

= -YîJdyJdy’ ( g )  1 -  [ ( g )  , ( g )  1) •

Now we use the result tha t if  [A,BJ is a c number then =  2[A, B ] { B A  +  AB)  so

tha t the above becomes

d(f> d(f>, f  d(f> d(f) d(f) d(f) \
+  ' dydy ' J

The firs t term  is

where we have used ( 3.7). In  the second summand integrate by parts w ith  respect to i /
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From [61] page 4 th is can be w ritten  as

j  d y j  dy' (^S{y -  y ' ) g ÿ  +  -  y ') # ')  .

Integrate second term  by parts w ith  respect to  y

J  dy J  dy' (^6(y -  =  0-

The second term  is

■ \ i j d y j d y ' ^ S ( y - y ' )  ( g g  +  g g )

—  7/V
dy dy'  ]

- i  ( i  /  dy /  d y 'g « (y  -  y ') g g  -  i  /  dy /  d y '± S ( y  -

=  0

so tha t py  and P ’’ commute as required ( 2.49). Next consider

{•T ", n  = ( 5 / d v ir T - y  -  yri, \  J  (g)'dy'|

= - \ J d y J d y ’ (|r[i ~ (g) ) > (g) 1 ~ (g) ' (g) l)
= i {'JdyJdy' (4 (mV - (g)] , (g)'l - JdyJdy'yl- (g)\(g)4) '
The firs t term  vanishes since it  is essentially [P^, P'̂ j and we have ju s t shown th a t P^ and 

P^ commute. The second term  is

From [61] page 4

= - \  I  dy I  dy’2 y i± S { y  -  y ') (gg +  gg )  .

Integrate by parts w ith  respect to  y'
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i  J d y 2 y i
dy \ d y j

Integrate by parts w ith  respect to y

=  -tP "". (3.76)

From 5.21 page 277 [57] or ( 2.49) we see tha t Lorentz invariance requires

[ r y ,  p^] =  iigy^p''- -  p^p%/) =  z y ^p ^

=  —i P ^

which agrees w ith  ( 3.76). Next we have

[ r v . JT«] = [| y d y ( r T -^  -  yri, 1 j  d y '( r f ^ « - y ' f ^ ]

where we use the hat to  show that the stress energy component is a function o f y'. This 

becomes

Jdy J dÿ{TT[T- ŷ,ry]-Ty'[T̂ y,f^̂ ]-yr[T'\f'y] + yy'[r\t'^]).
Since

it  is easy to  see tha t the 2nd and 3rd terms in  the above w ill cancel on perform ing 

integrations. The last term  is

I h h A Ï Ï ^ i w ) ' '

= -\JdyJ dy 'yy 'i2 -^S {y  -  y ') ( g g  +  g g

d(j> d(j> 
dy

=  0

by symmetry. This leaves only the firs t term  

1
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il!
4 4 jdy  jdy' ( /2 (ç i,  .^ ](#  +  # )  -  ^ "2 [ÿ , g] (gÿ + ÿg) - /2[g, ,ÿ] (,ÿg + gÿ)-

2 f ^  f É l  (d(f>d(f> d(j) d4> \\
dy ’ ^  \  dy dy dy' )  )

~  ~  4 T  /  I  ̂A4^2-e(2/' - 3 /) (#  +  # )  -  y^2iÔ{y - %/')

M ^2«(y -  y ') (̂ g +  gÿ) +  2 ig « (y  -  y') (gg + gg)) .
The second and th ird  terms cancel on carrying out integrations so we have

j d y j  dy'  ( / | e ( y  -  y ') ( #  +  <t>4>) +  i§ ^6 {y  -  y ') (gg + gg)) .ii!
4 2

1 z'r^
I T

[61] which is obviously 0. This leaves only the firs t term  which can be w ritten  as 

1 / . u V  r . r . . ....
- 14 \̂ " 2 /  ~  + 'ï'^ ) -  + # ) )

since e(—æ) =  —e{x) . C learly this is zero. Lorentz invariance requires tha t

[ r y ,  r y ]  =  __ g r y j r y  _j_ ^ ry  j r y  _  g W jT T )  _  q

since =  0 and — 0. This agrees w ith  the above. F ina lly

n  = { \ j i r T ^  -  yr' ldy, i j  f "»dy']
= \ j d y  jdy'[-yT'^,ry] = \ j d y  j  dy'y[t^y,T^]

- .  ( 0 1  

-  i  /  % / * î  ( A * .  4 0 " 0  " # # ( # % + # # ) )

-  i / * / V »  ( d '%  -  ( I j *  t  * 5 )  -  »'l ( S s  *  S W ) )

Integrate second term  by parts w ith  respect to  y' and then perform  y' integral throughout
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d
=  0  /  d y y -^  ( +

% f ,  [ , 2 2
_ _ _ y d y U / x  + ( — )  . (3.77)

dy.

From 5.21 page 277 [57] we see tha t Lorentz invarience requires

[jry ^  py] =  i(^gVypr _  grypy^ == %(_P^ +  P^)

= “ 4  J { % )  ‘' y + \ l l  -  ( 4 ) 1

= - \ j  (^40=+(4) )  *

which agrees w ith  ( 3.77).

A p p e n d ix  4: O rth o g o n a lity  and C om pleteness o f N o rm a l M odes 

We have

{uk,uk>) -  { - i )  [  t i )  exp[z(fc +  (fc  ̂ +  pL^)^)y -  i(/g^ +  pL^)^r]x
J y  V4'?r (A;2 4-

d  (  1 ( ( P  +  A^^)a +  fe ) l
â y [ v S " ~ (fe2 +  p 2)è e xp H (fc  +  (A +M  ) %  +  »(&

4  exp[»(fc+ (fc^ +  M ^)i)y  -  i(fe^ +  M ^)è r]) x

exp [-;(Â  +  ( P  +  p ) 5 ) y  +  i ( P  +  p ) L ] d y  '
V  47T H- /Z ^ ) 2

I  ' : 4 * i . i x '

exp[-z(fc +  (P  +  M^)2)z/ -H z(P  +  M ^)5 r ]-

exp[—z(fc +  (P  - f p ) 2 ) y  +  i( P  +  p ) 2r]d y

=  ( - i )  / +  + ^ ( ( P  +  P ) U f c ) è
4y ^7t (A)'̂  4- Ai )2

exp[-z(Â) 4- (P  4- pi^)^)y 4- %(P 4- p )2 r ]4 -

+  (,2  +  _  ,( ,2  +  ^ 2 )1 , ,,

exp(—i(fc 4- (P  4- p ) 3 ) i /  4- i ( P  4- p )5 T ]
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, ,.2\4 , 1 . 1(_ i)  ((fc2 +  P )2  +  k)2 ( (P  +  ^2^ 2 -j- k)2--- — --------- J. +

J dyexp[ i y{ {k  + (P  + p )5 )  -  (fc +  (p  + p)2)}]exp[zr{(P + ~  (P  + p ) i} ]

=  ~ ( ( P + p ) ^ H - p 2 ( ( P + P ) 2 + fe ) 2  ) e x p [ iT { ( P + P ) & - ( P + P ) i } ] X  ;

<5(fc + (P  + p )5  ~ (A: +  (P  + p )^ )) . (3.78)

P ut

/ ( p  = A:-h (P  + p )^  -  ^ + (P  + p )2

then

f { k )  =  0 —> k — ic.

This is easy to  see. Let

a = -f (P  -f p ) 2

then f { k )  =  0 becomes

fc 4* (P  + p )^  — a = 0

so
\2 _  7,2 , „2{k — a)^ =  P  4- Aî  or P  — 2A;a +  P  =  P  4- p

and therefore

— + 2fc(P 4- p )2  4- P  4- p  -  p  _  jT
2(& 4- (P  4- p )^ )

as required. Also

2 L (k ) =z +  +
aA; (A;2 4-p)&

so tha t ( 3.78) becomes

i ( ( p 4 - p ) 24- p 2 ( ( P 4 - P ) 24- P 2f  — -  i  — T 4- -  , \ x p [ z r { ( p 4 - p ) & - ( p 4 - p ) ^ } ] x
^ \(A:^ 4- p )2  (A:̂  4- p )2  /

-,̂ (A: -  p

\  (A:̂  4- p )  2 (P  4- p )  2

( P  4- p ) 2

( P  4- p ) 5  4- A;

=  5(A; — p .

Th is demonstrates orthonorm ality and completeness follows sim ilarly.
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A ppend ix  5

We show tha t ( 3.30) ensures th a t ( 3.32) satisfies ( 3.31).

poo poo
y>{y,'r),(i>{y,T)]= du du[au 

Jo Jo
e x p

2u +

.4- V2
e x p ■my +  I I — r------- 1 r

2u
J dû exp . /  +  Aîm y  — I I — ——  I r

2Û
+

,4- V2
exp ■û̂ +  Aî  ■my +  I I — — —  I r

2n

Non vanishing terms in  th is  com m utator are

poo poo /  I 2
/  dû d u [ [ a u , aT ] -— — ; = e x p

Jo Jo \  A iry/uVu 2u
e x p ■my +  z

2Û

47r>/ü\/û
e x p

4- p
2Û

e x p

~ L
du

m y  — z

~ ^ ê m  ~  ^ )]  +  e x p [m (zy  -  z/)] ) .

P ut zz =  —u in  the firs t in tegra l and this becomes

{ -d u )  . . .  ,
0 h  2^«

exp[m (y — y)\du

- ~ { ~ L
roo 2 z
/  —  exp[zzz(z) -  t /)]d z i =  ~ - e ( y  -  y )

V —oo ZZZ Z2(27t)

A p p e n d ix  6

We have

Qiiuk^y"' = grrkJ'y'' 4- gryik'^'y^ +  gryik,y\ 4- yy2y2F%p 4- gŷ ŷ kP̂ 'ŷ  

=  r  —

so we can express the mass shell condition as

4-

and a solution ^  o f ( 3.42) as

0 ( y ,r )  =  — —̂3- ld { k '' ‘̂ —2 k'^ky^—ky^—ky^—y^)oxp[i{kJ'T—k'^\j^—ky^T—ky~y^—ky^xf‘)]dk'''dkJ .̂ 
“  (27t)2 j
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We shall now perform  the integral. Notice tha t i f  we differentiate the argument o f the 

delta function w ith  respect to  k''' we obtain

The zeros o f the delta function occur when

r  =  ky' ±  Jk.y''^ +  kv^^ +  k v '‘‘  +

= fc“‘ ± i / i i  +

SO that

iiii/‘‘“iSwïÆ êi

=  T T ^  / 6-^fe)— - i - - ,  e x p (z [)/g  +  p T  -  ( F ' H- i/ fc i +  p ) p  -  F % / -  F % /])+
(27t) 2 ./ 2 (fc^ 4-/z^ )2

&(^) i  exp(z[-y^fc | 4- p T  -  ( F ' -  V £ iT p ) y ^  -  F " P  -  F ^ p ]) d % . 
2(fci4-p)2

In  the second integral le t F ' —> —F ' then

0 (^ ,r )  =  — ^  f  expz[^/fc|, 4- p T  -  ( F ' 4- +  ~  -  F 'P ]4 -
(27r) 2 V 2(&2 + P) 2

—  e x p  -z [y ^ i 4 - p r  -  (F^ + 4 - p )p  -  F “p  -  F^p]PA /
2 ( A ^ + P ) ^

Appendix 7; Components of Stress Energy Tensor in 3-{-l Spacetime

The stress energy tensor is given by

where
1

7T, —

so

and

1 _  dT _  
Oyl
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c .f ( 3.73) and ( 3.74). S im ilarly we can show tha t

d<j)

and

Recall th a t

0 - 1 0  o \  

—1 —1 0 0 

0 0 - 1 0  

V 0 0 0 - 1  y

We can now show tha t

l^dr dj)
dy^

S im ila rly

r - y '

^  _ ^ N  _  1 /  / ^ N  2
dŷ  V dr dŷ  J 2 \ ô r  dŷ

c.f ( 3.75). Also

(3.79)

(3.80)
_ d(j> d(j> 

diA dy“̂

In  this way we can calculate a ll the components o f the stress tensor. The stress tensor is 

sym m etric. For example we have tha t

+  Ë È .) gV^rd<l>
, d r dy^ J dy^

_  f  dcp d(f> \  d(f) d(f) d(j) I ^  (  d(f)\^ p  n
\dr ' dŷ  J dŷ  dr dŷ  2 ^  \dy3 ) 2^

which is the same as ( 3.79). Also 

c .f ( 3.80).

I d(j) _ d4> d(j) 
dy^ dy ̂  dy^
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C h ap ter  4

C onclusion  and P rosp ect

I t  is evident th a t both the fron t form  quantum mechanics of Chapter 2 and the fie ld theory 

described in  Chapter 3, although entire ly satisfactory in  themselves, are lim ited  in  th a t 

they are concerned only w ith  free particles. A lthough logically the next step it  is not easy 

to  generalise to  a theory incorporating interactions. Many attem pts have been made to 

circum vent the well known no go theorms tha t appear to  exclude re la tiv is tica lly  invariant 

theories o f in teracting  particles. To see how in trica te  the problem is we shall give a b rie f 

review o f work o f Coester [84, 85].

A t the very least we require tha t the state space % be a module for a representation U  o f 

the Poincare group w ith  generators corresponding to  to ta l momentum P*, tim e translation 

=  jT  =  (P ^ - f  A f^ )2 , spatia l ro ta tion  J  =  (P ^ ,  and boosts K  =  ( J°^).

These generators represent an interacting system. Generators associated w ith  the system 

w ith  interactions switched o ff are denoted by the same symbol w ith  the suffix 0. The 

question arises as to  what sort o f terms can be added to  the non in teracting  m u ltipa rtic le  

generators to  give P , i f ,  J  and K  satisfying the the usual com m utation relations. Coester 

has shown th a t the answer depends on the D irac form under consideration. Follow ing 

Bakam jian and Thomas [87, 88, 89] we express the free generators in  terms o f the mass 

operator and another set o f operators tha t depends on the D irac form  and which are func­

tions o f the Ham iltonians and mass operator. The generators o f the kinem atic subgroup 

are unaltered by th is change of variables. We add an interaction u to  the mass operator. 

Preserving the com m utation relations generally requires tha t additional terms be added 

to  the new form-dependent^ operators and the Ham iltonians but if  we require tha t u 

commute w ith  the new operators and the generators of the kinem atic subgroup then the

4n  the sense of Dirac.
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form-dependent operators need not be altered and the perturbed generators autom atically 

satisfy the Poincare algebra. We res tric t ourselves to  the instant form  for the tim e being 

so we put

A f =  Afo 4" V

and require th a t V commute w ith  P  =  Pqj 2  =  2o (these being the generators o f the 

kinem atic subgroup o f the instant form ) and X  — 2 o  (the Newton W igner position oper­

ator). The dynam ical generators H  and K  are peturbed by P i.e. K o  and ~H 

The reqirement th a t V commute w ith  the generators o f the kinem atic subgroup puts some 

restrictions on P; however we also require th a t the model satisfy the condition o f macrolo­

cality, essentially tha t when components o f the composite are separated by large spacelike 

intervals or when interactions between particles in  different clusters are actually switched 

off, they should behave as autonomous systems. This places more stringent conditions on 

P.

We shall try  to  make the notion o f m acrolocality more precise. There are a number o f 

ways o f defining m acrolocality not a ll o f which are equivalent. Suppose we have a collection 

o f N  particles which, quantum mechanically, is described by some H ilbe rt space H , Let 

a denote a p a rtitio n  o f N  in to  Ua clusters where is the zth cluster o f a. Let Tfa» be the 

H ilbe rt space associated w ith  the cluster C learly

'H =

Let Uai denote a representation o f the Poincare group on TYg.. The representation corre­

sponding to  non in teracting clusters is therefore

Let G{ai) be a generator o f Uâ  then the generators G for U on H  are said to  satisfy the 

cluster decomposition condition if

Ga = G{ai )  0^2 Ii 4-.. + ®tJli ® G{aj )  h +  .. +  ®%r̂ Ii ® G(a„J

for every p a rtitio n  a. In  the above Ga represents the operator obtained from  G by sw itching 

o ff interactions between clusters and I,  is the identity  operator on Tfa-. In tu itive ly  we can 

see tha t this corresponds to one conception o f macrolocality. A lte rna tive ly  we m ight 

expect tha t as clusters are separated by larger spacelike distances^ the representations U

* W ithout the intercluster interactions being swithched off which was the case in cluster seperability
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and Ua should become identical. This is realised by requiring th a t

. s-lim  [ !7 ( r ,A ) - î7 ,( r ,A ) ]r „ (d ,, . . ,d „ J  =  0
m in|d^—dj I—>-oo

where

2o (d i,  - n d u a )  “  I ) -

A  th ird  defin ition  o f m acrolocality requires tha t w idely separated subsytems should evolve 

as free components. This is the defin ition  w ith  which we shall be concerned. To make it  

more precise we need to  develop the dynamics o f the in teracting system.

Denote by Mo- the mass operator o f in  TIq.. Suppose it  has eigenvalues ma4 w ith  

associated eigenvectors The ^a,i are simultaneously eigenvectors o f (where j  is•—O/j —0"$
the spin operator in  Hai) w ith  eigenvalues Saj- In  general these eigenvalues w ill be h igh ly 

degenerate. We continue to  denote by (j)a,i the eigenvectors in  Hai corresponding to  a 

particu lar {rria j, Sa,i)- The subspace o f Hai spanned by the which we shall denote by 

is a module for the irreducible representation {ma,i)Sa,i) o f the Poincare group. 

Denote the generators o f th is  representation We have

<Pc,,i= f \2 a ,v 'P a , i> X a , i { P c .v 'P a . i )

{—Sa,i <  ÿa,i ^  ^a,i) where | >  are simultaneous generalised eigenvectors o f

P^. and jg . 3 w ith  eigenvalues . and Therefore Hf^a,i is the subspace o f Hai

spanned by the |  ̂ > . We can in terpret th is in  another way. We ide n tify  Hf^a,i

w ith  square integrable functions Xa,i o f  ̂ and /Za,* and construct an in jection operator 

^a ,i : kCf^a,i "Hai by w riting

=  / d %  . E  I S a ,i ’ Vc,,i >  { , % . ( ) -

We now form  the channel subspace Hf^a o f k i

kif,a  — ®i=\kif^a,i 

and define the follow ing operators therein

kJf,a — gipL., 1) ki T  .... +  ®g{oi , j)  K  "f .... I i  ® g{oi,na)

®The suffix /  stands for free. A state in this space belongs to an irreducible representation and so can 

represent an elementary par ticle emerging from the fire ball of the interaction. These are the asymptotic 

spaces in the sense of scattering theory.
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We then form

Ttf ~  ©«71/,ex

and define the operators on th is space by taking direct sums o f the expressions above i.e.

Gf  ~  ®aGfoL (4.1)

and

$  — © «$«.

H  and H f  can be w ritte n  as direct integrals over to ta l momentum i.e.

T if =  J d ^ 'p 'H f{ÿ  and kC== J d^p7i{p).

Coester argues th a t we must form ulate re la tiv is tic  theories o f in teracting particles as 

scattering experiments where observables can only be measured at tem poral in fin ity . I f  

not then position can be measured at any moment and re la tiv is tic  invariance requires 

invariant w orld lines. These are forbidden by the no interaction theorem [90]. We define a 

scattering state 'ip as one th a t becomes equal to  a state describing non-interacting particles 

in  the remote past and future; i.e. a state in  H  is a scatering state i f  there exists % € 71/ 

such th a t

^ ^ n ^  II ^ ( t)  — ^ e x p {—i t H f ) x  ||=  0 

where 77/ is defined v ia  ( 4.1). We define the wave operators, when they exist, as

$ , H /)  =  s-lim  exp(zJTt)$ 6xp(—ziJ f t )
t—>-ioo

then the scattering operator is given by

We know th a t wave operators generally exist only when the in teracting H am iltonian is a 

sm all perturbation  of the free Ham iltonian. In  the present case we require tha t

where V  is short range [84]. N a tu ra lly  we require th a t S is Lorentz invariant. The 

existence o f the wave operator is sufficient to  ensure tha t S commutes w ith  H /  since the 

wave operators then satisfy the so called in tertw in ing  relations i.e.

H Q ±  =  Q ±H  / .
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It is then easy to show from the defintion of S that

[ f f ; , s ]  =  o.

Because o f the way ^a ,i was constructed

=  and T ¥  =  ¥ j } .

Using these relations and the defintion o f S we obtain

[Pf ,  S'] =  [ Jf ,  S] =  0.

To show th a t S is Lorentz invariant it  only remains to  prove th a t

| E } , S ] = 0  (4.2)

but th is  is more d ifficu lt. For example we can show tha t ( 4.2) holds if f

^fim II ( X '$  -  ^ K f ) e x p { ± iH f t ) x  ||=  0 (4.3)

fo r a ll X some dense set in  71/. Recall th a t depends on P so th is  places more 

restrictions on F.

I f  we consider the special case o f two particles, where a ll observed particles are ele­

mentary, the above form alism  becomes a little  less abstract. The operator algebras in  7i 

and H f  are isomorphic and the same symbol may be used to denote a state in  either space 

th a t is we can take #  =  I .  In itia lly  one m ight describe the particles in  the ir momentum 

space representations, the state space of the combined system is then

We may pass to  centre o f mass coordinates p  and k  and it  is well known tha t we can define 

an isomorphism

-> L^(p, d^p) ®) L ^ ( i, ( fk ) .

This gives a new representation o f H  i.e.

H  =  7Ycm 0  7Y|̂ j.

w ith  the obvious definitions o f Hem  and H\jXc' The operators representing to ta l mom- 

m entum are o f the form  P  ® I .  We now see how to  describe H  — H f  as a d irect integral. 

Suppose the P  had pure point spectra w ith  corresponding simultaneous eigenvectors (pp
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then since H c m  ~  ^ H p  (where Hp  is the 1-dimensional space spanned by the eigenvector 

w ith  eigenvalues p) we have

7  ̂=  (e % ) 0  TYint =  ® ^ in t ) '

bu t since the spectra o f the P  are purely continuous we should w rite

H  — J  H p ®

We now define

i î  =  (I p P + ( M o + F )^)2 and Hq =  (1 F P + M o )^ .

These can be w ritte n  as d irect integral operators

H  — (  H '{ \ p |)d^p and H q =  f  Hq{\  p |)d^p 
I©  7©

where

-H"o(| p I) =  1 0  (I p P  and H '( |  p |) =  J 0  (| p p - f  ( M q +  F)^)2

which are well defined fibre operators because M  and M o are operators on H \^\, [86]. 

S im ila rly  we can represent the wave operators as direct integrals. We have

n ( H , H o ) =  [  fî(ff'(p),B''o(p))d^p= [  I®Çl{Mo +  V,Ma) ( fp  
7© “  “  I©  “

where the last step follows from  the application, fibrewise, o f a well known result from  

scattering theory. I f  we impose fu rthe r restrictions on V then we arrive at a macrocausal 

theory describing 2 in teracting particles i.e we have

s-lim  ( 5 - / ) T ( i i , r f 2 )  =  0.
|di-dj-+oo

S tends to  I  because we considered elementary particles This result allows Coester to  

induce macrocausal theories for larger systems. U nfortunate ly i t  appears th a t no one has 

managed to  exh ib it a V satisfying the necessary restrictions. His work remains a rather 

abstract existence theorem.

In general macrolacality requires
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Coester shows tha t his results can equally well be developed in  the fron t form . In  th is  

case the analogue o f the Newton W igner operator is the fron t form  spin. The in teraction v 

is added to  M q and is required to  commute w ith  the generators o f the kinem atic subgroup 

( 2.47) and the fron t form  spin which are therefore le ft invariant by the addition o f the 

in teraction. The Ham iltonians ( 2.48) are now z/ dependent. B y construction $  and hence 

S w ill be invariant under the kinem atic generators while invariance o f /S' under w ill j

fo llow  from  the in tertw in ing  relations. Invariance under the perturbed and w ill |

not be autom atic and w ill require th a t v satisfy other crite ria . Notice however th a t now we j
%

only require two further relations from  p as opposed to  the three conditions ( 4.3) needed

in  the instant form . I t  is because o f th is  tha t o f a ll the forms the fron t form  is considered |

as offering the best means o f constructing re la tiv is tica lly  invariant theories o f d irectly  !
Iin teracting  particles. Having said tha t, no specific operators v have been forthcom ing.

The d ifficu lty  o f obtain ing in teraction terms tha t lead to  macrolocal theories has led some I
II

to  abandon th is  restriction. In  [91] Mosley develops an interacting, re la tiv is tic , po in t form  |

classical mechanics tha t is not macrolocal. I t  does not even reduce to  the free partic le  Î

theory advanced by the same author when interactions are switched off. Since i t  has long J
g

been hoped th a t re la tiv ity  would place ju s t th is  kind o f severe constraint on subatom ic i
1

particle  interactions it  may be prem ature to  acknowledge defeat.
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