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Abstract

We give a brief review of geometric quantisation up to and including the Blattner-Kostant-
Sternberg kernal. In general this leads to symmetric operators that are not essentially
self-adjoint so motivating a study of Hermitian operators as observables in a generalised
quantum mechanics. We show that a generalised squaring axiom can reproduce the results
of Blattner-Kostant-Sternberg quantisation. We also show that quantisation with respect
to polarisations with compact leaves gives results that conflict with the nonlocal nature
of quantum mechanics.

We develop a front form quantum mechanics of a free scalar particle using geometric
quantisation. The front and instant forms are related via unitary maps derived from the
pairing which intertwines quantisations with respect to the these forms. The front form
position operator has a maximally symmetric component so we are compelled to work
within the framework of a generalised quantum mechanics; this results in there being no
Hegerfeldt type instantaneous spreading of initially localised wavefunctions in the front

form. Finally we show that this model can be lifted to a many particle free field theory.
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Introduction

This thesis is divided into three Chapters.

In Chapter 1 we give a brief review of the theory of geometric quantisation both
the basic scheme, that concerned with the quantisation of classical observables linear in
momentum and the formulae of Bao and Zhu and of Tuynman based on the so called
Blattner-Kostant-Strenberg Kernal. We show that the methods of Bao and Zhu and
Tuynman are inequivalent and in any case often give results that can equally well be
obtained using the basic scheme and a generalised squaring axiom. The fact that they
lead to operators that are not essentially self-adjoint motivates a study of symmetric
operators as observables in a generalised quantum mechanics. Chapter 1 also contains,
among other things, a comment on the problems pertaining to quantisation with respect to
polarisations with compact leaves which seems to give a theory that is local and therefore
in conflict with E.P.R type phenomena. This is essentially the content of a paper published
in Algebras, Groups and Geometries [79].

In Chapter 2 we apply the theory of geometric quantisation to obtain a front form
quantum mechanics that is surprisingly consistent. The spectra of the operators are con-
tained in the range of the classical observables they represent and the instant and front
form pictures are unitarily equivalent via maps derived from the pairing. The front form
position operator is maximally symmetric, its role as a well defined observable is assured
by the methods of Chapter 1. Finally we show that the front form is free of Hegerfeldt
type instantaneous spreading of initially localised wavefunctions. Chapter 2 also contains
a critique of the point form and a brief analysis of the dynamic and kinematic subgroup
structures of the various forms. In particular we show that the generators of the kinematic
subgroups of the instant and front forms, as well as the Hamiltonians, can be quantised
in either picture to obtain representations that are unitarily related by the pairing maps.
Some of this work will also appear in The International Journal of Theoretical Physics

[80] and the Proceedings of The Third Wigner Symposium [93].




Chapter 3 contains a front form field theory of a free scalar particle. Since the La-
grangian is singular we are led to define a Dirac bracket that modifies the usual equal time
commutator; the expression we derive in this way appears as an ansatz in other front form
field theories. We show that the theory is relativistically invariant despite our breaking of

manifest covariance in its formulation.

We conclude with a discussion of the problems that prevent a straightforward gener-

alisation of this work to directly interacting particles.




Chapter 1

..all science aspires to be like physics, and physics aspires to be like mathemat-

ics.

LeEwis WOLPERT; The Unnatural Nature Of Science.

1.1 The Essentials of Geometric Quantisation

1.1.1 Polarisations and Densities

The phase space of a classical system is a symplectic manifold (M,w) where M is a 2n-
dimensional manifold and w a non degenerate closed two-form. As a prerequisite the
formalism of geometric quatisation requires that we are able to construct a complex Her-
mitian line bundle B over M, the prequantum bundle, i.e. M must be identifiable as the
base space of a fibre bundle where each fibre Bp, (m a point in M) is a one-dimensional
vector space with an inner product ( , ). Let I'(M) denote the set of all sections of B
over M and I'®°(M) the set of all smooth sections over M. Let V(M) denote the space
of real vector fields over M. The inner product of the Hermitian line bundle is required
to be smooth, i.e. if s € (M) then (s, s) is a smooth function over M. We require also
a connection V on B with curvature w/i. The Hermitian structure must be compatible

with the connection, i.e. if s and s’ € I'*®(M) then
X(s,8) = (Vxs, &) + (s, Vxs') V X € V(M).

It is always possible to find a suitable B when M is a cotangent bundle ([5] page 11) and
in that case there also exists a global trivialisation of B ([2] page 122) and so a global unit

section sg of B ([5] page 11). Any section s € I'®°(M) can therefore be written as

s = ¢so




¢ € C®(M) where C°(M) denotes the set of smooth complex valued functions on M.
We have the following

Theorem 1 On any 2n-dimensional symplectic vector space (Vyw) there ezists a natural

2n-form €, called the Liouville form where

f=1) $n(n—1)

€
nl

WA .. \w.

The wedge product is repeated n times.

Consider the set H of all s € I'(M) such that the integral of (s, s)e, over M exists and
is finite. H is then a Hilbert space (the prequantum Hilbert space) with inner product
<, > where

1
< 81,89 >H= (%) /M(shsz)ew 81,82 € H. (1.1)

We could take H as the state space of our quantum theory. We require a natural identifi-

cation of classical observables f € C'°°(M) with operators f on H.

Definition 1 The vector field Xy defined by
Xflw+df =0
where f € C®(M) s called the Hamiltonian vector field generated by f.

In a canonical coordinate system, which shall be available globally in the cases we consider,

it is easy to show that
X 8 _BF A
T~ Bpibq ~ gt op;’

Classical observables f € C°°(M) are associated with operators f on H via the prescription
fs= —ihVx,s + fs

([4] page 59 and [2] 5.4.1 page 121). It can be shown that if f has a complete Hamiltonian
vector field then there exists a subspace of M on which f is self-adjoint. Otherwise f is
symmetric and whether or not there exists a domain on which f is self-adjoint must be
established by other means. It has been shown that this pre-quantisation scheme, as it is
called, gives rise to highly reducible representations of the algebra of classical observables
([3] page 38 and [2] page 133). It is therefore necessary to modify the formalism. The

quantisation is now to be dependent on the choice of a particular real polarisation P.




Definition 2 A real smooth distribution F' on M is a map that assigns to each point

m € M a subspace Fry, C T M such that k=dim F,, is constant and there exists k smooth
vector fields that span Fy, at each m

page 290 (2] or page 4 [5]. For a real distribution we can define integral surfaces as follows.

Definition 8 An integral surface of a real disribution F is a connected submanifold N of
M such Ty, N = F, V me N.

Definition 4 A real k-dimensional distribution F' is integrable if there exists a coordinate

chart (z,...2%") such that the surfaces

k+1 2n

T = constant, ....x“" = constant

are integral surfaces of F'. These coordinates are said to be adapted to F.

Definition 5 Let (V,w) be a symplectic vector space. Let F be a subspace of V. Let F°

denote the annihilator of F i.e.

F={X eV:w(X,Y)=0VY € F}.

F is said to be a Lagrangian subspace if F' = FO,

We can now define the notion of a real polarisation which is fundamental to the theory of

geometric quantisation.

Definition 6 A real polarisation is a smooth distribution P on M which is also integrable

and where Py, is a Lagrangian subspace of Ty M.

Definition 7 Two polarisations P and P’ are said to be transverse if Py + P, = TrnM
for allm e M.

Let V(M, P) denote those elements X of V(M) such that X,, € Pp. Let I'°(M, P)

denote the set of polarised sections that are covariantly constant along P i.e.
®(M,P)={s:8€T®(M):Vxs=0 VX € V(M, P)}.

Now since we wish to obtain an irreducible representation of the algebra of classical ob-
servables from the reducible representation given by pre-quantisation we must reduce the

size of the quantum Hilbert space H. We might choose a polarisation P and associate




Y
: s
AT s Rl

the classical observables with operators on that subspace of H consisting of sections co-
variantly constant with respect to P. However we cannot take as our state space the set
of polarised sections with inner product given by ( 1.1) since for polarised sections the
integral (s, s)e, over M is never finite. We could escape this difficulty by defining the
inner product as an integral over ) = M/N (sometimes written @ = M/P) but there is
no natural measure on Q. We shall show that there exists an integral of a canonically

defined density on T3Q and this observation will indicate how we should modify our state

space.

Definition 8 Let V be an n-dimensional real vector space. An r density, r € R, is a

map v from the set of bases for V to the complez numbers which obeys the following

transformation law
U{O;:Xi} =| detC |" v{X;}
where C' € GL(n, R).

The set of all r densities over V' is denoted A(V) and is a one-dimensional vector space.

Definition 9 Let

A(P)= | &n(Pn)
meM

This is a line bundle over M where each fibre is A.(Pp). The sections of A.(P) are called

r-P-densities.

It is common practice to abuse this notation and denote the set of r — P-densities also as
Ar(P). It is possible to define a partial covariant derivative that acts on the set of smooth

r — P-densities [5]. This is achieved via a partial connection.
Definition 10 A partial connection on P is a map
V:V(M,P)x V(M,P)—V(M,P)

also written as

(X,Y) - VxY

where VxY is defined by the relation

VxY|w = X]d(Y |w).




Less abstractly take n = 2 and suppose that (p,q) is a coordinate system adapted to P
then if X and Y € V(P, M) we know that

0 0
X= X(p,q)g,; and ¥ = Y(p,q)a—p
and
st Y 0
VxY = X(p, Q)'é;(P, CI);?;-
Definition 11 Suppose V is a partial connection on P and v a smooth r-P-density then

Vxv, where X € V(M, P), is a smooth r-P-density defined by

(Vxv){Xi} = X(v{Xi}) (1.2)
where X; is any field of bases for P satisfying

VxXi=0. (1.3)
Definition 12 Those r — P-densities that satisfy
Vxv=0 V X € V(M,P)

are said to be polarised with respect to' P.
We now indicate how r-densities are related to more familiar geometric objects.

Theorem 2 Let V be an m-dimensional vector space and ¢ an m-form on V then € de-

termines an r-density | € |” on V defined as follows
l € "r {Xl, ..Xm} = (m' | e{X1, ..Xm} I)r
where {X1,..Xm} is a basis for V.

It turns out that the densities on a given vector space are intimately related to those of

its subspaces. In particular we shall need the following

Theorem 3 Let W be an m-dimensional subspace of of a 2n-dimensional vector space V.

Let {Y;} be a basis for W, {Z;} a basis for V/W and {X;} a basis for V such that
{ XX b= {1 Yo}
and
{IXm-i-la ---IX27I.} = {Zh ---Z'Zn—m}
where I is the projection I : V — V/W. Let p € A (V) and v € A (W) then
iz} = p{xiJv {73}

defines an element of A.(V/W).




Now
T,Q = TnM/Pp, (1.4)

where m is any point in M such that w(m) = ¢ (v the projection from M to the quotient

space Q). Therefore
Al(TqQ) ! A—I(Pm) ® AI(TmIVI)
= A—1/2(Pm) ® A—I/Z(Pm) ® Ay (TmM).

Using this it can be shown that if v and v/ are —-% — P—densities covariantly constant

along P and s and s’ are likewise polarised sections of B then

is a A1(T,Q) valued class function on M i.e. is independent of the particular choice of m

so long as m(m) = ¢. What is more we clearly have a canonical choice for the Ay (T M)

ie. | €|

1.1.2 Half Density Quantisation

We are now in a position to define the state space Hp for the half density quantisation
based on a polarisation P. Elements of Hp are called P wave functions ([5] page 19). An

element o = s.v of the vector space '°® A_;/5(P) € Hp if s and v are smooth polarised

sections of B and A_;/(P) respectively and

(2—7137?‘) /Q(s, syvv | €, |

exists and is finitel. On this set Hp we can define an inner product < , > B

1
Lo e (Zr—ﬁ) /Q(s, B Vit i -

Hp is actually the completion of this pre-Hilbert space with respect to the inner product

<, >np. We wish to find a natural correspondance between classical observables and

operators in Hp.

'We define the notion of integration of densities as follows. Let Q be an n dimensicnal manifold and

suppose € € A1 (T'Q) then we define the integral of ¢ over Q by

foe= Letam) e

where ¢' are coordinates on Q.

10




Definition 13 A vector field Y is said to preserve the polarisation P if
Y, X]eV(M,P) V X € V(M,P).

Let C*°(M, P, 1) denote those f in C°°(M) such that Xy preserves P. Any f € C®(M, P,1)

defines an operator f in Hp according to
F(sw) = (—iiVx,s + fs).v — ih.Lx,v

where Lx, denotes Lie derivative. Later we shall give a less abstract expression for f
at which time we shall also discuss the domain of the operator and the conditions under
which it is symmetric or essentially self-adjoint. We must have f € C®°(M, P,1) because
only these classical observables give rise to operators f that leave Hp invariant. It is easy

to determine the generic form of the elements of C°(M, P,1). If f € C*®(M, P, 1) then

in a coordinate system adapted to P

f(»,q) = ¢(g)p +n(q)

where ¢ and i are smooth functions. A classical observable not directly quantizable in P
i.e. not in C*°(M, P,1) may be quantizable in another polarisation P’. A discussion of

how we may obtain from this a quantisation of the observable in P must wait until we
have discussed pairings.
1.1.3 General Form of Polarised Sections

If we choose a so called connection potential 8 = pdq then we can define a connection with

the correct curvature by
1
Vxso = "g(XJﬁ)So- (1.5)
Now any s can be written in the form ¢sg. Since
Vxé(@,q)s0 = X(¢)so + ¢V xso

we see that for X € V(M, P)
Vxpso = X(¢)so

so that, in general, sections polarised with respect to P will be of the form ¢sg where ¢ is

a polarised function, i.e. a function such that

X¢ =0 VX € V(M, P).

11




In a coordinate system adapted P this restriction becomes

c(p, @)%~ ¢(p, q)=0

so that the polarised functions are those that in a coordinate system adapted to P have

the representation ¢(gq).

1.1.4 Relationship between Covariantly Constant Sections of Transverse

Polarisations

If P’ is transverse to P then

sp = exp(if/h)so
is a unit section polarised with respect to P’ where f(q, ¢') is a generating function between
the coordinate system (p’,¢’) adapted to P’ and the coordinate system (p,q) adapted to

P,

_0of i, Of
p—al- and p = .

Proof: All vector fields € V(M, P’) are of the form

(o, q')-a%-

Now
vc(p;,q/)_é_??slo = VC(P‘:Q')E%T exp(if/ﬁ)sO.
Using ( 1.5) this becomes

', d)y Zj; exp(if /M)s0 + exp(if /1) (= ) (<0, 0) g Ipda) 5

= ot )5 5 exp(if /M)on — explif /1) 5ets' o) (Lo ) 5o

From the usual transformation rules for 1-forms it is easy to show that

pdg = pdp

310’
Using this and the fact that
of 0Oq0f 04 of

5y 0poq 9y o

3(1
T
we have
Vewary % = S )5 52 xplif /)0 = ot ) msp exp(if /o
=0
as required.

12
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1.1.5 General Form of Polarised Half Densities

There exists a canonical choice of -%-density on Trn M namely | €, |‘%. Also there exists a

natural 3-density on T,Q. Suppose that from Riem(Q) (the set of all Riemannian metrics

on Q) we select a metric G then from the volume element on Q i.e.

€ = \/gdq* A ... Adg™,

where g denotes the determinant of the metric ([78] page 14), we can construct a 3-density
| € |2 via Th 1. Because of ( 1.4) we are led to a canonical choice of —1 — P density on
T4Q ie.

v=|e, | 2]e|Z.

Suppose dim M = 2 then in a coordinate system adapted to P we have

v=(g(g))* | dp |7/

(8] page 49 or 53). We now wish to show that v is polarised with respect to P. Any basis
for P will be of the form ¢(p, q)% and of course any X € V(M, P) will be of the same
form. We require the generic form of elements of the set of all bases for P that satisfy the

auxilliary condition ( 1.3) i.e. Y (p, q)% such that

w 0 oY
VxoagY @95 = X@0) 5005 =0.

9
op
Clearly these are given by Y(q)-c%. From ( 1.2) we have

{Vc(p.q).g;v} {Y(Q)a%} = c(p, q)a%v {Y(q)-(%}

; -1/2
= c(p, q)gz; [(g)z dpJY(q)% ]
= ¢(p, q)gz—)[(g(q»l/ ‘Y (q)]

=0

and therefore v is polarised with respect to P. Now a general smooth half density is of

the form ¢v. Since

VC(p.q);,‘?,;d’V {Y(Q)gp‘} = ¢(p, ‘1)3%[¢(9(q))1/4Y(q)]

= o(p, q)(g(q»“‘*v(q)%%

13




we see that ¢v will be a half density polarised with respect to P when ¢ is a polarised
function i.e. when v has a representation of the form ¢(¢)v in a coordinate system adapted
to P. This is precisely the condition imposed on ¢ to obtain polarised sections of B. We
can therefore write any polarised section of B® A_y/9(P) as ¢(q)so.v where so and v are
the polarised sections defined above. This follows from [1] equation 5 page 28. Of course

not every section of B® A _ 1 (P) of this form € Hp. Only those that are square integrable
are P wave functions. This can now be stated as follows. Suppose
o = ¢(q)(9())*s0. | dp |1/ (1.6)

then o € Hp if
1 * 1/2 =1
577 ), 909" @ (0(@)72 | dp '] dp Adg < 00

which by definition is the requirement that
[, #@)4" @) o)} | dp [ dpndg | {5} dg < oo
Taking
X={2 —‘?—}, Yz% and Z=—aa—q

in Th 3 this implies

-1
dg < oo

/Q | 6(a) I? (9(a))/?

9,0 a
nggaJdpAdq’ ‘a—deP

or

/q (9(a))/2 | $(q) [2 dg < co.

Similarly we can see that in a coordinate system adapted P the inner product between

two P wave functions
a1 = ¢(g)(9(2))*s0 | dp |71/
a2 = P(q)(9(9))*s0 | dp |72
becomes
<o1,02 5= [ a)¥"(@)(0(0))" da. (L.7)

In this way the quantum Hilbert space associated with a given polarisation is identified

with a space of square integrable functions on @.

14

.



1.1.6 Pairing

To compare quantisations carried out in different polarisations P and P’ we shall require

a map between Hp and Hps . A pairing is a map
<, >ppi: Hp X Hpr —C

and is only defined for compatible polarisations ([5] page 20 definition 1.6.6). We shall
restrict ourselves to polarisations that are real and transverse. These are automatically

compatible ([2] page 160). Since

TmM o ImM ToM
i P’ P
we have
A%(TmM) = A_%(P.,'n) ® A%(Tmﬂ([) Q A_%(Pm) ® A%(Tm]\/f)
S0
A(TmM) = O_y (P) ® Ay (Pm) ® Ag (T M).
Therefore

(S,SI)VV, I €w |3/2

is a well defined 1-density on T, M and we can define a pairing <, >ppr between P and

P! as follows

3t
RS Sees (é—fﬁ) /M(S1 sl)meV:n | €w |%2 .

Using the canonical representation ( 1.6) of P and P’ wave functions we obtain

<0, >pp= [ 4 exp(=if /) | e [7V2) e [F2) e |2 € P2 g, [

= [ o8 exp(=if/n) | eu V2] € [42) & 2.

From the definition of integration of densities the above becomes
o 0 9 o
/ . 1/ ) & ¥ 1/2 Vil Y ¥ Y
[ o8 expt=is /) Lo 112 {57 - e {8q}|e| {77} doda
= [, 87exn(=it/m) | e 172 {5 o} 5 1da V2] o 1ad 172 (o(a)) /(g (@) dace
M N 9q" 8¢J ' 0q
= [ o6 exp(=ir/m) | e 12 {5 }(g(q))““(g (@) dedg'. (19)
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Now
o 9 g, 0
ol {2 21 =212 jap )|

0q’ op
o ) 1/2
- {a—pJ %Jdp) dg — (a—quq) dp
;) 1/2
\ Jdp
=1,

Since

_Q_ dp 0 o B Oq 0

d¢ ~ 0¢'dp ' 9q Bq
we see that the transformation from the basis natural to (g,p) to that natural to (g,¢’) is
described by

T = 1 0
| o &
5 B¢

so det(T) = gg and since | €, |}/2 is a half density we have by definition that

g 0 op 8 o
1/2 Sk, 1/2
el {6q’3q’} aq‘ € {aq ap}

617 1/2
~|og
Therefore ( 1.8) becomes
. 1/2
<o >= [ odew(=if/m)|gh| " (@) W) dadd.  (19)
M g

Formally the pairing leads us to consider two maps
Uppt : Hp = Hpr and Upip:Hpr — Hp
partially defined by the requirement that
< o,Uppo’ >Hp=< Uppio,o’ >Hp=< 0, o >ppr .

Writing these out explicitly when P and P’ are transverse using ( 1.7) and ( 1.9) it is easy
to see by inspection that if we put

Uppd(g)so.v = ¢'(q')sy.V/
and

Uppd'(¢')sp.v = ¢(q)so.v
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where

1/2 2¢ |1/2
YD) =(57) [ @ exp(—z'f/n)l—ai—a% (0(0))dg

and

6@ =(5)" /¢(q)e><p(zf/ﬁ)’ S| 0@y

then the relations are satisfied. Sometimes Upp: and Upsp are unitary maps and in that

case they provide a means of quantizing classical observables in P when f ¢ C®°(M, P,1)
but f € C®(M, P',1).
1.1.7 Form of Operators

Suppose f = ((¢q)p + n(q) then
fsw=(~iAVx,s+ fs)v — ihs.Lx,v
= ~ihVx, ($(@)s0)v + F$(@)s0w — ih5(VTL(D)rq $la)s0.v
= (iR (B)s0 + 87 x,0) + F6(a)s0) » — B3 (VEC(@))a B(a)s0v

Since
) " o
Xy = C(Q)a_q - (@Qp+n (Q))gz;,

where prime denotes differentiation with respect to g, we obtain
2 7] : e |
fow = =it (¢35 + (=P ) Bo0v+ (@) +n(@)o(@)o00~ i1 (/GE0))a @)o0

= (—-ZnC(Q)Q — PC(Q) + pC(q) -+ n(q) — in&(\/é((‘])),q) (,b(Q)So.U
i [“’h (C(q) ¥ (\/' C(q)),q)> + n(q)] ltsgas

This operator is symmetric on C§°(Q). If X; is complete on M then f is essentially
self-adjoint on C§°(Q). We can weaken this to prove that f is essentially self-adjoint on

C§°(Q) iff m« X is complete, where * denotes push forward.

1.1.8 Quantisation on Complex Manifolds

We have described the half density quantisation scheme as it applies to real polarisations
and showed that it yields symmetric operators for observables linear in momentum or self-
adjoint operators if additional criteria are met. In this section we discuss half density and

also half form quantisation as it applies to complex manifolds and complex polarisations.
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Our treatment of the half form scheme is very cursory. We only mention it because
Tuynman’s method, which we shall examine in section 1.3.3, is usually stated in terms
of half forms although a half density treatment is also possible. Complex manifold theory
on the other hand is mandatory for an understanding of Tuynman’s work.

To discuss differential geometry on a complex manifold we shall need to know a little

complex linear algebra. Let V be a real vector space. Its complexification W is the

complex vector space such that
L X+iYeWifX,YeV
2. (X1 +iMN)+ X+ iYVo=X 1+ Xo+i(YV1 + Y3)
3. (a+i)(X+iY)=aX =bY +i(bX +aY) X, Y€V a,b€R.

It is easy to show that the above imply that VL is a vector space over C. On this complex

vector space we define the notion of complex conjugation of a vector by

X+iY =X —iY.

The dimension of V£ is the same as V because if {ei}l-, is a basis for V' then it is also a

basis for V€ since
X +iY = X¥*e;, +iY*e; = (X* + iY*)eyr.
Complex Structure on a Real Vector Space

Let V be a vector space of dimension n over R. Then an endomorphism J, i.e. a linear
mapping J : V — V such that J% = —I is called a complex structure. Let V be a real

vector space with a complex structure J and let WX denote its complexification. Then

define two subsets of V& as follows
VWO =Z:2=X~-iJ(X)

VOl=2Z:Z=X+iJ(X) (1.10)
XeV.

It follows that V10 and V%! are subspaces of WV and if Z € V10 then Z € VL. For this

reason V10 and V%! are said to be complex conjugates of each other. It turns out that

W = y10 g 0l
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so the existence of a complex structure on V' implies that VL can be written as the direct

sum of two subspaces that are complex conjugates of each other. J defined on V can be

extended by linearity to act on VL as follows
JX+iY)=J(X)+iJ(Y), X,)YeV.
With this extension we can define the subspaces V10 and V! of WL as
Vi =27.J(2)=izZ

VoWl =2.7J(2)=-iZ
Zeik,

Suppose we have a two dimensional vector space V with basis

(o)
op’ dq) "

At this stage V is actually arbitrary but the notation suggests that we have in mind that
V = Tp,M and in fact this will be the case that is of most interest to us. There is a

canonical complex structure J, on V defined by
0 7] 1o} 1%}
%(5) =5 =4 %(5) =5
Compatible Complex Structures

A compatible complex structure on a symplectic vector space (V, w) is a complex structure

such that
w(J(X),JY))=w(X,Y) V X,Y €V.

Complex Symplectic Vector Spaces

The complexification of a real symplectic vector space gives rise to a complex symplectic
vector space. The two form on the complex space, which we shall also denote by w, is

defined by extending the real two form by linearity as follows
W(X 4+, X' +1Y") = w(X, X") —w(Y,Y) + w(X,Y') + iw(Y, X'). (1.11)

Obviously we need a two form on the complex space to define things like a Lagrangian

subspace (definition 5) of a complex vector space. For example we can show that

8 .90
~t9_p —256 (112)
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is a Lagrangian subspace of the complexification of the real vector space V spanned by

()
dp’ 8q)"

To see this we must identify the annihilator F® of ( 1.12). This consists of vectors of the

form
0 0 9 0

— 4 b +1 (c—+d—-> 1.18
3 "5 T\ T %q i
which satisfy

0 B .0 7, g .90
w(a"é};“{"ba—q‘i'Z(C-a—p'i'd%) ,55*Z6—q> = 0.

Using ( 1.11) this becomes

w(a£+b—a— _Q_)_w (cﬁ-+d—a— —E)Hw (a—a——-f-b-—a— ——Q->+iw (c—a—+d—é—9- -?~> ={
dp 9q¢’ Op Op  9¢" 0q 9 9¢’ Oq Op 9q’ Op
which is only true if

b—c+ia+id=0

i.e. if b= c and a = —d. Therefore from ( 1.13) FO consists of vectors of the form
8 .8 0 .0
(-5 +5) + (55 +isp)
9 0 o9 @
=—d(—- '-——) +bi(-i-——+—>
9 Oq 9q¢  op
which is just a complex mulitiple of ( 1.12) so F* = F and the space is Lagrangian.

Kahler Lagrangian Subspace

For a complex symplectic vector space (Vc,w) we can define a special kind of complex
Lagrangian suspace called a Kahler Lagrangian subspace. We shall not give the general
definition of a Kahler Lagrangian subspace but merely show how to construct them .
Let J be any compatible complex structure on V extended to V¢ by linearity then the
Lagrangian subspace K of v defined by

K={XeW:X=U+)Y, vYe)
is a Kahler Lagrangian subspace. If F' is any Lagrangian subspace of V then
K={X:X= %c*'(x,- —4JX;) : X; abasis for F, ¢ eC}.

Suppose

PR
il

3 . vy ) O S, 3 R
320 Al o Yy B e R g gl



then F' is a Lagrangian subspace of V. Choose J = J,. In this case
1 78 9
k=55~ (5))

- (_‘?_ _iﬂ)
T2 \8p 9q

so this choice of Lagrangian subspace of V' generates the Lagrangian subspace of e
discussed above which has now been shown to be Kahler. If X = (J +4)Y then JX =
J(J+3)Y = ~Y +iJY =i(i + J)Y =iX so clearly we have

K=y

so that
KnNnE=0ie W=KoF.

Complex Polarisation

Let (M w) be a 2n-dimensional symplectic manifold. A complex polarisation is a smooth

complex distribution F on M such that
1. F is integrable
2. Fy, is a complex Lagrangian subspace of anM me M
3. FnNFEpNTmM has constant dimension.

If in addition Fy, is a Kahler Lagrangian subspace of I‘T:nM for each m € M then F is
Kahler polarisation. Of course when F is Kahler FNF = 0 so Fy, N Fiy N T\ M has
constant dimension zero.

Much of the structure we have described on the complexified tangent space to a sym-
plectic manifold can be examined in a more straightforward way. Suppose we perform the
coordinate tranformation

z=p+1iq Z=p-—1iq.

We may transform the symplectic two form w = dp A dq in the usual way. The inverse

coordinate transformations are

_z+§ L BEEE
P 45
Therefore
op Op, 1 1
dp—adz+%dz—§dz+§dfz‘
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dq=%dz+%d§=%,dz—-21—id2‘
so
dpAdg= %dz+-%d§/\%dz—%d§
1 1
=——dzAdZ+ —dZAdz
43 4q
1
=—§d2/\d.z‘
)
= §d2/\d2

which describes the extended two form. Clearly if

= ——;-'z“dz (1.14)

then w == df. Using the usual transformation rules for vectors it is easy to show that

and

From what has gone before we know that 3‘9; is a Kahler polarisation. 3‘-32 and % are a basis

for VL. Using this basis makes manifest the direct sum decomposition discussed above.

Half Density and Half Form Quantisation on a Complex Manifold

The half density scheme gives untenable results when used to quantise some systems?.
The half form scheme often succeeds where the half density scheme fails but is much more
complicated although superficially the two schemes are quite similar. In the half density
scheme the quantum Hilbert space comprises sections of the line bundle B®A _; /2 that are
covariently constant along some polarisation F' while in the half form scheme it consists

of polarised sections of a new line bundle usually denoted B ®a. The precise nature of

ZPhysicists motivate half form quantisation by pointing out that half densities lead to the incorrect
spectrum of the simple harmonic oscillator while mathematicians observe that half densities give only
projective representations of Lie algebras of classical observables. In fact Wan and McKenna have shown
that the half density scheme can be used to quantise the harmonic oscillator if we use a modified connec-

tion potential and it turns out that the same method can be used to obtain proper i.e. non projective

representations (see Appendix 1).
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the objects in the vector space 6_% need not concern us. Suffice to say they are the half

forms from which the scheme derives its name . We shall only be concerned with the case

3}

F= E. (1.15)

It turns out that as for real polarisations, arbitrary polarised sections of B ® A_1 and
B®3:; can be written ¢(2)sg.v where here, and in what follows, v will represent either the
canonoical half density }|dz |_% or the canonical half form 21 (d%')'% . No confusion should
arise. The nature of v in a particular expression should be obvious from the context. The

state space Hp can be identified with the set of square integrable holomorphic functions

i.e.

He={6) 5z [ [166) P exp (~22) dodg < oo}

It can be shown that classical observables ¢ € C®(M, F, 1) are of the form

c=Az+Az+Baz+ D
and
X, —-—2'(A—'—B"‘)‘9 +2i(A+ B )—(?— (1.16)
o= —2i(A+ BZ) 5 +2i 2)5. :
([5] page 72). For the canonical choice of connection potential ( 1.14) the expression for
the covarient derivative of a section sg is

Vicsy = —%(XJ = %Edz)so. (1.17)

In both the half form and half density schemes the classical observable ¢ is quantised to
give ¢ where

ép = (—ihVx,s + cs).v — ihs.Lx,v.
The difference between the two schemes comes about because of the difference between

the Lie derivative of the canonical half density and the canonical half form. It can be

shown that

Lx.2% |dz|"3=0
([5] page 114). Using ( 1.17) we obtain
y 0 -
ép = (2R(A + Bz)b—; + (Az + D)d)so.v (1.18)
([2] page 139). However

Lx,2%(dz)" = iB23(dz)"?
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so for the half form scheme we have

&b = [2R(A + Bz)%% + (Az + D +AB)glso.v (1.19)

([2] page 212).

1.1.9 An Application of Geometric Quantisation and the Pairing Con-
struction

Consider the configuration space R with global coordinate ¢ and metric g(g) = 1. The
cotangent bundle M = R? has the canonical coordinate system (p,q). Wan and Sumner
have demonstrated that every classical observable of the form

m 7n
A, = Z Z aijq'p’ (1.20)
i=0 j=0
can be quantised locally if the leading coefficient
m .
Cn= Z aing
i=0
is nowhere zero [10]. In this section we seek to generalize this result to the case where the

leading coefficient can vanish. We denote by P the vertical polarisation, the distribution

that at each point (p,q) of M assigns a vector in the subspace of T{, ,y(M) spanned by
(p.q)
%. Hp is then the space of all functions ¢ over R such that

1 2
57 Jy | @) P dg < o0
([5] page 84). Consider the canonical coordinate transformation
p'=ap+bq ¢ =cp+dg (1.21)

where a, b, ¢ and d are constants, ¢ # 0 and d # 0 and ad — bc = 1 ([5] page 82). The

inverse transformation is

g=ag —cp p=dp ~bq.

Let P’ denote the polarisation for which (¢, ¢’) are the adapted coordinates, i.e. P’ assigns
to each point in M a vector in the subspace of T{; q(M) spanned by -5%7 Hp+ consists of
functions % over Q' = M/P' such that

77 o 19(@) P dd’ < o
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As a result of the transformation ( 1.21) a classical observable of the form ( 1.20) acquires
a coordinate representation

m ! "

Z Z aéjQ' 4

i=0 j=0
or more explicitly

ZZ ZZ .7! z—sdj-r(_c)sbrq,i-&-r—ap,s+j—r.

i=0 j=0 =0 r=0 '5' (G —r)ir!

Clearly the leading coefficient is

m n i ] il i ) ——
; z Z Z aij (z 2, 8)'3' (] jr)lr! t-sdJ—?‘(_-c)sbrql

j=038=07r=0

where s + j —r = n + m. It is easy to see that the solution of this equation is unique
and the leading coefficient is amn(—c)™(d)™ i.e. a constant # 0. Let ¢’(¢’) be a localizing
function with support consisting of any interval in the ¢’ coordinate curve [10]. Applying
the local polynomial quantisation scheme of Wan and Sumner we have

n,—ZC'q)(—mw( (D + %Ay

This operator is essentially self-adjoint on the domain C§°(R) € Hp:. The pairing con-

struction leads to a unitary map U : Hp — Hpr given by

! 4.2 5
Ud)d) = & n)/ $(q) exp( (3a C‘f T34 )) lci™2 dg

ch

oo Laa” d 2 .
U )@ = [ b(d)exp (—z’(?“" 9 f 3 )) |74 dg

[5]. It follows that the observable in the (p,q) coordinate system is

e e s e s B TACEIN?
An=UAU=U ;Ca(qx ) (C(q)aq"*‘z dg’ ) ¥

- g]v-lc;(a)u |U=(-in) (C'(q’)-a(% + %ﬁé‘j’”) U]j .

‘We have

¢ =U"qU = —zﬁ,ca(9

where (5’ denotes the self-adjoint multiplication operator in Hpr, and

+ dg,

U -in) (¢ + 555 @) U =3 (5@ + 2a¢@) - L)
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([5]) page 119) so that
g O i TR | G P
An=3"0;(7) [3((’@ (¢) +2a'¢'(e) - %C’(Q')] :
Jj=0
The physical interpretation of localisation in @’ is particularly straightforward when ¢ = 1

since in that case (g,q’) is a canonical coordinate system so we are simply localising in

momentum space.

1.2 Symmetric Observables

It is generally assumed that a quantisation rule must consist of an algorithm associat-
ing with each classial observable a unique self-adjoint operator, unique so as to avoid
any arbitrariness in the resulting quantum theory and self-adjoint so that the statistical
interpretation be straight forward via the projector valued measure. This idee fixe has
caused the subject to founder somewhat but recently a new scheme has been proposed
which promises to overcome the present impasse. In a sense it might be said that the new
scheme admits symmetric operators as observables. The form of these symmetric opera-
tors will usually be suggested quite strongly when formal quantisation rules are applied to
the algebraic functions representing classical observables. It is hoped that the statistcal
interpretation can be carried out because an entity very similar to the projector valued
measure defining a self-adjoint operator can also be associated with a symmetic operator.

We begin with a brief outline of the relevant mathematics in abstract. These results are
taken from [27] and [9].
Symmetric Operators and Their Extensions

‘We shall often be concerned with the existence and classification of symmetric extensions
of a symmetric operator A with dense domain in a seperable Hilbert space H. The theory
of deficiency indices will therefore play an important part in what follows. If R denotes

the range of an operator then we have the following

Definition 14 Let A be an arbitrary non real number. Denote by My and M5 R(A — \)
and R(A — X) respectively then the deficiency or defect spaces Ny and N5 are given by

Ny =Hoe M, N; = HO M;.

If m=dimN) and n=dimN5 then we say that m and n are the deficiency or defect indices
of A.
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Alternatively

Definition 15
Ny ={¢ € D(A"): (4" - N)g = 0}
and

Ny ={p € D(A") : (A"~ N)g = 0}.

There exists a general method for constructing all the closed extensions of a closed sym-

metric operator A.

Theorem 4 Every closed symmetric extension A’ of the closed symmetric operator A is
determined by an isometric operator U with domain Dy (a closed subspace of N3) and

range Ry (a closed subspace of Ny). More precisely

Dy ={¢' e H:| = ¢+ ~Ush,¢ € Da,¥ € Dy} (1.22)

and

Alg = Ad + X — AU (1.23)

The deficiency spaces of A’ denoted N} and N are related to the defect spaces of A by
NS:N,\@RU and Nf\=N;\9D(j.

Clearly then with an obvious notation
m' =m — dimRy (1.24)

n' =n — dimDy. (1.25)

For the case of m and n finite we can obtain a less abstract expression for the generic
form of the extensions A’ of A. We illustrate the method for the case m = n. Choose an
orthonormal basis ¢; for N5 and an orthonormal basis ¢ for N) where i = 1 — n. Now
every isometric operator between finite dimensional spaces is unitary and can be associated

with a unitary matrix W;; which determines its action according to the following equations

where we have used the Einstein summation convention
7
Ui = Wixdy,.
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If Y = €i¢i then Uy = Ueid; = €U = ;Wire), and equations ( 1.22) and ( 1.23) become
¢ = ¢ +edi — Wiy,
A'¢ = A + Aeipi — Wik
Equations ( 1.24) and ( 1.25) reduce to
m'=m—dimDy and n'=n—dimDy.
Perhaps one the most familiar results from the theory of deficiency indices is the following
Theorem 5 A closed operator A is self-adjoint iff both its defect indices are zero.

In fact the self-adjoint operators are a subset of the maximally symmetric operators. These

will play an important part in what follows.

Definition 16 A closed symmetric operator A is mazimally symmetric iff at least one of

its defect indices is zero.
Th 4 serves to make the following results immediatly obvious.
Theorem 6 Mazimally symmetric operators admit no proper symmetric extensions.

The construction given in Th 4 trivially fails to provide any proper symmetric extensions

of a maximally symmetric operator.
Theorem 7 A has a mazimally symmetric eztension.

To see this take Dy = N3 if n < m and Ry = Ny if n > m. Of course if A is maximally
symmetric this gives A as its own maximally symmetric extension. The definition of U is
still largely arbitrary so in general there exists no unique maximally symmetric extension

of a symmetric operator A. Trivially the maximally symmetric extension of a maximally

symmetric operator is unique.

Theorem 8 If m # n then none of the extensions A’ of A is self-ajoint.

Suppose the contrary. Then, from Th 1, m’ = 0 and n’ = 0 so that from ( 1.24) and
( 1.25)
m—dimRy =0 n—dimRy =0
with m # n,m > 0,n > 0 which clearly leads to a contradiction.
Until now we have tacitly assumed that A and its symmetric extensions A’ (if they

exist) are operators on the same Hilbert space H. We propose the following generalization.
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Definition 17 Let A be a symmetric operator on H and let H* be a be a Hilbert space
such that H C ‘H*t then every symmetric operator Bt on H' such that A C B* is called

a symmetric extenion of A.
Clearly
Dy C Dg+ N'H C Dp+.

This gives rise to three distinct cases depending on which of these inclusions is proper and

which improper.

Dy C Dg+ N"H = Dpg+ Type 1

This corresponds to the case of extension without exit described above. The genuinely

new situations occur when

Ds=Dg+ NHC Dg+ Type 2

and
Dy € Dg+ NH C Dp+. Type 3
It is not difficult to see that

Theorem 9 A magzimally symmetric operator admits extensions of type 2 only.

By definition such an operator has no extensions of type 1. Suppose an extension Bt of

type 3 exists then by restricting B* to H we obtain an extension of type 1 and derive a

contradiction.

Theorem 10 EBvery symmetric operator A defined on an Hilbert space H with arbitrary

defect indices (m,n) can be eztended to a self-adjoint operator B¥ on H* O H.

The following results are very important in that they demonstrate to what extent general

symmetric operators resemble self-adjoint operators.

Definition 18 A resolution of the identity is an operator valued function F on R such

that F is a bounded positive hermitian operator where
Fyy,2Fy M ZA

F, = ,\,l_i'l}l_oF)" YAER

lim Fy,=0 and lim F)=1I.

A——00 A—+0o
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Following Naimark [9] we use the term Hermitian to denote a symmetric operator whose
domain is not dense. This is not an essential distinction but it is conceptually usefull
in dealing with symmetric operators with extensions with exit. Notice also that positive
operators are understood to be symmetric but again we follow Naimark and say positive
symmetric operator. The resolution of the identity is clearly a generalisation of the or-
thogonal resolution of the identity or orthogonal spectral function one meets in connection

with self-adjoint operators. Similarly the positive operator valued measure defined next

generalizes the concept of spectral measure.

Definition 19 A positive operator valued measure (or P.O.V measure) is a map M which
assigns an element M(b) of {P} (the set of positive symmetric operators) to each element
b of the Boolean o algebra B of the measure space (R,B) (where B denotes Borel sets)
such that

MR)=1I

[e.o]
MU b;) = M(b;), biNbj=¢
ij=1

where 3252 M(b;) = w-lim 30y M (b;).

If A = (t1,t2) the operator F(A) = F;, — Fy, is a P.O.V measure on R. We have the

following integral type representation of symmetric operators

Theorem 11 Let A be a symmetric operator in H with a self-adjoint extension B in

H*. Let FO" be the orthogonal spectral function of BT and P* the projection operator of
H* on H. Put

B=Prry (1.26)
then for f € D4 and g € H we have
(o0}
(Af,g) = /_ " td(F:f, 9) (1.27)

and
o0

I Af1= [ R (1.28)

We make the following

Definition 20 If A is a symmetric operator and Fy a resolution of the identity such that

( 1.27) and ( 1.28) are true Vf € Dy and g € H then F; is said to be a spectral function
of A.
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Notice that a general symmetric operator is not associated with a unique resolution of the
identity. Theorem 11 shows that every self-adjoint extension of A generates a spectral
function of A via ( 1.26). That all the spectral functions of a symmetric operator A are

generated by its self-adjoint extensions in this way is the content of the next

Theorem 12 Every spectral function Fy of a symmetric operator A on H has the form
P‘*‘Ft0+ where FP+ is the orthogonal spectral function of some self-adjoint extension BT

of A in H* and P¥ is the projection operator of HT on H.

For maximally symmetric operators the situation is somewhat different in that

Theorem 13 A symmetric operator has a unique spectral function iff it is mazimal. This

spectral function is orthogonal iff the operator is self-adjoint.

Note that a maximally symmetric operator that is not self-adjoint has many self-adjoint
extensions of type 2 each associated with a distinet FP*. The remarkable fact is that
all the operators P+FP+ on H are identical. Therefore any self-adjoint extension of a
maximally symmetric operator will generate its unique generalised spectral function. We
should also notice that in contrast to self-adjoint operators the domain of a symmetric
operator generally defies description in terms of an integral representation with respect

to an arbitrary resolution of the identity which will natually tend to overestimate it.

Certainly

f°° 2d(Fif, f) < oo ¥ fe Dy

but, in general, also for many more f besides. In fact it can be shown that

(o0}
/ 2d(Fuf, f) < 0o iff f€ DgeNH

where of course B™ is the self-adjoint extension of A generating F;. Since Dy C Dp+
we have D4 NH C D+ N'H. Since Dy N'H = Dy this implies D4 C Dg+ NH with, in
general, proper inclusion. However for a maximally symmetric operator A each self-adjoint

extension will be of type 2 so that D4 = D+ NH. We therefore have the following

Theorem 14 For any mazimally symmetric operator A there ezists a unique spectral

function Fy such that ( 1.27) and ( 1.28) hold and

o0
/ £d(F.f, f) < oo iff f€ Da. (1.29)
-0
For an arbitrary symmetric operator the situation is not entirely hopeless since
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Theorem 15 For a general symmetric operator there exist spectral functions satisfying
(1.27), ( 1.28) and ( 1.29).

For any symmetric operator there exist self- adjoint extensions of type 2. Any such

extension will generate a specral function satisfying the required conditions.

Symmetric Observables and Generalised Quantum Mechanics

Quantisation schemes generally lead, in the first instance, to symmetric operators that are
not essentially self-adjoint. If the operator has equal (non zero) defect indicies it will have
many self-adjoint extensions. If the symmetric operator is not maximally symmetric and
has unequal defect indicies then it will have no self-adjoint extensions at all but it will have
many maximally symmetric extensions. We have seen that maximally symmetric operators
resemble self-adjoint operators in that they are associated to a unique resolution of the
identity that weakly determines the operator and describes its domain. This resolution
of the identity or the concomitant P.0.V measure allows us to define what it means to
measure a symmetric observable. Following Born we say that
<, F(A)g >
1l _

represents the probability that the measurement of a prepared state ¢ will return a value
in A. It would appear that we can regard maximally symmetric operators as quantum
observables so that there is no more difficulty in handling a symmetric operator with no
self-adjoint extensions but many maximally symmetric extensions than there is in dealing
with a symmetric operator with many self-adjoint extensions. To quantise an observable
we apply a quantisation rule. If the resulting operator is not essentially self-adjoint or
maximally symmetric then we determine its maximal symmetric or self-adjoint extensions.
In general there will be no way of deciding which extension should actually represent the
observable. The expectation values of all the extensions will agree on most states anyway.
Of course if we allow for extensions with exit and are prepared for an even more arbitrary
quantisation scheme then Th 10 tells us that we can always obtain a self- adjoint operator.
However it is probably best to take the view that extensions with exit should only be used
as a means of realising P.O.V measures of maximally symmetric operators and that vectors

in the larger Hilbert space are, as it were, non physical.
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1.2.1 Symmetric Differential Operators

The application of formal quantisation rules to classical observables yields only formal
differential operators. Fortunately there is a proceedure for constructing well defined

operators from formal differential expressions. The main reference for this section is [6].
Consider the formal differential operator
& .
T = g ai(w)%
of order n where a;( ) € C*°(I) for some interval I of R. If ap(z) >0V x € I wesay T is
regular. Suppose that A™(I) represents the set of functions f which have n — 1 continuous
derivatives in I and for which f™~! is absolutely continuous. Let HZ(I) denote functions
in A"(I) such that f and 7f are in L?(I) and let H™(I) denote those functions f in A™(I)
such that f and f™ are in L?(I). Let H(I) denote the set of all functions in H™(I) which
vanish outside some compact subset of the interior of I. From 7 we define two operators

To(r) and T1(7) as follows

D(To(m)) = Hy(I), To(r)f=7f, f€ D(To(r))
and
D(Ti()) = HX(I), Ti(r)f =rf, fe€ D(Ti(r)).

The formal adjoint 7* of 7 is defined to be

n di
= b t)—
3 P i )dtJ
where .
& R 3
b(t) = k;j(—l)k (g) (dtk_j> ax(t).

If 7 = 7* then 7 is said to be formally self-adjoint. When 7 is regular and formally

self-adjoint we have that
To(r) € Ta(r) = T5(7)
so To(T) is symmetric.
Theorem 16 If T is formally self-adjoint the spaces Ny and N5 consist precisely of those

solutions of (1 — i) f =0 and (7 + i) f = 0 which belong to L*(I).

A boundary value for a symmetric operator T is a continuous linear functional on D(T*).

In the case of a formally self-adjoint formal differential operator this can be expressed as

follows.
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Definition 21 Let T be a formal differential operator on an interval I with end points c
and d. A boundary value for T is a continuous linear functional A on D(Ty(t)) which
vanishes on D(To(7)). If Af = 0 VYf € D(Ti(r)) which vanish in a neighbourhood of ¢

then A will be called a boundary value at c. Similarly boundary value at d.

Theorem 17 The space of boundary values for a formal differential operator T is the

direct sum of the boundary values for T at a and the boundary values for T at b.

Theorem 18 Let 7 be a formal differential operator of order n on an interval I with end
points ¢ and d and suppose the end point c is fized (i.e. < c0). Then the functionals

Aif = fi(c) i=0— n—1 form a complete set of boundary values at c.

Definition 22 An equation Bf=0 where B is a boundary value for T is called a boundary

condition for T.

Theorem 19 Consider a formally self-adjoint formal differential operator T. Suppose
To(T) has finite defect indices. Let A;...Ap be any complete set of boundary values for T.

If we introduce on D(T1(7)) the following bilinear form

(%1, %] = —i(T1(T)1, ¥2) + i(1, T1(7)9ha) (1.30)

then it turns out that under these conditions
?
[1, %] = D csjAcprAjiby

1,j=1
where aij = @j;.
Theorem 20 Given a complete set Ay...Ayp of boundary values for a formally self-adjoint
formal differential operator T we find that the cij appearing above are uniquely determined
by any set of elements .40, of D(T1(7)) satisfying det(Aip;) # O according to the

equations

p
oij = Z [k, i) bribi;

k=1
where b;; is the matriz inverse to A;p;.
Definition 23 A set of boundary conditions B; =0 i =1 — k is said to be symmetric if

the equations Biy = Bty = 0 = [ih1,12/=0.

Theorem 21 Let T be a symmetric operator with equal finite defect indices (= n say).
Then the restriction of T* to the subspace of D(T*) determined by any symmetric family

of n linearly independent boundary conditions is a self-adjoint extension of T and ANY

self-adjoint extension of T is of this form.
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Example
We can illustrate these results if we consider the special case
_.d
Tt I =a,b). (1.31)

7 is then formally self-adjoint and regular. We can therefore define a symmetric operator

To(7) as follows

D(To(r)) = HY(D), To(r)f =i%f, feD(E@(r))

and its adjoint

D(Ty(r)) = HXI), Ty(r)f=isf feD(Ti(r).

We wish to determine the defect indices of Ty(r). With 7 and I as given in { 1.31) it is
trivial to show, using Th 16, that the defect spaces are spanned by the vectors

P =e°

Yo =e""

so that Tp(7) has defect indices (1,1). We wish to determine all the self-adjoint extensions

(1.32)

of To(T). Of course the result is well known but the methods imployed in text book
treatments are add hoc and require familiarity with obscure properties of various function
spaces. Almost certainly more complicated examples could not be handled in this fashion.
Our derivation will be essentially algebraic and more generally applicable. Theorems 17

and 18 tell us that for 7 = i and I=[a,b] a complete set of boundary values are
Aif =f(a) and Asf = f(b).

We require the most general symmetric boundary condition that we can construct from
these boundary values. The %, and v, appearing in ( 20) can be chosen to be the functions
in ( 1.32). To see this notice that 1, and 5 are in the defect spaces of Tp(7) so obviously
1 and g € D(I3(7)) by definition 15. But D(T§ (7)) = D(Ti(7)) since 7 is formally
self-adjoint so ¥; and s satisfy the first condition of theorem 20 i.e. that they should
belong to D(Ti(r)). Now

At Ao e* e ¢
Al‘wj —3 —3
Asthy  Axin e et

SO

det(A;1;) = exp(a — b) — exp(b — a).

35




Clearly then A;y; # 0, A, is singular only in the degenerate case @ = b. The inverse
matrix is

b = 1 e e

Y™ (exp(a — b) — exp(b — a)) b

—e’ e®

We can proceed to calculate the ;. We require the terms [1)x, 1]. For example

-
-
¥

L de L . de
['l\blv !pl] = 7‘(7' dz € )+?,(8 ‘Z.E;)

a a
= —i/b (-i)e”e’”d:1:+i/ e*ie®dx
b
a
=-2 / e*dz
b
= g0 _ e2b
Similarly we find that

['(.[»'2, "an} == 6-20' s e—2b ) ["p% 1/)1] =0 and [1/11) '¢’2] = ().

Then
020 _ g2 G e—20 _ p=2b ; ;
= =D —expb— a2’ © T (epla— b —epGoapEl © (")
1 ,
Qe e (exp2(a —b) — 2 —exp2(b—a))
251,
Similarly we can show that '
Qo = —1 and 21 = Q12 = 0.
A general boundary condition is of the form
Ag+ BA, =0.

We wish to determine the conditions on 3 for this boundary condition to be symmetric.
We have

[f, 9] = 1AL fALg + cip Ay fAsg + am Ao f A1 g + g Agf Asg

= a1 f(a)g(a) + a12£(a)g(b) + a1 f(b)g(a) + v f(b)g (D). (1.33)

From definition 23 we require that if

Aof+ BALf =0
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ie.

f(®) + Bf(a) =0
and

Agg + BA1g=0
ie.

g(b) + Bg(a) =0

then ( 1.33) should be zero. Clearly this is true if
a1 f(a)g(a) + c12f(a)(~Bg(a)) + c18f(a)g(a) + caa(~B(a)) (=Pg(@) =0  (1.34)

(11 — @128 + a12B+ | B |? e22) f(a)g(a) = 0
(11 — @128 + 128+ | B cz2) = 0.

Substituting for a;; from above gives
|8*=1.

1.2.2 Quantisation: Applications

Consider the two dimensional phase space R? with coordinates (p,z) and the classical
observable

ztp. (1.35)
Deceptively simple as they may appear these observables have attracted much attention
recently since they serve to illustrate a number of problems that arise in passing from
classical to quantum mechanics (see Zhu and Klauder [77]). We wish to determine the

quantum analogue of this observable. Geometric quantisation or the symmetrisation rule

suggests that this is in some way related to the formal differential operator

or

d .k
T = —-'éﬁ (x%a—; + '2—1'.'17!}—1) s (136)
The properties of this formal expression were investigated by Wan and Sumner for the
casel=1and k > 1. i.e. % an integer > 1 (28, 10]. They showed that in this particular case

( 1.36) did not lead to a unique self-adjoint operator. We shall show that this remains true
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3 even when -’f— & N but that in the context of generalised quantum mechanics discussed in

section 1.2 the expression ( 1.36) can give rise to sensible quantum observables. We shall
consider only the case k¥ and | > 0. Now ( 1.36) is not a formal differential operator in
the sense of section 1.2.1 if I = R since then zt & C*(R). In any case 7 is not regular
when I = R and we would like to avoid this if possible. We therefore remove the origin
from the conﬁéuration space and consider ( 1.36) restricted to the positive and negative
real axis. The quantum observable then emerges as a direct sum of two operators. We
find that in the case k even and ! odd we are led to associate with ( 1.35) the operator

~in(laff gl t) @min (st 2+ Got)

which has defect indicies (1,1). We shall show how to determine the self-adjoint extensions

of this opertor using the Neumann formulas. When & is odd we quantise ( 1.35) as

—~ih (-— | & I% -&d; + % | ["tg“l) ® —ih (x%a% - gzm%'1> ;
When & > [ the defect indicies of this operator are (2,0) and when k < ! they are (0,2). In
this case we obtain maximally symmetric observables . We shall show how we can derive
the associated P.O.V measures in a simplified case. We now turn to the detailed analysis.
First consider the case I = (0,00) i.e. 7 on R*. It is a trivial matter to check that 7 is

formally symmetric. We associate with 7 the symmetric operator Tp(7). We can use Th

16 of section 1.2.1 to calculate the defect indices of Tp(7). N_; consists of those functions
¢ such that ¢ € L2(R") and
£ d k &
e T— b —gt V) dh—ip =
zh(x da:+21x )¢ 1 = 0.

The general solution of this equation is

P & lml‘%
— 2 ————
T A exp G =T5

In Appendix 2.a we show that for & > I, ¢ & L?(R") while for k < [, ¢ € L2(R*). N;
consists of functions ¢ € L2(R™) such that

£ d k &
—1 T — 2Tl b =
m<xldrn+2lm >¢+z¢ 0.

3The geometric reason for this is obvious. Suppose m # 1 then the integral curve of z™d/dz is
z = [( + ¢)(1 — m)]T=7 where c is a constant. Clealy the vector field is incomplete. When m is even
the solution exists for all ¢ but reaches the origin at finite time. We shall see later that we are forced to

exclude the origin to ensure regularity. When m is odd = becomes complex for some ¢.
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The general solution of this equation is

—A‘fr l:z:l"”l'g
bt e\ srm)

It is easy to show that for k > I, ¢ € L*(R") but for k < I, ¢ & L2(R*). Therefore we
have that for k& > [ the defect indices of Tp() are (1,0) and for k < ! the defect indices
are (0,1).

If we now consider the formal differential operator formed by associating with 7 the
interval I = (—00,0) then in general this operator will not be formally self-adjoint since ot
need not be real. However for the case [ odd we can choose the real root of this expression,
i.e. we define

2t =z |t (~=1)*. (1.37)

k
Case 1: For k even zt =|z |T and we are led to consider the formal differential operator

ih s d  d|z|f
= e T e
E 2(|xl d:c+ dz )

on R™. Since

dx l lg
this becomes
n=-it(loft £-51alt)
This operator is formally symmetric. We have
a1=-i'ﬁ.|:c|‘t’g and ao=z’§—lfla:|%‘1.
21
Therefore
bo = Bo — —-8
h=ag= 0
_ ihk SR o k
=-SFleltt —Zin |z ff
s ‘ihk &_1 . k &_1
e
- 21
and
by =—a—1=—fiﬁ,|:g|'}(g
so T* =T.
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We seek the defect indices of the associated symmetric operator Th(71) on D(Tp(m1)) =

H}(R™). N1, consists of those functions ¢ € L2(R™) such that

. . d k k_ :
-whOthE—ﬂ xp1)¢—w=o. (1.38)

The general solution of this equation is

_k
¢=Aia:|"§’sf exp (%) : (1.39)

We can easily verify this. Since

and
d ko _If;_

from ( 1.39) we obtain

=121 (g (et 1) ()

k x lz|z |‘%
i -1 useai ] I O
Ag lel? “p(mk—o)

Let W = Aexp (l—z%%l_;t?) Using z | @ |“§t“1= -z |‘% we have

L=wiori ot awk ot
w s Wk k
= —— W1 & PG —5'[—1.
= e ¥ 4= )

Substitute in ( 1.38)

w Wk

k
-2
gl S e 1 R e W o o w2

h

=0

as required. In Appendix 2.b we show that for k even and > [, ¢ € L2(IR™) and for k even
and <[, ¢ & R™.

N} consists of those functions ¢ € L2(R™) such that
d iy
—ih lmlT-—x-——~|:c| ®+i¢p = 0.
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The general solution of this equation is

_k lz |z \“"f
e 20 e e s
p=A|z|2 exP(ﬁ(l—-Ic) )
When k even and > I, ¢ & L2(R™) and for k even and < I, ¢ € L%(R™). Therefore when

k even < [ the defect indices of the symmetric operatorTp() are (1,0) and when k& > [ they
are (0,1).

Case 2: When k is odd we have from ( 1.37) that
g;%' = — ] T |"lg

so the symmetrization rule leads us to consider the operator

=—m<—|x|% —d-+5|x|%-l).
x
which is formally symmetric. The proof is exactly the same as that given for 7.
We now determine the defect indices of the symmetric operator To(m2) on HE(R™).
N2, consists of those functions ¢ € L?(R™) such that

—zh(—|m|l i+ |:z:|“1)¢—z'¢=0.

The general solutions are

. Wi 3 x|z |_%
qﬁ——Al:z:[ 20 exp(—ﬁ(l—_—k-)—) .
For k odd and > I, ¢ & L2(IR™) while for k¥ odd and < I, ¢ € L2(R™). N? consists of
those functions ¢ € L2(R™) such that

k

|2t ¢+ ip =o0.

X
3

l.:.-"lvr

—zﬁ(—-]mt a‘i’-

The general solution is

h(l — k)
For k odd and > I, ¢ € L?(R™) while for k odd and < I, ¢ & L2(R™). Therefore for the
case k odd and > [ the defect indicies of TQ(TQ) are (1,0) and for £ odd and < ! the defect

Iz |z | F
¢=A|w|‘5j€lexp(—x—a—:——->.

indicies are (0,1).
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We can use these results to classify the quantum observables representing ( 1.35). For

the case of k even and > I we are led to associate with ( 1.35) the symmetric operator

d
T = To(n1) ® To(r) = —ih (| x|t G2 & | = |%_l) ® —ifi (xl 2 4 %zT‘l)

with dense domain Ho(R™) & Ho(R*) c L%(R™) ® L2(R*). The defect indices of this
operator are (1,1). The defect spaces N; and N_; are spanned by the normalized basis

vectors
0@\/' ~H exp (h(l—k))
Eiarten (2] 00

respectively. We would like to use the Neumann formulas (Th 4) to determine the form

and

of all the self-adjoint extensions of T'; however that requires the determination of T, i.e.

the action and domain of the closure of 7. Of course

D(T) = D(To(m1)) ® D(To(7))

(9] page 209). We shall show how we can determine Tp(r). Notice that Tp(7) exists
since Tp(7) is a densely defined symmetric operator. 'To_(—’r-)- will be a symmetric extension
of Tp(7) and so will be a restriction of T3(r) to some domain determined by a set of
symmetric boundary conditions on D(T1(7)) (lemma 26 page 1236 [6]). This defines the
action of To(r). Consider now the operator T restricted to the intervals (0,c] and [c, o0).
The defect indicies of these operators are (1,0) and (1,1) respectively. Denote by 7/ the
operator formed by restricting 7 to [c,00). Using Th 20 page 1299 [6] we see that T
has a boundary value at oo since 7/ has a boundary value there. We know this because
the set of boundary values of 7/ are a 1 dimensional vector space consisting of the direct
sum of a complete set of boundary values at ¢ and a complete set at co (see Th 17).
7/ has a boundary value say R at ¢, i.e. R(f) = f(c) and so one boundary value at
0. Therefore 7 has a complete set of boundary values consisting of a single boundary
value B say at co. It has no more boundary values since the complete set of boundary
values of T is a 1-dimensinal vector space its defect indices being (1.0). Clearly there is
only one symmetric set of boundary conditions (up to equivalence) namely B(f) = 0 and
so the symmetric extension this induces must be m. We can give a marginally less
abstract characterisation of D(To(7)) since the precise form of B is known ([6] pages 1287

and 1303). In general one associates with any formal differential operator 7 as defined in

42

5 g hras lant ey L 4 (08




section 1.2.1 the n X n matrix

n—{~1

Fir)= Y (-1

i=j

d* -3
ljl dt;..] H'H'l(t) .7 gt | < (; o &

Fi(r)=0j+1>n-1
where 0 < I, j <n—1. If we define the bilinear expression
n—1 i .
Fi(f,9)= Y F (0 f'(t)g?(t)
{,j=0

then all boundary values B at an end point a of I, not nessarsarilly fixed, are of the form

B(f) = lim Fi(/,v) (1.40)

where v = —7g, g being a solution of 7*7g + g = 0 such that g € D(Ti(r)). In our

particular case it is easy to verify that we must have

then
. S
v=—iAx 1 exp (m) . (141)
Therefore Tp(7) = T1(7) restricted to that subset of its domain consisting of those funtions
f satisfying ( 1.40) with v given by ( 1.41) and a = o0. Tp(71) can be determined in a

similar fashion. We shall let 4, @ 9 denote a vector in D(T) where 9 € D(Tp(1)) and

¥ € D(Tp(T)) then a vector in the domain of an arbitrary self-adjoint extension of T' will
be of the form

N OYp+a {\/%I z |3 exp <——————l:(|:_|;;> ®0+4 (oea \/%a:‘iki exp (—_nlgl_”;)»}
5 .0
{¢1 +a\/—l 2 |~ exp (l;(lkw ! 5 )} ® {¢+ﬂa\/%_cc"fz exp (—ﬁl_(ali:—jk_))}

where o is an arbitrary complex number and 3 is a complex number such that | 8 |= 1.

When k even and < [ the defect spaces of T i.e. N; and N_; will be spanned by the

1-k
e \/‘ 4 (n(k—z))

vectors

and




If we let ¢o @ % deonte an arbitrary vector in D(T) = D(To(m1)) ® D(To(7)) where of
course ¢g € D(Tp(71)) then the domain of an arbitrary self-adjoint extension of T' consists

of vectors of the form

(svamfiertom (Gl o vt (15)

where | 8 |= 1.

When k is odd we are led to associate with the classical observable 1.35 the symmetric

operator

= To(m) @ To(r) = —ifi (u|z|, 4.k |x‘1_1)@_m (“”a‘i*'% “_1)'

When k is odd and > I the defect indices of this operator are (2,0). When k odd and
< | the defect indices are (0,2). To carry the theory through we should calculate the
P.0.V measures of these operators but that seems to be very difficult. If we restrict
the configuration space to R* we can determine the P.O.V measures of the maximally

symmetric observables. For example, consider the classical observable z?p whence ( 1.36)

—ih (a: E% + :B)

= —mzﬁ-&d; — ihz (1.42)

on (0, 00). Now define the map U : L2((0, o), dx) — L%((—00,0), ds)

om0=5(-2) )

This map is invertible. Its inverse is given by

O0)(@) = == (-5 ).

oo (Gr ()
ey Cee)

= f(=).

becomes

This is easy to check

U is also an isometry since if in

/ ” f(@)g" (2)dz
0
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we make the change of variable = —1/fs we have
0 1% F 1% 3
[t a)e (o) 7
Lo () ()
—00 \/Es hs \/ﬁsg hs
0
= [ whiweyas.
-0

Therefore U is unitary. Now

d 1 1

= - s - ot
UDU —U( iha = zh.’z:)( _ha:g( Tm:)>
: d /(-1) 1 tha 1
s 3 ) 5\ T o (O i
o) U[ H dz (Jﬁmg( hx)) * \/ﬁx‘q( hx

+

T

-t (b ()] w2

Put v = —1/hs
i ds d 2
~ 53 g0 25 390N+ S9(s)-
Since
ds 2
-C-[‘l; = h&

the above becomes
1 9 d i
hsahs ds(sg(S)) + 39(3)
_ i ( dg %
=2 (sF +9@) + 299

S
__.%

= e —

ds’
UDU! is still maximally symmetric of course but it has an natural self-adjoint extension
i.e. —id/ds on R. The Weyl Kodeira theorem shows that the spectral function of this
operator is precisely what we might have guessed from a formal generalized eigenfunction

expansion so that by Naimarks theorem (Th 12) the P.O.V measure of UDU ™! is

A
(FNNE) = [ elrs) < e(ns), £(s) > d

45




where s € (—00,0), f € L?(—00,0) and
0
<fg >=/ f*gds.
-00

The P.O.V of ( 1.42) is therefore

(ULFNU) (=) = —715; /_;exp (/\, ——n}—) < exp(A, s'), f( > ,) > dA

where z € (0, 00) otherwise symbols as above. We could also have considered the classical

observable % pon R in which case we would require the P.O.V measure of the maximally

d T
— s —_r 3
zﬁ,(mdm+4 )

vk
= —tha?

symmetric operator

w2l

h _

on (0, 00). Define the unitary map U : L2((0 o0),dz) — L?((0,00),ds) by

2,2 2.\ %
Us)e) = f (“Ts) (?)

Again we find that the image of the operator ( 1.43) is

d

_z_._.

ds

so we can proceed to get the P.O.V measure as before.

1.3 The B.K.S Method

In this section we discuss the Blattner-Kostant-Sternberg (B.K.S) method which can be
used to quantise observables f in a polarisation F' even when f ¢ C®(M, F,1). We shall
see that the scheme is unsatisfactory in many respects.

It is quite difficult to obtain an explicit expression for the operator representing a given
classical observable using the B.K.S method since this requires that we are able to eval-
uate certain limits that are non trivial in general. It has been known for some time that
the B.K.S method can give explicit results when used to quantise observables of the form
p? + V(q). In this case the operator obtained formally agrees with the Schrodinger oper-
ator derived using canonical quantisation. Until recently this was the most conspicuous
success of the B.K.S method. The paucity of examples that could be handled using the
scheme has meant that its significance has been difficult to access. However, recently, Bao

and Zhu have shown that the B.K.S method can be carried through to obtain operator

46

S . s



representations of classical observables of the form f(q)p? where f(g) > 0 and Tuynman's
work has essentially completed the task of quantising observables using the B.K.S scheme.
It is therefore apposite that we should review the B.K.S method and indicate some of its
demerits.

First we should observe that there is no geometric criterion, analogous to the complete
Hamiltonian vector field result described in section 1.1.7, that allows one to assertain if
a classical observable will yield a self-adjoint operator when quantised using the B.K.S
method. We shall show in sections 1.3.2 and 1.3.3 that such a result would be useful
because in general the operators produced by quantising classical observables using the
methods of Bao and Zhu and Tuynman are not essentially self-adjoint.

The quantisation scheme of Bao and Zhu is derived using elaborate geometric argu-
ments but it turns out that it is nothing more than a special case of a generalised squaring
axiom which we shall describe in section 1.3.4. This generalised squaring axiom has the
added advantage that it allways produces self-adjoint operators. In some cases we can also
recover the results of Bao and Zhu using a modified pairing map. Finally we show that
Tuynman's method and that of Bao and Zhu produce different operators when applied to
the same classical observable i.e. they are contradictory.

We begin by recalling the definition of the pairing or B.K.S kernal as it is often called

in this context.

1.3.1 The B.K.S Kernal

Let F1 and F3 be a pair of compatible polarisations on a phase space M. Let Hp, and
HF, be the state spaces corresponding to F} and Fs respectivly, i.e. those subsets of the
set of all sections of the usual line bundle over M that are covariantly constant along the

relevant polarisation and square integrable. There exists an intrinsically defined map
<, >prHp X Hp, —C
called the B.K.S kernal or pairing. This map <, >m r, induces a linear map
Urr, :Hp — Hp,
via
< 01,03 > R=<0,URnmo2 >Hpy

where 01 € Hp, and 03 € Hp,.
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Quantisation

Recall that when we quantise a classical phase space we choose a polarisation F. This
determines a state space Hp. Consider a classical observable g. Suppose g generates a
complete Hamiltonian vector field and so gives rise to one parameter group of diffeomor-

phisms of the phase space denoted ¢}. Let 7¢} denote the derived map of ¢%. We have
that g preserves F, i.e. g € C®°(M, F,1) if

F=T¢,F=F

If g preserves F' then we define the operator § on Hp by

go= iﬁ%(«%ﬁ,a) [t=0 (1.44)

o € Hp. This is nothing more than the intrinsic description of § given in section 1.1.
Notice that here we have abused our notation somewhat since in the above qb_f] actually
denotes the lift of the action of ¢}, to Hr. This lifted ¢}, is a vector space isomorphism ([4]
page 103) i.e. qbg is a one parameter family of unitary maps of Hr onto itself. Clearly § is
self-adjoint since it is the infinitesimal generator of this one parameter family of unitary
maps.

Now suppose that F; # F, i.e. g does not preserve the polarisation F. Let Hp, be the
Hilbert space associated with the polarisation F;. Suppose that F' and F; are compatible

for (0 < t < €). Then, as described above, we can introduce a B.K.S kernal
<, >pr:Hp, X Hp —=C

which induces a linear map Up,p : HF, — Hp. For each ¢t € (0,¢) define &, : Hp — Hp
by

®; = Unrd} (1.45)

Now ng is a unitary map Hr — Hp, if g generates a complete Hamiltonian vector field.

®; will be a one parameter family of unitary maps on F' when Up,p is unitary. In that

case the operator defined by

s
§ = ih®: |t=0 (1.46)

will be self-adjoint. However in most cases the operator Up,r derived from the B.K.S
kernal will not be unitary and § will not be self-adjoint. Of course we could use any

unitary map Hpr, — Hr in place of Upr in ( 1.45) and this would give a self-adjoint
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operator but the point is that Upr is derived intrinsically using geometric objects . In
general it is very difficult to prove that Up,p is unitary. Usually we use ( 1.46) to define

the operator § on some dense domain and then attempt to find a self-adjoint extension.

‘We shall see an example of this approach later.

1.3.2 The B.K.S Method a la Bao and Zhu

Suppose that F' is the vertical polarisation P. If the function g is such that P and 7 qbgP
are transverse then g may be quantised in P according to the prescription described above

and what is more in this special case an explicit expression may be derived for the operator
§ [4]. It turns out that

g S e e i [t e 3

o = (1) Jim, (W) [ dpexp [ [ (01, - 9)65°ds) [det(Xe 85 X hu(Bhe) (147

(See equations (6.49) and (6.50) [4]). We now restrict ourselves to a discussion of observ-

ables of the form
9 = f(q)p?

where f(g) > 0. In Appendix 3 we show that in this case

1 ! 2
a9 = (in)? (f(q)w" + a0 (@) + [f ot ] w) (148

as given in equation 21 of a paper by Bao and Zhu [14]. Using this we may formally

quantise the classical observable gp? to obtain the operator
& a8
412
" ! 4
T = (ih) (qdq2 + il ) (1.49)
where k& = 1/4. This formal differential operator is regular on (0,c0). We can show that

To() is not essentially self-adjoint by calculating its defect indicies. To this end we require

the solutions of the following equation

2 2
((m)2 (‘13%1—2 + Zz% - %) - ,\) ¢ = 0. (1.50)

Notice that ( 1.50) is a Bessel equation since the most general form of Bessel’s equation is

d 1-2d . a? — p?c?
T + % i = [(bca:c 1)2 4 ™ =0 (1.51)

*Notice that when g preserves the polarisation the pairing becomes equal to the inner product on Hr
i.e

< 01,02 >R r= (01,02) = (01, Urro2)

so then Urr = I and ( 1.44) is the same as ( 1.46).
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(Eq 16.1 page 516 [8]) and putting @ = 0, ¢ = 1/2, b = 2v/A/f and p = 2k we recover

(1.50). The most general solution of ( 1.50) is therefore a linear combination of

2\/Xq% 2v/A
J%( 5 ) and N%(hq 4

Suppose we consider the operator ( 1.49) restricted to (0,a]. As ¢ — 0 we have

2V/q? 1 (Vi) 2v/3gh\ ?
( z )“’N%)( A ) *R( z )

where R is a complex constant. This can be written as

A (2\/Xq%) N PR |
1

(S

J

Nl

2 5 5
ot Lo gt 4 Rep Xt
1\ "R T VAl Rl

= rl)\%q% + TQR)\%Q%

where r; and 7y are real constants. Therefore

A ()
2 h

T
=7 | A2 g7 +mr2Re(MXAB)gE +12 | R 2| M |3 45,

2

i _—
~ (rl)\%q% + rsz\Tsfqg)(ry\‘qil‘ + roRA

o

5
q1)

Clearly
a 2v/xq?
/(; J%( = ) dgq < co.
Also as ¢ — 0
3
't
Ny (2?‘1%)”‘_53‘) \/ii e 1)‘,
2 20/ 2
= ()
Ak 3.3
RGNS IR
~ 7’1/\—%11"'% e rgR)\%q%.
Therefore

~rd A |_% q’% + r1r22Re(—R./\‘%:\.

P

3
)g2 +73 | B2 A |2 g,
Since

LA !
/ g %2dg < o0
0

()
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Therefore the defect indices of ( 1.49) on (0, a] are (2,2). Now (1.49) on (0, ¢] must have
two boundary values at a (see cor 23 page 1301 and Th 19 page 1298 [6]), therefore it
must have two boundary values at 0 (lemma 21 page 1234 [6]). Hence ( 1.49) on (0, co)
has two boundary values at 0 (Th 20 page 1299 [6]). Now consider the operator (1.49)
on [a,00). We could express any solution of ( 1.50) as a linear combination of the Hankel
functions . .

i (25) s (22).

Let vy ) denote the asymptotic approximations of the Hankel functions given above as
q — co. We have

2vA %]

Vi ) X q‘% exp [:l:z'——h—-q

(see table page 525 [8]). Suppose A = i = exp[¥] so that VA = exp[iZ] = 71-5 + 715 Then
1
A 2¢2 (1 1
Vi X q iexp {:l:—%— (—\/-_2-. + —\/12_)} .

1) o i )
f | vgi |2 dg = / g % exp -‘qu dg.
% % h

Now

[

Put u = q% so that dg = 2q%du and the integral becomes
/\: 2q“%q% exp [\/%'zj du
= /:_: 2q% exp [\/?—r;u du
= \:214% exp [\/%u du

which clearly diverges. On the other hand

(oe] o0
/a | ve; |2 dg = /\/E Qut exp L—\/—%u] du.

Put

SO

and the integral becomes




When A = —1 we have

1
" 2q2 ( 1 % )
Vi =g t—(—=—-—=]].
RS [ n \VB V2
We can investigate the square integrability of these solutions as we did above for the case
A = i. In this way we deduce that the defect indices of ( 1.49) on [a,00) are (1,1). Now

( 1.49) on [a,00) has two boundary values at a so no boundary values at co. By lemma

10.5.13 page 273 (7] the defect indices of ( 1.49) on (0, c0) are
(B4+1-2241~9)

=(1,1)
Therefore (1.49) is not essentially self-adjoint. It has a one parameter family of self-adjoint
extensions and the quantisation is not unique.
We can give an explicit expression for the domain of the self-adjoint extensions. This

will follow from standard Sturm Lioville theory. Define the bilinear form <
D(Ty(r)) as follows

, > on

< frg >= lim —R%(f'g - f7).
We have the limit circle case at 0 and the limit point case at co so the self-adjoint extensions

are obtained by restricting D(T1(7)) to those f such that
< f,g>=0
where g € T1(7),
< g =D (1.52)

and g linearly independent relative to D(7p(7)) (Th 10.5.2 page 268 and Th 10.2.18 page
260 [7]). Notice that following example 10.5.12 page 272 (7] we can take

g = c1hy + caho

where b = q% and hg = q'§ near 0, hy and hg vanish at infinity. It is easy to show that

Thy = Thy = 0 so h; and hsy are in D(T}(7)). From ( 1.52) we obtain

€1 .3 ‘e BN L. ik 1 i, (C _3 Ty _s
“nQQ((fII 4—z°q ")(Clq4+02q 1) — (c19% +caq 4)(11(1 Foieeg ')) =0
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\ ]
e e 4“1r+c

1 0102 i C2C; 1 CoCp .3 C1C1 _1 coC1 CoCy _3
—h? (461q 24+ 1. 1 7 o S BN g TS

4 30 4 g ¢
h?
——2-(6162 — Cof1) =
This is satisfied if

€1C2 = ¢3¢ = (€182)

i.e. 1€ = R where R is a real parameter. It is easy to show that this is equivalent to

(c2/e1) =| c2 |* /R = 1/ tan 6 say. The domains of the one parameter family of self-adjoint
extensions comprise f € D(T1(7)) such that

lim q ((Zlq'% - %q"%) f - (@gt +'c‘2q“i')f’) =
or w
;%q ((taneg—‘li - %q‘i) — (tanfg% + q“?)f)
In Appendix 4 we show how we can quantise gp? using a modified pairing map. The

operator we obtain formally agrees with that derived by Bao and Zhu but is positive

definite and essentially self-adjoint.

1.3.3 Quantisation a la Tuynman

In section 1.1 we gave explicit formulae for the operators representing classical observables
€ C°°(M, F,1). These were derived using the notion of a partial connection although they
could have been obtained using the B.K.S method. The quantisation of observables that
preserve the polarisation is a rather trivial example of a situation where the B.K.S scheme
can be carried through to yield explicit expressions. Bao and Zhu identified a larger class
of observables for which the kernal could be found in closed form but recently Tuynman
has shown that the B.K.S scheme can in fact be used to quantise any classical observable
with respect to a Kahler polarisation. Tuynman’s quantisation of an arbitrary classical
observable f is in two parts. The B.K.S method associates with each f an operator Ly
that acts on the space of holomorphic sections, the elements of the quantum Hilbert space

of the canonical Kahler polarisation F' ( 1.15), according to

2
Li(p(2)s0.v) = ( (-;—J:-di + (f g]_r + ﬁ;g_)) d(z)sg.v. (1.53)

Notice that this reduces to ( 1.19) when f € C®°(M, F,I), ie. f= AZ+ Az+ BzZ+ D.
Since this at least makes the result plausible we shall omit the proof. A second stage in the

quantisation proceedure is necessary because in general L ¢(g(z)so.v} is not a holomorphic
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section since the factor multiplying ¢(z) on the right hand side of { 1.53) may not be
independent of Z. Tuynman proposes the quantisation f — f where
Fo(z)sow = EL 1Ed(2z)s0.v = ELsd(2)s0.v.

E is the projection onto the holomorphic part of a function, i.e.

(Eg)(w) = /g 2,Z)(2h)~ 7 exp (271) exp( 2h> dpdg.

Therefore, droping the sg.v factor which shall be understood, we have

fo(w) = (2) /[2 g—_{-? +( - g{ + haa_zgz>¢]exp (——%) (2h)~ 3 exp (zn)dpdq
(1.54)
- h“I/ (f haa_zaf ) #(z) exp ( 2ﬁ> exp (27) dpdq (1.55)

(Appendix 5). We note that the transition to complex coordinates given in section 1.1.8
is a canonical coordinate transformation (page 40 [5]) and the generating function for this
canonical transformation can be used in the pairing construction to give a unitary map

U : Hr — Hp where P is the vertical polarisation. Suppose z = p + iq. We have

we)a) = (— (;—;)) [otriven (67 ~2ip0)dp  (156)
and :
(U~19)(z) = (e-%" (%) 5) / (t) exp (—%(—f + ditz + 2t2)> dt

where v = 1/A. This allows us to find the quantisation of f in the vertical polarisation.

This is given by

. 1 h i
UfU'l¢(q) & 5 /dz1d22dt [f(zl, 29) — —(Ay + Aza)f] exp [izl(q - t)]
(eh)3 1 A
1
exp [—-%((q —2)% + (£~ 22)2)] o(t) (1.57)
(Appendix 6) where z = z; + iz and for example
62
AZI = -5;1—2-

Quantisation of ¢gp? a la Tuynman

‘We shall see that Tuynman’s scheme leads us to associate the following formal differential

operator with the classical observable gp?

. d2 d
B e
h (qdq2 + ) . (1.58)
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We show that the defect indicies of this operator are (1,1) and find the one parameter
familly of self-adjoint extensions. We show that Tuynman’s result can be obtained more
easilly by quantising gp® in the horizontal polarisation and using the pairing map to
transform the operator back to the vertical polarisation. We observe that the quantisation
of gp? obtained using Tuynman’s method differs from that obtained using the formula of
Bao and Zhu.

The derivation of ( 1.58) is rather involved and appears in Appendix 7. As yet we
have not specified a domain for this operator. Tuynman does give a description of the
maximal domain of the operators generated by his quantisation scheme but in general
they are rather difficult to handle except for the special case of a compact Kahler manifold
without boundary. For this reason we prefer to use Tuynman’s method to obtain a formal
quantisation and analyse the domain later. This is probably the best way to proceed here
since the phase space has a boundary. This arises because of the restriction ¢ > 0. We

can show that the operator ( 1.58) does have self-adjoint extensions. We shall do this by

finding its defect indicies. We require the solutions of
“ﬁzqggz" - n%}% ~A=0
or
&  Yd- A
dg* " qdg ' qn?
This is a Bessel equation. To see this take ¢ =1/2, p=0, a = 0 and b = VA2/k in ( 1.51)

=0. (1.59)

and recover ( 1.59). The linearly independent solutions are therefore

HEP (qu%) and H{” (2?(,%)

which at large g are proportional to

ﬁq

These are identical to the functions we considered in connection with the operator of Bao

q‘é exp (ﬂ:'z\/x %) 5

and Zhu and so we know that the defect indices of ( 1.58) on [f‘;, co) are (1,1) and therefore

( 1.58) has no boundary values at infinity. We could also express the solution as a linear

Jo (2\/Xq ) and Ny (2\7{)—\q )

combination of

N
N

h

We can analyse the Jy solution in the same way we did in section ( 1.3.2) for J - This

shows that Jy (l‘,ézq%) is square integrable at 0. Now as ¢ — 0 we have

Nop o< In (QT{Xqé)
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i.e.

2q§ T
N()O( 111( B )i@z

according to whether A = £i. Ny (l‘,{—xq%) is square integrable at 0 since

'4'2*22q
/o ln(h)dq<oo

To see this put

2 &
u = In? (2"—2) ; (1.60)
h
When ¢ =0, u-ooa,ndwhenq-— ,u«O Also
1. (243
du=—-In|— | dg
R
Now
2q'§'
exp(—v/u) = 5

Notice that we have chosen this branch for the inverse of ( 1.60) so that ¢ < 5‘43. Therefore

E-':1 2q% 0 (-
/0 In? (—-h—) dq--/oo (_\/_) ——exp( —2/u)du

= -TZ—Q/OOO Vuexp(—2v/u)du.

If we let v = 2+/u this becomes

2 roo
/T <2q2 ) % v? exp(—v)dv.
0

The integral on the r.h.s of the above is finite because

o0
/ exp(—v)dv < oo.
0

This is sufficient as follows easily by repeated integration by parts, the boundary terms

vanishing because
. n = =
ulLrgo v" exp(—v) =0
([8] page 39). Therefore the defect indicies of ( 1.58) on (0, i%/4] are (2.2). Since there
are 2 boundary values at 2/4 ( 1.58) has 2 boundary values at 0. The defect indicies
of the minimal operator associated with ( 1.58) are (1,1). Tuynmans method leads to a

1 parameter family of possible quantisations of gp® just as we had with the method of

Bao and Zhu. Also it would appear that Tuynman's operators will have the correct i.e.

56




positive spectra. ( 1.58) is formally positive ([6] definition 6 page 1439) so at least the
essential spectrum of the self-adjoint extensions will be positive (cor 7 page 1439 and cor
3 page 1437 [6]).
We can obtain the explicit form of the self adjoint extensions as follows. If we define
the bilinear form
< fig >= - limWq(f'g - f7)

then the self-adjoint extensions of Tp(7) are given by resricting T3 () to that subset of its

domain consisting of those f such that
<f,g>=0

where g is any vector in D(T7(7)) such that < g,g >= 0 and g is linearly independent
relative to D(Tp(7)). Suppose we put

g = c1hy + cohg

where h; = ¢ near the origin, ¢ a real number # 0 and hg = In q% near the origin. h; and
ho vanish at infinity. It is easy to show that 7h; = Thg = 0 near the origin so that ki, ho

and g are in D(Ty(r)). It is also easy to show that
2
< ki hapa it
2
Since h; and hy real we can immediately infer from this that < ha, hy >= ~%%c/2. Using
lemma 10.2.17 page 259 (7] it is now a simple matter to show that g is linearly independent

relative to D(Tp(7)) if just one of ¢; or ¢; is nonzero since if ¢; = 0 we still have

n2
< g hy >= —"22 40

and if ¢ = 0 then
clhzc
2

<g, hg >=

#0.
< g,g9 >= 0 is equivalent to
C
— lim #%q [Ezq*l(ﬁlc +C lnq%) — (cic+ e lnq%)——gq’ll =0
q—0 2 2
lin})[czElc—!- | eo |2 1nq% — ¢1cBo— | o |2 lnq%] =0
q—-‘
lim (co€1¢c — c1¢Ca) =0
g—0
i.e
€1C2 = C€1Cy = C1C2
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so we must have c1/cz = tand. The domain of the self-adjoint extensions of Tp(r) then
comprises f € D(T1(7)) such that
—}i-rﬁl)# [ (clc+C2lnq2)—f E _1] =B
or :
‘lli_g(l)q [f'(tan&c +1ng2) - éq“l] =0.

We can see that ( 1.58) differs from the quantisation of gp? derived by Bao and Zhu.

The two schemes are contradictory.

The quantisation of gp? obtained by Bao and Zhu was lent support by the fact that it
could also be obtained by working in a polarisation transverse to the vertical polarisation
and using a modified pairing construction. Tuynman’s result can also be obtained using

the pairing construction. Consider the coordinate transformation
p=—¢ and ¢=7p.
This is a canonical coordinate transformation with generating function
f=-dq.

For the time being we drop the constraint ¢ > 0. Strictly speaking ( 1.58) does not apply
when g > 0 anyway since in deriving it we set integrals of odd functions over R to zero.

Now qp? = ¢°p’ and so € C®(M, P',1). Therefore

q-’-z;' = —zh( dd, + q’) . (1.61)

The pairing gives a unitary map Upip : Hpr — Hp. Uprp is unitary since is just the

Fourier transform. The form of the operator ( 1.61) in Hp is

Upp —ih (q’zd% + q’) ﬁ f_ o:o é(q) exp(iqq’)dq

=Upp — \gf.ﬁ f: ¢(q) ( dd, & q) exp(iqq’)dq
\/— ¢(q)(¢" iq + ¢') exp(iqd’)dq
=Upip [ #(q) (q’z(—i)ﬁ-;;q - iﬁq’) exp(igq’)dgq

Up'pr #(q) ( h quqi ~ R ;%) exp(igq’)dq
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d*qp | odd
" 2 2
=Upp \/27 f ( B +h 3 exp(igq')dg

Pqp  ,do
=( 2d;12 +ﬁ2dq>

CROR)

d? d
=—-2 —_— —_—
h <qdq2+dq>¢

which is the same as ( 1.58).

1.3.4 Squaring Axiom for Symmetric Operators

In conventional quantum mechanics, where observables are identified exclusively with self-

adjoint operators, it is taken for granted that if the classical observable g is quantised to

give the operator § i.e. g — § then

Glg) — G(g) (1.62)

This is sensible because G(g) is a well defined self-adjoint operator. However in quantum
mechanical theories that admit symmetric operators as observables the situation is more
complicated because there is no operator function calculus for symmetric operators to
compare with that for self adjoint operators. However, if we consider the special case
G(g) = g2, whence ( 1.62) corresponds to the squaring axiom, there does appear to be a
natural generalisation to the case of symmetric operators as follows: if g is quantised as
the closed symmetric operator § then we propose g2 — §*§. This operator is self-adjoint
(Th 5.39 page 124 [11]). Notice that when § is self- adjoint we recover the squaring axiom
of conventional quantum mechanics. The restriction that § be a closed symmetric operator
is of no consequence since a symmetric operator has a unique minimal closure that we can
identify as the quantum observable. We shall see how this works in the following example.

Consider the case of a particle in an infinite potential well, over an interval I = [a, ]
of R. Suppose we want to determine the allowed energy states. Clearly we require
the Hamiltonian. The traditional treatment of this problem would be as follows. Let
11 = —ifid/dz. The momentum p is quantised as Tp(r;) then since classically H = p? we
expect H to be related to the operator 5 = 72 on C§(I) i.e. To(me). However To(re) is
not essentially self-adjoint. Its self-adjoint extensions are obtained by restricting 73 (m»)

with a set of symmetric boundary conditions. Physical arguments are brought to bear to

59

o
iy
“{
%



determine the most sensible restriction. We require that the wavefunction be continuous.

Since the wave function vanishes outside I we are led to the following quantisation

H=m, D(H)={f:feDTi(r)), f(a)=f(b)=0}

The question now arises as to whether or not we can obtain this result without using the
nature of the wavefunction outside I i.e. without involving the environment of the infinite
well. It so happens that the modified squaring axiom leads us naturally to the operator

H given above, Ty(ry) is a symmetric operator. We know that

To(m1)* = Ti(m). (1.63)

Now an operator and its closure have the same adjoint so

To(r) = Ti(m). (1.64)

All symmetric extensions of Tp(71) are obtained by imposing symmetric boundary condi-

tions on T1(71) therefore

To(m) C Ti(m). (1.65)
Consider

Hyq =To(m1) To(my) = T1(m)To(m1)-

As we have seen this is self-adjoint. We have

D(To(m)) = {f € D(T1(n1)), f(a) = f(b) =0} (1.66)

Th 6.31 page 162 [11]. Now

D(Hyg) = {f € D(To(n)), To(m)f € D(T1(m1))}

i.e. using ( 1.65) and ( 1.66)

D(Hsq) = {f: f € D(Ti(7)), f(a) = f(b) =0, Ty(m1)f € D(Ti(m))} (1.67)
so that
I:Isq =T
D(Hsq) = {f : f € D(T1(7)), f(a) = f(b) =0, f' € D(Ti(n))}.

Now recall D(T1(r1)) = HY, = H' where the last equality follows from the top of page
1288 [6]. So we can write the domain of Hy, in a more explicit form namely D(Hs,)

consists of functions f such that
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1. f is absolutely continous and f and f’ € L%(I),
2. f(a)=f(b)=0,
3. f’is absolutely continuous and f’ and f” € L2(I).

Obviously not all of these properties are independent. Simillarly we can give a less implicit

definition for D(I;I ). In fact D(I-:T } consists of functions f such that
1. f is continuously differentiable and f € L%(I),
2. f' is absolutely continuous,
3. " e L3(]),
4. f(a)=£(b)=0.

We can show that D(H) D D(H, sq) - This is obvious since f absolutely continuous and
so continuous. The rest are stated explictly. We can also show that D(Hy,) > D(H). f'
is absolutely continuous so continuous. Every continuous function on a closed interval is
bounded therefore ' is bounded and f is absolutely continuous (page 78 [12] and page
299 part d {29]). Also we clearly have f € A%(I) N L?(I) so by Th 6.26 [11] f' € L2(I).
The others are stated explicitly. Therefore I:I_,q =H.

The Generalised Squaring Axiom and the Formula of Bao and Zhu

Using this generalisation of the squaring axiom we can quantise observables of the form

¢(a)p? (1.68)

¢(q) > 0. This is the classical observable considered by Bao and Zhu. Formally the
operator we obtain corresponds to that given by Bao and Zhu but is now a well defined
self-adjoint operator. What is more the operator is positive so its spectrum is identical to

the range of the classical observable.

Since ((q) is positive we can write ( 1.68) as
(GRS

Consider the observable ¢ b (g)p. If we assume that ((q) is sufficiently smooth then ¢ 3 (¢)p €

C®(M, P, 1) so that
Cip (c (@3 +3 ;'q)

N

ll
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is a symmetric operator. According to the modified squaring axiom

e T Ny
¢p* =(Z%p (2p

where we have taken the closure of the symmetric operator ¢ %p. More specifically this

operator is
(i) (i) o (- 30) (@ )

[ ( Frachoprgciog ez (cheee (3)6 %c’)>——<—q*1—6<‘1<]

= d? ¢'d 1.,d 1 1—1/z 7 ~1
=12 [—CEQ—Z—EE&—ZCE-—ZC +§C ¢ C Bq 16C C]

(M

=8|~z - G+ P — 1+ G - 350
= B2 [- d% - IEE - %c” + %c*c""]
which is identical to ( 1.48). The generalised squaring axiom associates with the posi-
tive classical observable gp? a well defined positive self adjoint operator that is formally
equivalent to that obtained by Bao and Zhu.

It should be noted that it is not difficult to obtain the closure of a formal symmetric
differential operator 7. We can simply use the boundary matrix discussed in section 1.2.2
to obtain the boundary values B; of T then restrict 71(r) to that subset of its natural
domain determined by the strongest ([6] page 1236) set of symmetric boundary conditions

i.e. B;f = 0. This determines the minimal closure of Tp(7).

1.4 Polarisations with Compact Leaves and Quantum Non-

locality

In this section we discuss the relationship between quantisation with respect to polarisa-
tions with compact leaves and nonlocality. This work also appears in [79].

Sometimes a polarisation F' will be associated with a quantum Hilbert space Hp that
cannot be represented as square integrable functions over a simply connected manifold. To
elucidate the nature of the quantum Hilbert space associated with a general polarisation

F we must study the topology of the Bohr Sommerfeld variety of . We say that a point
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z € M belongs to the Bohr Sommerfeld variety of a polarisation F if the integral surface

of F' through x can support smooth sections of B® A Then

e
2

HF = @n:]th

where H, consists of smooth polarised sections of F' with support in the connected com-
ponent ¢, of the Bohr Sommerfeld variety of F. When the Bohr Sommerfeld variety of
F is simply connected there is just one component in the direct sum and we recover the

usual representation of Hy in terms of square integrable functions.

Consider the case of the classical observable Hy representing the Hamiltonian of the

simple harmonic oscillator i.e.
1
Hy = E(p"’ +q°).

Introduce a new canonical coordinate system
Ho=(®+q®) 6=tan™ (g)
2 P

([5] page 148) and consider the polarisation

0
6-55.

Suppose we wish to quantise this classical system with respect to the polarisation ©. We
must identify the quantum Hilbert space Hg. The Bohr Sommerfeld variety of © is not
simply connected. First notice that the integral surface (definition 3) or curve of © passing
through any 2 € M will be a circle with centre the origin. This follows immediately from
the fact that Hy is the coordinate adapted to © so the integral surface is given by Hy = c.
Not all of these circles will be able to support smooth polarised sections of ©. The circles

cn that can support smooth sections are those that satisfy the Bohr Wilson Sommerfeldt
(B.W.S) condition

i Hydf = 2whn.
Since the integral surfaces are all leve; sets of Hp the B.W.S condition is
Ho(cn)2m = 27hn
i.e.
Hy(cp) = hn

Clearly

Bohr Sommerfeld variety of © = U3, cp
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and this is not a simply connected set. The connected components are the circles ¢, and
HG = 9;10:17{11-

We would like a concrete realisation of Hg. Unfortunately a rigorous description would
require distributional wavefunctions and we wish to avoid any more technicalities. We can
give a heuristic argument to support the idea that He is the space of square summable

sequences denoted /2. Suppose we were to quantise our system in the polarisation

0

H=8—H.O'.

The Bohr Sommerfeld variety of H is M since the integral surfaces of H are given by

g = kp. We therefore have the usual representation of Hy; as functions ¢ such that

f02"|¢(9) 2 df < oo.

From standard harmonic analysis we know that we can write

¢(0) = Z an exp(ind)

where
2m
Qn = / ¢(8) exp(—ind)do
0
and
xR
Z | an 2< 0.
0
If we make the identification
He =12

then the above represent a sort of discrete version of the pairing map V' between Hg and

Ha (which we would expect to be a Fourier transform if there were no B.W.S condition)

i.e. ViHg — Hy where
Vl¢={an} and V{an} =) anexp(inb).

Hence the identification Heg = [2. We must now identify C*°(M, ©,1). Naively we might
expect that C°(M,©,1) would consist of functions of the form ((Hy)8 + n(Hy) but 8
is not a continuous function so in fact a classical observable is in C*°(M,©, 1) iff it is
of the form n(Hp). How should we quantise these classical observables? Recall that the

cn are level sets of Hyp, in fact on ¢, we have Hy = nfi. Since Heg is really the spectral
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representation space of Hoy we expect Hp to act as a multiplication operator on I2. The

obvious candidate for Hy is
I:Io{an} = {nhan}

so that Hy has a pure point spectrum consisting of the numbers nf. Obviously

n{Ho){an} = {n(nk)an}.

Suppose that n(Hp) = Hp in some disc D around the origin containing the connected
components ¢, 1 < n < m, of the Bohr Sommerfeld variety of © and is merely some
arbitrary smooth function of Hy on M — D. Clearly the values a,, 1 < n < m, are in the
spectrum of n(ﬁo) and will be unaffected by arbitrary alterations of n on M — D. This
stability of the spectrum of Hy under localized and potentially remote perturbations of
Hj is disconcerting since quantum mechanics is well known to be non-local [25] . It is easy
to see that this situation will occur quite generally when the Bohr Sommerfeld variety of
the polarisation with respect to which we quantise the system is not simply connected.
On the other hand the following example will serve to show that classical observables that
are locally equivalent can give rise to very different quantum observables when quantised

in polarisations with simply connected Bohr Sommerfeld varieties.

Example

Suppose H; is given by
1
Hy = 5(6* + (z))
where €(z) is a smooth function equal to z? for | = | less than or equal to some positive
number a and decreases monotonically to zero for |z|€ [a, b], remaining zero Vz such that

|z|> b. Clearly we have Hy = Hj for |z|< a. Using the B.K.S method we can quantise Hp

and H) in the vertical polarisation to obtain the following formal differential operators
N 1 5
Hy = —2—(132 +2%) and Hy = (5 + ¢(z)).

When acting on their respective natural domains these formal differential expressions
define two self-adjoint operators in the Hilbert space L?(R). The classical observable H;
is identical to Hp for |z|< a but Hy and H are very different. Hy has a purely discrete
spectrum whereas, because ¢ is bounded, positive and of compact support, the spectrum
of H; has no discrete part (page 119 and 226 [26]).

We could quantise H; and Hp with respect to the polarisation ©. In both cases the

Bohr Sommerfeld variety of © will contain, as connected components, the circles ¢, where
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n now labels just those integral surfaces of © in the region R € M such that |p|< a, |z|< a.
Hy and H, both have the values nfi in their point spectra. This will be the case regardless
of the form of € outside R.

This example shows that quantisation with respect to a polarisation with a simply
connected Bohr Sommerfeld variety reflects quantum nonlocality whereas the remarks
in the previous section indicate that quantisation in a polarisation with a non simply
connected Bohr Sommerfeld variety is essentially local. The problem arises because in
quantising with respect to a polarisation with a non simply connected Bohr Sommerfeld
variety only the nature of the classical observable on the isolated connected components
contributes; the global properties of the observable are largely irrelevant. Contrariwise
conventional geometric quantisation is more holistic; the requirement that the classical

observable f generate a complete Hamiltonian vector field probes the nature of f on all

of phase space.
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1.5 Appendices

Appendix 1: Group Representations

Geometric quantisation is quite adept at providing operator representations of certain
groups. It turns out that the half density scheme is not sophisticated enough to generate
proper representations. In general it leads only to projective representations. The half
form scheme on the other hand does give proper representations. We shall illustrate this
with a discussion of the representations of the group of all linear canonical transformations

i.e. p: V — V such that
w(p(X), p(Y)) = w(X,Y)

(pages 2 and 172 [2]). It possible to regard V as a flat Kahler manifold with canonical

coordinates p,q. The tangent space at each point of this manifold can also be identified

with V. A vector in V can then be written as

a )
X = 2:15-13 + .’1225—(;.
It can be shown that
F E
I =5 =Dog==(’ (1.69)

(F', D and E constants) generates the linear canonical transformations. For example take
f = F/2p? then

0
The integral curves are solutions of
dp dg _
i 0 and i Fp

so this observable generates the following 1 parameter group of diffeomorphisms
p—p, q— Fpt

which can also be written as

F F
p—+p+t{5p2,p} and q-—*q+t{5p2,q}-

Let
15} a
1 2
X :z:—-—ap—}-z———aq
0 5 0
Y=y'— +y* =
Voo Y op




then
0
w(X,Y)=:v1——p+a: _|y +y ——-J(dp@dq dg ® dp)

0
- 2_ 17 .2
o any dq —y*dp
= 2%yt — y2l,
Using the usual expression for the push forward of a vector field we have

W(pX),p(0) =55+ @ Pt A T 2 (0 Fe ) L (4p @ d g © )

=gz 29% + (z Ft + a:2) Jyldq (y*Ft +y%)dp
= —z'(y' Pt + yz) + (z' Ft + 2?)y?
= g2yl — 42!

as required. We cannot quantise functions like f directly but it turns out that if we work

in the half density scheme and use the B.K.S method then we must put

" 92 7]
= 2 S
f— 22+ h K82+TzUzaz (1.70)
where
" %(E + F - 2D)
and

1 ;
U=5(F-E). .,

We can show that this gives a projective representation of the symplectic group algebra.
‘We have

—~~
“h;
S

£t 1 2/‘9 /a 2 2a¢ a¢ /
-ffe= (k'z +hk82+ﬁU8)< 2+ Wkos + WUz ) Ff

w.2(lg 2, .0, 0% 9\ Lo, (2¢ ) 2, 0’ 32¢ ¢
Rz (4kz¢+hka2+hUa o So229) + ik g+ (5G4 5

/ 2 ¢ 2 634’ 82¢ 3¢ 3
+hUz(4( 2¢)+ﬁk5—-+ﬁU(62+az>)—ff
B (B 282

2 (K 20% 0 , 3¢ 26443 P 9% %
hk( ( _82+2 B +2z——+2¢ +hk—+hU 33+0~. +5.;2.
2 -~ A
+hU'z (4(26¢+2 d>)+7i2 gafwzu( g‘f+g¢>)—ff’
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W2 (T g, . .9, 0% 2¢
—T(quﬂ-h 62+hU a

2
7f+4z%‘§+2¢) + h? gi"imv( asf+2gi‘f)]

8

a

20 00 0%  0¢
( 5 +2z¢)+h2 aaww((92 a))

=
0*¢

R

K 22 k
= -4—n2k + h%'zzz + R RU2 + hU’thz)

I
(TRU +h2k’ 4z+ hU' 2 %z +h.U’th> g¢

! ~
(R2k'RU 2 + hU’zh%)ZS n%’nzkgz‘f (k 2 'Z 2+ r%”iz + AU z—~2z) i
¢

o~ 3 4
_2hUka EP

4 0z

E3_7 f"_3"‘l 2!)3_45 317 312%?
(35U + 32FU + 82200 ) 52 + (KU + 102 o

R4 kg:f + ——kk’} =

Clearly ff' can be obtained by interchanging primes in the preceeding factors. The terms
in the curly brackets all have coefficients that are symmetric under this operation and so

vanish. Hence the above becomes

k

d%¢ T o= 0P k
3r71d _ oR3 71! 21T B2 25/ !
23Uk 2ﬁkU)——az2+(hkkz WK z) 5= + | WK 5 + WU 52

T 2
2 n%% ” w?%) é

= 2h3 (UK — IcU’) + h2 (k% — lcﬁ)gq5 ( (K'E — k&) + — z2(U’k Uk’)) ¢. (1.71)

Now
{%F’p2 ~ D'pg — %E’cﬁ %on2 — Dpq — équ}
= (F'p— D'q)(—Dp — Eq) — (-D'p— E'q)(Fp — Dq)
= —F'Dp?® — F'Epq+ D'Dqp + D'Eq* — (—D'Fp* + D' Dpq — E'Fqp + E'Dg?)
= (D'F — F'D)p* + (E'F — F'E)qp+ (D'E — E'D)q*
2 f;.pﬂ — Dpq — ‘:;-q? (1.72)

Quantising this operator according to ( 1.70) we obtain as the coefficient of ¢’

Mz = %z(]’— £)
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AT

e

2[2(D'F - F'D) + 2(D'E - E'D))]

n| St

= hz(D'F — F'D + D'E — E'D). (1.73)

According to ( 1.71) the coefficient of ¢ is given by

2hA(K'E — kK)

1
= zh2 [%(E’ + P = 2iD) 3 (E+ F + 2D) - %(E s 22'13)-;-(13' o 2»;17)]

2
= %(E’E + E'F+2DE + F'E+ F'F +2iF'D —2%D'E - 2iD'F 4+ AD' D—
EE'—EF' - 2iD'E — FE' — FF' = 2iD'F + 2iDE’ + 2iDF’' — 4D'D)

2

= %(MDE' +4iF'D — 4iD'E — 4iD'F) E

= zh*(DE' + F'D — D'E - D'F)
and this is equal to —ifix( 1.73). Also we see that ( 1.71) gives the coefficient of ¢” as

MUK — kU')

= 283 [%(F - E)%(E’ +F —2iD) — %(F’ f E’)%(E o s 210)}

3

= Z;—(FE'-*—FF'-—Z'L'FD’—EE'—EF'-1—21‘ED'—F’E—F'F+2z‘F’D+E'E’+E'F— 2iE' D)
= h((FE' - F'E) +i{(ED' - FD' + F'D — E'D)]. (1.74)

When you quantise ( 1.72) on the other hand you get

N ;
WK = o-(€ + F - 2iD)

2
= %'[‘2(D'E — E'D) +2(D'F — F'D) + 2i(E'F - F'E))
=h[-D'E+ E'D+ D'F — F'D+i(E'F — F'E)].

Multiply this by —i% and it becomes the same as ( 1.74). According to ( 1.71) the coefficient
of ¢ is

B s R g s
37 Uk~ UF) + = (KF - kF)

2
2 [é(ﬁ“ ~ B)3(E ~ F+%D) - o(F - E)z(E'+F + 2w')] + LW - k)

2
= fb;—[F’E+F’F+2iF’D—E’E—E’F——2z‘E’D—(FE’+FF’+2iFD’—EE’—EF’—Zz‘ED’)]—:-

B e s
3(K’K—KK’)

70




2
= Eg—[zF'E +2iF'D —2E'F — 2iE'D - 2iFD +%ED] + %(K"I? ~ KK
= n—:—[(F’E ~E'F)+i(F'D-E'D—-FD' + ED')] + g(K’F - KK,

On the other hand quantisation of ( 1.72) gives as the coefficient of ¢

1

K4 = --(5 + F +2iD)

1
= f4—§[ ~2(D'E - E'D) + 2(D'F — F'D) — 2%(E'F — F'E)]

= %[—D'E +E'D+D'F—FD-i(E'F - FE))
Multiply this by —¢h and it becomes

h F'E-EF)+i(D'E-ED-DF+FD).
All this goes to show that we have

ey . R e "
[f, 1= 5 (KR - KK) = —in{f, £

or

ilf, 1= a7 + 2 (K'K KT (1.75)

and since the last term in the above is clearly real we see by 12.82 page 475 [30] that we
have obtained a projective representation of the algebra of the symplectic group.
Now it turns out that if we work with the half form scheme and apply the B.K.S

method then we are compelled to quantise the classical observable f ( 1.69) as

3 K 02 O o  h
f=77+VKgg + Wap+3U
. B
= f+3U.

With this new quantisation scheme we have

5 2 7 9? ' R K o o , h 2
N = [ 2 2 gt / et 5 44 e, 2 i e /]
£, 71 (4z +RK o + Uz e +2U)(4z + R K o + AUz + 5 ) ff

7
[f,f]+5~z"’ﬁU¢+h2K’n ‘;¢+nU' nUZ¢+U’ L5 2¢~+U’ 21{‘3?
U’ hU g—¢ +U’-——U¢—~symmetric terms
: 2 h® % o
e 7 Sl bty 7 t 177
—[f,f}+ an¢+ s Ky + ,UUB +8UK.,
UI 62¢ a¢ ﬁ2

Tt U’ U ek —U’U<j> — symmetric terms.
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In fact the extra terms are symmetric under interchange of primes so
[fi f1=[f, 1.
Applying the new quantisation rule to ( 1.72)
L h
[ £ = (£, 5]+ U
I
= [fsf]"‘Z(F"S)
- I3
={/,f1+5(D'F-F'D+D'E~E'D)
- h(K'K—- KK
=115 (——W)
" o —
=[f, f1+ 5i(K'K - KK')
so
3 . h,2 -y e
hlf, £ = S P + i KR - KR)
= 7'[]? ) f ’]
= "'[f ) f I]
where we have used ( 1.75). This shows that the half form scheme leads to a proper i.e.
non projective representation of the symplectic group algebra.

We now investigate the effect of changing connection potential. The half density quan-
tisation scheme is well known to predict incorrect values for the spectrum of the Hamil-
tonian of the simple harmonic oscillator. The half form scheme gives the correct values
and this was taken to indicate its superiority over the half density scheme. However Wan
has shown that a modification of the half density scheme ensures that it also gives the
correct spectrum, all that is required is to employ a different connection potential. In fact

the same method can be used to ensure that the half density scheme gives a proper i.e.

non projective representation of the symplectic group algebra. Suppose we change the

connection potential ( 1.14) to

—%’fdz + f(z)dz.

This is clearly admissible since taking the exterior derivative of the above gives the symm-

plectic form. We now have

Vixso = —%(X s %‘zdz + f(z)dz)s0.
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What effect will this have on the form for operators? Well

ép = (—ihVx,s + cs).v — ihs.Lx, v.
The Lie derivative of the half density v still vanishes so
ep = (—thVx,s +cs).v
= (—ihV x,(¢so) + csg).v

= (—ihXc(¢)so — thdV x, s0 + cpso).v.
Now remembering that ¢ is holomorphic (independent of Z) and using ( 1.16) this becomes
ap= ((-z'n)(zi)(A+Bz)g—fso— in ——%)(21‘(A+Bz)) (-%"Z+f(z))sg+(A7z‘+zz+BzE+D)¢so)u
= [2h(A + Bz)%%so — ¢2i(A + Bz) ( f(z) - %) so+ (AZ+ Az + B2z + D)q’)so] v
- (Zh(A +B2) 28 4 §(@z + D) ~ 2i(A + B2) if-) P

Oz

As a check we can see that if f(2) = 0 we obtain ( 1.18). If we are to recover from this
modification of the half density scheme the irreducible representation we obtained using

half forms we need only choose f such that

: of _
—22(.4 + Bz)-é; = Bh
i.e.
e In(A + Bz)
% :

It appears that the use of half forms is inessential in obtaining non projective group

representations.

Appendix 2.a

Consider

© 2zt
T —— 3 ‘
/(; T~ 1 exp (ﬁ(k-——l))dw (1.76)

Let u=2"T° then z~fdx = iz du. Now suppose k > [ then

g P
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so ( 1.76) becomes

-z e ()l
=~z = (s p)]

Since ﬁ(%—'ﬁ > 0 the integral diverges. Suppose k < | then

Lii

z=0=>u=0
so that ( 1.76) becomes
s 2l h 2l 2
[ e ()= A e (g
Since mf—‘__n < 0 integral converges. :
Appendix 2.b

Consider s p
Loo ]x|"’f exp (2“—;:1(:11:?1;) dz. Y

Put u = —z so above becomes

0 . ul—t
=5 S 3 P e
fmu exp( h(k—l))du

__ifes -k 2lu1'"? d
—A u” T exp ——————h(z_k) .

This is almost the same integral as we considered in Appendix 2.a. By symmetry we

L By paa e et s s g TR o R e n o d B

deduce that integral converges for & > | and diverges for k < L.

Appendix 3: Derivation of 1.48

Since 8§ = pdq and
9990 9998
97 9pdg 9q0p
we have

)
6] X, = é-fgp.
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‘We consider only observables of the form

9=7#(q)

f(g) > 0. In this case #| X, = g and since g is invarient under ¢4 ° it is constant as far as

the integration in ( 1.47) is concerned so that

g =) fim () [ dpexp | 202 f(a)e] etwlXe s X0 (L7)

Now using a Taylor series expansion we have
t ( 1) (n)4n
¢gq “p Z n T ™.
n=0
The differential equations describing the integral curves of the Hamiltonian vector field of

g are

= =f(0) sd L =) (178)

By repeated use of these equations it is easy to show that we can always write

¢™ = Bu(g)p" (1.79)
for some £n(g). Therefore
co __1 n
o= L - elare (1.80)
n=

Now
¢;Xq = X¢§q'

The Hamiltonian vector fields of functions ¢ and ¢_f,q are easily calculated using the stan-

dard formula and ( 1.80) so that
st 2 & (1)" nn) 9 _ 0 (1)" nn) 9
w(Xq1X¢§q) = w( p’ dp (; Bn(q)p ) q aq (Z B (q)p"t ) ap>

o} " 0 i
~o (£ (S5 ) & - 2 (S L) )

n=0

which we can write as
(___3_ A 3_13__3_)
. Op'"8q O8q Ip
with the obvious definitions of A and B. By definition this is

9 9 d

(dp® dg — dq ® dp)] — gp'JAga =R
a 1o}
—quAa—q '—B'é';
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Notice that A can also be written as
1)* .
> e,

Substituting this in ( 1.77) and putting u = tp ({4] eq 7.24 page 118) we obtain

i _gg ik /d_tu_ - [zf(q ][Z L 1)n!ﬁn(q)p _1tn] (g (—nl!)nﬁnun>

= g [ 5 eee [11007] 55 s aamtee) o),

Now writing p"~1t"~1 = (pt)*~! = 4"~ and taking out the factor of ¢ from the second

square bracket (which will aquire a factor of 1/2) we obtain

(ih)(ih)~ ihm—/dut‘i exp[ i 1) 2 } [Z (( 1):), (Q)u "‘qup(B)

= (th)(ih)~ hm /(—t"" exp[ i () ]) [Z T 1)lﬁn(q) ”‘"1] l P(B)du. (1.81)

We have
OO O SR O
Tl s i |® “hRan R t )
Put s = u and a = f(q)/h and ( 1.81) becomes

2 o] _1\n % X 1y\n
—(Eh)(Zh)~ 211m/duﬂq_dd2t exp[ g) {21: (Ez—l)l)!ﬂ"(q)u _1] 1/1(20:( ) ﬁnu").

Now using

2 L
S my2 ir
il TN PO (B0 )
thrg 7 exp (za, - ) (a) e~ 1 6(s)

this becomes

2 T 1 i e -
—(3h)(ih) __/dutlzf(q ;;2 ((—@-) e 6(u)) [; (( _)1)',3n(q)u" ] W(B)

. a2
= (iR)(ih)~? / du—— f(q) = ((

=~ (0 s ;”’?; 4 [aus'(w) [Z (n_l),ﬂn(q)un 1} w(B)

(zh)(zﬁ27r)"'h(7rh,) (ez -3

- " - n—1 %'t

RETh
TR




ini~dn-do-drdnaindicd & '
- : dub 1 e -1
oo SeTper] wa

_ W " (—1)» . 3
N i\/—2-4f%/ A [Z(n moiPn(au l] $(B)

(Zh)2 " 0 ( i 1
Af (zf 12 )f i [; (n— 1)'ﬁ"(‘”“ ] ¥(B)

(m / dud” (u )[ 1)"ﬁn(q)u" l] W(B)

i(-1)f2
(Zh) /5"( ) [ ]:-)-nl)l ﬁ;(fQ)un—l] 1/)(B)du

‘We can write this as

(in)? d26(u)
7t | [D‘“” ]

ih)2 d2
ifﬁgl) d(i?[ ¢(B)] |u=0

_ (R)? d ¢ _dy(B)
4f(‘1) du (D du * —Y/)(B)) lu=0

_ (0?2 ([ d(B) _,dDdy(B) 4D
"~ 4f(q) (D du? 2% =N "p(B)) lu=0

“ir0 \"wm\Gm)  nmm Tt war®
14\ 2 2 2
_ (i) (D (dB ddp d Bd¢) 94D dB LN d?D )lu—()

@udids  @adn) T maman T aa v

_ @m)? [ /dB\? d?yp @B  ,dDdB) dy , &*D
4f(‘1) (D (E?I) E—B—i i (D du2 +2—= du du) d 2 "l’( )) lu=0~ (1.82)

Now
2. (=1)" X (1)
BmiF nl) B = B +Z(nn) Bru”
0 et !
S0
dB (-1 3
du 2 ( nz) nfnu”. (1.83)
n=1
Therefore
dB
= lu=0 = =01
and
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Also we can easily see that

B \2
D lysps [ e 1,
huso (2f(q))
Therefore

D (L) P =1 (52) vt

2f(q)
(since B(0) = fo = q)

- (3

_ 2/Bi58}
(2f)%

Now

= (‘“1)"-1911_(‘1_) n—1
;( n—1)! 2f(q) "

o (=)™ Ba(a) .
=302 oDl afi "

dD 24(q) Br(a)
T o= (2 ) (D

Now from ( 1.83)
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Combining these results we see that

2
(Dd B dDdB

W+2EE>I“=O=(_2_?(%)'> B2 +2 ( )(f()

B

- (e o (52 B
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Ty’

Ba(q)
2f(q)

)




(B \? 3
_(2f(Q)) bty (2f(q))
_op (B
=26, <2f(q)) '
Now 2
D d e -1l 8, i
=50 Ftne )
1y d ( i1 1/Bn(tz) - (=1 Ba(q) o —odD
=3P 26(2 [CERVEHON 2) (Z - 2flg) " D 2)( N0 E
1 il ( —1)"1 Ba(q) - (=1)" Ba(q) i _qdD
=5 &Z(a (n—-l)!2f()(n bs 2) (Z 1)12f()( = 2)( DD~ du
_ (=1)"1 Ba(q) o _2dD < (=1)""! fa(q) b
—”Dl( -1 2f(g) "~ Dln =B 3) E Z(n 7 27 "
so that
@D _1(2f(@\} (12 B@), 1 (2£@) (_1) (2£@\? Bala) ((_;\B(0)
=3 (52) 2f(a) 2( B ol s ( 1)2f(cJ)>
16 faf@N*_ 1t _@2__ 2f(q)
4f(q)( 16 f ( )
_ B3 (B s A B2 (B -3
T af (Zf) 16f2<q)< ) '
Because
B\ o =w(a)

e.t.c we see that ( 1.82) becomes
@n)?

= (o (8) o am (2) o [2(2) 7 -5 (8) 7))

It is easy to show from ( 1.79) and ( 1.78) that 8; = 2f, B2 = 2f'f and B3 = 4f" 2.
Substituting this in the above gives ( 1.48).

ﬁz
1652

Appendix 4: Quantisation of gp? Using Modified Pairing Construction

We can quantise gp? by working in a new polarisation and transforming back to the vertical
polarisation using a modified pairing construction. We seek a canononically conjugate

coordinate system of the form

q =¢(q)p* and p' = g(p,q).
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By Cartans criterion p' and ¢’ are canonical coordinates iff
pdg — p'dd (1.84)

is exact, Well

d(pdq — p'dq’) = dp A dq — dp’ A dq’

oy 4 oq' oq’
=dpAdg— | = R
D A dg (apdp-l- aqdq) A (6 dp+ —— 3q dq)
_ op' ; O¢ o
=dpAdg (ap dp + Bq dq) A (2e(q)pdp + -a—p dq)
=dpAdqg— C';p ng dp Adg — ?——2e(q)pdq A dp
so (1.84) is exact if
op'
SR R = g 2ap = (1.85)
Suppose we consider the special case {(g) = g i.e. the classical observable qp?, then ( 1.85)
becomes
op oy
2 —
1 3 + 2pq Bq 0.

We can get a particular solution for this if we assume that p’ is independent of g since in

that case the above becomes

for which p’ = —p~! is a solution. We therefore have new canonical coordinates

=gqp® and p = —=

The generating function f for this transformation is

f=2qth
i.e.
AT ,__Of
p= 3q and p o

Since

52 f . q/“} q—%

0qdq 2
we see that the pairing between the polarisations P’ and P is

q- q 4
() = —=— / #(d) explizg’ q 1—75——dq

with the corresponding expression for the inverse. Unfortunately in this case the pairing

construction does not lead to a unitary map. However there exists a natural amendment
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to the pairing construction that does give a unitary map. Suppose we add to the kernal

of the integral operator its complex conjugate. The new map is

(V=1¢)(a) = ¢(q) = \/—%n /0 “ a(¢)q~t¢  sin (%q’% q%) dq’
and
(V) () = 2(¢) = % /0 ” pla)a 1 sin (%q”"q%) dq.
There does not appear to be any compelling geometric justification for this ansatz but it
does lead to sensible results as we shall see. In the polarisation P’ we quantise ¢’ = gp? as
the multiplication operator on L?(0,c0). We cannot quantise gp? directly in the vertical
polarisation but we can infer its quantisation from the modified pairing. It is easy to see

that the operator so obtained is formally equivalent to that obtained by Bao and Zhu.
Proof:

d? d d - 2 1
2 S / 2 ’ T 4 LN,
V—n(d—q2+dq mq)v%p V- n(d2 - mq)\/— #(@)a ke Hsin( 5 ot Jig

h2 ,z d2 d 1 I% 1
=v(~7m) [ #1o (v 3z~ 1) 4o (et
B B2 o0 . . ) ; N T 2 41 1_§, 2 51
_V(-———;ﬁ) 4 #d)q (quE [q t2q"z0 2008(?1 qz) L Sm<gq qz)]

et getes (3 *)-“ ('* e )'
+[q i34 59 Fcos(2q ¢ 77 54 4 642 ‘Sm(2q 7)) dg

— v / %([__ 3 -3 (2 /% 1)3 > S
V(——,——Wﬁ)/qﬁ (¢)q 79 9 4sin|+d"q? ) 24" 5477
1 s ¥ .l_) ,&1 -1 _1_(__§) B (
Zq 4cos(hq 2 h2 2 3 1 q 4sin
T Bl 2;%1_}_-;.(3#55)) '
19 4sm(nq q? 16q 1 sin hq q? | ) dq

h? TR | q,q_% ¥ 1 3 4 =z 2 41
—-V(——\/';—E)/O #'(d)d “q}- > sm(ﬁq qz) 79 9 4008(;{'1 qz)*

-7 4 I g o T2 4 §)} 1,3 3 (?_ 4 l)_
4hq iq cos(hq q2>+16q 4sm(ﬁq q +hq g 1cos hq q2
1 2 3
—~g~ % sin (rq'%q%) —1g? *sin (ﬁ-q',"q%)) dq'

O P PCL VT S T

YR WD




-3 s _,,}%
=V(——§———\/_:_)/ ¢’(q’)q’* _q lqsmh(fq Q) i

= V—— / ()¢ gt sin (%q’é q%) dq'
\/—f (‘/——/ ¢(q’)q q 481n(hq&q%>dq’> ~i¢" *sin 2(1"*«1%) dq

= -7;1};‘/0&]; ¢'(d )‘1’ii ¢ 3" "t gin ( ) ( (%;:1-)%> dq'dg.

Now put
2
q=h% O dq=\/ﬁ(ﬁ'—;-> du
then the above becomes
3 1
4 2N T "2 %
wﬁ/ f ( )( ) (%—‘—) :( L) sin uu) sin(u"u) V2R ( ) V2h (hu )dudu

L) (2) () o

oo o] 2
=% 0 0 ¢ (h; ) Ay %sm(u'u) sin(u"w)dudy’
s E o / ' R ’ mu'u 3 a5 T U 3 ’
—W‘[) /0 ¢ (-—2—)1:. U J%(uu)( 5 ) Ty (u"u)( )2dudu
/ / ( >u uJy (' u)Jy (" u)dudu’ (1.86)

Now from 16 and 17 of [81] page 6 we have

fla) = /ooo ® (/ooo a'?(a’).],,(a'a:)da') Jy(az)dz

so that ( 1.86) becomes
B, i
il ( 2

= %%q'ﬂ(d)
=q'¢'(¢).

In fact it is easier to obtain this result by noticing that the modified pairing map is
simply a Hankel transform which is well known to be the spectral transform of the Bessel
operator ( 1.49). Notice that this method yields a well defined self-adjoint operator whereas
the B.K.S scheme gives only a formal diﬂ’eréntial expression that on its natural domain

is not essentially self-adjoint. Notice also that the operator is positive so its spectrum

matches the domain of the classical observable.
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Appendix 5: Derivation of 1.55

Splitting up the integral ( 1.54) we obtain

h~ / 2h—— Bf d('b Bi’ ) xp( ;;>ex )dpdq—i—h" / (f +h ;gz)d’ exp( 5 h)exp( 5 h)dpdq

Since

1
dpdq = (—2—2) dzdz

this can be written as

g{fg p( 2n) (2n)dd— o f¢ p(“iﬁ) (2n)d"d—+

& f( f)"’ (- 2n>exp(;n)dpdq

Integrating the first term by parts with respect to z this becomes

o forgs (o (- 55) ) derm (55 ) dsa="5r 5L g (<55 e (55) deazt
W (f . n%) pexp (-%) exp (5 ) dpdg
=5 (3 (o) o= () oo () ) ¢ (57 -
[P g e (-2 exo (55) deasin™[ (f s "‘ggz) osexe (~33) o0 (35) dria
=7 [z seme (~57) oo (35 dpia—20 g Eovece (55 ) o (3) o

hf d)exp( )exp< )dpdcﬁh‘/<f+ ggz)gsbexp( §r>e><p(2n)dpdq

The first and the third terms cancel and the second and the fourth terms combine to give
1.55.

Appendix 6: Derivation of 1.57

Z 2
=1 v (552 (1 -125) -

1
58 Y2 Ty 8 2
e 4 (2ﬂ_) /gb(t)exp( 4( 2%+ ditz + 2t )) dit

where v = 1/h. Using ( 1.56) we obtain

U(f(U¢)(w) = e% (217-‘:) %/dwl exp (—-%(w% +wd — Ziwlwz)) 5t
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/dz;sz exp<-z;(.°il_'*'é.;:."2___z.) (f(z,?) - h;:;g)e "4':‘( ) f¢ t)exp(——(—z +4ztz+2t2)>i ;

(1.87) \

Now ‘

o f _1(_‘9__~i)l(_‘9_+-_?_

8255~ 3\Bz  ‘9z) 3 \Bm “az2) s
_l(i_,_)(af 3f)

T 4\ 8z 9z ) \ 0% 622

LB B B P i

= 4 3 2 3Z1522 322321 3222

8f 82

(321 +5;;3)

so

" 2 e 008

f(z,2) - aza—‘“f(zaz) "Z(AZJ. + Az)f. g

With this ( 1.87) becomes

(%) -1 /dw1 dzy [dzo [ dt [f(z,'z‘) - 7:%(A,,1 + Az2)f] exp (~-}(w§ + wj — 2iw1w2)>

exp (2;(2{_1_‘_*‘52%2’_‘_1)_) exp (—%(_22 +ditz + 2t2)) #(e)

Y i -~ _h 4 ¥, Yws
5 ('ﬁ) h™" [dw [dz; [dzp [ dt {f(z, z) = 7(Ba + Azz)f] exp (—ZWf + 7 2iwawy — Tz)

exp (z;;z 2h(z'w2 -~ z)) exp (—%(-—22 + 4ditz + 2t2)) o(t)
- (—-) B / din e, Tz [ [f(z, 2) — %(A;l +AL,) f]

- (—%wl + L2t + 2‘;) exp (—}w% + o7 (g — 2) = (22 + ditz + 2t2)) $(0).

Completing the square in the argument of the first exponential this becomes

(%) R~ [dwy [dz [dzs [ dt [f(z,'z') - Z—(Azl + An).f}

exp[-% ((wl-—- (iwg + %))i(zw2+-%> 2)}exp<—%w2+ — (wgi ~ z)— —(-—z + ditz + 2t2)>¢(t)

= ( )h,_ fdwl dz [dzy dt[ (2,2) — —(Az, +Azz)f]

B Bk

S A SR8l 2 aici ARV

- 2 .
o= (s Z) o Lo 2t - 1 Zos it 420042 (s )
exp[ 4(w1 (W2+’Yﬁ)> ]exp[ 4w2+2h(wzz z) 4( z°+ditz + 2t )-}-—4 (W2+7ﬁ }i)(t).

(1.88)
Now if we put

W =w; — (iw2+;—h>

34

St e




then

using ( 1.98). Therefore ( 1.88) becomes

(%) ( ) /dzlfdn/dt [f(z Z) — —(Azl +Az2)f]

exp [_%% + o (Wi —2) ~ %(—22 + 4itz + 2t%) + % (uuz + ) ] o).  (1.89)

Now the argument in the exponential is

R1 — 12 P i . ,
—-Z-w% + . 7 2 (wai — 21 — i29) — Z-(—(Zl -+ 222)2 + 4Zt(21 +i29) + 2t2)+
1 2
% (iwg - %(zl - ’iZg))
. (A 2 — 1% 2 Ml 15 Y S . _Doy2
= —% -+ T (woi — 21 —i29) + 4(2:1 + 129) 441,t(z1 + izg) 42t +

<y 2 2‘2 " 1 y 92
1 (—w2 + :Y—ﬁw2(zl —izg) + —2—n§-(z1 —129)

w
= —1—2-+—(zw2z1—zf 'zzlzg+zzw2+zzlzz—-z2)+ (zl +2i2) 29— 23) — 'yt(zzl—zz)—z2t2

-} (-«w% -+ 7—73(1‘2:1 + 22) + -’72171-2-@% — 22129 — z%)) -

In the first bracket the terms involving i2z; 22 cancel and we are left with

2 2 2
Wi o wey z1 Zowy z2 zfyzlzz vz25 . DY
P fos ) A = il fal it SO o TR ¢ —~ 19

7 + 12— oh  oh + 5 oA + 4 5 i 1y21t 4 ytze 1 e+

¥ (-—wz i 12woz1  2wozn z% 122129 zg )

X - -~ 1.90
PToan T qh T %7 T 7R st

4

The imaginary part of this expression is

wa21 ’Yz1Z2 t+ wez2y n 2122
2k 2 A2  2vh?
w21

- i o
= 5 'yzlt + (2 W) Z129

Remembering that v = 1/% we see that the last term vanishes and the above becomes
z—f;'-(wg —t).
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The real part of ( 1.90) is

_q«u% 21 T z2 423 2% 'yzg G 2t _ Yw§ | 2ywezy  y2d _ Y22
4 2 2n 2/ 4 4 4 4 dvh 4v2h%  4y2R?
2 2 2 o3 2
t
__wi_A4 Z2w2_2+___£z_+t22____+wm+_ %
4k 2h ' 2R 2k ' 4h 4h 2h 4h 2R R4 4R

The 1st, 9th. 2nd, 5th and 11th. 3rd and 10th. 4th, 6th and 12th combine and this

expression reduces to

2 2
LWy zwr oz 1T iz
2h+ A h o h

2n " wmTR o

= ——[w2 — 2wezy + z2 + 12 — 2tzp + 22]
= ——[(W2 - 2)* + (t — 22)%)
so we see that ( 1.89) can be written as
4r\3 A
= (-22;;) (—-’7> Rt /dz1d22dt l:f(ZIZz) - Z(Azl - A,Q)f] exp [ —21(wg — t)]

oxp [~ g5 (= 22)* + (= 2))] 6

Put A = 27h and wy = q and we obtain ( 1.57).

Appendix 7: Derivation of 1.58

The observable we wish to quantise is of the form f(r,s) = g(s)r®. Substituting this in

( 1.57) we obtain

2(7rﬁ,)§

2(m [/]exp(@r(Q—t))ex ((t—s) (_s)z)) <g(3 _EASQ) () drdsdt—

2(7rln)% = // exp(ir(q — t)) exp(—%((t -5+ (g - 3)2)) g(s)é(t)drdsdt.  (1.91)

The first term can be written as

B '”2?}5‘5// 1 2 explir(a-0) oxp (~ g5 (¢ = 7 + (1= 919 (9(6) ~ 29 p0rarasct

= —-Q-i%gﬂ -5;3 exp(s(q—t)) exp(—zin(t - 3)2) exp(%(q - 3)2) (g(s) - %Asg) &(t)drdsdt

= ///exp(w(q ) exp(~ 55 (= 57 [ 9(8)- 3809 ) 7z L [exp(— 5 — 5)?)0(6) ardsat

2(7rh)
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- :: 3 [[fetirta=tnexn(~550- ) (ste) - fau0)

& [exp (5 (6= )52 4 (1) & exp(~-(t ~ )?)]drdsa

= 2(7rh) ///exp ir(g — t)) exp (—-%(q s) ) (g(S) - ZASQ>

[exp(—gﬁ(t ~ 9P )20(0) + 2.5 (ot~ 9722 4+ 90 5 exp - 0 s)2)]drdsdt.
(1.92)

If we let
z=r/h (1.93)

then the second term in the above becomes

sl [ estista= s (~5ta- ) (o0~ )

2% exp( —(t 3)2) d¢dzdsdt

= (h:j f/é(q t) exp(-——-lf—t(q — 3)2) (g(s) - EA_5;g> % exp (-—-i(t ) ) Zd)dsdt

= _(,::-j% fexp (_2_n(q._3) ) (g— —-A g> : exp (—ﬁ(q s) )ds%b

- o o= - e) o - )

Integrate by parts

B (z::% / % [exp (—51-,;(61 - 8)2) (g = %Aag)] exp (—-glg(q - 3)2) ds%

= [ oo (e 9) & (0= ) + (0= B & e (- o7)]

exp (—-2—1;;@ - s)2> ds%

o o? 1 g\ 4 do
= - Py /exp (—5(q —8) ) a;(g - Asg)dsd—q—

(::j Joo (~gra=97) (o000~ 3us) gm0 (3500~ o) as

ot/ = (cx0=7) & (10~ foa) 4t

Now we consider the last term in ( 1.92)

2oy [lfesstirathens(~ 5 a= ) (ote)= 5.0 Yo 5 o~ e - o v,
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Making the substitution ( 1.93) this becomes

= 2:;:;2 /f exp(zz(q—-t))exp(———-(q ~8) )(9(5)——Asg>¢(t) pro) exp( o st —e) )dzdtds

= hg(i(nz?r) //6( —t) exp (—%(‘q - s)2>(g(s) - %Asg> aS(t) 73 & ( 2—17,1(t - 3)2) dtds

o i (1:;)5 /ex (—gﬁ(q = 8)2> (9(8) - %Asg) ¢(q)§—2- exp (—%h(q = 5)2) ds
2

=— (wf;z)% /exp (—%(q - 6)2)(9( ) — EA ) :22 (—Eﬁ(q - s) ) dsé(q).

The first term in ( 1.92) becomes on making the substitution ( 1.93)

-t G e ) (0 ) (19 B
exp (-—-l—(t - s)") a%qb(t)dzdsdt *

(wh) /] 6(g —t)exp (———(q ~ s)’)( (s) - —h-'Asg) exp (_%(t - s)2> d’¢ £ 9 1adt
o o))

In our particular case g = s and this becomes

—Eg)—%—/exp (-—%(q - 3)2) sds%—}?

In its entirety the first term in ( 1.91) i.e. { 1.93) becomes

o (- )t~ o (o)

W s
Firasian e 4o

AR ' Ry

T ST s R AT 4

(wh:)% / PR ( ; AN ) g R (‘51};(‘1 = 3)2) sds¢(q). (1.94)

The last term in ( 1.91) will give

2(wlh)2 Z (?27;) [/ exp(iz(g — t)) exp (—%((t —8)?+ (g —s) )) 9(s)(t)dzdsdt

T 4r h) / / g <ty eXP(——((t - 8)* + (g — 8)%))g(s)¢(t)dsdt

h2 / ( 1 2)
= — exp | ——(g— s)° ) sds
oy R =(a—9) #(q9)
Substituting this and (1.94) in (1.91) we deduce that

o (fonlcho- ) - ) )

88




((7::)% [zt 5)2>§5 ool g - S)Q)Sds) e (4(22)% J(-te S)Q)Sds)d)@

(1.95)
Put
u=8§—gq (1.96)
then the coefficient of ¢” in the first term in the above becomes
2
ex u+ q)du
\/— / p ( ) (u+q)
h2q u2
s exp (—f) du. (1.97)
Now
fexp (——:z: ) dz = +/a. (1.98)
Putting @ = 7wh in ( 1.98) we see that ( 1.97) becomes
h2
=1 k= —~h?q.
vTh

Similarly we can evaluate the coefficient of ¢’ in the second term

2 2
=-( T;L)A /exp (—1—%—) du = —h2.
wh)2

From ( 1.96) obviously we have

which enables us to write the coefficient of ¢’ in the third term as

Vbt o\ e )T UGESR T )

h? u? d 2u u?

7= exp ( ) (u+q)du [(—-ﬁ)exp (——é—ﬁ)] du

A2 u? d [u u?

= ——-—W__h_/exp (_ﬁ> U+ q)— = [h exp ~o du

R2 u? w/ 2u u? u?\ 1
= ———,_rh/exp ( ﬁ) (u+4q) {-ﬁ (—iﬁ> exp( 2h) + exp ( 2h) i du.

Expanding and discarding odd functions (multiples of u and u® to be precise) which will
_ n? u? T ¢
= —ﬁ/exp —E “"’-{2' + ﬁ qd'u,
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2 2
. i 7“1/ ]
= 7.-72./“ exp( h)du+\/7r_h e}.p( h)du

2
= ——q—/u2 exp (——1—1'-) du + —hq—\/wh

Th h Vh
2
= -_\/E_E/uﬂ exp (—%) du + hg. (1.99)
i

Now by differentiating ( 1.98) under the integral sign with respect to a we obtain

3
o gl -
/m exp( am)dx 5

Taking a = 7h gives the integral that appears in ( 1.99) which becomes

The coefficient of the fourth and final term in ( 1.95) is

h2 u?
-4(7rﬁ)% /exp (—-rT) (u + g)du.

Ignoring the odd part of the integrand this becomes

s, (1.101)

We can see from ( 1.100) and ( 1.101) that the third and fourth terms in ( 1.95) will cancel

so that
— d d
2 = e 2 —_— —
qp R (qdq2 + dq>.
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Chapter 2

Forms of Relativistic Quantum

Mechanics

I am continually trying to find out why people find my procedure obscure... I

cannot seriously believe that I ever attain the obscurity that Dirac does.

ARTHUR EDDINGTON

In 1949 Dirac published a paper in which he outlined various ways of combining special
relativity with the Hamiltonian formulation of mechanics [75]. The models he proposed
were referred to as forms. If we let M denote Minkowski spacetime then each form was
associated with a particular slicing or product decomposition of M that is in each form
we write

M=TxQ

where @ is a three dimensional manifold and T is a 1 dimensional parameter space that

defines the notion of time in the form. The hypersurfaces

£ Q

where ¢ is an arbitrary fixed point in T" are called the moments of the form and represent
the spatial universe of the observer at time t. The idea is to develop a description of
the physical world in terms of observables defined on the moments. Dirac considered the
instant form, the point form and the front form.

In the instant form the moments are constant time spacelike hypersurfaces in some
inertial frame. The instant form is associated with the following product decomposition

of spacetime

Tr X Qr
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where T and Q; are covered by the coordinates t and 2*. With respect to the basis natural
to these coordinates the metric has components 7, = (1,—1,-1,-1).

In the point form the moments are the backward light cones of an arbitary observer.
For the particular case of an observer at rest at the origin the coordinates (7,%')! where
r=2%|z| and ¢ =z

are adapted to the point form.

A detailed formulation of classical mechanics in the point form as well as an attempt
at quantisation have been given by Derick [58, 59]. More recently the point form has been
investigated by Mosley and Farina (73, 74]. We believe that neither of these schemes is
entirely satifactory since the quantisation of the classical observables is ad hoc and scant
regard is paid to whether or not the operators are self-adjoint. Also no attempt is made
to ensure that the spectrum of the operators coincides with the range of the classical
observables they purport to represent. It may be that it is impossible to formulate a
completely consistent quantum mechanics on a light cone. We shall see that various
geometric considerations conspire to thwart any attempt to apply geometric quantisation
to the point form.

The front form was considered by Dirac to be mathematically the most interesting.

Here the moments are null planes called light fronts which we shall take to be tangent to

the z2 and z° axes. o

We write the foliation of spacetime corresponding to the front form as

TF X QF.

The coordinates (7,y*) where

r=2"4+2z' and ¢ =2t

I'We shall use Greek letters to denote elements of the index set (0,1,2,3). Latin letters from the first half
of the alphabet, say 7 and j, represent the integers (1,2,3) while those from the latter half of the alphabet,
say s and t denote an element of the set (2,3).
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are adapted to the front form. To see this notice that 7 parametrizes the moments (the
level sets of 7 are the null planes shown above) therefore 7 represents front form time.
Since y' fixes a point on a given moment it can represent front form position. With respect

to the basis natural to the coordinates (7,y') the components of the metric are given by

the matrix g"” where

-1 -1 0 0

0 0 -1 0

8 0 0 -1
Front form field theories are well known [35, 36, 37, 38, 39, 40, 41, 46, 42, 43] but
until now there appears to have been no front form quantum mechanics. We shall see that
geometric quantisation furnishes a front form quantum mechanics in a natural way. The
constraints on the ranges of the classical observables are respected at the quantum level
and the pairing map relates the instant and front forms. We show that Hegerfeldt type

causality violations are absent from front form quantum mechanics [76]. This work also

appears in [80] and [93].

2.1 The Instant and Front Forms in 2-Dimensional Space-

time

2.1.1 Front Form Classical Mechanics of a Free Scalar Particle in 1+1
Spacetime

We may use the front form time 7 to parametrize the path of a particle in spacetime. If we

do this the variational principle describing the dynamics of a free particle can be written
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2 2\ 2
] —mc/ ((%1;) - (%:;—)) dr | =0. (2.2)

2! =y' and 2l =7yl

Since

we can rewrite ( 2.2) as

(e (-2 -] ) -
6(—mc/ (1—- %)%df) =,

Now 7 has the units of length so we introduce a new variable 7 = cw. The variational

(_mz/( = dw>=

1
L = —mc? _:‘Z.d_yl )
- c dw

The canonoical front form momentum is given by

or

principle becomes

80

1
_ 2dy1 2
B mc( cdw)

([50] page 194). Let 7' be the proper time of the particle. Now

éy_l-—c.ciy_l_-— dy dT-»-cd_ml/ dm0+d$1
qw - e Cadigo - tart \aw Y oa

2This is equivalent to the usual variational principle

5 <—mc2 / (1 - (‘%‘)2) dt) =0. (2.1)

To see this notice that we can write ( 2.2) as

1\ 2 2 3 0 2\ %
d 1
é (—-mc/ (1— (%) (E;—o) ) %f—_-d’r) =0 ie & (—mc/ (1— (%) ) d:co) =0
and this is the same as ( 2.1) if we use z° = ci.
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o 2.3
r° + p! =
80 1 1
L A3 I 1\ "2
cp p+p —2p
=-—mc|l—-= —mc
" ( CP°+p1) ( P+ )
1
R
p—p
= —-m
¢ (P" +p! )
0 1\ 2
e 'ty
e (B22)
Multiply top and bottom by (p® + pl)% and use mass shell condition to obtain
m = —(p° +p") (2.4)
or
T1 = Pp1 — Po. (2.5)

Notice that 7y is negative definite. We shall see that geometric quantisation automatically
ensures that this classical constraint is preserved at the quantum level.

Ultimately we shall wish to compare the front and instant form quantum mechanical
descriptions of the free scalar particle. As is well known in quantum mechanics different
but equivalent representations are related by unitary maps. In classical mechanics on the
other hand different representations are related by canonical transformations. To find a
canonical transformation that relates the front and instant forms we must think carefully
about the geometry of the system.

The classical descriptions of the free scalar particle in the instant and front forms are

based on the following exact contact manofolds
Mi=TrxT*Qr and Mp=Tr xT*Qr

([68] page 132) which are covered by the coordinates (t,p1,¢') and (7,71, y*) respectively.

If the two descriptions are equivalent they will be linked by a time preserving canonical

transformation

Fuy, Mr=toxTQr =4 MFr=tox T*Qp

It is quite easy to find a suitable F. We can show that if ¢ is the position of the free

particle in the instant form at ¢t = 0 and y* is the position of the particle in the front form

at 7 = 0 then

pl

1 1 1
¢ =y + 5y
pO
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S0

T p-p
From ( 2.4) we obtain

w3 — 2mp1 + pi = p? + (mc)?

and therefore
72 — (me)?
py o T (me?
27
Also from ( 2.4)
= (m)? _
27 1
_ 7+ (me)?
- 2T 1 ’

Po=pr—mM = ™

Using this and ( 2.4) in ( 2.6) we obtain
I b 1
7= (_w—z—— i+ (me)? ) y
27y

_ 27r§y1
T 7w+ (me)?’

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Equations ( 2.5) and ( 2.7) and the inverse transformations ( 2.8) and ( 2.10) define the

canonical transformation F' between the front and instant form pictures at t —7 = 0. It

is easy to see that the transformation is canonical. We have

om oyt ay!
dmy Adyt = =—dp; A | ==dg' + =dp; | .

Since dp; A dp; = 0 this becomes

on Oyt

= dp; A dg'
as required.
The Hamiltonian H of a free relativistic particle in the instant form is given by

dgq*

1
2\ 3
_ d'ql 2 1 dql
= p1dt+mc 1 I\ & "

96

8 pfiloaGte Sy SR (S S agend U S (MER R Ry e




Since

we have

1
1 2 12\ 2 12 02 . 12y1
cp1p 2 p cp o (p” —p')2
H=—-=——d4mc’|l—- 55— ] =—+mc'—ai——
0 C2p02) 20 0

2 ¢ o2
(7" + (me)’) = —5p°
= cpo,
Because the front and instant form pictures are linked by a canonical transformation the

front form Hamiltonian is also cp®. Alternatively we can proceed canonically and say that

the front form Hamiltonian K is
dy

S .
Wldw
1 % 1 2 1 3
dy 2 2dy Q. ay &P 2 cp 2
= — —_— — = 1——=
Mmoo tme (1 = (p +p)p0+p1+mc g
1 1
Dl 1\ 3 0_.1\z
1 of(P +p —2p 1 9o[P"—D
= —| =cpt+me
cp” + mc ( p°+p1 ) cp (po-{-pl)
= cp' + mc? = —Ccp _m2c3
cp P+ 1 e

If we use { 2.8) then the above becomes

(7% — (me)?) o m2c?
27 T

_ 7?2 + (mc)?
= —¢ —_——_271‘1 5

From ( 2.9) we see that K = ¢pg = H. This is what we would expect. Under a canonical

K=—c

transformation the new Hamiltonian is derived from the old by taking the push forward.

2.1.2 Instant Form and Front Form Quantum Mechanics in 141 Space-

time

We shall quantise each of the classical observables 1, ¥*, ¢, p1 and H separately in the
instant and front forms using half density geometric quantisation and then show how the
two pictures are related. It is the choice of polarisation that determines which form we are
working in; a general polarisation F' is associated with a form whose moments are M/F.

In this way we see that the instant and front forms are related to the polarisations

0 é)
P—'é}-;i' and H—-—E'r-l-
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respectively. However this is not sufficient for our purposes since not all of m, %', ¢!,
p1 and H are C°(;,Mr, P,1) and C*°(,Mp,I1.1). For this reason we also associate the

following barred polaisations with the instant and front forms

e ol o
Pege Tag

and we say, for example, that a classical observable can be quantised in the instant form
if it can be quantised in P or P or both and the result is unique up unitary equivalence.
Mutatis mutandis quantisation in the front form. Admitting quantisation with respect to

the barred polarisations is quite natural since it corresponds to working in the instant and

front form momentum spaces.

Quantisation in the Instant Form
It will be convenient to introduce new coordinates (g*,5;) where

pr=-7 and ¢'=5.

These are canonical coordinates since they are related to the (p1, ¢') system via the gener-

ating function f == —g'q. In fact they are the canonical coordinates adapted to the instant
form horizontal polarisation since
g 0
dg* 0Py
We have
0 - 0
P=-— and P=_—.
Op1 op,

Since ¢, My /P and 4, M/P are diffeomorphic to R
Hp=L*(R,dg') and Hp=L*(R,dq").

The pairing construction gives a unitary map between Hp and Hp as follows

Urpte)@) =y [ explid el
Urptp)@) = ooy [ el lop(a)ant

which we recognise as being the usual Fourier transform. This intertwines quantisations

in Hp and Hp. For example ¢* can be quantised geometrically in Hp and Hp to give the

self-adjoint operators
d
B | e KN
Qb=g' and Qp=-ing;
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and it is easy to show that
Qp= UppQpUspp.

Similarly p; can be quantised in Hy and Hp to give the self-adjoint operators

d

1

Pip=—ih— and Pl-ﬁ = —-’Ql =m

dg
and we find that
Pip = UppP1PUpp-

We can also quantise the front form momentum ; in Hp. We have

= =" +p") (2.11)

where 2° = (g'° + (mc)?)%. Notice that II;5 is self-adjoint and negative definite (an
immediate consequence of the specral mapping theorem) so it is a good candidate for the

representation of m in Hp.

Clearly m; & C*®(3,M, P,1). If required the representation of 7; in Hp can be taken

Ip = Uppll pUpp-
We now consider the quantisation of front form position %! in the instant form. Since

= 7°p,
o+

(see ( 2.7)) we have y € C® (3, M1, P,1). However Y2 is not self-adjoint since the vector
field

_T__9

7’ +7' o7

is not complete. To see this note that the integral curves are solutions of

Separating variables we obtain

S0
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or
P =(t+k) -7

Squaring both sides and using the mass shell condition gives
7+ (me) = (t+ k)2 - 28" (t + k) + T

and therefore
o1 bk k)? — (me)?
- 2(t+ k)

which is not well defined for all £. Geometric quantisation therefore leads us to quantise

(2.12)

the front form position observable in the instant form momentum space as the symmetric

operator

Yi = —in _g—o__a__*_l_.(?_. 7
Pt Fmer T i P

= —ih 50 3+___q-12_qo=
P+7 07 | @ +7)

-0 sl eil)
B R .
= —ih (q ot 2?1“°(q°+?1'1)) ; (2.13)

We can investigate whether YF} has self-adjoint extensions or not using the methods de-
scribed in Chapter 1. It turns out that Y—% is maximally symmetric.

Notice that y* & C®(3, My, P,1). If required we can take
1
Yp = UppY3Upp:

Clearly H can be quantised in Hp to give the self-adjoint operator

Quantisation in the Front Form
Define a new coordinate system (7',7;) where

T = —’gl and yl = T71.

The coordinates (71, ') and (71,7") are related by the generating function f = —'y! i.e.

of

of -
’Il‘1=6—yl and 7r1=—-6?.
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Consider the polarisations

s 7]
= 'a-;';’ and M= ﬁ]_
Since , MF /11 is diffeomorphic to R and ;,Mp/II is diffeomorphic to Rt we have
2 dy’ 2+ g5l
Hn=L R,m and 'Hﬁ'—‘ (R ,dﬂ )

My corresponds to the front form momentum space but Hy will not serve as the state
space of the front form configuration representation in this scheme. We define a subspace

Hi of Hn as follows
Hii={o € Hn: ¢/y/|y' | €M}

where H denotes the set of Hardy class functions [82]. This is the Hilbert space we shall
associate with II, an element of 'H}*I will be denoted ¢r;. We shall see later that restricting
the Hilbert space in this way is nessarsary to ensure that the classical constraint m < 0
is respected at the quantum level. We find that the model simply does not hang together
unless we enforce the constraint; for example notice that the pairing construction does

not lead to a unitary map between Hy and Hy but does give the following unitary map
between Hi{ and Hyg

1

vyl
Unt)6") = oy [ el )o@ [ 7 e

In addition we shall see that it is only because we have respected the constraint m; < 0 that

dy?

Unnén)@) = =y [ en@vens)

we are able to intertwine quantisations in the instant and front forms. In short, geometric
quantisation knows about the constraint and demands that it be taken seriously.

All the observables can be quantised in Hy. We have y' = 7 therefore y! €
C*® (3 Mp,II,1) and

Y= e

Since d/dy* is not complete on R* this operator is not essentially self-adjoint. In fact
using the methods of Chapter 1 it is easy to show that the defect indicies of Yﬁ1 are (0,1)
so that Y is maximally symmetric.

Now y! can also be quantised in H;. Geometric quantisation tells us that y* should

be quantised in Hy as the self-adjoint multiplication operator

P
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It is easy to see that Y} leaves Hjj invariant since

v'oly!) _ 1 d (1)
VIV edgt Tyt

(where tilde denotes Fourier transform) which clearly has support in R if ¢(y*)//[ 9T |
is Hardy class. Thus we are led to re-define Y{j as the restriction to H;; of the self-adjoint
multiplication operator. The multiplication operator is not reduced by H;; and so Yj is
not self-adjoint in fact Y} is maximally symmetric.

Internal consistency of the front form is assured because
Yii = U YqtUnm (2.14)

Consider now the front form momentum observable ;. We have m; = —%* so that

I1,5 is the negative of the self-adjoint mutiplication operator in Hz i.e.

Since Hy = L?(R*,dy) it is easy to see that II, will have a strictly negative spectrum
as required.

We have m € C®(;, MF,II,1) so m; can also be quantised in My

o F 0 ot Ll 1
Iip = zh(dy1+ > dy1(|y1|)

wf d . |ytldiyldlgt it
m(dy1+ 2 Ay d|g ]|

= =it (o + Wlagnty)-1) 19 1)

e d agnlit)
i m(dyl 2|yt /)"

Since d/dy’ is complete on R we know that Iy is self-adjoint in Hy. The front form
momentum observable is the restriction of this operator to Hij;. We shall see later that
Hi; corresponds to the negative spectrum of Iljj; and so by construction is a reducing
subspace. Therefore the restriction of I to ’HE is self-adjoint and negative definite.

The front form is internally consistent because

We now consider the instant form observables. Since

2:7}12
1 =
[ -—-——_—.—7"
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we have ¢ € C*®(;,Mr,11,1) and
T . N
L 7" + (me)2dyt 2470 \F” + (mc)?

- 27" d | 2mo)’p
=i ((@12 Fmon @ @+ (mc)?)ﬁ) '

b

|

‘We can also write this as
oL = 2(—I,5)? .. ih2(me)*(~11,5)
T T+ mo? B () + (me)?)?
i 2H:1)ﬁ 1 ih2(mc)21'11'ﬁ
T F (mo? T B+ (me)2)?

(2.16)

Q%T is self-adjoint since
27t d
7 + (me)2 g’
is complete on R™; the integral curves of this vector field are given by

7' = (t+ k) + 4/ (t + k)2 + (mo)?
and these are well defined and contained in R* for all ¢.
It is obvious from ( 2.10) that ¢* € C*®(;,MF,I1,1) so that ¢! cannot be quantised
directly in ’Hﬁ. We can take
Qh = Unn@uUnm-
Using ( 2.14) and ( 2.16) this becomes

12,

i
(I + (me)?)?”

Clearly p; € C®(;,My,11,1) and can be quantised to give the following self-adjoint

P = — (B (ma?
i = 2 g

p1 cannot be quantised directly in 'Hﬁ so we can use the pairing construction to obtain
I3y — (me)?
2llin

A similar situation occurs with the Hamiltonian. H can be quantised directly in Hy

QL = Yi + ih2(mc)? (2.17)

operator in Hyg

P =

to obtain the following self-adjoint operator
12 2
Hy = (l.ﬂ) .

Since H ¢ C*®(¢,MF,I1,1) we can use the pairing map to give

Iy + (me)?
Hn = —-C (——:‘)‘m— .

103

0 AR )
ORI, o S Py

i

PR P WL TR Ty .




Connection Between Instant and Front Forms

The coordinate systems (71,%') and (P;,G"') are related by the generating function
f=—@ +@" +(me?h)y

i.e.

L2AY

63/1 and pl = —'é:T

The pairing construction gives rise to a map between 'Hn and Hp as follows

[

(U nﬁ¢fl)(-‘71) =

/ ori(v") exp(i(@ + 7)) (‘_’ ;f) gyt (218)

(27 n) Vgt

and

o0 =0 3 = %
(Upn¢p(y') = (27;)% Lm%(ﬁl)exp( #g" +7°)Y) (q :q ) VIt ldg'.

This map is unitary (Appendix 1).

To show that our scheme is completely consistent we must demonstrate that when
a classical observable can be quantised in both the instant and front form pictures the

resulting operators are unitarily related via the pairing i.e. we require
117 vl TR - 1 17 —OLl7
Yp = UnpYuUpn, I = UppllinUsn QF = UnpQnUsy

Pip = UnpFinUpn, Hp = UnpHnUpp.
The validity of these relations is demonstrated in Appendix 2.

Geometric quantisation has led to a front form quantum mechanics that respects the
classical constraint m; < 0 and is unitarily related to the instant form via the pairing. The
only peculiar feature of the model is the maximally symmetric front form position operator
but as described in Chapter 1 maximally symmetric operators are easy to interpret as
quantum observables. It should be noticed that the restriction of Hy to Hy; is not at all
ad hoc. Suppose we were to quantise m; geometrically in Hyy to obtain

d  sgn(y!)
IIyg = —ih ( TR ﬁ) §
This operator is clearly not negative definite since its generalised eigenvectors are given
by
(") = 4 |y |¥ exp(ixy?)
where A is some normalisation constant and A € (—00, 00). To obtain a negative definite

momentum operator we must restrict Hy to that subspace corresponding to the negative
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part of the spectrum of Ilj;. Now an element ¢ of Hp is in E{(R™,IIjn)Hn (where

E(A,IIin) is the orthogonal spectral measure corresponding to IIj) if
. 1 i .y 1 &Y ~1 13 o
[ Al et < 9@, 419 1} exp(ixg!) > d =
—co

[ AL emplin) < 631,41 91 1} exp(6g") > dn
ie. if
Supp < ¢(7'), 4 | §* |? exp(6Xg*) > € (~00,0)
or
Supp < ¢(§"), 4 | §* |* exp(—ig') > € (0,00).

More specifically we require

vy a1 3 eXP(EAY)
Supp f s@) 19 1 222 ) 1 (0,00
-0 | 9% |
or

= -Ahl
SR i o Thuc)
| 9t |2

which is precisely the condition that ¢(y!)/ | ¥* |2 be Hardy class so

Supp [ °:° (5Y)

E(R™,in)Hn = HE.

2.1.3 A Comment on Hegerfeldt’s Theorem in Front Form Quantum

Mechanics

It appears that Hegerfeldt’s theorem [76] is irrelevant in the context of a quantum me-
chanical theory developed in the front form since there is no sense in which a particle can
be said to be initially localised. This circumstance arises from the nature of the state
space Hj. As our notion of localisation we take the unique P.O.V measure F' associated
with the maximally symmetric front form position operator ¥jj. Accordingly a state ¢g

is localised in a finite region V of the light front if

< ¢ | F(V)gn >= 1. (2.19)

We can easily determine the explicit form of F' since we know that the self adjoint mul-
tiplication operator on Hyy is a self-adjoint extension of Y. The spectral function of
the multiplication operator is simply the characteristic function ¥, so that by Naimarks

theorem (see Chapter 1) we have

F(V) = Px,
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where P is the projection operator on Hyy with range ;. If we substitute this expression
for F(V) in ( 2.19) and remember that P is self-adjoint and ¢r; € Hj; we find that an

initially localised wave function satisfies
00 d 1
[ en@ i ene) S =1
~00 |yt

or

| n(yt) |2
vyt
Of course the localised state vector must also be normalised i.e. we also require that

/°° | pu(yt) 2
—o | Y]

dy' = 1. (2.20)

dy' = 1.

However this is incompatible with { 2.20) unless the support of ¢y is contained in V. But
én/ |yt |"-l" is Hardy class and the Paley Wiener theorem tells that there are no Hardy class
functions of compact support. Therefore there is no notion of localization on the front

and Hegerfeldts results do not apply.

2.2 The Instant and Front Forms in 4-Dimensional Space-
time

We now wish to generalise the results of the previous section to four dimensional spacetime.

2.2.1 Front Form Classical Mechanics of Free Scalar Particle in 341

Spacetime

The Lagrangian of a free scalar particle is given by
1
2 7 2 2 1 d 3 2 2
Lem®|i- 200 L (A" T gy
cdw 2\ dw & \ dw

Ao1o 24y 1 (@) 1 (4PN
- cdw 2\ dw 2 \dw |’

It is fairly easy to show that in a 3+1 spacetime ( 2.3) becomes

Put

dyi N Cpi
dw =~ po+p!
so : \
B 2 cp 1 p? 1 2pt

PP EPPE 2+
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Therefore
_ oL mc? .3 2 " 8
1= a5 = 0 (Tt (<2)) = et
0 1
i ) e i G o4
N
=p1—DPo
and
S 2\ dy
s = (—1) (—mcz—z-(.A) 2 (_,25) dw)
BN S - P°+p .
m (A) R P ey
= Ps-

(2.21)

By considering the dynamics of the free particle we can show that if g is the position of

the particle in the instant form at ¢ = 0 and y the position of the particle in the front

form at 7 = 0 then
1

1 1, P .1
g =y + =Y
0

or
1 Po — Pl) 1
¢ =
Po
and
s s ps 1
¢° =y" + =y
P
or
X [ - _’i{ 1
q Yy poy
From ( 2.22) we obtain
yl Poql
Substituing this in ( 2.24) gives
p* p°¢!
] p— 3 + &
=Y P20+ pt
S0
p°qt
L SR S S
el -

In terms of covariant momenta ( 2.26) and ( 2.27) become

e pO‘I1

1
g Po—mM
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and

Psq
P =q + ——. 2.29
- Po—p1 ( )
Now from ( 2.21) we have
1 = P1 = —Po.

Squaring both sides gives
7} = 2mpy + pi = (me)® + p} + p3 + p3

7% — 2mp1 = (me)? + 73 + 3.

From this we can obtain an expression for p; in terms of front form momentum variables

so altogether we have
73 — 7} — 7% — (mc)?

P1=

271‘1
and
Ps = Ts. (2.30)
From ( 2.21) we have
72 — 73 2
TPy 1 — 3 —m§ — (mc)
Po=p1—m = o —m
(z? + (me)?)
e (2.31)
From ( 2.23) and using ( 2.21) and ( 2.31) we obtain
| T (=m1) 1_ 2’”2.7!1
q !wz-z!mc)zz Y 7!'2 + (mc)2
T
and from ( 2.25), ( 2.30) and ( 2.31) we have
1 1
P TsY il 2m Ty
g =Y _(£2+(mc)2) =Y lr-g i (mc)2

2my

We can show that these relations define a canonical transformation between the front and

instant forms. After some algebra we obtain

1 Ps 1 Psq
dmiAdy' = ——————— ¢ p1psdpi Adps+dpy Adgt ——=—dp;Adq' — —21 —_dp Ad
1Ady P e LB L dg e L R e
(2.32)
and
¢ qlptpl 1 1
dmy A dy* = ——————dp; A dpy + —————=dp; A dpy + dp; A dg* + dps N d
t Y Po@o — p1)° Pt \ Gp1 @0 )2 Pt \ dp1 Dt q o m Pt q
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where we have used dps A dps = 0 and pspsdps A dp; = 0. Adding this last expression to
( 2.32) gives

dmi A dyt = dp; A dgt
as required.
Since the Hamiltonian is cp? from ( 2.31) we have

(=® + (me)?)
C“'——"——'—ZWI .

H=-

2.2.2 Instant and Front Form Quantum Mechanics in 341 Spacetime
Quantization in the Instant Form

Define the coordinates (B;,3") as follows

pi=—g and qi = P, (2.33)

These are canonical coordinates since they are related to the (p;, ¢*) system via the gener-
ating function f = —g'q* where we sum over i. They are the canonical coordinates adapted

to the instant form horizontal polarisation or instant form mommentum space since

0 d

oq' ~ op;

Introduce the following polarisations
0 - 0
P= {—} and P = {——}
Opi 9p;

Hp =L*(R% d%) and Mp=L*R? d%).

then

The pairing leads to a unitary map between Hp and Hy

Urpbr)@ = oy [ evlizgor @iy
Ueet)@ = 3 [ el gor@i'y

This map intertwines quantisations in Hp and Hp. For example the ¢ can be quantised

in Hp and Hp to give the self-adjoint operators

and it is easy to show that

A e Sk R PR e T
iR AN Sy e AT et S i A

A TR | b b N

PRSI L 13

1 A a2 SRR i




Similarly the p; can be quantised with respect to P and P to give the self-adjoint operators

i, B i
.Pip = —zh-é:]—i- and P‘iﬁ = —q1
and we have

Pi— = UPFPiPU?P'

We can also quantise the front form momenta 7; in Hp. They are represented by the

self-adjoint operators

and
Op=-¢ (2.34)
where 3° = (| g 2 +m2)%. Notice that II 5 is negative definite so the spectrum of the
quantum observable coincides with the range of the classical observable as required.
From ( 2.28) we have
i =0
U =57l
P+
so y! € C®(y, My, P, 1). However y' does not generate a complete vector field so can only

be quantised as the symmetric operator

e S 2.5 8 (2.35)
£ +7 07 P@+7)) '
We can show that this operator is maximally symmetric. From ( 2.29) we have
s 7°p
ys =DPs— 11

P+7

so the y° can be quantised in Hp to obtain the self-adjoint operators

V= ik (i _ (J__) 1M _j__> _ (2.36)
E o \@ +7°/ 83  2¢°(3° +7)

Clearly we have

Quantisation in the Front Form

Define new coordinates (7;,7') as follows

i

T = —7 and yi A Th
The coordinates (m;,) and (7, 7') are related by the generating function f = —J'y’ i.e.
5] _ of
Ty = a—;‘ and T = _ﬁ
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Consider the polarisations

‘We have "
d
M = L? (R3, i_y_lyl) and Mg = L*(R*x R?,d%p).
Define a subspace 'H}"[ of Hy as follows

Hi = {p€Hn: /:: f]%%z_[ exp[a'{y:.g]day_ € L*(R* x Rz,dsg)}.

Clearly® Hii =1 HA{®L?(R)®L?*(R). This is the Hilbert space we shall associate with II
from now on.
The pairing construction leads to the following unitary map between 'HE and Hy

o 1

_, $@) exp(i7y) \/W—ld%i

Unnen@ = [

Cndn® = [ [ 6@ ew(-gu)y/iv 1T

If we quantise the front form position observables in H;; we obtain
Yi =1

Now Y4 is maximally symmetric (see Appendix 3) since it can be identified with the
closure of 1Y} ® I ® I on 1Hf ® L¥*(R) ® L(R) in {HE®L?(R?). Also Y72 and Y3 are
self-adjoint since they can be identified with the closures of I ® ¥2 ® I and I @ I ® y5.
Recall that the tensor product of self-adjoint operators is essentially self-adjoint so the
closure is self-adjoint.

If we quantise the front form position operator in Hg we have

&= —z‘né%.

Again Yﬁl is maximally symmetric since it can be identified with the closure of 1Y-&® IQI.
We know that Y-r% and Y2 are self-adjoint since y* and y® generate complete vector fields
on R* x Rx R.

Now consider the front form momentum observables. It is easy to show that

_ (9 _ sgn(yh) e oin O
IIig = m(ayl 29| and IIgg = ma'y"'

3We use an extra subscript 1 as in ﬁ'r'; to denote a Hilbert space or operator from the 2-dimensional

theory described in the last section.
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All these operators are self-adjoint since the vector fields 8/9y* are complete on R3. Also
II 51 is negative definite since it is the closure of Il ® I ® I on 1'HI"1' ® L*(R) ® L*(R).

We can quantise the front form momenta in Hg to obtain the self-adjoint operators

O = -7

cayaeaidte B e s o

Clearly II, 77 is negative definite because it can be identified with the closure of IL®IQT
and since 0(A ® B) = o(A)o(B) we have o(Il;z) = o(1ll;7).1 and ;1,7 is negative
definite®.

The fact that y* and = can be quantised in both Hi; and Hp does not lead to any

inconsistency because
Y =Ugn¥aUpg end T = UgpllgUpns.

We now turn our attention to the quantisation of cartesian position in the front form.
We have 4
— 2= (-F)m |
=T+ —————. 2.37
q 8 22 + (Tnc)2 ( )
These can be quantised in Hy to obtain self-adjoint operators because
o, Wy 8
oy° (g + (mc)?) o7
is complete on R* x R x R (Appendix 4). From ( 2.37) we have that
5 F i@ 275 0 7° 2 2 2
= (ay P+ or @ oy YT 7T ma)

The remaining component of the cartesian position is given by

gt = 2niy! E
7% + (mc)?
or 1 :
ot 5
e i
g~ == zzz s (mC)2T1 (2 38)

We can show that ¢! can be quantized in Hy to give a self-adjoint operator because

AR DTS YR P

o B
22 + (mc)2 ayl

is complete (Appendix 5). We have

Ghse o, B L8
i1 gz + (mc)2 agl 2 ayl EZ + (mc)'z

1o denotes the spectrum of an operator
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7° + (mc)? 67" @ + (mo)?)?

(=0 T4+ + (mo)?)
B (72 + (mc)?) og* (72 + (mc)?)?

We cannot quantise the cartesian position operators directly in 'Hﬁ but using the

~m( 27" 9 (y?+(mc)2) 2! v1(2ﬁ1)2)

pairing map between 'Hﬁ and Hy we obtain

2% = ¥g4pCImC L)

(I + (mc)?) Fio (i) (Tl (Tl (~TTym)? + (me)?)

(If; + (mc)?)?
— Yﬁ -+ 2@%11-(1:11—;—2)—2)'}’& + zﬁﬁm(ngn + H%H i H?n + (mc)z) (239)
and
oL = 2(~Iym)? (__m)2(~1'11n)((—1'12n)2 + (~I3m)? + (me)?)
T+ (me)?) (I + (mc)?)?
2%y (g + Oy + (me)?)

Y3 + (ih)20) 1y

(2.40)

T @+ (mo)?) (I + (mc)?)?
We can quantise the cartesian momenta p; in Hy;. We obtain we following self-adjoint
operators AT _ o (mc)2
Py L8 -7

2@_ and ‘Psﬁ = —_?js

Since p; € C*°(¢,Mr,I1,1) we can take

P = Ugn PUng

0
2 T2 T2 2
Pin = iy — Mog — M5y — (me) and Py = [p.
2
Also H € C®(4,Mp,II,1) and can be quantised as the self-adjoint multiplication
operator

=2 2
g° + (mc)
H-ﬁ =c (-——-—-——2?1 ) ;

Notice that H cannot be quantised directly in Hy so we are free to use the pairing

I0f + (me)®
Hn = —=C (-TI—I-H— .

map to obtain

Connection between the Instant and Front Form Pictures

The pairing construction gives the following unitary map between Hjj and Hp.

(Updn)(@) =

S O S | s [ +7 1 1 3,
/ éu(y) expi((@ +2°)y" + Ty +qy)]( = )\/lv’ldﬂ

Q
2
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and

o 04 =1\
(Upnop) (@) = ) f_ 7@ exp[~#{((@" +2°)y' +T¥*+Ty*)] (?—Tfoq—l) |yt |d%g.

We can show (Appendix 6) that this map completely intertwines quantisations with respect

to the front and instant forms i.e.
Y = UppYiiUpm Iip = UppllinUpp, @% = UnpQhUsy

Pip = UnpPinUpp and Hp = UppHnUpy-

2.3 Kinematic and Dynamic Subgroups of the Point, In-

stant and Front Forms

With each form is associated a subgroup of the Lorentz group which leaves the moment
invariant. This subgroup is called the kinematic subgroup. Generators of transformations
that do not leave the moment invariant are called the Hamiltonians of the form. We shall
say that these generate the dynamic subgroup of the form although only in the point form
does the cannonical choice of Hamiltonians close to form a subalgebra. It is important
to identify the generators of the kinematic and dynamic subgroups of a particular form
because many of them will have a physical interpretation. Some of the generators of the
kinematic subgroup will correspond to momenta for example. We shall investigate the

dynamic and kinematic subgroup structures of the point, instant and front forms.

2.3.1 Kinematic and Dynamic Subgroups of the Point Form

For the case of the point form it is very easy to isolate the dynamic and kinematic sub-

algebras. From formula 0.17 page 6 [47] we know that a general infinitesimal® Lorentz
transformation can be written

¢* = (¢ + g = ¢ + oy

where e = —e“#. Suppose we choose a transformation where the only non zero ¢’s are

€% and of course €!° then
¢ =’ +eq

= q° — gt (2.41)

5See Appendix 7 for finite forms
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and
=q' — "¢’ (2.42)

We can also express this transformation in terms of light cone coordinates. Since 7 = ¢+ |

q | if we put a = €}® we have
7 t+ag +((g" +at) +¢% +4%)3

t
=t+ag+( g/ +2aqt)? =t+ag+|g| (1+a|—3—|—2).

t t
=t+aq+|g|+a|-g—~~—~r+aq(1+-—->.

al lg|
For points on the light cone with apex at the origin we have t = — | ¢ | so that
T— 71 (=0).

We also have that ! = ¢! so
yl—-*q1+at=y1+at.
For a particle on the light cone through the origin this becomes
y' =yl —algl=y' —alyl.

Finally

2 2

y> > y? and y®—yP

[62]. The fact that 7 — T shows that this type of transformation leaves the light cone with

apex at the origin invariant. We can also show this just using Minkowski coordinates.

Supose (t,q) lies on the light cone i.e. t = — | ¢ |. Put a = —¢! then from ( 2.41) and
(2.42)

t' = q° + ag'
and

2 2o
ld' |=((¢" + ag®)® +¢* +¢*)2

: 1 @2¢°¢* \ ? 0,1
=—(¢" +oq')
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since ¢° = — | ¢ |. Therefore ' = — | ¢’ | and the light cone is preserved. This effectively
demonstrates the invariance of the light cone under boosts. We shall denote the generatérs
of the special Lorentz transformations 7%, Therefore we have shown that the 7% belong
to the kinematic subalgebra of the point form.

Suppose now we consider a transformation where the only non zero €’s are ¢! and ¢3!,
In this case

¢ = ¢ + % = ¢t — '35

and

@ =P+, = ¢ + 3L

If we interpret the transformation passively we might put
/ ’ ’
'=t, ¢ =¢", ¢ = +ad!, ¢" =¢' —od® (2.43)

where a = €%, It is also possible to express this Lorentz transformation in terms of light

cone coordinates. Since

T=t+|g] and y=gq

we have
7 =t+((¢" - ag®)® +¢* + (¢* + agt)h
=t+(¢"" - 204'¢* + 0?¢** + ¢* + 20¢°¢* + o%¢*%)2
=t+|g|=T.
Similarly

/ !
yl =ql =q1_aq3=yl_ay3

/ /
¥ =g = =2
! !
¥ =¢ = +ad' =4 + oy
Taking the active point of view we would express this as

=1, oy —a®, ot P oy +ayt

[62]. Notice that we have 7 — 7 showing that this transformation preserves the light cone.
We can also see this just working with the Minkowski coordinate description ( 2.43).

Suppose ¢ lies on the light cone with apex at 7 then t = 7— | ¢ |. Now
| |= (@ +(¢® + ag")? + (¢' — ag®)?)*
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2 2 2 2 2.1
=¥ + ¢ +2a¢%¢* + %" +q' —2a¢'¢® +?¢*)2 =|¢q].

Also

o
%
I
o

so that

Ver=|d].

Therefore (¢, ¢) is moved to a new point on the light cone. This demontrates that the light
cone is invariant under spatial rotations. The generators of spatial rotations, denoted T "
also belong to the kinematic subalgebra of the point form.

It is easy to show that none of the translations P* leave the light cone invariant. For
example under p;

t—t, ¢ =g te ¢og ¢ —d
Clearly t' =t = — | g | whereas

1
2 2L 1 o4
| 1= (@ + ) +¢% +¢%)E = (| g [* +2¢'0)% =l g | -1 .
The last term in the above spoils the invariance of the light cone since with it ¢/ # — | ¢’ |.
Summarising we see that the kinematic and dynamic subgroups of the point form are
the homogeneous subgroup and the group of translations respectively.
In a similar way we can show that the generators of kinematic subgroup of the instant
P 70

form are -1-5‘ and and the Hamiltonians are P° and

The Front Form Operator Representation of the Poincare Algebra in Basis

Adapted to the Point and Instant Forms

The Poincare Algebra is given by

[T, 7)) = # T + g0 T + 7T 4 o TP

[, P"] = n?P" — n#*P’ (2.44)
[_Pp! —P—d] =0
[50] page 150. Suppose we put
P=pt =1, T =g —d'p (2.45)
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where p° = (p?+m?)2. These classical observables obey the commutation relations (2.44)

under Poisson bracket { , } which is defined in the usual way from the symplectic 2-form

as

8g° dps  q° Ops’
For example

-
o

7% P =P’ — *F = -P° :

Pt 00T

and

—0i iy _ 0.4 iy 00¢ 9 ¢ 0 50
{J ,P}-—-{p ql7pl}_p 51—3'52'7;——? 61‘351‘3—"'20 —__P

as required. Also {
7%, P = 1P — P = P
whereas

: i 5,0

70 B0y _ 0,4 iy - 094 9P

{7, P} ={pd,p'} P 5 o
= Po‘s"% =pi=—p' =P

As a final example consider
79, B = P — P = P
where of course we have assumed i # j. We have
{77, P} = {-nid + ¢'ps, —mi}

= —p;0isis + Pi6jsbis-

Since 7 # j this becomes
~py = P 8
as required.

As is well known these classical observables can be quantised geometrically in Hp

to obtain an operator representation of the Poincare algebra. We can show that when

expressed in terms of front form variables the classical generators are in C™(y, M, I1. 1)
and in fact can be quantised to give self-adjoint operators in Hy. What is more the pairing
maps effect a unitary transformation between the representations.

In terms of front form variables we have

W v T SR e

B R
T =77 — P73
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—12 —22 32 2
ls (yl =P = = me)*). =8
J = o7 Ts —Ym
=2 2
o0 g 7° + (me)®\ _
J = _ys‘n'l — ("‘-‘—éyl_) Tg
710 = —‘3717?1
o z? + (mc)? Y n} — 7§ — 13 — (mc)? y
27!‘1 : 27(‘1 ’ - 2

In Appendix 8 we show that these classical observables generate complete vector fields

and can be quantised to give the following self adjoint operators

T —31_—2_‘?._)
J?I al zh(:y a;lj2 Y ay3

12 w2 _ 59 _ ()3 78
7%5:_2.&((1/ P -7 —(md?) 8 3 33)

<)

2" oF 2 7 oy
=2 2 78
i) il @ g +(me)*\ 8 7
Ji =ih (y a7t + (———-—251 Ed * o
=10 _ .. (1 0 _1_)
Jn —zh(y _3371 +2

_}50 : (§2 g (mc)2) 751 _ (?}.12 —'gj22 _@.32 . (mc)2> , _

)

='flj's,

= P
2@1 2-y-l
‘We can show that these operators are unitarily related, via the pairing maps, to the usual

representation of the Poincare algebra in Hp. For example
—30 -
T = —p°¢® = —3°p;.

Clearly Peg (. Mr, P, 1) and in fact generates a complete vector field so that it can

be quantised in Hp to obtain the self-adjoint operator

<30 _ (00 T
Jp—’l.ﬁ((] ﬁi‘l-a‘a)

6 Now we shall show that

—=30 —=30
UnpUsinJit UnstUpn = J7 -
Well
e U T U = (-8 (1) + T s iy (ST
nnYiavYnmo 11 I 2(__1-1{:1) I 2(_H[1'1)
SThis can also be written
7E = -ih%p_opoaimﬁa.

This makes it particularly easy to see that our representation of the Poincare generators is the same as

appears in [94] remembering that we use a different metric on the cartesian momentum space.
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=y + B+ (o)) ;n(;lncﬁ) v + ih%
SO
UnpUnin 71 VU = (—2°)(—ih) (qo(_l-:ql 'g% i 2506(160_ EO 51))
e (aﬁs ~Frwat s a‘)) e
= ih af?;l % +ih ;;fgo’f;)) ) ihﬁoa—§_§—
e R T

as required. As a further example we shall show that
—=32 —=32
We have
=32
Usindt Unr = (- Y ~ (~TI) Y

80

i 1 = —I3.v2 4+ 2v3
UnpUnin/ 1t UnUpn = —15Y5 + I5YE

8 7 \ o 72
S P O L S TS . . (9
=2 (6@2 (614-60) 6@1+2a°(a°+al))

! a ik 8 ks
—2 - — — ——————— — ————
e (863 (ql +a°) TR T

e R R S R TS,
T T T P @+
g BT g
FIAT — — A + i
T o 5 " (@ + )

7] 0 0 5]
= il; ~2__._.—3,__)=~ ( TN m)
o (q o 1 o7 & P2 s~ Mo

whereas according to [94] or using geometric quantisation

=32 ., 1 0 d - a d
"“"‘n\/—‘( Ops "‘)V =ﬁ< Ops ““)
P =1 o P2 ps P3 3pa Po = i1 | P2 p3 p3 pa

as required. In this way we demonstrate that the classical Poincare generators can be

quantised in the instant or front form pictures and lead to operator representations of the

Poincare algebra that are unitarily related by the pairing maps.
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2.3.2 Kinematic and Dynamic Subgroups of the Front Form

We shall now follow Dirac [75] in calculating the classical generators of the kinematic and
dynamic subgroups of the front form. Basically, since we work on the light front + = 0
we must find generators that do not contain the variable conjugate to 7, i.e. m. We
shall denote the elements of the new basis J*¥ and P¥. We cannot simply take over the
expressions given by Dirac since he uses different front form coordinates.

Nievely we might put

Pl =gt
but this is not acceptable because
't = g¥r, = —mp — my.
Instead we put
P! = —g — w1 + A(=2mom; — % — (mc)?)

and choose A! so as to make P! independent of mp. If we put A = —1/2m; we find that
1
1 e 2
Pl = 7r1+21r1(1r_ + (me)®)

(n} — m3 — n§ — (mc)?)

= — ; 2.46)
2m (
However we can put
P?=q%= —1rg
Pd=q%= -3

and

PO=70= g°”1ru = —y.
Similarly we can make the assignments
J% = n0yi = g()p,ﬂ.“,yi = =y
and
I8 = 223 — 13y = may? — mo1P.
However we cannot put
T3 = gyl _ y3xl,
Again we follow Dirac and seek \3! such that if we put

T3 = —y'my — y* (=m0 — m) + X! (=2mm; — 2° — (mc)?)
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then J3! is independent of my. Choose A3 = y%/2m; then

Cid

J3l=_ 1
y7r3+27‘_1

(nf — 73 — 7§ — (mc)?).

Similarly we cannot put

TR S S

We must choose A?! such that

J21 = —-1!‘2:1/1 — yz(—ﬂ‘o = 7!‘1) + )\21(—-27ro1r1 a0 1(‘_2 = (mc)z)
is independent of mg. Choose A?! = y2/2m; then

v

v R |
I = y7r2+27r1

(n} — 7§ — 73 — (mc)®).

According to Dirac the generators of the kinematic subgroup will consist of those J*¥
and PY that are simple functions of the front form canonical variables, the others will

generate the kinematic subgroup. We are therefore led to posit
B L ) (2.47)
as the generators of the kinematic subgroup and
{p1, J31 j21} (2.48)

as the generators of the dynamic subgroup. In fact it is quite easy to show explicitly that
the generators ( 2.47) leave the front invariant and so are indeed the generators of the
kinematic subgroup. We shall show that P® = —m; = p® + p! preserves 7 the light front
¢° + ¢* = 0. Using 8.67 page 261 [63] we have

= +af® "+ = +a

and

it =q¢" +afgt, " +pl)=¢' —a.

"It is interesting to note that P° generates quantum mechanical translations. We have P° = gt +3°.

Now .
=0, =1\ %
FRS, S +
exp(iA(@' +7°)) (%‘)
is the generalised eigenvector of the light front position operator with eigenvalue A (Appendix 11) clearly

multiplying this by exp(ia(g® + 7')) gives the eigenvector with eigenvalue A + a. This much is required of

any sensible position and translation operators. See equations (37) and (40) pages 61 and 62 [92].
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The effect of the generator on the other coordinates is irrelevant. It is obvious from these

expressions that
¢ +¢" =0

so that PO generates transformations that leave the front invariant. Finally we show that

J% also preserves the light front. Since J% = —m133 = (p° + p!)q® we have
¢ = ¢ +al¢’, (" + ")’
= ¢ +a[¢®,p°¢® + p'¢’]
= q° + a[¢°, °¢°] ~ f¢®, p' %]

=¢® +afg®, p%¢® = ¢ + o¢®

and
¢ — ¢ +alg', 1% + p'¢¥]
= ¢ +afg',p'q’]
=¢' +alg', 'l = ¢' — ag®.
Clearly
q°'+q1'=q°+q1=0
as required.

Notice that the generators of the kinematic subgroup generate Lorentz transformations
of points on the light front. Consider the transformation generated by J%. The condition

for it to be a Lorentz transformation is that the interval
(@ =P = (g =7
be preserved. Under J% this goes to
(@° +o¢® - @ +ag®))? - (¢" — ad® - (T - o7*))?
= (¢° + aq®)* - 2(¢° + a®)(@ + o) + (° + o7°)?
~(¢' = a¢’)? +2(¢* - a®)(@ - o’) - (" — a7®)?
= ¢” +200°%" - 2(°P + aq’7’ + ag’?”) + 7 + 207°7°

2 " s i " e
—-¢"" +2a¢'® - 2(¢'F* — a'P + a¢’F) - (@ - 227'T°)
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where we have abandoned terms of order a?. The coefficient of « is

°¢ - ¢°F - I’ + 3 + ' - ¢'3® - T + 7.

This is identically zero due to ¢° +¢' =0 and 3° +g* = 0 so we are left with
2 o 2 2 oyl 3
¢ 20" +7% - " +2¢'7 -7 = (") - (¢' - F*)?

as required.

In the same way it is easy to show that the generators ( 2.48) do not leave the front
invariant and so are the generators of the dynamic subgroup. In fact it easy to see that
we have the correct Hamiltonians since these are well known to be the generators of the
rotations around the two axis tangent to the front and a generator that moves the plane
along its normal {64]. Now the generator P! = p! moves each point on the front an equal
distance parallel to the ¢' axis and so shifts the front along its normal. Also we have

37§ — 1§ — 73 — (me)?

5 |
JY=—ymty 5y

—=31
=—y'ps —y’p' = 'p* - pl =T
and

ng ax 721

and these are the afore mentioned rotations.

Clearly P!, J?1, J3! generate Lorentz transformations.

It is important to notice that while the point and instant forms have four Hamiltonians
the front form has just three. Dirac believed that this gave the front form an advantage
when it comes to developing relativisticly invariant interacting field theories. Here the
generators are expressed in terms of the field variables. Only the Hamiltonians contain
extra, complicated terms arrising from the coupling terms in the Lagrangian. If there are
fewer complicated generators then it should be easier to verify Lorentz invariance®.

‘We wish to express the Poincare algebra with respect the generators J*¥ and P since

they are more natural to the front form. In this new basis the Poincare algebra becomes
[JBY, JP7] = gUPJHT 4 gHP JOV . g JOB . ghe JUP
[JHY, PP| = g“P P — gho PV (2.49)

[P?, P?] = 0.

8See also Conclusion and Prospect.
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We can show that the classical front form generators satisfy these commutation relations

(see also Appendix 9). For example
[J%!, PY] = —gOL P! 4 g11p0

=P1_P0

and we have
72 — 72 — 72 = (mc)?
{JOI,P1}={—y1‘R'1,-( 1 — 73 —73 ( C) )}

21!‘1
_0(=y'm) 0 (=(n}—m3—n3— (mc)?)
- Byl 67!'1 27!'1

_ 2m(2m;) — (7% — 12 — 72 — (mc)?)2
e 4r?

_ I+ (me)® _

1_ po
o P*—-P

as required. Next consider
[J‘?’l, J23] - __g32J13 4 912J33 st 933J21 s 913J23

=__J33+J21=J21

whereas
2 _ .2 _ .92 2
(I3, I8} = {—yms + (nf — 73 2:3 (mc) )y3,y21r3 -
1
_ (n2 =72 — % —(mc)?) , 2ma, 5 1 2mayB
= G y* = ( = Yyims — (—y Sy )(=m2)
_(mf—mf - —(mc)?) o mamy® | mymyyd
= = v+ ~yimy — =
1 1 ™

o JB
as required. Also
[JO2, J13] = _g01 28 | g21 703 _ (03 712 o 023 710
w78

and

3
(I, 7%} = {=pPm, — g (i} = 78— m§ — (me)?) +y s}
3
o= e ¥ s Lt
(—m) (27r12"f2). (=y*)(ms)
=y’ — y®m
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I

oy J23. ~'

We have i
[JOI’ PO} e ~—ng1 + glOPO

= — PO

whereas “

{J9, P°} = {~y'm, —m1}

{']011 JOQ} = {-ylwlv —yzwl}

=m

= - PO,

Finally i
[JOI’ J02] = _g(JOJl'Z S g10J02 _ 902J01 i gl‘ZJOO s;

= 10,702

= s g g

and ]

= Ty’

= g%

as required. he
;

i

Quantisation of Basis Adapted to Front Form 5

We can obtain an operator representation of the front form generators by quantising
the classical expressions geometrically in the front form momentum space. Notice that
although J#” and P* are linear combinations of 7 and P"* we cannot simply use the

quantisation of the latter derived in ( 2.3.1) to obtain operators representing J*” and PH

because the linearity axiom does not hold in geometric quantisation i.e. if f and g are in

C*(M, P, 1) and generate complete vector fields it does not follow that f + g generates a

complete vector field.

In terms of front form variables we have ﬁ
JOG — ;y‘lfs




1o as oy B8 A8 B3 g3 2
Js——ﬂlys'*'ﬁ(y ~§° =¥ - (me))
J® = P + PR

—12 92

Pozgl, P3=?-j-3, P1=y

7> = (me)?
27t '
In Appendix 10 we show that these classical observables generate complete vector fields

and can be quantised to give the following self-adjoint operators
0 1
ut SO o | s O !
JII ih (y o + 2)

5}
08 _ _ ;51
I = s

) F) =12 =22 32 2\ 5 =5
i = —in (_,gs_a_gT + (‘y g —(me)\ 0 7

27! oy° 27!
Pl=7'
=
W G e G
i o

Because the classical observables J*¥, P* have been quantised geometriclly we are
assured that the operators Jf’ and Pg satisfy the commutation relations ( 2.49) with
Poisson bracket replaced by operator commutator. We shall give just one example. We
shall show explicitly that ;
(3, PY] = in[PL — PR
The right hand side is

-7 - (e _ (Tt (me)?
2;y-l Y 2@1 '

The left hand side is

—12 —92 .22
) I =7 — 7"~ (me)”

ey O 1
[_zh(yl_a__&_f_i_ § : 2@_1 ] (250)
Put . : "
Wl sk il b0
2yt
then

9z _ T+ (me)?
oyt~ -
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Using this ( 2.50) becomes (if we imagine it acts on a function f)
- d 0 1
~in (7 +3) () = o-0) (P2 +3) 1

8 .8 9
= (~iR) (y st Wlafl " _zgx___._f>

as required.

2.4 More on the Point Form

For the purposes of this critique it is sufficient to restrict ourselves to a discussion of the
point form in 1+1 spacetime. Recall that the following expressions define the light cone

coordinates (7,y*)

r=a%+|z|, y'=2" (2.51)

The moments are the manifolds corresponding to constant values of r and are clearly

backward lightcones with apex on the time axis. If we use the light cone time 7 to

parametrize the path of the particle then the variational principle

2 2\ 2
) —mc/((%) - (%)) dr| =0 (2.52)

is equivalent to that usually employed in describing the relativistic motion of a free particle.

Since
P®=7—|y'| and 2=yt
we have
dz® dly*| dy'd|y'| _ dy*
& g okt el
and
&zt _ dy'
dr ~ dr

so the variational principle ( 2.52) becomes

1
1\ 2
§ (—mc[ (1 —-2sgn(yl)%‘{;) d’r) =0
1
) (—ch/ (1 - sgn(yl)%%>
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S0 .
2 dy1 2
S - S o Al
L= -mc? (1 sgn(y )c )

Now let 7/ denote the proper time of the particle then

dyt ' & cp!
dw  “dr  Cdg g del 04 sgn(yl)pl’
We have
_ 8L
T
1 2dyt 2 2
g LA L e o 12
= mcs (1 sgn<y>cdw) (~sgn(y")-
2d 1 ";'
;o 1 3 LV
= 39“(1} yme (1 39'"'(3/ )c dw)
2 B '";'
1 1 cp
= —sgn mc| 11— sgn -
y’) ( gy )C(p°+sgn(y1)p1))
= p1 — sgn(q*)po. (2.53)
Since
T — p1 = —sgn{y )po (2.54)

we can square both sides and use the mass shell condition to obtain

mf — (me)®

n= o

(2.55)

Also from ( 2.54) we have

po = —sgn(y)(m — p1)
2 2

= —son(y)TLE(mO)?

= —sgn(y’)—— =

The instant and point form positions ¢' and y! of the particle at ¢ = 7 = 0 are related by

the equation

1
¢t =y + 2—335171(3/1).1;l (2.56)
e | 1 pl 1
=y {1+ Fsgn(y )] -
Now
1 2
D _ P 1y [ ™1 = (me)
po = sg‘n('!/ ) (ﬂ_% 5 (mc)2)
so
273
L 1 o
q y ("2+(mc)2> (20')
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We can rewrite ( 2.56) as
¢* =y - Bsgn(gt)yt = ¢ (1 - -p—lsgn(ql))
Po Po

and therefore
y1 - POQI
po — p1sgn(gt)

It is easy to show that ( 2.53) and ( 2.58) and their inverses ( 2.55) and ( 2.57) constitute

(2.58)

a canonical transformation between the point and instant forms.

It will be noticed that many of the dynamical variables given above are discontinuous
across the apex of the backward lightcone. This is just one indication that the conventional
treatment presented here is rather formal and ignores many subtleties that when addressed
force us to modify the scheme dramatically. Notice that if we insist on employing light
cone coordinates as a global description of spacetime then extra care will have to be taken
in overcoming analytic problems that may result from the fact that they are not even C?!
related to the cartesian coordinates. This is immediately apparent from ( 2.51) since the
transition functions are not continuously differentiable at z! = 0. To avoid this we define
two new coordinate charts as follows. The first has as its patch the open submanifold of
spacetime corresponding to z! > 0; call it M*. The coordinates (r+,y!") are related to

the cartesian coordinates via the transition functions

+
7 =2"4+2! and " =zl

The second chart has as its patch that region of spacetime, which we shall denote M ™,
corresponding to z' < 0. The coordinates (7=, y~) are related to the cartesian coordinates
via

™ =20-2z!, and y =zl

These charts are C* related to the cartesian coordinates however they do not constitute
an atlas for spacetime since the world line of the observer, the region of spacetime corre-
sponding to z = 0, is not covered by either chart. The new charts are merely the restriction
of the light cone coordinates ( 2.51) to M+ and M~ so that point form quantum mechan-
ics is really based on spacetime modulo the observers world line. In 141 dimensions this
is clearly M* x M~. Even physically we can see that this is the correct arena for the
discussion of the dynamics of a free particle since if the particle were to pass from M™
to M~ its world line would inevitably intersect that of the observer and some interaction

would result. A purely kinematic description of the dynamics would be inappropriate.
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The presence of the observer splits spacetime into two regions that are classically and
quantum mechanically disjoint. The quantum description of the entire system will be the
direct sum of the representations in M+ and M. Here it will be sufficient to disscuss the
difficulty of quantising M+ where the phase space of the instant form is described by the
coordinates pj € R and ¢'* € R* and the phase space of the point form is desribed by
the coordinates 7] € R* and y1+ € R*. From now on, to ease notation, we shall omit
the superscript -+ which shall be understood. The point and instant form pictures of M+
are related by the canonical transformation
q1=y1( : 2m} ), m:"'f"(mcy
7§ + (me)? 2m

or
1 _ _pogt
po—p1’

Y m™ = Pp1— Po-

2.4.1 Quantisation in the Instant Form

Consider the polarisation P = d/dp; then Hp = L2(R™,dq'). We have

d
dq?

Pl = —ih

which is maximally symmetric and

which is self-adjoint and positive definite as required by the classical constraint ¢ > 0.

Introduce new coordinates (p;,g") where
pr=-7 and ¢ =7y

Since p1 € R and ¢* € R* we have §' € R and 5; € R*. If we quantise in the horizontal
polarisation i.e. with respect to P = d/dp; so Hp = L*(R,dg") we obtain

ez 0 65K
P P-4
which is self-adjoint and
ik e 8
i

which is also self-adjoint because d/dg* is complete on R. There are two problems here.
Notice that whereas P{% is self-adjoint P{’}, is maximally symmetric. This threatens to
make the instant form inconsistent. Also ng is not positive definite. However we can

solve both these problems simultaneously by identifying the correct physical Hilbert space.
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We must restrict Hp to ’H—;- = E(R™", g YHp which will comprise those functions in Hp
that are Hardy class. On H% the operator Q%; will be self-adjoint and positive whilst Pl“%
will be maximally symmetric. This is most easilly seen by noticing that Hp and 'H-I'*,L are

unitarily related by the pairing construction which leads to the map

T S = 1 st
Uepbe)@) = =3 [ dr(a) pli'a)
with inverse
1 R .
Crotp)a) = Gy [ op@) so(-ia'asen'

It is easy to show that
+ +
QF =UppQp Upp and P = Upp P5Upp:

Quantisation of point form observables in the instant form picture leads to compli-
cations. Since y! € C®(;,Mp, P, 1) it can be quantised in M3 to give the symmetric
Yl = —ih _i_.ﬁ_. 3 _g_l_:_g_o. .

P °+7'dgt 2+

In fact this operator is maximally symmetric. To see this notice that the solutions to the

operator

equations

(Ya*i)gp=0
are given by
=0 3 =1\ 2
2 + 1,
¢p(@) = (——-—q = ) explF (@ +7).

(Appendix 11). Consider

-—0Q

0o (70 L =1
/ (" = )exp(—z(a1 +7°))dg".

Put u! =3° +@* to obtain

[V

< co.

(e o]
/ exp(—2ul)du! =
0

Also

© (G+7 20 N, e Wogisld
7 exp(2(7° +7"))dq =/O exp(2u)du” > co

-0
Therefore Yf,l- in Hp has defect indicies (1,0). Of course Y% ought to be positive definite.
we shall ignore this added complication. Similarly we can quantise 7; in H3 to obtain the
negative definite self-adjoint operator

M = —(@ +3).
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Superficially at least it may appear that we have sucessfully quantised the point form
observables in the instant form but this is not really the case since for this we require
the restrictions of Yr} and Il to 'H% and it is difficult to see if these are well defined.
If we cannot quantise y! and ; in 'H-;- then we cannot use the pairing map to find their

representations in Hp. The instant form cannot accomodate point form observables.

2.4.2 Quantisation in the Point Form

If IT = d/dy* then

yl

We can quantise ¢ in Hyy to give the self-adjoint operator

My = L2 (R+, gg—l-) .

Vi =yt

which is positive definite as required. However recall that Yﬁl was maximally symmetric.
Is it possible that quantising m; and enforcing the classical constraint m; < 0 will compell
us to modfify M in such a way that Y} will become maximal symmetric? Unfortunately
we are stuck again because the vector field d/dy' is not complete on R¥ so we cannot
quantise m; in Hp to obtain a self-adjoint operator. The best we can do is find a self-adjoint

operator that represents a classical observable that approximates 7. Let n € C®(R™")

such that

n(0) =0, n(y*) € (0,1) for y* >0 and y' € A—Ag, n(y') =1 for y' € Ag = [a,00)

where a is some real constant > 0. Suppose we put
) dyl
o(y) = / e A
vo N(Y')
then o is a bijective map R* — R, i.e. o has an inverse o~!. Consider the classical
observable n(y!)m;. This is identical to 7; when y* € Ag. This classical observable can be
made to approximate 7 to any accuracy by choosing a sufficiently close to 0. Now the

vector field n(y*)d/dy" is complete on RT. This is obvious because the integral curves are

given by y! = 071() ® and ¢! is a bijective map R — R*. We may therefore quantise

We have o(y') = t. Differentiating with respect to ¢ we obtain

1 dyt

nwh) dt

as required.

133

P NI TOT I P

2 p & b LAY, PR W A K IR
R O Ty N e LD - SO (| e I a S B

A e R e




n(y')m geometrically to obtain the self-adjoint operator
, d @) 76H
= 1 ny
I = —ih (n(y )dy o T
This operator is not negative definite. To see this notice that the generalised eigenfunctions

of IT; are given by
G\, y,Th) = g1 2rhn(yh)] 2¢O

where A € R. These satisfy the usual orthogonality and completeness relations (Appen-
dices 12 and 13). We could obtain a negative definite point form momentum operator
by restricting My to E(R™,II;)Hn but it is difficult to give anything more than a very
implicit definition of this space. There are other ways of constructing negative definite

operators from IT* but they are all rather contrived. For example we could take
M = — || . (2.59)

The only way of obtaining a more concrete realisation of this operator!? is via a generalised

eigenfunction expansion. Il is self-adjoint and has the associated resolution of the identity

(BOmnE) = [ 6oy’ ) < Glas, ) | bn(y) >ri o

[70]. Therefore
(=1 ) = [ = 1A da(EO T)én) )

= :’o_ [A] G\ Yh ) < G 9, I | 6ny) >y dA.

Having obtained a negative definite point form momentum operator we turn our attention

to quantising the Hamiltonian. We have

(mc)?
(lH1|+!H1|>-

This operator is self-adjoint and positive definite!'. We can now ask wether this Hamil-

Hp

ll

o

tonian leads to sensible dynamics. An initial state ¢{; will evolve as

03 P P S 2
ShY) = [ GOy e T < GOx ) | (y) 14 dA

Notice that | I, | has a degenerate spectrum. Its generalised eigenvectors are discussed in Appendices
14, 15 and 16
"1Had we simply ignored the fact that the point form momentum operator should be negative definite

we wotld have ended up with an indefinite Hamiltonian. This would have been difficult to interpret.
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or in terms of the generalized eigenvectors G(u, v, w, Hy, y') of Hy (see Appendices 17,18
and 19)

o0
¢11:I(y1) = f z G(/Jﬂ vV, w, Hﬂ; yl) exP(—iT‘w) < ¢(I)'[ I G(/J‘: v, w, Hy, y) > dw (260)
met py

where

1/2 -1/2 vz &
G(u,v,w,Hn,y)=y bl exP( e+ vy/(8)? ~ (me))o y))

1/2
c - g 22
s (1 (EE —v/(Z)2=(mo)Z 2)

Since Y} is simply the self-adjoint multiplication operator there is a notion of localisation

on the light cone. We have

(B(A, YD) = xalyV)eén")

so a normalised state ¢ is localised in A if || E(A,Y})ém ||= 1 ie. if the function has
support in A. It is now possible to show that a Hegerfeldt type result holds in this model.

Theorem 22 A state vector initially localized in Ao undergoes instantaneous spreading in

the sense of Hegerfeldt when Hy generates time evolution.

Proof. Consider a C§°(R™) wave function ¢Y such that supp ¢% C Ag then
F0) = [ emmI-ty 2 exp(-ow) ).

Put z = o(y) so

- 1 % (=Y z))~2p% (0~ (z)) exp(—iz) .
ke g~ & (0 o 1(z) 4

Since supp ¢ C Ao integrand becomes ¢% when z € Ag since then o~!(z) = z. Also

the integrand is 0 when z € R— Ag. The integrand is clearly C§°(R) so ¢°()\) is integrable
[71] and

exp (2 B i()\2 + (mc)2) bo(N) (2.61)

is integrable because absolute integrability « integrability. Therefore the inverse Fourier

transform of (2.61) is given by

F(z) \/i_vr—‘ / exp (2 B I(/\2 + (mc)z)) do(N) exp(sAz)dA.

Notice that (2.61) is not entire since it is not continuous at 0. Therefore by the Paley

Wiener theorem we have that F(z) is not of compact support. Now

$h(y) = y'/*2rhn(y)] "V Fo(y))
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so clearly ¢T;(y) is not of compact support in R*.

Notice that the instantaneous spreading of an initially localised wavefunction along a
null hypersurface does not imply a violation of causality’2,

Another problem with the point form is that some of the state spaces are not unitarily

related by the pairing construction. For example, although formally the pairing maps

between Hyy and Hp are defined by

1

(Un‘ﬁ¢n)(7i1)— o h) / ¢H(y1)exp(a—(ql+'q°)yl)( ;_051)2 \/1—1- .
and
) SRR
Crntp)ls) = (2«171)% j_oo ¢(@") exp(~7" +7°)y") (q +q1) S (262)

it is not difficult to show that these are meaningless. Put ! = g° + @' so

sl iaa]
- A il

Using this we can rewrite ( 2.62) as

Tty er@ ety (

) Vytdut, (2.63)

It is easy to show that
ut® — (mc)?
-] RN Vi
1 2ul

and

2ul

=@ +(me)t = <mul2 + ('mc)z)é

so that ( 2.63) becomes

1 W ut? — (me)? u? + (me)?
(2nh)? ./0 or (—Qu(—x“)— exp(—iu'y?) - (12 ) \/-—du
However |
do e (mc)z it + (mc)2 3
b 2'u.1 2u12
is square integrable since

oo 1% _ NP a4 2 oo
[ lor ()| (e ot = [ otaPar

12%We can prove other results about the behaviour at temporal infinity of a wave function that is initially

localised on the light cone. We can show, for example, that a state vector initially localized in Ao is a

scattering state (Appendix 20).
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Therefore the pairing map requires that there exist functions € L?(R") whose Fourier
transforms are also in L?(R"). Unfortunately there are no such functions. The Paley
Wiener condition [95] states that a necessary condition for a square integrable function to

have a Fourier transform in L2(IR™) is that the magnitude of the function A(z) say should
satisfy

/°° | InA(z) |

e dz < oo.
Clearly for a function in L?(R*) we have A(z) = 0 V& € R~ so the integrand in the above
is infinite on a set that is far from measure zero so the integral does not converge.

We have seen that it is by no means easy to develop a rigorous point form quantum
mechanics. The many formal schemes that have been proposed cannot be regarded as a
solution to the problem.

Geometric quantisation yields a front form quantum mechanics that is entirely con-
sistent with the familiar instant form. The pairing construction reveals that intra and
interform quantisations are unitarily equivalent. Modified or physical Hilbert spaces are
a necessary feature of the theory and result in our being able to circumvent Hegerfeldt's
famous no go theorem. Constraints on the ranges of certain classical observables are
respected at the quantum level. Contrarywise the point form is catalogue of disasters.
Coupled with the success of the front form in strong interaction particle physics and
string theory (where it appears as the light cone guage) it is easy to see why Dirac, even

as late as 1978, was stressing the utility of the front form [83].
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2.5 Appendices

Appendix 1

Notice that the integral defining Upp exists and is an element of Hp for every ¢y in M7
since it is really the Fourier transform of the square integrable function ¢r;/+/[ %7 | and a

simple change of variable shows that if 1(g') is square integrable then so is

=0 -1\ %
(" ;0"> »@ +7°).

We shall first show that Uyp is an isometry. We have

/. Unpém)(@)Unpén)*(@')aa' =

=4 1 oy @ +eg 1 i
f_oo @) f n(yY) exp(i(z* +)yt) (2 qo ) TR
1 * (a1 T R ?+7 1 1 ditda!
x(%h)% [_mqﬁn(y)exp( (@ +7)) & = ) Ty 9T :
Put
=g +7° (2.64)
SO
=0 =1
i (q ;0‘1 )dq‘ (2.65)

and the above becomes

B R st R e
s by [ | o exa it ! = )
Since ¢/ VIt | is & function of Hardy class

® én(y') )
o |y

has support in {0, c0) so ( 2.66) becomes

dy*dgidut.  (2.66)

o1 exp(iu tyh)dy'

g o o [ on ) exp (4 = )~ et )
- = = 1\ 1% /a1 1 1 1
= [ [ nMerGN = =ty

_/ I¢H(yl) I2d 1
~o |yt

9')dy* dg*
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as required. We now show that the range of Upp is all of Hp. First note that the range
of any isometry U with a closed domain is closed. Proof. Consider a cauchy sequence of

vectors € Ry i.e. vectors ¢, € Ry such that
|| ¢m —dnll<e ¥V m,n>N.
Clearly there exist vectors ¢, € Dy such that Up, = ¢, so
HUom—-Upnll<e nm>N

i.e.
| U(pm —¢n) lI<e n,m>N.

Since U is an isometry this gives

| om —¥n |[<€e n,m>N.

Now Dy is closed so there exist ¢ € Dy such that @, — ¢, i.e.

Il m — ¢ [|— 0.

Also U is an isometry so it is clearly bounded, its norm is < 1, i.e. U is continuous. From

[69] page 496 we see that this implies
| Upn—Up||—0
i.e.
Il 6n = |I—0

where ¢ = Uyp. Therefore every cauchy sequence in Ry tends to a limit in Ry so that R

is closed as required.

Notice that from ( 2.18) the range of Upp certainly contains all elements of Hz that

can be written as

wopem.
(q ;q ) 3@ +7°

where ¢ € H. Now take any function ¢5(g") € M that is C§°(R) then

4 7 i -
n(q) = = +ql¢>3(q ) (2.67)
is also C§°(R). Notice that since ¢5(g') € C§°(R) we have n(g') € L?(R) even though

7

P +7g
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is unbounded. Now there exists a function v in L2(R*) such that

n(@") = %@ +7°),

12 2 2
P(ul)=1n (y——Q_u(lTﬂ)

simply take

where 4! is defined in ( 2.64) then

7l L 702 (o2
w<al+q°)=n((q *;é.l)wé) 2 )

- (‘1’ +23'7° + 7° (mc)2)
=& 2T +

(a’+2q +al) (2q‘(q +7°
q

\_/

2(¢* +7° 2(7* +7°)

as required. Also since 9 is C§°(R™), 9 is the Fourier transform of a function ¢ of Hardy
class, i.e. ¥ = @(* +7°). From ( 2.67) it follows that

se@) = | T5L lq 3@ +7°).

Therefore Upp is onto C§°(R) which is dense in Hp and so, since the range of Upp is
closed (its domain is closed since it is all of M), it is onto Hp.
We shall sketch a proof that we have the correct expression for the inverse. First we

shall show that
(UﬁnUnﬁﬁbH) (yl) = ¢H(yl)'

‘We have
(UFnUn‘ﬁ¢H)(y1) =
L = 1 VT 7° + 7 S
(2wh)z /- ((mrh)% /-m¢”(y) PSR T )< [ ) Ji—g)r[dy>
exp(—#g" +G°)y1)( ) | ! |dg".

Let u! =3 + 7° and the above becomes

1 /°° 1 © ¢n(f') . 121 A1> 5 it o L
—~ exp(su'§)df" | exp(—iu'y )/ y! |du
(2rh)z Jo ((27rn)% -0 V| ] ( ) ( : l
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where we have used ( 2.64) and ( 2.65). Since the term in brackets has support in R™ this

becomes -
1 00 oo Mo
(2rR) /_oo j;w én(d') \/%IT: exp(i-ul(;g)1 — y1))ditdul.

If we assume that we can invert the orders of integration we obtain

[ o Grsa* - v

= ¢n(y?)

as required. Now we shall show that
(Unﬁvﬁn‘pﬁ)@l) . ¢F@1)-

Well
(UnpUpn#p) @) =

— [ 6@ expl=i@ + Do | (

1 o
(2wh)? /_oo (2wh)2

VIt
F+2°\? (3 +7\?
7 ) ( 7 ) Ay’

=1
- +
exp(#(@* +7%)y?) (q =

= [T [7 g ewlinh(@ +7) - @ + 7))
(27R) J—c0 J-00
Assuming that we can invert the order of integration we obtain

1 1

=1 1 =0\ 2 /&l 4 20\ 7
+ + s ~0 a1
q) (q ") 5@ +7 ~ @ +§))

7

1 /sl 20 3
1+§0 . q +q i qO 5(ﬁl—§l)d§1
7 g

= ¢(7")

showing that we have the correct form for the inverse.

Appendix 2
First we shall show that
Yﬁl = Ungﬁ Upy- (2.68)
We have
1
=0y SN 3
€4 ) yt gt

79

L)

1 (o]
(Uup Ut = Uiy [ yhom(@ expl—ia + 701
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As before let

=0
1 =1, -0 1 q 1
u =7 +q sothat dg = — | du".
+gt
Therefore

1 9 3 1\ d
(UH'P'YI'}U'FH({’F) = Unﬁmfo ¢F(‘11) (—‘5) PR exp(—iu'y’) (Wi

1
2
61) V | yl idul'

Integrate by parts
1 | 4 (1 -0 \3

(UnpYitUpndp) = (21rﬁ) f [E&T (_i. ¢p(u’) (—03_51) }GXP["WIUI] |y |dut
et T B B Ve g T (e
nP(2’n‘ﬁ)% 0 it V5 ¥P '(704'?1'1 P Yy Y P q

UP onh)t J—o \ T°

=1
exp[~4(@" +)y'ly/| y ( 2 )" 4t

-(52) [# (e s m-

Since

we have

=0 =1\ 2
P +7
(UnpYiUpp#p) =( = >




as required. Similarly it is easy to show that

5 = UppllinUpp (2.69)
oL
i = Uppll U5
We have
R 1 1 sty fE BT LI ;
(UppIlypUnpon) = Upp — (@ +7°) / ou(y ) exp(H(7 +7)y )( = ) —=dy’"
-0 q VIytl
= Upg [ én(s") [in5r exoli@ + 2 TN T g
q \/ my
1
+ 2
....U / zh ‘-1 1
[ (-1 T ) et + ) (25 L
SO
Up gt = [ e |
snlliaUns = —ify/| y !'@IW
=1IIin n<

as required. Finally, using these results we shall show that

QF = UnpQuUpn-
From ( 2.17), ( 2.69) and ( 2.68) we have
2H12 Ip

UnpQbUsy = gt h2(mc)? i,
wPOnUEn = T (o) 7 T T (m
Using ( 2.11) and ( 2.13) this becomes
2(p° +p')? ; ? 9 7 -7 ;
U nlrn = s+ e \P vl F @)

: 2 (=1DE°+pY
2Ame) @ T P+ (mo?)?
_ 2(po — p1)?(—ih) (_ P00  (p1+po) ) _ ih2(me)*(po — p1)
2po(po — p1) po—p10p1 2po(po — p1) [2po(po — p1)]?
_ (po—p)(=ih) (_ o8  pi+po )_ ifi(mc)?
Po . Po—POp;1  2po(po—p1)/ 2p2(po—p1)’
If we put (mc)? = pg — p} then we obtain

Ld o ii(pd-pY)  ih(pd—-pd) 9
UnsQiUsy = th— + — o =%
ne@nUsn dpy  2p§(po —p1)  2p8(po — ) Om
=Q%

as required. This demonstrates the consistency of our front form quantum mechanics.
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Appendix 3

We wish to prove that Yﬁ1 is maximally symmetric. We were able to prove that 1Y~I-}-
was maximally symmetric using the methods described in chapter 1. Since these were
formulated to deal with ordinary and not partial differential operators they are of no use
per se in our analysis of Yﬁl-. Although we shall give the proof for Yﬁ1 the same method
can be used to prove that lel is maximally symmetric directly in My given that Y} is
maximally symmetric.

Consider the maximally symmetric operator

d
Yl i
HF = ""lh—!yl

on D(1¥3) C1 Hyy where
Hy = L*(R* x R?,d%)
= LX(RY)®L*(R?)
=1Hg®L%(R?).

Let {e;}$2, denote an orthonormal basis in L?(R?) and consider the Hilbert spaces H; =
Hg ® {ei} where {e;} denotes the linear span of e;. Notice that Hyg = @2, H;. Let
A; =1Yﬁ1 ® I act on H;. Let A = @72, A; where A acts on that subspace of Hy consisting
of vectors ¢ of the form ¢ = &2, ¢; where ¢; € D(1Yﬁ1) ® {ei} and only a finite number
of the ¢; are non zero. This operator is symmetric and has defect indicies

(o] (>

(Z ne(4i), Y ne (Ai))

i=1 i=1
({65] page 338). Now define a unitary map U : H; — 1 Hz by Uf®e; = f ([67] page 67).
We have UA;U™! =1Yﬁ1 so that ny(4;) = 1 and n_(A4;) = 0. Therefore the defect indicies
of A are (0,00). Now recall that A is symmetric so it has a closure that will also have

defect indicies (0, c0); an operator and its closure have the same defect indicies since they

have the same adjoint. This operator is maximally symmetric and is equal to Yﬁl.

Appendix 4

The vector field
o, WP o
97°  (g° + (mc)?) oy*
is complete. To see this we must solve

dys dﬁl 27173 d’lj -8

%= & T Frmon) &

=0.
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The first and last equations in this system are easy to solve and we find that

7’ =t+7; and @"5“’=73""’

where 7§ and 73 ~° are constants in R. Now we must solve

dg' _ 27 (t + 78)
dt P+ (E+ T2+ (7 )2 + (me)?
or
dt 7P+ T2+ B + (mo)’
dg* (¢ +7) '
Put

' = (t+75)°

then the differential equation becomes

du® )% + (mc)z_
gt 7t 7

We can solve this using an integrating factor 1/7*. This gives the equation

dusgt” ~—5—8\2 212
o 1+ ({(7°7°)° + (me)*)7

%
"
R

i
k
1

which is easily integrated to give

s—1-1 __

WP =T = (557%)? + (me))F T + 2

or :
oy 12 o, = .'.‘;
E+7)2=7" - (3% + (mc)?) + 27*
o) «
=2+ 24+ T)? + (§5°)% + (me)?)
- - ,
Taking .2 ,
L= T + (@ *) + (me)® ~ 7
= =1
Yo
B+ + (mo)? -7
& -
0

ensures that the integral curve starts at 7§ € R™. The integral curve is therefore weil

defined for all t.
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Appendix 5

Proof that )
25t 0
22 + (mc)z a;y‘l
is complete. To show this we need to solve
a' _ ¥ dy? day® _

@& " Frmor d - @

The first of these is the only one that presents any difficulty. We have
/ 1+ @ +75 +(mo))p' " dgt =2t + k)
or
ope  pead o ool Lol
7 =@ +7 +(mo)g T =2t +k).

Rearranging this gives

T = (t+ k) +\/(t+ k)2 + T2 + T8 + (mo).

If we take
= —32

—02
5 = Yo — ¥ — Yo
= L SR
275
then at ¢ = 0 §* = P}. The integral curve is well defined for all t and %' remains in R*

therefore vector field is complete.

Appendix 6

We begin by showing that

‘We have

1 29 S =
(UHFYI%UFH%) = Unﬁﬂ_—)%/ yl¢‘ﬁ(§) eXP["*((‘Il S ﬁo)yl +79° +f_13y3)]

1
—0+—1 2 "
% (.qu VIt |d%. (2.70)

Now let
W=7 +7° v?=7, and W} =7. (2.71)
It is easy to show that
oul  gul  gul ¢ # 7P
aw oF b | |!TP PP .
ou ° + 7
| Ou® Oud. Oud 0 1 o0 l= g rd
g | o o P
- dud  gud  gud 0 0 1
o a7 o

>



We also require the inverse transformations of ( 2.71). From the first equation in that set

we obtain
—2u'7' +7° = (me)? +7° + ¥ +
so
u — 2ulg! = (me)? + u?® +®.

From this we obtain the expression for 7' in terms of the u's so that

L ut? —u? 48— (mo)?
g = o , =% and @ =u°. (2.72)
Since
3 qﬂ d3
d°g = U
+g
we can write ( 2.70) as
(UH‘P'YI%U'P'H‘PF) = 3
1 4
[ (E5) ()
i T § ¢plu) exp[—iu. ¢ — | d’u
HP(27rﬁ)% o L _ooy p( ) exp| Ql P Ly | P+

1
L 1\, & , P \?,
=Unp 2n)i /d’ﬁ(ﬁ) (—;)'(W exp{—iwy])y/| ¥* | (qo +?jl) d’u.

Now integrate by parts

1
(UHFYY}U'ISH‘#F) = UHPW/

P 4l
Bul (;) ¢p(1)

({4

Q
ER
7 R
Ll W
o SRS
S

e
TN

!
+ [

3,
N
)

D

X

=,

|

&

=,

<

a X
1 7 3
;) ¢p(w) (m) ] :
Now

o 03t 0 9 0 ag 8 (2u1(2u1)—(u12—u22—u32—(mc)2)2)

gl

R - Sl W R Tul?

_(¥+m?\ 8 (@ +)+7" +7 +(me)®\ 8
- 2ul® gt 2@ +7')? ag*

(T +28'P + 7 + 7 + 7 + (mc)? 3
2(7° +74)? ogt
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Using the mass shell condition this becomes

so that

P +7'\? 7° o (1 P
(UHﬁYI}IU'ﬁH‘i&F)z( 0 D+q _(F (Z ¢5(@) (?101?1'1)

N 2AIAG AT

1 1 e o
vovive oo (LT N2 (L N1 @\ @G-+
npP-I%¥pPu P+ ) og 'q°+7j1 2\P+q (§°+Q'1)2

P +q ) og 7°(q° +7')?
=0 —1 _ =0
. g ) (7' -7
= ik Ly AR AN :
(a" +7 ) 0 28°(° + ') (3:78)
— 1
= Y‘p‘

as required.
We now wish to show that
Y5 = UppYiiUsy- (2.74)
Well

UnpY1iUpn s =

R )
B ﬁ) f ¥ o5(q) exp[—H(@" + )yt + T + %) (q :ql> |yt |d°g

7
Hp(zwn) //m/ yd’_(u)exp[_my]( 7 ) ¥ l(q +71)d3u ;f

Integrating by parts

5 1 9 (1 7° : . .
UHﬁYHUFH@=UHﬁW / 5w \i) \Frgr ) P | expl—imyly/| vt |du

sl




Now

o o8¢ 8 82 o6 o o s 9 B F} (?)B
S

BN BT T B EE T EIEE e e ) B
&9 1 1 \
=0 =1\ 2 =8 =0 2 :
o _and BTG 9 q 9 q
vty =-in (L5 [ - o] (%) 0
i.e.
1 1 3 g =3 ‘-;
s o i CTE Y ( ? \'o 1f g \@E@+T)H- 6",,)_
e 7 P+7) oF  2\P+T @+ 7
1 5 _1\T i
7 i U O S (@ +)L - 70(F +1)) |
@+7) |\©+7") 7 2\°+7 @ +73')?
.
O RS & e 77 _( T >1_ 1
7 2\ ° JP@+F)P \F+7°) o7
7T _1{g«+g L -7
T+l @ P
= —ih ﬁ_ [ .‘14.1 77 = @ -7 3
7 7T 4+7°07  27%@+7) 20%@P+7)
0 7 o) 7° ]
= —ifi |z — — 2.75
: [qs <ﬁl+a° 7 T @+ Sl
= Y3
as required.
We shall omit the proof that J
7 = UnpllhUpy- :

It is a straightforward generalisation of the proof given in the case of 1+1 spacetime in
Appendix 2.

‘We shall now consider the instant form position operator and show that
QF = UnpQuUpn: (2.76)
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Well from ( 2.39) and using ( 2.74) and ( 2.76) we have
ILsll= IIp
UnsQi U= = Y242 1P sP Yyt in 2_ 2 2__ 2
p@nUsn P (—H'ZP (mc)2) P 25 (H-P'*"( )2 )2(H -+ H H“_-, + (me)?).

Using ( 2.35) and ( 2.36) we obtain
8 7° g q°
— 8 — — — — -.-—— _——————
Unp@ilpn = m(a" (?1‘1+c‘1°) o7t " 2g°(g° +q~"))+

+
2(p1 — po)ps (=iR) ? \o _@-7) i
((p1 — po)? + 3 + p3 + m?) °+7 ) 07t 22°(@ +q)

e +11):% + P2 + m2)? (b1 +25 = (21— po)” + (me).
Since
P} + 13 — p} + 2p1po — P§ + (me)? = 2p1(po — p1)
and
(p1 = p0)? + P3 + P} + (mc)® = 2po(po — p1)
we have
Unp @il = =it (=g ~ Lo (-0 - s ko

2(p1r — po)Ps . o (=p1 — po) (ih)ps B
2po(po —Pl)( ) ((po p1> ( )6p1 ) 13 )2(2201(170 P1))

2po (Po -p1) (2po(po — p1)
L. ———mz—(pspo ~ PsP1P0 + PiPs — DaPs + PsP1P0 — P2Ds)
dps ' (2po(po — p1))? S i
= mi - Qs

as required. Lastly we shall show that
Q% = UnpQuUsn-
From ( 2.40) and using ( 2.74) and ( 2.76) and then ( 2.35), ( 2.36) and ( 2.34) we have

2" +p!)? (P 8 g -7
_Nl 'y - ! — | —
UHPQH P11 (p0+p1)2 +p22 +p32 & (mc)Q( 'lﬁ) 7 +q1 a_l + _q_o( 7 )

22 22 2
VAL (P> +p* + (mc)?)
R R ey e e

Using ( 2.33) this becomes

ih2(p° + p!)? ( pp 9  (=D(m +Po)) —p?)
-~ = g e L D, R)2 ———-—-
2po(po — p1) (po —p1)Op1  2po(po — p1) (iR)2(po — 1) (2Po(:Do -m))?
_ ih2(po —p1)?p0 8 | ih2(po — p1)*(p1 +po) _ ih2(po — p1)*(p1 + po)
2po(po — p1)? Ops 22p(po — p1)? 22p&(po — p1)2
o

= th—

op1

as required.
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Appendix 7

In ( 2.3.1) we demonstrated that certain generators left the the light cone with apex at
the origin invariant. We worked with the infinitesimal form of the transformations. Here

we show how to obtain the finite form of the transformations. Consider the infinitesimal

transformation

/ ? ! U
2% =2% ¥ =z'—azd, 2¥ =22, ¥ =23+ azh (2.77)

The infinitesimal generator of this transformation has components
(0, —z3,0,z")

i.e. the generator is

& s (2.78)

— =7 (2.79)
Clearly we have
=z (2.80)
and
T =g, (2.81)
If we differentiate ( 2.77) with respect t we obtain

d2§l _ d—ffi d2—:-r~1

TP e G A A -1
T at ° e

= —F
where we have used ( 2.79). The general solution of this equation is
%' = Acost + Bsint.

Since

T o= 2!
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we have A = z!. Also because

dz!

& e
we have B = —z° and therefore

! = gl cost — z?sint.

Similarly differentiating ( 2.79) with respect to ¢ and using ( 2.78) we obtain

s
a -

Again the general solution is of the form

7% = Acost + Bsint.

Since
53 |0= P

we have A = z3. Also
d-fii

— lo=7" o=z

so B = !, Therefore

7° = 23 cost + z' sint.

(2.82)

(2.83)

Of course ( 2.80), ( 2.81), ( 2.82) and ( 2.83) are the familiar integrated forms of the Lorentz
transformation ( 2.77) (c.f 6.63 page 151 [50]). The finite forms of the other infinitesimal

transformations can be found in the same way. All this is well known. What is slightly

more interesting is to find the finite form of the Lorentz transformations with respect to

light cone coordinates. For example the Lorentz transformation ( 2.77) becomes in light

cone coordinates

T=7, F=y'—alyl, =y F=¢"

The infinitesimal generator is
(Oa_ lﬂ |10s0)

so to get the finite form we must solve

&r_o W W AP
=% =TIk =0 =0

Clearly

(2.84)




It only remains to solve
dﬁl
dt

where k = (y%° + ¥*)%. From page 75 [8] we see that this implies

= (7" + k%2

1

sinh~! (y—> =4 R,

k
Since
7 lo=19'
we have
yl R e | yl
7 e = sinh { ¢ + sinh £ .
Now

sinh(z + y) = sinh z coshy + sinhy cosh

1 1
= sinh t cosh (sinh“1 (%—)) + sinh (sinh"1 (%)) cosht

y! y!
= sinh ¢ cosh (sinh‘“1 (—)) + = cosh £.

page 178 [66] so

&<,

k k
Since
coshz = \/1+ sinh? z
we have
1 12
mn-t (L)) = 12 2 L2l
cosh(smh (k:)) =1{/1+ g
Therefore
=1 1
v _lul v
T + T cosht
SO

7' =| y | sinht + y* cosht.

(2.85)

Equations ( 2.84) and ( 2.85) give the finite form of the Lorentz transformation ( 2.77)

in light cone coordinates. Using this method the integrated forms of the remaining in-

finitesimal Lorentz transformations can be expressed in terms of light cone coordinates

(62].
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Appendix 8

In this Appendix we shall make repeated use of the relations ( 2.37) and ( 2.38) as well as

@ =7% = 7% — (me)?) 7+ (mc)? =
= — d sl i
n o and  Ppo 7 ’j

Integral curves start at g, = (5,73, 73) where 7§ € R* and 72 and 7° € R. If we express

7°% with respect to light front momentum variables we obtain
1772 =13
=32 _ 3~ 257" S0 4 27y
J = 571 | — s
] (71'2 + Z + (mo)? 1) Y2 (1!‘3 + T+ (mc)27u>
= 7’72 — JaTts.
This can be quantised to give a self-adjoint operator since

3 0 0
————..2——-
Yop TV or

is complete on Rt x R x R. To see this we must solve

@2_-3 dy° -2 47

=-72, %L =

i R e
The solutions are

s il 12 92,1 2 .1 .
7' =75 T =T +75)icos(t+f), T°=—(T +73)2sin(t+ f)
where
R
] - 1
@ +78)* @ +73)?

and these are well defined for all ¢. The self-adjoint operator representing T2 s

cos f =

—32 i B B
7 = -in (8 5 = V555

Next we have

@ —7% -7 — (me)?)

—13 e
JT= q1p3 = P143 = o T3 — y37r1.

This observable generates a complete vector field. To see this we must solve

@ _ 7 -7 -7 —(me? dgt L @
dt ot Y e Y e

The solutions are
= 2 AL ‘. i 2o a2, 1
7' =" () + 7 )isin(t + ) +0°(F,), T =76 T =-(p"(F,)+7Tp )2 cos(t + f)
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where

7
o e s
(p? (Qo) +73)2

and 0 y
g PE) _ : 7 (T,) .
(Pl (go) +7):E () +R)?
Here we have used p* (¥, + po(yo) = 3. The first expression for sin f is the easiest to

use for showing that the solutions satisfy the initial conditions whilst the second makes it

obvious that cos? f + sin? f = 1 so that a suitable f exists. Notice that gt > 0 for all ¢

because p°(g,) is positive and > (p** ()2 +73%)2. The self-adjoint operator representing
13 .
J " is

T (T —m) 8 P 0
a 2y P oyt |
Next consider
720 o4 _.__2% e 22 +* (mC)Zﬁ__
Yy Zyl 2.

This observable also generates a complete vector field. To see this we must solve

B W @) a
7 i T 7 R et

The solutions are

1 = gl s — £ £
7 = 0% (@,) — 7 )T cosh(t + ) +0*(T,), T =~V F,) -7 ) sinh(t+ f), P =7

where 1( ) ( )
76— (7 7,

hf— ()2 i -—0 —

T Py - 0Py -7

and

P | .
(P™(Fy) —T8)7

The second expression for cosh f makes it easy to see that cosh® f — sinh? f = 1. Notice

that we have 7' > 0 for all ¢ since, dropping the argument 7, we have cosh(t + f) > 0 (in
fact > 1) so (p!’ +p? +(mc)2) 2 cosh(t+ f)+p* > 0. The self-adjoint operator representing

720 §
1S 2) a
=20 _ ( + (mc) 7
o ( o +T3"2+‘7y '

Next Consider

70 = —g'=,.

This generates a complete vector field. To see this we must solve

iy AR dy®
ot A T
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The solutions are

'-l_/-l =§é exp(—-t), '.'_;'-2 = ?gy ga = y?)

These are well defined for ell ¢ and clearly 7 is positive for all t. The self-adjoint operator

~ representing J 05
Jo _ —1_3__ s .1.)
‘]H il (y syl D) -

=2 2
—3 + (mc
0= __(y —2?(11—-—-—) )fa - 7’%1.

This classical observable also generates a complete vector field. The equations for the

Next consider

integral curve are

@ _ @Ftm)) d_,  dp
b ot dr U

The solutions are given by

- v 2] . s g
7=’ (T,) — 7 )2 cosh(t + f) +p1(y_0), 7 =72

7 = - (g,) ~ 78 )3 sinh(t + f) (2.86)
where i i .
i -
COShf g (;‘:/zo_ : (.g_"))l 1 = 02 f (y())_sz 1
" (@,) —76): ¥ (@,) -7 )2
and

sinh f = — 02_?% o
(" (G,) — % )?
As an example we shall show that these satisfy the differential equations above. The only

non trivial case is the first equation in the set. From ( 2.86) we have

dy® 1
— =~ (@) ~ ) cosh(t + 1)
whereas
. T4 (me)?
2yt

2((%* — 73")% cosh(t + f) + p!]
Using cosh? — sinh? = 1 this becomes

20p% —78) cosh®(t + £) +2(0% — T§)* cosh(t + £) + 1" + 18" — (0% —FF) + (me)?
2[(p** - *y‘%")% cosh(t + f) + p?]

_200% = 73)3 cosh{t + £)[(” ~F§)* cosh(t + f) +p'] + (me)? — (mc)?
2((p% - 73°)2 cosh(t + f) + pl]

56

(0" ~T8) cosh®(t + £)+2(p” — 78")? cosh(t + f)p* + " HF +Hp” —TF) sinh?(t + SyHme)? -

OO TP P Ty PN | %




=~(" %)% cosh(t + )
as required. The self-adjoint operator representing T4

=30 _ 7+me?) o P
J%(‘):zﬁ( a_1+_£_:._2__:‘(;:i)6§‘3+ Y )-

Finally we have

2 2
-2 o (@ =7 -7 = (mc)?)_
J =Yy T — 2_y.1 ™.
This observable generates a complete vector field. The equations for the integral curves
are
= (0" (g,) + 78 )isin(t + f) +1°@,), ¥° = (0 (@,) + T2 ) cos(t + f), =73
where
2
Yo
cos f = T
(®*(7,) + 782
and 5 1
afo BP@ P

W%H%ﬁ W%H*V

The self-adjoint operator representing i

P =0 AL _@_
Vo 2‘1 o7

Appendix 9

In this Appendix we explain why it is that the front form generators obey the commutation
relations ( 2.49). This is simply a consequence of the fact that we have

g S OV o ooy e (00

v
gk g” dq" £

For example
6y° By Jp.u 703
dg* B

or restricting this to the front

=13
+ T = p0q3 o q0p3 +p1q3 = q1p3

W0~ _ 03, 13 3,0, .1 03
== -~
B ggs” —PYHPY (" +p)
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Appendix 10

Firstly we have
JO =glm.

J% generates a complete vector field. To see this we must solve

The solutions are
7' =Toexp(t) end ¥ =7p.
Therefore the self-adjoint operator representing Jo! is
B =g+ 3)
Next consider
Jo =gz,

Again we find that the J% generate complete vector fields. To see this we must solve the

equations . 5
d;lt=0’ %20’ dydts =
The solutions are
=% TTU=R" T=Tt+R

and these are well defined for all t. The self-adjoint operators representing the J are

JE = —ingt 8;.
Consider
74 = w4 T - — (o).
This generates a complete vector field. To see this we must solve
Ty, T -7 ), B0
The solutions are
7 = (0" (@) + 78 )7 sin(t + £) +2°(T,) (257)

=

g 2.1 5
7 =—0" (g,) +7 Vicos(t+ f), T =73

where f is such that

o Lz
Yo and sin f = 4 (10)

COSf:W 12 (= —g2\ 1 125 a—gly &
(P (T,) + 78 )7 (P (gy) + 78 :
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It is easy to see by differentiating these expressions that they are solutions to the differential

equations. They also satisfy the required initial conditions. This is obvious except in the

case of ( 2.87). Put ¢t = 0 in ( 2.87) then

7 =p'(T,) +2°(@,) =7}
since

p'+p° = -m.

It is also important to notice that ( 2.87) ensures that ' > 0 for all . The self-adjoint

operator representing J' is

ey D2 22 i
B gl g L o U —(ugt B 1P
I ot 27t oy 27')°
Consider
JB = —'@"3—7?2 + ﬂ2T3

This observable also generates a complete vector field. The equations we must solve are

d@-2

a7 W _p W
dt

=:—_3 =7
y) dt y7 dt

The solutions are given by

= 2 2,1 . 2 2, L L .
T =—(To +7)%sin(t+f), T =T +7 )2cost+f), T =7p

where 2
wad oy
Yo - Yo
COSf‘—"——'"'-—-—I and smf=—-:—7.
@ +7)3 @ +38)2

The self-adjoint operator representing J2° is

Finally it is obvious that we have

o33

=7, Pi=7, Bi=7

Appendix 11

We have

ol

1
Yhexp(£(@" +7°)) (q o) =FiewE +1) |t
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For example

Yaexp(—(@' +7°))

7
= ~ihexp(~(7" +7°)) K,o 1)

.+.
ke =1 1\ 1
l(q°+ql) (@& +1) - @ +7)%) L -7 (P47 :
7\ 7
7

2\ 7

1(7°+¢ 1
—- il v aen b 1
"nex})( (q +q )) [ 7 ( ao *h B ao_i_

+
1 3
1(P+7\? 1 7° iaoz__q1 7 —7° P+ g
= —ih it o a0 ook Ea) q g T4g
VR L n( ? ) TI\PeE) TP TR\ 7
L ! 2 _n2
— —iexp(—(@ +7") (50”1)5 LDl e e g g
7° Ao2\7°+¢ 7 27°(2° + )
1
; ’ +¢\4 1, @-¢
= —ifexp(~(g* g —
ifexp(—(7 +Q))( ) [ h+2'ci°('(j°+ 2-0( +3)

as required.

Appendix 12: Proof of Orthogonality of Generalised Eigenvectors of I1; in Hy.

Consider

o0
< GO\ Ih) | GV, 3, ITT) Sa= / Y2 [2mhn(y)) 2
0
i 1/2 -1/2 (_i' )l
exp (hr\a(y)>y [27Rn(y)]~/* exp = a(y) - dy

= [T exp (o) - 1)) do.

Make the substitution z = o(y) then the above becomes

n/ exp( #{X — X))d _—5(’\h*)=5(,\-,\')

as required.
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Appendix 13: Proof of Completeness of Generalised Eigenvectors of II;.

‘We have

fe ] 00 P
[ <GOwIm) | GO, ) > dA= [y {anhn(y)] 2 exp (%Aa(y)) v/ 2mhn(y) 2
o0 -0

b (—%)\a(y')) dA
= 422|226 (L2
g2y 2 ()|~ )28y — o)
b= |
=y /2 2 [hn(y)] 2By~ 20 (y) 6 (y — o)
=y6(y — o)

as required.

Appendix 14: Derivation of Generalised Eigenfunctions of | II; |.

We have
(M6 = [ A5 R P ep@ow)dNar (289
where _
o) = [ S/ A pmtn))] 2 explida (o) ) (289)

Substituting for ¢()\) from (2.89) and dividing the range of integration in (2.88) into

(—00,0) and (0, co) we obtain
(1T )= (N znhn)] explidow) [ "/ nn )] exp(oy )l )dy'd

{o/o] {o'e}
+ / M2 [2nhin(y)] "2 exp(ida (y)) f -;—,y“/ 2erhn(y)] "2 exp(\o(y'))¢(y')dy'dA.
0 0
Making the change of variable A — —\ in the first integral gives

1

(1Tl &)= S0 2{2mnn(u)]F exp(-ido @) oA {omhn(a/)I 4 exp(— iAol ) dy'dr

+ [ 2 emnn@)l V2 exp(ido) [ o min(y)| V2 exp(ido(y))(y )i d

o0 o0
= [ X x2lamnn@)) /2 explivroly) [ yl,y'l/%zwnn(y')r”’* exp(ivAa(y"))$(y')dy'dA
v=+1
and therefore
G\ vy, | T |) = y*/?20nn(y)] "2 exp(ivia(y))

as required.
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Appendix 15: Proof of Completeness of Generalised Eigenfunctions of | I |.
We have
e o0 .
|3 6w v T DG, | T Ddw
v

= [ Mm@ explivo )y amtn@)] 2 expl—ivwo(y)dw
= 2 vty P entn()l ™ ()2 exp(iv(o(y) = o(y)dw
= / Y2y R 2m b ()] Y2 2 ()] 2 exp(—sw (o (y) — o (y))dw
- /0 Y2y *amt(y)] V2 (2mhn(y))]| "V expliw(o(y) — o(¥))dw.
Make the substitution w — —w in the first integral and the above becomes

/_ Ooo y M2y 2 2n ()]~ 2 2 hin(y)] V2 exp(iw(o (y) — o(y))dw

+ / vy P amtin(y)| 2 [2rhn(y)| 2 exp(iw(o(y) - o(y))dw
= /_ et ()] nhn()] M exp(iu(o(v) ~ o (4))dw
=yb(y —y)
as required.
Appendix 16: Proof of Orthogonality of Generalised Eigenfunctions of | IT; |.

< Gw, vy, | |) | G@', v, y, | T |) >Hq=

f 2 /2 2mhn(y)| "/ exp(ivwo (y)y!/ 2 Ratin(y)] " exp(~i/'wo(y)
Y
: v

= /Ooo m exp(#{v'w’ — vw)o(y))dy.

Let ¢ = o(y) and the above becomes

1 e 1o _ 1ot
o /_wexp(v,(uw vw)z)de = §(v'w' — vw).

A little thought shows that since w and w’ > 0 and v and v/ take only the values +1 we
have §(v'p' — vp) = 6,6(w — w') as required.
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Appendix 17: Derivation of Generalised Eigenfunctions of Hp.

We have
(o] - a '
br(w) = [y emn(u)] 2 exp (éf—cAj(I A+ (mo)? ) Go() exp(~iAo(y))dA f
where

JoN) = [~y emnnl ™ exp(—ida () o(y)a'-

We split up the first integral as

-me 0 me o0 ’
/ wdA / dh + / wdA+ / d. ,;
—00 —-mc 0 me

In the first integral make the substitution ;
2
T (%) - (me)?

with A restricted to (oo, —mc). This map is bijective (on the range of integration) and

has inverse

The Jacobian is

_ dw
o (me)? e
2 (-2—/(E)2=(mc)?)?
Since A = —00 = w = 00 and A = —me = w = mc? we obtain

/_:c ...d)\=/::2 yM2[2whn(y)]~Y? exp(itw) exp (w(y) [-%’- - \/(%)2 - (mc)2J)
o) 2 l
x ( /0 v~ 2rhn(y)] " exp (-—w(y') [‘% - \/(%) - (mC)2J) ¢o(y’)dy')

dw

1/2

c (1 - (mol )
2 (—Z= /(5 (mo)h)?
oo v emhn(y)] 2 explio(y)[- 2 - /(2)? — (ma)?)
 Jmez (ma)? 1

(1~ o)

) /oo y 2 2rhn(y)] "2 explio(y) -2 — /(2)2 - (mc)?]) 1
0

s 172 El7¢0(yl)d?/ exp(—iTw)dw.
(30 (mc)
8 ( (~-‘;—’—\/(§)2-—(mc)2)2)
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Similarly in the second integral we make the substitution
2
Rl (E) — (mc)?
c c

then
dw

N Gy (me)?
2 (_."i+\[—=)2_(mc)2)2

Now A= —-mc=>w=mc?, A\=0= w =00 80

[ = [ mn) Y expliru) exo (w(y) {-yg' + \/ (2)'+ (mc)ﬂ )
* (/omy'_l/z[%ﬁn(y’)]‘” Zexp (—ia(y’) [—% + W} ¢o(y’)dy’)

dw
N & (mc)?
2 (—24/(D)2+(mo)?)?

_ /oo y /22 hin(y)] /2 exp(io(y) (2 + /(£)? — (mc)?))

me? & (mc)? 1/2

2 (1 I :y.+\/('3)2 (mo)2)? )
o0y 2 (2rhin(y)] Y2 exp(io(y) [~ L + 1/(2)2 — (me)?)) 1

1/2 ‘“¢0 y')dy' exp(—iTw)dw
c(1— {me)?
. (—Er/(E)—(mo)P)?

continuing in this way we obtain ( 2.60).

dA =

1/2°

Appendix 18: Proof of the Completeness of the Generalised Eigenvectors of
Hi.

[ S 60wy RGO v ny, HE) =

e o

1 Sy o) exe (h (‘“” v J (‘j)Q—(mc)z) a(y')) g2

exp(F(42 +v\/(2)? — (M) ((y) — oW/ 2y Rmhn(y)]~ 2 2mhn ()~

o)} exp (~ (457 + 0y = (me?) o)) - s o )
c (me)?

2 (B2 v /(2 =(ma)?)?
[oZ
= :
me™ un 2 (1 (,,.__U\/-I)g (mc)3)2>

Make the substitution @ = 4 (%2 + v/(%)? — (mc)?)

1 1 —00 ]
= yy'3 [2mn(y)] 2 [2mn(y")] " F (— /_ mcexp[iQ(a(y')—a(y))}dQ+/_ mtzxp[iQ(U(y')—cr(y))]dQ
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~ [} eliet) - s)ld + [ expli@o) ~ o(u)1de)
=y 2y @) 260 () ~ o)) = y8(y - o)

as required.

Appendix 19: Proof of the Orthogonality of Generalised Eigenvectors of Hi.

Consider

[ i (oo T 2 + o/ BT,
v c me)2 me)2
1t (- s )l (1~ o s

Let z = o(y) then
642 +vy/(2)2 ~ (me)? — (B2 +9/(2)? - (m)?)
c — ("w)z c e (mc)2 i
\/|§ (1 (“6"‘“”\/(""?‘)2“(mc)2)2)1\ﬁ(1 (’?—ﬁﬂ)z—(mww)

A case by case analysis shows that the only non zero contributions come from

" 6(’% < Yof (%)2 ~ (mc)? - (@ + U4/ (%)2 - (mc)z))‘sm‘/&uﬁ

elogi (mc)? 5 (. (mc)?
4 (B2 —p/(2)?—(mc)?)2 : (B2 -0, /(£)2~(mc)?)?
and the result follows by Landau and Lifschitz (vol 3 pagel5).

Appendix 20: A State Vector Localised in Ag is a Scattering State

Consider . ,
o0 F:
i [ Xn® PG P

T—00 0 y

Put

) = | Xfa,6) (%) Iy"’| oh(y) |
_ | Xen®) 2| J22 y*/? (27T (y)] =1/ exp(Ao () exp(— 35 (A? + (mc)?) g (X)dA |2

Y
<1 X ®) P 2nbr @) 1 BHO) | a0 (2.90)
Now J)%()\) is integrable (see proof of spreading) so (2.90) becomes
"“—“““"‘—‘l Xiay) ((;)) Fa L:(y) say. (2.91)
Then
o & g
fo L.(y)dy g/a Tyl < oo i a>0 (2.92)
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From (2.91) and (2.92) we see that fr is bounded above by an integrable function v.i.z
L (y). Now

lim ¢f(y) = 0.
To see this consider ( 2.60) and note that the Riemann Lebesque lemma applies since
o0
[ncz Z G(I-") v,w, Hrhy) < ¢%(y) l G(l"‘) v, w, Hﬂ)y,) >'Hn dw = ¢%(y)
pv

Hence we have
rll{go b ‘r(?/) =0.

Therfore by Lebesgue dominated convergence

. m m .
Jim . fr(y)dy = fo Jim_ f-(y)dy = 0.
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Chapter 3

Field Theories

The idleness I love is not that of an indolent fellow who stands with folded
arms...and thinks as little as he acts. It is the idleness of a child who is
incessantly on the move without ever doing anything...I love to busy myself
about trifles, to begin a hundred things and not finish one of them...eagerly to

begin on a ten-years task and to give it up after ten minutes.

JEAN-JACQUES ROUSSEAU; The Confessions.

In this chapter we shall explore the possibility of constructing light cone and light front field
theories although for the light cone the canonical approach to a second quantised theory
will prove impossible to carry out. We shall concentrate for the most part on developing a
field theory for the free neutral scalar boson and merely indicate how we might construct
a field theory describing free fermions. We show that the field theory is relativistically

invariant and naturally related to the light front quantun mechanics described in chapter
2.

3.1 Spin Zero Particles

3.1.1 The Scalar Particle in Light Cone Coordinates in 3+1 Spacetime

It may be thought that the formulation of a quantum field theory in light cone coordinates
should be relatively straightforward. In this section we shall see this is not the case.

A free scalar particle is described by the Klein-Gordon equation which in an arbitrary

coordinate system is
I 8 i; 0d
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where 1 = mc ([52] page 304). Derrick has given the expression for the Klein-Gordon

equation in light cone coordinates [58]. The corresponding Lagrangian, which is absent

from Derrick’s work, is

1 2y* 8¢ 8¢ way ( ) 2* ( 54‘)) ny*
L i bl T s
2[2,;(|yl373y’° lyl \oyk ; ly|o o)~ Ty1* e
(3.1)
(Appendix 1) where v* are the components of the light cone observer’s four velocity.
The difficulty in formulating a field theory based on the light cone is due to the explicit

dependence of the Lagrangian ( 3.1) on the spacetime coordinates.

3.1.2 The Scalar Particle in Light Front Coordinates in 141 Spacetime

We can deduce the form of the Lagrangian for the Klein-Gordon equation in light front
coordinates from ( 3.1). We need only observe that in a 2-dimensional spacetime the light
front coordinates are identical to light cone coordinates adapted to an observer at rest at
the origin and restricted to that region of spacetime corresponding to ¥ > 0. Therefore

the light front Klein-Gordon Lagrangian is given by

00 9¢ <3¢> &1 L
L= e ; 2
Since the Lagrangian does not have an explicit spacetime dependence it should be possible

to derive a field theory from it. The Euler-Lag;range equation is

6y or 8¢
ie.
0% %9 2
—Q-a—y—a—;--é—g+ weed=0. (3.3)

Using the results of Appendix 2 we can show that the light front momenta are given in

terms! of the field by the following expressions

B % /T"dy S %f (%)2 dy (3.9)
Y TR

([47] 2.45 page 69). The variable 7 conjugate to ¢ is given by

1

= 'n.,,ﬂ'u

2 . .
“In this chapter we write P™ and g¥ ¥ to denote P° and g'? etc. This enables us to reinforce the

distinction between Minkowski and light front coordinates.
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([46] 2.61) where

(see Appendix 2) and n, is normal to the light front. In light front coordinates this

becomes

o¢
T =y = 5" (3.6)

"We could pass to the quantum theory by imposing the canonical equal 7 commutation

relations
[Py, 7),w(¥/, 7)) = [g—ﬁ(y', ), ¢y, 7)] = i6(y' — y) (3.7)

with all other commutators vanishing?. There is no guarantee that imposing these commu-
tation relations will lead to a relativistically invariant field theory. We must demonstrate

that the conserved quantities as given by ( 3.4) and ( 3.5), with the canonical commutation

relation ( 3.7), satisfy
[PH, 4] = —id¥ o (3.8)
and
[J*, @] = —i(y*0" — y" )¢ (3.9)

([57] page 367)%. Unfortunately it appears that canonical quantisation fails us in this

instance. We have

[P7,¢] = [% / (%)2 (m,y)dy, d(7,y")]

2
=3 [ s, (3) @l
If [B, 4] is a ¢ number then
(B, 4%] = 2[B, A]A. (3.10)

?In this chapter we take A = 1
3For example here it is shown that a necessary condition for a field theory to be relativistically invariant
is that the generators for the t=constant hypersurfaces satisfy

8¢ _ . .0y 8¢
dzv = Bz oyt

[_P_“r ¢l = "iﬂ“"

This is equivalent to :
% g g = ;L OV w0
gan? ¥ =~ 15 o™ By

[PY.0] = «ig“"% =—id"¢

as given above.
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so the above becomes

~3 [ av (180, 5o (gt + S8t ), S, ).

Using ( 3.7) this reduces to
a
5 [ @bty =)o) = 322 )

o o DEN e

= 5 (2 5 ) = 52679
=—i0"¢

which is the same as the result given by ( 3.8) . However

(PY, 4] = —%% (u%bz (gﬁ) )dy,¢('r,y)]

2
- _%.;. / dy (;ﬁw(n ¥), 8(r, )] — [(-‘};’) (1,9), 6(, y')})

—~—/dy¢( ), ( ) (my)]
= f dy ([¢(T,y), 3 —=(1,9)] ay(f,y)+ y(r,y)[qs(r,y’),%'g(r,y)l)

=% /dyw(yl - y)a_;{:

1 0
= Ea—z (3.11)

whereas ( 3.8) gives

[PV, 9] = —idV = ~ighBup = —i(g™VOy + g8y 9)

{28 29) 512

which differs from ( 3.11). It is not at all surprising that the canonical formalism fails.
For a field theory whose instants are spacelike hypersurfaces the cannonical commutation
relation

[p(z, ), ¢(x,, t)] =0

makes intuitive sense since it derives from a need to preserve causality. However, in
a theory based on null hypersurfaces things are altogether different. A non vanishing

commutator between a field evaluated at two points on a given light front does not imply

acausal behaviour.
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In the light front theory of the scalar boson developed in [35] (3.17) and [38] (2.15) a
consistent field theory was obtained by taking

[o(¥', ), (y, 7)) = %e(y' ) (3.13)

where e(z) denotes the Heaveside step function which is equal to -1 for z < 0 and 1 for
z > 0. Can we rescue our scheme in a similar fashion? Suppose we take the equal T
commutation relation as ( 3.13)%. Notice that on differentiating ( 3.13) with respect to 3’
we recover ( 3.7) so the commutators are not contradictory. The commutator [P, ¢] as

calculated previously is unaltered. Consider now

1= [ (- () )
=3 (- w e [0, (3) )
=——( /u [¢, ¢]¢dy+f[¢,a¢ <o )

= % (— / ;f—e(y —y')pdy + f i6(y — y’)g—zdy)

=-( fu ey = y’)¢dy+za§,)

Using the field equation this becomes

(Lo (5w ).

Perform an integration by parts with respect to y in the first term

1 6¢ 8¢ o¢

2(/“5(1" y)( c’iy)d +6y)
17,04 .0 .09\ 1 9¢' | 9¢
2 (55 +iggtigg) =3 (¥ (—a—;+5y—))

o' | 0¢
(87 & )

which agrees with ( 3.12). We can also show that { 3.9) is satisfied. For example in
Appendix 3 we show that

(J™. 0] =i(r(8r + 0y) — yOy)9.

“We shall give a much more compelling reason for imposing this rather peculiar commutation relation
in section (3.1.3).
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This shows that the field theory is relativistically invariant if we impose the commutation

relation ( 3.13). In Appendix 3 we also show that the generators satisfy the correct

commutation relations.
We wish to show that the Heisenberg equation of this quantum field theory reproduces

the light front Klein-Gordon equation. We have

P-r=PT"“Py

—%(/(Z—ZD i [we () )
% ((1 -55) dy+% / n2¢2dy)
= (2 / (gﬁ;i) + u2¢2dy> : (3.14)

The Heisenberg equation is (45.23 page 346 [60])

=338 [ + ay) (7, v)dy, $(7,9)] (3.15)
SO 5
aig’@ —5-2;/@# ¢*(7,9) + (Zy) ('F,y), ( )l

w3 [ (e S+ 1(52) e St
Now if {4, C] is a ¢ number then [A?, C] = [4, C]A + A[A, C] = 2[A, C]A. Therefore

¢ 11 ) Caar it ol o6 ,. aqsu
a%af-ﬁ &y (zu2t¢<r,y),55(m)1¢(w>+2[55(r,y),— Dge(tn)

2

= 53 [ (2200~ D0(2,v) - 2582 0), S (R ISR, y))
zi.é (m% 9)+ [ dyzi 86(yy ) a¢( 7y ))
=%< )+f66(y 9) gz( ,y)dy>

(u%(%,:a) = g—ggﬁ,ﬂ))

2
(M(f, P %%<+.g>)

= BN

so that . .
3(15 BA o By
a 5 = # &(7,9) — 5@3(7‘:9)

which is the light front Klein-Gordon Equation.

172




3.1.3 Dirac’s Theory of Constraints

In this section we look more closely at the light front field theory of the neutral scalar
boson. Clearly ( 3.2) is singular and ( 3.6) is a constraint. A careful application of the
method for handling constraints developed by Dirac [34] gives an elegant justification for
imposing the peculiar commutation relation ( 3.13).

The constraint

. OO
% = By
is primary but not first class as we shall now demonstrate. Put
¥ =n(g) + 55 (3.16)
o
= [6@-9) (v) + 5 av. (317)
Now
SU(y) 69(y)6T(y
[2(9), V()] = / dy ( ) MEZ)) 6%((3)) - d,g))) . (3.18)

It is easy to see from ( 3.17) that

8@ _ 0 (s _ 3¢ 05(g — y)(r(y) + $2(v))
w0 = 3w (09 0+ 5,0)) - 5 ( 538 )

__06@F-vy)
s (3.19)

and

5¥@) 8 (o 86(7 — y)(m(y) + 52(v))
S (6@ ) (w(y) o ay(w)) = ( 4

Using ( 3.19) and ( 3.20) in ( 3.18) we have

(@), W) = [ dy (=807 - 0) 580 =) + 55 - D 28 )
= [ & (800550 - ) +5@_y)£5(yf_y))
«2/ﬁww y%~ﬁy—y) —{/@My Y5 My—J)
= —25 [ au6(5 - 8 ~ ) = ~285 ~ )

# 0.
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hence ¥ is not first class. Let

'H“*ﬂ'%——ﬁ

or
_ _909¢ 999¢ (99 2 .2
="ayor T2 (2376y+(3y) +“¢)
__0¢0¢ 093¢ LAY
——6y87+6y3r+ ((?95) T
= §(7r2 + p?o?). (3.21)

We must now investigate what kind of consistency equations arise when we examine how

the constraints evolve under the Hamiltonian

B /dy(‘H-{- Uw)

where U is a Lagrange multiplier. Now

¥ (') = [T, H] = [, / dyH] + [, f dyUw).

Remembering the rule that describes how the Poisson bracket is to be extended to quan-

tities involving Lagrange multipliers (see bottom of page 24 and top of page 25 of [34])

this becomes
(@), [ v+ [ au)e, ¥
= w0, [ a - [av2g o ~v)
@), [ dyH) +20'(y). (3.22)
If we put

P=/@H

then it is easy to see that

6P 6P
e m(y) and pryen i w(y).

Using these and ( 3.19) and ( 3.20) in ( 3.18) we obtain
W), [ a) = [ay (-8 - n) - 00/ b)) (329

or
—-gy——u 26(y/)

and subsituting this in ( 3.22) gives
. By 55 ou , ,
U= b—y-,(y) p ¢(y)+23y,(y)-
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Consistency requires
U~ 0
i.e.
on / 2 6U
W(y ) —puie(y) + 2@7(1/’) ~0. (3.24)
According to Dirac this is a consistency condition of type 3 (see page 14 of [34]) since it

imposes conditions on the U’s. At least formally we can see that
yl
2W=n(y)-u? [ $/)dy +k

is a solution of ( 3.24) (k an arbitrary constant) but Dirac points out that we require the

most general solution. To find this we must obtain the solutions of the equations

[V@)ew, v@)dz~ o (3.25)

(c.f 1.30 page 16 [34]) which become

s / V(x)z-;—ya(y —z)dz ~ 0

i.e.

ov

'a—y- =~ 0. (326)

Only quantities that are strongly equal to a linear combination of constraints are weakly

Zero so
aV f 7 ! /
— = [ do f(2")¥(z
By Fz)¥(z)
and therefore
V) =y [ da' f) 0.
This gives as the total Hamiltonian

Hipre / dy[H + UT + v(r)V (y)¥]

(c.f 1.33 page 16 {34]). We have no secondary constraints (first class or otherwise) so this
is the final form of our Hamiltonian, we do not require Dirac’s notion of the extended
Hamiltonian (2.2 page 25 [34]). Dirac has given a prescription for quantising classical

systems with second class constraints. Suppose we have a solution C(z,y) of the equation

[ e ¥, ¥(@) = 8(z - 2). (3:27)

We define a new Poisson bracket -
(€@, 1)l = (@) o) - [ d= [ dplg(a), ¥RIC( p)(FE), n(w)]
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(2.30. page 41 [34]). This Dirac bracket satisfies the crucial identity
(¢(a), ¥@)o = (@), ¥w)] ~ [ dz [ dpletu), UNCG P)2(0), L)

= [€(=), ¥(@)] - [ delo(a), WGz - y)dz
=0
(page 42 [34]).

We should demonstrate that the classical field equation is equivalent to Hamilton’s

equation with Poisson or Dirac brackets.

With Poisson bracket we have
¢ ~ [¢, Hr]
~ 9, [ () + U@IW) +v(n)V Q) ¥))]
~ 16, [ @) + 1, [ U @¥@) + 6, [ vV ()2 LE)
~ 1o, [ aH)+ [ U8 ¥ + () [V @)lg, vw)

Now

. A0 8L O0WNe. nped & BF B W )
[6(y"), ¥ (¥)]= /dy[(%@— a—g(a—%%))ﬂy—y )d’(y)(aw(g) ~5% ( 52 ))6(y—y)(fr(y)+g—($>— 0]

= [ dgea - )63 - v)

=6(y —y)

SO

~ 18, [ ayrtw) + [ V@)W - o)y +u(r) [ V@)s vy

~ 0W), [ @) + V) + vV ).
Also

o)l = [ e Kam) 5 (af)) - 990 (55 75 (a5 )

o - ) (5 () + 290 )]
= [ Doz - 9)

=7(y)8(y' —v)
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and therefore
0@, [ Hay) = [(6w), Hidy = 7(0).
Clearly
¢~ 7(y') + U®Y) +v(n)V(Y)
= )+ 300+ T ).
The last term is weakly zero by ( 3.26) and using ( 3.24) we obtain

32¢ 67T 1 a'n' 2 '
e~ 5y +3 (o T #90)
ie.
8%¢ 8% 3 p 4
Byor = oyt + uo(y")

which is the correct equation of motion.

It is easy to see that we shall still have the correct field equation if we work with the

Dirac bracket since in that case

(¢ Hrlp = (6, Hrl - [ dz [ dpla(w), ¥()C 2 p)[¥(), Hr.

The second term is clearly weakly zero. To see this note that
[¥(p), Hr] = [¥(p), H(y) + UW)¥(y) + v(T)V (y) ¥ (¥)]

= [ W), 1) + U@y +v(r) [120), V@) ¥ @)y,

Now
[2(p), V() ¥(y)] = [¥(p), V)L () + V(®)[¥(p), T(v))]

and first term in this expansion is weakly zero so that

@), Hrl~ [[¥0), 1) + V)V @)ldy + () [ VE)ITE), V)

51r 2 B’U,
R — — + 20—
By ¢ ¢ By
~0
by ( 3.24) and ( 3.25).
We now wish to show that the Dirac bracket reproduces the peculiar commutator

( 3.13). First notice that it is easy to show that a solution to ( 3.27) is given by
1
C(m,y) = _Ze(y =T IZI).
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To see this remember that

(o), U(e)) = ~25-6(y - 2

[ ()2, 2@ = [ dyzety - 92550 - )

= 35 [ ey = 2)6y = 2) = 55me(z - 2)

20z
= §(z — )
as required. Now

[¢(y, ), ¢/, 7)Ip = [b(y, 7), By, 7))+
[ s [ dntota ), w(s) = S, m-D7elp — )lr(r) — G, 84,7

= —6(y — s)e(p — s)%&(p i

= 2ey—1) (3.28)

so the nonstandard commutator ( 3.13) is the Dirac bracket. We see that ( 3.28) and
( 3.13) differ by a factor of 1/2. Previously this factor was absorbed in the definition of
the generators (see ( 3.4) and ( 3.5)) 5.

3.1.4 Discrete Light Front Field Theory in 141 Spacetime

We take as the inner product on the space of solutions of the light front Klein-Gordon

Equation
o0

. a * 0 *
(¢1,2) = —i /y:—oo (¢1E¢2 2 '§¢1¢2) dy
([56] equation 3.28 page 44). It is easy to see that the normal modes are
1 (K +pd)7 + k)3
Vir (B2 4 )

where k € R. We can check that these satisfy (3.3) and the usual orthonormality and

expli(k + (k? + p?) %)y — i(k? + p?)31]

completeness relations (Appendix 4). We may therefore write

2 4 pu2)% + k)3 ) 1
$(y,7) = f {a(u) \/lz; (% (;:2 41 )#2)+ B2 explih -+ (K2 + i)y — (k2 + p2) b+

5We remark on a slight inconsistancy in the notation. Properly we should denote the field ¢ of this
~ section by a new symbol say @ which is related to the previous ¢ by the equation ¢ = 1 / V2. Then it is
obvious that we have ﬁ',z] = 1/2|¢',¢] = 1/4¢(y’ — y) and for example P = [ (%)2(13;. Also the equation

(*3.21) should be written H = 1/2((%%)2 +u%F) = 1/4((52)* + p*¢*) which agrees with the Hamiltonian
density in ( 3.14).
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1 (K + p)? + k)2 o 12 2yl 3
a+(u)\/21_7_r 021 ) exp[—i(k + (k* + p*)2)y + i(k* + p?) ‘r]}dk (3.29)

or

o ,u2 2 2
oo g (E2 a2 o

where u = (k2 + %)% + k. If we have

[a(u),a™(2)] = 6(u — 0) (3.30)
then to ensure that '
[y, 7), 65, 7)) = 3e(y - 9) (3.31)

we must write

= AT 202
¢(?/v7')=/0m{0'(u) ﬁ\/jtl—f exp[’iuy—~i< ;;Lﬂ )T]-Fa+(u)7—6% exp[—iuy+i(u ;u“ )T}}du.

We show in Appendix 5 that ( 3.30) ensures that ( 3.32) satisfies ( 3.31).

Expressing Generators in terms of Creation and Annihilation Operators

We wish to obtain expressions for the front form generators in terms of creation and
annihilation operators. We shall use box normalisation in a cell of length 2L. We require

¢(—L,7) = ¢(L,T) so that u =nn/L, n > 0 and

=3 uy — i el Gy " +u
s ol (252 g (2]

where [ay, ay] = 8yu8.

‘We have

2L () o
=%/Ld (z\/_\/_exp[wy-i(ﬁ;ff>r}+

<yl (£22)])
Since we are dealing with conserved quantities it is sufficient to calculate P at 7 = 0 (see
[47] page 51) so

1 (L

o Uy y wua, . *
= Lo (5 e oo - iy i)

S8Clearly by summation over u we mean summation over the associated n
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= / yZZ(\/_\/_exp[ iuy| — \/_\/__..exp[ zuy])(\/“\/_._ekp[zuy] \/_\/_ exp|— z'uy])

uuau i : g U’U.G,u + . -
=3[ duZZ( e expliy(u+ )]+~ expliy(u~ @)+

+ ;1_"“ L expliy(a — u)] — ?a;-%; exp[~iy(u + u)])

Put
w= ZL’Z (3.33)
S0
L
then

=g / - 7waz:z < \1/‘11'31‘.0'21 exp[i%w(u+ 4)] + 5_3‘3211 exp[sz(u )]+

tualag udafag

—_— exp[iéw('& —u)] = —=2 exp[-—iéw(u + 4))
VaVi2L ™ Vuva2L ™

=-c Z Z - ——=00040u 10,0 + —ﬁLauGWu—a o+
Ve (TR

at 6aba—u0 —

5—u—ﬁ 0
f Va Vi f
since Lu/~ is an integer. Now 6_,_g0 and 8,440 are never other than zero (remember

that w and @ > 0). 6340 and 6,40 are non zero only when % = u so that

1
P = 3 zu:(uaua,,'f + uay ay).
After normal ordering

PT= ugos (3.34)
u

We now consider the operator

et (o= ()}
(503 (@)= (5 fow-r)

2

L 2 2
fouefo Gt (2 o))




(- o(£3) ] oo (5221

As before we can assume 7 = 0 so

/ P*dy = / dy— 21L };Z ( expliuy] + \/._exp[—zuy])

(j/__ explity] + \; GXP["‘WZI])

a aua? .
[ ( S explin(u-+ )] + S expliu — )

Ji 8 expliy(a — ) + £ fexp[zy(—u u)l)

We can see that the first and last terms in the above can be dropped at this stage since ul-

timately they will generate Kronecker delta functions that are always zero. If we introduce

the change of variable ( 3.33) we obtain

f $*dy = / —dw (ZZ ( fully p[z = (u—a)] + ﬁ} exp[i—frﬁ(a - u)]))

Normal order to give
2
/¢2dy = ; Eai‘aﬁ. (3.36)
Subsituting this in ( 3.35) we find that

u
b . uz) i
= a y. (3.37)

Now

PT=gTuPu=PT_‘Py

(formula 2.47 page 69 [47]). Using ( 3.34) and ( 3.37) it is easy to show that

e (428
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The creation operator aj creates from the vacuum’ an eigenvector with eigenvalue —u
(u > 0) of the operator 7. Written in terms of creation operators (still denoted a,, 8) of
eigenstates with eigenvalue u (u < 0) of 7, the above becomes

e u2+ 2
Bl 21: ( 2u“ atay. (3.38)

It is now quite easy to see that the field theory we have described here is simply the many

body generalisation of the 1 particle quauntum mechanics described in chapter 2. We

form the Fock space

EB{:({H‘

where H* denotes the symmetric subspace of
Q=1 M-

Suppose as a basis for the light front Hilbert space H;; we choose the generalised eigen-
functions V,(y) of the light front momentum operator 7 then we lift IT; (suppressing the
subscript II) to an operator on Fock space. With some abuse of notation we denote this

field operator by m;. We have

T = f dyF* (), F(y)
where
F(y)=Y Vul@au and Fty) =3 Vi@)as
u u
so that
Ty = f dy > Vi (@ai Y Ve (y)aw.
u u

From the orthogonality of generalised eigenvectors

o= Z Suwrt @t any
uu!

=) waioy
u

and therefore

PV = f dy Y Va(y)ag(-1) (ﬁ—;—(ln—c—)-i) Y Vu(y)aw

71 !

"The vacumn | 0 > is defined by a, | 0 >=0
®Really we should write a¥, since mal | 0 >= (~u)a} | 0 > when u > 0s0o miaf, |0 >=uat, |0 >
when u < 0.
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D 2
. (?__ﬂ) ita,
= u

which is identical to ( 3.37) when the latter is expressed in terms of creation and annhilation
operators of my (recall u = mc). Also notice that the lift of the light front Hamiltonian K
is given by

szfdyZV* )auKZVur ().
=_Z(” “‘) e (3.39)

which is the same as ( 3.38).

3.1.5 The Scalar Particle in Light Front Coordinates in 3+1 Spacetime

It is a straightforward matter to generalise the results of the previous sections to the case
of a full 4-dimensional spacetime. Here we shall confine ourselves to presenting formulae
for 3+1 light front Klein-Gordon equation and its solution in terms of normal modes as

well as indicating how we expand the generators in terms of creation and annhilation

operators.

Light Front Klein-Gordon Equation in 341 Spacetime

The Lagrangian in Minkowski coordinates is

% [n“”—aib—% ~ u2¢2]

Ozt Oz
-3 -2 () -] o

o} or 0 Oy 8 d

W—WBT*-&EOGQJ or

Now

and

so that ( 3.40) becomes

=% [(%)2 EJ: (51] (6_?:) +2613‘gfgqi = (%)3) ~#2¢2:|




3[8-@-2-5 ) ]

¢ 0 0 \ 2
[2 af aj) + ; (55—) - ,u2¢2j| : (3.41)

The Klein-Gordon equation is the Euler-Lagrange equation, i.e.

o (- (3) [ +21]) +
a (2) o) 5 ((53) R G9)]) 2 ((=5) e[ (-3) o] -

0% 0% ¢ &9 ¢ 2, _
ToroyT oy’ oy ot oyler M0

8% 3¢ o,
"2% Za 5 +u'e=0. (3.42)

Expansion of Fields in terms of Normal Modes

The 3 dimensional analogue of ( 3.29), i.e. the expansion of ¢ in terms of normal modes

and their creation and annhilation operators, is

2y : % 1 1 2 3
o) [t Bt ()k:_;’“: 3 oD+ (e ) b 0

+( )((kL # “2)2 + kY )2
VEem)E (k] + )P
(Appendix 6) where u* = (k2 +u2)% +kY', ut = kY i = 1,2 and kg, is the four momentum

with respect to the basis natural to the front form. Alternatively we can express the fields

—exp[—i(k¥ + (k2 + u®) D)yt +i(kd + pD) i — k¥R — ik”aysl}

in terms of u. We have

(ut — k¥')2 = k} + 2

S0
2 2 2 2
o oulky 4 = = R R R R
Therefore
12 _oplpd = 2% 3 g 2
gl 2 2 2
o ul® — u?® — 3t - 2
B 2ul
Clearly
2 2 2 ST
(k2 +“2)% —u— (ul? — u2® — 3% — 2) e (ur” +u® 4w+ p?)
e 2ut 2ut

184




2u!
S0
_[du () (a3 2w @
o) = 7( 2l )\ VaemE @+ ) T ""’2—1—*‘%3/-] +
at(u) 1 2l (_ .
Vemi @) s Eatr i)
If

[a(w), a™ (@)] = 6(u - 2)

then we must write

¢y, m) = /d3 ( gaivd p[iu-y—i(u2+“ 2)T]+ e exp[i——————(yu“ 2)T-iu-yD .

V2(2r)dul? 3 2ul Va(@r)iulz 2ul =
so that

[B(5,7), 80, 7)) = 2ev’ ~ 966 ~ ) ~ 4°).

Expressing Generators in Terms of Creation and Annihilation Operators

In this section we shall have recourse to the results of Appendix 7 where we derive the
components of the stress energy tensor. We shall only derive the expressions for P™ and
PY' since the method is rather routine. We start with PT. First we require an expression
for the field in terms of creation and annihilation operators. This is given by

swn=(%)" > <-—9‘)—z exp[m il u%} . W exp[i @+ ’”D

(2m) Byl 2ut

where » = nn/L, n' > 0. Now

& .;_ /2 (a—;; 2d3y. (3.43)

‘We can take 7 =0 so

-k 3 z-'_______a(g)ulé ________ia*(g)ulé exp[—iu.1
‘2/1id —%:( (2L)3 xplivy] (2L)3 xp| W])

~1%

(L)} L)} exp[_li@ﬁ])
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-

N =

/gdsyl; % ( Erpe@a@u i o expliy.(u+ )]+

(211-1)3 a(w)a* (@)utTal? exp[iy. (u — @)]+

g We@ut o expliy (@ - w))-
W“+(Q)a+(ﬂ)ul%ﬁlé exp(—iy.(& + g)]) : (3.44)
Put
wi = % 1
so that

then ( 3.44) becomes

2 [, % (~grewete? e [Zu ) +

- pavaitord oo [L A
(2m)3 a(w)a™ (Lu" 24" exp szzu_-(u u)] ¥
b o 13,13 b e el
(27[.)30' (w)a(@)u 24" " exp Lzﬂ_y.(g g)]
(211r)3“+(u)a+(@)u1%ﬁ1% exp _—’é_uz-( i+ u)])

Since

1 = ,
(2m)3 / de exp(im.| = Sm,o
-z

the above becomes

%Z (“"a(u)a(u)u1 24, %514-{-11 o +a(wat (@)u'? ‘lé‘suﬂ.l.&'*'

% ok 1
ot (wal(@)ul?al? ba-uo — a™ (wat(@)u'? ﬂl% 6@,.2,9)

where, for example, §y44,0 is non zero only when v’ + 4 = 0 Vi where i = 1,2,3. Clearly

6y+a,0 is never non-zero so

P =

[ R

> (et @' +a* (walwu')

u

Normal ordering gives
P" =73 u'a*(u)a(w)

c.f ( 3.34).
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We now wish to obtain the expression for P¥' in terms of creation and annihilation
operators. We have

-5/ (5 -1 3 - 3 - 50 o
(1 (38 -3 (8 o3
By ( 3.43) this becomes

1

2(PT" (ayz) ; /(ay3> ¥ fﬁ‘bzdsg)'

Now it is quite easy to see that for i = 2,3

/ (gj') -*4'"'/_?3?4 (Z (—ﬁ"—)—-— ot (u) (—iu)

2
e B _}))

-2% ¥ ot wola)

‘We can also show that

so that ( 3.45) becomes

These expressions for PY and P7 clearly agree with those we obtain by lifting the operators
of Chapter 2.
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3.2 Particles with Spin

In this section we discuss the possibility of developing front and point form field theories

of free fermions. The work is inchoate and is merely intended to illustrate the problems

that must be overcome.

3.2.1 Light Cone Dirac Equation

If we choose a tetrad [51] with components k¥ satisfying

iz Guv = Tab (3.46)

then the Dirac equation in an arbitrary coordinate system is

T u+ml =o (3.47)

where
A = hBy* (3.48)

(the 4* are the usual Dirac matrices) and

with
1
T = = (Ouhf + {FUh)guph " (3.49)

(53, 54, 55, 56]. Finding the explicit form of the Dirac equation in a given coordinate
system is very complicated in general as it requires a knowledge of the Christoffel symbols
and the calculation of some lenghty contractions. A judicious choice of tetrad can simplify
things considerably. For this reason one often works in the diagonal tetrad gauge i.e.
one chooses three of the tetrad vectors to be parallel to coordinate vectors so that the
greatest possible number of tetrad components vanish. In the particular case of light cone
coordinates in 3+1 spacetime, even working in the diagonal tetrad gauge, the algebra
involved in calculating the Lagrangian by the bare hands method is still very involved.
We shall therefore obtain the light cone Dirac equation in a different way, by transforming
the Dirac Lagrangian from Cartesian to light cone coordinates and deriving the field
equations by the usual variational method. We shall need the Lagrangian anyway to

discuss the fermion field theory. The Lagrangian in Minkowski coordinates is
iﬁi’yyau‘l’ — mTIf-‘I/
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where 0, = 3%-. Using ( 3.67) and ( 3.68) in Appendix 1 this becomes

= 0 |'y|2_ " i k _ykﬂ ‘ 'ykl/i 15} sy
Wy ( V,\y’\a’r—'-vay")\p-'-ﬂp "‘“-"\67_‘*' 61k+—__l/)\y)‘ '5-:‘;; U - mbw,

Rearranging gives

T 0 y*v o
Vwﬂ’(!glv +y7) +z‘11(u'y +v+ A7)“_mq,\1,

VAY oyt
The Lagrangian in light cone coordinates is obtained from the above by multiplying by

the Jacobian so that

. A ki
. \Y" = : : v B\IJ
Lz—l_yf‘p(lymo"'y ,Yk)a _|__'9T\p (Uz70+7‘+37y7\'7k) 5 qnpl I (3.50)
Clearly
BL L N TN N T s A YA 4 vAy
y |+ = +i Rroprapny e ——anp® | iy v
|y|(I | )87' ly| Ll V,\y’\’y oyt ly|
and
oL
38‘37 =0

which gives the Dirac equations as
o yruh o iy
- —(y|+y*y —-+z Vi 4o+ L m-"0 =0. (351
Iy(l i ly |< v )ay lyl Bl
Notice that it is difficult to derive a field theory from ( 3.50) because it has an explicit

space time dependence.

3.2.2 2-Dimensional Light Front Field Theory of Spin 1/2 Particle

Suppose we consider the special case of a 1+1 dimensional spacetime and lightcone coor-

dinates adapted to an observer at rest at the origin then, when y > 0, ( 3.50) becomes

, 00
By

This expression represents the Lagrangian for the light front Dirac equation. The La-

~i0 (0 + '71)—— + MUY — iUy

grangian has lost its explicit spacetime dependance so it should be possible to develop a

field theory. The light front Dirac equation is

i(v° + v )‘Z\I’ + 1'71%3- +m¥ = 0. (3.52)

In fact it is easy to derive the Dirac equation in light front coordinates directly from ( 3.47).

Recall that the coordinate transformation from Cartesian to light front coordinates is

‘r=x0+;1:1. y:zzl.
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From the usual transformation law of the metric tensor we can see that a solution of ( 3.46)

is given by
or or
T = T = =
= =h M Bl L
Qy Oy
¢/ ) Vi, aad
W=575=0, W=5=1

Since all the components of the tetrad and metric are constants (the later ensuring that

the Christoffel symbols vanish) we have from 3.49 that
TP ={)

From ( 3.48) we obtain

A = h§y® + by

= '\(1

and

47 = hgy° + ATy

=0 4,

Substituting these results in { 3.47) gives ( 3.52). Suppose we assume a particular 2-

dimensional representation of the Dirac matrices [38]

0 10 i 0 1
v = and 7 = : (3.53)
0 —1 -1 0

Plane wave solutions of ( 3.52) can be found in the usual way ([47] section 1.3 page 48

also [48] section 7.2 page 216). Suppose we express the solution in the form
U= /U(k) expli(k"T — kTy — kY7)]|dkT dkY. (3.54)

Substituting this in ( 3.52) we see that we must have

1 1 0 1
1 ik —kY) +1 (k") +m |U=0
-1 -1 -1 0
i.e.
kT4 kY +m kY Ua e
—kY K~k +m |\ Us '
From these matrix equations we obtain
kY K — k" —m
Bl Em e W sl
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so we can only have a solution when
B = (W = k7)? -
ie.
k™ = 2kVET = 2
which is simply the mass shell condition in light front coordinates. Therefore

(=k¥)
i = 5(k1'3 — OkVET _”2) ( kV=kT+m

1
Substituting this in ( 3.54) gives
kY

T = f S(k™ — 2KVET — p?) | FF-RTHm ) expli(k™T — kTy — k¥7)|dk"dkY.  (3.55)
1

Let kT and k3 denote the zeros of kT — 2kVKT — p? then
K=k + (& + %)% and k] = kY — (k¥ + p2)3.

Also we have

ﬁ;(k"2 — 2kVET — p?) = 2(kT — kY).

Using [50] formula A.6 page 470 ( 3.55) becomes

g | [O0 =+ 7 i) [ w5
| 20k + (k¥ + p2)2 — k] | 1

5K ~ (K9 = (& + u®)})) ( ARl )
1

| 20kv — (k% + u2)7 — kY] |

JEtE (B + (8 + b)) ( = )
1

expli(k™T — kTy — kV7)] dkTdkY +

exp(i(k™T — kTy — kyr)]dkfdky)

: T e JoTa, — LY Y % Y
20 +/.L2)% expli(k"T — KTy — k¥7)] dkTdkV+

JECSCE W + 1)) ( P

expli(k™r — KTy — kY7)|dkTdkY | .

Now perform the k7 integral
kY i
== | [| @ | e expli(r(B* + ) =y (B 4 2]
2(kv* + u?)z

-1

191



+f1 m+(ku2+uz> WL?)Texp[z(—«r(ky +)E — (kY — (W + 2y ) any

In the second integral let kY — —k¥ then the above becomes
(m—(icv2 +42)2)

1 . 4
2o 1 oE RO+ =y o+ (0 4 )

..kv

R | sl 4 )8 =58+ (9

= / a(k?)u(k?) expli(r, y) (w(k¥), k)] + ol (K¥)v(kY) exp[—i(r, y) (w(kY), k¥)}dkY
where
w(kY) = (K + p2)3

(m ) (w(k¥), k) = rw(k¥) — y(k¥ + w(kY))
—kY kY

u(k¥) = m—(kv? +2) 2 and v(kY) = | mH+k+u?) (3.56)
1 1

It is easy to see that u(k¥) and v(kY) are orthogonal ([45] page 67) i.e.

0k

I = E s

+1=0.

It is a far from trivial matter to quantise this system. To begin with we have to be

careful to isolate the proper degrees of freedom. If we expand ( 3.52) we obtain

.0y Oy
zaT +z87_+ +m1,b1—0

and

i oY1 Oy 31,111

or "af 6 +mig = 0.

If we add these we find that

3¢2 Ot _
By o= 3‘3;-'*""’&101 + mie = 0.

This is a constraint and it tells us that only one of the fields i, or ¥s should be quan-
tised [36]. We find that if we ignore this constraint and quantise canonically then the
commutators are contrdictory. We have not had time to develop a light front fermion
field theory. Undoubtedly this would be worth looking into. It may even be possible to

construct a light front field theory that accurately describes an interacting fermion boson
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system. This may be of more than purely theoretical interest since it is likely that the
Feynmann rules would be much simpler than those obtained in field theories based on
spacelike instants. This is a hall mark of field theories with constraints. The constraints

rule out many diagrams which would otherwise contribute to a given process.
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3.3 Appendices

Appendix 1

We wish to find the expression for the Lagrangian corresponding to the light cone Klein-
Gordon equation. The Lagrangian for the Klein-Gordon equation in Minkowski coordi-

nates is
S 0u80, — 1), (357)
The transformation to light cone coordinates is given by equations 2 and 3 of [59] °. We
have that
L) -2 =|z~z|. (3.58)
It is easy to show that
2°

—=|z—z | Z(zk-—mk)a—zlc—(zi—~wi)
o A = axt
which can be rewritten as
02° or k or g
aroc 127zl (Z(z d¢3a+( )
This follows from a simple application of the chain rule remembering that z is a function

of 7 only. Of course this also implies

oz¢%  dz*

—_— = = pH, i
e (3.59
Using this and
i =g (3.60)
we obtain
0 OT 1 or
Vs =lyl™ (~yrps +9)
S0
or o
p o i (3.61)
where, following Derrick, we define
nyr =10y —v.y. (3.62)

Because _
028 Or 02 oOykoxd  or

9 9 or T o o - B

9In this Appendix the Einstein summation convention and explicit summations may appear in the same

expression. Latin indices denote an element of the index set 1,2,3 and greek lettres an element of 0,1,2,3.
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we have using ( 3.61) , .
oz y'v?
oxt vy

(3.63)
From ( 3.60) and ( 3.63) we obtain

Ay’ vt
"3‘3}3‘ = 043 V—)‘y'x (364)
From ( 3.58) we have

5 -1 azk
P20 —1l=|z~z| Z(z 6:30

Using ( 3.60) and ( 3.59) and rearranging we find that

or _ 1yl
0z0 nyr

(3.65)

Now _ . o )
of _osor odog _ o _ vyl
00 87 020 ' By 920 T 820y
where we have used ( 3.65). Also from ( 3.60)

Oyt 0z 9zt or

820 " " Bx° ~  Or 0a0
Using ( 3.59) and ( 3.65)

vy
VA

We are now in a position to transform the partial derivatives. We have

(3.66)

9 _oro oo
0z% 02001  9z0 Oyt

Using ( 3.66) and ( 3.65) gives

o _ lylro ; 0
o =t ) (3.67)

Also .
o _0rd o
Ozk — Ozk or ' Oz Byt
so from ( 3.61) and ( 3.64) we have

o y* 8 a y*t 9
o e e e

Substituting these in ( 3.57) we find that the right hand side of that equation becomes
1 ¥ 2y"3_¢6¢ (&ﬁ) MEQy"_?g( ¢) v
2 % vy O Oy Oy = vyy* Oyk Ayt
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The light cone Lagrangian is obtained from the above by multiplying by the Jacobian i.e.

A
1%
—fﬁ— so that

_1 2y 8¢ 99wy FOg (08wt
= [Z(Iylaray Iyl( )) Zy "( @) 2"52} (3.69)

oy Tyl
(c.f 8.1). We can check that this is the correct expression for the Lagrangian by showing

that the Euler Lagrange equation coincides with the light cone Klein-Gordon equation

derived by Derrick. To begin with

oL _ 1 [23,? 8¢ _ 8¢ vy

2% 8¢ ( -3¢) 2"
e 2 . A o - A I 1 t_‘
aa"’% 2 |[ylor "oy |y ijlylayku Y ov) Tyl

0% 1 [2y 9% 2 v \0¢ .06 1 Ay A Y
S = = = 27— ly | =22 — iy -
8y 2 ||yloyrar " [yP\'=' lyl)or “aylyP\'*' oy

8%¢ vyy? wk 9% 2 (
gl BN r s
o Tyl 2Tyl Bvor =Ty E Y

Now from ( 3.62) we have

so that the above becomes
y© 0% 2

3 8o 1 WOy ) V) 8%yt
g o I A L B T -
Tulowor TTgpiel v )5 ayrw( '-"4'(1 WTT) e Tyl

i 0% \y"
2 .

k,r 2 T

y T 0% vt O¢ 1 ., 00 6¢)
_.___.__._.__+§ '_ B s
=Tyl oy Tyloy < TyP’ """ oF \*0y) 1

and therefore

=2

1 gy L 0o . 1 g9 _ 2 agy L. 9.[ %
Iyly30< By)_Ig|y“'ag+lul3(z'y)g'6g |y [® H'ay) iy!g'ay(z'ay)'
11

1 8;‘2 2 9 uvyrd%e 2 (ngg)__z___ _a_( a¢>
Wiy "Tgior Tuld 4P By :

It is not difficult to see that

(3.70)




so ( 3.70) becomes

1 aaﬁé 2 00 _wnyd%_ 2 8 ( 8\ -
L2y " Tylor lyToy?  Tyl“oy \Yay ) (3.71)
Also it is easy to see that
oL _ 1 o¢
0% |yl*oy
SO oL
or "Igly-'ag' (3.72)

From ( 3.71) and ( 3.72) we have

or  Jyl¥ ey " Tylor Tylog [yl* By

o Tof 2 B 2 0 untdls 2 g( a¢)
oy™ a_ By

Finally, since

the Euler equation is now easily found to be

9 3¢ 0 ¢ 9 324’_ 2 a 9\ \ _
2( ay“)a 'y'(af ”)*“(ﬂ(@ “)""é@(ﬂ'az))‘“

which agrees with Derricks expression.
Appendix 2
The energy momentum tensor is given by
TH = m,9% Bpp — g"'L
where

_or
”_a%‘%

.41 page 68 and 2.15 page . Ior for the time being %" = 7. It follows that
(47 2.41 68 and 2.15 63). For for the time bei # It foll h

and

my = (g—f - -‘gig) (3.74)

OFTE .}.g"as(ﬁ—gTTL — wi(grr T¢+gyray¢)
¢ .
(83/) (3.75)
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and

T = 11g%8¢ — gV L = 7l (g™¥8,¢ + g””ayfﬁ) ik

(8525 o)

o At (3¢)
We note in passing that the stress tensor is symmetric. For example

oL 0¢
o o

_1[,08  ,0610¢ 1[,0000 (04\* 5,
2[81‘ 261]8y [23T8y+(3y) +‘“’5]

-~ (- () 3 (8)) =4 (- ()

=TV,
There is no reason why the stress tensor should be symmetric in general ([47] page 69).

TV =7y Opp — gL = — +L

Appendix 3

We have
6 = 5 ([ ez - vz, 91)

=3 [T, ¢ -y, ¢)
=_%%/dy( [i? — ( ) ¢'1+2[( ),¢’1)
-G8
33 [ (s (%) )

- %% [av (wﬂ[qs', #1+ @y -, (%)21)

% w)

———/dy (mu se(y =)o +2(2y — 1)is(y' —y) =~ )

Using the field equation

=—%-;-(/27' —e(y — y)( ag yé)dy+2(2y T)—Q;i)

R / dy (m22[¢' ¢lé + (2y — 7)2[4,

Oy
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Integrating by parts

& "%}2' (— /2”'5(21 ~4) (2%375 A g—z) dy +2(2y — 7‘)%)

oy
/
lz( 46¢ or 99

09 _, 09
= +ay/ 58 -l

Tor oy TV ey T oy

lig O 6¢> , 0
i (4 (3 _32 ¢
B 22( & (3 +3y>+4 3y>

_ o¢'  9¢ 6¢)
—{—{ 5] oy Yoy
On the other hand ( 3.9) gives

(™, ¢] = —i(r8¥ —yd")

= —i(rg"?0p — yg )¢ = —i(T(g¥"Or + gWO,) — ygTvdy)b
= —i(~7(0r + Oy) +y0y)¢

which agrees with the above. In this way we show that, with the new commutator, the
field theory is relativistically invariant. We can also show explicitly that the generators

satisfy the correct commutation relations. For example consider

= 2 [ (10 (20) ) a2 [ (28) a1
=37 [ [ ales - (ay)2(3)1
-1 o for (00 (220~ (22 (2)1).

Now we use the result that if [A,B] is a ¢ number then [42, B?] = 2[4, B](BA + AB) so

that the above becomes

———/dyfdy(u 2l 5 l( AR ™ ) [g: gj <g$’g§+gig;’)>

The first term is
ol f o 0%
wzz / dy f dy’ (5(y = y’);??¢ +6(y— y’)%?)
where we have used ( 3.7). In the second summand integrate by parts with respect to y’
.ol od a
wzz /dyfdy' (5(y - y’)g;,cb = 5375@ = y’)¢<b’> :
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From [61] page 4 this can be written as

W-}I / dy / dy’ (5(9 = y’)%?,fb + 3%6(31 - y’)¢¢’> :

Integrate second term by parts with respect to y

it 4/dyfdy (5(y y) ¢ 6(y — )8§¢’) = 0.

The second term is

_i.z/dy/dy’-;—yﬁ(y -9 (gj: 3‘; + gf gf)

=_%(/dy/d435(y y)Z"ig"’ /d fdyay' 2 y)gﬁgj)

so that PY and P™ commute as required ( 2.49). Next consider

Pl = [auerm -y, 2 [ (28 ay

- —%/dy/dy' ('r[% (u2¢2* (?)2) ’ (%)2] —ul- (gi) (2_57)2])

(- for (- (). ()1 fori- ()" (2))

The first term vanishes since it is essentially [PY, P"] and we have just shown that PY and

P7 commute. The second term is

——/dy/d’z g (a¢a¢+a¢a¢)

8y’ 8y’ \0y oy ' By Oy
5 (0008 OF o
/dyfdy2yz—6(y— )(6y’ 3y T 5y oy )

From [61] page 4

=--—/dy/dy2y2 35—y >(§§g§+g§gf)

e
&y

Integrate by parts with respect to 3/

_i v ittt | EBOP
-4/dy/dy2yz5(y y)(a,zay

o

Jy
1 8% 0 o 62
=Z/d“~’2y"( $0¢ 0% ¢)

oy? ay dy 9y?
ol . 0 (0999
i 4/dy2‘may (By By)dy
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Integrate by parts with respect to

= —iP". (3.76)
From 5.21 page 277 [57] or ( 2.49) we see that Lorentz invariance requires
(J™, PT] = i(g"" P ~ g"" PY) = ig¥" P"
= —iP7
which agrees with ( 3.76). Next we have
0,0 = [y g, 3 [ a8

where we use the hat to show that the stress energy component is a function of 3. This

becomes
7 [ & [/ riT 1) = [, B — e lr T, ) gy [, 7)),
Since
—yr[T™, T™] = ry(I™, T™]

it is easy to see that the 2nd and 3rd terms in the above will cancel on performing

integrations. The last term is

% / dy / dy’yy’[(g—qsy, (a—qﬁ,r]

4o fsm '2[‘2‘5 a3 or * o e)

_ ) (2026, 28 0s

1 Lo ls 9% 9¢ o0
_—Z(2/dy/dyyy%3—y5(y—y)5-5y—,"2/‘19]‘1”1‘” 5700 - )ay'ay)

by symmetry. This leaves only the first term

= %T"’/dy/dy'[% (N2¢2 ) % ( B )]
15 o[ (u“[¢2,<2>21 -6 (59) 1-#(5) 7 [(‘Z;) (3_5)0
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/dyfdy(“2[¢¢1(¢¢+¢¢) w200, 501 (556 + 625 5o) [ay’¢}(¢a¢ 5%

oy’ dy
(3¢ 99 (3¢' 3¢ 99 3¢))
By 8y \8y 9y ' By oy’

__—fdy/dy ( igl et/ —)($¢ + ¢4) — pu?2i5(y — y)( ay® t 95y ¢)

won () g (B EE)

The second and third terms cancel on carrying out integrations so we have

35 [y (156w =G0+ 88 + 00w - 1) (55 %t 3yar))"

The second term is
_lz D sty gy le D L, 00 00
7 [ [ (550 Vs~ 370~ V55 )

[61] which is obviously 0. This leaves only the first term which can be written as

< a "
B e I P v Tt TRy S TR ST 4 A e T )

- (z%ﬁ [ [ a3ty ~ )@+ 60~ [y [ ay/Sety - /)60 + ¢43)>
since (—z) = —e(%) . Clearly this is zero. Lorentz invariance requires that
[TV, J7V) = i(gTT VT — gTUTTY 4 gV — W TTTY = 0
since J# = 0 and g"" = 0. This agrees with the above. Finally |
[J7V, PV = {% / (+T™ — yT™)dy, -;- / Ty dy]
=3/ [ay =T =7 [y [ i,
=3 favug (- ()) (52)
- fa[a3(3) - ()
i /dy/aly’g (ﬁ[(-a—?) 67+ [(9@)2, (—g‘g)ﬂ)
/dy/dy’y ( 22[ 1( b+é ¢> +2(28 99 (9399+2'3%))

oy’ oy \oy By = Oy oy
86\ .9 (8¢ 3 aqsa(p))
1 2 ;
- /dy/dyy( 5y — y)z( b+ %y) (0 )(ay,dy el

Integrate second term by parts with respect to ¥’ and then perform ¥’ integral throughout

A o6\ (02004 Do d%
- 3t [ (12 (Geo+o50) + (Gr 5+ 5258
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el 2)
- ——/dy <¢2“2+ (ad’) ) . (3.77)

From 5.21 page 277 [57] we see that Lorentz invarience requires

[77% PY] = i(gW.P" —

-4

gTVPY) = i(—PT 4 PV)
(a3 (o))
-3/ (o (5 ) o

Appendix 4: Orthogonality and Completeness of Normal Modes
We have

which agrees with ( 3.77).

(o) = (=) ﬁ;w ,:’2“2)2 ;Z'“)" expliCh + (K2 + )Yy — i(82 + ) ]
L ( \/% ((rcz(; ;f)z = LI S Y N m)%r]) _
;987 (\/i—,, ((kz(;;’f:)jz; A expli(k + (k + p?) 2)y — i(k? + #2)%71) X

\/t_w ((1%2(2-2 pf) jz; k)3 expl—i(k + (82 + u2)b)y + i(R2 + ) dridy

~( [ (B2 + u2)F (8 + p2)? + k)3 (R + p2)} + By
- Y 4

expl—i(k + (& + p?) )y + i(k? + p2)3r]—
V(2 2% (1.2 214 Lo79 0 ST | l
( z)(k +u )2 ((k +u )2 +k):((k + 4 )12 +k)2 exp{i(k+(k2+;52)%)y—i(kz-huz)f'r]><
4 (2 + w2y (2 + )

exp[—i(k + (k? + p?)2)y + i(k? + p2) 2 7)dy
sl )/dy i (k2 + u2)% + k)2 ((k2+u2)z + k)2 expli(i-+ (k2 +u2) )y —i (K + p?) 7]
(k2 + p2)

exp[—i(k + (& + u"’)%)y +i(k? + ;1.2)%7]+
s 2 2\ 1 l,20 PIeY R )
L (Lol +.k:)2(k j- i expli(k + (k% + ,u,z)%)y —i(k* + ;,z?)%'r]x
4T (k2 + p2)3

exp[—i(k + (k? + 1))y + i(k? + p?) 2]
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(i) b k(4 )} 4 - :
= (=8 = (& + 177 + k)3 (B + )7 + ) ((Ic2+p2)%+(ic2 +u2)%)x

[ dvexplin e+ (62 4 uh) = (b (B + i)Y explir (B + )} - (k2 + )y

= (P2 R (24 4By ( = :“2)% S )exp[z'r{(fc%u?)%—(k*w?)é}lx
8k + (k% + ) — (& + (B2 + u2))). (3.78)

Put
FR) =+ (B + p2)% — b+ (k% + %3

then

f)=0—k=k.
This is easy to see. Let

a= .’%4—(1::2-!-;&2)%
then f(k) = 0 becomes

k+ (k2 + 2t —a=0
so
(k—a)2=k*+u? or k®—2ka+a®=k?+p?

and therefore

a” — i
2a

R 2k(R2 + ) 4 R 4 p? - 2
2k + (k2 + p2)7)

=k

as required. Also

af

(K% + 23 + k&
(Bt 0 TR
Ok

(2 + p2)2
so that ( 3.78) becomes

%«kzﬂﬁ)%+k>%«fc*+u2>%+ic>%( PR i :“2)% )exp[ifr{u‘cﬁwz)%—<k2+u2)%}1x
(K + )%
(k2 +u2)T +k
2 (k2 + p2)3
(K2 + pu2)% (k2 + )2 + k

= 6(k ~ k).

§(k — k)

= %((k2 + 427 + k) 5(k — k)

This demonstrates orthonormality and completeness follows similarly.
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Appendix 5

We show that ( 3.30) ensures that ( 3.32) satisfies ( 3.31).
oo 0 \/ﬁ u2+l-"2
'y T )y ] == d / d — ety ] -1
(6(y, ), 6(3,7)] /(; U > 1[Gy T exp [wy i ( v 7| +
+
u

a v exp |—iuy + 4 vl pt ol o V2 JN PPN ifﬂ-}-pﬁ "
Vuvdm 4 4 2u ST 55"

I IO LTV B

Non vanishing terms in this commutator are

_/mdﬂ/wdu [a a*]Lex duy — i Lo T| exp | ~ilf + i T
0 0 U g S | 2u P |~y 2

[au,au]ﬁ exp [z'&'g -4 ({R;;ﬂ) -r] exp [—z‘uy+i ( ) ])

=— /Ooo du ("% expliu(y — 9)] + 5% ol y)]) '

Put u = —u in the first integral and this becomes

B </(;—°° (-Eu;i(z) yRepl=tulg =gl /Dm 5-,,1;; explid() — y)]dU)
= - (— f;m g—?—- expliu(§ — y)] +/ — exp[zu('g i y)])

—2(21r) /_oo n expliu(g — y)]du = ——%e(ﬁ -)

ey —9).

DI e

Appendix 6
We have
Guk Y’ = Grrk ™Y+ Grp kY + Gt kY T+ a2k YR + gyayak’y
=kTr—kyl = kY= Ky — kR
so we can express the mass shell condition as
kT2 — okTRY — kY — kY = p?

and a solution ¢ of ( 3.42) as

¢(y, T) =

v gV kY —u?) exp[i(kTT—-kTyl—k;yl‘r—kyzy' ~k¥* y%)|dk" dkL.
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We shall now perform the k™ integral. Notice that if we differentiate the argument of the

delta function with respect to k™ we obtain
2k — kYY),

The zeros of the delta function occur when

K= b k0?4 g? g pt? g2

=k £ /K + 2
2
b"'(u) ky + VkL'f"l-" )

(2 ) |2(kv‘+\/k[,+u — &Y |

5 6(k™ — (K" — \/k3 + u?))

: — exp liguvk*y”|dk™d> k
|2(ky VE2 4+ p2 — kv |

1
" en)? /b+( )2(k2 r exp(ily kL + wiT — (K + 3 + p2)yt — kg2 — BV R+
)2
1
2(}62 )1 exP(z[ VE% + /-‘27— e (kyl — w]ﬁ% + M2)y1 e ky2y2 = k!}syS])d:!EL

In the second integral let kY — kY then

1 bt

Bly,) = (2 ); e G A G R Ve R
mw)2

exp —ily/kf + pPr — (&' + B} + u2y" — 60y — %,

Appendix 7: Components of Stress Energy Tensor in 341 Spacetime

so that

by 1) = exp(igu, k*y"]

b(w)

2(k% + u2)% + #2)"

The stress energy tensor is given by

THY 1 6,v a¢ gpuL

g™ AyP
where
1 oL
v R —
TrY:r R
Fr
SO
==
%L dy
and

== (5 o)
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c.f ( 3.73) and ( 3.74). Similarly we can show that

0
) i
Wyz ay
and
O¢
rly = ——L,
v ay3
Recall that
0 -1 0 0
v = -1 -1 0 0
0 0 -1 0
0 O 0 -1

We can now show that

a TT
/al 3-99"84; —g"L

e e BE) o (22) - ()

Similarly
TV = Wige"’% —g'L
AR ORIC RS
%[(gjl) (gjz) (gj) #2¢"’] (3.79)

c.f ( 3.75). Also
. 86

y?

0p O¢
T 50
In this way we can calculate all the components of the stress tensor. The stress tensor is

20
TV = kg’ 5—3% — g™V’ L =nlgtv

symmetric. For example we have that

5d>

:Fylf = yxg a grylL
__(9% ¢) yir 0P oy
u (87' % oyt J oyl A

(B ) BB (H) 5

oyt droyl 2 >
which is the same as ( 3.79). Also
o¢ 9 _ 9¢ 9¢
T e I - o AR, S oo
T T29 G I L=-mpom Ayt = B2 Oyt

c.f ( 3.80).
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Chapter 4

Conclusion and Prospect

It is evident that both the front form quantum mechanics of Chapter 2 and the field theory
described in Chapter 3, although entirely satisfactory in themselves, are limited in that
they are concerned only with free particles. Although logically the next step it is not easy
to generalise to a theory incorporating interactions. Many attempts have been made to
circumvent the well known no go theorms that appear to exclude relativistically invariant
theories of interacting particles. To see how intricate the problem is we shall give a brief
review of work of Coester [84, 85].

At the very least we require that the state space H be a module for a representation U of
the Poincare group with generators corresponding to total momentum ?i, time tra,nslation
P’ =H = (P°+14°)3, spatial rotation 7 = (7°°, 7*%, 7'?) and boosts K = (7, 7%, 7).
These generators represent an interacting system. Generators associated with the system
with interactions switched off are denoted by the same symbol with the suffix 0. The
question arises as to what sort of terms can be added to the non interacting multiparticle
generators to give P, H, J and K satisfying the the usual commutation relations. Coester
has shown that the answer depends on the Dirac form under consideration. Following
Bakamjian and Thomas [87, 88, 89] we express the free generators in terms of the mass
operator and another set of operators that depends on the Dirac form and which are func-
tions of the Hamiltonians and mass operator. The generators of the kinematic subgroup
are unaltered by this change of variables. We add an interaction v to the mass operator.
Preserving the commutation relations generally requires that additional terms be added
to the new form-dependent’ operators and the Hamiltonians but if we require that v

commute with the new operators and the generators of the kinematic subgroup then the

n the sense of Dirac.
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form-dependent operators need not be altered and the perturbed generators automatically
satisfy the Poincare algebra. We restrict ourselves to the instant form for the time being
so we put

M=My+7

and require that ¥ commute with P = P;, J = J; (these being the generators of the
kinematic subgroup of the instant form) and X = X, (the Newton Wigner position oper-
ator). The dynamical generators H and K are peturbed by 7 i.e. K # K, and H # Ho.
The reqirement that 7 commute with the generators of the kinematic subgroup puts some
restrictions on 7; however we also require that the model satisfy the condition of macrolo-
cality, essentially that when components of the composite are separated by large spacelike
intervals or when interactions between particles in different clusters are actually switched
off, they should behave as autonomous systems. This places more stringent conditions on
U.

We shall try to make the notion of macrolocality more precise. There are a number of
ways of defining macrolocality not all of which are equivalent. Suppose we have a collection
of N particles which, quantum mechanically, is described by some Hilbert space H. Let
a denote a partition of IV into n, clusters where q; is the ith cluster of a. Let H,; be the

Hilbert space associated with the cluster a;. Clearly
H = @2 Ha,.

Let Uy, denote a representation of the Poincare group on H,,. The representation corre-

sponding to non interacting clusters is therefore
Us = ®72,U,,-

Let G(a;) be a generator of U,, then the generators G for U on H are said to satisfy the

cluster decomposition condition if

Ga = G(a1) ® L + .. + ®2) [; ® G(a5) &2 Li + .. + O ' L; ® G(an,)

=

for every partition a. In the above G, represents the operator obtained from G by switching
off interactions between clusters and I; is the identity operator on H,,. Intuitively we can
see that this corresponds to one conception of macrolocality. Alternatively we might

expect that as clusters are separated by larger spacelike distances? the representations U

2Without the intercluster interactions being swithched off which was the case in cluster seperability
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and U, should become identical. This is realised by requiring that
s-lim  [U(r,A) — Ua(r, A)|To(dy, .. dp,) =0

min|d;—d;|—oo

where
Ta(db "1¢na) = ®?=aani(di:I)'

A third definition of macrolocality requires that widely separated subsytems should evolve
as free components. This is the definition with which we shall be concerned. To make it
more precise we need to develop the dynamics of the interacting system.

Denote by M,, the mass operator of Uy, in H,,. Suppose it has eigenvalues mq ; with
associated eigenvectors @q ;. The @y ; are simultaneously eigenvectors of 5:,- (where zai is
the spin operator in H,,) with eigenvalues Sy ;. In general these eigenvalues will be highly
degenerate. We continue to denote by ¢, ; the eigenvectors in H,, corresponding to a
particular (Ma,i, Sa,i). The subspace of H,, spanned by the ¢q i, which we shall denote by
Hf,0,i°, is a module for the irreducible representation (Mayiy Sayi) of the Poincare group.

Denote the generators of this representation g(a, 7). We have

bos = [P0y T 1By i > Xed(By )
ﬁa,i

(=8ai £ Ba; < Sa,i) where | B, Pa; > are simultaneous generalised eigenvectors of

P,, and j,, 3 with eigenvalues p_ .

and 7i, ;. Therefore Hyo; is the subspace of H,,
spanned by the | P, Pai >. We can interpret this in another way. We identify Hjq
with square integrable functions xq; of P, ; @nd T, ; and construct an injection operator

Doi : Hyai — Ha; by writing

Ea.ix = ‘/dsz__’a’i Iza’-pﬁa,i > Xd,i@a,i’ﬁa,i)‘

Qfley §

We now form the channel subspace Hjyo of H
Hio= @i Hfai
and define the following operators therein

Gra=9(0,1) @5 L+ ... + @111 ® 9(0, ) @241 T + oo + O ® glat, 1)

3The suffix f stands for free. A state in this space belongs to an irreducible representation and so can
represent an elementary particle emerging from the fire ball of the interaction. These are the asymptotic

spaces in the sense of scattering theory.
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‘We then form
Hf =@aHfa

and define the operators on this space by taking direct sums of the expressions above i.e.
Gf = @aGfa (4.1)

and

6 == @aaa.
H and H; can be written as direct integrals over total momentum i.e.
My = / PpH;@) and H= / & Ti(p).
@® i e

Coester argues that we must formulate relativistic theories of interacting particles as
scattering experiments where observables can only be measured at temporal infinity. If
not then position can be measured at any moment and relativistic invariance requires
invariant world lines. These are forbidden by the no interaction theorem [90]. We define a
scattering state v as one that becomes equal to a state describing non-interacting particles
in the remote past and future; i.e. a state ¢ in H is a scatering state if there exists x € H;y

such that
lim || (2) ~ T exp(~itH p)x [|= 0

where H is defined via ( 4.1). We define the wave operators, when they exist, as
Q+(H,®,Hy) = slim exp(iHt)® exp(—iH st)
then the scattering operator is given by
S =QLQ..

We know that wave operators generally exist only when the interacting Hamiltonian is a

small perturbation of the free Hamiltonian. In the present case we require that
TS =H;+V

where V' is short range [84]. Naturally we require that S is Lorentz invariant. The
existence of the wave operator is sufficient to ensure that S commutes with H 7 since the

wave operators then satisfy the so called intertwining relations i.e.
HQy = Q:{:ﬁf.
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It is then easy to show from the defintion of S that

(Hy, 8] =0.
Because of the way ®,; was constructed

PE=3P, ad TT-TT.
Using these relations and the defintion of S we obtain
[Py, 8] = gf’s] =0.

To show that S is Lorentz invariant it only remains to prove that

K}, 5]=0 (4.2)
but this is more difficult. For example we can show that ( 4.2) holds iff

Jim || (RS — BK ) exp(ekill ) ||= 0 (43)

for all x in some dense set in Hy. Recall that X depends on ¥ so this places more
restrictions on 7.

If we consider the special case of two particles, where all observed particles are ele-
mentary, the above formalism becomes a little less abstract. The operator algebras in H
and Hy are isomorphic and the same symbol may be used to denote a state in either space
that is we can take @ = I. Initially one might describe the particles in their momentum

space representations, the state space of the combined system is then
H =LY, &%) ® L2(a®, d°p?).

We may pass to centre of mass coordinates p and k and it is well known that we can define

an isomorphism
2@V, d*p) @ 1@?, d’p®) - 17(p, d°p) ® L*(E, °B).
This gives a new representation of 7 i.e.
H = Hem ® Hipt

with the obvious definitions of Hem and Hjp;. The operators representing total mom-
mentum are of the form P ® I. We now see how to describe H = H f as a direct integral.

Suppose the P had pure point spectra with corresponding simultaneous eigenvectors ¢p
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then since Hoy = &Hyp (where Hp is the 1-dimensional space spanned by the eigenvector

with eigenvalues p) we have
H = (&Hp) ® Hipt = ®(Hp ® Hipy)-
but since the spectra of the P are purely continuous we should write
H= ‘/EB Hp ® Hintd’p.
‘We now define
H=(p2+®o+7)?? and Ho=(p[? +Mo)}.

These can be written as direct integral operators

H= [ T(pha's ad Ho= [ H(p)ds
where

Hy(p) =18 (Bl +Me): and H(E) =185 +o+7))}

which are well defined fibre operators because M and My are operators on Hint (86].

Similarly we can represent the wave operators as direct integrals. We have
Q(F, Ho) = /@ QT (), Hy(p))d’p = /(B 18 (Mo + 7, Mo)d®p

where the last step follows from the application, fibrewise, of a well known result from
scattering theory. If we impose further restrictions on 7 then we arrive at a macrocausal

theory describing 2 interacting particles i.e we have
-li S —IT(dy,ds) = 0.
e g_l‘lgoo( )T(dy,do) =0

S tends to I because we considered elementary particles 4. This result allows Coester to
induce macrocausal theories for larger systems. Unfortunately it appears that no one has
managed to exhibit a 7 satisfying the necessary restrictions. His work remains a rather

abstract existence theorem.

4In general macrolacality requires

slim (S - S.)T(d,d;) =0.

min|d, —d,[—+
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Coester shows that his results can equally well be developed in the front form. In this
case the analogue of the Newton Wigner operator is the front form spin. The interaction v
is added to M and is required to commute with the generators of the kinematic subgroup
( 2.47) and the front form spin which are therefore left invariant by the addition of the
interaction. The Hamiltonians ( 2.48) are now v dependent. By construction ® and hence
S will be invariant under the kinematic generators while invariance of S under P! will
follow from the intertwining relations. Invariance under the perturbed J3' and J?! will
not be automatic and will require that v satisfy other criteria. Notice however that now we
only require two further relations from v as opposed to the three conditions ( 4.3) needed
in the instant form. It is because of this that of all the forms the front form is considered
as offering the best means of constructing relativistically invariant theories of directly
interacting particles. Having said that, no specific operators v have been forthcoming.
The difficulty of obtaining interaction terms that lead to macrolocal theories has led some
to abandon this restriction. In [91] Mosley develops an interacting, relativistic, point form
classical mechanics that is not macrolocal. It does not even reduce to the free particle
theory advanced by the same author when interactions are switched off. Since it has long
been hoped that relativity would place just this kind of severe constraint on subatomic

particle interactions it may be premature to acknowledge defeat.
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