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ABSTRACT

Regulation at the post-transcriptional level is gaining significance at a

rapid pace. One example is the storage of messenger mRNA molecules 

in a translationally quiescent state, the so-called "masked messengers". 

Their existence has been known since the 1960s, but many details of 

their composition and structure have not yet been resolved. Masked 

messenger RNAs are particularly abundant in the oocytes of the 

African clawed toad Xenopus laevis. The aim of this study has been to 

examine the proteins bound to stored mRNAs in the oocytes, by 

focussing on the Y-box proteins which had already been identified as 

major components in mRNA masking, and by analyzing some of the 

other unidentified mRNP proteins.

The YB proteins were studied in greater detail, gaining fresh 

information about their RNA-binding properties, defining distinct 

binding domains. The presence of an mRNP-associated protein kinase 

was confirmed, and binding assays suggested that phosphorylation 

influences the ability of the YB proteins to bind to mRNA. cDNA 

expression libraries were screened both with an RNA-binding assay and 

with an immunoscreening method, isolating a variety of known and 

novel cDNAs. Peptide sequencing of mRNP proteins revealed the 

presence of an RNA helicase distinct from the translation initiation 

factor eiF4A. it is postulated that the RNA helicase, in addition to the 

YB proteins, will be seen to have an important role in the formation 

and activity of the masked messenger RNA particles.
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1.0 The masked message

The study of gene regulation is a fueermcnir1 rrer of research in

molecular biology. Historically, gene regulation was first described at the 

transcriptional level. However, the path leading from gene transcription to 

the translation of messenger RNAs is a multi-step process, including 

transcript splicing, po1yrdeey1aiion, transport, localisation, as well as 

translational initiation and elongation. Each of these steps can potentially 

be regulated. It is becoming increasingly apparent that complex and 

diverse regulatory mechanisms occur post-tcanssriptionr11y.

One specific example of post-tcaescripSioea1 regulation is the storage and 

translational repression of messenger RNA, summarized in the "masked- 

messenger hypothesis". In general, a "masked messenger" can be defined 

as a fully processed mRNA whose translation is delayed. Masked mRNAs 

are stored in association with "masking proteins" in a cytoplasmic pool of 

non-polysomal, or "free" mRNP. This study will focus on the masking 

proteins involved in the storage of mRNA in the oocytes of the African 

clawed toad Xenopus laevis, a popular model organism. Before defining the 

aims of the project, it is necessary to refer to the original experiments 

which led to the masked messenger hypothesis; to illustrate, with a series 

of examples, why masked mRNAs should exist, and to describe what was 

known about the masking proteins at the start of the project.

1.1 Discovery of the masked message

The masked messenger hypothesis started with the work of Spirin et al. 

(1964) on embryos of the loach Misgumus fossilis, a fresh-water fish. The 

irradiation of embryos by X-rays was observed to be intermittently lethal, 

depending on the developmental stage at which irradiation took place. For
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example, if embryos were irradiated during phases in which the 

embryonic nuclei were transcriptionally active, such as between 6 and 8.5 

hours after ferti]^:ization (blastula), the embryos did not develop to gastrula. 

However, if these embryos were irradiated between 8.5 and 14 hours after 

fertilization, a phase in which nuclei are inactive, they did progress to 

gastrula. It was suggested that during the active phase, the nuclei were 

producing the mRNA molecules that convey the information required for 

the embryo to progress to gastrulation. Whereas X-rays were lethal during 

this transcriptional phase, they were not once the genetic information was 

cytoplasmic, in the form of stored mRNAs. The analysis of cytoplasmic 

extracts fractionated on sucrose gradients revealed the presence of a broad 

spectrum of RNP (RNA + protein) material sedimenting between 40 and 

60 S. This RNP material did not consist of ribosomal components. When 

combined with ribosomes in vitro, the 40-60 S RNP formed polysomes. The 

density of the RNP material, <1.-4 g/cm3 on a CsCl gradient, suggested a 

protein to RNA ratio (w/w) of 3:1. These RNP, or masked messenger 

RNAs were named ""nformosomes", in the sense that they carry the 

information directing the synthesis of proteins necessary for development 

to progress; however, the term '"nformosome" did not catch on.

Further work described masked messengers in the sea urchin Lytechinus 

pictus (Spirin and Nemer, 1965), and in various other animal tissues such 

as sheep thyroid, rat brain and liver, giant silkworm epidermis and human 

HeLa cells (Ovchinnikov and Spirin, 1970). Whereas the masked mRNP 

were heterogenous in size, presumably due to the variable lengths of 

mRNA molecules contained within them, their density was remarkably 

uniform. Like the loach embryo masked mRNP, their density on CsCl 

gradients peaked at about 1.4 g/cm3. This suggested that the types of 

proteins present and the structure of the infoimotomes are quite universal.
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Soon after, Lukanidin et at (1972) infected human FL cells with 

adenovirus, and studied the resultant mRNP particles by electron 

microscopy. The particles, with a diameter in the range of 0.2 pm, gave the 

impression of being composed of many similar subunits. Masked mRNP 

were also detected in plant cells, more specifically in wheat grain 

(Ajtkhozhin et at, 1976).

in subsequent reviews, Spirin developed the concept of masked mRNP 

further. Spirin proposed that masked mRNP carry both translation 

initiation and elongation factors, as well as components which 

and mask mRNAs" (Spirin, 1978 and 1980), arguing that due to the size of 

the eukaryotic cell, it is more efficient to group these factors together on 

the same mRNP, rather than rely on random collisions to bring about their 

association. Spirin described the concept with the Latin quote omnia mea 

mecum porto, which can be translated as "I carry all my things along".

In vivo, messenger RNA molecules do not exist free of protein in the 

cytoplasm (Henshaw, 1968; Ovchinnikov and Spirin, 1970; Greenberg, 

1977). Does their association with proteins determine their "masked" state? 

When Gurdon et at (1971) originally microinjected protein-free rabbit 

globin mRNAs into Xenopus oocyte cytoplasms, they observed that globin 

protein was actively synthesized. in contrast, many cytoplasmic mRNAs 

are "masked" in the Xenopus oocyte . This is clearly illustrated in an 

experiment 'where the occurrence of different proteins is compared in 

oocytes and eggs from the surf clam, starfish and Xenopus (Standart et at, 

1985; reviewed in Standart, 1992). in oocytes, in vivo synthesized proteins 

do not include ribonucleotide reductase, cyclin A and cyclin B; however, 

these proteins appear in eggs. When mRNP was extracted from oocytes, 

deproteinized, and added to a rabbit reticulocyte in vitro translation 

system, ribonucleotide reductase, cyclin A and cyclin B were produced.
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Therefore the oocytes contain the mRNAs that direct the synthesis of these 

proteins, but the mRNAs are thought to be complexed with masking 

proteins, stored and prevented from, translating until the appropriate 

developmental stage. Since the formulation of the masked messenger 

hypothesis in the 1960s, one of the main aims of research has been to 

identify and characterize the masking proteins.

1.2 Ma^ed meesagee tin Xenopus oocytes

The need for masked mRNAs in Xenopus oocytes can be illustrated with a 

series of examples. In Xenopus, oogenesis is a lengthy process, lasting at 

least eight months (r<^^^;^^^wed in Davidson, 1986; Smith et al., 1991). The 

duration of oogenesis is influenced by hormones, food and crowding 

conditions. Throughout oogenesis, the diameter of the oocytes increases 

from about 50 pm to 1200 pm. Oogenesis has been divided into six stages, 

I-VI, based on the anatomy of the developing oocyte (Dumont, 1972; see 

Fig. 1). All oocyte stages are present in the ovary of a mature animal, 

oogenesis being asynchronous. Yolk accumulation (vitellogenesis) begins 

at stage H. Throughout oogenesis, a large store of macromolecules is 

synthesized: a staggering figure of 1012 ribosomes and 2 x 1011 mRNA 

molecules per oocyte (Davidson, 1986). Total RNA increases from 0.04 pg 

(stage I) to over 4 pg per oocyte (stage VI), of which only about 1% (40 ng) 

is po1yadeny1rted mRNA, containing approximately 20,000 distinct 

mRNA sequences; the rest being mainly ribosomal (90%) and transfer 

RNA (4%) (Davidson, 1986). The accumulation of mRNA and mRNP 

proteins starts in previte11ogeHic oocytes, whereas ribosomal RNA and 

ribosomal proteins start accumulating in vitellogenic oocytes.

Despite adaptations in chromatin structure, such as the formation of 

lampbrush chromosomes and the use of histone variants, many months of
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oogenesis are needed to transcribe all the RNA to produce the required 

pool of mRNA molecules. In Xenopus, the growing oocyte is blocked at the 

dip^em stage of the first meiotic division. At oocyte maturation, induced 

by the hormone progesterone, fundamental changes occur. Six hours after 

exposure to progesterone, the germinal vesicle (nucleus) breaks down and 

lampbrush chromosomes contract, in preparation for the first meiotic 

division. By ovulation, the egg is in second meiotic metaphase. 

Progesterone treatment is also followed by the recruitment of various 

stored masked messages into polysomes. Moreover, individual stored 

messages are recruited at different time points, depending on the cell's 

requirements (Dworkin et al, 1985). The overall rate of translation 

increases three-fold at maturation, and a further two-fold after fertilization 

(Davidson, 1986).

A remarkable process follows: the embryonic cells divide rapidly, to the 

extent that within three days a swimming tadpole has developed: the 

original fertilized egg has given rise to 103 cells (Woodland, 1982). The 

mass of the young tadpole is comparable to that of the mature oocyte (Fig. 

1). While the embryonic cells are dividing rapidly, going straight from the 

”S phase" (DNA synthesis) into the ’’M phase " (mitosis) of the cell cycle, 

there is no time to transcribe DNA which is replicating and segregating 

continuously. For this reason, in order to by-pass the need for 

transcription, the developing embryo relies on the store of maternal 

mRNP, ribosomes and assorted translational machinery. Zygotic gene 

transcription first starts at the "mid-blaseula transition" (MBT), five hours 

into development. The pool of maternal masked messages encodes the 

proteins needed for rapid cell cleavage to occur, for example: DNA 

synthesis enzymes, such as ribonucleotide reductase; proto-oncogene 

mRNAs needed for cell proliferation, and histone HI, replacing its oocyte
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Figure 1 Early development in Xenopus laevis. The diagrams are 

adapted from Nieuwkoop and Faber, 1956, and the figure prepared by 

Dr. Sommerville. The stages are all to scale, as shown on the diagram. 

Oogenesis has been divided into six stages (Dumont, 1972). Stage i

oocytes are 50 to 100 pm in diameter, and are translucent. Stage ii oocytes 

range up to 450 pm and are opaque white. in stage iii oocytes (450-600 

pm) pigment deposition begins. in stage iV oocytes (600-1000 pm), animal 

and vegetal hemispheres differentiate. in stage V oocytes (1000 to 1200 

pm) the hemispheres are clearly delineated and the animal hemisphere 

appears light brown. Vitellogenesis (the deposition of yolk) occurs 

between stages n and V; stage Vi oocytes (1200-1300 pm) are post­

vitellogenic, ready for maturation. Various developmental stages are 

shown and are numbered according to Nieuwkoop and Faber, 1956: stage 

2:1.25 h after fertilization, beginning of first cleavage; stage 4: age 2.25 h, 

advanced eight cell stage; stage 8: age 5 h, mid-blasrula stage; stage 10: 

age 9 h, initial gastrula stage; stage 12: age 13.25 h, medium yolk plug 

stage; stage 14: age 16.25 h, neural plate stage; stage 16: age 18.25 h, mid 

neural fold stage; stage 20: age 21.75 h, neural folds fused; stage 25: age 1 

day, 3.5 h., eyes and gills; beginning of fin formation; stage 27: age 1 day, 

7.25 h, lalrselfiattesono oo eyys, fin treasluceni,tralbud foimnlion 

accentuated in lateral outline, 19 somites are segregated; stage 36: age 2 

days, 2 h, formation of two gill rudiments, melanophores appear on back, 

tail bud length three times its breadth; stage 42: age 3 days, 8 h, yolk 

consumed in tail structures: swimming tadpole stage.
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variant B4. In a very short time, the products of many months of oogenesis 

are used up. Two typical masked messages can now be considered in more 

detail.

The proto-oncogene c-mos is a typical masked message in the oocyte. In 

the cascade of events that is triggered by progesterone, the maturation 

promoting factor (MPF) has a key role. MPF allows the oocyte to enter 

metaphase of the first meiotic division, and contains cyclin as well as the 

cell-cycle associated kinase cdk2 (reviewed in Gilbert, 1991). In general, 

cyclins are made during interphase and are degraded rapidly at cell 

division by a specific protease. In the oocyte, levels of cyclin protein are 

influenced by the product of c-mos, a 39 kDa protein kinase (pp39m°n). This 

kinase phosphorylates and thereby inactivates the protease which 

degrades cyclin. Hence the effect of active pp39mos is to promote the 

activity of MPF. Consequently, the injection of antisense c-mos mRNA 

blocks germinal vesicle breakdown, one of the consequences of oocyte 

maturation (Sagata et al, 1988). The c-mos mRNA is transcribed from early 

oogenesis onwards, yet it is not translated until oocyte maturation (Sagata 

et al., 1988). In contrast, pp39mos protein persists until fertilization, when it 

is itself degraded by a calcium-dependent protease, calpain II (Watanabe et 

al., 1989). If pp39m°s is not degraded, the oocyte stalls at metaphase II; 

likewise, if pp39mos is artificially present in embryonic cells, these cells are 

arrested at metaphase because the cell cycle cannot progress. In summary, 

c-mos mRNA is translated in a well defined time frame, its mRNA having 

been masked in the oocytes for many months.

The proto-oncogence c-myc encodes a nuclear transcription factor involved 

in cell proliferation. An abnormally high level of expression of this 

oncogene has been observed in various tumours. A Xenopus c-myc cDNA 

was isolated and its expression studied (Godeau et al., 1986; Taylor et al.,

i
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1986). Its mRNA is accumulated from early oogenesis onwards and, like c­

mos, stored in a masked state. It is estimated that there are 7.4 pg of c-myc 

mRNA molecules in a stage VI oocyte, equivalent to approximately 5x103 

molecules. After fertilization, c-myc mRNA is actively degraded, with a 

half-life of 4 hours 20 minutes, and by gastrula there are only abouit ten 

transcripts per cell (Taylor et al., 1986). The instability of c-myc mRNA is a 

more general phenomenon in somatic cells, and is mediated by the 

presence of AU-rich sequences in the 3' UTR, more specifically repeats of 

the sequence AUUUA. These are present in the 3' UTRs of a variety of 

unstable proto-oncogene mRNAs such as c-fos and c-jun (Kruys et al., 1989; 

Laird-Offringa, 1992; You et al., 1992). The protein p65--vyc is accumulated 

in late oogenesis, to be used during the highly proliferative phase of early 

development. Like c-mos, c-myc is a masked message in oocytes, but the 

exact timing of their translational recruitment differs.

Masked messages are also found in mammalian oocytes. Primary mouse 

oocytes, for example, have been shown to contain a "dormant", or masked, 

message encoding t-PA, tissue plasminogen activator (Strickland et al., 

1988). The mRNA is present in primary oocytes, but the enzyme is not 

synthesized until the resumption of meiosis in the hours preceding 

ovulation. The onset of zygotic transcription in mammals occurs at the 

ewo-csll cleavage stage, and therefore the requirement for masked 

maternal mRNAs is perhaps less extensive in mammalian oocytes.

1.3 Maaked messages in spermatids

Spermatogenesis starts with the mitotic proliferation of spermatogonia 

into spermatocytes. The spermatocytes in turn give rise to haploid 

spermatids, which in turn develop into mature spermatozoa. To do this 

they need to produce a flagellum, an acrosome, and a sperm head in
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which the genome is highly compacted; mitochondria are also arranged 

spirally around the base of the flagellum, being necessary to drive its 

movement (Kleene, 1989). In mice, spermiogenesis takes two weeks, and 

has been divided into sixteen steps based on the morphology of the 

spermatids. In the round spermatids (steps 1-8), the flagellum and 

acrosome appear while transcription declines. After step 8, the process of 

nuclear condensation begins, and RNA synthesis ceases. Nuclear 

compaction is achieved first by replacing histones with the transition 

proteins, and the transition proteins are subsequently replaced by the 

protamines. The protamines are small, basic proteins rich in arginine and 

cysteine. Once the genome is packaged by these protamines, transcription 

is no longer possible. Therefore messages encoding proteins that are 

required for the maturation of spermatids have to be synthesized in early, 

round spermatids, and stored for several days until they are required in 

late spermatids (Kleene et al., 1984; Kleene and Smith, 1994). The masked 

messages encode the transition proteins 1 and 2 (Heidaran et al., 1988; 

Morales et al, 1991), the protamines 1 and 2, and the mitochondrial 

capsule selenoprotein (Kleene, 1993). The storage of these masked 

messages lasts between two and eight days in total (Kleene et al, 1984).

Messenger RNP particles were isolated from testis cells from the rainbow 

trout, Salmo gairdnerii (Sinclair and Dixon, 1982), using sedimentation on 

sucrose gradients and binding to an oligo(dT) column which bound the 

particles through hybridization to their poly(A) tails. The density of the 

particles was found to be 1.35-1.37 g/cm3 in a CsCl gradient, which is 

quite consistent with previous findings. Whereas mRNP particles derived 

from polysome fractions were actively translated in vitro, the non- 

polysomal particles did not translate, unless treated with 0.3 M KCl or 

deproteinized. However, both polysomal and non-polysomal mRNP
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particles had similar densities. Sinclair and Dixon (1982) speculated that 

whereas the hulk of the mRNP proteins were similar, the set of 

translationally silent particles are bound by a specific repressor that

dissociates in 0.3 M KCl.

In studying mouse spermatogenesis, Kwon and Hecht (1991) defined two 

highly conserved sequences in the 3' UTR of masked mRNAs, located 

between nucleotides +537 and +572 of protamine 2 mRNA. A protein of 18 

kDa was UV-crosslinked to one of these sites. These conserved sequences 

were later called the Y and H elements, and are found in the 3' UTRs of all 

sequenced mammalian protamine mRNAs (Kwon and Hecht, 1993). The

KO^ protein was shown to be present in isolated mRNP particles. Using 

anin vitro rabbit reticulocyte translation system, Kwon and Hecht 

demonstrated that when reporter constructs containing the Y and H 

elements were supplemented with a testis extract containing the 18 kDa 

protein, translation was repressed. Translational repression was 

dependent on the phosphorylation of the 18 kDa protein: in late 

spermatids, the 18 kDa repressor did not bind to the mRNAs, presumably 

as a consequence of its dsphosphorylation. The 18 kDa protein is therefore 

necessary for the translational repression of these messages while they are 

stored. However, other proteins were shown to bind to these masked 

mRNAs in the testis (Kwon et al, 1993; Tafuri et al, 1993). These other 

proteins will be discussed in a later section (1.6). Their functional 

relationship with the 18 kDa protein is unclear.

1,4 Maaked messages in somallc ceUs

The storage of mRNA as "masked messages" is by no means restricted to 

gametocyess. For example, storage of mRNA is well documented in 

somatic tissues in plants. In wheat grains, protein synthesis declines

i
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during seed ripening, and a significant proportion of mRNA is

increasingly found in free rather than polysomal mRNPs (Ajtkhozhin et al, 

1976). In Zea mays (maize), stored mRNAs exist in the seedling's embryo 

(Sanchez-Martinez et al., 1986). In maize, embryogenesis lasts 30-40 days, 

while maturation and seed drying takes 10-20 days. When mRNPs are 

extracted from young maize embryos and added to an in vitro translation 

system, they give rise to proteins which normally do not appear until the 

mature embryo stage. This implies that these mRNAs are stored in a 

translationally repressed form (masked mRNAs).

In the plant Medicago sativa (alfalfa), mRNAs encoding the

proteins" are expressed in the earliest stages of the somatic embryo, during 

which the storage proteins are not detected (Pramanik et al., 1992). Storage 

proteins are an important component in seed development, and are not 

found in vegetative tissues. Their mRNAs only become polysomal at the 

beginning of cotyledon development. Following a familiar pattern, after 

deproteinization, mRNPs obtained from younger somatic embryos were 

able to translate in vitro. In another example, long-lived mRNAs were 

studied in the radish Raphanus sativus (Raynal et al., 1989). A specific 

cDNA was isolated, encoding a protein described as one of the "early 

germination polypeptides”. Northern analysis showed that its mRNA 

starts accumulating during the dessiccation phase, reaches its peak in the 

dry seed, and disappears in 12 hour old seedlings.

Furthermore, in the context of light-induced chloroplast biogenesis, there 

is a set of mRNAs encoding photosynthesis-related proteins that are 

derived from the chloroplast (Danon et al, 1991). These mRNAs 

accumulate in dark-grown plants without being translated: after exposure 

to light there is a dramatic increase in the synthesis of plastid proteins 

associated with photosynthetic membranes (Malnoe et al, 1988). The plant
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is able to exploit sunlight quickly, activating the translation of the relevant 

proteins while by-passing the need for transcription. According to the 

above examples, it is clear that masked messages occur in somatic tissues 

in plants. It is conceivable that some of the plant mRNA masking proteins 

and mechanisms may be related to those found in animal cells.

In mammals, the development of reticulocytes into erythrocytes involves 

the loss of the nucleus as well as the degradation of mitochondria. The 

mammalian red blood cell is terminally differentiated, with a very 

specialized purpose: to carry oxygen and CO2 in hemoglobin. Messenger 

RNAs encoding globins are therefore very abundant in the reticulocyte. 

The second most abundant message encodes LOX (15-lipo-oxygenase), an 

enzyme involved in the degradation of mitochondria which attacks intact 

phospholipids (Ostareck-Lederer et al, 1994). Its mRNA is transcribed in 

bone marrow but is only translated when the reticulocytes reach the 

peripheral blood, and is therefore a masked message. By using gel 

retardation and photocrosslinking assays, a 48 kDa protein has been 

identified which binds to a pyrimidine-rich sequence in the 3' UTR of LOX 

mRNA (Ostareck-Lederer et al, 1994). p48 was shown to be required for 

translational repression, and is currently being cloned and characterized. 

However, as was the case for the protamine mRNA, another protein has 

also been identified in rabbit reticulocyte mRNPs, with a role in 

translational repression (Minich and Ovchinnikov, 1992; Evdokimova et 

al., 1995), and will be discussed in section 1.6.

As is the case for mRNAs encoding protamines, a repressor binds to a 

specific site in the 3' UTR of LOX mRNA. The 3' UTR has been involved in 

other examples of translational regulation: for example, as was mentioned 

previously (section 1.2), in the mouse oocyte, tissue plasminogen activator 

mRNA is a masked message. The injection of antisense RNA
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complementary to 103 nucleotides in the extreme 3’ UTR blocked the 

translational recruitment of this message (Strickland et al., 1988). In this 

case, the 3' UTR is required for translational recruitment, and the antisense 

RNA is aching like a repressor of translation.

5' UTR sequences have also been involved in translational regulation. For 

example, the various mRNAs encoding ribosomal proteins are 

coordinately regulated at the level of translation according to cellular 

demand for ribosomes, and in response to physiological cues. This 

coordinated translation is achieved through a protein binding to a 

pyrimidine-rich stretch in the 5' UTR (Cardinali et al., 1993). When this 

pyrimidine stretch was fused to a chimeric reporter mRNA, the reporter 

acquired the translational pattern of the ribosomal protein mRNAs. A 

protein of 57 kDa bound specifically to this site. Similarly, the mRNA 

encoding the translation elongation factor EFla possesses an analogous 

pyrimidine tract in its 5' UTR, and its translation is coordinately regulated 

with the ribosomal protein mRNAs (Loreni et al, 1993). In Xenopus tissue 

culture supplemented with serum, mRNAs encoding EFla as well as the 

ribosomal protein mRNAs, moved from a non-translating pool of masked 

mRNAs to polysomes, and conversely from polysomes back to masked 

mRNP during serum deprivation.

In another well characterized example, the mRNA encoding ferritin 

contains a 5’ UTR element, the IRE (iron responsive element) which 

interacts with a repressor protein, the IRE-BP (IRE-binding protein; 

Klausner et al., 1993). Ferritin protein binds to excess Fe3+ ions. When these 

ions are absent, the repressor binds with a high affinity to the IRE; this 

affinity is reversed in the presence of the ions, leading to translation of the 

ferritin mRNA.
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In a recent experiment involving both human HeLa and yeast cells, a 

bacteriophage protein and a spliceosomal protein were converted into 

translational repressors when their binding sites were added to the 5' UTR 

of reporter mRNAs (Stripecke et al., 1994). The authors suggested that 

binding of these proteins to the 5' UTR resulted in a "steric blockage" 

effect, in which the binding of translation initiation factors to the 5' UTR 

was prevented. There is no doubt that many more examples of message- 

specific translational regulation will be discovered.

1.5 The io)la d polyaciellylatioli in mRNA rosIoStmeni

The translational recruitment of various masked maternal mRNAs in 

oocyte maturation has been associated with the cytoplasmic 

polyadenylation of these mRNAs. This is in addition to their initial nuclear 

adenylation (McGrew et al., 1989). Two known cs-acting elements in the 3' 

UTR of various masked messages are: the hexanucleotids AAUAAA, 

required for polyadenylation in general, and the cytoplasmic 

polyadenylation element (CPE), of sequence UUUUUAU (reviewed in 

Wickens, 1990). More specifically, the process of polyadsnylation, rather 

than the presence of an extended poly(A), tail has been suggested to be 

required for translational recruitment (Simon et al., 1992). The exact timing 

of cytoplasmic polyadenylation has been studied with respect to the 

masked messages c-mos, and cyclins Al, B1 and B2 (Sheets et al., 1994). 

Results suggest that both the magnitude and timing of translational 

stimulation depended on message-specific 3' UTRs. Recently, the Xenopus 

oocyte cytoplasmic poly(A) polymerase has been cloned (Gebauer and 

Richter, 1995).

The role of polydenylation has also been described in the surf clam Spisula 

solidissima (Rosenthal and Ruderman, 1987; Standart and Dale, 1993).
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During meiotic maturation, masked mRNAs become polyadenylated, and 

eventually become deadenylated when no longer required . The 3' UTRs of 

mRNAs encoding ribonucleotide reductase, cyclins A and B, and histone 

H3 were found to contain CPE-like motifs (Standart and Dale, 1993). While 

the 3' ends of these messages were polyadenylated, actin mRNA, which 

ceases to translate at this stage, was not. The actin mRNA 3' UTR did not 

have a comparable CPE-like sequence.

Similarly, the marine worm Urechis caupo was also studied with respect to 

polyadenylation (Rosenthal and Wilt, 1986). As in Spisula and Xenopus, 

different classes of maternal mRNAs accumulate throughout oogenesis. 

One class has a short poly(A) tail which is adenylated following 

fertilisation. Another class accumulates in oocytes as fully polyadenylated 

mRNAs, but numbers diminish in full-grown oocytes, coupled with 

deadenylation. The former class are the masked messages, whereas the 

latter are the messages that are translated in the oocyte, encoding the 

proteins required for oogenesis to proceed. The translation of specific 

maternal mRNAs from Urechis has been studied more recently using 

cDNA probes (Rosenthal and Wilt, 1993). Translational recruitment 

correlates with further cytoplasmic polyadenylation, and the 3' UTR 

sequence of a number of these mRNAs also contains CPE-like elements.

Although these results are consistent with respect to CPE-containing 

mRNAs, it is not altogether clear that polyadenylation is a universal 

requirement for translational recruitment (see reviews by Standart, 1992, 

and Spirin, 1994). For example, core histone messages in somatic cells are 

not polyadenylated, yet they are efficiently translated. In Xenopus oocytes, 

the histone Hl mRNA is masked in a polyadenylated form, and 

deadenylated when translated (Ballantine and Woodland, 1985). Similarly, 

protamine and transition protein mRNAs are masked in an adenylated
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form in the developing spermatid, and partially deadenylated when 

recruited during spermiogenesis (Kleene et al, 1984; Kleene 1989). There 

are more exceptions to the rule, such as the ODC (ornithine decarboxylase) 

mRNA, which is unmasked during Xenopus oocyte meiotic maturation, 

without any significant change in its poly(A) tail (reviewed in Standart, 

1992). The masking and unmasking of the LOX mRNA in a rabbit 

reticulocyte cell-free translation system is also independent of 

polyadenylation (Ostareck-Lederer et al, 1994). Finally, a recent 

experiment involving the injection of CAT-reporter constructs into 

Xenopus oocytes has suggested that masking and unmasking of these 

constructs is unaffected by polyadenylation (Braddock et al, 1994). 

According to these examples, the relationship between polyadenylation 

and translational recruitment is therefore unclear.

1.6 TTh masking proteins are ii^^i^ttii^d

Having described the phenomenon of masked messages in a variety of 

contexts, we now focus on the Xenopus oocyte mRNA masking proteins. In 

1974, Rosbash and Ford reported that in full-grown oocytes, over 90% of 

polyadenylated mRNA is located in free mRNP sedimenting between 30 

and 120 S. In 1977 Ford et al. confirmed that very long-lived mRNAs exist 

in Xenopus ovaries. The search for the Xenopus oocyte masking proteins 

soon followed.

Is 1981, Darnborough and Ford isolated free mRNP from Xenopus oocyte 

extracts using sucrose density centrifugation asd oligo(dT) 

chromatography. Numerous proteins were described, including four 

major proteins of 50,52,56 asd 59 kDa, asd these were labelled, 

respectively, mRNPl, mRNP2, mRNP3 asd mRNP4. There were many 

other less abundant proteins: for example proteiss of 75 asd 100 kDa



19

(mRNP 5 and mRNP6 respectively) and 16 and 22 kDa (mRNP7 and 

mRNP8). The protein composition of the mRNP did not therefore present 

itself as a simple problem. The sedimentation properties of the mRNP 

were consistent with a proteiniRNA ratio of 4:1 (w/w). The major proteins 

mRNPi-4 were largely cytoplasmic, and were not detected in Xenopus liver 

or reticulocytes.

A Xenopus oocyte protein described as "p60" was shown to be tightly 

bound to mRNA, heavily phosphorylated, and present in nuclear fractions 

(Dearsly et al, 1985). Likewise, an abundant mRNP protein "p56" was also 

phosphorylated. These proteins were then referred to as pp56 and pp60 

(pp=phosphoproteins), and correspond to mRNP3 and mRNP4. In another 

amphibian, the newt Triturus cristatus, an abundant RNP component of 60 

kDa was also described, and was part of a fibrillar matrix in the nuclei 

(Kloetzel et al, 1982). Similarly, an antiserum raised against Triturus pp60 

cross-reacted with RNP components in Drosophila melanogaster 

spermatocyte nuclei (Giatzer et al, 1986).

In vitro reconstitution experiments had earlier shown that mRNP proteins 

could inhibit translation in vitro (Richter and Smith, 1984). Using purified 

pp60 and an in vitro transcribed globin message, Kick et al. (1987) 

reconstituted mRNP, and assayed translational activity in a wheat germ 

lysate. It was suggested that translati^onal repression was dependent on the 

phosphorylation of pp60, because dephosphorylated mRNP were able to 

translate. Could the phosphoprotsm pp60 be the main masking protein? In 

1987, Crawford and Richter used an antiserum raised. against Xenopus 

pp56, the second abundant mRNP phosphopiotein, to immunoprecipieats 

mRNP. They reasoned that because in the oocyte certain mRNAs are 

masked, while others are translatable, only masked mRNAs should 

immunoprecipitate. They found that the mRNA XRNP6, which translates
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in stage 1-2 oocytes, could not be immunoprecipitated with this antiserum. 

In contrast, the mRNAs XRNP1, XRNP3 and XRNPIO, which are masked 

messages, were immunoprecipitated. Consequently, pp56 (and pp60) 

could be referred to as the proteins". These proteins were also

photocrosslinked to mRNA using 254 nm UV light, suggesting a tight 

interaction with the nucleic acid (Swiderski and Richter, 1988).

In addition, Cummings and Sommerville (1988) found that a kinase 

activity was an integral component of the mRNP particle. During the time 

of maximum rate of mRNA accumulation in stage I and II oocytes, the 

kinase activity was present in particles sedimenting between 40 and 80S. 

The proteins pp56 and pp60 present in these particles were

phospholabelled both in vitro and in vivo after the addition of [y-^PlATP.

In more mature oocytes, when ribosomes become abundant, the kinase 

activity and pp56/pp60 sedimented between 80 and 110 S, suggesting that 

at this stage in oogenesis, the mRNP particles interact with ribosomal 

subunits. The nature of this interaction was not and is still not understood.

It is conceivable that mRNPs are bound to ribosomes to facilitate an 

immediate translational recruitment at the appropriate time. The 

association of the mRNP with the ribosomal subunits was disrupted with 

EDTA, after which the phosphoproteins were found in particles with a 

buoyant density of 1.40 g/cm3 in a CsCl gradient. This value is consistent 

with earlier findings (Spirin et al, 1964; Ovchinnikov and Spirin, 1970; 

Sinclair and Dixon, 1982). The phosphoproteins pp56/pp60 showed a 

range of ionic forms in two-dimensional gels, and proteinase digestion 

patterns gave almost identical profiles (Cummings et al, 1989). In 

summary, it emerged that both the masking proteins are phosphorylated 

by an mRNP-associated kinase activity, and that pp56 and pp60 are 

structurally similar, probably related proteins, their phosphorylation being
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required for keeping the mRNA in a masked state. The phosphorylation of 

the masking proteiss also appeared to enhance their binding to RNA in 

vitro (Murray et al., 1991).

The properties of the associated kinase activity were investigated further 

(LaRovere and Sommervine, unpublished). Its characteristics, such as the 

ability to use both ATP and GTP as phosphate donors, the

phosphorylation of casein, inhibition by heparin, and activation by 

spermine were consistent with its being of a casein kinase II type. A casein 

kinase II activity has been purified from Xenopus ovary (Mulner-Lorillon et 

al., 1988), and cDNAs encoding its various subunits (a, a' and p) were later 

isolated (Jeeilicki et al., 1992).

At this point, it became a priority to clone and sequence the masking 

proteins pp56 and pp60. This task proved relatively straightforward, due 

to the abundance of these proteins in the oocytes. Deschamps et al. (1991) 

discovered that the masking proteins could be purified via "heat- 

treatment". After heating oocyte extracts to 80 °C, cooling and spinning 

them, they found that pp56 and pp60 remained is solution whereas other 

proteins precipitated. This material was amesable to peptide sequencing. 

Soon the masking proteins were identified (Deschamps et al., 1992; Murray 

et al, 1992), giving an unexpected result: pp56 and pp60 belonged to a 

novel class of transcription factors, the "Y-box proteins”.

The first Y-box protein, human YB-1, was identified in 1988 by virtue of its 

binding to the Y-box DNA element found in the promoters of MHC class 

II promoters (Didier et al., 1988). The Xenopus oocyte homologues were 

cloned in 1990 by Tafuri and Wolffe, who isolated FRGY1 and FRGY2, the 

former being expressed in somatic tissues, the latter in the oocyte. The 

mRNP masking protein pp60 was essentially identical to the oocyte Y-box
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protein FRGY2. Confusion has since arisen with respect to terminology: 

pp60 is mRNP4 (Darnborough and Ford, 1981), which is the same as 

FRGY2 (Tafuri and Wolffe, 1990), and is referred to as p56 in Murray et al, 

(1991)! The smaller masking protein pp56 is referred to as mRNP3 

(Darnborough and Ford, 1981) and p54 (Murray et al, 1991). For the sake 

of consistency, in this study the Xenopus oocyte masking proteins will be 

referred to as pp56 and pp60, and the Y-box proteins in general will be 

referred to as "YB proteins".

Subsequently, YB proteins have been identified in two other examples of 

mRNP particles. It is claimed that MSY1, which is equivalent to FRGY1, is 

a major mRNP protein in mouse spermatocytes (Tafuri et al., 1993). 

However, as was discussed in section 1.3, the masking of messages in 

spermatocytes involves an 18 kDa repressor. It is not clear what the 

interaction between the 18 kDa repressor and MSY'l might be. Perhaps 

MSY1 packages the mRNP as a general masking protein, and the 

sequence-specific 18 kDa protein acts as a temporal regulator of translation. 

MSY1 was detected in a 60-80 S free mRNP fraction and could be 

photociosslinked to mRNA (Tafuri et al, 1993). Not surprisingly, given the 

virtual identity between FRGY1 and MSY1, this fraction cross-reacted with 

the antiserum anti-FRGYl.

MSY1 is equivalent to FRGY1, but not to the Xenopus oocyte YB protein 

FRGY2. The involvement of MSY1 in masked mRNA in the mouse testis 

strongly suggests that somatic Y-box proteins like FRGY1/YB-1 could 

mask mRNAs in somatic contexts in which FRGY1/YB-1 are expressed. 

One such example is now available. In rabbit reticulocytes, polysomal 

mRNPs were found to be translatable both in rabbit reticulocyte and 

wheat germ lysate cell-free translation systems, whereas non-polysomal 

mRNP were translatable in rabbit reticulocyte but not in wheat germ
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lysate (Minich et al., 1989). This is similar to the findings of Sinclair and 

Dixon (1982) with respect to the trout spermatid mRNP. In rabbit 

reticulocytes, a 50 kDa protein (p50) was identified as one of the major 

components of the free mRNP, as well as p70, believed to be the poly(A) 

binding protein. p50 was shown to be responsible for the translational 

repression of globin mRNA in the wheat germ lysate (Minich and 

Ovchinnikov, 1992). p50 was purified from the reticulocyte mRNP and 

tested for RNA-binding in vitro (Minich et al., 1993). Like its Xenopus 

oocyte counterparts pp60 and pp56, p50 was also phosphorylated in vitro 

and in vivo. Finally, the identity of p50 has been revealed through peptide 

sequencing (Evdokimova et al., 1995). It has been found to be the rabbit 

equivalent of human YB-1, mouse MSY1 and Xenopus FRGY1. This was the 

first example of a positive identification of a native YB protein in somatic 

mRNP. Using immunoblots, Evdokimova et al. (1995) also detected p50 in 

mRNP isolated from two other somatic tissues: rat liver and rabbit muscle, 

and suggested that the presence of YB proteins in mRNP is a widespread 

phenomenon.

Had the masking proteins finally been revealed (Sommerville, 1992)? The 

identification as YB protein transcription factors immediately raised the 

intriguing possibility of links between transcriptional and translational 

processes. Much attention has since been devoted to these proteins, and it 

is therefore necessary to consider the YB proteins in some detail. The next 

sections will describe in more detail their discovery, structure, expression, 

and various proposed functions.

1.7 Discovery of the YB protein family

The YB proteins are a recently discovered family of gene regulators. Their 

story begins in the context of MHC class II gene regulation (the major
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histocompatibility class II genes, labelled HLA is humass). The expression 

of these geses is the immune system is regulated transcriptionally by a 

series of cis-actisg elements iscludisg the TATA box, the octamer motif, 

asd the W, X and Y boxes (Didier et al, 1988). The Y-box sequence 

CTGATTGGCCAA, with as "inverted CCAAT box" usderlined, is highly 

cosserved among MHC class II gese promoters. Using a double-strasded 

oligo comprising the X asd Y boxes, is 1988 Didier et al. cloned the first 

YB protein, human YB-1, from a Swei cell cDNA library. In the same year, 

Sakura et al. used as a ligasd part of the promoter of the human oscogene 

c-erbB-2, also containing a Y-box sequence, asd closed dbpa asd dbpb 

from a human placental cDNA library. These cDNAs encoded two YB 

proteiss, of which dbpb was essentially identical to YB-1.

Is 1990, Ozer et al. were attempting to close asd identify the "enhancer 

factor" which binds to the high affinity binding site of the RSV (Rous 

Sarcoma Virus) LTR (Long Termisal Repeat). The RSV LTR high-affinity 

binding site contains two isverted CCAAT boxes. They cloned EFIa from a 

rat liver cDNA library, which turned out to be the same protein as YB- 

1 /dbpb. As mestiosed previously, Tafuri asd Wolffe (1990) used a Y-box 

sequesce-costaisisg ligasd to close Xenopus oocyte transcription factors, 

and isolated two very similar proteiss, which they called FRGY1 asd 

FRGY2. FRGY1 was almost identical to human YB-1 / dbpb/EMA described 

above. FRGY2, is contrast to FRGY1, was observed to be germ-cell specific 

is its expression: it is the oocyte mRNA masking protein pp60 (see 

previous section 1.6). Is 1990, Wistow noted the similarity between a 

highly cosserved region of the YB proteiss asd the E. coU cold-shock 

protein CSP7.4 described by Goldstein et al. (1990). This conserved regios 

is presest is all YB proteiss asd is now referred to as the "cold-shock 

domain" (CSD).
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Subsequently, many other YB proteins have been cloned without the use of 

Y-box containing ligand, thus complicating the picture. YB-1 was cloned 

again using a W-box ligand derived from the human HLA-DQp gene, as 

well as with an apurinated DNA ligand (Hasegawa et al., 1991). 

Furthermore, the human YB protein NSEP-1 (nuclease-sensitive element 

binding protein) was cloned with a pyrimidine-rich strand ligand derived 

from the region of the c-myc promoter which has a strong

purine/pyrimidine strand asymmetry, and which is predicted to give rise 

to a H-DNA triplex configuration (Kolluri et al., 1992). Likewise, Horwitz 

et al. (1994) cloned YB-1 using a part of the human y-globin promoter 

region which is also predicted to form a triplex. Grant and Deeley (1994) 

cloned chicken YB-1 using the promoter of the liver specific, estrogen- 

dependent gene apoVLDLII, also describing a preference for pyrimidine- 

rich strands. Cohen and Reynolds (1991) cloned Xenopus YB3 using the B- 

box which belongs to the core promoter of class III genes such as 5S RNA 

and tRNA genes. The use of these diverse ligands to clone YB proteins 

caused considerable confusion.

It is now apparent that the YB proteins are a ubiquitous family of gene 

regulators. Wolffe et al. (1992) cross-hybridized a FRGY1 cDNA probe to 

genomic DNA from rhesus monkey, rat, mouse, dog, cattle and chicken, as 

well as Drosophila. Similarly, Ozer et al. (1993) cross-hybridized human YB- 

1 to galago bush baby, mouse, rat, dog, cattle, pig and sheep genomic 

DNA, and cloned Bos taurus YB-1. It will be of interest to see more 

examples of YB proteins: in the vertebrate lineage, there are no examples 

yet from fish and reptiles. In the invertebrates, there are only two 

examples so far: a YB protein cloned from the neuronal tissue of the 

invertebrate Aplysia califomica (Skehel and Bartsch, 1994), and a partial 

sequence obtained in a survey of expressed genes in Caenorhabditis elegans
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(Waterston et al., 1992). In the plant kingdom, the only example so far of a

YB protein is grp-2, described in Nicotiana sylvestris and Arabidopsis thaliana 

(Obokata et al., 1991).

What is the structure of the YB protein genes and what is their copy 

number per genome? Familiari et al. (1994) estimate that there are at least 

15 copies per haploid genome in the mouse, including at least one 

pseudogene. Ozer et al. (1993) also found a pseudogene among genomic 

clones from Bos taurus. As for the chromosomal locations of the YB-1 

protein genes, Spitkovsky et al. (1992) suggested that loci with YB-1 related 

sequences are present on four separate chromosomes in the mouse.

Finally, the unr gene is of considerable interest. It encodes a YB protein 

consisting of a five-fold repeat of the CSD, of which the odd-numbered 

CSD are the best conserved, and is the only known example of its kind 

(Doniger et al., 1992). Partial sequencing of unr genomic DNA suggests 

that the last CSD repeat is encoded by a separate exon. Perhaps in a 

similar way, the CSD of more common YB proteins could be encoded by 

an exon of ancient origin, to which auxiliary domains have been added via 

"exon shuffling". An alignment of ten YB proteins is presented in Fig. 2, 

highlighting the conserved CSD. The alignment suggests that the CSD is a 

very ancient structure which has been conserved throughout millions of 

years of evolution.

1.8 Structure of the YB proteins

The feature shared by all YB proteins is therefore the highly

conserved CSD of about 70 amino-acids. The CSD of FRGY2 (pp60) or 

FRGY1 is 43% identical to the E. coti cold-shock protein CS7.4 

(Goldstein et al., 1990; Wistow, 1990). CS7.4 is, which is also referred 

to as CspA, is a 7.4 kDa protein whose expression is induced at ten
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Figure 2 Amiso-acid sequence alignment between a selection 

of YB proteiss. CS7.4: E. coli cold-shock protein (Goldstein et ah,

1990) ; CspB: Bacillus subtitis cold-shock protein (Willimsky et al., 

1992); grp2: Nicotiana sy.vestris glycine-rich protein (Obokata et ah,

1991) ; MSY1: mouse transcription factor and spermatid mRNP 

protein (Shaughnessy and Wistow, 1992; Tafuri and Wolffe, 1993); 

YBl: human transcription factor (Didier et al, 1988); FRGY1: 

Xenopus .aevis ersnscriptios factor (Tafuri and Wolffe, 1990); 

NSEPl: human nuclease-sensitive element binding protein 

(Kolluri et al., 1992); CE21E7: Caenorhabditis elegans, incomplete 

sequence derived from a survey of expressed genes; one amino­

acid is uncertain (asterisk) (Waterston et al, 1992); RYBa: rat liver 

transcription factor (Ito et al, 1994); APYB: Aptysia califomica YB 

protein expressed in neuronal tissue (Skehel and Bartsch, 1994); 

FRGY2: Xenopus oocyte major mRNA masking protein (Tafuri 

and Wolffe, 1990). Note the following features: a highly conserved 

region corresponding to the bacterial cold-shock proteins now 

referred to as the "cood-shock domain" (CSD); a variable N- 

terminus preceding the CSD, and following the CSD, an 

alternating series of basic and acidic island is commonly found. 

Together, the charged islands cossitute the "tail domain" (TD).

The plant protein grp2 has a different TD which resembles 

the"RGG" motifs present in various RNA-binding proteins (Burd 

and Dreyfuss, 1994). The alignment was obtained using the 

PILEUP program, GCG package version 7.2,1992.



28

MSYl
YBl

FRGYl
NSEPl
RYBa
APYB
FRGY2

CS7.4
CspB
grp2
MSYl
YBl

FRGYl
NSEPl

CE21E7
RYBa
APYB

FRGY2

1
.........  MSSEAETQQP FAAP. .AAAL
...................  MSSEAETQQP PAAPPAAPAL
...................  MSSEVETQQQ QPD......
...................  MSSEAETQQP PAAPPAAPAL
MSEAGEATTG GTTHPQAAAD APAAAPPDPA PKSPAASGAP
.........  .......... .......... ...... .MSE

50
SAADTKPGST
SAADTKPGTT
•ALEGKAGQE
RPPTPSPALR
QAPAPAALLA
.....MADT
AEAQEPEPVP

51 100
............................ MT GIVKWFNADK GFGFITPDDG
........................... MLE GKVKWFNSEK GFGFIEV.EG
...................  MAEESGQRAK GTVKWFSDQK GFGFITPDDG

GLTSSAPACG DDKVIATTVL GTVKWFNVRN GYGFINRNDT 
GSGAGSGGPG GLTSSAPAGG DDKVIATTVL GTVKWFNVRN GYGFINRNDT
..............PAATVG DIKVIAATKVj GTVKWFNVRN GYGFINRNDT
RRRERW..PG RLTSSA.LRR DDKVIATKVL GTVKWFNVRN GYGFINRNDT
................................ TVKWFNVKN GYGFINRTDT
GAPSPRARPG LPSPRGKRGR EKKKLATKVL GTVKWFNVRN GYGFINRNDT

PDQEQNEEQK EKKIIASQVS GTVKWFNVKS GYGFINRDDT 
QPESEPEIQK PGIIAARNQA NKKVLATQVQ GTVKWFNVRN GPGFINRNDT

CS7.4
CspB
grp2
MSYl
YBl

FRGYl
NSEPl

CE21E7
RYBa
APYB
FRGY2

grp2
MSYl
YBl

FRGYl
NSEPl

CE21E7
RYBa
APYB
FRGY2

101
SKDVFVHFSA
QDDVFVHFSA
GEDLFVHQSG
KEDVFVHQTA
KEDVFVHQTA
KEDVFVHQTA
KEDVFVHQTA
NEDIFVHQTA
KEDVFVHQTA
KEDVFVHQTA
KEDVFVHQTA

151
GIAVQGGRGG
GVPVQGSKYA
GVPVQGSKYYA
GVPVQGSKYA
GVPVQGSKYA
GGPVQGSKYA
GVPVEGSRYA
GSSH/QGSKYA
GVPFVKGSRFA

IQNDG....Y 
IQGEG....F 
IRSEG....F 
IKKNNPRKYL 
IKKNNPRKYL 
IKKNNPRKYL 
IKKNNPRKYL 
IINNNPNKYL 
IKKNNHVKYL 
IVKNNPRKYL 
IKKHHPR. . .

KSLDEGQKVS
KTLEEGQAVS
NSLAEGETVE
NSVGDGETVE
RSVGDGETVE
RSVGDGETVE
RSVGDGETVE
NS.GDNEEVM
RSVGDGETVE
RSVGDGEKVE

ftiespakgp 
feivepnrpp 
FEVESGGDGR 
FDWEGEKG. 
FDWEGEKG. 
FD'WEGEKG. 
FD'WEGEKG. 
FDIVKGSKG. 
FDWEGEKG. 
FD\W/EGEKG. 
.....EKG.

grp2
MSYl
YBl

FRGYl
NSEPl

RYBa
APYB
FRGY2

201
GGPGGGSRYG 
APEG.QAQQR 
APEG.QAQQR 
APEGDRSNQQ 
APEARPNNA. 
VPEGAQLQVH 
APDFMPSPRG 
ERGEETSPQQ

GGGGGGRGGG 
ADRNHYYR.. 
AkARNHYYR. . 
ADDRHHYR.. 
AADINHYN.. 
ADRAENAR. . 
ADNRNYNR.G 
ADRRRFRRGG 
PNRRRFRRRF

GGGGGYGGGG
RPPRRRRFPP
RPPRRRRFPP
RPYHRRRFFP
.AAYAGEVPT
RN..................
RG....RGRP 
RPQRRRPPPF

GGYPGPSGGP
.YPRRRRPPR
.YPRRRRPPR
.ypfrnnppr
.yprnnnppr
.GRC*RGRR.
YYPRRRGPPR
gwprfrrggr
YPPRADTAGE

GYGGGGSGGG
YYMRRPYARR
PPMRRPPGRR
YYSRRPYGRR
LLHAETYGRR
YYQNRRYFGP 
FYR......

GGGGRGGSRG
gnyqqnynse
gnpqqnqnhs
GNPQQNpQHIE
GNQQNYpNSE

N........
........ (3
S............. GGE

SGCFKCGESG
PQYSNPPVQG
PQYSNPPVQG
PQYSNAPVQG
PQYSNPPVQG
PRRGGGR.QP

150
A.AGNVTSL. 
QAA.NVTKEA 
TKAVDVTGPD 
AEAANVTGPG 
EEDANVTGPG 
AEAANVTGPE 
AEDAHVTGPG 
LEAA..TGPD 
AEDANVTGPR 
NEDANVTGPE 
AEAANVTGPG

200
GGGDGGYGGG
SGEKNEGSES
SGEKNEGSES
SGEKAEENES
SGEKNEGSES
AGEIGEMKDG
GRPRQRMDDG
GVSPEQMSEG

250
HFARDCSQSG
EVMEGADNQG
EVMEGADNQG
EEAEGADSQG
EVMEGADNQG
LEGEGEYQLQ

GFGFIEV.EG
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251 300
grp2 GGGGGGRFGG GGGGGGGGGC YKCGEDGHFA RECTSGGR............
MSYl AGEQGRPVRQ NMYRGYRPRF RRGPPRQRQP REDGNEEDKE NQGDETQGQQ
YBl AGEQGRPVRQ NMYRGYRPRF RRGPPRQRQP REDGNEEDKE NQGDETQGQQ

FRGYl TDEQGRPARQ NMYRGFRPRF RRGPPRQRQP REEGNEEDKE NQGDETQSQP
NSEPl AGEQGRPVRQ ICIGDIDHDS AGALLAKRQP REDGNEEDKE NQGDETQGQQ
RYBa .. PTYRPRF RRGPARPRPA PAIGEAEDKE NQQAANGPNQ
APYB RDQGFRGARR PFYRPLLRTT SQGLLRRWLL R.......... LPRRTTQGR
FRGY2 ..ASGDDPQR PPPRRFRQRF RRPFRPRPAP QQTPEGGDGE TKAESGEDPR

MSYl
YBl

FRGYl
NSEPl
RYBa
APYB
FRGY2

301
PPQRR.YRRN 
PPQRR.YRRN 
PPQRR.YRRN 
PPQAR.YRRN 
PSARRGFRRP 
TSQARRRERP 
PEPQRQRNRP

FNYRRR.RPE 
FNYRRR.RPE 
FNYRRR.RPE 
FNYRRR.RPE 
YNYRRRPRPL 
WGLPQRQRPK 
YVQRRRRQGA

NPKPQDGKET
NPKPQDGKET
NPKSQDGKET
NPKPQDGKET
NAVSQDGKET
PRQR.....
TQVAATAQGE

KAADPPAENS 
KAADPPAENS 
KAAETSAENT 
KAADPPAENS 
KAGEAPTEN.

GKAEPTQHPA

350
SAPEAEQGGA
RSRG......
STPEAEQGGA
SAPEAEQGGA
PAPATEQSSA

SEEGTPSDSP

351 373
MSYl E......................
YBl .......................

FRGYl E......................
NSEPl E......................
RYBa E......................
APYB .......................
FRGY2 TDDGAPVQSS APDPGIADTP APE
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degrees °C. After 1 to 1.5 hours from the initial cold shock, 13% of total 

protein synthesis is taken up by CS7.4 (Goldstein et ah, 1990). CspB, a 

homologue of CS7.4, was found in Bacillus subtilis, and is 61% identical to 

CS7.4 (Willimsky et al, 1992). Similar proteins were also found in various 

other bacteria, such as Streptomyces clavuligerus (Avgay et ah, 1992), and 

thermophilic bacteria (Schroder et ah, 1993).

The structure of the bacterial cold-shock protein has been determined 

through X-ray crystallography and NMR spectroscopy: first the Bacillus 

subtilis CspB, a homologue of CS7.4 (Schindelin et ah, 1993; Schnuchel et 

al., 1993), and later E.coli CS7.4, also called CspA (Schindelin et al, 1994; 

Newkirk et al, 1994). The structure of CspB and CS7.4 was found to be a 

"P-barrel" (see Fig. 3). The five antiparallel p-strands of CspB form two p- 

sheets: sheet-1 consisting of strands p-1 (residues 7-10), p-2 and p-3; sheet-2 

consisting of strands p-1 (residues 2-5), --4 and p-5. Highly conserved 

aromatic and basic side chains protrude from the solvent face of p-sheet-1, 

exhibiting features favouring binding to nucleic acids. The arrangement of 

positive charges would create an attractive potential for nucleic acids, 

whereas the aromatic rings would be able to stack with the bases of 

ssDNA or RNA (Schindelin et al, 1994; Newkirk et ah, 1994). Close 

approach of protein and nucleic acid would be facilitated by adjacent 

glycines and residues with short side chains. These features are 

characteristic of many RNA-binding proteins: indeed, strand --2 contains 

an RNP-1 like motif and strand p-3 contains a rudimentary RNP-2 like 

motif, these two motifs representing conserved RNA-binding sites in the 

RRM family of proteins (RNA Recognition Motif, see Kenan et ah, 1991; 

Burd and Dreyfuss, 1994). The RRM, commonly found in a wide range of 

RNA-binding proteins, is a 90-100 amino-acid domain which forms a four- 

stranded antiparallel --sheet packed against two perpendicular a-helices
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CspB m M M
MLEGKVKWFNSEKGFNFIEK-EFQDDVFVHFSAI

: I I I II I I :il I : : I I I I I : II
.. .OKQFTKVFNSKRNFYGFISRSDTVEDVFKHQTAI

__ RNP-1 like RNP-2 like

loop ____ [34 35 CspB
---QGEGF-KTLEEGQAVSFEIV£GNiRGPQAANVTKEA

: I : : : : I l I: :Ill: I I I I I I
KKNNPRKFLRSVGDGETVEFDVVEGEKGAEEAANVTGPG...

pp60

Figure 3 Diagram of the five-stranded p-barrel structure (pi-p5) of the 

cold-shock protein of Bacillus subtilis (CspB). (Adapted from Schindelin 

et al, 1993). The aromatic and basic side chains exposed on the solvent face 

are indicated in the diagram and highlighted in the amino-acid sequence 

of CspB. An alignment with pp60 shows the high level of similarity in the 

p-strand structures. The location of RNP-1 and RNP-2 like motifs is 

indicated.
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(the arrangement is pl/al/p2/p3/a2/|44). Within the RRM, the RNP-1 

and RNP-2 motifs are especially conserved. The consensus RNP-1 motif is 

(K/R)-G-(F/Y)-(G/A)-F-V-X-(F/Y) and the consensus RNP-2 motif is 

(L/I)-(F/V)-(V/I)-(G/K)-(N/G)-(L/M). Both the CSD and the RRM 

present similar conserved basic and aromatic residues on the surface of the 

P-sheet.

Because of the impressive sequence conservation between the cold-shock 

proteins and the CSD in eukaryotic YB proteins (see Fig.s 2 and 3), it is 

reasonable to assume that the eukaryotic CSD also adopts a P-barrel 

configuration. In Xenopus, the CSD has been shown to be essential for 

binding to Y-box containing promoters in the case of FRGY1 and 

FRGY2/pp60 (Tafuri and Wolffe, 1992). According to the crystallography 

and NMR literature, the structure of the cold-shock proteins does suggest 

binding to single-stranded nucleic acids, either DNA or RNA, although 

the structure of the CSD/DNA or CSD/RNA complex is not yet known. In 

vitro binding studies confirm that CspB binds single-stranded, but not 

double-stranded, oligomers containing the Y-box sequence (Schindelin et 

al., 1993; Graumann and Marahiel, 1994; Schnuchel et al., 1994). Likewise, 

the CSD in FRGY2/pp60 prefers ssDNA over dsDNA containing the Y- 

box sequence (Murray, 1994),

The bacterial protein rho, an RNA-binding transcription terminator, also 

contains an RNP-1 like sequence (GFGF) which can photocrosslink to 

RNA, but not when the phenylalanines in GFGF are mutated (Brennan 

and Platt, 1991). Similarly, gas phase chromatography revealed that the 

phenylalanine residues present in at least two GFGF sequences present in 

the RRM of hnRNPAl were crosslinked to RNA (Merrill et al., 1988). It is 

tempting to speculate that equivalent conserved residues present in the
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CSD may interact with DNA in the Y-box sequence, and/or with relevant

RNA sequences in mRNA. In addition to the importance of the above

phenylalanines, the importance of conserved basic residues was also 

shown in a study where an R to Q substitution in the U1A snRNP protein

RNP-1 motif abolished binding to RNA (Jessen et al, 1991).

The p-barrel structure of the cold-shock proteins is also reminiscent of the 

OB-fold (oligosaccharide/oligonucleotide binding fold) proteins (Murzin, 

1993). These proteins bind to oligosaccharides, such as the E. coli toxins LT 

(heat-labile enterotoxin) and VT1 (verotoxin-1), or oligonucleotides, such 

as staphylococcal nuclease and the anticodon binding domain of yeast asp- 

tRNA synthetase. Like the CSD, the p-barrel structure of the OB-fold 

proteins is formed from two antiparallel p-sheets derived from five p- 

strands. Like the CSD, the first three p-strands (pl-3) define the face of the 

p-barrel which interacts with the oligosaccharides or oligonucleotides. 

Although the tertiary structures of the CSD and OB-fold proteins are 

similar, not much overall sequence conservation is apparent.

One additional feature in the CSD is the loop between strands p3 and p4 of 

the CSD. In FRGY2 (pp60), this is: ...TAIKKNNPRKFLRSVGDGE..., see 

Fig. 3; it contains, among others, conserved basic and aromatic residues. In 

comparison, the structure of the ribosomal protein S17 from Bacillus 

stearothermophilus has been determined (Golden et al, 1993). S17 is a 

ribosomal RNA-binding protein of 10 kDa, located in the small (30S) 

subunit of the prokaryotic ribosome, and has a counterpart in eukaryotes. 

The structure is reminiscent of the CSD and OB-fold proteins, with five p- 

strands giving rise to a p-barrel. However, S17 has more extensive loop 

regions between the and Golden et al. (1993) suggest that these

are involved in RNA binding. Likewise, the above loop in FRGY2 and 

other YB proteins may participate in nucleic acid binding.
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The structure of the CSD is therefore related to various prokaryotic and 

eukaryotic nucleic acid binding domains. During the course of evolution, 

the CSD has been associated with a number of "auxiliary” domains. The 

notion of auxiliary binding domains has been described in the context of 

the RRM family of proteins (Biamonti and Riva, 1994). For example, in the 

plant kingdom, a CSD-containing protein, grp-2, has been cloned from 

Nicotiana sylvestris and Arabidopsis thaliana (Obokata et al., 1991). The CSD 

in grp-2 is coupled to a glycine-rich domain which also contains a number 

of arginines and aromatic residues, and is reminiscent of the "RGG" motif 

present in certain RNA-binding proteins such as nucleolin, hnRNPAl and 

hnRNPU (reviewed in Burd and Dreyfuss, 1994). However, except for the 

YB protein unr, the CSD of known vertebrate and invertebrate YB proteins 

is associated with a series of alternating basic and acidic charged islands. 

More commonly, there are four sets of alternating charged islands, but in 

certain YB proteins there are variations in their arrangement. Together, the 

charged islands will be described as the "tail domain" (TD). The modular 

structure of different YB proteins is presented in Fig. 4. The charged 

islands in the TD are thought to be responsible for conferring an 

anomalous mobility on SDS-PAGE, so that a 35 kDa YB protein such as 

FRGY2 (pp60) has an apparent mobility on SDS-PAGE of 60 kDa. The 

basic islands are rich in arginine, proline, tyrosine/phenylalanine and 

glutamine/asparagine and are shown in Fig. 5. The acidic islands are 

thought to adopt an a-helical configuration (Tafuri and Wolffe, 1992), and 

contain potential casein-kinase II phosphorylation sites. Proposed 

functions for the TD are to promote protein multimerization, perhaps via 

charge interactions between oppositely charged regions, and to stabilize 

RNA-binding (Tafuri and Wolffe, 1992).
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CSD CSD CSD CSD CSD

CSD

Bacterial cold-shock proteins 
CspB,CS7.4

Plant glycine-rich protein, GRP-2 

CSD GGG.../S/R/Y

Invertebrate APYB
— CSD +++++ — +++++ — +++++

Vertebrate YB-1 type ( YB-1, MSY-1, FRGYl, FRGY2 )

CSD +++ — +++ — +++ — +++ —

Human NSEP-1

+++ CSD +++ — — +++ —

Rat RYB-a
+++ CSD + + + — ++ — ++ —

Figure 4 Schematic comparison of the structure of various YB proteins. 

The ancestral cold-shock domain (CSD) corresponds to the cold-shock 

proteins of Bacillus subtilis (CspB; ) and Escherichia coli (CS7.4/CspA). In 

the eukaryotic YB proteins, ancillary domains have been added to the 

CSD. Mammalian unr (upstream of N-ras) consists of a five-fold repeat of 

the CSD, the odd-numbered CSDs being the most highly conserved. Plant 

GRP-2 (glycine-rich protein) has a single CSD coupled to a glycine-rich 

domain which contains interspersed serine, arginine and tyrosine 

residues. The most commonly described eukaryotic form consists of a 

single CSD coupled to a series of typically four alternating basic (+) and 

acidic (-) regions.The invertebrate Aplysia APYB, human NSEP-1 (nuclease 

sensitive element protein) and rat RYB-a have different arrangements of 

charged regions. The sequence N-terminal to the CSD is quite variable and 

its function is still undetermined.
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pp60 TAIKKNNPRKFLRSVGDG loop
pp56 TAIKKNNPRKFLRSVGDG
FRGYl TAIKKNNPRKYLRSVGDG

pp60 KGSRFAPN------RRRFRRRFYRPR------------------
pp56 KGSRFAPN------STRFRRQFYRPR------------------ B/Al
FRGYl QGSKYAADRNHYRRYPRRRGPPRNYQQNYQNN

pp60 PQQRP-^Q^^RRE^P^P^^lYfl^I^I^^I^I^CP^I^IN^N^Q^Q^NQ
pp56 PQQRP-QRRRPPPFFYRRRFRRGPRPNNQQNQ B/A2
FRGYl NQQRPYHRRRFPPYYSRRPYGRRPQYSNAPVQ

pp60 PQRPPPRRFRQRFRRPFRPRPAPQ-QTP
pp56 pqrppprrfqqrfrrpfrprpppp-qtp B/A3
FRGYl QGRPARQNMfRGFRPRFRRGPPRQRQPR

pp60 PRPEPQRQR-- -RRYV^^IRRR^C^^A^T^Q
pp56 ----- EPQRQR--NRPYVQRRRAQQPP- B/A4
FRGY1 TQSQPP PQRRYRRNFNYRRRRP--------

HIV-1 Tat YGRKKRRQRRRPPQGSQ 
HIV-1 Rev TRQARRNRRRRWRERQR

Figure 5 Structure of the TD RNA-binding domains. Comparison of 

the four basic/aromatic islands (B/A 1-4) of the tail domain and the loop 

between P3 and P4 strands of the CSD, Xenopus oocyte pp60, pp56 and 

their somatic relative FRGYl are shown. Note the abundance of arginine 

residues (highlighted in bold), as well as the numerous proline, 

asparagine/glutamine, and phenylalanine/tyrosine residues. The B/A 

islands have been shown to interact with RNA. Listed, for comparison, are 

the RNA-binding regions of HIV-1 proteins Tat (residues 47-63, Green et 

al 1989) and Rev (residues 34-50, Kjems et al. 1991), emphasizing, a similar 

abundance of arginine residues.
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The preference for arginine over lysine in the basic regions of the TD is 

striking. Various RNA-binding proteins have been shown to contain 

arginine-rich motifs interspersed with aromatic residues, such as the 

"RGG" motif. The preference for arginine over lysine in these domains 

may reflect the ability of arginine to provide more hydrogen bonds. In the 

context of the arginine-rich regions of the HIV protein Tat, Calnan et al. 

(1991) proposed the arginine fork model, in which a single arginine could 

form bifurcated hydrogen bonds with two phosphate residues in the TAR 

element. The TAR (Tat-responsive) element is a stem-loop structure 

present at the very 5' end of HIV transcripts (reviewed in Gait and Karn, 

1993). It is clear that the basic islands in FRGY2 (pp60) and other YB 

proteins prefer arginine over lysine. The arginine-rich areas in the TD are 

interspersed with aromatic residues which might stack between bases of 

the RNA, and with amide groups which might contribute hydrogen- 

bonds.

In summary, the CSD is the most highly conserved domain present in all 

YB proteins. Of ancient origin, it is thought to bind to the Y-box sequence. 

During evolution, the CSD has been linked to auxiliary domains.

However, there is considerable confusion as to what the YB proteins can 

bind to: in addition to the Y-box sequence, the list includes the W-box also 

present in the MHC class II promoters (Hasegawa et al., 1991), the B-box in 

present rRNA HI promoters (Cohen and Reynolds, 1991), apurinic DNA 

(Hasegawa et al., 1991), pyrimidine-rich single stranded DNA present in 

triplex structures (Kolluri et al., 1992; Grant and Deeley, 1993; Horwitz et 

al., 1994), and even purine-rich stretches in the RSV LTR (Kandala and 

Guntaka, 1994), and more to the point of masked messages, a wide range 

of mRNA sequences (Marello et al., 1992L)! Whether all of these different 

binding activities occur in vivo as well as in vitro remains to be shown.
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One possibility is that these different binding activities are due to the 

presence of multiple binding domains, such as the CSD and TD.

1.9 Expression of YB protein genes

Messenger RNAs encoding YB proteins can be detected at different levels 

in many different somatic tissues and gametocytes. In the Xenopus oocyte, 

mRNAs encoding both FRGYl and FRGY2 (pp60) are present, but 

whereas FRGY2 mRNA is translated, being required for oogenesis, FRGYl 

mRNA is masked in the oocyte (Wolffe et al., 1992). MSYl, which is very 

similar to FRGYl (see Fig. 2), is highly expressed in the mouse 

spermatocyte, and is now believed to be present in masked mRNP (Tafuri 

and Wolffe, 1993). This finding suggested that although FRGY2 would 

appear to be the oocyte-specific YB protein in Xenopus, MSYl and by 

analogy FRGYl can both function as mRNA masking proteins in somatic 

tissues where masking is required. This was confirmed when a major 

rabbit reticulocyte mRNP protein, p50, was identified and cloned, and is 

analogous to MSY1/FRGY1 and not FRGY2 (Evdokimova et al., 1995; see 

section 1.6).

cDNAs encoding YB proteins have been cloned from a variety of somatic 

tissues, including lymphocytes, liver cells, placenta and lens. The closely 

related group FRGY1/YB-1/EFIa/MSY1 are the most studied so far in 

terms of their expression. Xenopus FRGYl mRNA was detected in skin, 

liver, oviduct, heart, kidney, ovary and testis, whereas FRGY2, the germ­

line specific form, most abundant in the oocyte, declines from oocyte stage 

II onwards (Tafuri and Wolffe, 1990). Spitkovsky et al. (1992) examined the 

expression of human YB-1 in 14 tissues derived form a 24-week old fetus, 

and classified its expression into three broad categories: (i) high expression 

in the cerebrum, heart, muscle, adrenal gland, lung and liver; (ii) low
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expression in bone marrow, spleen, thymus and kidney (low in the adult 

kidney too); and (iii) very low if not undetectable expression in the 

bladder, testis, stomach and pancreas. In 15-day old mice, MSYl increases 

in the testis and persists throughout adulthood, one hundred-fold more 

abundant in the testes than in other tissues examined, and is switched on 

in individual spermatocytes at the pachytene stage of meiosis I (Tafuri et 

al., 1993). Human YB-1 presumably appears at a comparable stage of 

spermatocyte development. The detailed expression profile in the fetus, 

where development is in progress, is thus not necessarily reflected in the 

adult. It is reasonable to expect that an analogous picture exists in many 

other species.

In the context of the immune system, findings by Sabath et al. (1990) made 

an interesting suggestion: that YB proteins are associated with cell 

proliferation. They found that interleukin-2, a growth factor which induces 

the proliferation of B-cells in response to antigen, switches on YB-1 as well 

as glycolytic enzymes, cytoskeletal proteins and translational machinery 

components, and suggested that YB-1 may be involved in the push from 

the G to the S phase of the cell-cycle.

In 1993, Grant and Deeley examined the expression of chicken YB-1 in the 

liver. It is relatively abundant at day 7 of embryogenesis, decreases 10-fold 

by day 20, a further 3-5-fold by hatching, and then decreases to the adult 

level. It is highly expressed in the adult gizzard, testis, and fetal liver; 

expressed at a lower level in the kidney, intestine, spleen and heart, and at 

an even lower level in the brain, lung and female liver. In their study of 

the expression of the liver-specific, estrogen-dependent apoVLDLII gene, 

Grant and Deeley noted that YB-1 mRNA levels correlate inversely with 

its mRNA, suggesting that YB-1 may be a negative regulator. The levels of 

YB-1 mRNA correlated with a binding activity to a site in the apoVLDLII
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gene promoter (however, the activity was not conclusively shown to be 

due to YB-1). In addition, they noted that in a proliferating hepatoma cell 

line (LMH cells), chicken YB-1 mRNA was present at several-fold higher 

levels than in 9-day old embryos and 30 to 40-fold higher relative to 

normal adult liver. Moreover, when estrogen was administered to 

roosters, YB-1 mRNA levels increased 8-fold by 24 hours, whereas serum 

albumin mRNA declined two-fold. Estrogen results in a round of DNA 

replication within 24 hours. Could the induction of YB-1 be associated 

with cell proliferation and DNA synthesis? CC14, which chemically 

induces liver regeneration, resulted in a ten-fold increase in YB-1 mRNA 

in 24 hours, and a six-fold increase in 48 hours. At the same time, mRNA 

levels of the transcription factor C/EBP declined: C/EBP is associated 

with non-proliferative states and transactivates the albumin promoter. 

Moreover, in the acute-phase or stress response induced by silver nitrate, 

YB-1 levels did not increase while serum amyloid A, a protein associated 

with the stress response, increased. Hence it was suggested that YB-1 

expression is associated with cell proliferation but not with the stress 

response.

Further evidence that YB proteins are associated with cell proliferation 

comes from studies on the rat YB protein RYB-a, recently described by Ito 

et al (1994). Like chicken YB-1, RYB-a is also highly expressed in the fetal 

but not in the adult liver, and its expression is induced by partial 

hepatectomy. RYB-a is also induced in quiescent fibroblasts in cell culture 

when treated with serum. Furthermore, when their progression into S- 

phase was inhibited by preventing cell adhesion or by adding genistein, a 

specific inhibitor of tyrosine-kinase, levels of RYB-a mRNA declined. The 

expression of rat RYB-a and its association with cell proliferation are 

consistent with the observed expression of chicken YB-1 described above.
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So far, this information suggests that the YB proteins are involved in 

developmental processes starting in the developing gametocyte, and are 

also involved in cell proliferation. YB proteins are expressed in interleukin- 

2 induced proliferating B-cells; in serum-induced fibroblasts; in liver cells 

after partial hepatectomy, estrogen or CCI4 treatment, and are highly 

expressed in a hepatoma cell line. Now we consider their target genes, 

discussing examples of positive and negative transcriptional regulation by 

the YB proteins.

1.10 Genes posittveSy regulated by YB protesits

The bacterial cold-shock proteins are thought to activate a whole range of 

cold-shock induced genes that contain one or more Y-box like sequences in 

their promoters. The expression of these genes helps the bacterium survive 

in temperatures of 10 °C. Examples of such cold-shock inducible genes are 

hns, encoding the nucleoid protein H-NS (La Teana et al, 1991), and gyrA, 

encoding a DNA gyrase (Jones et al, 1992); both of these contain Y-box like 

sequences in their promoters. As was mentioned earlier, the prokaryotic 

cold-shock protein, E. coli CS7.4, has been shown to bind to these 

sequences at least in vitro, and similarly the eukaryotic CSD is required for 

recognition of the Y-box. A Y-box sequence is also present in the promoter 

of cspa itself, suggesting a positive feedback mechanism (Tanabe et al, 

1992). It is noteworthy that CS7.4 should be made so abundantly (13% of 

total protein synthesis). Two possible explanations are: high concentration 

of CS7.4 could allow a more efficient transcriptional effect; alternatively, it 

could have additional roles, such as RNA protection (Graumann and 

Marahiel, 1994).

Y-box sequences are present in many gene promoters that are active in 

Xenopus oocytes, but not necessarily in all oocyte-specific genes (Tafuri



42

and Wolffe, 1990). For example, two copies of the Y-box are present in the 

hsp70 gene, one of which is essential for oocyte transcription (Bienz, 1987), 

and the TFILA oocyte-specific gene has a sequence in its promoter that is 

9/12 identical to the Y-box (Tso et al, 1986). That the Y-box can enhance 

transcription in oocytes is suggested by the fact that only when the HSV 

(herplex simplex virus) thymidine kinase promoter is engineered to 

contain a Y-box sequence which is closer to the consensus sequence, it 

confers maximal transcriptional activity in oocytes (Graves et al., 1986).

The testis-specific histone H2B genes from sea-urchin (Barberis et al., 1987) 

and rat (Hwang et al, 1990) also contain Y-boxes. Recently, the expression 

of the mouse protamine-2 gene, which contains a Y-box, was shown to be 

positively regulated by YB proteins (Nikolajczyk et at, 1995). Therefore YB 

proteins would appear to drive the transcription of genes encoding 

products that are required for gametogenesis.

Sabath et at (1990), who reported that YB-1 was one of the genes induced 

in B-cells by the growth factor interleukin-2 (IL-^-2), suggested that due to 

the presence of Y-box sequences, YB-1 may have a role in activating the 

expression of proliferation associated genes such as thymidine kinase 

(Lipson et at, 1989), FCNA (proliferating cell nuclear antigen, Travali et at, 

1989), DNA polymerase a (Pearson gf at, 1991), and c-erbB-2 (Sakura et al, 

1988). More recently, the promoter of the Xenopus cdkt gene (encoding 

cyclin-dependent kinase 2) has been cloned, and has at least two Y-box 

like sequences (Olive et al, 1994). This enzyme is required for the 

progression of the cell cycle. Its mRNA is highly expressed in oocytes, but 

as is the case for c-mos, it is kept as a masked message until required.

The picture is complicated by the suggestion that YB proteins can bind 

alternative targets other than the Y-box sequence: for example, H-DNA. 

Regions of strong purine-pyrimidine strand asymmetry which can adopt
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the H-DNA triplex configuration are identified as promoter elements of 

the human c-myc gene, c-Ki-ras gene and the EGFR gene (Fir-ulli et al, 1992; 

Kolluri et al, 1992). In each instance, a YB protein specifically binds 

pyrimidine-rich strands. Although the pattern of expression of these genes 

fits the cell proliferation model already proposed, and indeed the 

stabilization of H-DNA by YB and other proteins has been suggested as a 

mechanism for upregulating the c-myc gene (Firulli et al, 1994; Kinniburgh 

et al, 1994), it must be concluded that regulation of gene expression by YB 

proteins might be effected through more than one type of promoter 

element. The binding of YB proteins to H-DNA is a distinct possibility but 

is not yet conclusively demonstrated in vivo, whereas binding to the Y-box 

sequence, which gives the proteins their name, is more widely accepted. A 

list of Y-box sequences is presented in Fig. 6, while the structure of the H- 

DNA triplex thought to form in the c-myc promoter is presented in Fig. 7.

YB-1 has also been involved in viral transcription. Indicative of this, EFIa 

(YB-1) was cloned with the RSV LTR enhancer which contains a reverse 

CCAAT box (Ozer et al., 1990). Y-box sequences are also present in HTLV 

and HIV promoters: for example, in HIV-1, the sequence

CTGATTGGCAGA lies 370 bases upstream of the transcriptional start 

point (Kashanchi et al, 1994). This site, named ''site A", is placed at the 5' 

end of a negative regulatory element (NRE). A functional study involving 

cotransfection assays demonstrated the positive influence of YB-1 on viral 

transcription; a mutated Y-box abolished this effect. Because the Y-box 

element and the NRE are in close proximity, it may be envisaged that the 

Y-box proteins compete with some negative regulator. As for the 

induction of YB-1 expression in infected cells, the authors did not find that 

viral proteins, such as Tax^ which transactivate viral gene expression and 

a number of cellular genes, themselves induce YB-1. Kashanchi et al. (1994)
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Human HLA DRa CTGATTGGCCAA

Human mdrl CTGATTGGCTGG

Human c-erbB-2 GTGATTGGGAGC

HSV thymidine kinase GTCATTGGCGAA

RSV LTR CCGATTGGTGGA

HIV-1 LTR CTGATTGGCAGA

Xenopus hsp70 CTGATTGGCTAA

Xenopus TFInA CTGATTGCCAAT

Rat testis H2B CAGATTGGCTCA

Sea urchin testis H2B CTGATTGGCTAA

Figure 6 Alignment between Y-box sequence elements from a variety 

of eukaryotic promoters. Y-box sequences are present in the human MHC 

class II genes, for example the HLA DRa gene (Didier et al, 1988); the 

human multidrug resistance gene mdrl (Goldsmith et al, 1993); the 

oncogene c-erbB-2 (Sakura et al, 1988); HSV thymidine kinase (Graves et 

al, 1986); RSV LTR (Ozer et al, 1988) and HIV-1 LTR (Kashanchi et al, 

1994); various germ-cell specific genes: Xenopus hsp70 (Bienz, 1987); 

Xenopus TFIIIA (Tso et al, 1986); sea urchin testis histone H2B (Barberis et 

al, 1987); rat testis H2B (Hwang et al, 1990). Note the conservation of the 

"reverse CCAAT box", ATTGG, which is often preceded by CTG.
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Figure 7 Tandem H-DNA structure of the c-myc NSE (nuclease 

sensitive element). The diagram is from Kinniburgh et al, 1994. 
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structure is referred to as "tandem H-DNA" because it consists of two 
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in particular G-rich.
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suggest that this induction may happen independently of viral proteins, 

for example via the interleukin-2 induction of B-cell proliferation which 

happens in response to antigen, as was observed by Sabath et al (1990; see 

section 1.9). Perhaps significantly, Schuitemaker et al (1994) have claimed 

that productive HIV infection is evident only in the fraction of cells which 

are in a proliferative state.

The human mdrl gene encodes an energy-dependent drug efflux pump. It 

is normally highly expressed in the kidney and adrenal gland, and 

moderately expressed in the liver and on the apical surface of luminal cells 

in the colon. It is overexpressed in certain cancers which become resistant 

to chemotherapy, wherein the drugs are ejected from the cell by the efflux 

pump. Goldsmith et al (1993) have studied sequences from the promoter 

using DNasel footprint analysis, using nuclear extracts from a 

doxorubicin-resistant ovarian carcinoma cell line. They found that a region 

between positions -89 and -70 is protected from DNasel digestion. By 

testing promoter activity via CAT assays, they found that deleting a region 

between -89 to -70 resulted in a marked decrease in expression. In this 

region, the sense-strand contains a 10 bp perfect homology with the Y-box 

consensus: CTGATTGGCT. A gel retardation assay showed that the 

binding of a nuclear factor (presumably a YB protein) to a Y-box 

(CTGATTGGCTGGG) was abolished with the mutated sequence 

(CTGATGTGCTGGG). This last finding suggests that the residues in the 

ATTGG reverse CCAAT box are crucial for Y-box sequence recognition. 

Goldsmith et al (1993) also noted that doxorubicin-resistant cells 

overexpress the oncogene c-erbB-2. Sakura et al (1988) had used the 

promoter of this oncogene as a ligand to clone YB-1. The implication is 

that YB proteins are involved in up-regulating both the drug efflux pump, 

helping the cancerous cell to rid itself of noxious chemotherapeutic drugs,
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while at the same time up-regulating cell proliferation genes including c- 

erbB-2. In this scenario, YB proteins would be a definite target in 

considering a possible "gene therapy" treatment of the condition.

1.11 Genes negatively reegtlaaecl by YB proteins

The first YB protein to be cloned, as previously described, was human YB- 

1, using the Y-box ligand sequence from an MHC class II gene (called HLA 

genes is humans). Because levels of YB-1 mRNA were seen to correlate 

inversely witht the levels of HLA-DRp chain mRNA, it was suggested that 

in that context, YB-1 is a negative regulatory factor (Didier et al., 1988). The 

mouse homologue of YB-1 was first cloned from lens tissue, in which 

MHC class II genes are not expressed (Shaughnessy and Wistow, 1992). A 

later study provided functional evidence that YB-1 represses MHC class II 

gene transcription (Ting et al., 1994). The activity of the IFN-y (interferon 

gamma)-responsive HLA-DRa promoter was assayed using co­

transfection techniques. Expression vectors containing YB-1 were co­

transfected with promoter-CAT constructs, resulting in a substantially 

reduced IFN-y-induced CAT expression. Control constructs containing a 

mutated Y-box in the HLA-DRa promoter did not result in repression of 

the constructs. The authors stress that many other factors bind to the cis­

acting elements of the MHC class II promoters. For example, the 

transcription factor NF-Y binds to the CCAAT sequence present within the 

Y-box, and NF-Y is a positive regulator of MHC class II genes. It is 

conceivable that NF-Y and YB-1 may compete for the same site, and bind 

to the promoter with opposite transcriptional effects.

Another example of transcriptional repression mediated by YB proteins is 

the effect of chicken YB-1 on the expression of fetal y-globin (Horwitz et al, 

1994). The y-globin gene is active in fetal red blood cell precursors but is
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silenced in the adult. Its promoter contains a region of alternating 

homopurine and homopyrimidine tracts that give rise to an H-DNA 

triplex structure. The authors claim that YB-1 binds to this structure 

specifically: a DNasel footprinting study showed that within the H-DNA 

structure, two short polypyrimidine stretches are protected from DNasel 

digestion. The protected areas are contained and underlined within the 

sequence TCCTCTTGGGGGCCCCTTCCCCACACT. In addition, the 

kinetics of binding to this site suggested positive cooperativity between 

proteins, which was also suggested in the context of the up-regulation of 

transcription by FRGY1/FRGY2 via the Y-box sequence (Tafuri and 

Wolffe, 1992). Horwitz et al. (1994) propose that YB-1 binds to the H-DNA 

target in the adult, preventing the association of a distal positive regulator, 

thus hindering the assembly of appropriate transcription complexes. In the 

hereditary condition HPFP (hereditary persistence of fetal hemoglobin), in 

which y-globin is abnormally expressed in the adult with deleterious 

effects, point mutations were found in the H-DNA forming region of the y- 

globin promoter.

Finally, as was mentioned previously, levels of chicken YB-1 in the liver 

correlated inversely with the mRNA of apoVLDLII (Grant and Deeley, 

1993). The rat YB protein RYB-a, which has a comparable expression 

pattern in the liver, was also suggested to have an additional negative 

regulatory because its mRNA levels correlate inversely with levels of 

aldolase mRNA (Ito et al, 1994). Further experiments will be needed to 

confirm the involvement of YB proteins in the repression of these genes: 

binding studies and co-transfection assays are not yet available.
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1.12 'Hie YB protelils atr; a veleaAiie famtty

The examples given in the preceding sections indicate that the YB proteins are 

a versatile family of gene regulators. The YB proteins are in summary 

ubiquitous and multi-functional. They are present throughout prokaryotes and 

eukaryotes in diverse forms, all sharing a highly conserved CSD of Ancient 

origin which recognizes the Y-box promoter element. During evolution, they 

have been coupled to a variable series of auxiliary domains which probably 

assist in nucleic acid binding and multimerization. The YB proteins exert their 

positive and negative transcriptional effects by binding to Y-box elements, H- 

DNA elements, and, conceivably, to a combination of both, depending on their 

arrangement in specific promoters. Perhaps their biochemical properties: the 

recognition of the Y-box, determined by the highly conserved CSD, but also of 

other DNA structures, such as pyrimidine-rich strands derived from H-DNA, 

and the ability of these proteins to muliimeeize cooperatively could be 

exploited in different promoter contexts with dramatically different outcomes. 

Much remains to be learned about their transcriptional effects; the structural 

details of sequence recognition; a possible involvement of the TD in that 

recognition, as well as the effects of multimerization and phosphorylation of 

the YB proteins. Moreover, apart from the blocking of RYB-a induction by 

genistein, an inhibitor of tyrosine kinase, the mechanisms regulating the 

expression of the YB proteins themselves are still unknown.

The YB proteins are also involved in mRNA storage, having been identified in 

the Xenopus oocyte, mouse spermatocyte and rabbit reticulocyte (section 1.6). 

They are "bifunctional" in that they drive the expression of certain germ-cell 

specific genes while at the same time packaging the set of "masked" mRNAs, 

Although much evidence is still sketchy and incomplete, a distinct pattern is 

beginnrng to emerge- to toief, tt wrotod Appear toitf toe YB proteins hdp 

activate germ-cell specific genes which include various cell proliferation genes.
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repress certain cell-specific genes, and mask mRNAs from translation. Fig. 8 

summarizes the various proposed functions of the YB proteins.

There is an increasing list of proteins which have been described as interacting 

both with DNA and RNA. Three examples will be mentioned. The 

transcription factor TFInA, a nine zinc-finger protein, is required for the 

transcription of 5S rRNA genes, but also binds to 5S rRNA in cytoplasmic 

storage particles (reviewed in Tafuri and Wolffe, 1993). The RNA-binding 

protein hnRNPK, which contains an "RGG" domain, is now also thought to 

interact with DNA: it binds to the pyrimidine-rich element present in the n- 

DNA region of the c-myc promoter (Takimoto et al, 1993), and in conditions in 

which it binds strongly to a ssDNA sequence, it binds weakly to the 

corresponding RNA sequence (Gaillard et al, 1994). The pyrimidine tract 

binding protein (PTB) binds to polypyrimidines in the branchpoint upstream 

of exon 3 of the gene a-tropomyosin (Patton et al., 1991). PTB is a 57 kDa 

protein, and contains the RRM (RNA-recognition motif,). In 1992, it was 

claimed that PTB also binds to ssDNA with high selectivity, recognizing a 

motif present in the liver specific enhancer of the TAT (aminotransferase) gene 

(Jansen-Durr et al, 1992). These examples, together with the YB proteins, 

suggest that there is considerable cross-talk between transcriptional and 

translational processes, in that the same proteins can interact with both RNA 

and DNA.
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Y-box sequence element 
CTGATTGGCCAA
GACTAACCGGTT

MHC class II genes 4 >
hsp70
histone H2B 
protamine-2
DNA polymerase a 
c-erbB-2
PCNA
cdk2
HIV/HTLV/RSV
mdrl

(t)
H-DNA triplexes

Y-globin gene ) Masked mRNAs

Xenopus oocytes
c"m-yc (A) Mouse spermatocytes
c-Ki-fls V I / Rabbit reticulocytes

Figure 8 Proposed functions of the YB protein family. The Y-box 

sequence element is present in a variety of promoters: in MHC class II 

gene promoters; genes expressed in germ-cells (hsp70, histone H2B, 

protamine-2); cell proliferation genes (which overlap with germ-cell 

specific genes: DNA polymerase a, the oncogene c-erhB-2, PCNA, the cell- 

cycle dependent kinase cdk2); certain retroviral promoters 

(HIV/HTLV/RSV), and the human multidrug resistance gene (mdrl). 

Arrows denote up or down-regulation. More controversial is gene 

regulation via H-DNA elements: the cell proliferation genes c-myc and c- 

Ki-fls are up-regulated whereas fetal y-globin is down-regulated. Finally, 

YB proteins have been identified in at least three masked mRNA particles: 

the Xenopus oocyte, the mouse spermatocyte and the rabbit reticulocyte. 

References are given in the text.
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1.13 Aims of the project

This project aims to improve our understanding of the masked message in

Xenopus oocytes, by focussing on its protein components. It is hoped that 

the knowledge gained would apply to other masked messages in other 

tissues and organisms. Two abundant mRNP proteins have already been 

identified as belonging to the YB protein family, a multifuctional family 

which are both transcriptional and translational regulators. The details of 

their interaction with DNA and RNA are not yet known. At least two 

potential RNA-binding domains have been identified in the YB proteins: 

the ancient cold-shock domain (CSD) and the charged tail domain (TD). 

now these two potential binding domains work, and what their binding 

specificities are, is not known. Messenger RNP particles will be isolated 

using existing techniques, and in particular, YB proteins will be extracted 

to study their interaction with RNA. The masked message particles also 

contain an associated protein kinase activity, believed to be essential for 

mRNA masking to occur. The protein kinase phosphorylates the YB 

proteins, thus regulating their activity; the biochemical consequence of this 

phosphorylation is not understood. The effect of phosphorylation on 

RNA-binding will also be considered. Finally, although much attention 

has focussed on the YB proteins, the other abundant mRNP proteins have 

been neglected. These additional components are likely to have an 

important role in the masked mRNP. Using cDNA expression libraries and 

peptide sequencing techniques, an attempt will be made to characterize 

these proteins.
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Chapter 2

Materials and Methods
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2.0 Animals

Xenopus laevis were obtained from Blades Biological, Edenbridge, Kent. 

Immature 3-6 month old post-metamorphosis females were used to obtain 

previtellogenic ovaries. Mature females were used to obtain ovarian tissue 

containing the full complement of oocyte stages, oogenesis being 

asynchronous in Xenopus. To obtain the tissues, the animals were 

anaesthetized in MS222 (0.2% in water). Whereas immature females were 

decapitated, mature females survived surgical removal of the ovary. The 

ovarian tissues were washed in OR2 medium (minus Ca2+) to remove 

blood, and treated with collagenase, 0.2%, Sigma, type IV, in the same 

medium for 2 h at 20 °C to disperse the oocytes. The collagenase was 

washed off with three washes of 20 volumes of OR2 medium, then with 

three washes of 20 volumes of Barth's solution. Oocytes were grouped into 

developmental stages according to Dumont (1972) and were stored at -70 

°C. Other amphibian species, the mud puppy Necturus maculosus and the 

newt Notophthalmus viridescens were also obtained from Blades Biological 

to prepare oocytes.

OR 2 medium (minus Ca2+)
NaCl 82.5 mM
KCl 2.5 mM
MgCl2 1 mM
Na2HP04 1 mM
HEPES 5 mM
PVP 0.05%
NaOH, pH 7.8 38 mM
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Barth's solution
NaCl
KCl
Na^CO3
MgS04
Ca(NO3)2
CaCl2
Tris.nCl, pn 7.6
Penicillin, streptomycin and kanamycin

88 mM
1 mM

2.4 mM
0.82 mM 
0.33 mM 
0,41 mM

7.5 mM
5 units

2.1 Isooattoon oo mRNP

In general, previteUogenic ovary was preferred as a source of mRNP. 

Tissues were sonicated in 2 ml of column binding buffer (CBB), 

centrifuging the extract at 10,000 g for 15 min to collect the supernatant 

("SINIO"), which was kept on ice. The SN1O was loaded onto a 1.5 ml 

oligo(dT) column equilibrated in CBB. The eluate was reapplied three 

times to ensure saturation of the column. The eluate was monitored by 

measuring A254, which gives an indication of the RNA content. After 

collecting the unbound, or poly(A)“ fraction, the column was washed with 

CBB so that A254 returned to background. Finally, the poly(A) + mRNP was 

eluted with -2.5 ml warm d^O. The elution of the poly(A)+ mRNP was 

observed as an increase in A254. Both the poly(A)+ and poly(A)~ fractions 

were stored at -70 0C.

Column Binding Buffer (CBB)
Tris.nCl, pn 7.5 20 mM
KCl
MgCl2
DTT
NP-40

0.3 M
2 mM
1 mM

0.2% (v/v)
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2.2 Heat-treatment

This technique followed the procedure reported by Deschamps et al (1991)

in which the Xenopus oocyte YB proteins were shown to remain soluble 

after heating whole oocyte extracts to 80 °C. Samples were similarly heated 

to 80 °C in HTB (see below), cooled on ice and spun in a microcentrifuge,

each step for 5 min. In these conditions, the YB proteins remained in the 

supernatant, whereas the vast majority of other proteins were pelleted.

This method was used for partial purification of the YB proteins, but also 

as a means to reconstitute RNP with a riboprobe (sections 2.41 and 2.42).

Heat-treatment buffer (HTB)
(MgCl2, included in Deschamps et al.f 1991, was omitted).
Tris.HCll pH 7.5 10 mM
NaCl 50 mM

2.3 Band excision of proteins

Proteins separated on SDS-PAGE were reversibly stained using the BIO­

RAD copper staining kit. Copper staining is a negative staining technique 

which produces a blue-green opaque background. SDS-PAGE gels were 

firstly washed in dH20 and then submerged in 50-100 ml of diluted Copper 

Stain solution provided in the BIO-RAD kit. Bands were visualized by 

placing the gel against a black background. Bands of interest were cut out 

using a razor blade, placed in microcentrifuge tubes, and destained as 

described in the kit. Once destained, the polyacrylamide was allowed to 

dry partially (if dried excessively, polyacrylamide becomes very hard) and 

then macerated using a pipette tip. An equal volume of dH20 was added to 

the macerated gel, allowing the proteins to diffuse overnight into the dH20. 

Samples containing the proteins of interest (with some residual SDS) were 

pipetted out.
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2.4 Heparin column chromatography

(1) Purification of mRNP-associated protein kinase activity. As 

previously observed in this lab (La Rovere and Sommerville, unpublished), 

the mRNP-associated kinase appears to be of a casein kinase II type and 

binds to heparin. Poly(A)+ mRNP were prepared as described in section 

2.1, but were eluted from the oligo(dT) column in 60% formamide rather 

than warm dH20. This poly(A)+ mRNP was dialyzed against heparin 

column buffer (HCB; see below) before being applied to a 1 ml column of 

heparin-Sepharose CL 6B (Pharmacia) equilibrated in HCB. Eluates were 

reloaded three times, then eluted from the heparin-Sepharose column by 

increasing the salt concentration up to 1M NaCl. Protein kinase activity 

was measured by in vitro phospholabelling (section 2.30).

(ii) Puriiiiaaion oo YB proteins. FoUowing the rapoli by KoUuri et al.

(1992), in which the human YB protein NSEP-1 was eluted in high salt 

buffer (containing 0.5 M KCl) from a heparin column, a similar procedure 

was developed. Heat-treatment supernatant in HTB (containing YB 

proteins; see section 2.2) was heated to 80 °C in the presence of heparin- 

Sepharose CL 6B (Pharmacia), so that approximately 100 jig of RNP and 

0.5 ml of resin was resuspended in HTB. After cooling with occasional 

vortexing, the resin was pipetted into a 1 ml column and rinsed with HTB 

after it had set. Bound RNA could be eluted with 8 M urea and 5 mM 

MgCl2, but not the proteins which were eluted with 1 M NaCl or 1 M KCl. 

The procedure has the following potential applications: it provides a 

simple method of extracting YB proteins from complex mixtures, allows 

bound RNA to be separated from YB proteins, and could be used in 

binding assays in which the YB proteins are immobilized on the column.
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neparin Column Buffer (nCB)
Tris.nCl, pn 7.5 25 ml25 mM
EDTA
2-mercaptoethanol

2 mM 
5 mM

2.5 Preparation of antisera

Antisera were prepared against two mRNP fractions, nTP (heat-treatment 

pellet) and nTSN (heat-treatment supernatant). Samples containing -2 

mg/ml of the proteins of interest were incorporated into a water-in-oil 

emulsion using 0.5 ml Drakeol 6VR (Pennsylvania Refining Company) 

containing 1/10 volume of the emulsifier Arlacel A (Atlas) as the oil phase. 

The material was mixed throughly through a 26-gauge syringe needle and 

re-emulsified in 1 ml of Tween 80 (Sigma) in 0.14 M NaCl until a free- 

flowing milky emulsion was generated. Emulsions were injected into 

Dutch rabbits as single doses. Bleeds were taken from the marginal ear 

vein at 6 weeks, and a booster injection identical to the first given to 

enhance the titre of desired antibodies. After a further 2 weeks, 10 ml of 

blood were collected at weekly intervals, and the antisera stored at -70 °C.

2.6 Xgtll cDNA expression library

This phage-based cloning system uses the vector AgEtl (Amersham 

International). Agtll has a unique EcoRI site near the 3' end of its lac Z gene 

(encoding p-galactosidase) into which cDNAs can be inserted. These can be 

expressed as lacZ fusion proteins via the IPTG-mducible lac promoter. 

Fusion with lacZ protein improves the stability of foreign peptides in 

The host strain is Y1090 [hsd (rk"mk+) lac U169, pro A+, lon~> ara D 139, Str 

A, Sup F trp C22:Tn 10 (pMC9)]. The plasmid pMC9 carries the lac 

repressor, which is inactive when bound by IPTG. The strain is also 

deficient in the Ion protease, and lacks the restriction enzyme Eco K. The
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phage Xgtll contains a temperature sensitive laclq repressor whose

product is inactive at 43 °C, allowing lytic growth at that temperature. A

Xenopus ovary Xgtll cDNA expression library was kindly provided by Dr.

Mark Dworkin, c/- Boehringer, Vienna.

2.7 XZAP cDNA expression library

This phage-based cloning system uses the vector XZAP (Stratagene) which 

has some additional advantages. It allows "directional cloning" so that 

cDNAs were constructed with an EcoRI site at the 5' end and a Xhol site at 

the 3' end. The vector has been engineered to allow the direct excision and 

recircularization of cloned inserts. In brief, the cDNAs were cloned directly 

into a pBluescript plasmid, itself already cloned into the bacteriophage 

genome. The plasmid is flanked by initiator and terminator sequences 

which are recognized by fl bacteriophage proteins. When XLl-Blue cells 

were co-infected with XZAP and fl "helper" phage, the net result was a 

"phagemid", in which a fully circularized pBluescript containing a cDNA 

sequence was packaged by fl bacteriophage proteins. Phagemids have the 

ability of transforming competent cells by infecting them with pBluescript 

(see section 2.14). This "zapping" procedure eliminated the need to prepare 

bacteriophage DNA, restrict and extract the inserted cDNA, and ligate it 

into pBluescript as required in the Xgtll system.

The cell strain used for plating XZAP was XLl-Blue. In XLl-Blue, The F

episome contains a mutation in the lacZ gene required for "a-

complementation" of the amino-terminus of the lacZ gene in the XZAP

vector, so that non-recombinant background plaques remain blue in

medium containing X-gal. The F episome contains the genes required for

expression of the bacterial F pili which are required for infection by

filamentous bacteriophage fl. The F episome also contains the laclq

...d
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repressor and the TnlO tetracycline resistance gene. XLl-Blue stock was 

therefore kept on tetracycline-containing plates (12.5 pg/ml).

A cDNA library was prepared by Dr. Sommerville following the

instructions in the XZAP manual. cDNAs were prepared from poly(A)+ 

mRNAs extracted from polysomal mRNP from previtellogenic oocytes 

(section 2.39), the idea being to select for mRNAs encoding proteins 

required at a high level during this phase of development, such as mRNP 

proteins.

2.8 Plating bacteriophage X

The plating cells were Y1090 for Xgtll and XLl-Blue for XZAF. Individual 

colonies of these plating cells were picked from the stock agar plates, 

inoculating 5 ml LB and growing them overnight at 37 °C. The next 

morning, 40 ml of fresh LB was inoculated with 1 ml of the overnight 

culture. Maltose and MgS04 were added to the LB to a final concentration 

of 0.2% (w/v) and 10 mM respectively. The cells were grown with 

vigorous shaking until they reached an OD6oo of ~0.5., after which they 

were spun at 3,000 g at 4 °C for 5 min, and resuspended in 4 ml of ice-cold, 

sterile 10 mM MgSW These plating cells could be used on subsequent 

days, although the plating efficiency declined.

"Plating out" began by melting top agarose (LB containing 0.8 % agarose), 

placing it in a 45 °C water bath, 4 ml of top agarose being required for 

every 90 mm plate. 100 ml of plating cells were infected with an 

appropriate dilution of bacteriophage X in SM buffer. Cells were infected 

for 15 min at 37 °C, and then plated out by mixing them with 4 ml of top 

agarose cooled to 45 °C, pouring the mixture onto pre-warmed plates. It 

was essential that the plates were kept warm and that the top agarose was
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at 45 °C, otherwise the top layer would not set evenly. The top layer was 

allowed to set for 15 min on the bench, after which the plates were placed 

inverted into a 37 °C oven in the case of XZAP, and a 43 °C oven in the case 

of Xgtll infections. Plaques appeared after approximately 6 h. When 

plating out library in the first round of screening, larger plates were 

preferred (150 mm diameter) in order to plate out 10,000-20,000 pfu 

(plaque forming units) per plate.

Luria broth (LB) per liter:
Bactotryptone™ 10 g
Bacto-yeast extract™ 5 g
NaCl 10 g
Dissolve and autoclave immediately

LB-agar plates
Add 15 g of Bacto-agar™ per liter of LB before autoclaving. Cool to 
45 °C before pouring plates. Add the required antibiotic.

SM buffer for bacteriophage, per litre:
NaCl 5.8 g
MgSO4.7H20 2 g
Tris base 6.05 g
2% gelatin 5 ml
Adjust to pH 7.5 with HC1 and sterilize by autoclaving.

2.9 Expressing cDNA fusion proteins in plaques

Nitrocellulose filters were prepared by wetting them into a sterile solution 

of 10 mM IPTG and dried before use. When the plaques were sufficiently 

developed, the filters were carefully overlayed over the plaques. The plates 

were returned inverted into the oven and incubated for a futher 3-4 h. This 

allowed the fusion proteins to be expressed. The filters were marked with a 

fine needle dipped in Indian ink, pushing it through the filter and agar in
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three asymmetrical positions. The filters were lifted off the agar very 

slowly and labelled as appropriate, ready for screening. In the case of the 

RNA-binding screen, the lifts were placed overnight into TBST (TBS + 0.5% 

Tween-20; see section 2.25 for TBS), and for an immunoscreen, they were 

placed into TBS containing 2% filtered skimmed milk, also overnight. 

Meanwhile, the agar plates were stored inverted at 4 X for the subsequent 

picking of positive plaques.

2.10 Riboprobe-binding secern of fusion prottins

Following the procedure described in Vinson et al. (1988), in which a DNA- 

ligand was used to isolate a DNA-binding protein expressed in a cDNA 

library, an RNA-binding screen was developed to select for mRNP 

proteins. The denaturing agent used was 6 M urea dissolved in low salt 

binding buffer (see below) and was based on previous experience with 

mRNP proteins (Dearsly et al, 1985).

(i) Filter-bound proteins were denatured to release endogenously bound 

RNA with 6M urea dissolved in low salt buffer with 2 x 10 min washes at 

room temperature with gentle agitation. The denaturing solution was 

washed off with 2-3 abundant washes of low salt buffer.

(ii) The filters were probed use a high activity probe, for example 1-2 pi of 

freshly made riboprobe, (see section 2.33; using approximately 0.25 pCi / 

0.1 pg RNA), carried in 10 ml low salt buffer in a single 90 mm petri-dish. 

The probe was incubated for 30-60 min with gentle agitation at room 

temperature.

(iii) The filters were washed with high salt buffer; firstly, two rapid washes 

to remove unbound probe, followed by two or three 5-10 min washes to 

reduce background binding, again in high salt buffer. Finally the fileeos 

were dried briefly for subsequent autoradiography.
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Low salt binding buffer
Tris.HCl, pH 7.5
NaCl
EDTA

10 mM 
50 mM

2 mM

High salt washing buffer 
Tris.HCl, pH 7.5
NaCl
EDTA

10 mM
500 mM 

2 mM

2.11 Pickmg apositive phage plaque

The immunoscreened filters (section 2.27) or the autoradiographs (section 

2.10) were covered with a sheet of plastic/acetate. The outline of the filter 

and the position of the orientation marks was marked onto the acetate. 

Next, the position of the positive signals was marked, after which the 

acetate was aligned with the agar plates. Positive plaques were cored out 

using a 1 ml Gilson pipette and transferred to a 1.5 ml microcentrifuge tube 

containing 500 pi of SM buffer. A drop of chloroform was added for 

storage at 4 °C. Phage particles diffused out of the agar plug into the SM 

buffer; typically, a plug gave a titre of approximately 105 pfu/ml. To purify 

positive plaques, the initial stocks were plated at lower densities until a 

single positive isolated plaque could be picked.

To analyze the cloned cDNA: in the case of IZAP clones, pBluescript 

containing the cloned cDNA was excised directly (section 2.14). In the case 

of XgLl clones, bacteriophage DNA was extracted using the plate lysis 

technique (section 2.12). The cDNA was isolated from the bacteriophage by 

digesting the phage DNA with EcoRI and "genecleamng" the released 

insert (section 2.17). The cDNAs were ligated into pBluescript vectors, also
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linearized with EcoRI, and transformed into competent cells for

subsequent analysis.

2.12 Preparation of bacteriophage X DNA

Fresh plating cells (E. coli strain Y1090 for the Xgttl library, and XL-1 Blue 

in the case of the AZAP library) were infected with approximately 104 pfu 

and grown overnight, the resulting plaques being almost confluent. 4 ml of 

SM buffer was added to the plate lysates, which were sealed with tape and 

left to shake gently on a tray at 4 'C for 2-3 h. The SM lysate was 

transferred into a sterile tube, and the plates rinsed with a further 1 ml SM, 

leaving them to drain for a few minutes. The lysate was spun at 4,000 rpm 

for 10 min at 4 "C to remove cell debris and the supernatant collected, to be 

stored at 4 ’C. To 4 ml of phage lysate, 4 ml of sterile 20% PEG/NaCl 

solution was added (containing 20 g polyethylene glycol 6000 and 11.7 g 

NaCl per 100 ml), mixed and left on ice for 1 h. The lysate + PEG solution 

was spun at 3,000 g for 20 min, draining the pellet and wiping the inside of 

the tube with a tissue to remove any remaining trace of PEG. The pellet 

was resuspended in 750 |il of LB, transferred to a microcentrifuge tube to 

add 750 |xl of DE52 in LB (see below), and mixed by inverting 20-30 times. 

The slurry was micaocentrifuged for 5 min and the supernatant transferred 

to a fresh tube. The supernatant was spun again to remove any,remaining 

slurry. To each 1 ml of supernatant 17.5 pi of a 0.1 mg/ml solution of 

proteinase K and 42.5 pi of 10% SDS was added, mixing and incubating at 

room temperature for 5 min. Next, 173 pi of 3 M potassium acetate was 

added, incubating at 88 °C for 20 min to dissolve the precipitate, and then 

cooled on ice for 10 min (the precipitate appearing again) before spinning 

in a microcentrifuge for 10 min and transferring the supernatant to two 

fresh tubes. Next, an equal volume of cold isopropanol was added.
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samples cooled to -70 °C for 10 min, warmed to room temperature and 

spun for 10 min in a microcentrifuge. The pellets were washed in 70 % 

ethanol, dried under vacuum and resuspended in a small volume of dHgO

as required.

To prepare the DE52 in LB: 10 g DEAE-cellulose was resuspended in

several volumes of 0.05 M HCl, ensuring that the pH dropped below 4.5, 

adding concentrated NaOH to bring the pH to 7. After the resin settled, the 

supernatant was decanted, and the resin washed several times in LB, each 

time using 2 volumes of LB. Finally, the resin was resuspended in a slurry

of 75% resin and 25% LB, adding sodium azide as a preservative to a final

concentration of 0.1%.

2.13 pRliuescriptt®

The pBluescript vector (Stratagene) is a 2.96 kb colony-producing plasmid. 

It carries the ^-lactamase gene which confers resistance to ampicilUn. 

Inserts were cloned into the polylinker region which contains 21 unique 

restriction sites (see Fig. 9). The pBluescript SK and KS series represent 

two different orientations of the polylinker. The polylinker sequence 

immediately follows the N-terminal coding region of the lacZ gene. An 

IPTG-inducible lac promoter upstream from the lacZ gene allows "a- 

complementation" of cells containing a deletion in their lacZ gene 

{lacZAM15) to produce a functional p-galactosidase protein. This provides 

a blue/white colour selection system: an active p-galactosidase results in 

blue colonies when the substrate X-gal is cleaved, while white colonies 

result when an inserted sequence interrupts the lacZ gene. The vector can 

be used for restriction mapping; double-stranded DNA sequencing; fusion 

protein expression when the inserted cDNA is in the correct reading frame
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Figure 9 pBluescrTpA® (Stratagene). This plasmid Ts a 2.96 kb colony- 

producing vecAor which confers resTsAance Ao ampTcillTn via The expression 

of Ahe p-lacAamase gene. An inducible lac promoAer upsAream from Ahe lacZ 

gene allows Ahe expression of fusion proAeins and blue/whiAe selection of 

recombinanA clones. CAs 21 unique resAriction siAes are used for resAriction 

mapping and subcloning. T3 and T7 bacAeriophage promoAers allow Ahe in 

vitro synAhesis of sArand-specific RNA. T3 and 17 primers are also used for 

double sAranded sequencing. The SK and KS series represent Awo different 

orientations of Ahe polylinker.
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and in vitro synthesis of RNA transcripts using the T3 and T7

bacteriophage promoters.

2,14 Excision of pBluescript from XZAP

200 pi of OD60o=1-0 XLl-Blue cells (described in section 2.7, containing 

approximately 2 x 107 cells) were combined with 200 pi of XZAP phage 

stock derived from a purified plaque, containing > 1 x 107 phage particles, 

and 1 pi of R408 filamentous helper phage (> 1 x 107 pfu/pl). These were 

incubated at 37 °C for 15 min, followed by the addition of 5 ml of LB and 

further incubation for at least 3 h at 37 °C with vigorous shaking. Next, the 

tubes were heated to 70 °C for 20 min and spun at 3,000 g for 5 min. The 

supernatant was decanted into a sterile tube: this was the "phagemid" 

stock which could be stored for 1-2 months at 4 °C.

To improve the excision process, the following procedures were used: an 

alternative helper phage was preferred, EXASSIST™, which has been 

genetically modified so as to be unable to replicate. In using R408, 

problems arose when the titres of XZAP and R408 bacteriophage were not 

balanced properly, and cell lysis ensued. Hay and Short (1992) recommend 

the following ratios: XLl-Blue cells (10): XZAP (10): helper phage (1). The 

phagemids were then used to infect XLl-Blue cells by incubating 200 pi of 

the same OD6oo=1.0 XLl-Blue cells with 1-200 pi of phagemid stock. A 

further modification to the procedure described in the XZAP manual was 

to add 1 ml of LB to these cells after phagemid infection, leaving them at 37 

“C to allow the ampicillin resistance gene to be expressed. Finally, cells 

were plated out on agar plates containing 50 pg/ml ampicillin, and 

incubated overnight at 37 °C. Ampicillin resistant colonies were used in 

subsequent plasmid DNA minipreps to sequence the cloned cDNAs.
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2.15 Preparation of plasmid DNA

This method was adapted from Jones and Schofield (1991). Single bacterial 

colonies were tooth-picked to inoculate 5 ml of LB containing 50 pg/ml 

ampicillin. Cultures were grown overnight at 37°C with vigorous shaking. 

1.6 ml of theculturewas spun in a micracentrifuge.To incraasethe sizz of 

the bacterial pellet, a further 1.6 ml of the overnight culture was added, 

spinning again. The supernatant was removed by tipping and draining. 

The pellets were resuspended in 180 pi of GTE solution (see below), after 

which 360 pi of a fresh solution of 0.2 M NaOH/ 1% SDS was added, 

mixing by inversion several times. After placing the lysed cells on ice for 5 

min, 270 pi of 3 M potassium acetate (pH 4.8) was added, mixing by 

inversion and chilling on ice for a further 5 min. Samples were spun for 10 

min in a microcentrifuge. The supernatant was collected carefully, wiping 

the outside of the pipette with a tissue. The supernatant was spun again, to 

remove any remaining precipitate. A phenol/chloroform extraction, 

which is not suggested in Jones and Schofield (1991), was included at this 

point to clean the "miniprep" further. One volume of ice-cold ethanol was 

added to precipitate the plasmid DNA, vortexing briefly and spinning in a 

microcentrifuge for 10 min. The pellets were washed with 1 ml of 70% 

ethanol, drained, dried in a vacuum pump, and resuspended in an 

appropriate volume, usually 20 pi, of sterile dHaO.

GTE solution
25 mM Tris-HCl, pH 8.0 25 mM
EDTA 10 mM
glucose 50 mM
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2.16 Resiristtsn oo DNA and agaroos gel electtoppooessi

Samples of DNA were digested for 1-2 h in small volumes (10-20 pi) 

containing the required restriction buffer and restriction enzyme. If the 

removal of RNA was required, such as in the visualization of small DNA 

fragments, RNase was added (to a final concentration of 50 pg/ml 

ribonuclease A and 50 units/ml of ribonuclease Ts) to the digests in the 

final 20 min of their restriction. Finally, one-sixth the volume of gel loading 

buffer was added before proceeding to electrophoresis. The concentration 

of agarose in the gels varied between 0.8 and 2%, depending on the size of 

DNA fragments being analyzed: 0.8% agarose favoured the separation of 

larger fragments (> 2 kb) whereas 2% agarose favoured the separation of 

smaller fragments (500 bp and less). The agarose was dissolved in 30 ml 

(for a mini-gel) of TAB buffer by melting, and placed in a water bath at 

45°C for at least 30 min to equilibrate the temperature. Next, ethidium 

bromide was added to a final concentration of 5 pg/ml before setting the 

gel. The gel was covered in TAB buffer and the restriction digests loaded 

(up to 15 pi per well). Samples were run at 40-100 V and the DNA bands 

were visualized using a 300 nm UV-light transluminator.

Tris-Acetate buffer (TAB)
Tris-acetate 0.04 M
BDTA 0.001 M
Concentrated stock solution (50 x) per litre:
Tris base 24a g
Glacial acetic acid 57.1 ml
0.5 M EDTA (pH 8.0) 100 ml

6 X Gel loading buffer for DNA (the dyes act as markers) 
Bromophenol blue 0.25%
Xylene cyanol 0.25%
Glycerol 30% in dH20
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2.17 ’’Gene cleaning’’

This procedure was generally used to purify DNA fragments excised from 

an agarose gel, but could, in addition, be used to desalt DNA solutions, to 

remove unincorporated nucleotides and to concentrate samples. The 

advantage of this procedure was that it gave an efficient recovery of DNA 

(approximately 80%, as suggested in the kit), while removing ethidium 

bromide. The GENECLEANII Kit (BIO 101 Inc.) contains a silica matrix 

called glassmilk™ that binds to single and double stranded DNA. The first 

step was to excise the DNA band from the agarose gel with a clean razor 

blade, visualizing the bands on an ultra-violet light transluminator 

(wavelength 300 nm, using the lower intensity setting so as to minimise 

damage to DNA). To begin the extraction, three volumes of Nal solution 

were added to the gel. If the gel was run in TBE, 4.5 volumes of Nal and 0.5 

volumes of "TBE modifier” solution were added instead. After incubating 

for 5 min at 45-55 °C to dissolve the agarose, the "glassmilk” suspension 

was added. In general, 5 pi of the suspension was added to samples 

containing 5 pg or less DNA, and an extra 1 pi for every 0.5 pg of DNA 

above 5 pg. The samples were incubated for 5 min on ice, vortexing 

occasionally to keep the silica matrix in suspension, and then the 

DNA/glassmilk complex was pelleted in the microcentrifuge for 5 sec and 

the supernatant removed. The pellet was washed three times in "NEW” 

solution, each time resuspending the glassmilk in a 0.5 ml volume of NEW 

solution, ensuring that all the wash solution was removed after the final 

wash. The DNA was eluted into the desired volume of dH20 by 

resuspending the silica, heating it to 45-55 °C for 2-3 min, spinning it for 30 

sec and collecting the supernatant. If 10 pi of glassmilk was used, the DNA 

could be eluted into a minimum of 10 pi dE^O. The exact compositions of
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the Nal stock solution, TBE modifier and NEW solution were not specified 

in the kit.

2.18 Ligation of DNA fragments

The appropriate ratio, usually 5:1, of linearized vector to insert DNA, was 

mixed in a total reaction volume of 20 pi. The reaction included 2 pi of 10 X 

One-Phor-All PLUS buffer (100 mM Tris-acetate, 100 mM magnesium 

acetate, 500 mM potassium acetate, provided by Pharmacia), 0.5 to 5 Weiss 

units of T4 DNA ligase, and 1 mM ATP. The ligation mix was incubated 

overnight at 16 °C and stopped by heating it to 65 °C for 10 min, ready for 

transformation.

2.19 Transformation by the CaCU method

"Competent" cells (XLl-Blue being the strain of choice, described in section 

2.7) were prepared as follows (as described in Maniatis et al., 1982): 5 ml LB 

cultures were grown overnight, the next morning inoculating a flask 

containing 40 ml of sterilized LB with 1 ml of the overnight culture. The 

culture was grown at 37 °C with vigorous shaking until an OD7oo of 0.2 

was reached (the cells being in the logarithmic phase of growth). The 

culture was chilled on ice for 10 min and centrifuged at 3,000 g for 5 min at 

4°C. The supernatant was removed, resuspending the cells into half the 

original volume of an ice-cold, sterile solution of 50 mM CaCl2 and 10 mM 

Tris.HCl, pH 8.0. The suspension was chilled on ice for 15 min and 

centrifuged as above. The supernatant was removed again and the cells 

resuspended in 1/15 the original volume of the above solution. Competent 

cells were stored at 4 °C, gaining maximum transformation efficiency after 

12-24 h.
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200 pi aliquots of the above cells were used for each transformation, using 

5-10 pi of ligation mixture per transformation. Ideally, not more than 40 ng 

of DNA were used in each transformation, because the use of excess DNA 

lowers the transformation efficiency (Maniatis et al., 1982). Samples were 

placed on ice for 30 min, and then transferred to a water bath at 42 °C for 2- 

3 min. Next, 1.0 ml of LB was added, and the cells incubated at 37 °C for a 

further 1-2 h, allowing them to express the antibiotic resistance gene. 10- 

200 pi of these samples were spread onto agar plates containing selective 

medium, usually 50 pg/ml ampicillin, and grown overnight at 37 °C. The 

success of this procedure varied from 1 to 103 transformants per plate.

2.20 Storage of cell strains and plasmid DNA

The plasmid DNA was stored in sealed microcentrifuge tubes at 4 °C for 

short term storage, and frozen for longer term storage. Various bacterial 

strains were maintained at 4 °C as colonies on an agar plate containing 50 

pg/ml ampicillin, 12.5 pg/ml tetracycline or no antibiotic, as required. 

Stocks of bacterial strains were kept at -70 °C in 15% glycerol for several 

years.

2.21 DNA sequencing

Dideoxy sequencing was performed using the T7 sequencing™ kit 

(Pharmacia). Double-stranded templates were obtained from plasmid 

DNA mini-preps (section 2.15).

(i) Annealing the primer. 2 pi of 2M NaOH was combined with 8 pi 

containing 1.5-2 pg of template DNA, mixed and left at room temperature 

for 10 min. Next, 3 pi of 3 M NaAcetate (pH 4.5) and 7 pi of dH20 were 

added, followed by 60 pi of 100% ethanol, mixed and cooled at -20 °C for 

15 min. The denatured DNA was pelleted in a microcentrifuge for 10 min
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and washed with 70% ethanol. The pellet was dried under vacuum and 

redissolved in 10 pi of dH2^. 2 pi of annealing buffer from the kit (a 

buffered solution containing MgCl2 and DTT) and 2 pi of primer solution,

diluted to give the appropriate primer:template ratio (recommended molar

ratio between 5:1 and 50:1), were added to the DNA, and the sample

incubated at 37 °C for 20 min to anneal the primer.

(u) Sequencing reactions. T7 DNA polymerase was diluted to 1.5 units/pi 

and kept on ice, 2 pi of this dilution being required for each reaction. Four 

microcentrifuge tubes for each reaction were labelled A, C, G and T. 2.5 pi 

of the 'A’, 'C, 'G', and 'T' mix-Short solutions were pipetted into each tube. 

Into the tube containing the annealed template, 3 pi of the ’labelling mix' 

was combined with 1 pi of [a-%S]dATP (containing approximately 10 pCi) 

and 2 pi of diluted T7 DNA polymerase. The reaction was incubated at 

room temperature for 5 min while the four sequencing mixes were pre­

warmed to 37 °C.

(iii) Termination reactions. 4.5 pi of the sequencing reaction which had 

been incubating for 5 min was transferred to each of the pre-warmed 

sequencing mixes, mixed and and incubated at 37 °C for 5 min. Then 5 pi of 

stop solution was added to each tube, mixed, and microcentrifuged briefly. 

The samples were stored at -20 0C for subsequent use. To load the 

sequencing gel, aliquots of 3 pi from each sample were denatured at 96 °C 

prior to loading. Samples were loaded in the order A, C, G and T on the 

sequencing gels, each loading yielding up to 200 nucleotides of sequence. 

Obtaining shorter and longer runs of each reaction increased the amount of 

information obtained.

(iv) Sequencing gel. To prepare 8% polyacrylamide wedge gels, the glass 

plates were cleaned with soap and water, rinsed with ethanol and dried. 

Both plates were treated with Sigmacote™ only on the side that was to be 

in contact with the gel. The gel was assembled using tape and wedge
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spacers. 15 ml of 40% acrylamide solution was mixed with 10 ml of 10 x 

TBE buffer, 42 g of urea solution, dH20 to 100 ml and de-gassed for 5 min. 

To initiate polymerisation, 250 pi of 10% ammonium persulphate and 50 pi 

of TEMED were added to the mixture. The gel was poured immediately, 

the plates placed at an angle, avoiding air bubbles. The plates were placed 

horizontally for 45-60 min, after which the combs and bottom spacer were 

removed, rinsing the upper surface with distilled water to remove 

unpolymerised acrylamide. The gel was placed into the electrophoresis 

apparatus to be run in 1 x TBE buffer. The gel was pre-run at 1200-1500 V 

for 30-60 min. To load the samples (denatured at 96 °C prior to loading), 

the power supply was switched off and the shark's-tooth comb inserted so 

that the points just touched the surface of the gel. Samples were applied 

and the gel run at 1200-1500 V. Electrophoresis was stopped when the 

bromophenol blue in the last loaded samples reached the bottom of the gel. 

The plates were disassembled and the gel fixed for 20 min in 10% acetic 

acid/10% methanol. The gel was transferred to a supporting sheet of 

Whatman 3MM paper, covered with plastic wrap, dried using a vacuum 

gel dryer and set up for autoradiography in contact with Agfa X-ray film in 

a cassette with an intensifying screen at -70 °C for 18-42 h.

Tris-Borate buffer (TBE)
Tris-borate 0.089 M
boric acid 0.089 M
EDTA 0,002 M
Concentrated stock solution (5 x) per litre: 
Tris base 54 g
Boric acid 27.5 g
0.5 M EDTA, pH 8.0 20 ml
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2.22 pMAL fusion protein system

The pMAL vectors (© New England BioLabs 1991) were used to express 

fusion proteins in E. colL Cloned genes were inserted downstream from the 

malE gene which encodes the 42 kDa maltose-binding protein (MBP). The 

vectors also carry an ampicillin gene for selection and the lacEl gene 

encoding the Lac repressor. In the absence of IPTG, expression of the 

construct is low. The polylinker site contains a sequence coding for the 

recognition site of the protease factor Xa; the system allows purification of 

the fusion protein using an amylose resin which binds to MBP, followed by 

cleavage by factor Xa to separate the desired protein from the MBP. The 

vector of choice was pMalcRI, whose polylinker contains an EcoRI site 

which is in frame with the EcoRI site present at the 5' ends of cDNAs 

cloned into lambda bacteriophage (Xgttl) expression libraries. Using the 

previously described methods, cDNAs of interest were ligated into 

appropriately linearized vector and transformed into E. coli host TB1 (ara A 

{lac proAB) rpsL (<|80 lacZAMl5) hsdR), and grown overnight on agar plates 

containing 100 pg/ml ampicillin.

To express the fusion proteins, 5 ml LB containing 100 pg/ml ampicillin 

was inoculated with a single ampicillin resistant colony, and grown 

overnight at 37 °C with good aeration. The next day, a fresh aliquot of 5 ml 

LB was inoculated with 1/10 volume of the overnight culture and grown 

at 37 °C with good aeration to an ODgoo ~ 0.5 (2 x 10® TB1 cells/ml). IPTG 

was added to a final concentration of 0.3 mM and the cultures grown for a 

further 2-3 h (induction period). 1.6 ml of induced cells were spun in a 

microcentrifuge, resuspended in 300 pi of TBS buffer and sonicated to lyse 

the cells and to reduce viscosity by shearing DNA. This crude lysate could 

be analyzed on SDS-PAGE by adding an equal volume of SDS-PAGE 

sample buffer (section 2.23).
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2.23 SDS-PA.GE analysis of proteins

To prepare a 12 % polyacrylamide gel the following solutions were used:

Separating gel Stacking gel

30% acrylamide 16 ml 2 ml
l M Tris.S04, pH 8.3 15 ml -
0.5 MTris.S04, pH 6.9 - 1.25 ml i
dH20 3.3 ml 6.57 ml
glycerol 5.7 ml -

de-gas for ten minutes
10% SDS 0.6 ml 0.15 ml
25% AMPS 60 pi 30 pi
TEMED 60 pi 30 pi
Total volume 40 ml 10 ml

To make thicker and thinner gels, the amount of 30% acrylamide was 

varied accordingly, to give a final concentration of 9 % acrylamide (for a 

better separation of higher molecular weight proteins, above 100 kDa) and 

20 % acrylamide (for a better separation of lower molecular weight 

proteins, below 40 kDa). Before setting, d^0 was layered over the 

separating gel. The reservoir buffer contained 3 g Tris base, 14.3 g glycine 

and 1.5 g SDS per litre. An equal volume of sample buffer was added to 

the protein samples and the samples boiled for 2-3 min. If required, 

samples were saturated with urea to aid solubility. Molecular weight 

markers were obtained from Sigma and included: ("high molecular 

weight" markers: bovine erythrocyte carbonic anhydrase, 29 kDa; egg 

albumin, 45 kDa; bovine plasma albumin, 66 kDa; rabbit muscle 

phosphorylase, 97.4 kDa; E. coli p-galactosidase subunit, 116 kDa; rabbit 

muscle myosin, 205 kDa, and the ""ow molecular weight” markers: bovine 

milk a-lactalbumin; 14.2 kDa; soybean trypsin inhibitor, 20.1 kDa; bovine
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pancreas trypsinogen, 24 kDa; bovine erythrocyte carbonic anhydrase, 29 

kDa; rabbit muscle glyceraldehyde-3-phosphate dehydrogenase subunit,

36 kDa; egg albumin, 45 kDa and bovine plasma albumin, 66 kDa.)

Samples were loaded onto the SDS-PAGE gel and run overnight at 40-80 V.

Protein sample buffer
SDS 2% (w/v)
2-mercaptoethanol 5% (v/v)
glycerol 10% (v/v)
Tris/S04, pH 6.9 10 mM
+ bromophenol blue marker as required

2.24 Coomassie shtbiuig of proteins

Proteins separated on an SDS-PAGE gel were stained using Coomassie 

brilliant blue. The staining solution contained:

Coomassie brilliant blue 1 g
96% ethanol 250 ml
Glacial acetic acid 50 ml
dH20 to 500 ml

The dye was dissolved by stirring for at least 30 min. Gels were immersed 

into the staining solution in a covered polypropylene box and left for 2 h 

with gentle agitation. The staining solution was decanted into a bottle, to 

be re-used once. Gels were de-stained using the solution:

96% ethanol 250 ml
Glacial acetic acid 100 ml
dH20 to 1000 ml

Gels were firstly rinsed with water to remove excess staining solution, then 

adding de-staining solution and pieces of plastic foam which have the 

ability to adsorb excess dye. Gels were de-stained with gentle agitation for
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1 h, after which fresh de-stain was added and the gels rinsed further until 

adequate de-staining was obtained.

2.25 Weeier.!! Mooting

Mixtures of proteins were separated via SDS-PAGE and then

electrophoretically transferred to nitrocellulose membrane. These "blots" 

could be used for ELISA ("immunoblotting", section 2.27) and 

"Northwestern blots" or "riboblots" (binding of RNA probes to transferred 

proteins, section 2.42 part (i)). The procedure began by cutting a 

nitrocellulose membrane corresponding to the size of the SDS-PAGE gel 

being transferred and two pieces of 3 mm Whatman filter paper of the 

same dimensions. The polyacrylamide gel was washed three times for 5 

min in transfer buffer. The gel was placed onto on a wet filter paper, and 

then the membrane placed over the gel. This was done slowly and with 

care, because even a brief contact with the gel would result in the transfer 

of significant amounts of protein. Bubbles trapped betweens the membrane 

and the gel were removed by rolling a glass pipette over the membrane. 

The second wet filter paper was placed over the nitrocellulose, also 

removing any air bubbles with the glass pipette. The transfer was placed 

between two pads in the holder, fitted into the transfer apparatus and 

covered with transfer buffer. A current of 0.3 Amps was applied for at least 

4 h to overnight, the SDS-gel being on the side of the negative electrode. 

After the transfer, the membrane was removed carefully and placed into 

an appropriate "blocking" solution: for susbequent immunoblots, this was 

TBS-milk (TBS containing 2 % (w/v) filtered skimmed milk), and for 

riboblots TBST (containing 0.5 % (v/v) Tween-20 as a blocking agent).
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Transfer Buffer
Tris.HCl, pH 8.3 
glycine

25 mM 
150 mM

Tris-Buffered Saline (TBS)
Tris.HCl, pH 7.5
NaCl

10 mM 
150 mM

2.26 Amido black staining of proteins on nitrocellulose

Proteins transferred to nitrocellulose membrane could be stained on the

membrane, using the method described in Wojtkowiak et al. (1983) which 

included the staining solution:

Amido black 
Methanol 
Glacial acetic acid
dH20

1-5 g
45 ml
10 ml

to 100 ml

The membrane was immersed in the staining solution for 1 h with gentle 

agitation. The staining solution was decanted carefully into a bottle, to be 

re-used once. The membrane was de-stained with gentle agitation, 

changing the washes as appropriate, in:

Methanol
Glacial acetic acid 
dH20

180 ml 
4 ml 

to 200 ml

2.27 Immunoblotting using the ELISA technique

The ELISA (enzyme-linked immunosorbent assay) technique makes use of 

an enzyme covalently linked to an immunoglobulin. Antigens were firstly 

bound to "primary" antibody, which in this study were present in antisera 

obtained from rabbits. Primary antibodies were subsequently bound by 

goat anti-rabbit IgG "secondary" antibodies, conjugated to the enzyme
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horseradish peroxidase. The antigen was finally detected using the 

horseradish peroxidase in a colour reaction involving the substrate DAB 

(diaminobenzidine). The same procedure was used to immunoblot both 

Western transfers of SDS-PAGE gels and plaque lifts. When blotting 

plaque lifts, the antisera were pre-incubated for 30 min with a 1/100 

dilution of bacterial lysate, a step which reduced background signals 

significantly.

To bind the primary antibody, the antiserum was firstly diluted as 

required in TBST (TBS containing 0.05% Tween-20). The optimum dilution 

varied between batches of antisera and was determined empirically; 

however, in general, 1/2000 dilutions of antisera were adequate. The 

primary antibodies diluted in TBST were added after removing the 

blocking solution from the filters. The filters were agitated gently at room 

temperature for 1.5 h, then washed four times for 5 min with TBST, using 

twice the volume used in antibody incubation. At first, bound antibody 

was detected by incubating the filters with i25I-labelled protein A (> 30 

mCi/mg, Amersham) in TBS containing 0.5% NP-40. However, the 

horseradish-peroxidase conjugate system was subsequently preferred, 

because it gave a sharper signal and eliminated the need for

autoradiography.

The secondary antibody was diluted 1/3000 in TBST and the filters 

incubated with it for 1.5 h, after which they were washed three times for 5 

min in TBST, and the fourth wash was for 5 min in TBS without Tween-20. 

Sufficient aliquots of frozen DAB (0.4 ml containing 20 mg of DAB for 

every 50 ml of TBS to be used) were thawed, vortexing the DAB to 

solubilize it. The DAB and 15 pi of 30% hydrogen peroxide were mixed 

into 50 ml of TBS and immediately poured over the filters with the proteins 

facing up. Positive signals were allowed to develop (in general, this
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happened between 20 sec and 5 min after substrate addition), and when 

the optimum signal was achieved, the reaction was stopped by washing 

the filters with ample distilled water. Because DAB is light-sensitive, the 

stained filters were stored in the dark at 4 °C.

2.28 Cleavage oo proteins. (rreiewed in Darbrre 1986).

(i) Cleavage at DP (aspartic acid-proline) sites, adapted from Nute and 

Mahoney (1979). Proteins were dissolved in 70 % formic acid, if necessary 

with the aid of 7 M guanidine.HCl, and incubated at 40 °C for 24 h. The 

reaction was stopped by adding an equal volume of cold, de-ionized 

water. The procedure was modified as follows: instead of 7 M 

guanidine.HCl, 0.5% SDS was added to solubilize the proteins. The 

samples were dried in a vacuum pump to remove the formic acid, and 

resuspended in an appropriate buffer.

(ii) Cleavage at NG (asparagine-glycine) sites, adapted from Enfield (1980). 

Proteins were dissolved in 6 M guanidine-HCl^^o hydroxylamine.HCl at 

room temperature. Concentrated NaOH was added as required to bring 

the reaction to pH 9. The reaction proceeded at room temperature for 4 h, 

while the pH was checked and maintained at pH 9. Samples were dried in 

a vacuum to remove the reagents, and then resuspended in an appropriate 

buffer.

(iii) Cleavage at M (methionine). The proteins were dissolved in 70% 

formic acid, adding solid CNBr in the fume hood. The ratio was 2 pg CNBr 

to 1 pg protein, so that CNBr was in at least a 20-100 fold molar excess with 

respect to the methionines present in the proteins. The reaction proceeded 

for 18-20 h at room temperature in the dark. The samples were dried in a 

vacuum to remove the reagent, and then resuspended in an appropriate

- -1 - 1
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buffer. One point to note with respect to this reaction is that it was carried

out in 70% formic acid, conditions in which DP sites were also cleaved (see

above).

(iv) V8 Proteese dii^t^s^tti^i^. Samples were digested with V8 protease from 

Staphylococcus aureus (Behringer) at 20 °C for at least 1 h in HTB or a 

similar buffer, and supplemented with 0.1% SDS.

2.29 lodination of tyrosines

100 pi samples of lodogen™ stock (Pierce Chemical Company) were dried 

onto the surface of a glass vial. The prepared protein samples (10-50 pg in 

100 pi containing 0.2% SDS and 10 mM Tris.HCl, pH7.5) were added to the 

vial along with 1 pi of Nal (i25I, 2 mCi/20 pi) to be incubated at room 

temperature for 15 min with occasional swirling. Next, the following were 

added: 10 pi of 0.1 M DTT, a reducing agent, and 100 pi of KI which 

stopped the reaction by providing an excess of iodide. To store the labelled 

protein, 500 pi of 96% ethanol was added to each microcentrifuge tube and 

stored at -20 °C. Before use, the tubes were spun at 10,000 g for 10 min to 

pellet the protein, rinsing once with 80% ethanol + 20% KI.

2.30 Phospholaballing

Poly(A)+ mRNP, germinal vesicle extracts, and fractions eluted from a 

heparin column were adjusted to 20 mM Tris.HCl, pH 7.5 and 2 mM 

MgCl2, a buffer in which casein kinase II is active. 1-2 pi of [y-WpATP 

(Amersham International, 3000 Ci/mmol), containing approximately 1 pCi, 

was added to each sample. For riboprobe-binding experiments, poly(A)+ 

mRNP were phosphorylated in vitro by adding cold ATP (10 pM), or 

alternatively de-phosphorylatad by adding 1-2 pi of calf intestinal
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phosphatase (Boehringer Mannheim, 1 unit/pi), active in "l-for-all" buffer 

(also Boehringer Mannheim). These reactions proceeded for 30 min at 

room temperature.

2.31 ATP binding

To test for ATP binding, mRNP proteins were photocrosslinked to [a- 

32P]ATP. It was necessary to use [a-32P]ATP because any hydrolysis of [y- 

32P]ATP would lead to loss of label. Following the succesful

photocrosslinking of [a^PPATP to the RNA helicase eIF4A (Pause et al., 

1993), poly(A)+ mRNP was adjusted to 20 mM Tris.HCl, pH 7.5, and 2 mM 

MgCl2. Next, 2 pi of [a-32P]ATP containing approximately 1 pCi 

(Amersham International, 3000 Ci/mmol) was added to 100 pi poly(A)+ 

mRNP samples, photocrosslinked on ice for 20 min, and finally digested 

with RNase and analysed on SDS-PAGE (see section 2.42 part (iv) for the 

photocrosslinking procedure).

2.32 Peptide sequencing

The HTP (heat-treatment pellet) fraction of poly(A)+ mRNP was digested 

with CNBr to generate smaller peptides suitable for sequencing. Firstly, 

approximately 1 ml of poly(A)+ mRNP eluate from an oligo(dT) column 

was adjusted to HTB and heat-treated (section 2.2). The pellet was raised in 

70% formic acid and digested in CNBr to cleave at methionines (section 

2.28). The digested material was sent to Dr. Kemp at the Biochemistry 

Department, University of St. Andrews, where the peptides were 

separated on an SDS-PAGE gel and transferred to PVDF membrane. The 

peptides were sequenced using a gas phase automated sequencer.
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2.33 GCG Package computer software and electronic mail

The computer-based sequence analysis was carried out using the 

Wisconsin Genetics Computer Group GCG™ Package, Genetics Computer 

Group Inc., version 7.2,1992. The programs used were: FASTA, used to 

conduct homology searches against EMBL DNA and SwissProt protein 

databases; TRANSLATE, which translates open reading frames into an 

amino-acid sequence; MAP, which translates in any specified frame(s) and 

finds endonuclease restriction sites: MAP also analyses amino-acid 

sequences and maps protease and/or chemical cleavage sites; 

PEPTIDESORT, which sorts peptide fragments including the whole protein 

according to size, calculating molecular mass, percentage amino-acid 

composition and estimated isoelectric point; PEPTIDESTRUCTURE and 

PLOTSTRUCTURE which use secondary structure prediction algorithms 

to predict protein secondary structure; HELICALWHEEL, which predicts 

the arrangement of amino-acids in an a-helix; PILEUP, which performs 

multiple sequence alignments. In addition, the automatic electronic mail 

server both at EMBL (European Molecular Biology Laboratory), 

Heidelberg, and EBI (European Bioinformatics Institute), Cambridge, were 

used to conduct nucleotide and amino-acid sequence searches (EASTA and 

BLITZ algorithms) on updated databases, and individual database entries 

could be retrieved by electronic mail. New cDNA sequences were 

submitted to the databases via electronic mail.

2.34 Synthesis of oibopoobes

A "riboprobe" is a radiolabelled RNA molecule to be used as a molecular 

probe in RNA-binding assays (for example, the sense strand of cyclin B1 

and a 3' end fragment of p-tubulin mRNA, see Appendices A and B).
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(i) Run-off transcripts. Various riboprobeswere prepared by synthesizing 

run-off SanncraipSc from nppabpainSsly linearized rDNAc rlbnsd into 

pBlueScript in the paecsnrs of [a-32P]CTP. In general, unlscc cSntsd 

otherwise, She aiOoproOe of choice for binding reactionc wnc n 0.35 kO 

fragment of She 3' end of She cence ctrnnd of p-tuOulin. The lnOel wnc 

obtained from Amerchnm International nt 400 Ci/mmol. Approximntely 1­

2 pg DNA wnc digected in n total volume of 7 pi ucing the appropriate 

rectrirtion enzyme nt 37 °C for 1-2 h. Next, the following were comOined:

Linearised DNA digect 7pl
5 x cnltc 4 pi
0.1 M DTT 2 pi
RNnce inhiOitor 1 pi
10 x NTP mix 2 pi
[n-32p]CTP 2 pl
T7 RNA pblymsaaie 1 pi
DEPC H2O 1 pi
Total: 20 pi

The 10 x NTP mix contained: (ATP, 10 mM; GTP, 10 mM; UTP, 10 mM; 

CTP, 0.5 mM). In a typical reaction, there wac a 10:1 ratio of 1 nmol "cold" 

CTP to 0.1 nmol rndiolaOellsd CTP. The reaction wac incuOnted at 37 °C for 

1 h, after which 1 unit of RNaie-faee DNace I wnc added and incuOated for 

n further 10 min at 37 °C. 30 pi DEPC H2O wac added Oefore proceeding to 

n cpun column. RiboproOec were ^ored at -70 0C for cuOcequent uce.

(ii) 5‘ enSl-lar>ollllS5 ol^ RNA polymerr. STh rfzai rcep was to

dephbcphoaylate the 5' endc of the polymerc ac followc:

20 pg of polymer (poly(C,U) and poly(A,G)) wac treated with 1-2 unitc of 

CIP (calf intectinal phoiphatnie) in "1-for-all Ouffer" (Pharmncia), 

incuOnting at 45 °C for 10 min. The reaction wac ctopped Oy adding 3 pi of 

0.5 M EDTA, heating to 65 °C for 10 min, extracting twice with
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phenol/chloroform. 10 pi of 3 M NaCl and 320 pi of ethanol was added to 

100 pi of acqueous phase, placed at -70 °C for 30 min and spun for 10 min 

in a microcentrifuge. The pellet was rinsed with 70% ethanol, dried under 

vacuum and raised in 20 pi of DEPC H2O. Next, to end-label the polymers, 

the following were combined and incubated at 37 °C for 40 min:

DEPC H2O 8.5 pi
RNase inhibitor 1 pi
10 x 1-for-all buffer 2 pi
Dephosphorylated polymer, 1 pg/pl 5 pi
[y-^PpATP (~ 1 pCi) 2.5 pi
Poly-nucleotide kinase 2 pi
Total: 20 pi

To stop the reaction, 1 pi of 0.5 M EDTA, 75 pi dH20,5 pi of 5 M NaCl were

added before proceeding to a spun column, using Sephadex G25 rather 

than G50. If required, the riboprobes were extracted with 

phenol/chloroform and re-precipitated as above. End-labelled polymers 

were also stored at -70 °C for subsequent use.

2.35 Spun column

Radiolabelled RNA was recovered via a "spun column" using Sephadex G- 

50 resin. This resin was resuspended in TE buffer and autoclaved. The 

column was prepared in a disposable syringe as described by Maniatis et 

ah (1982) by plugging the syringe with some flock previously boiled in TE 

buffer, then filling it with the Sephadex G-50 suspension. The syringe was 

compacted to dryness by spinning it at 3,000 g for 4 min. 50 pi of TE buffer 

was added and spun through similarly in order to verify that the volume 

recovered was equal to the volume loaded. The riboprobe labelling mix 

was added and spun, unincorporated nucleotides remaining in the column 

while the labeled probe was collected in a 1.5 ml screw-cap eppendorf

•1
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tube. The syringes and the collecting eppendorf tubes were placed in an

appropriate carrier centrifuge tube. The oibopoobe was aliquoted into small

volumes (usually 10 pi) and stored at -70 °C.

TE Buffer
Tris.HCl, pH 8.0 20 mM
EDTA 1 mM

2.36 RNA extraction

(i) from oocytes. Oocytes were collected as described in section 

2.0. Pools of 5-15 oocytes (for vitellogenic stages) and 50 (for smaller 

previtellogenic oocytes) were placed in separate 1.5 ml microcentrifuge 

tubes. 500 pi of TNES buffer + 200 pg/ml proteinase K was added to each 

tube, mixing thoroughly by vortexing, and incubating at 50 °C for 60 min 

with further occasional vortexing. Samples were extracted twice with 

phenol:chloroform and once in chloroform. The RNA was precipitated by 

adding 2.5 volumes of ethanol and spinning at 10,000 g for 30 min at 0 °C. 

The pellet was washed in 70% ethanol, resuspended in 20 pi of DEPC dHaO 

and stored at -70 °C. To extract RNA from embryos, a similar procedure 

was followed; however, the embryos were firstly placed for a short time in 

a solution of 2 % cysteine hydrochloride (pH 8.1) to remove the jelly 

coating and rinsed four times in one third strength Modified Barth's 

Solution with gentle swirling.

(ii) Extraction from tissues. An immature male Xenopus was dissected to 

obtain a whole brain, the two testes, part of the liver, heart and kidneys. 

The tissues were chopped and vortexed into 500 pi of a solution containing 

guanidinium thiocyanate and 1% 2-meocaptoeehanol. Samples were 

extracted twice at 55 °C with an equal volume of phenobchloroform. 10 pi 

of 3 M NaAcetate and 2.5 volumes of ethanol were added before placing
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the samples at -20 ‘C overnight. The next day pellets were collected after 

spinning at 10,000 g for 30 min at 0 °C, raised in 200 pi of TNES + 200 

pg/ml proteinase K and incubated at 45 'C for 2 h with occasional 

vortexing. Samples were extracted again in phenol: chloroform and then 

2.5 volumes of ethanol were added before placing at -20 °C overnight. On 

the third day, the RNA was precipitated as above, and raised in 100 pi of 

DEPC-dH2O plus 100 pi of 8 M LiCl. After 4 h at -20 T, RNA was 

precipitated again, rinsed in 96% ethanol and air-dried. Finally the pellets 

were suspended in 20 pi of DEPC H2O and stored at -70 °C.

RNA extraction buffer (TNES) 
Tris.HCl, pH 8.0 100 mM
NaCl 300 mM
EDTA 10 mM
SDS 2% (w/v)

Modified Barth's Solution (MBS)
NaCl
KCl
CaCl2
Ca(NO3)2
MgS04
NaHCO3
HEPES, pH7.4

88 mM 
2 mM 

0.41 mM 
0.33 mM 
0.82 mM

2.4 mM
10 mM

2.37 RNN gels and Nootherntransfer

Extracted RNA was raised in DEPC H2O. To every 10 pi of RNA solution, 4 

pi of 5 x MOPS, 7 pi of formaldehyde and 20 pi of deionised formaldehyde 

were added giving a total volume of 40 pi. Immediately prior to loading 

onto the agarose gel, 4 pi of RNA loading buffer was added. The RNA gel 

was prepared by melting 0.9 g of agarose into 35 ml of DEPC H2O. Once 

the agarose had melted, 12 ml of 5 x MOPS was added and the gel mix
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cooled to 50 'C. Nextly, 13 ml of pre-warmed formaldehyde was added, 

and the pH monitored, to ensure that it was above pH 4. The gel was then 

poured, covered in 1 x MOPS buffer, loaded with 20 pi of each RNA 

sample, and run at 20 V overnight.

The RNA was transferred to a nylon membrane by vacuum blotting. 

Firstly, the gel was washed in dH20 and soaked in 50 mM NaOH for 5-10 

min to hydrolyse the RNA partially. The transfer buffer consisted of 1 litre 

of 10 x SSC, and was run for three hours. After the transfer, the membrane 

was rinsed in 2 x SSC for 5 min, air-dried, and the RNA cross-linked to the 

nylon membrane by baking it at 80 °C for 1 h. As an alternative, the RNA 

samples could be transferred onto a membrane using a "slot-blot" 

apparatus.

5 X MOPS
MOPS 200 mM
NaAcetate 50 mM
EDTA 2 mM

10 X Gel loading buffer for RNA
Bromophenol blue 0.25%
Xylene cyanol 0.251%
EDTA 1 mM
Glycerol 50% in dH20

20 X Standard Sodium Citrate (SSC)
To prepare one litre;
NaCl 17553 g
NaCitrate 88.2 g
Dissolve in 800 ml. Adjust the pH to 5 with a few drops of 10 M 
NaOH and adjust the volume to 1 litre.
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2.38 Hybridization of antisense probes to membrane-bound RNA

The membrane was placed into 50 ml of pre-hybridisation solution 

containing 1% Blotto, 1 x SSC and 2% SDS prepared with DEPC dH20, and 

pre-hybridized at 65 °C for 2 h. Next, the membrane was covered in 25 ml 

of fresh pre-hybridization solution containing the appropriate antisense 

riboprobe. The oibopoobe was hybridized with gentle mixing overnight at 

65 °C to ensure high-stringency hybridization. The next day, the filter was 

washed twice for 20 min at 65 °C in 0.5 x SSC/0.1% SDS, and then similarly 

twice in 0.2 x SSC/0.1% SDS. The membrane was finally rinsed in 100 ml of 

the last wash solution and set up for autoradiography,

10 % Blotto, per 100 ml:
Non-fat powdered milk 10 g 
Sodium azide 0.2%
sterile dH20 to volume

2.39 Release of mRNAs from polysomes

Polysomal mRNA from previtellogenic oocytes was prepared in order to 

construct a new cDNA expression library using the XZAP vector. 500 pi PB 

(polysome buffer) was added to approximately 50 previtellogenic oocytes 

which were homogenized by pipetting them in a sterile tip. The 

homogenized oocytes were mixed by vortexing and centrifuged at 12,000 g 

for 5 min at 4 °C. EDTA was added to the supernatant to a final 

concentration of 20 mM. Samples were diluted with PB to 2.5 ml and 

layered over a 2.5 ml cushion of 20% (w/v) of sucrose in PB. The 

polysomes were pelleted by ultracentrifugaeon at 149,000 g for 2 h at 4 °C 

in a Beckman SW55 rotor. Non-polysomal mRNP remained in the 

supernatant while the polysomal mRNPs were pelleted. The pellet was
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resuspended in 500 pl of TNES before proceeding to RNA extraction 

(section 2.36).

Polysome buffer (PB)
Tris.HCl, pH5.5
MgCl2
KCl
NP-40

20 mM 
2 mM

300 mM
0.5% (v/v)

2.40 Density gradient centriiugatton

Gradients containing 6-48 % CS2SO4 were prepared in a buffer containing 

0.2% (v/v) of the non-ionic detergent NP-40 and 50 mM sodium 

phosphate, pH 5.0. Samples containing --2.5 mg of RNA-protein complexes 

were loaded with or without prior fixation on the top of the gradients. The 

gradients were centrifuged at 40,000 rpm for 16 h at 18 °C in an SW65 rotor 

of the Beckman L-5 ultracentrifuge. 200 pi samples were collected by 

careful pipetting from the top of the gradients. Density points were 

measured using refractometry. RNA samples were extracted by firstly 

diluting the samples with three volumes of dH20, as recommended by 

Cardinali et al. (1993), precipitating the RNP samples with two volumes of 

ethanol. RNA was extracted as described in section 2.36 with the addition 

of 10 pg carrier tRNA per sample. Proteins were obtained by diluting the 

gradient samples with a similar volume of dH20, but then adding 10 pg of 

cytochrome C as a carrier. The reddish colour of cytochrome C facilitated 

the visualization of protein pellets after ethanol precipitation. The RNA 

extraction was performed by Robert Little, who also prepared slot blots for 

analysis with antisense riboprobes (sections 2.35 and 2.38).
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2.41 Cocn:titioIts f<^r proCeiit:RNA lbiistliilte

Three methods were used to generate proteimRNA complexes, all 

involving a "destabilization" step followed by a "reconstitution" step.

(i) Destabilization by MgCl2. This strategy followed the procedure 

described in Marello et al. (1992), in which mRNP particles were 

destabilized with 20 mM MgCl2. Complexes were allowed to re-form by 

gradually diluting the samples with binding buffer (usually HTB) without 

MgCl2, bringing the concentration of MgC^ down to 2 mM or less. Various 

competitors were tested by adding them shortly after the riboprobe.

(ii) Destabilization by urea. mRNP particles were also destabilized with 

the addition of 8 M urea. Riboprobe was added, along with various 

competitors. To reconstitute the complexes, the urea was diluted at least 

ten-fold or alternatively removed by dialysis.

(iii) Heat-treatment. This technique was based on the report by Deschamps 

et al., (1991), in which the Xenopus oocyte YB proteins were shown to 

remain soluble after treatment at 80 °C (section 2.2). Samples were heated 

to 80 °C, cooled on ice and spun in a micrccenttifuge each step for 5 min. 

The riboprobe was added prior to heat-treatment. Upon cooling, the 

protein:RNA complexes re-formed. Deschamps et al. (1991) found that after 

heat-treatment, the YB proteins present in mRNP in a whole oocyte extract 

associated to tRNA and rRNA molecules. Since the YB proteins do not 

normally associate with these molecules in vivo, a dynamic exchange of 

bound RNA was thought to have occurred during heat-treatment.
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2.42 Protein:RNA Mnding aasays

(i) NorthWesterns, or "riboblots”. A "riboblot" is an assay in which 

proteins transferred to a nitrocellulose membrane (Western transfer) are 

bound to riboprobe. This assay is similar to the RNA-binding screen of 

bacteriophage plaques described in section 2.10. The first step was to wash 

the Western transfers in a denaturing solution containing 6 M urea 

dissolved in binding buffer (usually TMNT), twice for ten minutes. The 

purpose of this wash was to remove unwanted SDS. Any remaining urea 

was washed off with binding buffer. Next, a riboprobe was added. 

Typically, this was 1-2 |il of freshly made riboprobe, (ca. 0.25 pCi / 0.1 pg), 

in a small volume of binding buffer (10-20 ml, depending on the size of the 

membrane). The membrane was incubated with riboprobe for 30 min after 

which the oiboprobe-containing solution was washed off. Then the 

membrane was washed in the same binding buffer containing 500 mM 

NaCl, in order to diminish background binding. The above was the basic 

procedure; however, ionic conditions (both in the binding and washing 

buffer) could be modified, and competitors added to the binding reaction 

as required. Finally, riboblots were set up for autoradiography. Riboblots 

could be subsequently immunoblotted, the aim being to align RNA- 

binding with immunooeactive bands.

(ii) Agarose gel retardation. RNP complexes were generated in a small 

volume, usually not more than 10 pi, and loaded with loading dye into an 

agarose gel similar to those used in the analysis of DNA. The agarose gels, 

however, were prepared in the same binding buffer used in the binding 

assay, so that the ionic conditions in the gel did not alter the binding effects 

obtained in vitro. After running the gels at 40-80 V, the gels were fixed for 

30 min in 10% acetic acid, dried and set up for autoradiography. "Gel
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retardation" refers to the observation that protein:RNA complexes run 

slower than free RNA.

(iii) Filter retention assay. Complexes were generated in volumes ranging 

from 100-500 pi. The proteinrRNA complexes were collected by binding to 

filter discs (Millipore, HAWP) while unbound RNA was washed off with 

20 mM Tris.HCl, pH7.5. Protein-bound RNA was estimated by Cherenkov 

counting of the filters in 5 ml of dH20.

(iv) Photocrosslinking and SDS-PAGE. Photocrosslinking is a treatment 

which results in the formation of covalent bonds between amino-acids and 

nucleic acids. Proteins in direct contact with RNA were covalently 

photocrosslinked by irradiation with ultraviolet light. Samples were kept 

on ice while being irradiated for up to 30 min with ultra-violet light at 254 

nm, output 600 J/m2/sec. When required, unprotected RNA was digested 

using a mixture of 50 pg/ml RNase A and 50 units/ml of RNase Ti at 

room temperature for 20-30 min before analysis on SDS-PAGE. 

ProteinrRNA complexes could also be cleaved chemically and 

enzymatically after photocrosslinking, to isolate separate binding domains.

(v) Photocrosslinking and phenol extraction assay. ProteinrlRNA 

complexes were prepared as described above, usually containing 

approximately 2 pg YB proteins and 0.1 pg of riboprobe in a final volume 

of 50 pi in binding buffer (usually HTB) before being crosslinked as above. 

For a quantitive assessment of the extent of crosslinking, the samples were 

adjusted to 1% SDS, 150 mM NaCl, 5 mM EDTA and 50 mM Tris.HCl, 

pH7.5. The samples were extracted with an equal volume of

phenol: chloroform. The radioactivity in both the phenol and acqueous 

phases was measured by Cherenkov counting, the free RNA partitioning 

into the acqueous phase, the protein:RNA complexes at the surface of the 

phenol phase. The percentage of initital Radioactivity per sample extracted 

into the organic phase was calculated in each case.
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TMNT binding buffer for riboblots
Tris.HCl, pH 7.5 11
NaCl 50 mM
MgCl2 2 mM
Tween-20 0.05%

The above ENA-binding assays are summarized in Fig. 10.

2.43 Tissue section immudcstaidide

This experiment was performed by Dr. Sommerville, briefly as follows. 

Previtellogedic ovary was dissected and fixed with 2% TCA for 1 h, and 

then 70% ethanol overnight. Sections were de-waxed and rinsed in TBST, 

and then incubated in 100 pi of TBST + 5% FCS as a blocking agent for 1 h. 

After a further rinse in TBST, the sections were incubated for 2 h in 50 pi of 

TBST containing 1/100 dilutions of anti-HTSN and anti-HTP antisera. 

After three washes in TBST, the sections were incubated in 50 pi TBST 

containing a 1/100 dilution of fluorescein-conjugated anti-rabbit IgG 

(Sigma). After a final three washes in TBST, sections were examined by 

fluorescence microscopy using the appropriate filters.

2.44 Electron microscopy

This experiment was performed by Dr. Sommerville briefly as follows.

Band-excised proteins were mixed with (i) whole poly(A)+ mRNA and (ii) 

synthetic cyclin B1 tibcptcbe to reconstitute RNP particles. The 

reconstituted RNP was adsorbed onto carbon coated grids, rotary- 

shadowed by platinum-palladium and examined by electron microscopy.
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Figure 10 Conditions for protein:RNA binding. The first step is the 

destabilization of the pre-existing complex, and this was achieved using 

either 20 mM MgCl2, 8 M urea or heating to 80 OC. Complexes were 

reconstituted by adding riboprobe, diluting the MgCb or 8 M urea, or by 

cooling. Binding was measured using, for example: agarose gel 

retardation, filter retention, phenol extraction assays and SDS-PAGE.
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Chapter 3

Composition of Xenopus Oocyte 
mRNPs
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3.0 Aims

The aim of this study is to gain fresh information about the structure of the 

Xenopus oocyte "masked" mRNP; that is, the complex of mRNAs and 

associated proteins, which together store mRNAs for many months. The 

function of the mRNA-associated proteins is to package and store the 

mRNAs, as non-polysomal or "free" mRNPs, making them available for 

translation at the appropriate stage of development. The essential 

questions are, what are the mRNP proteins, what are their biochemical 

properties, and how do they work together? This chapter illustrates the 

experimental techniques that were used to isolate and fractionate the 

Xenopus oocyte mRNPs to investigate their composition. This study will 

take the approach of focussing on the most abundant mRNP proteins. 

Among these, the YB phosphoproteins pp60 and pp56 have so far been 

investigated in greatest detail: previous studies have shown them to be 

essential for mRNA masking (Kick et al., 1987; Ranjan et al, 1993; Braddock 

et al., 1994; Bouvet and Wolffe, 1994). An attempt will be made to identify 

some of the other abundant mRNP proteins.

3.1 Isolation of poly(A)+ mRNP by olig^dTkcellulose column

chromatography

This technique relies on the presence of poly(A) tails at the 3' end of most 

mRNAs. Two disadvantages are that mRNPs without poly(A) tails are not 

selected, and that some non-specific binding of proteins with a natural 

affinity for oligo(dT’) could conceivably occur. Homogenates of oocyte 

extracts were centrifuged at 10,000 g for 10 min to remove insoluble 

material. The supernatant obtained (SNIO) was loaded onto an oligo(dT)- 

cellulose column in a loading buffer containing 300 mM KCl, which 

favours the hybridization of poly(A) tails to the oligo(dT) resin. In these
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conditions the mRNP remains bound, and the unbound material, 

including ribosomes, 42S and 7S RNP particles and most cellular proteins, 

is washed through. Fig. 11 is an example of an oligo(dT) mRNP isolation, 

and is illustrated by monitoring the absorbance of the column effluent at a 

wavelength of 254 nm. The absorbance is proportional to the RNA content, 

such that 1 OD/cm = 40 (tg RNA/ml. The sample was recycled through 

the column three times to ensure the column's maximal saturation. Next, 

the flow through, or unbound fraction, was collected as the "A-'' fraction. 

Once the A“ fraction was collected, the absorbance was washed to baseline 

with binding buffer, after which the mRNP was eluted in 2 ml of dH20 at 

30-40 °C, or alternatively in 60% formamide, conditions which disassociate 

the poly(A) tail from the oligo(dT) resin. The eluting poly (A) + mRNP 

generated a new peak on the trace. If the average OD in the poly(A)+ peak 

in Fig. 11 is taken as 0.5 OD, and the optical path length in the flow cell is 

0.3 cm, -66 pg RNA/ml is estimated to be present in the poly(A)+ eluate. 

Assuming a protein to RNA ratio of 4:1 in the mRNP (Sommerville 1990), 

this corresponds to a protein concentration of -264 pg/ml in the poly(A)+ 

fraction.

The eluted mRNP was analyzed for protein composition on SDS-PAGE. 

Fig. 12 illustrates the complex array of mRNP proteins. The most 

abundant "mRNP proteins were described by Darnborough and Ford 

(1981) and labelled mRNPl to mRNP8, but here will be referred to by their 

estimated molecular weights. In Fig. 12A, the mRNP proteins are

illustrated) and include a protein band around 52 kDa (mRNPl, to be
1
referred to as p52), a highly abundant band of 54 kDa (mRNP2, to be 

referred to as p54), as well as the phosphoproteins pp56 (mRNP3) and 

pp60 (mRNP4 or FRGY2) now identified as YB proteins (Deschamps et al., 

1992; Murray et al., 1992). However, other abundant proteins are apparent
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Figure 11 Elution of poly(A)+ mRNP from an oligo(dT) resin. The 

elution of mRNP was measured via OD readings at A254. An oocyte extract 

(SN1O) was loaded (load) and recycled three times through the column, 

after which the unbound material was collected (A’ end) while the OD 

dropped back to the baseline. Warm dH20 was added to elute the 

poly(A)+ mRNP, producing a peak OD reading of 1. Poly(A)+ mRNP was 

eluted in a total volume of 2 ml dH20 (A+ end). The estimated 

concentrations in the eluted poly(A)+ mRNP are: -66 pg/ml mRNA and 

-264 pg/ml protein.
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around 70 and 68 kDa, which may include the poly(A)-binding protein 

PABP (Marello et al., 1992) as well as proteins of 40 and 25 kDa, and a 

group of proteins in the 100 to 200 kDa range. At this stage, except for the 

YB proteins and possibly the PABP, the identity and function of the other

abundant proteins was unknown.

3.2 Further separation methods

Having obtained oocyte poly(A)+ mRNP from an oligo(dT)-cellulose 

column, a procedure which in principle can be applied to any tissue 

extract, further purification strategies were considered. A useful 

technique, which will be used widely in later sections, is "heat-treatment” 

(HT). It relies on the thermostability of the YB proteins reported by 

Deschamps et al. (1991), who noted that the YB proteins remain soluble 

after an 80 ‘C treatment, whereas almost all the rest of the mRNP proteins 

precipitate. The procedure generates two crude fractions: the HTSN (heat- 

treatment supernatant) and the HTP (pellet) fractions, the former 

containing the YB proteins, and the latter the abundant p54/p52. These 

fractions are illustrated in Fig. 12B. Another strategy is "band excision" 

whereby specific protein bands, reversibly stained with a copper stain, can 

be cut out of an SDS-PAGE gel as accurately as possible, dehydrated, 

macerated and extracted by adding back dH2O (see Fig. 12C).

A further separation method was developed following the report by 

Kolluri et al. (1992) that the human YB protein NSEP-1, expressed in E.coU, 

could be eluted from a heparin-Sepharose column using 1 M KCl. The 

Xenopus oocyte YB proteins were tested in a similar way using in vitro 

reconstituted RNP. The in vitro reconstituted RNP was prepared by heat- 

treatment, adding a riboprobe to native poly(A)+ mRNP. Upon cooling, 

the YB proteins bound to the radioactive riboprobe as well as to the native
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Figure 12 Protein composition of poly(A)+ mRNP. Proteins separated 

by SDS-PAGE were stained with Coomassie blue. (A) 40 pi (containing 

approximately 12 pg) of poly(A)+ mRNP is aligned with high molecular 

weight markers (M) (Sigma). Molecular sizes are indicated in kDa. (B) 

After 80 °C heat-treatment, the YB proteins pp60 and pp56 as well as some 

less abundant proteins of 96 and 100 kDa remained in the supernatant 

(SN), while the other mRNP proteins precipitated into a pellet (P). (C) The 

abundant mRNP proteins pp60, pp56 and p54 were band-purified by 

manual excision from an SDS-PAGE gel.
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mRNA present in the mRNP. Because other mRNP proteins such as p54 

were spun out in the pellet, the reconstituted RNP contained almost 

exclusively YB protein. This reconstituted RNP did not bind significantly 

to the heparin column (Fig. 13A). In agreement with this observation, 

previous trials with untreated native mRNP also suggested that the mRNP 

particles do not bind to the resin without any deraturation step (not 

shown). The elution of proteins was monitored by analyzing fractions on 

SDS-PAGE, and the fate of the RNA riboprobe in the reconstituted RNP 

was monitored by scintillation counting.

Because the reconstituted RNP did not bind to the heparin resin, it was 

deemed necessary to heat the reconstituted RNP to 80 °C in the presence of 

the resin. This resulted in the RNP becoming bound. Some of the 

riboprobe eluted in the flow-through (FT), but most eluted in 8 M urea 

(Fig. 13A). Similarly, the riboprobe could be eluted in 5 mM MgClz, while 

the proteins remained bound to the resin. MgCl2 was chosen to elute 

riboprobe because in a previous study (Marello et al., 1992), it had been 

reported to be a useful mRNP destabilizing agent. (The MgCl2 elution 

effect will gain significance in chapter 4). In contrast, the heparin-bound 

YB proteins which were not removed by urea or MgCl2, were instead 

eluted in 1 M NaCl (Fig. 13B), as was predicted from Kolluri et a. (1992). A 

possible interpretation is that the YB proteins bind to the poly-anionic 

heparin through ionic interactions due to the basic arginine-rich clusters in 

the tail domain. This ionic association is presumably reversed by 1 M NaCl 

or 1M KCl but not by 8 M urea.

Because the YB proteins were loaded onto the heparin column via heat- 

treatment, the method involves an RNP sample which is already almost 

purified YB protein. However if RNA can be eluted by MgCl2 or urea, this
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Figure 13 Elution of RNA and YB proteins from Heparin-Sepharose.

(A) Riboprobe-protein complexes applied to the column eluted in the 

flow-through (FT) fraction. (B) Riboprobe-protein complexes formed after 

heat-treatment in the presence of heparin-Sepharose bound to the resin, 

the riboprobe being eluted with 8 M urea, the YB proteins being eluted 

with 1 M NaCl. (C) Proteins in the eluted fractions were detected by SDS- 

PAGE (Coomassie stain). Riboprobe was eluted with 5 mM MgCh in 

fractions 5 and 6 as an alternative to 8 M urea; YB proteins were eluted 

with 1 M NaCl in fraction 9. Total protein preparation prior to 

chromatography is also shown (T).
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method could be used as a means of separating YB proteins from the RNA 

to which they bind avidly. In subsequent experiments, the eluted YB 

proteins gave the impression that they tended to aggregate once the NaCl 

was diluted out. It seems likely that when RNA is not bound, the YB 

proteins aggregate by default via their charged tail domains. These 

observations are reminiscent of those of Lukanidin et al. (1972), who 

reported having to keep their mRNP in 2 M NaCl in order to maintain 

solubility. In summary, by combining oligo(dT) extractions with heat- 

treatment and heparin-Sepharose columns, YB proteins are greatly 

enriched. In principle, the method could applied to any tissue extract, and 

could be useful in a somatic tissue sample where the YB proteins are 

considerably rarer than in the Xenopus oocytes.

3.3 Electron microscopy of mRNP

The structure of reconstituted mRNP was examined using electron 

microscopy. Band-excised pp60 was combined with a heterogenous 

mixture of mRNAs extracted from native mRNP, as well as a riboprobe of 

defined length. The results are shown in Fig. 14. In panel A, the complexes 

are seen to have different sizes and shapes, due to the variable lengths of 

the native mRNAs. In panel B, in contrast, the mRNP was reconstituted 

with a synthetic cyclin BI riboprobe. The three [pp60/cyclin BI] RNPs 

shown at a higher magnification in panel C suggest a degree of structural 

similarity, the length of the particles approximately 0.3 pm. This size is 

within the range of sizes of formaldehyde-fixed nuclear RNP particles 

described by Lukanidin et al. (1972). It may be suggested that the YB 

proteins are able to cover the RNA throughout its length, giving a beaded 

appearance, and that the shape of the RNP is determined by the secondary 

structure of the cyclin BI RNA sequence.



106

0.5jjm B

Figure 14 Electron microscopy of reconstituted riboprobe-pp60 

complexes. (A) Band-purified pp60 was mixed with total oocyte mRNA, 

generating mRNP particles of different size. (B) pp60 was combined with 

in vitro synthesized cyclin BI mRNA, forming particles of uniform 

structure, which are indicated by three arrows. (C) The three particles 

from (B) are enlarged, emphasizing structural similarities. The electron 

microscopy was done by Dr. J. Sommerville with the help of John Mackie.
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3.4 Preparation of polyclonal antisera

Polyclonal antisera are a useful tool with which to attempt a number of 

experiments, such as Western blots and immunoscreening of cDNA 

expression libraries. To this end, two rabbits were injected respectively 

with the poly(A)+ mRNP HTSN and HTP fractions generated by heat- 

treatment (Fig. 12B). The HTSN was expected to give rise to an antiserum 

which recognizes the the YB and any other heat-stable proteins, whereas 

the HTP fraction was expected to give rise to an antiserum which 

recognizes the remainder of the mRNP proteins.

Fig. 15 shows the reciprocal nature of the staining patterns obtained from 

anti-HTSN and anti-HTP. Whereas anti-HTP recognizes p54 and p52 but 

not the YB proteins pp56/pp60, anti-HTSN does not recognize p54 and 

p52, but prefers pp56/pp60 as well as two heat-stable proteins of 96 and 

100 kDa. These two antisera defined two distinct fractions derived from 

Xenopus oocyte mRNP. In general, the antisera were diluted 1/1000 or 

1/2000 for use on Western blots, and the secondary antibody was diluted 

1/3000. Moreover, it was later found that blocking the Western blots in 

10% fat-free skimmed milk dissolved in TBS, at least overnight if not 

longer, reduced the amount of background signal on the filters. At first, 

bound antibodies were detected with i25I-Protein A, but subsequently a 

horseradish peroxidase ELISA assay was preferred which uses DAB 

(diaminobenzidine) and hydrogen peroxide to generate a brown colour on 

the Western blots. It proved more satisfactory, producing sharper bands, 

and became the method of choice.

Further information about the proteins recognized by anti-HTSN can be 

seen in Fig. 16, in which the native HTSN proteins are compared to the • 

same proteins treated with calf intestinal phosphatase. Although
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Figure 15 Immunoblot of poly(A)+ mRNP with the antisera anti-HTSN 

and anti-HTP. Tracks 1: 40 pi poly(A)+ mRNP; 2: 20 pi poly(A)" fraction; 3: 

40 pi poly(A)+ HTSN (heat-treatment supernatant); 4; HTP (heat-treatment 

pellet) fraction generated from 40 pi of poly(A)+ mRNP. Protein transfers 

were immunoblotted with 1/2000 dilutions of antisera. Bound IgG was 

detected with ^5I%)iiinatt?d Protein A.
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Figure 16 Immunoblot of poly(A)+ mRNP using a horseradish- 

peroxidase detection system. (A) mRNP proteins were stained with 

Coomassie blue, including high molecular weight markers (M) and total 

poly(A)+ mRNP (A+). The YB phosphoproteins pp60, pp56, and the 

unidentified p54 and p52 are indicated (arrows). (B) Anti-HTSN 

immunoblot comparing poly(A)+ mRNP to poly(A)+ mRNP heat- 

treatment supernatant (SN). (C) Anti-HTSN immunoblot comparing 

poly(A)+ mRNP, HTSN and HTSN treated with calf intestinal 

phosphatase (Ph). The clearer signal in (C) compared to (B) is due to better 

filter blocking. (D) Anti-HTP immunoblot of poly(A)+ mRNP and HTSN. 

Both antisera were diluted 1/2000.
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the protein bands are slightly sloped, suggesting a gel running artefact, 

mobility differences are apparent. This is clearer in the case of the 100 kDa 

protein, which appears to lose about 4 kDa upon dephosphorylation and 

will be hence be described as pplOO (phosphoprotein of 100 kDa). The YB 

proteins pp56 and pp60 are known from previous studies to be 

phosphoproteins (Cummings and Sommerville, 1988; Cummings et a/., 

1989), however a mobility shift is less obvious in their case.

3.5 of proteins from different stages of development

Before this project, antisera had been generated in this lab against band- 

purified mRNP proteins. This approach yielded a number of antisera, 

including anti-pp60 and anti-p54, which were used in Western blots and 

with sectioned ovary. The anti-p54 antiserum was made use of in an 

honour's project (Robert Sykes, 1992), suggesting that p54 is present in the 

cytoplasms as well as in localized foci within the nuclei of tadpole-derived 

XTC cells. The same anti-p54 has been used to immunostain chromatin 

(Sommerville et al., 1993); furthermore, anti-p54 has detected a cross­

reactive protein in mRNP extracts from the alga Fucus serratus 

(Hetherington et al., 1990). With these observations in mind, the new 

antisera were used to gain further information about the distribution of 

the mRNP proteins.

Oocytes and embryos from various stages of development were collected 

to determine the abundance of the main mRNP proteins through early 

development. Fig. 17 shows immunoblots of extracts from various 

developmental stages. The immunoblot combined both anti-HTSN and 

anti-HTP antisera to cover the full extent of abundant mRNP proteins. 

Note that in this particular immunoblot, the YB protein pp56 appears as a 

doublet. A pp56 doublet has been observed on various occasions in
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Figure 17 Immunoblot of total extracts from various developmental 

stages. Each track contains an SNIO from six oocytes or embryos. A 

combination of anti-HTP and anti-HTSN was used, both diluted 1/2000. 

Stages are indicated according to Dumont (1972): A+: 40 pi poly(A)+ 

mRNP from previtellogenic ovary: I-V: oocyte stages; 3: 8-cell cleavage 

stage; 8: blastula; 1V: gastrula; 20: late neurula; 27: tailbud and 40: tadpole 

stages. Note the rapid decline of the major oocyte mRNP proteins between 

early cleavage and blastula.
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material isolated from individual animals. Because both proteins in the 56 

kDa doublet are heat-stable (not shown), it is presumed that they are both 

YB proteins, and that the presence of a pp56 doublet reflects the presence 

of different pp56 alleles in these individuals.

The main observations stemming from the stages immunoblot were that 

the abundant proteins pp60, pp56, p54 and p52 are all present throughout 

oogenesis, but that there is a dramatic decline of these major mRNP 

proteins after early cleavage stages and by blastula they have almost 

disappeared, except for the persistence of some p54. It is during the so- 

called mid-blastula transition (MBT) that zygotic gene transcription takes 

over, after the store of maternal mRNAs has been utilized. At that stage 

the oocyte mRNA "masking" proteins are no longer required. Their 

presence may even be deleterious in a context where efficient mRNA 

translation is required in the rapidly developing embryo. Given the 

picture in Fig. 17, it is possible that there is an active degradation pathway 

in which the mRNP proteins disappear in a matter of hours after 

fertilization, having been present in the oocyte for many months.

Stage I oocyte cross-sections were also tested with anti-HTSN and anti- 

HTP (Fig. 18). Whereas anti-HTSN gave a strong cytoplasmic as well as a 

weaker nuclear signal, anti-HTP gave an overwhelmingly cytoplasmic 

signal. The anti-HTP picture contrasts with the results obtained when the 

older anti-p54 antiserum was tested on XTC cells giving a nuclear stain 

(Robert Sykes, honour's project 1992), and with its staining of chromatin 

(Sommerville et al., 1993). Either p54 is more obviously cytoplasmic in 

oocytes, the picture being different in other cell types such as XTC cells, or 

anti-p54 and anti-HTP do not recognize the same proteins. Later evidence 

will suggest that the abundant band of 54 kDa in oocyte mRNP comprises
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Figure 18 Immunostaining of stage I oocyte cross-sections. Anti-HTSN 

and anti-HTP immunostaining of stage I oocyte cross-sections, including 

their respective SDS-PAGE Western blots on the left for reference. The GV 

(germinal vesicles, or nuclei) are prominent. The sections were treated 

with a 1/1000 dilution of primary antisera, stained with a fluorescein- 

conjugated secondary antibody, and observed through microscopy. The 

immunostaining and microscopy were performed by Dr. J. Sommerville.
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at least two or more proteins which cannot be separated efficiently by one­

dimensional SDS-PAGE.

Finally, a cross-species immunoblot was attempted using oocyte extracts 

from two other amphibian species, Notophthalmus viridescens and Necturus 

maculosus. Crude oocyte extracts were heat-treated to generate HTSN and 

immunoblotted with anti-HTSN (Fig. 19). A candidate YB protein(s) of the 

appropriate size was detected in Necturus but not Notophthalmus. Given 

the higher C-value (genomic mass) of, for example, Necturus compared to 

Xenopus, and consequently its more prominent lampbrush chromosomes, 

anti-HTSN could be used to stain Necturus oocyte chromatin. The aim of 

such a study would be to investigate the distribution of YB proteins in 

promoter regions and at the same time their incorporation into nascent 

RNP.

3.6 Fractionation of pooyCA^ mRNP by denssty centeitugaCion ■

Within the oocyte poly(A)+ mRNP population, mRNAs with different 

translational fates exist. For example, nucleolin mRNA is translatable in 

previtellogenic oocytes, whereas c-mos mRNA is fully masked. If 

differences in translational fate are determined by the abundant mRNP 

proteins, then different mRNP classes could be purified which may be 

seen to have radically different protein compositions. Purifying specific 

mRNPs out of a complex mixture is not an easy task. On the other hand, it 

is possible to use simple techniques to fractionate mRNPs. Fractionation 

methods that use glycerol or sucrose gradients sort materials according to 

size, for example separating polysomes from free mRNP. Earlier 

unpublished data from this lab suggested that the major mRNP proteins 

pp60, pp56, p54, p52 and p40 go "hand-in-hand" over a range of particle 

sizes, broadly sedimenting between 40S-100S.
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Figure 19 Anti-HTSN immunoblot detecting heat-stable proteins in 

oocyte extracts from other amphibian species. Tracks 1 2, and 3: material 

derived from Xenopus oocytes. Track 1: 40 |il poly(A)+ mRNP HTSN: YB 

proteins are indicated (pp60 and pp56); 2: 40 |il of whole poly(A)+ mRNP; 

3: 20 |il poly(A)“ fraction in which there is significant residual YB protein; 

4: 40 |il HTSN from Notopthalmus viridescens total oocyte SN1O; 5: 40 pi 

HTSN from Necturus maculosus total oocyte SN1O. Anti-HTSN was diluted 

1/1000 and a cross-reactive protein band with a mobility similar to the 

Xenopus oocyte YB proteins is indicated in track 5 (arrow).
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A further separation method was attempted: density centrifugation. It 

exploits differences in densities between mRNPs. When separated on, for 

example, CS2SO4 gradients, pure protein has a density of 1.20 g/cm3 

whereas pure RNA has a density of 1.62 g/cm3, and any protein:RNA 

complexes have intermediate densities. In other words, mRNP will 

sediment according to the overall protein to RNA ratio. Because these 

gradients contain high salt concentrations, it is likely that some of the 

protein:RNA or protein:protein associations in the native particle could be 

disrupted. Given that YB proteins are stripped from a heparin resin using 

1 M NaCl, as described previously, it is possible that the YB dissociate 

from the mRNP in the CS2SO4 gradient. Consequently, the analysis 

included gradients of both fixed and unfixed mRNP.

The fixation method involved the use of either UV-crosslinking or 

formaldehyde. Both methods have advantages and disadvantages. 

Formaldehyde fixation forms permanent covalent bonds between proteins; 

therefore the proteins cannot be characterized on SDS-PAGE, but the 

mRNA can be extracted. On the other hand, UV crosslinking favours 

RNA:protein crosslinking, but used in high doses can result in 

protein:protein crosslinking (Setyono and Greenberg, 1981). After UV- 

crosslinking, the mRNAs are covalently bound to protein, but most of the 

RNA mass can be digested from the proteins by ribonuclease treatment. 

Therefore UV-crosslinking is to be preferred over formaldehyde fixation 

for SDS-PAGE analysis, but formaldehyde fixation is to be preferred for 

mRNA extraction...

Fresh poly(A)+ mRNP material was loaded onto preformed 5-50% CS2SO4 

gradients. After centrifugation at 36,000 rpm for 16 hours, equilibrium was 

reached. Protein samples were obtained by diluting the gradient fractions
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with 3 volumes of water, as described in Cardinali et al., (1993), with the 

further addition of 10 |ig of cytochrome C as carrier in order to enhance 

the size of the protein pellets and to colour them red. In addition, mRNA 

samples were obtained from gradient fractions by phenol extraction and 

ethanol precipitation, with the addition of 10 |ig of carrier tRNA also to 

enhance the size of the pellets. The mRNA from the density fractions was 

hybridized on slot-blots with antisense probes from a variety of oocyte 

mRNAs so as to compare their distribution across the gradient.

Two fractionations are shown in Fig. 20. In the native, unfixed mRNP 

fractionation shown in Fig. 20A, some but not all YB proteins have been 

stripped from the particles, forming a fairly wide distribution throughout 

a wide range of densities towards the top of the gradient. In particular, 

most of the pp56, rather than the pp60, appears to have been stripped from 

the native particle. This difference between pp56 and pp60 will be noted 

and discussed in chapter 4. Apart from the YB proteins, a significant.--, 
amount of p54/p52 exists in proteiniRNA fractions with an averagga )

density (p) of 1.44 g/cm3, which corresponds to a protein content of 45%. 

These unidentified proteins resist the severe ionic conditions in the 

gradient and remain in protein:RNA complexes.

A different result is obtained with the UV-crosslinked material. The YB 

protein bands are not clearly visible: it is likely that they have been 

crosslinked efficiently, but not recovered as discrete proteins after 

ribonuclease digestion. As is shown later (Chapter 4), protein-protein 

crosslinking becomes a problem after several minutes of UV irradiation. 

Protein-protein crosslinking would account for the immunoreaction 

appearing as a smear (Fig. 20B). In this gradient, the bulk of 

immunoreactivity was located in the density range of p=1.35-1.39 g/cm3, 

corresponding to an average protein content of 62%. These values are less

a/
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Figure 20 Analysis of protein composition of poly(A)+ mRNP 

fractionated on CS2SO4 density gradients. (A) Combined anti-HTSN 

and anti-HTP immunoblot of unfixed poly(A)+ mRNP, fractionated on 

a CS2SO4 gradient, then analysed by SDS-PAGE and immunoblotting. 

Total poly(A)+ mRNP markers are present in the first track (A+). The 

gradient runs from left to right in increasing density. Densities and 

corresponding % protein compositions are indicated. Arrows denote 

peaks of immunoreactivity. The position of pp60 is indicated by an 

oblique arrow. Anti-HTSN and anti-HTP antisera were diluted 1 /2^C^00. 

(B) A sirniiar gradient, using Wcrosslliticed poly(A)+ smRNP
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■ p=1.22 g/cm'3 (>95% protein) p-1.44 g/OTi'3 (~45% protein)

p=1.38 g/cm‘3 (~62% protein)
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than the 1.44 g/cm3 observed in the unfixed material in Fig. 20B. It is 

likely that the lower density value in the fixed material is due to 

maintaining the YB proteins in the particles thanks to UV-crosslinking.

Antisense RNA probes were hybridized to mRNA extracted from the 

density fractions, corresponding to the following list of Xenopus oocyte 

messages, which were divided into "translatable" (translating during 

oogenesis) and "masked" (translationally silent during oogenesis). The 

autoradiographs of the slot-blot hybridizations were prepared by Robert 

Little (Honour's thesis, 1994), and are not shown. All the probes were 

derived from cDNAs isolated in this lab, except for c-mos which was 

kindly provided by Dr. Sue Kingsman, Dept. Biochemistry, Oxford 

University.

Clone Encodes Translation

17.1 B4, an oocyte-specific 
histone Hl variant

Masked

c-mos A proto-oncogene translated 
in mature oocytes

Masked

N5 FRGYl, somatic YB protein, 
active in many proliferating 
tissues

Masked

M7 Ribosomal protein S27 Translatable

AB21 Putative oocyte mRNP . 
component

Translatable

AB12 Nucleolin, essential for 
ribosomal RNA synthesis

Translatable

All hybridized messages gave similar results in that they were found to be 

distributed in similar density fractions. In the native, unfixed mRNP
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sample, all the above mRNAs peaked at a density (p) of 1.42 g/cm3, and in 

the formaldehyde fixed mRNP sample they all peaked at 1.35 g/cnA 

These values correspond to those described in the immunoblots in Fig. 20: 

in the unfixed mRNP sample, the bulk of immunoreactive mRNP proteins, 

minus some dissociated YB protein, peaked at 1.44 g/cm3, and in the UV- 

crosslinked material the proteins peaked at 1.35-1.39 g/cmA

Taken together, the observations that the abundant mRNP proteins pp60, 

pp56, p54, p52 and p40 co-fractionate on glycerol gradients (LaRovere and 

Sommerville, unpublished), that abundant mRNP proteins peak in similar 

density fractions, and that messages with different translational fates peak 

in the same density fractions, tend to suggest that a uniform, core mRNP 

particle exists. This interpretation would agree with the notion that the YB 

proteins pp60 and pp56 are in a sense "RNA-histones" (Tafuri and Wolffe, 

1993b), and translational fate is determined by rarer message-specific 

proteins and signals. To this list of "RNA histones" we could now add the 

unidentified Xenopus mRNP proteins p54, p52 and p40.

However, the criteria of size and density alone might still not be sufficient 

to separate mRNPs with different "RNA histone" compositions, if their 

sizes and densitites are too similar to distinguish them. Pilot experiments 

were attempted whh immunoprecipitation, but were not succesful because 

of the tendency of mRNPs to aggregate oi^/incubation. In theory, if all

mRNPs contain pp60, pp56, p54 and p52, both anti-HTSN and anti-HTP 

might be expected to co-precipitate all of the proteins together, and all 

classes of mRNAs should be precipitated with both these antisera. 

Furthermore, immunoprecipitation has already been attempted by 

Crawford and Richter (1987), who used a monoclonal antibody raised 

against Xenopus oocyte pp56. They found that some but not all mRNAs 

were precipitated. Three different mRNAs were precipitated by anti-pp56
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and belonged to the "masked mRNA", or translationally repressed class. 

The eventual recruitment of the three bound mRNAs into polysomes 

coincided with a 22-fold decrease in the binding protein. Further 

experiments, including immunoprecipitation, will be required to clarify

this unresolved issue.

3.7 Phosphoiylation by an associated protein ldnase

It has been known for several years that the Xenopus oocyte poly(A)+ 

mRNP have an associated protein kinase activity. Simply by adding [y- 

32P]ATP to isolated mRNP in an appropriate buffer, the YB proteins are 

efficiently phospholabelled in vitro (Dearsly et al, 1985). Furthermore, 

incubation of ovary in the presence of 32P-phosphate leads to 

phosphorylation of the same proteins in vivo (Cummings and 

Sommerville, 1988). Phosphorylation of the YB proteins has been 

suggested to be essential for the formation of a masked mRNP (Kick et al, 

1987). The properties of the protein kinase acti'vity, such as as sensitivity to 

heparin, and the ability to use GTP as well as ATP as a phosphate donor, 

are consistent with its being of the casein kinase II type (La Rovere, 1990). 

Many questions remain to be answered, such as the precise cellular 

location of the kinase acti'vity, as well as the timing and the biochemical 

consequences of phosphorylation. Fig. 21A illustrates the mRNP- 

associated kinase activity. The YB proteins, along with other proteins, 

were clearly phospholabelled in the poly(A)+ fraction. In contrast, the A” 

fraction, which contains significant amounts of YB protein, was not 

phospholsbelled. This may be due to the presence of kinase inhibitors, or 

of competing phosphatase activities in the A“ fraction.
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Figure 21 Detection of a protein kinase activity in the poly(A)+ mRNP. 

(A) Phospholabelling: ~1 pCi [y-32P]ATP was added to 40 pl poly(A)+ 

mRNP (track 1) and 20 pi of the poly(A)~ fraction (track 2). (B) An 

immunoblot obtained with antisera directed against chicken casein kinase 

II a, a' and p subunits, each diluted 1/1000. Track 1: 40 pi poly(A)+ mRNP 

from very early previtellogenic ovary; 2; 40 pi poly(A)+ mRNP from 

previtellogenic ovary and 3: 20 pi of the poly(A)~ fraction.



124

Antisera raised against chicken casein kinase subunits a, a' and P were 

kindly provided by Dr. Erich Nigg, Swiss Institute for Experimental 

Cancer Research (Krek et al, 1992). Although the use of anti-chicken casein 

kinase antisera is not ideal (anti-Xenopus antisera would be preferred), a 

strong conservation across species is apparent between cloned casein 

kinases, including casein kinase II subunits which have been cloned from 

Xenopus ovary (Jedlicki et al., 1992). The a and a' subunits are closely 

related in sequence are responsible for the catalytic activity. Fig. 21B is an 

immunoblot of total poly(A"+ mRNP, in which a combination of the three 

antisera was used. Although there was considerable background, to the 

extent that the YB proteins were visible, faint bands of 40 and 25 kDa are 

discernible. These sizes are close the sizes reported by Jedhcki et al. (1992: 

41.5 kDa for the Xenopus ovarian casein kinase II a subunit, and 25 kDa for 

the P subunit). Moreover, in a later section, an 3^3j_iojdr^a^ti(^:n experiment 

will show that a 40 kDa mRNP protein is strongly labelled at tyrosines.

The Xenopus casein kinase a subunit described in Jedlicki et al. (1992) has 

23 tyrosine residues out of a total of 350 amino-acids, which is a relatively 

high tyrosine content.

The poly(A)+ mRNP analyzed in these studies is derived from a whole 

oocyte SN1O, of which the bulk is cytoplasmic. However, a subset of the 

poly(A)+ mRNP includes pre-cytoplasmic mRNP, containing certain 

nuclear proteins, some of which may be lost once the particle is 

transported into the cytoplasm. This could apply to the kinase . That the 

association of the kinase with mRNP is nuclear is implied by the studies of 

Braddock et al. (1994), in which it is shown that the micro-injection of anti­

casein kinase II IgG into germinal vesicles (oocyte nuclei) inhibits mRNA 

masking. Germinal vesicles were isolated from different oocyte stages, in 

order to determine the cellular location of the kinase activity. Fig. 22B
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Figure 22 Comparison of the protein kinase activity present in GVs 

and poly(A)+ mRNP. (A) Immunoblot, using anti-HTSN diluted 1/2000 

and (B) autoradiograph of the same blot, showing the phssphslsbelled 

bands. Each sample was given ~1 pCi [y-32P]ATP. Track 1: 40 GVs, stored 

in Barth's medium, frozen at -20 °C and thawed for use; all subsequent 

tracks contain GV material which was not frozen; 2:10 GVs + 2 mM 

spermine; 3: 10 GVs + 1 pg/ml heparin; 4: 20 GVs, no addition; 5: 30 pi 

(approximately 9 pg of poly(A)+ mRNP); 6: 30 pi poly(A)+ mRNP + 2 mM 

spermine; 7: 30 pi poly(A)+ mRNP + 1 pg/ml heparin; 8: 30 pi poly(A)+ 

mRNP + 5 pg/ml quercetin. Heparin and quercetin are inhibitors of casein 

kinase II. GVs were obtained from oocyte stages II to III. In comparing 

tracks 2 and 4, note that the YB proteins are phospholabelled better when 

10 GVs were used with 2 mM spermine rather than 20 GVs without 

spermine. Spermine is an enhancer of casein kinase II activity.
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shows that the kinase activity is certainly nuclear. In the germinal vesicle 

fractions, it is apparent that more than one protein around 100 kDa is well 

labelled, and that the less abundant YB proteins are not as clearly labelled. 

Two prominent bands of 96 and 100 kDa appear on the immunoblot of the 

same transfer (Fig. 22A), particularly in the GV samples but also in the 

poly(A)+ mRNP samples. In contrast, in the poly(A)+ mRNP fractions, the 

YB proteins are phospholabelled best, and are the most prominent on the 

immunoblot. The kinase activity was enhanced by the addition of 

spermine, and inhibited by heparin. These are respectively casein kinase II 

activators and inhibitors. When additional YB protein substrate was added 

to isolated GVs, which contain only a small amount of YB proteins, they 

were efficiently phosphorylated (Fig. 23A). Likewise casein, which is by 

definition a good substrate for casein kinase II, was also phospholabelled 

in the GVs. The kinase activity is not apparent in cytoplasmic extracts from 

oocyte stages III and IV (Fig. 23B). In agreement with Krek et al. (1992), 

who immunostained casein kinase II in nuclei of somatic chicken cells, 

casein kinase II activity is readily detected in the Xenopus oocyte GV 

(nuclei). Thus the kinase activity present in the poly(A)+ mRNP fractions 

could be derived from the fraction of mRNP which are pre-cytoplasmic.

In an attempt to purify the kinase activity, a fresh oocyte extract SNIO was 

applied to an oligo(dT) column, and the eluted poly(A)+ mRNP was 

loaded onto a heparin-Sepharose column, which binds casein kinase H.

The kinase activity was eluted from the heparin-Sepharose column with 1 

M NaCl. The eluted fractions were tested for kinase activity by ■ adding [y- 

32P]ATP plus substrate protein. The fraction eluted in 1 M NaCl was the 

most active (Fig. 24A). A Coomassie stain or immunolot of the eluted 

fractions was not available, so it was not possible to confirm the isolation 

of putative casein kinase II subunits of the expected sizes, such as those in
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Figure 23 Comparison of protein kinase activity in GVs and 

cytoplasms. (A) Additional substrates were supplied to the GVs: track 1: 

10 stage III GVs + 5 pi of a poly(A)+ mRNP HTSN; 2:10 stage III GVs + 10 

pg casein. (B) The protein kinase activity was tested in cytoplasmic 

extracts: track 1:10 stage III GVs; 2:10 stage III cytoplasms; 3:10 stage V 

GVs; 4:10 stage V cytoplasms. Each sample in (A) and (B) received ~1 pCi 

of [y-^PjATP.
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Figure 24 Attempted purification of the protein kinase activity. (A) 

Column chromatography. The presence of protein kinase activity in each 

fraction was tested by adding -1 pCi [y-32P] ATP. Track 1: oligo-dT column 

effluent (unbound fraction); 2: 15% formamide elution; 3: 60% formamide 

elution; 4: a heparin-Sepharose column was loaded with material from 

track 3: column effluent; 5: 400 mM NaCl elution from the heparin column 

and 6:1 M NaCl elution. (B) The partially purified activity from the 1 M 

NaCl elution was tested with YB protein substrate. Track 1: 30 pi poly(A)+ 

mRNP HTSN + 5 pi kinase activity eluted in the 1 M NaCl fraction, mixed 

in 20 mM Tris.HCl, pH 7.5 and 2 mM MgCl], a buffer in which casein 

kinase II is active; 2: the mixture shown in track 1 was heat-treated to 

destroy the added kinase activity, and then 10 units of calf intestinal 

phosphatase were added; note that the YB proteins were

dephosphorylated, but the phosphatase itself was phospholabelled; 3: 

control: -1 pCi [y-32P]ATP was added to poly(A)+ mRNP HTSN without 

any added kinase activity.
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Fig. 21B. However, the activity eluted from the heparin column was tested 

by adding it to some mRNP HTSN. The HTSN has lost its associated 

kinase activity through heat-treatment, and as was shown previously, 

contains mostly YB proteins. When [y-32P] ATP was added to this fraction 

alone, no labelling occurred (Fig. 24B, track 3), but when some of the 

heparin column fraction containing protein kinase activity was added, the 

proteins were phospholabelled. This phospholabelling was subsequently 

lost after the addition of phosphatase (Fig. 24B, tracks 1 and 2).

Neither the immunoblot nor the purification procedure conclusively 

identified the expected protein bands. It is also possible that the mRNP- 

associated, casein kinase Il-like activity is provided by divergent, 

specialized form of casein kinase H whose protein subunits are of different 

sizes. However, the difficulty in visualizing the stained bands of a 

predicted size may be due to the kinase's association with mRNP only in 

the pre-cytoplasmic mRNP. In that case, only a small fraction of cellular 

poly(A)+ mRNP would include a detectable kinase activity, but not 

enough protein to be detected by these methods. According to the nuclear 

microinjection experiments by Braddock et al, (1994), a nuclear casein 

kinase II activity is associated with mRNP somewhere along the path from 

nascent RNA transcripts to fully processed mRNA. The kinase 

phosphorylates the YB proteins, and it is thought that their 

phosphorylation enhances and is indeed essential for mRNA masking 

(Braddock et at, 1994; Kick et al, 1987). Finally, the phosphoproteins pp96 

and pplOO observed in these experiments are apparent both in poly(A)+ 

mRNP (Fig. 22B) and poly(A)+ HTSN (Fig. 24B). At the same time, they 

appear to be more abundant in the GVs (Fig. 22). Their relevance to mRNP 

is not known. Casein kinase II is known to phosphorylate a wide spectrum 

of targets. After the completion of this project, nuclear phosphoproteins of
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the same size (100 and 96 kDa) were crosslinked to riboprobe in GV 

extracts and identified by immunoblotting as nucleolin. This was shown 

using a monoclonal antibody specific to nucleolin, kindly provided by 

Prof. Dr. Ulrich Scheer, University of Wurzburg. Whether or not nucleolin 

has a role in pre-mRNA processing or transport remains to be seen.

3.8 Summary

Xenopus oocyte mRNP was isolated using a well established technique 

which is based on the hybridization of polyadenylated mRNAs to 

oligo(dT) columns. The YB proteins can be purified further via the heat- 

treatment described by Deschamps et al, 1991, and in addition a method is 

described to purify YB proteins using a heparin-Sepharose affinity 

column. Electron microscopy has suggested that in in vitro reconstituted 

RNP, the YB protein pp60 forms a complex with RNA, and that the 

beaded shape of the mRNP is dependent on the length and structure of the 

mRNA. Two new antisera were generated using the heat-treatment 

fractions: anti-HTSN and anti-HTP, which could be used to study the 

abundant mRNP proteins. It was found that pp60, pp56, p54, p52 and p40 

are present throughout oogenesis, but decline rapidly after early cleavages 

and by the blastula stage they have mostly disappeared. This implies the 

existence of an active degradation mechanism, such that when the 

maternal mRNP are no longer required, they are quickly removed. The 

proteins recognized by anti-HTP proteins appeared to be mostly if not 

wholly cytoplasmic, whereas the proteins recognized by anti-HTSN 

appeared to be both cytoplasmic and nuclear on immunostaining of 

immature ovary sections. A putative YB protein homologue was detected 

in a heat-stable extract from Necturus oocytes. A fractionation of mRNP 

using density gradient centrifugation showed that the abundant mRNP 

proteins are part of an mRNP particle of a density of 1.35-1.39 g/cm3 on a
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CS2SO4 gradient, which corresponds to a protein content of 62%. Both 

translatable and translationally repressed mRNAs were present in the 

same density fractions, suggesting that mRNPs with different translational 

fates have a similar composition with respect to the abundant mRNP 

proteins. Further work including immunoprecipitation studies will be 

needed to clarify the issue of whether the proposed masking proteins pp56 

and pp60 are bound only to translationally repressed mRNAs. The density 

gradients draw attention to the unidentified mRNP proteins, in particular 

p54, p52 and p40, which are an integral part of the mRNP particle. Finally, 

a nuclear casein kinase Il-like activity was confirmed to be associated with 

the mRNP. It phosphorylates the YB proteins, as well as at least two other 

proteins of 96 and 100 kDa which were later identified as nucleolin.
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Chapter 4

Binding of Xenopus Oocyte mRNP 
Proteins to mRNA

iJ
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4.0 Aims

The precise nature of the RNA:protein interactions in the Xenopus 

oocyte mRNP particles is not fully understood. This information is 

necessary to understand the processes of formation, maintenance, and

eventual disassembly of the mRNP particles. The preceding chapter 

suggested that the mRNP particle is composed of a complex set of 

proteins, some of which make stable contacts with mRNA. Among 

these, the YB proteins will be considered in greater detail, because 

previous studies have suggested that they are essential for mRNA 

masking (Kick et al., 1987; Ranjan et al, 1993; Braddock et al., 1994; 

Bouvet and Wolffe, 1994). Their structure includes at least two 

potential RNA-binding domains: the cold-shock domain (CSD) and the 

arginine-rich basic/aromatic islands in the tail domain (TD).

4.1 Riboprobe binds to mRNP proteins on Western transfers

A simple procedure for testing the ability of different mRNP proteins 

to bind RNA is to separate them on SDS-PAGE, transfer them to 

nitrocellulose and then incubate them with riboprobe in a suitable 

binding buffer. This procedure is referred to as "riboblot". The first 

riboblot shows riboprobe binding to poly(A)+ mRNP and to poly(A)~ 

fractions, and suggests that by modifying the salt concentrations or by 

adding various competitors to the binding buffers, the RNA-binding 

profile obtained can be affected radically (Fig. 25). After washing the 

Western transfer in 50 mM NaCl, the riboprobe remained bound to 

most of the protein bands, whereas a 2 M NaCl wash reduced binding 

to the extent that the YB proteins lost the bound riboprobe. A 

compromise 500 mM NaCl wash reduced background significantly but
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Figure 25 Binding of riboprobe to Western transfers. This assay can 

also be referred to as "Northwestern" or simply "riboblot". The 

standard binding buffer was (10 mM Tris.HCl pH7.5; 2 mM MgC^; 50 

mM NaCl; 0.05% Tween-20), abbreviated TMNT. The riboprobe was 

added at room temperature and left to bind for thirty minutes before 

washing the filter. Each separate strip (1-6) contains 40 pl (-T2 pg) 

poly(A)+ mRNP (left) and 20 pi of the poly(A)~ fraction (right). Strip 

1: low salt wash (50 mM NaCl); 2: high salt wash (500 mM NaCl); 3: 

very high salt wash (2 M NaCl); the next three strips were washed in 

500 mM NaCl. Strip 4: 5 pg/ml heparin added to the binding reaction; 

5: the strip was pre-incubated for 1 hour with a 1/2000 dilution of anti- 

HTSN before riboprobe binding; 6: after riboprobe binding, this strip 

was incubated with a mixture of 1 pg/ml RNase A and 1 unit/ml 

RNase Ti for thirty minutes. Two arrows indicate the YB proteins 

throughout. Indicated in addition are p48 and p43 in strip 3, and two 

proteins of 68 and 70 kDa in strip 4.
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did not prevent riboprobe binding to the YB proteins, and was chosen

as a standard procedure.

Apart form the YB proteins, many other proteins bind the riboprobe 

using this approach. For example, in the poly(A)~ fraction the 

riboprobe was bound to two abundant proteins: p48, an oocyte

homologue of the translation factor EFla (Mattaj et ah, 1987), and p43, 

a 5S RNA-binding protein similar to TFIIIA Qoho et ah, 1990). Heparin, 

a poly-anionic molecule, reduced riboprobe binding to the extent that 

binding to p48 and p43 was no longer apparent in the poly(A)” lane. 

Heparin also reduced binding to the YB proteins, whereas in contrast, 

binding to proteins of 68 and 70 kDa was unaffected. The addition of 

anti-HTSN (antiserum raised against the mRNP, heat-treatment 

supernatant) did not effectively prevent riboprobe binding to the YB 

proteins, suggesting that this particular antiserum does not wholly 

block the RNA-binding epitopes. RNase A and RNase Ti, which were 

added to the washing solution, removed most of the signal. This 

suggests that the protein-bound riboprobe is accessible to the enzymes 

in solution.

Another riboblot is shown in Fig. 26, in which the YB proteins are seen 

more clearly. There was a distinctly stronger binding to pp60 than to 

pp56. This difference, observed on a number of occasions, was not due 

to differences in protein concentration. In panel B, previously bound 

riboprobe was stripped off using 8 M urea; however, a small 

proportion (<10 %) of the previously bound riboprobe activity could 

not be removed by this means. Therefore in general, it is not advisable 

to recycle Western blots for a second binding assay. Nevertheless, new 

riboprobe was added in the presence of excess cold poly(C,U), which
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Figure 26 Further binding of riboprobe to Western transfers. (A) 

Cyclin B1 sense strand riboprobe was bound to transferred proteins in 

TMNT buffer, and the Western transfer washed in TMNT + 500 mM 

NaCl. (B) Bound riboprobe was removed from the same Western 

transfer using 8 M urea, and re-probed with the same cyclin B1 

riboprobe in TMNT buffer with the addition of 10 pg of poly(C,U) 

competitor. Track 1: 40 pi (~12 pg) poly(A)+ mRNP; 2: 40 pi poly(A)+ 

mRNP HTSN ; 3: poly(A)“ fraction; 4: 20 pi poly(A)" fraction HTSN; 

5: 20 pi band-purified p54.
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had been reported to be an efficient binding competitor (Marello et al, 

1992). When the relative binding to YB proteins and the p48/p43 

markers in tracks A3 and B3 is compared, much more riboprobe has

bound to p48/p43 compared to pp60/pp56 in the presence of the

poly(C,U) competitor.

The riboblot technique has certain limitations. It involves denatured 

proteins which are separated on SDS-PAGE, transferred to 

nitrocellulose and washed in 8 M urea before binding. It relies on the 

ability of the transferred proteins to renature correctly. This cannot be 

assumed to work for all RNA-binding proteins, but nonetheless may 

be suitable for some RNA-binding proteins, such as the YB proteins. In 

a later section, the technique will be adapted for screening a cDNA 

expression library to isolate RNA-binding proteins (section 5.1).

4.2 Anti-mRNP IgG caninterfere wiih riboprobe binding

In addition to blocking mRNA masking by injecting anti-casein kinase 

II IgG into germinal vesicles, the microinjection experiments of 

Braddock et al (1994) also used anti-pp60 and anti-p54 IgG to inhibit 

mRNA masking in vivo. An attempt was made to mimic these effects in 

vitro. Poly(A)+ mRNP was treated with 30 mM MgCh as described by 

Marello et al. (1992), in order to bind riboprobe: MgC^is thought to 

destabilize the mRNP, and when the MgCh is diluted to 3 mM, the 

mRNP are free to "reconstitute" with the rieoproee (section 2.41). 

Binding to riboprobe was measured with the filter retention assay (see 

section 2,42). Ribopooee binding was inhibited by treating the mRNP 

with increasing concentrations of anti-pp60 and anti-p54 IgG, both 

singly and in combination, before the reconstitution step. Two 

oibopooees of different sizes were used (Fig. 27).
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Riboprobe: B Riboprobe:
Cyclin B1 (1.4 kb) P-tubulin 3'end (0.34 kb)

—$— anti-p54

anti-pp60+
anti-p54

—A— Control IgG

Figure 27 Anti-mRNP IgGs interfere with RNA binding in vitro. 

Riboprobe binding was measured with a filter retention assay after 30 

mM MgCk treatment of poly(A)+ mRNP. IgG fractions were obtained 

by Dr. Sommervilie from anti-pp60 and anti-p54 polyclonal antisera by 

chromatography through DE-cellulose. Poly(A)+ mRNP was pre­

incubated with increasing amounts (0-5 pg) of IgGs prior to the 

addition of riboprobe and MgCl]. Binding values are expressed as a 

percentage of the binding obtained without added IgG. A control IgG 

was included in (B): goat anti-rabbit IgG. (A) The riboprobe was a 1.4 

kb cyclin B1 sense strand and (B) clone 16.2, a 0.34 kb p-tubulin 3' end 

fragment.
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In summary, the findings were as follows: both anti-pp60 and anti-p54 

interfered with RNA-binding, whereas a control IgG did not, Anti-p54 

was more effective than anti-pp60, and a combination of both 

antibodies reduced binding even further. Binding to the shorter 

riboprobe was more sensitive to the antibody interference, and the 

following explanation is proposed: since binding was measured using 

a filter retention assay, in which free RNA washes through the filter 

and proteiniRNA complexes are trapped, the binding of a single 

protein to a riboprobe molecule is sufficient to keep it in the bound 

fraction. With a longer riboprobe there was a greater chance that a 

single protein would bind.

It is presumed that these antibodies are able to interfere with RNA- 

binding by blocking RNA-binding epitopes in the mRNP proteins. 

Consequently, both the YB protein pp60, and the unidentified protein 

p54 would seem to have the ability to bind to RNA. The YB protein 

pp60 is known to bind to mRNA, as was confirmed in the electron 

micrographs presented earlier. However, the identity and function of 

p54 is not known. It might bind to the mRNA directly, or alternatively 

work together with YB proteins to facilitate the packaging of mRNA. 

The in vitro results were consistent with the nuclear microinjection 

results reported by Braddock et ah (1994).

4.3 UV-crosslinking mRNP proteins to mRNA

In this study, "UV-crosslinking" (or "photocrosllinkmg") refers to the 

formation of covalent bonds following exposure to UV irradiation. UV 

irradiation is used quite extensively as a technique for fixing molecular 

contacts between proteins and nucleic acids, UV-crosslinking is 

believed to be mainly but not exclusively due to the aromatic side
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chains of tyrosine and phenylalanine (Smith 1969). In UV-crosslinking 

studies, the general assumption is that only proteins that are 

specifically bound to nucleic acids can be crosslinked. For example, 

Setyono and Greenberg (1981) UV-crosslinked the poly(A) binding 

protein to RNA; Van Eekelen et al (1979) used high doses of UV light 

at 254 nm to compare the profile of hnRNA-bound proteins with that 

of mRNA-bound proteins, and in the Xenopus oocyte system,

Swiderski and Richter (1988) crosslinked proteins to maternal mRNA. 

The latter authors reported that many oocyte proteins were UV- 

crosslinked to maternal mRNA. Some proteins were bound to specific 

mRNAs, but other proteins of 60,56 and 40 kDa were suggested to be 

present on numerous if not all mRNAs. The 60 and 56 kDa proteins 

described by Swiderski and Richter (1988) correspond to the YB 

proteins pp60 and pp56.

The YB proteins possess highly conserved aromatic side-chains both in 

the CSD (for example, the following underlined residues are invariably 

present in p-strands 1 and 2: ...KWFNVRNGYGFINR...), and numerous 

phenylalanines and tyrosines interspersed with arginines are present 

in the basic/aromatic islands of the TD. That aromatic side chains can 

be crosslinked to RNA is confirmed by the findings of Merrill et al. 

(1988), who observed that four phenylalanines present in the hnRNA- 

binding protein hnRNPAl were the sites of covalent adduct formation 

when hnRNPAl was crosslinked to [32p]-oligo(dT).

UV-crosslinking was performed under similar conditions to those 

described in Marello et al (1992). Fig. 28 is a profile of native poly(A)+ 

mRNP which was UV-crosslinked, RNase digested and transferred to 

nitrocellulose for an immunoblot. Panel A was immunoblotted with 

anti-HTSN, and shows the generation of novel high molecular weight
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Figure 28 Immunoblots of UV-crosslinked native poly(A)+ mRNP. 

(A) Anti-HTSN was diluted 1/2000. Track 1: 20 pg poly(A)+ mRNP, no 

crosslinking; 2: the same, after 30 min UV-crosslinking; 3: material in 

track 2 was treated with RNase. (B) Anti-HTP was diluted 1/2000. 

Track 1: 20 pg poly(A)+ mRNP, no crosslinking; 2: the same, after 2 

minutes crosslinking; 3: material from track 2 was RNase treated; 4: 20 

pg poly(A)+ mRNP was UV-crosslinked for 30 minutes, and 5: 

material from track 4 was RNase treated. Arrows point to

immunoreactive bands generated by UV-crosslinking.
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complexes. These complexes were released by RNase treatment, 

suggesting that complex formation was achieved through multiple YB 

proteins crosslinking mRNA molecules. After RNase treatment, the 

released YB proteins in track A3 were distinctly blurred, an effect due 

to different lengths of residual UV-crosslinked mRNA. In panel B, the 

same UV-crosslinked mRNP material was immunoblotted with anti- 

HTP (antiserum raised against mRNP, heat-treatment pellet). After 

two minutes, there was evidence of complex formation (tracks B2 and 

B3), and a more extensive effect after 30 minutes (tracks B4+B5). In 

panel B, RNase treatment did not reverse the effects of UV- 

crosslinking, suggesting that the proteins recognized by anti-HTP are 

predominantly forming protein^^em crosslinks.

That the YB proteins can UV-crosslink efficiently to RNA is shown in 

Fig. 29, in which riboprobe was bound through heat-treatment, UV- 

crosslinked and digested with RNase. Both in the HTSN, which 

contains mostly YB proteins, and in the complex mixture of proteins 

represented in the poly(A)" fraction, the YB proteins were selectively 

UV-crosslinked and labelled. The radioactive labelling of the YB 

proteins is due to the short lengths of crosslinked riboprobe which are 

not wholly digested by RNase.

The ability of other, non-YB mRNP proteins to crosslink to riboprobe 

was considered briefly as follows. A poly(A)+ mRNP HTP fraction was 

chosen as starting material, the removal of YB proteins being necessary 

because of their efficient crosslinking to riboprobe. The HTP material 

was redissolved in a small volume of 8 M urea. Next, it was renatured 

by dialysing out the urea in the presence of riboprobe. The 

reconstituted material was UV-crosslinked, RNase digested and run on
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Figure 29 YB proteins present in complex mixtures can be UV- 

crosslinked to riboprobe. Autoradiograph of dried SDS-PAGE gel. 

(A) 40 pi of HTSN derived from 12 pg of poly(A)+ mRNP was UV- 

crosslinked to a 16.2 sense strand riboprobe. Track 1: UV-crosslinked 

HTSN; 2: the same, RNase treated. (B) 20 pi poly(A)“ fraction, 

containing a complex mixture of proteins, was UV-crosslinked to the 

same riboprobe; track 1: undigested and 2: RNase treated.
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SDS-PAGE. In Fig. 30, this experiment is shown as an immunoblot 

(panel A) and an autoradiograph (B) of the same transfer. The starting 

HTP material is shown in track 1: note that there is some residual YB 

protein. In tracks 2 and 3, the immunoblot suggests that there is very 

little protein: it has been lost somewhere in the procedure, and it is 

possible that protein:protein crosslinking produced insoluble 

aggregates which were lost during dialysis. However, the 

autoradiograph was not blank in tracks 2 and 3, where there is a 

considerable radioactive signal in the loading wells, some of which 

was digested into protein monomers by RNase (track 3). The region 

where the monomers appear in track 3 corresponds to the YB proteins 

(pp60 and pp56) which run close to the p54/p52 group in SDS-PAGE. 

In contrast, the addition of excess tRNA appeared to maintain proteins 

in a more soluble condition after crosslinking. Most of the p54/p52 

material was not crosslinked, and RNase treatment did not make much 

difference to the mobility of the bulk of the protein detected by anti- 

HTP; however, in track B5, RNase treatment released a labelled band. 

This labelled band was precisely aligned with p54, more specifically to 

the top region of the immunostained 54 kDa band. The result of this 

experiment was that at least another, non-YB protein of 54 kDa was 

UV-crosslinked to riboprobe, but only when excess tRNA maintained 

the material in a soluble condition. Therefore p54 can make close 

contacts with RNA at least in vitro, albeit after having been denatured. 

It is possible that this crosslinked 54 kDa protein may be the same 

protein recognized by the anti-p54 IgG, which together with the YB 

proteins participates in forming the masked mRNP particle (Braddock 

et al, 1994, and section 4.2).
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Figure 30 p54 can be UV-crosslinked to riboprobe in vitro. (A) 

Immunoblot using a 1/2000 dilution of anti-HTP and (B) 

autoradiograph of the same Western transfer. Track 1; Poly(A)+ 

mRNP HTP (pellet) fraction, derived from 12 pg poly(A)+ mRNP, 

raised in 40 pi of 8 M urea in HTB; 2: the same material was dialyzed 

into HTB without urea in the presence of -0.5 pg 16.2 sense riboprobe, 

then UV-crosslinked for 30 minutes; 3: material in track 2 was RNase 

treated; 4: the same as track 2, but in addition to the riboprobe, an 

excess of cold tRNA (20 pg) was included; 5: material in track 4 was 

RNase treated. The arrows point to a radio-labelled protein of 54 kDa 

which in (B) corresponds to the immunostained 54 kDa band in (A).
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4.4 RNA-bmding properttis of the YB pt^oteiiis.

In native mRNP, the YB proteins are bound to a wide range of mRNA 

sequences. To gain some further knowledge about the RNA-binding 

domains and specificities of the YB proteins, various binding 

competitors and different ionic environments were tested, with UV- 

crosslinking and heat treatment as methods of choice. Deschamps et al. 

(1991), who first described the heat treatment as a means of purifying 

the YB proteins, reported that after heat treatment of whole oocyte 

extracts, YB proteins were found associated with other cellular RNAs 

such as tRNA or rRNA to which they do not naturally bind in vivo. It is 

therefore conceivable that the higher levels of kinetic energy present at 

80 °C allow a dynamic exchange of RNA molecules, providing a 

suitable context in which to introduce competitors, while assuming 

that the structure and RNA-binding properties of the YB proteins are 

regained after cooling. In the following experiments, the standard YB 

protein material was derived from poly(A)+ mRNP HTSN. It contains 

YB proteins bound to a wide range of mRNA sequences present in the 

mRNP.

Fig. 31A illustrates data from a phenol extraction assay. This technique 

partitions protein:RNA complexes into the phenol phase whereas free 

RNA remains in the acqueous phase. The phenol extraction assay is 

not strictly quantitative in that only a single crosslinking event 

between a protein and an RNA molecule will be sufficient to bring the 

RNA into the phenol phase, and therefore the method does not 

distinguish between singly and multiply crosslinked complexes. 

According to the data presented in Fig. 31A, neither 500 mM NaCl, 4 

M urea, 3 mM MgCl2 nor 10 pg/ml heparin were sufficient to lower
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Figure 31 Effect of different agents on the UV-crosslinking of 

riboprobe to YB proteins. (A) The binding buffer (20 mM NaCl, 20 

mM Tris-HCl, pH7.5) was adjusted with the agents shown prior to the 

binding of proteins to RNA, UV-irradiation and phenol extraction. (B) 

Confirmation of crosslinking to pp60 and pp56. In this experiment, the 

buffer was adjusted with the agents shown after the binding reaction. 

Next, the complexes were UV-irradiated, digested with ribonuclease 

and analysed by SDS-PAGE/autoradiography. Note that in (A), a 

minimum of one crosslinking event per protein-riboprobe complex is 

sufficient to be recorded as maximum binding, whereas in (B), the 

intensity of labelling is proportional to the number of crosslinking
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crosslinking percentages; however the combinations (4 M urea + 10 

pg/ml heparin) and (3 mM MgCb + 10 pg/ml heparin) had a strong 

effect. The effects of the (MgCl2 + heparin) combination can be related 

to the conditions in the riboblot in Fig. 25, track 4, where the binding 

buffer contained 2 mM MgCl2 and 10 pg/ml heparin. Interestingly, a 

combination of 500 mM NaCl and 10 pg/ml heparin did not block 

binding, whereas a combination of 500 mM NaCl and 2 mM MgCl2 

partially blocked binding.

The visualization of RNA-binding on SDS-PAGE gives a more 

quantitative assessment of the amount of radioactivity UV-crosslinked 

to the proteins in these assays. The SDS-PAGE analysis of YB proteins 

crosslinked to riboprobe in Fig. 31B shows the effects of various 

competitors and ionic conditions corresponding to the histogram in 

Fig. 31A. However in the experiment shown in Fig. 31B, the 

competitors were added after heat-treatment, and therefore the results 

reflect the stability of the complexes formed. It is apparent that 2 M 

NaCl prevented binding, as was seen when with the riboblot washed 

with 2 M NaCl shown (Fig. 25, track 3). In contrast, 500 mM NaCl 

significantly reduced but did not totally eliminate UV-crosslinking 

values compared to the control, whereas in the phenol extraction 

assay, the value obtained for 500 mM NaCl was similar to the control 

value. Taken together, these observations suggest that 500 mM NaCl 

interferes with some but not all of the RNA-binding activity. In 

agreement with the phenol extraction assay, neither 4 M urea, 2 mM 

MgCl2, nor 10 pg heparin alone had an effect, but the combinations 

(urea + NaCl), (urea + heparin) and (MgCl2 + heparin) using the above 

concentrations were effective.
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At this point it may be suggested that at least two distinct RNA- 

binding activities exist, and that each is affected differently by 

competitors and ionic environments. One activity is affected by NaCl 

and heparin, and the other by MgCl2 and urea. In the phenol extraction 

assay, only combinations from both sets reduced crosslinking 

percentages, so that if only one of the RNA-binding activities was 

hindered, the other maintained the control values.

4.5 RNA-binding specificities and the effects of MgC^on the YB

proteins

Following the suggestion in Marello et ah (1992) that the YB proteins 

are competed effectively by some simple RNA sequences, notably 

poly(C,U) but not by poly(A) or poly(A,G), the next set of experiments 

considered RNA-binding specificities. In the first experiment, 

poly(C,U), poly(A,G) and poly(A) were used as competitors in various 

concentrations of MgCl2. Data from phenol extraction assays is 

presented in Fig. 32A. Whereas in in the absence of MgCl2 there was a 

clear preference for poly(A,G), and at 1 mM MgCl2 an equivalent 

binding, at 3 mM MgCh the situation was reversed: poly(C,U) 

competed but not poly(A,G) (or poly(G), not shown). Poly(A) did not 

compete, regardless of the presence or absence of MgCh. The 

competition by polypurines was unexpected given the findings in 

Marello et al. (1992). However, in Marello et al. (1992), the binding 

buffers always contained MgCl2 whenever a competition by poly(C,U) 

was observed. It would appear that changes in the concentration of 

MgCl2 in the range 1-3 mM alter binding specificity.

For a more direct demonstration that YB proteins can bind to both 

polypurines and polypyrimidines, ribopolymers were end-labelled and
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Figure 32 Effects of Mg2+ on the interaction of YB proteins with 

ribopolymers. (A) The Mg2+-induced switch in binding specificity. 

The YB protein-riboprobe interaction was challenged with 

poly(C,U), poly(A), or poly(A,G) in a 100-fold excess over 

riboprobe at the concentrations of MgCl2 shown, or in the presence 

of 1 mM EDTA. (B) Band-shift assay showing direct binding of 

radiolabelled ribopolymers. The poly(A,G) probe (tracks 1-4) and 

the poly(C,U) probe (tracks 6-8) were bound to YB proteins in the 

absence (tracks 2,3,4,6) and presence (tracks 1,6,7,8) of 3 mM 

MgCl2 and in the presence of 100-fold excess of unlabelled poly(A) 

(tracks 1,2,6,6), poly(A,G), (tracks 3,8) and poly(C,U) (tracks 4,7). 

The positions of unbound probe (P), protein-RNA complexes (C) 

and larger aggregates (arrow) are indicated. Confirmation that 

protein-RNA complexes have been formed is given by the relative 

crosslinking values obtained from the corresponding reactions.
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used as riboprobes. Because the ribopolymers were end-labelled, UV- 

crosslinking and RNase treatment followed by SDS-PAGE was not 

feasible. As an alternative, an agarose gel mobility shift assay was 

used. YB proteins and riboprobes were heat-treated in the usual 

manner, allowed to cool, and the complexes were analysed on 1% 

agarose gels. Results are shown in Fig. 32B. Binding to poly(A,G) was 

observed in the absence of MgCl2, and did not occur in the presence of 

MgCl2. In contrast, MgCb was necessary for binding to poly(C,U). The 

addition of self-competitors prevented binding, whereas the addition 

of cross-competitors enhanced binding in both cases. Moreover, it 

would appear that the binding of YB proteins to poly(C,U) in the 

presence of MgCl2, favoured by the concurrent presence of poly(A,G) 

sequences, involves the formation of higher molecular weight 

complexes. The significance of this latter observation is unclear. In 

parallel, UV-crosslinlkng/phenol extraction assays gave a numerical 

confirmation of the observed mobility shifts.

A further confirmation of these binding specificities is presented in the 

SDS-PAGE analysis in Fig. 33. In panel A, the polynucleotide 

poly(A,G) competed efficiently in the absence of MgCb whereas 

poly(C,U) competed best in the presence of MgCl2. In panel B, MgCl2 

was not used; here 5 pg of heparin was unable to prevent RNA- 

binding. In these binding reactions, 10 pg of competitors were added to 

approximately 15 pg of mRNP, the mRNP containing 12 pg of protein 

and 3 pg of native mRNA, as well as -0.1 pg of riboprobe. Therefore in 

a 100:1 excess of competitor over the riboprobe, only poly(G) competed 

in the absence of MgCl2. In summary, competition by poly(C,U), first 

described in Marello et ah (1992), appears to be MgC^-dependent, 

whereas competition by poly(A,G) and more specifically poly(G)
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Figure 33 Binding specificities are examined on SDS-PAGE. 12 pg 

poly(A)+ mRNP and 0.1 pg 16.2 sense strand riboprobe were used in 

each sample in HTB (10 mM Tris.HCl, pH 7.5,50 mM NaCl). 

Riboprobe-protein complexes were formed through a cycle of heat- 

treatment, then UV-crosslinked and RNase treated. (A) Track C: 

control (no addition); 1: 3 mM MgCb was added to the binding 

reaction; 2:10 pg poly(C,U) was added; 3:10 pg poly(A,G); 4: 3 mM 

MgCl] + 10 pg poly(C,U). (B) In a similar experiment, various 

competitors were tested in the absence of MgC^. Track C: control (no 

addition); 1: + 0.5 pg heparin; 2; + 5 pg heparin; 3: + 10 pg poly(C,U); 

4: + 10 pg poly(C); 5: + 10 pg poly(A); 6: + 10 pg poly(G); 7: + 10 pg 

tRNA.
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occurs in the absence of MgCh . Poly(A), however, never competed, 

either in the presence or absence of MgCl2 (see Fig.s 32 and 33). This

property may be significant in that in the native mRNP, the poly(A)

tail is bound by factors other than the YB proteins, such as the poly(A)

binding protein (PABP).

So far, the following hypothesis can be summarised: there appear to be 

two distinct types of RNA-binding acti'vity, as was suggested in section 

4.4. One RNA-binding activity is sensitive to 500 mM NaCl and 

heparin, the sensitivity to heparin being dependent on the presence of 

MgCl2. The other RNA-binding activity, which survives 500 mM NaCl, 

is sensitive to urea and MgCl2. The latter acti'vity may be responsible 

for binding to the polypurines poly(A,G) and poly(G) in the absence of 

MgCl2, whereas binding to the polypyrimidine poly(C,U) is dependent 

on MgCh, and involves the formation of large complexes. The two 

RNA-binding activities can at this point be tentatively ascribed to the 

CSD (sensitive to urea and MgCh) and the TD (sensitive to heparin 

and NaCl). The formation of large complexes when binding to 

poly(C,U) in the presence of MgCl2 is consistent with the proposed role 

of the TD in multimerization (Tafuri and Wolffe, 1992).

In support of these findings, a recent article has suggested that the 

protein unr, which consists of a five-fold repeat of the CSD without 

any associated TD, binds to RNA. Binding of unr to nucleic acids is 

sensitive to 1 mM MgCl2, and is competed efficiently by poly(G) 

(Jacquemin-Sablon et al, 1994). Secondly, the rabbit reticulocyte mRNP 

protein p50, now identified as a YB protein, was bound to RNA in vitro 

and was also competed most efficiently by poly(G) in a binding buffer 

which did not include MgCb (Minich et al., 1993). Thirdly, Murray
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(1994) also differentiates between CSD and TD binding acti’vities in the

Xenopus oocyte YB proteins, and suggests that they have distinct 

properties. Fourthly, both the TD and the CSD alone have been 

expressed in a Xenopus somatic cell line after cotransfection with a 

CAT-reporter construct (Ranjan et al., 1993), and both resulted in 

mRNA-masking of the CAT-reporter mRNA, implying that both these 

domains can bind independently to mRNA.

4.6 Ablation of the CSD binding activity

Results have hinted that two types of RNA-binding activities exist in 

the YB proteins. These can now be ascribed to (i) the CSD and (ii) the 

basic/aromatic islands in the TD. In order to uncouple the TD from the 

CSD activity, the CSD was cleaved with hydroxylamine (HA) in a 

reaction which cleaves asparagine-glycine (NG) bonds (Enfield et al, 

1980). There is only a single asparagine-glycine (NG) site in the oocyte 

YB proteins, located at the beginning of the second p-strand in the 

CSD, just before the RNP-1 like motif (NGYGFI). The p-barrel structure 

of the cold-shock domain, with its protruding aromatic and basic 

residues thought to interact with nucleic acids, is dependent on the 

integrity of all the five P-strands (see Fig. 3, secton 1.8). A deletion of 

the RNP-1 like motif in p-strand 2 of the human YB protein NSEP-1 

was shown to disrupt binding to ssDNA (KoUuri et al, 1992). Hence it 

is reasonable to suppose that cleavage at the NG site abolishes the 

RNA-binding activity of the CSD, and that HA-cleaved material only 

retains TD RNA-binding activity.

At first, the ability of HA-cleaved material to UV-crosslink to 

riboprobe was compared with native material using the phenol 

extraction assay (Fig. 34). Both the native and the HA-cleaved material
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Figure 34 Effects of disrupting the CSD on the ability of YB 

proteins to bind to riboprobe. Binding was tested in the presence of 

heparin, MgCh, poly(C,U) and poly(A,G). Intact YB proteins (Native) 

and YB proteins cleaved with hydroxylamine (HA) were UV- 

crosslinked to riboprobe in the indicated conditions. (A) Heparin- 

sensitive binding activity in the presence and absence of 3 mM MgCl2. 

(B) Mg2+-sensitive binding activity in the presence and absence of 

heparin (10 pg/ml). (C) TD binding specificity of the HA-cleaved YB 

proteins is influenced by MgC^.
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exhibited a similar MgCh-dependent heparin inhibition (Fig. 34A). 

Heparin was used previously to purify YB proteins, loaded onto a 

heparin column via heat-treatment and eluted with 1M NaCl (Fig. 13), 

and in a riboblot to inhibit RNA-binding in the presence of MgClz (Fig. 

25). Because the HA-cleaved material possesses an intact TD, it should 

retain the ability to bind to heparin (heparin is a polyanionic molecule, 

and the YB protein TD contains arginine-rich stretches, see Fig. 5, 

section 1.8). Arginine-rich domains are essential components of various 

RNA-binding proteins; for example, the arginine-rich stretches in the 

HIV protein Tat are essential for binding to a stem-loop structure in 

HIV RNA (Green et al., 1989). Arginine is preferred to lysine because it 

can provide more hydrogen bonds or electrostatic interactions with, for 

example, the negatively charged phosphate backbone of RNA. In that 

case, heparin might mimic the RNA's ribose-phosphate backbone. The 

arginine-rich stretches are also rich in aromatic residues, which could 

participate in binding by stacking between the bases of RNA. These 

aromatic residues are probably mainly responsible for UV-crosslinking 

to RNA. There are also numerous glutamines and asparagines in the 

TD, whose amide groups could also contribute hydrogen bonds. All of 

these postulated RNA-binding features of the TD should be 

maintained in the HA-cleaved material.

In Fig. 34B, the concentration of heparin was kept constant while the 

concentration of MgCb varied. In the case of the HA-cleaved material, 

heparin competition was activated by very low levels of MgCh (0.01­

0.02 mM), and binding approached zero at 1 mM MgCl2. In contrast, 

values for the native material only began to drop at 2 mM MgCh. One 

possible explanation for these differences is that in the intact YB 

proteins the CSD could still UV-crosslink to RNA in conditions where
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the TD was unable to, being masked by heparin. Eventually, as the 

concentration of MgCb increased, Mg2+ also inhibited CSD binding. In 

5 mM MgCla, and in the presence of heparin, there was no binding at 

all to the native protein. By comparison, when native YB protein was 

treated with only 3 mM MgCb and no heparin, UV-crosslinking values 

remained high (Fig. 31), presumably because the TD were still active. 

These observations may be related to Fig. 13 in which riboprobe was 

eluted in 5 mM MgCl2 from a heparin column while the YB proteins 

remained bound. A possible interpretation is that the TD but not the 

CSD was bound to the heparin column, while the CSD remained free 

to bind to the riboprobe. Because CSD binding is sensitive to both urea 

and MgCl2, the riboprobe was eluted in urea and MgCl2. In contrast, 

because the TD are presumably bound to the heparin-Sepharose resin 

via ionic interactions mediated by the arginine-rich areas, the YB 

proteins were only eluted off the column in 1 M NaCl. Furthermore, 

the HA-cleaved material also exhibited the same shift in binding 

specificities depending on MgCl2 concentrations (Fig. 34C). The 

binding of HA-cleaved and native YB proteins to riboprobe was 

challenged with NaCl (Fig. 35). Not surprisingly, the HA-cleaved 

material was much more salt-sensitive: at 500 mM NaCl there was 

virtually no binding, whereas the native protein survived 500 mM 

NaCl but not 2 M NaCl.

4.7 Further fragmentation of YB proteins

In the preceding section, HA-cleavage disrupted the CSD, and 

generated a protein which nonetheless possessed a functional TD, 

Another chemical cleavage, "mild acid cleavage" by formic acid (FA), 

cleaves specifically at DP (aspartate-proline) bonds. The DP sites in the 

YB proteins are mapped in Fig.s 36A and 37A. The map shows that
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Figure 35 Binding of riboprobe to HA-cleaved YB protein on 

a Western transfer. (A) Stability of binding in NaCl is measured 

in a filter retention assay after heat-treatment, comparing native 

with HA-treated YB proteins. (B) Riboblot comparing intact YB 

proteins present in total poly(A)+ mRNP with HA-treated YB 

proteins. Binding to 0.5 |ig 16.2 sense strand riboprobe was in the 

standard binding buffer TMNT. One part of the transfer was 

washed in 50 mM NaCl (LS) and the other in 500 mM NaCl 

(HS). Tracks A+: 12 pg poly(A)+ mRNP, arrows indicating 

intact YB proteins; HA: YB proteins previously treated with HA: 

the arrow indicates the major fragment of the HA-cleaved YB 

proteins. The RNA-binding ability of the HA-cleaved fragment, 

unlike the intact proteins, is salt-sensitive. Note that there is 

some protein breakdown in the HA-treated fraction.
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pp60 and pp56 have a common DP site in the second acidic island

(A2), but pp60 has three extra DP sites: a second one in A2, and one in 

both A3 and A4. Hence FA-cleavage of a mixture of pp60 and pp56 

will generate a mixture of fragments: a common large fragment 

running from the N-terminus to the first DP site in A2 (AA2-A4), 

containing an intact CSD, and a mixture of tail domain fragments: one 

from pp56 including basic 3 and basic 4 (B3+B4), and from pp60 there 

will be two smaller fragments containing only B3 and B4. In principle, 

cleavages can be performed after crosslinking to riboprobe in order to 

see which proteins fragments are crosslinked to the riboprobe.

The pilot experiment in Fig. 36 shows the cleavage of proteins after 

they have been crosslinked to riboprobe. The intact proteins in track 1 

were digested by V8 protease (tracks 2 and 3), which cleaves at 

aspartate or glutamate residues. Because the CSD contains numerous 

interspersed acidic residues, it is effectively destroyed by V8 protease. 

What should remain intact are the basic/aromatic islands in the TD, 

which were postulated in the previous section to bind and UV- 

crosslink to RNA. Most of the label became concentrated in small 

fragments below 14 kDa, which are interpreted to be the undigested 

basic/aromatic island fragments. In track 4, FA-cleavage generated at 

large fragment of 39 kDa which is interpreted as being the N-terminal 

AA2-A4 which comprises the intact CSD and the first two 

basic/aromatic islands up to the first DP site. AA2-A4 is labelled 

strongly. The smaller labelled material, including the smaller FA- 

cleavage fragments, is not very distinct, and was labelled more clearly 

in subsequent experiments.

Fig. 37 summarizes the cleavage experiments. In

panel B, which includes an immunoblot and a riboblot of the same
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Figure 36 Proteolysis of YB proteins UV-crosslinked to 

riboprobe. (A) Diagram of pp60/pp56 showing their linear 

structure, consisting of: the N-terminal region (N); the CSD (pi- 

P5); the acidic domains (A1-A4); the basic domains (B1-B4). The 

position of the hydroxylamine (HA)-sensitive NG site and the 

positions of the formic acid (FA)-sensitive DP sites are indicated 

by arrows. Also shown are the potential sites of phosphorylation 

by the RNP-bound casein kinase n (asterisks). (B) Radio-labelled 

proteins were loaded onto a 20% acrylamide gel, favouring the 

separation of smaller YB protein fragments. Track 1:12 pg 

poly(A)+ mRNP, UV-crosslinked and RNase treated; low 

molecular weight markers are indicated; these were derived from 

an adjoining Coomassie stained track (not shown); 2: radio­

labelled YB proteins from track 1 were digested with protease V8 

for 1 hour and 3: digested with V8 protease for 5 hours; 4: YB 

proteins were digested with FA (formic acid). The arrow points to 

the largest fragment of an apparent mobility of 39 kDa, which 

corresponds to the N-terminal fragment, AA2-A4: a deletion from 

the second acidic island onwards.
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Figure 37 RNA binding to chemically-cleaved YB proteins. (A) 

The diagram of the YB proteins is shown again for clarity. (B) 

Cleaved fragments retain RNA-binding activity. YB proteins 

(tracks 1,1') and fragments produced by HA (tracks 2,2') and FA 

(tracks 3,3') treatments were separated by SDS-PAGE, transferred 

to nitrocellulose and either immunostained using anti-HTSN 

(tracks 1-3) or incubated with riboprobe in the standard binding 

buffer TMNT, and washed in 500 mM NaCl, to produce the 

autoradiograph shown (tracks l'-3'). Positions of the major 

fragments C-terminal to the NG site (ANpi) and N-terminal to the 

DP-sites in A2 (AA2-A4) are indicated by arrows on the 

immunoblot. (C) Points of crosslinking (contact) are established 

throughout much of the length of the protein. YB protein- 

riboprobe complexes, formed under different conditions, were 

crosslinked, digested with ribonuclease, cleaved with formic acid 

and analysed by SDS-PAGE/autoradiography. Complexes were 

formed from ~lO pg of protein and 0.5 pg of riboprobe in binding 

buffer with no addition (tracks 1,2) or with addition of: 3 mM 

MgCl2 (track 3); 10 pg of heparin (track 4); 3 mM MgCl2 plus 10 pg 

heparin (track 5); 20 pg of poly(C,U) in the absence (track 6) or 

presence (track 7) of 3 mM MgC^; 20 pg of poly(A,G) in the 

absence of MgCb (track 8). The positions of: the intact proteins 

(pp60/pp56); the N-terminal fragments (AA2-A4); the C-terminal 

fragment from pp56 (B3+B4); the C-terminal fragments from pp60 

(B3 and B4) are indicated by arrows. (D) Individual basic tail 

domains can bind RNA in the absence of a functional CSD. HA- 

cleaved proteins were bound to riboprobe and then crosslinked 

and treated with formic acid as described above. Complexes were 

formed in the absence (tracks 1,2) or presence (tracks 3-5) of 3 mM



165

C9 >

MgCb and with the addition of 2 pg heparin (track 4) or 20 pg of 

poly(C,U) (track 5). Fragments could be aligned with those produced 

by formic acid treatment alone and run on the same gel (track 1). 

Identity of fragments as shown for (C).



166

Western transfer, the HA-cleaved and FA-cleaved material are 

compared. The intact YB proteins bound the riboprobe well after the 

usual 500 mM NaCl wash, but not the HA-cleaved proteins (tracks 2 

and 2'), as was seen in the riboblot in Fig. 35. FA-cleaved proteins 

(tracks 3 and 3') generated the 39 kDa AA2-A4, seen as a doublet in the 

immunoblot because of minor sequence differences between pp60 and 

pp56. The fragment AA2-A4 was still bound to riboprobe after the 500 

mM NaCl wash, presumably because of its intact CSD.

The autoradiographs in panels C and D were derived from denser 

(20%) acrylamide gels. In panel C, the YB proteins were challenged 

with various competitors, as in previous experiments. The findings 

were consistent with previous observations, in that the combinations 

(poly(C,U) + MgCl2), (heparin + MgCh) and (poly(A,G) without 

MgCh) prevented protein:RNA crosslinking, but not MgCl2, poly(C,U) 

or heparin alone. The AA2-A4 fragment, which contains an intact CSD, 

also contains the two basic islands B1 + B2, and can therefore still UV- 

crosslink to riboprobe in the presence of MgCl2. It would be of 

additional interest to study the properties of a properly isolated CSD: 

here its binding properties can only be inferred from the data. In panel 

D, YB proteins UV-crosslinked to riboprobe were digested first with 

HA and then with FA, generating fragments which although not very 

sharp, can be aligned with those generated by FA-cleavage alone. The 

larger fragment AA2-A4 disappeared, as would be expected due to the 

cleavage of the CSD by HA. The FA/HA-cleaved material was also 

sensitive to (MgCl2 + heparin) and (MgCl2 + poly(C,U)).

In summary, chemical cleavage experiments have provided further 

evidence that the CSD and the tail domains have distinct RNA-binding
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abilities. The Mg2+-sensitive CSD RNA-binding activity is resistant to 

500 mM NaCl, while the NaCl-sensitive RNA-binding acti’vity can be 

attributed to the TD. In these experiments, individual basic/ aromatic, 

islands in the TD have been crosslinked to riboprobe, displaying 

MgCl2-dependent sensitivities to poly(C,U) and heparin.

4.8 The effect of YB protein phosphorylation on RNA-binding

Previous information in the literature has promoted the idea that 

phosphorylation of the YB proteins in the oocytes is a pre-requisite for 

efficient mRNA-masking (Kick et al., 1987, and the microinjection 

experiments of Braddock et aZ/1994). The presence of an mRNF- 

associated casein kinase Il-like' acti'vity was confirmed in section 3.7. 

The biochemical consequences of phosphorylation have not been 

inveshgated in great detail: for example, it is unclear whether or not

there a direct effect on RNA-binding.
A

The map of the YB proteins (Fig.s 36A and 37A) also shows the 

distribution of potential casein kinase II phosphorylation sites [S/T]-X- 

X-[D/E], illustrating differences between the YB proteins. There are 

two sites in the N-terminal region before the CSD. Two . 

phosphorylation sites are present in the CSD proper, and the 

remainder of the sites are in the acidic regions of the tail domains. pp60 

has three extra phosphorylation sites compared to pp56, which are 

present in the acidic islands A2 and A3. In other words, pp60 has the 

potential for a more widespread phosphorylation of the TD.

A previous experiment (Fig. 26) has suggested that pp60 binds to 

riboprobe better than pp56. Might the difference might be due to the 

extra phosphorylation sites present in pp60? To test this hypothesis, a 

poly(A)+ HTSN fraction was either dephosphorylated or
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hyperphosphorylated, and compared to the native proteins (Fig. 38). 

Care was taken to load the same amount of protein into each track. 

There was a clear indication that the phosphorylated YB proteins and 

in particular pp60, with its three extra potential phosphorylation sites, 

bound the riboprobe more strongly.

The phenol extraction assay in Fig. 39 compares untreated YB proteins 

with YB proteins derived from mRNP that was either untreated, 

treated with GTP (GTP being an acceptable phosphate donor for casein 

kinase II), or treated with phosphatase. Fig. 39 suggests that the GTP- 

treated material was more efficiently bound to the riboprobe. At lower 

NaCl concentrations, phosphorylation increased binding values. As 

NaCl concentrations were increased, inhibiting TD contacts, binding 

values diminished and converged. In the absence of MgCla, binding 

converged to -20%, because the CSD was presumably still active at 1 

M NaCl. However in the presence of MgCh, values converged to zero 

in 1 M NaCl. In summary, the plots suggest that phosphorylation 

enhanced the stability of the proteiniRNA complexes, more specifically 

by improving the stability of the TD-RNA interactions.

Furthermore, at the end of this project, native mRNP was incubated 

with [y-^PpATP immediately after elution from an oligo(dT) column, 

when the protein kinase activity is at its best in vitro. After 

phosphorylation, samples of whole mRNP were UV-crosslinked,

RNase digested, and analysed on SDS-PAGE (Fig. 40). In this 

experiment, not all the YB proteins were UV-crosslinked into larger 

complexes, as is confirmed by the Coomassie stain. Consequently some 

labelled monomers are apparent in the undigested tracks (no RNase 

treatment). More phospholabelled pp56 monomer than pp60 is
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Figure 38 Binding of riboprobe to phosphorylated and

dephosphorylated YB proteins on a Western transfer. Binding of 16.2 

sense riboprobe was in TMNT buffer, and the wash solution contained 

500 mM NaCl. Tracks: A+: poly(A)+ mRNP (40 pl); SN: poly(A)+ 

mRNP HTSN (heat-treatment supernatant, containing the YB proteins), 

40 pl; K: 40 pl HTSN was treated for 30 min with 5 pl of the protein 

kinase activity purified earlier (section 3.7); P: 40 pl of HTSN was 

treated for 30 min with 5 units of calf intestinal phosphatase.
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Figure 39 Effects of phosphorylation on salt stability of YB protein- 

riboprobe complexes. 2 pg poly(A)+ mRNP was treated either with 

GTP or with calf intestinal phosphatase and compared with untreated 

material. After heat treatment, protein:riboprobe complexes were 

generated by UV-crosslinking in increasing concentrations of NaCl, (A) 

in the absence and (B) in the presence of 3 mM MgCl2.
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Figure 40 UV-crosslinking of in vitro phosphorylated poly(A)+ 

mRNP proteins. Crosslinked material was analysed by SDS-PAGE.

(A) A Ccomassie stained dried gel and (B) the autoradiograph of t he 

same gel. 12 pg poly(A)+ mRNP samples adjusted to kinase buffer 

were supplied with ~1 pCi [y-32P]ATP before UV-crosslinking. Track 

1: no addition; 2: material from track 1, RNase treated; 3: + 3 mM 

spermidine; 4; material from track 3, RNase treated; 5: + 2 mM Ap4A; 

6: material from track 5, RNase treated. Ap2A is a reported casein 

kinase inhibitor (Thoen et al, 1984), but did not appear to inhibit 

phosphorylation significantly in this experiment.
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apparent, even though pp60 has three extra phosphorylation sites in 

the TD. However, after RNase digestion, the situation was reversed: 

much more labelled monomers appeared, and there was more 

phospholabelled pp60 than pp56. One possible interpretation is that 

the hyperphosphorylated pp60 was more efficiently UV-crosslinked to 

mRNA, and that this greater efficiency is due to the three extra 

phosphorylation sites present in the acidic islands A2 and A3 of pp60.

In summary, phosphorylation appears to enhance the stability of YB 

protein:RNA complexes when challenged with 500 mM NaCl, as is 

observed both on a riboblot and in phenol extraction assays. The 

following observations can be grouped together: (i) riboblots suggest 

that pp60 binding to riboprobe is more salt resistant than pp56; (ii) 

pp56 is more readily stripped off native particles in the extreme ionic 

conditions of a CS2SO4 gradient (see Fig. 20); (iii) phospholabelled 

pp60 is more efficiently UV-crosslinked to mRNA, as is suggested in 

Fig. 40, and (iv) pp60 has three more potential phosphorylation sites 

than pp56. The conclusion is that phosphorylation of the YB proteins 

enhances RNA-binding, as was suggested in Murray et al. (1991).

There are two possible interpretations as to how this might occur: 

either phosphorylation enhances the affinity for RNA directly, for 

instance by intramolecular conformational change, or otherwise 

enhances protein:protein interactions between YB proteins, which in 

turn may enhance the extent of RNA-binding by concentrating more 

YB protein on the mRNA molecules. In the TD, the phosphorylation 

sites are present in the acidic and not in the basic/ aromatic islands 

which are thought to crosslink to RNA (Fig. 36, Fig. 37). If the function 

of the acidic islands is to promote protein:protein interactions between
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acidic and basic islands, then by increasing electronegativity,

phosphorylation would enhance such electrostatic attractions. It is not

yet clear which of the two possibilities is correct.

4.9 Summary

The RNA-binding properties of mRNP were firstly explored with

riboblots, for which a binding protocol was defined. Numerous

proteins on Western transfers bound riboprobe in solution, including 

the YB proteins. In vitro binding of riboprobe to mRNP was inhibited 

by IgG derived from an anti-pp60 and an anti-p54 antisera. Of the 

many proteins present in clarified cell homogenates (SNIO) the YB 

proteins, pp56 and pp60, were the ones showing most UV-crosslinking 

activity to riboprobe. Another mRNP protein, p54, was also UV- 

crosslinked to riboprobe albeit after a special denaturation/ 

renaturation treatment. The RNA-binding properties of the YB proteins 

were considered in detail, defining two separate RNA-binding 

activities, the CSD and the basic/aromatic islands in the TD. The TD 

activity, sensitive to NaCl, bound to poly(C,U) and heparin in the 

presence of MgCl2, or to poly(A,G) in its absence. The CSD was seen to 

be sensitive to low concentrations of MgCl2 (1-2 mM) in its binding to 

RNA, and competed by poly(A,G) or poly(G) but not by poly(A).

Direct binding to end-labelled poly(A,G) or poly(C,U) probes was 

demonstrated. The YB proteins were fragmented chemically to provide 

further evidence for the proposed RNA-binding properties, and 

individual basic/aromatic islands were shown to be UV-crosslinked to 

RNA. Finally, the phosphorylation of YB proteins appeared to improve 

RNA-binding, either by enhancing protein:RNA contacts directly or by 

enhancing protein:protein interactions.
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Chapter 5

Characterization of Additional 
Unidentified Proteins
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5.0 Aims

The preceding section concentrated on the biochemical properties of the 

identified YB proteins, which are undoubtedly a crucial component of the 

Xenopus oocyte mRNP particle. However, there is very little knowledge 

about the identity and function of, for example, the mRNP proteins of 100, 

54,52 and 40 kDa. It is clear from Coomassie stains and immunoblots of 

whole mRNP, and from separations of mRNP particles on density 

gradients (see chapter 3), that these other abundant proteins are an 

integral part of the mRNP structure. However, surprisingly little is known 

about them. Some of these mRNP proteins may be specific to Xenopus 

oocytes or germ cell mRNPs in general, serving some specialized functions 

in these contexts. Alternatively, some of the proteins may be also found in 

somatic mRNP particles. In order to gain some fresh information about 

these unidentified mRNP components, the general approach was to clone 

cDNAs encoding mRNP proteins from expression libraries using either (i) 

a riboprobe ligand, or (ii) an immunoscreen using the antisera described in 

chapter 3. Also, for a biochemical analysis, another strategy was to label 

mRNP proteins with 125I, cleave them with formic acid (FA) or cyanogen 

bromide (CNBr), and to sequence recovered peptides.

5.1 RNA-binding screen of a bacteriophage X cDNA expression library

The general principle of this approach is to express fusion proteins from a 

cDNA expression library, and to screen for a biochemical or antigenic 

properties. The first cDNA library, prepared from mRNAs obtained from 

a mature ovary, and cloned into the bacteriophage vector Xgtll, was 

kindly provided by Dr. Mark Dworkin (Boehringer, Vienna).
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Because the mRNP proteins are very abundant throughout oogenesis, the 

selection of appropriate cDNA clones should be relatively simple. 

However, potential limitations should be mentioned. Firstly, because the 

Dworkin library was constructed from a mature ovary in which more 

developed oocytes are most numerous, the bulk of the cDNAs represents 

stored, masked maternal mRNAs, which are much more abundant than 

the expressed mRNAs being sought in this screen. Secondly, the Xgtll 

system is not directional: that is, 50% of the cDNAs are likely to be 

inserted into the wrong orientation, and only one sixth of the inserted 

cDNAs will be in frame. Thirdly, of these cDNAs, many will be 

incomplete, since the reverse transcriptase tends to dissociate from the 

mRNA template before reaching the 5' end: in general there tends to be a 

bias in cDNA libraries towards the 3' ends of messages. Fourthly, it cannot 

be taken for granted that the prokaryotic environment guarantees the 

appropriate polypeptide folding or post-translational modifications, such 

as phosphorylation, that may be essential for mRNP protein structure. 

With these caveats in mind, it was deemed appropriate to screen several 

large plates, each displaying 20-50,000 plaques, in order to generate 

enough positives.

Following the procedure described by Vinson et al. (1988), in which a 

labelled DNA ligand was used to screen for the DNA-binding protein 

C/EBP, a labelled RNA ligand was used instead to screen for RNA- 

binding proteins. The sense strand of the cyclin B1 message was chosen as 

a riboprobe. Cyclin B1 is a known stored maternal mRNA, and is therefore 

an appropriate substrate for the mRNP proteins. At first, the procedure 

closely followed that of Vinson et al. (1988), starting with the denaturation 

of the transferred proteins with 6 M guanidine-HCl. The purpose of the 

denaturation step is to dissociate any endogenously bound RNA, so that
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the fusion proteins are ready to receive the riboprobe in an appropriate 

binding buffer (in Vinson et al, 1998,25 mM Tris.HCl pH 7.5; 25 mM 

NaCl; 5 mM MgCl2, 0.5 mM DTT). After adding the riboprobe, the 

guanidine-HCl was diluted by stepwise addition of buffer.

With this first approach clone G2 was isolated. G2 consisted of an 

incomplete cDNA encoding two zinc-fingers of the 4 x cysteine variety. 

The clone was investigated further by an honour's student who sequenced 

the rest of the protein (Rachael Marshall, 1994). In addition to the zinc- 

fingers, the whole protein, subsequently termed C4SR, was seen to have a 

putative ATP-binding fold between the zinc-fingers, followed by a highly 

acidic stretch in the central part of the protein and an SR (serine-arginine 

rich) region in the C-terminal end. The protein is listed and described in 

greater detail in the Appendices C and D. At this stage its function is 

unknown, although it may be inferred to have a role in nucleic acid 

regulation either at the level of DNA or RNA, given the similarity of its 

features with various nuclear proteins.

After clone G2, the screening procedure was changed as follows: 8 M urea 

was used as a denaturing agent, and the binding buffer was simplified to 

(10 mM Tris.HCl (pH7.5), 50 mM NaCl, ie HTB). Fig. 41 shows a typical 

primary screen and a final purification, emphasizing the need to wash the 

filter with an appropriate salt concentration after riboprobe binding. At 

the lower concentration of 50 mM NaCl, it is likely that basic residues 

present in many proteins bind non-specifically to the negatively charged 

ribose-phosphate backbone of the riboprobe. 500 mM NaCl was chosen 

because it reduced background without totally disrupting RNA:protein 

binding. This procedure paralleled the conditions used in the riboblots in 

chapter 4. Using this approach, the estimated frequency of positives in the 

Dworkin library was approximately one in every 5000 plaques.
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Figure 41 Screening a cDNA expression library with a riboprobe. Xgtll 

plaque lifts were denatured in 8 M urea before incubation with cyclin B1 

sense strand riboprobe in the binding buffer (10 mM Tris.HCl pH 7.5; 50 

mM NaCl). (A) Primary screen of ~50,000 plaques from the Xgtll library. 

(B) Effects of salt washes on background signals: 1: 50 mM NaCl; 2: 550 

mM NaCl; 3:1 M NaCl; 4: 2 M NaCl. (C) Final purification of clone N5 

showing isolated positive plaques (arrows).



179

Several clones were isolated, two of which were identified unambiguosly. 

One of these was M7: like G2, it is another putative zinc-finger protein, 

identified as the Xenopus homologue of the rat ribosomal protein S27 

(Chan et al., 1993). Its amino-acid sequence is also listed and described in 

the Appendices E and F. Its binding to the cyclin B1 riboprobe may or may 

not be significant, since the function of S27 within the ribosome is 

unknown: although ribosomal protein S27 is not an mRNP protein, it 

could still bind to mRNA. For example, the ribosomal protein 86 has 

recently been suggested to interact, possibily directly, with the short 

polypyrimidine stretches present in the 5' UTRs of mRNAs encoding 

ribosomal proteins and translation factors: these are coordinately 

translated (Jefferies et al, 1994).

The other identified cDNA was clone N5. It is identical to the cDNA 

encoding the somatic YB protein FRGYl, and includes the entire open 

reading frame. FRGYl was first cloned, together with the oocyte YB 

protein FRGY2 (pp60), by Tafuri and Wolffe (1990). FRGYl is transcribed 

but not translated in oocytes and therefore belongs to the pool of masked 

maternal mRNAs. Consequently it is likely that FRGYl mRNA is itself 

masked by the oocyte YB proteins. It is now thought that YB proteins of 

the FRGYl type also bind to mRNAs in vivo, and that this is a potential 

property of all YB proteins (Evdokimova et al., 1995).

Two of the cDNAs described in this section, G2 (encoding the two zinc 

fingers of the novel oocyte protein C4SR) and N5 (the somatic YB protein 

FRGYl), were subcloned into the expression vector pMalcRI. When 

induced by IPTG, E. coli cells produced a fusion protein which included 

the 42 kDa maltose-binding protein (MBP), followed by the polypeptide 

encoded by the cDNA. The presence of the MBP potentially allows the
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fusion protein to be purified via affinity to an amylose resin. The expected 

molecular weights of the fusion proteins were as follows: in the case of G2, 

the fusion protein comprised 42 kDa (the MBP) + 15 kDa (estimated 

molecular weight of the two zinc-fingers encoded by clone G2) and an 

additional 10 kDa from the p-galactosidase lacZ fragment in the pMalcRI 

vector (G2 remained in frame with the vector at the 3' end). This suggested 

a total of 67 kDa for the MBP-G2-lacZ fusion. In the case of N5, the fusion 

protein should consist of 42 kDa (MBP) + 35kDa (FRGYl) = 77 kDa. 

However, like its oocyte counterparts, FRGYl has a higher observed 

mobility, in its case 50 kDa (Tafuri and Wolffe, 1992), therefore the 

apparent molecular weight of the MBP-N5 fusion could be as high as 92 

kDa. In Fig. 42, both these fusion proteins were expressed using pMalcRI. 

Induced protein bands can be seen in total bacterial extracts, with 

apparent mobilities of 74 kDa for the G2 and 98 kDa for the N5 fusion 

proteins. These values are not too different from the predicted mobilities. 

The same samples were tested for RNA-binding on a riboblot. The MBP- 

N5 (FRGYl) fusion protein bound to riboprobe in these conditions, 

mirroring the properties of its oocyte equivalents, pp60 and pp56 in 

similar assays, but the MBP-G2-lacZ fusion did not bind the riboprobe.

5.2 Preparation of a new cDNA llbraiy and immunoscreening

The approach outlined in the previous section has the potential to isolate 

cDNAs encoding mRNA-binding proteins. However, other RNA-binding 

proteins such as the ribosomal proteins can also, in principle, be selected. 

More specific proteins could be targeted, for example, by modifying the 

binding buffer conditions, or by choosing specific RNA ligands. However, 

it was deemed necessary to generate a new, more focussed cDNA 

expression library more appropriate for the isolation of mRNAs expressed 

in early oocytes. The mRNAs encoding the mRNP proteins are translated
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M U 62 NS M U 62 N5

A B

Figure 42 Fusion proteins expressed in pMALcRI. (A) Amido-black 

stain of a Western transfer. M: High molecular weight markers; U: total 

lysate from uninduced E. coli TB-1; G2: total lysate from cells containing 

pMalcRI-G2 fusion, induced with IPTG for three hours; N5: total lysate 

from cells containing pMalcRI-N5 fusion, induced in IPTG for three hours. 

Arrows indicate induced bands (MBP-G2-lacZ and MBP-N5). (B) Binding 

of p-tubulin 16.2 sense strand riboprobe to the same Western transfer 

shown in (A). The RNA-binding assay preceded the amido black staining. 

The induced fusion proteins are indicated.
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in early oocytes to generate the material necessary to package the large 

numbers of stored maternal mRNAs. Therefore mRNAs encoding mRNP 

proteins should be well represented in polysomal (translating) mRNPs of 

early oocytes. To that effect, a total extract from early oocytes was run on a 

glycerol gradient in the presence of 10 pg/ml cycloheximide, DTT, and 

RNase inhibitor, conditions which preserve polysomes. Polysomal mRNA 

was extracted and used as a template to synthesize cDNA. The cDNA was 

cloned into a XZAP bacteriophage vector (Stratagene), a system which has 

the advantage of allowing directional cloning: all cDNAs are inserted in 

the correct orientation. The XZAP system also allows the direct excision of 

pBS plasmids containing the cloned cDNAs, bypassing the need for 

bacteriophage X DNA preparations and subsequent subcloning steps. Fig. 

43 shows the labelled cDNAs separated on a denaturing agarose gel, 

ranging in size between 500 and 2000 base pairs. (Library construction was 

carried out by Dr. J. Sommerville).

Having already tried riboprobe ligands with the Dworkin library, the new 

library was immunoscreened with anti-HTSN and anti-HTP, in the hope 

of detecting immunoreactive epitopes on bacterially expressed fusion 

proteins. Based on the Western blots discussed in chapter 3, anti-HTSN 

should recognize the YB proteins as well as the unidentified 

phosphoproteins pp96 and pplOO, while anti-HTP should recognize other 

mRNP proteins and especially p54 and p52. Antisera were diluted 1/500, 

and pre-incubated with a 1/250 dilution of total bacterial lysate in order to 

reduce background binding to bacterial proteins. In addition, blocking the 

plaque lifts overnight in 5-10% skimmed milk in TBST, effectively reduced 

background to zero.
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Figure 43 Preparation of a new cDNA expression library in XZAP 

(Stratagem). cDNA was synthesized from mRNAs extracted from a 

polysomal gradient fraction from paeviiellogenir oocytes. After second- 

strand synthesis in the presence of [a-32P]dCTP, the cDNA was size- 

fractionated on a Sephacryl column and samples were analysed on an 

alkaline 1% agarose gel. The autoradiograph of three fractions is shown 

(tracks 1-3). Fraction 1 was selected for cloning. The positions of marker 

DNA bands (Hind iH digests of lambda DNA) run on the same gel is 

shown (kb). Courtesy of Dr. J. Sommerville.
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The anti-HTSN antiserum yielded a higher number of positive clones. Fig. 

44A shows the final purification of one of these, AB12. This cDNA encodes 

nucleolin, previously cloned by Caizergues-Ferrer et al. (1989). Further 

cDNAs, AB1A and ABIC, were selected with anti-HTSN and were 

sequenced: they also encoded nucleolin. Nucleolin is a multifunctional 

protein with roles in ribosomal RNA transcription and processing. It 

possesses RRM motifs (RNA Recognition Motifs) as well as acidic 

stretches, and in Xenopus oocytes is reported to be present in two forms of 

96 and 100 kDa (Caizergues-Ferrer et al., 1989),

It is not clear why nucleolin should have been selected. One possibility is 

that the polyclonal anti-HTSN cross-reacts with nucleolin. The YB proteins 

have certain similar structural properties which may explain cross­

reactivity: for example, the presence of an RNP-1 like motif (GYGFI) in the 

CSD, the RNP-1 motif being part of the RRMs present in nucleolin, and the 

presence of highly acidic areas with casein kinase II phosphorylation sites 

in the TD. Casein kinase II phosphorylation sites are also present in 

nucleolin, a protein which is known to be one of the targets of casein 

kinase II in vivo (Csermely et al., 1993; Suzuki et al., 1992). A second 

possibility is that the poly(A)+ mRNP preparations are contaminated with 

nucleolin, which then fractionated into the HTSN, the untested 

assumption being that nucleolin is heat-stable. The mobilities on SDS- 

PAGE of the HTSN phosphoproteins pp96 and pplOO are consistent with 

those reported for the Xenopus oocyte nucleolin forms. However, there is 

no current knowledge of an in vivo association of nucleolin with mRNP, 

and its presence in the mRNP preparations could be an artefact.

The anti-HTP antiserum screen yielded fewer positives, and only one 

clone, AB21, was purified (see Fig. 44B). AB21 mRNA is highly expressed
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Figure 44 Screening of the XZAP cDNA library using the ELISA assay. 

(A) Tertiary screen of clone AB12, immunoselected with a 1/500 dilution 

of anti-HTSN. (B) Tertiary screen of clone AB21, immunoselected with a 

1/500 dilution of anti-HTP. Arrows indicate immunoreactive plaques. 

Negative plaques appear in a lighter shade. Note that the positive signal in 

(A) is distinctly clearer than in (B) compared to the background.
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in oocyte stages I and II, an expression pattern shared by pp60, which is 

consistent with its encoding a protein needed in early oocytes (Fig. 45). In 

stage I oocytes there was a single transcript of 2.4 kb, whereas in stages II 

and III, there was an additional transcript of 2.7 kb. The significance of 

these two detected transcripts is not known. AB21 mRNA peaked in stage 

H oocytes, and was not detected in somatic tissues or testis, suggesting 

that it encodes an oocyte-specific protein. As a control, the ribosomal 

protein S27 mRNA (cloned and described in section 5.1) gave a positive 

signal in all tracks of this same tissue Northern blot (not shown).

Most of the AB21 cDNA has been sequenced from subclones based on the 

available AB21 restriction sites, including the whole open reading frame 

(Fig. 45). The DNA sequence, now entered into the database, is listed in 

Appendix G. The first AUG in the 5' end of AB21 does not necessarily 

encode the first methionine in the AB21 protein. However, the known 

translation start site for Xenopus cyclin B1 is similar to the first AUG site 

present in the AB21 cDNA: GAGAAAAUG for cyclin BI, and 

AGGAAAAUG in AB21. Therefore it is possible that clone AB21 encodes 

the whole protein.

The AB21 protein is strikingly similar to a "global gene regulator" encoded 

by the gene RPD3 from Saccharomyces cerevisiae. (Vidal and Gaber, 1991), 

and a Caenorhabditis elegans protein encoded by an ORF identified through 

genomic sequencing (database entry CEC08B11/Z46676). The amino-acid 

sequence of AB21 is shown in Fig. 46, and the sequence alignment 

between AB21, yeast RPD3 and the C. elegans homologue is shown in Fig. 

47. The estimated molecular weight of AB21 is 54.7 kDa, which is 

consistent with its being one of the proteins recognised by anti-HTP.
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A

Subclones 
Size (kb)

B

Restriction Map of Clone AB21 
Total length: ~2.4 kb

E P H H H X' 1 1 1 11
035 0.7 065 065 OO

Open Reading Frame

Tissue Expression of AB21
I umivvotblilk P

Figure 45 Tissue expression and restriction map of clone AB21. (A) 

Restriction map of clone AB21 indicating four subclones, L6, L5, L4 and 

L3, and the ORF (open reading frame). E: EcoRI; P: Pstl; H: Hind XI; X: 

Xhol. All cDNAs in the AZAP library are cloned directionally so that the 

sense strand runs 5' to 3' from an EcoRI site to a Xhol site. The Xhol site 

follows the poly(A) tail on the cDNA. (B) Tissue expression of AB21 

mRNA. RNA was extracted from 25 oocytes of Dumont stages I-V, and a 

Northern blot was probed with an antisense riboprobe generated from 

subclone L5. Each track has an RNA equivalent of 5 oocytes. On a separate 

Nothern blot, the same antisense probe was used with RNA extracted 

from various tissues: o: ovary; t: testis; b: brain; h: heart; 1: liver; k: kidney; 

P: L5 antisense probe, 0.7 kb. Each track contains ~ 10 pg of RNA. AB21 

mRNA appears in two forms in oocyte stages II and III, of 2.4 kb and 2.7 

kb, but only 2.4 kb in stage I. It peaks in stage II oocytes and appears to be 

oocyte-specific in its expression.
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AB21 protein
’ 50

MAltlgtkkkvcyyydgdvgnyyygqghpMkphrirMthnlllnyglyrk
100

MeifrphkasaedMtkyhsddyikflrsirpdnMseyskqMqrfnvgedc
' 150

PVFDGLFEFCQLSAGGSVASAVKLNKQQTDISVNWSGGLHHAKKSEASGF
200

CYWDIVLAILELLKYHQRWtflDIDIHHGDGVEEAFYTTDRVMTVSFHK
250

ygeyfpgtgdlrdigagkgkyyavnyalrdgiddesyeaifkpvMskvMe
300

MfQPSAVVLQCGADSLSGDRLGCFNLTIKGHAKCVEFIKTFNLPLlMlGG
350

ggytirnvarcwtyetavaldseipnelpyndyfeyfgpdfklhispsnM
400

tnqntneylekikqrlfenlrMlphapgvqMqavaedsihddsgeededd
__________450

PDKRISIRSSDKRIACDEEFSDSEDEGEGGRKNVANFKKVKRVKTEEEKE
possible g-helical tail_______ 480
GEDKKDVKEEEKAKDEKTDSKRVKEETKSV

Figure 46 The polypeptide encoded by the AB21 open reading frame. 

The first methionine in the AB21 open reading frame is assumed to be the 

first amino-acid. The total length of the polypeptide is 480 amino-acids 

with an estimated molecular weight of 54.7 kDa. A region predicted to 

form an a-helix (refer to Fig. 48) is indicated. Tyrosines are in bold; 

methionines are in a larger font: their presence suggested the experiment 

shown in Fig. 50. The amino-acid content is as follows: S+T 10.2% (49 out 

of 480); D+E 16.7% (80); K+R+H 16.5% (79) and F+Y+W 10.4% (50). The 

estimated isoelectric point is 5.58. Data was obtained using the GCG 

package. Genetics Computer Group Inc., version 7.2 (1992).
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Figure 47 Alignment between the AB21 polypeptide and two 

homologous proteins. The homologous proteins are RPD3 from 

Saccharomyces cerevisiae (Vidal and Gaber, 1991) and a Caenorhabditis 

elegans homologue obtained from a cosmid genomic clone, database

accession numbers CEC08B11/Z46676. Vertical bars denote identities; 

semicolons denote conservative substitions. The following 

substitutions are described as conserved: {A,G,S}, {S,T}, {D,E}, {N,Q}, 

{H,K,R}, {V,L,I,M) and {W,F,Y}. The lengths and estimated molecular 

weights of each protein are included. The alignment was obtained 

using the program PILEUP, GCG package, Genetics Computer Group 

Inc., version 7.2,1992.
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The structural conservation between AB21, RPD3 and the C. elegans 

homologue is striking, considering the evolutionary distance between the 

three species. For example, between AB21 and RPD3 there is an overall 

57% identity and at least 77% conservation: however, because a limited, 

arbitrary set of amino-acid substitutions is considered "conserved", the 

true figure may be even higher. The conservation is most impressive in the 

central part of the protein, while towards the C-terminus the similarity is 

less strong. No currently known structural motif is suggested by the 

amino-acid sequence. However, the sequence in the C-terminal "tail" of 

AB21 is very hydrophilic and is expected to form a-helical structures 

according to the Chou-Fasman algorithm (Fig. 48). When plotted oh a 

helical-net diagram, it is apparent that there may be clusters of charged 

residues, in particular lysines, and acidic S/T/E/D-rich areas (Fig. 49).

5.3 Iodinatton at tyrosines

Although AB21 was cloned with anti-HTP, encodes a 54.7 kDa protein and 

has a homologue in yeast whose mutant phenotype could be connected to 

Xenopus oogenesis, there is still no conclusive evidence that AB21 is 

present in the mRNP. One characteristic of the AB21 protein is the 

abundance of tyrosines and methionines (see Fig. 46), a property which 

suggested the next set of experiments.

Tyrosine side chains can be labelled with the iodine isotope 125I. To that 

end, native poly(A)+ mRNP particles were iodinated, both in the presence 

and absence of SDS (Fig. 50). This resulted in various labelled proteins, in 

particular at 40 and 52 kDa in the absence of SDS, and 40 and 54 kDa in the 

presence of SDS, the positions of which corresponded to the positions of 

the staining bands of p40, p52 and p54. This difference might be due to the 

tyrosines in the 54 kDa protein being present in an mRNP structure that is



192

PEPPLOT of: AB22.prot ck: 2787, 430 to 480 March 14, 1995 13:10 
REFORMAT of: ABB2.prot check: -1 from: 1 to: 480 March 14, 1995 12:54

Ajpk* Forrnlig 
Briwliio?

Beta

Alpha

•«t* Foreleg 
l«t« Ireakiag

Figure 48 Peptide sequence analysis for AB21. PEPPLOT output for

AB21 including basic/acidic areas, Chou-FasmaH predictions for a-helices 

(dotted line) and p-sheets (continuous line). The software was provided by 

the GCG package, Genetics Computer Group Inc., version 7.2,1992.
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Figure 49 Helical-net diagram of the C-terminal tail of AB21. The 

diagram includes residues 443-480, which may form an a-helical structure 

(see Figure 48). The helix runs left to right, bottom to top. Clusters of 

charged residues, either E/D rich (acidic) or K/R rich (basic, mostly K) are 

apparent. This hypothetical structure can be described as a "sticky tail".
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not easily accessed by the reagent. It is conceivable that SDS disrupts the 

mRNP structure, making the tyrosines in p54 more accessible, while in the 

native mRNP particle the p52 tyrosines are normally more accessible to the

reagent. The third track in Fig 50A shows some band-excised p54 which 

was iodinated separately. After its iodmatioH, it was digested with CNBr, 

a reaction which cleaves at methionines. Fig. 50B illustrates the digestion 

pattern of iodinated p54 after 6,20 and 48 hours. Although the complexity 

of the banding pattern does not allow an accurate map of the position of 

the methionines to be deduced, there would appear to be multiple labelled 

fragments, some of which are better labelled than others. A strongly 

labelled fragment might be due to the presence of a larger number of 

tyrosines in the fragment, such as might be expected in the case of the N- 

terminal fragment of the AB21 protein: for example, the first two 

methionines are separated by twenty-eight amino-acids, of which six are 

tyrosines (Fig. 46).

5.4 Amino-acid sequencing reveals an RNA helicase

A more direct way to identify the mRNP proteins is to fragment them and 

determine the ammo-acid sequence of recovered peptides. The poly(A)+ 

mRNP HTP (heat-treatment pellet) was used as a general source of 

mctarici, so as to exclude fragments derived from the heat stable YB 

proteins which have already been identified. Ih order to generate smaller 

fragments, the HTP proteins were treated with CNBr. Given that the 

protein encoded by AB21 is rich in methionine, it was hoped that an AB21 

fragment might be sequenced. Due to time coHsteciHts, it was only 

possible to sequence c small cumber of peptides. None of these 

corresponded to AB21. Instead, surprisingly, two of these peptide
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- SDS p54 6 20 48 h

Figure 50 Iodination of poly(A)+ mRNP. Proteins were iodinated at 

tyrosines with the isotope 125I using the lODOGEN reagent (Pierce). (A) 

12% acrylamide SDS-PAGE. Whole poly(A)+ mRNP was iodinated, in the 

presence or absence of 0.1% SDS. Band-purified p54 was also iodinated 

separately. (B) 20% acrylamide SDS-PAGE. CNBr cleavage of iodinated 

p54 at methionines. Some breakdown of the undigested band-excised p54 

is apparent. Samples were analysed after 6, 20 and 48 hours digestion. Size 

markers are shown. The SDS-PAGE gels were dried for autoradiography.
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sequences were perfectly aligned with the amino-acid sequence of a novel 

family of RNA helicases (Fig. 51). The two sequenced peptides are closely 

aligned to three proteins: the Drosophila germ-cell specific RNA helicase 

ME31B (De Valoir et ah, 1991), human p54, which however is not germ-cell 

specific (Lu and Yunis, 1992), and the Schizosaccharomyces pombe protein 

STE13 (Maekawa et ah, 1994). Fig. 51 shows the alignment between these 

helicases including the two Xenopus peptides. Throughout the alignment 

there is a close conservation between ME31B, human p54, STE13, and with 

the Xenopus sequence where it is known. Two other RNA helicases are 

included for comparison, and some identified functional domains are 

highlighted. A more comprehensive alignment of different RNA helicases 

will be presented in Fig. 55.

Because the sequenced peptides were among the most abundant on the 

protein transfer which provided the material for peptide sequencing, the 

RNA helicase is likely to be an abundant mRNP protein. Based on the size 

of the human homologue, p54, the Xenopus homologue may be also be 

present in the area around 54 kDa, and it is possible that the anti-HTP 

and/or anti-p54 antisera may recognize it. Since both AB21 and the RNA 

helicase are predicted to be in the range of 54 kDa, and both are rich in 

tyrosine and methionine, the previous iodination experiments might have 

highlighted both these proteins. One of them may be p52 and another p54; 

alternatively, both might be present in what is observed as the abundant 

band of 54 kDa. Further experiments are needed to answer these 

questions.

5.5 Further tests: cleavage at DP sites and ATP-crosslinking

The formic acid cleavage (FA cleavage) procedure, described in chapter 4

in the context of YB proteins, can also be applied these novel proteins. A
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Figure 51 An RNA helicase is present in the poly(A)+ mRNP. - 

Alignment between the three examples of a novel subfamily of the 

"DEAD-box" RNA helicases, human p54 (HP54, Lu and Yunis 1992), 

Drosophila ME31B (De Valoir et al., 1991), and Schizosaccharomyces 

pombe STE13 (Maekawa et al., 1994). Two Xenopus peptide sequences 

are shown, which were derived from a CNBr digest of a poly(A)+ 

mRNP HTP. Other RNA helicases are compared in a later alignment 

(Fig. 55), in which it is apparent that this Xenopus oocyte RNA helicase 

belongs this subfamily within the family of DEAD-box RNA helicases, 

due to the exact correspondence between the Xenopus peptides and 

HP54. Vertical bars denote identities; semicolons denote conservative 

substitions. The following substitutions are described as conserved: 

{A,G,S}, {S,T}, {D,E}, {N,Q}, {H,K,R}, {V,L,I,M) and {W,F,Y}. Indicated 

are the ATPase 'A' and 'B' motifs (AXXGXGKT and VLDEAD 

respectively, Walker et al., 1982), and two other conserved regions, 

SAT and HRIGRXXR, which are known to be involved in ATP 

hydrolysis and helicase activity (Pause and Sonenberg, 1992; Pause et 

al., 1993,1994). The sequences were aligned using the PILEUP 

program, GCG package, Genetics Computer Group Inc., version 7.2, 

1992.

1 50
HP54 MSTARTENPV IMGLSSQNGQ LRGPVKPTGG PGGGGTQTQQ QMNQLKNTNT

I I :
ME3 IB ......................................... MMTEKLNSGH

51 100
HP54 INNGTQQQAQ SMTTTIKPGD D--WKKTLKL PPKDLRIKTS DVTSTKGNEP 

I : : : : I I II I : I I I : I I I I : I I I I
ME31B TNLTSKGIIN DLQIAGNTSD DMGWKSKLNC RQRTTRFKTT DVTDTRGNEF 

: : : I : I II I : I : III I I I I I I I I
STE13 ...MAESLIQ KLENA.NLND RESFKGQMKA QPVDMRPKTE DVTKTRGTEF

101 Xenopus MGWEK PSPIQ 'A' motif 150
HP54 EDYCLKRELL MGIFEMGWEK PSPIQEESIP IALSGRDILA RAKNGTGKSG

I :: I I I I I I I I I I I I III: I I I I I I :I I I I I I I :I :I I I I I I I I I I : I 
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poly(A)+ HTP fraction was FA-digested, and is shown in Fig. 52. . 

Compared to the undigested track, at least three abundant new bands 

appear. These are cleavage products, and could, in principle, be sequenced 

at the amino-acid level. In the case of AB21, the amino-acid sequence 

suggests the presence of a DP site towards the C-terminus (Fig. 46). 

Cleavage of the intact 54.7 kDa protein would be predicted to generate a

45.5 and a 9.2 kDa fragment. In the case of the RNA helicase, Drosophila 

ME31B has 3 DP sites, S. pombe STE13 has one, human p54 has none; the 

number of DP sites in the Xenopus RNA helicase is not known a priori. Fig. 

53 shows the cleavage of band-excised p54, which was FA-digested, 

separated on SDS-PAGE and immunoblotted with anti-HTP in panel C. In 

panels A and B, the same procedure was applied to band-excised YB 

proteins for a comparison. An immunoblot was necessary because of low 

protein yields: ideally, a protein stain is preferable because some of the 

cleaved products may not be antigenic. However, confirming previous 

suspicions, what emerges from Fig. 53 is that within band-excised p54 

there are at least two proteins. Three fragments were sized to 

approximately 43,30 and 20 kDa. Together, the 30 and 20 kDa fragments 

almost add up to 54 kDa and could correspond to one of the proteins, 

whereas the 43 kDa fragment is missing 11 kDa, a small fragment not 

detected by the immunoblot. The 43 kDa band, with its presumed missing 

11 kDa band, is not too far from the 45.6 and 9.2 kDa predicted from the 

AB21 map. In addition, there is some residual undigested 54 kDa protein, 

which either represents an incomplete FA-digestion, or corresponds to a 

third protein in the 54 kDa group which has no DP site. In summary, this 

experiment confirmed that more than one protein is present around 54 

kDa in the poly(A)+ mRNP.
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P FA

Figure 52 FA-cleavage of a poly(A)+ mRNP HTP fraction. 20%

acrylamide SDS-PAGE: the Coomassie stained gel shows: P: ~12 fig 

undigested poly(A)+ mRNP HTP (heat-treatment pellet); FA: the same, 

but digested with FA (formic acid) cleaving at DP sites. At least three new 

bands appear, indicated by arrows.
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Figure 53 Immunoblot of FA-cleaved proteins. Proteins were separated 

on 20% acrylamide SDS-PAGE. (A) Coomassie stain showing M: 

molecular weight markers; A+: 12 pg total poly(A)+ mRNP, and FA: YB 

proteins were digested with FA, showing the AA2-A4 fragment (refer 

Figures 26A and 27A for a map of the YB proteins). (B) Immunoblot of 

FA-cleaved YB proteins. Anti-HTSN was diluted 1/1000. Track 1: band- 

purified pp60; 2: FA-cleaved pp60; 3: band-purified pp56; 4: FA-cleaved 

pp56. AA2-A4 and B3+B4 fragments derived from the YB proteins are 

indicated. (C) Immunoblot of band-purified p54 using a 1/1000 dilution 

of anti-HTP. Track 1: undigested p54; 2: FA-cleaved p54. Note the 

presence of some residual undigested p54, as well as three bands, 

indicated a, b, and c, of estimated sizes of 43, 28 and 20 kDa respectively.



202
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Figure 54 UV-crosslinking of [oc-32P]ATP to poly(A)+ mRNP. 12 |ig of 

fresh poly(A)+ mRNP and ~1 |iCi of [a22p] ATP was used in each sample 

and run on 12% acrylamide SDS-PAGE. Panel (A) shows the Coomassie 

stain of the dried gel and (B) the autoradiograph of the same gel. Tracks 1: 

poly(A)+ mRNP, crosslinked to [a-22p]ATP; 2: material in track 1, RNase 

treated; 3: + 2 mM spermine; 4: material from track 3 was RNase treated; 5: 

+ 1 |ig/ml heparin; 6: material from track 5 was RNase treated. Proteins of 

68 and 54 kDa were clearly crosslinked to [a22p]ATP, as well as a weaker, 

less distinct signal around 40 kDa. It was thought that spermine and 

heparin might influence the ability to UV-crosslink, but no obvious 

differences were apparent.
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A further test was attemped, following the succesful crosslinking of ATP 

to the RNA helicase eIF4A reported by Pause et al. (1993). RNA helicases 

have an ATP-binding fold, to which ATP binds and is essential for driving 

their RNA helicase activity. [a-^2P]ATP, preferred to [y-32P]ATP because 

the labelled phosphate is protected from hydrolysis, was UV-crosslinked 

to fresh, native mRNP. Fig. 54 illustrates this experiment, including a 

Coomassie stain and an autoradiograph showing proteins crosslinked to 

ATP. In all samples, proteins of 68 and 54 kDa were most clearly 

crosslinked to ATP. Undigested and RNase-treated samples were 

compared. If the ATP-binding protein had been UV-crosslinked to the 

native mRNA, differences between the undigested and RNase treated 

tracks should have been apparent, but did not appear to be the case.

5.6 Summary

The cDNA cloning strategies were succesful in isolating new clones. Using 

the riboprobe binding method, the following cDNAs were isolated: (i) 

clone G2, encoding two zinc-fingers which were later shown to be part of 

the the novel zinc-finger protein C4SR. It is an unusual protein in that 

there is nothing like it in the database with its particular arrangement of 

domains. Its function is unknown at this stage, but may be inferred to have 

a role in nucleic acid binding, (ii) The somatic YB protein FRGYl was also 

cloned via its binding to riboprobe. Its counterpart in the rabbit 

reticulocyte has been shown to be present in mRNP (Evdokimova et al., 

1995). (iii) M7, a cDNA which encodes the small subunit ribosomal protein 

S27, was cloned. The ribosomal protein S27 may have an RNA-binding 

function via its zinc-fingers. With the use of antisera, the following cDNAs 

were obtained: (i) nucleolin was cloned on three occasions using anti- 

HTSN. Nucleolin was later confirmed to be present in the HTSN; however,
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there is no conclusive evidence to suggest that it is present in mRNP in 

vivo, (ii) The novel protein AB21 was selected with anti-HTP. It is 

impressively similar to a yeast global gene regulator protein, RPD3, and to 

an uncharacterized C. elegans protein. It was not possible to demonstrate 

the presence of AB21 in the mRNP conclusively, but data from iodination 

and amino-acid cleavage experiments is consistent with the AB21 amino­

acid sequence. AB21 is an oocyte-specific protein and its expression peaks 

in stage II oocytes. Its function remains to be determined. Finally, an RNA 

helicase was identified through peptide sequencing, which belongs to the 

subfamily of DEAD-box proteins that includes Drosophila ME31B, human 

p54, and S. pombe STE13. A Xenopus oocyte mRNP protein of 54 kDa was 

crosslinked to ATP, and is likely to be the Xenopus version of the above 

RNA helicases. The function of the RNA helicase is unknown: it could be 

an important and intriguing new component of the masked mRNP 

particle.
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Chapter 6

Discussion
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6.0 Veiratiiliy of the YB proteins

The YB proteins are a multifunctional family of gene regulators. In the 

context of Xenopus oocytes, they are an essential component of masked 

messenger RNAs. In order to package a wide range of mRNAs, it is 

necessary for the YB proteins to bind to many different mRNA sequences. 

The binding assays presented in chapter 4 have increased the 

understanding of the YB protein:RNA interactions. In essence, two distinct 

binding activities were observed, one mediated by the CSD (cold-shock 

domain) and the other by the basic/aromatic islands in the TD (tail 

domain).

The CSD preferred the single stranded polypurines poly(A,G) or poly(G) 

but not poly(A), a binding activity that was sensitive to 1-2 mM Mg2+. As 

was mentioned in section 4.5, supporting evidence comes from studies on 

the protein unr, which consists of a five-fold repeat of the CSD with no 

associated TD. Binding of unr to nucleic acids was shown to be sensitive 

to 1 mM Mg2+, and was competed preferentially by poly(G) (Jacquemin- 

Sablon et al, 1994). In addition, p50, an abundant rabbit reticulocyte 

mRNP protein, now identified as YB-1 (Evdokimova et al, 1995), prefers 

poly(G) in a binding buffer that lacks Mg2+. (Minich et al, 1993). In the 

context of DNA, YB-1 has also been reported to bind to purine-rich 

stretches present in the RSV LTR (Rous-Sarcoma Virus Long Terminal 

Repeat). Although this project only tackled RNA-binding properties, 

DNA-binding properties are also relevant in the discussion because the YB 

proteins bind to and regulate DNA as well as mRNA in vivo.

The nucleic-acid binding properties of the CSD and TD have recently been 

compared (Murray, 1994). By using both DNA and RNA substrates 

containing the Y-box sequence, it was found that the CSD binds
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preferentially to ssDNA. A preference for single-stranded templates has 

been described in various studies (for example, Marello et al., 1992; Grant 

and Deeley, 1993; Horwitz et ah, 1994). More recently, YB-1 has been 

shown to promote the formation of single-stranded DNA in the HLA-DRa 

promoter (MacDonald et ah, 1995). Furthermore, the the p-barrel 

configuration of the bacterial cold-shock proteins has been suggested to be 

consistent with binding to a single-stranded target, and simple model 

building suggests that the aromatic rings on the solvent face of the p- 

barrel could stack with the bases in ssDNA or RNA (Schindelin et ah, 1993; 

Newkirk et ah, 1994). In gel retardation assays, both the B. subtilis cold- 

shock protein CspB and its E. coli homologue CspA bind preferentially to 

ssDNA (Schnuchel et al., 1993; Schindelin et al., 1994; Graumann and 

Marahiel, 1994). What remains to be determined is the detailed structure 

of the CSD:DNA or CSD:RNA complex, the prediction being that the 

highly conserved aromatic and basic residues which protrude from the 

solvent face of the p-barrel interact directly with ssDNA or RNA. 

Eventually, the structure of the complex might explain the empirically 

observed preference for poly(G) in RNA-binding and for the Y-box 

sequence in ssDNA binding. It might also explain why Mg2+ and not other 

polycations interfere with binding, either directly, or by altering the 

structure of the nucleic acid target in such a way as to render it less 

accessible to the CSD.

The B/A (basic/aromatic) islands present in the TD of pp60, pp56, and 

FRGYl were listed and compared in Fig. 5. Individual B/A islands were 

UV-crosslinked to RNA, and their binding specificity was altered by Mg2+. 

Similar experiments were repeated with other polycations such as 

spermine and spermidine (not shown), resulting in a similar shift in 

binding specificity. In the presence of the polycations Mg2+, spermine and



208

spermidine, the TD bound preferentially to poly(C,U) (and to poly(A,G) in 

their absence). This would explain the earlier report in which poly(C,U) is

the most efficient competitor in binding buffers where Mg2+ was a 

standard component (Marello et al, 1992).

In addition, the TD is thought to be responsible for protein:protein 

associations via electrostatic interactions between charged domains 

(Tafuri and Wolffe, 1992), and the kinetics of YB-1 binding to a 

polypyrimidine template are suggestive of cooperative binding effects 

(Horwitz et al, 1994). The ability to multimerize would be a desirable 

property in a situation where mRNA needs to be packaged efficiently, 

preventing its association with translation initiation factors. Because 

native mRNA sequences contain arrays of both purines and pyrimidines, 

complex structures form in solution. The appearance of the pp60:cyclin B1 

mRNA complexes in the electron micrographs (Fig. 14) suggested that the 

complexes were of a more or less uniform shape. The shape of this specific 

YB protein:mRNA complex would appear to depend on the structure of 

the specific mRNA involved.

It may be suggested tore tto boto the CSD and tlie TD migfe cooperate in 

vivo to bind to mRNA. That both the CSD alone or the TD alone can bind 

to RNA and block its translation was suggested in the microinjection 

experiments of Ranjan et al. (1993), in which over-expression of constructs 

encoding either the CSD or the TD resulted in the translational repression 

of a CAT-reporter construct. By the same token, it may be suggested that 

both the CSD and TD might also cooperate in vivo in binding to DNA.

The preference for polypyrimidines in DNA binding has been reported in 

various other studies, and has caused an apparent dilemma: shouldn’t the 

YB proteins bind preferentially to the Y-box sequence in the context of
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DNA? It is possible that the observed affinity for polypyrimidines, such as

those present in H-DNA triplex structures, was due to binding by the TD. 

The binding buffers used in these studies (Kolluri et al., 1992; Grant and 

Deeley, 1993; Horwitz et al., 1994) all included MgC2. According to 

Murray (1994), isolated B/A islands bind to RNA probes containing the Y- 

box sequence but not to a similar ssDNA probe. However, pyrimidine-rich 

DNA substrates were not considered in that study. It is possible that the 

TD prefer RNA sequences over ssDNA sequences in general, but that 

certain DNA sequences rich in pyrimidines are nonetheless bound by the 

TD, albeit with a lower affinity.

H-DNA triplex structures are thought to occur in a variety of promoters 

which contain regions of homopur ine/homopyrimidine strand 

asymmetry, and are noted for their hypersensitivity to SI nuclease 

(Kinniburgh et al., 1994). Kinniburgh et al. (1994) suggest that many genes, 

and, particularly those that regulate growth processes, have promoter- 

proximal NSE (nuclease sensitive elements). For example, H-DNA is 

present in the mouse c-Ki-ras proto-oncogene promoter (Pestov et al., 1991) 

and in the c-myc promoter (FiriuLli et al., 1992). At least two protein factors, 

hnRNPK (Takimoto et al., 1993) and the YB protein NSEP-1 (Kolluri et al., 

1992), are thought to bind to the c-myc NSE and either promote the 

formation of, or stabilise H-DNA (Kinniburgh et al, 1994). The c-myc 

DNasel hypersensitive site has been shown to disappear coincidentally 

with the cessation of c-myc transcription (Siebenlist et al, 1988). Mutations 

in the H-DNA area of the c-myc promoter have suggested that the NSE 

accounts for 75-85% of the total c-myc transcription (Davis et al, 1989; 

Firulli et al, 1994). The proposed structure of the c-myc H-DNA element 

(see Fig. 7) presents a displaced purine-rich (and, perhaps significantly, G-
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rich) single strand, as well as a pyrimidine-rich strand in the triplex. Could 

these features be suitable binding targets for the YB proteins?

Another example in which the YB proteins have been suggested to interact 

with H-DNA is the human y-globin promoter (Horwitz et ah, 1994), An H- 

DNA forming region is present between -228 and -189 upstream of the y- 

globin transcription start site. Horwitz et ah find that YB-1 binds to the 

homopyrimidine sequences. In the hereditary condition HPFH (hereditary 

persistence of fetal hemoglobin), in which fetal y-globin persists in the 

infant, specific point mutations were seen to destabilise H-DNA while 

concurrently abolishing or reducing the binding of YB-1. Horwitz et ah 

suggest that YB-1 acts as a transcriptional repressor of y-globin in vivo.

In another example, Hollingsworth et ah (1994) point out that the cystic 

fibrosis gene CFTR also contains a putative H-DNA forming region, and 

find that a 27 kDa protein binds to the purine-rich single strand in the H- 

DNA. Thus a number of proteins are likely to bind to or promote the 

formation of H-DNA in vivo. The binding of YB proteins to H-DNA has so 

far only been demonstrated in vitro, and some caution is therefore 

required in interpreting these results. The involvement of YB proteins 

with H-DNA in vivo, affecting gene regulation through H-DNA as weft as 

Y-box sequences, remains to be demonstrated.

In summary, results suggest that the CSD and TD have distinct nucleic- 

acid binding properties. The combination of these binding domains and 

the influence of polycations on binding preferences might account for the 

observed versatility in nucleic-acid binding in the context of mRNA, but 

also DNA. It is tempting to speculate that both Y-box sequences and 

displaced strands such as those present in H-DNA may be recognized by 

the YB proteins in vivo, a recognition involving both the CSD and TD.
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6.1 of the YB proteins

Microinjection experiments by Braddock et al. (1994) have shown that 

nuclear phosphorylation of the YB proteins is essential for mRNA 

masking to occur. This is consistent with earlier experiments, in which 

reconstituted pp60:globin mRNA complexes were translationally inactive 

in a wheat germ lysate but became translationally active after 

dephosphorylation (Kick et al, 1987). Moreover, the rabbit reticulocyte 

mRNP protein p50 (YB-1) is also phosphorylated in vitro and in vivo, and 

when reconstituted with globin mRNA, also renders globin mRNA 

translationally inactive in a wheat germ lysate (Minich and Ovchinnikov, 

1992).

The results presented in chapter 3 confirm the presence of an mRNP- 

associated kinase activity, and that the YB proteins can be phosphorylated 

in the nuclei. In chapter 4, three different experiments suggest that 

phosphorylation of the YB proteins improves RNA-binding, measured in 

terms of an increased stability of the proteiniRNA complex in NaCl, and in 

terms of the ability to crosslink to riboprobe. In addition, the observed 

differences between pp60 and pp56 in riboblots and in a density gradient 

separation of native mRNP particles suggest that the binding of pp60 to 

RNA is more stable than pp56. It is probably not coincidental that pp60 

has three extra phosphorylation sites in the TD.

The role of casein kinase II in mRNA masking is not limited to Xenopus 

oocytes. For example, Thoen et al. (1984) have studied embryos of the the 

invertebrate Artemia salina (brine shrimp). These embryos can interrupt 

their development in poor environmental conditions, while storing their 

mRNPs in free particles. Phosphorylation of the mRNP proteins by an 

associated protein kinase activity was associated with the inhibition of
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translation. The properties of the kinase, including activation by hemin 

and spermine, inhibition by heparin, its cAMP and Ca2+-independence, 

molecular mass, and its ability to phosphorylate casein were consistent 

with its being casein kinase II. It may be inferred that a similar mechanism 

involving phosphorylation of YB proteins exists in Artemia. This 

mechanism could also be thought to occur in somatic contexts where 

mRNA masking is required. In other words, the phosphorylation and 

dephosphorylation of the YB proteins could be the one of the means by 

which external physiological or hormonal stimuli influence the masking 

and unmasking of stored mRNAs in a variety of tissues.

6.2 Future experiments involving YB proteins

The YB proteins are emerging as a versatile, multi-functional family of 

gene regulators. After the discovery of YB-1 as one of the most abundant 

mRNP proteins in rabbit reticulocyte mRNP, it is tempting to speculate 

that an involvement of YB proteins in mRNA masking exists in other 

somatic contexts. Evdokimova et al. (1995) used an antiserum raised 

against p50 to detect a cross-reactive protein in rat liver and rabbit muscle 

mRNP. The techniques described in chapters 3 and 4 in with respect to 

Xenopus oocyte mRNP could be applied to mRNPs from other tissue 

extracts: in particular, heat-treatment, the affinity for a heparin column, 

and efficient UV-crosslinking to RNA would be exploited to demonstrate 

the presence of YB proteins.

In the context of masked messenger RNAs, more precise experiments will 

be necessary to prove the association of YB proteins with specific mRNAs 

in vivo. For example, YB phosphoproteins might be predicted to be 

associated with nascent c-mos transcripts in the nucleus, and to remain 

part of the c-mos mRNP particle until its recruitment for translation, when
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the YB proteins bound to c-mos would be dephosphorylated.

Immunoprecipitation might be a feasible experimental strategy to

associate c-mos mRNA (or any other masked message) with YB proteins.

Very little is known about the regulation of the YB protein genes

themselves. Their expression appears to be associated with the induction 

of cell proliferation in somatic tissues, and it has been suggested that the 

YB proteins are involved in activating cell proliferation genes (Grant and 

Deeley, 1993; Ito et al., 1994). It may be of interest to isolate genomic DNA 

clones to investigate the promoter sequences of YB protein genes; this 

information might indicate what factors regulate their expression. One 

possible clue comes from the work of Ito et al. (1994): after serum 

stimulation of quiescent fibroblasts (NIH/3T3 cells) expression of the rat 

YB protein RYB-a was rapidly induced. The induction of RYB-a was 

blocked by pre-venting cell-cell adhesion or by adding genistein, a specific 

inhibitor of tyrosine kinase. Thus a signalling pathway that leads to the 

activation of YB protein genes via a tyrosine kinase is likely to exist.

The postulated role of YB proteins in cell proliferation still needs more 

corroborating evidence. To that effect, a FRGYl cDNA (clone N5, see 

section 5.1) has been sent to the University of Pisa, Itaily, where Dr.

Batistoni et al. are studying the regeneration of planarians (flatworms).

These organisms have the remarkable ability to regenerate a full body 

after having been cut in half. The working hypothesis is that the planarian 

homologue of FRGYl is induced, and is necessary for the ensuing cell 

proliferation processes needed for tissue regeneration. In addition, a 

research project is currently being proposed in this lab that would 

consider the pattern of expression of YB-1 in a human ovarian carcinoma 

cell line. The expression would be monitored with a nucleic acid probe. A 

human YB-1 cDNA would either be obtained from another group or
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isolated through cross-hybridization using a FRGYl probe (clone N5). In

parallel, the expression of other cell proliferation markers, such as

nucleolin and casein kinase II, would be monitored.

6.3 AB21: a protein in search of a functton

Using the immunoselection technique, clone AB21 was isolated and

sequenced, revealing a novel protein which is very similar to a yeast gene 

regulator, RPD3 (Vidal and Gaber, 1991). The estimated molecular weight 

of AB21 (54.7 kDa), the presence of tyrosine and methionine-rich 

protein(s) around 54 kDa in the mRNP fraction, and the FA-cleavage of 54 

kDa material into fragments that included one of a predicted size, are 

consistent with the AB21 amino-acid sequence: however, the data was by 

no means conclusive. Whether or not AB21 is an mRNP protein, it was 

undoubtedly cloned from an oocyte cDNA library which represents 

proteins that are expressed during oogenesis, and is therefore of interest.

Its presence in mRNP has not been demonstrated, and further 

experiments will be needed to investigate its function in gene regulation.

The only available clues as to the function of AB21 in Xenopus oocytes 

come from the phenotypic characteristic of the rpd3 mutant in yeast. RPD3 

was originally cloned in a genetic screen designed to characterise new 

transcription factors. Vidal and Gaber (1991) used a model system in 

which a yeast strain has a deletion in the gene TRK1, which encodes a 

high-affinity K+ transporter. The same strain, however, has a functional 

TRK2 gene, encoding a low affinity K+ transporter and its expression is 

essential in media containing low levels of K+. Two mutants were 

isolated, rpdl and rpd3 (RPD=Reduced Potassium Dependency), which 

restored the Trk+ phenotype.
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Vidal et al. (1991) showed that RPDl is required for the full repression and 

full activation of a variety of yeast genes, including cell differentiation, cell 

type-specific and metabolically regulated genes, and consequently 

describe it as a “global transcriptional regulator". The authors have shown 

that the rpdl mutation in results in the increased transcription of TRK2. 

RPD1 was cloned; RPD1 protein contains four HLH (Helix-Loop-Helix) 

motifs as well as acidic, glutamine and proline-rich regions, which they 

propose are protein:protein interaction motifs. Vidal et al. (1991) suggest 

that RPD1 might bind to a variety of transcription factors, thus affecting 

their ability to bind to DNA. In a sense, RPD1 protein could be described 

as a “regulator of gene regulators".

The phenotype of rpd3 is indistinguishable from rpdl, and the phenotypic 

analysis of double mutants rpdl/rpd3 suggest that they are involved in the 

same pathway (Vidal and Gaber, 1991). In other words, rpdl and rpd3 

mutants have identical pleiotropic phenotypes, including mating defects, 

the inability to sporulate as homozygous diploids, and a sensitivity 

towards cycloheximide, an inhibitor of translation. Both RPD1 and RPD3 

have been described as negative regulators of early meiotic genes 

(Bowdish et al, 1993). In Xenopus oocytes, negative gene regulation is via 

the translational repression of mRNAs required for the progression of 

meiosis (in previtellogenic oocytes, mRNAs such as c-mos are being 

actively transcribed but packaged into translationally silent masked 

mRNPs).

There is still no biochemical information about the yeast protein RPD3. Its 

“global effects" on a variety of genes, including its negative effect on 

meiotic genes, may in principle be mediated at the level of mRNA. There 

are no obvious informative homologies in RPD3 or AB21 which relate 

them to other RNA (or DNA) binding proteins. Only one possible
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structure was noticed in AB21: a putative a-helical region in the C- 

terminus of Xenopus AB21, which is not present in yeast RPD3. When 

plotted on a helical-net diagram (Fig. 49), clusters of both basic and acidic 

residues appear. It is tempting to speculate that the a-helix could act as a 

"sticky-tail" to promote protein:protein multimerization in the context of 

mRNP packaging.

6.4 An RNA heKcase is aasoriated with Xenopus oocyte mRNP

Whereas the presence of AB21 in the mRNP was not confirmed, direct 

peptide sequencing of mRNP proteins has revealed the presence of an 

RNA helicase. This RNA helicase belongs to the DEAD-box family of RNA 

helicases, so called because of the conserved sequence (D-E-A-D). The 

alignment between the helicases suggests that within the DEAD-box 

family, the Xenopus peptides are closely aligned to human p54 (Liu and 

Yunis, 1992), Drosophila ME31B (De Valoir et al, 1991) and the yeast 

Schizosaccharomyces pomhe protein Stel3 (Maekawa et al., 1994), 

representing a subfamily within the DEAD-box family (Fig. 51). For a 

comparison, various DEAD-box RNA helicases are shown in Fig. 55, 

ranging from E. coli to mammals. A number of conserved features are 

clearly present in all members of the DEAD-box family, and include the 

ATP binding motifs "A" and "B", commonly found in various ATPases: the 

"A" site, consensus AXXGXGKT, and the "B" site, consensus VLDEAD 

(Walker et al, 1982). However, there are other highly conserved regions, 

such as PTRELA, GG, TPGR, SAT, ARGXD and HRIGRXXR (see Fig. 55).
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Figure 55 Alignment of various DEAD-box RNA helicases. Various 

RNA helicases, ranging from E.coU to mammals, were aligned using the 

PILEUP algorithm (GCG package, Genetics Computer Group Inc., version 

7.2,1992). Areas of identity or close conservation between all examples are 

indicated with an asterisk. Indicated are the ATPase 'A’ and 'B' motifs 

(AXXGXGKT and VLDEAD respectively. Walker et al., 1982), and two 

other conserved regions, SAT and HRIGRXXR, which are known to be 

involved in ATP hydrolysis and helicase activity (Pause and Sonenberg, 

1992; Pause et al., 1993,1994). p68: human RNA helicase found in nuclei of 

proliferating cells (Iggo et al, 1991); RM62: Drosophila RNA helicase (Dorer 

et al, 1990); AN3: mRNA localized to animal poles in the Xenopus oocyte 

(Gururajan et al., 1991); PL1O: RNA helicase expressed in mouse testis 

(Leroy et al, 1989); vasa: Drosophi.a RNA helicase, component of the polar 

granules (Hay et al., 1988); p54: Human RNA helicase (Lu and Yunis, 

1992); ME31B: DrosophUa germ-cell specific RNA helicase (De Valoir et al, 

1991); STE13: Schizosaccharomyces pomhe RNA helicase involved in meiosis 

(Maekawa et al., 1994); eIF4A: RNA helicase translation initiation factor 

from Nicotiana sytvestris (Owttrim et al., 1994); DBPA: putative E. coU RNA 

helicase (Iggo et al, 1990); DeaD: putative E. coU RNA helicase involved in 

ribosomal function (Toone et al., 1991); PRP28: a yeast RNA helicase 

involved in splicing (Strauss and Guthrie, 1991). Two sequenced Xenopus 

oocyte mRNP peptides were shown in Fig. 51, suggesting that the Xenopus 

oocyte RNA helicase of 54 kDa belongs to the subfamily which includes 

human p54. DrosophUa ME31B and yeast STE13.
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1 50
p68
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PLIO
vasa
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eIF4A
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51 100
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p68
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ME31B
STE13
eIF4A
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PR28
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EGGFRGGQGG
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DR....GRDR 
DD....RRGG 
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GGGGNRFGGG
D.I^G.....
DTRA.....
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GGGGDYHGIR 
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......RAG
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150

SKQERLKENE ESLTPTQSDS AKVEIKKVNS RDDSFFNETN

p68
RM62
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PLIO
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p54
ME31B
STE13
eIF4A
DBPA
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PR28
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PLSGKKFGNP G........
GGGGNGFGGG GGFGDGGGGG 
DRRQDGFDGM GNRSDKSGFG 
ERGRSDYESV GSRGGRSGFG 
REERGGiiER GERGD.GGFA 
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....EKLVKK KWNLDELPKF 
GGGSQDLPMR PVDFSNLAPF 
RFDRGNSRWS DDRNDEDD.. 
KFEGGGNSGW CDKADEDD..

NNNNIAEDVE 
QMNQLKNTNT INNGTQQQAQ 
MMTEKLNSGH TNLTSKGIIN 
............ MAESLIQ
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EKNFYQEHPD 
KKNFYQEHPN 
....WSKPLA 
....WSKPLP 
RKREFYIPPE 
SMTTTIKPGD 
DLQIAGNTSD 
KLENA.NLND 
i i .MAGSAPE

DKKRNPSKQN GSKFHFSWNE SEDTLSGYDP IVSTRAIDLL WKGKTPKNAA
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201 250
p68 LARRTAQEV. .....ETYR RS. , .KEIT VR..GHNCPK PVLNFYEANF
RM62 VANR.SPYEV. .....QRYR EE....QEIT VR..GQ.VPN PIQDFSEVHL
AN3 PNDRVEQELF SGSNTGINFE KY. , .DDIP VEATGSNCPP HIESFHDVTM
PLIO PSERLEQELF SGGNTGINFE KY....DDIP VEATGNNCPP HIESFSDVEM
vasa PSNDAIEIFS SGIASGIHFS KY. . . .NNIP VKVTGSDVPQ PIQHFTSADL
p54 D..WKKTLKL PPKDLRIKTS DV....TSTK GNE...... ... .FEDYCL
ME31B DMGWKSKLNC RQRTTRFKTT DV....TDTR GNE...... ....FEEFCL
STE13 RESFKGQMKA QPVDMRPKTE DV....TKTR GTE...... ....FEDYYL
eIF4A GSQFD.... .ARQFDAKMT EL....LGTE QEEFFTSYDE VYDSFDAMGL
DBPA
DeaD .....MMSY VD....WPPL ILRHTYYMAE FETTFADLGL
PR28 ESSYMGKHWT EKSLHEMNER DWRILKEDYA IVTKGGTVEN PLRNWEELNI

251 'A*motif 300
p68 ..PANVMDVI ARQNFTEPTA IQAQGWPVAL SG...LDMVG VAQTGSGKTL
RM62 ..PDYVMKEI RRQGYKAPTA IQAQGWPIAM SG...SNFVG LAKTGSGKTL
AN3 ..GEIIMGNI QLTRYTRPTP VQKHAIPIII EK...RDLMA CAQTGSGKTA
PLIO ..GEIIMGNI ELTRYTRPTP VQKHAIPIIK EK...RDLMA CAQTGSGKTA
vasa ..RDIIIDNV NKSGYKIPTP IQKCSIPVIS SG...RDLMA CAQTGSGKTA
p54 ..KRELLMGI FEMGWEKPSP IQEESIPIAL SG...RDILA RAKNGTGKSG
ME31B ..KRELLMGI FEKGWERPSP IQEAAIPIAL SG...KDVLA RAKNGTGKTG
STE13 ..KRELLMGI FEAGFERPSP IQEESIPIAL SG...RDILA RAKNGTGKTA
S1F4A ..QENLLRGI YAYGFEKPSA IQQRGIVPFC KG...LDVIQ QAQSGTGKTA
DBPA ......MTP VQAAALPAIL AG...KDVRV QAKTGSGKTA
DeaD ..KAPILEAL NDLGYEKPSP IQAECIPHLL NG...RDVLG MAQTGSGKTA
PR28 IPRDLLRVII QELRFPSPTP IQRITIPNVC NMKQYRDFLG VASTGSGKTL** ** ** *** * ******

301 350
p68 SYLLPAIVHI NHQPFLE . . , RGDGPICLVL APTRELAQQV
RM62 GYILPAIVHI NNQQPLQ... RGDGPIALVL APTRELAQQI
AN3 AFLLPILSQI YADGPGDAMK HLQENGRYGR RKQFPLSLVL APTRELAVQI
PLIO AFLLPILSQI YTDGPGEALR AMKENGKYGR RKQYPISLVL APTRELAVQI
vasa AFLLPILSKL LEDPHELEL. .......GR PQVC.... IV SPTRELAIQI
P54 AYLIPLLERL .......DL KKDNIQAMVI VPTRELALQV
ME31B AYCIPVLEQI .......DP TKDYIQALVM VPTRELALQT
STE13 AFVIPSLEKV .......DT KKSKIQTLIL VPTRELALQT
eIF4A TFCSGVLQQL .......DY SLVECQALVL APTRELAQQI
DBPA AFGLGLLQQI .......DA SLFQTQALVL CPTRELADQV
DeaD AFSLPLLQNL .......DP ELKAPQILVL APTRELAVQV
PR28 AFVIPILIKM SRSPPRPPSL KI....... .IDGPKALIL APTRELVQQI

* * * * * ****** * *

351 400
p68 QQVAAEYC.R AC....RLK STCIYGGAPK GPQIRDLERG VEICIATPGR
RM62 QQVATEFG.S SS....YVR NTCVFGGAPK GGQMRDLQRG CEIVIATPGR
AN3 YEEARKFA.Y RS....RVR PCWfGGADI GQQIRDLERG CHLLVATPGR
PLIO YEEARKFS.Y RS....RVR PCWGGGADI GQQIRDLERG CHLLVATPGR
vasa FNEARKFA.F ES....YLK IGIVYGGTSF RHQNECITRG CHWIATPGR
p54 SQICIQVSKH MG... GAK VMATTGGTNL RDDIMRLDDT VHWIATPGR
ME31B SQICIELAKH L.....DIR VMVTTGGTIL KDDILRIYQK VQLIIATPGR
STE13 SQVCKTLGKH M.... NVK VMVTTGGTTL RDDIIRLNDT VHIWGTPGR
eIF4A EKVMRALGDY L.....GVK VHACVGGTSV REDQRILQSG VHVWGTPGR
DBPA AGELRRLARF LP....NTK ILTLCGGQPF GMQRDSLQHA PHIIVATPGR
DeaD AEAMTDFSKH MR....GVN WALYGGQRY DVQLRALRQG PQIWGTPGR
PR28 QKETQKVTKI WSKESNYDCK VISIVGGHSL EEISFSLSEG CDILVATPGR** * * ******
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401 *B' motif 450
p68 LIDFLECGKT NLRRTTYLVL DEADRMLDMG FEPQIRKIVD QI....RP..
RM62 LIDFLSAGST NLKRCTYLVL DEADRMLDMG FEPQIRKIVS QI....RP..
AN3 LVDMMERGKI GLDFCKYLVL DEADRMLDMG FEPQIRRIVE QDTMPPKG..
PLIO LVDMMERGKI GLDFCKYLVL DEADRMLDMG FEPQIRRIVE QDTMPPKG..
vasa LLDFVDRTFI TFEDTRFWL DEADRMLDMG FSEDMRRIMT HVTMRPE...
p54 ILDLIKKGVA KVDHVQMIVL DEADKLLSQD FVQIMEDIIL TL....PK..
ME31B ILDLMDKKVA DMSHCRILVL DEADKLLSLD FQGMLDHVIL KL....PK..
STE13 VLDLAGKGVA DFSECTTFVM DEADKLLSPE FTPIIEQLLS YF....PK..
SIF4A VFDMLRRQSL RPDHIKMFVL DEADEMLSRG FKDQIYDIFQ LL....PP..
DBPA LLDHLQKGTV SLDALNTLVM DEADRMLDMG FSDAIDDVIR FA....PA..
DeaD LLDHLKRGTL DLSKLSGLVL DEADEMLRMG FIEDVETIMA QI....PIE..
PR28 LIDSLENHLL VMKQVETLVL DEADKMYDLG FEDQVTNILT KVDINADSAV

*** * *** ******* * * **

451 'SAT1 500
p68 DRQTLMWSAT WPKEVRQLAE DFLKDYIHIN IGALELSANH NILQIVDVCH
RM62 DRQTLMWSAT WPKEVKQLAE DFLGNYIQIN IGSLELSANH NIRQWDVCD
AN3 VRQTMMFSAT FPKEIQILAR DFLDEYIFLA VGRVG.STSE NITQKKWWVE
PL1O VRHTMMFSAT FPKEIQMLAR DFLDEYIFLA VGRVG.STSE NITQKWWVE
vasa .^(^TLMPSAT FPEEIQRMAG EPLKNYVFVA IGIVG.GACS DVKQTIYEVN
p54 NRQILLYSAT FPLSVQKFMN SHLEKPYEIN L.MEELTLKG VTQYYAYVT.
ME31B DPQILLFSAT FPLTVKNFME KHLREPYEIN L.MEELTLKG VTQYYAFVQ.
STE13 NRQISLYSAT FPLIVKNFMD KHLNKPYEIN L.MDELTLRG VTQYYAFVD.
eIF4A KIQVGVFSAT MPPEALEITR KFMNKPVRIL VKRDELTLEG IKQFYVNVDK
DBPA SRQTLLFSAT WPEAIAAISG RVQRDPLAIE IDSTDALPP. IEQQF.YETS
DeaD GHQTALFSAT MPEAIRRITR RFMKEPQEVR IQSSVTTRPD ISQSY.WTVW
PR28 NRQTLMFTAT MTPVIEKIAA GYMQKPVYAT IGVETGSEPL IQQWEYADN* ***** * * *

501 550
p68 DVEKDEKLIR LMEEI..MSE KENKTIVFVE TKRRCDELTR KM.RRDGWPA
RM62 EFSKEEKLKT LLSDIYDTSE SPGKIIIFVE TKRRVDNLVR FI.RSFGVRC
AN3 EMDKRSFLLD LLNA....TC KDSLTLVFVE TKKGADALED PL.YHEGYAC
PLIO EADKRSFLLD LLNA....TC KDSLILVFVE TKKGADSLED PL.YHEGYAC
vasa KYAKRSKLIE ILSE....QA DG..TIVFVE TKRGADFLAS PL-SEKEPPT
p54 ERQKVHCLNT LFSRL.... SSQRVELLAK KI.SQLGYSC
ME31B ERQKVHCLNT LFSKL....QINQSIIFCN STQRVELLAK KI.TELGYCC
STE13 ESQKVHCLNT LFSKL.... QINQSIIFCN STNRVELLAK KI.TELGYSC
eIF4A EEWKLETLCD LYETL....AITQSVIFVN TRRKVDWLTD KM.RSRDHTV
DBPA SKGKIPLLQR LLSLH....QPCS^^^CN TKKDCQAVCD AL.NEVGQSA
DeaD GMRKNEALVR FLEAE....DFDMIIFVR TKNATLEVAE AL.ERNGYNS
PR28 DEDKFKKLKP IVAKY...... OPPUGN YKQTADWLAE KFQKETNMKV

* * * * * * *

551 600
p68 MGIHGDKSQQ ERDWVLNEFK HGKAPILIAT DVASRGLDVE DVKFVINYDY
RM62 GAIHGDKSQS ERDFVLREFR SGKSNILVAT DVAARGLDVD GIKYVINFDY
AN3 TSIHGDRSQR DREEALHQFR SGKSPILVAT AVAARGLDIS NVKHVINFDL
PLIO TSIHGDRSQR DREEALHQFR SGKSPILVAT AVAARGLDIS NVKHVINFDL
vasa TSIHGDRLQS QREQALRDFK NGSMKVLIAT SVASRGLDIK NIKHVINYDM
p54 FYIHAKMRQE HRNRVFHDFR NGLCRNLVCT DLFTRGIDIQ AVNWINFDF
ME31B YYIHAKMAQA HRNRVFHDFR QGLSRNLVSQ DLFTRGIDVQ AVHWHFDF
STE13 FYSHAKMLQS HRNRVFHNFR NGVCRNLVCS DLLTRGIDIQ AVNWINFDF
eIF4A SATHGDMDQN TRDIIMREFR SGSSRVLITT DLLARGIDVQ QVSLVINYDL
DBPA LSLHGDLEQR DRDQTLVRFA NGSARVLVAT DVAARGLDIK SLELLWNFEL
DeaD AALNGDMNQA LREQTLERLK DGRLDILIAT DVAARGLDVE .RISLLWNYfDI
PR28 TILHGSKSQE QREHSLQLFR TNKVQIMIAT NVAARGLDIP NVSL\WftJFQI** * * ** ** * * ***** * ****



221

601 '^R^RglUH^R motif 650
p68 PNSSEDYIHR IGRTARSTKT GTAYTFFTPN .NI.i.KQVS DLISVLREAN
RM62 PQNSEDYIHR IGRTGRSNTK GTSFAFFTKN .NA...KQ2^ ALVDVLREAN
AN3 PSDIEEYVUR GLATSFFN.E KNI.i.NITK DLLDLLVEAK
PLIO PSDIEEYVHR IGRTGGRVGNL GLATSFFN.E RNI...NITK DLLDLLVEAK
vasa PSKIDDYSUR GRATSFFHPE KDRinAIAA DLVKILEGSG
p54 PKLAETYLHR XGRSGRFGHL GLAIILLITYD DRFNLKSIEE QLGTEIKPIP
ME31B PIMAAETYLHR IGRSGRFGHL GIAINLITYE DRFDLHRIEK ELGTEIKPIP
STE13 PKNAETYLHR XGRSGRFGHR GLAISFISWA DRFNLYRIEN ELGTEIQPIP
©IF4A PTQPENYLHR IGRSGRFGRK DEW4LFDIQK FYNWIEELP
DBPA AWDPE7HVHR IGRTARAGNS GLAISFCAPE E...................
DeaD PMDSESYVHR IGRTGRRAGRA GRALLFVENR ERRLLRMER TMKLTIPEVE
PR28 SKKMDDYHHR IGRTGRAANE GTAVSFVSTA ED...ESLIR ELYKYVRKHD

* **** ****** * *

651 700
p68 QAINPKLLQL VEDRGSGRSR GRGGMK^DDF^. GDRYSAGKGG GFNTFRDREN
RM62 QEINPALENL ....... AR. NSRYDGGGGP S........
AN3 QEVPSWL...... ENMAYEQ HHKSSSGGGS KSRFSGGFGA K. . ..DYRQS
PLIO QEVPSWL...... ENMAFEH HYKGGSRGRS KSRFSGGFGA R. . . . DYRQS
vasa QTVPDFLRTC GAGGDGGYSN QNFGGVDVRG RGNYVGDATN V....EEEEQ
p54 SNIDKSLYV..................... A EYHSEPVEDE KP.......
ME31B KVIDPALYV..................... A NVGASVGDTC NNSDLNNSAN
STE13 PSIDPSLYVF PNGDYQIPRP LTASADQVLA AQQAKGQEGY HNRPNNNRGG
eIF4A ANVADLL.............................................
DBPA ................. AQ RANIISDMLQ IK..LNWQTP PANSSIATLE
DeaD LPNAELLGKR RLEKFAAKVQ QQLESSDLDQ YRALLSKIQP TAEGEELDLE
PR28 PLNSNIFSEA VKNKYNVGKQ LSNEIIY.......................

701 750
p68 YDRGYSSLLK RDFGAKTQNG VYSAANYTNG SF..GSNFVS AGIQTSFRTG
RM62 ...........RYGGGGGGG RFGGGGFKKG SLSNGRGFGG GG...... G
AN3 SGA.GSSFGS SRGGRS.... SGHGGSRGFG GG.YGGFYNS DGYGGNYGGS
PLIO SGASSSSFSS GRASNSRSGG GSHGSSRGFG GGSYGGFYNS DGYGGNY.SS
vasa WD..................................................
p54 ....................................................
ME31B EEGNVSK........................................... . .
STE13 HPGGGGNGGG YRQSNRQPRY RGQQKAD........................
eIF4A . ...... ....
DBPA ......... ............. . ......... ..........
DeaD TLAAALLKMA QGERTLIVPP DGPMGPKGEF RDRDDGGPRD GNDRGPGGDR
PR28 ............. . .... ..... ..... . . . .

751 800
p68 NPTGTYQNGY DSTQQYGSNV PNMHNGMNQQ AYAYPATAAA PMIGYPMPTG
RM62 GGGEGGHSGF D.................................... ...
AN3 SQVDWWGN........................................
PLIO QGVDWWGN........................................
vasa ....................................................
p54 .......... .......... .......... .......... ..........
ME31B .......... .......... .......... .......... ..........
STE13 . ....... . ......... ......... .......... ..........
eIF4A ..... . ............ . .......... ..........
DBPA ...........AEMATLCID GGKKAKMRPG DVLGALTGDI GLDGADIGKI
DeaD EDGPGGEGRD VGDMQLYRIE VGGDDGVEVG HIVGAIANEG DISSRYIGNI
PR28 ... .... . ............. ..

801 839
p68 YSQ......................................
DBPA AVHPAHVYVA VRQAVAHKAW KQLQGGKIKG KTCRVRLLK
DeaD KLFASHSTIE LPKVCRVKCC NTLRALAF.. STSR....
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One of the best studied RNA helicases is eIF4A, which is part of the 

translation initiation factor eIF4F which includes the cap-binding protein 

eIF4E. The addition of mutant eIF4A to a rabbit reticulocyte lysate 

strongly inhibited translation of all tested mRNAs, including naturally 

uncapped mRNAs (Pause et al., 1994). The RNA helicase activity of eIF4A 

is believed to facilitate the binding of mRNAs to the tRNAmet-activated 

40S ribosomal subunit by unwinding highly structured 5' UTRs which 

otherwise impede translation initiation (Pause et al., 1994). The unwinding 

activity of eIF4A is driven by ATP hydrolysis, and requires the presence of 

a further factor, eIF4B, which is an RNA-binding protein containing RRM 

(RINA recognition) motifs. eIF4A has been crosslinked to ATP as well as 

RNA (Pause et al. 1993). A series of mutational analyses combined with 

biochemical assays have suggested that: the ATPase A motif, AXXGXGKT, 

is essential for ATP binding; the ATPase B motif, VLDEAD, is essential for 

ATP hydrolysis, and the SAT and HRIGRXXR regions are also involved in 

ATP hydrolysis (Pause and Sonenberg, 1992). It was later shown that the 

HRIGRXXR region is also involved in the RNA-binding and helicase 

activity, because mutations in any of the three arginines in HRIGRXXR, 

including conservative substitutions to lysine, reduced crosslinking to 

RNA and abrogated helicase activity (Pause et al., 1993; Pause et al., 1994).

Apart from eIF4A, which is strongly conserved across species and 

functions as a general translation initiation factors, other RNA helicase 

subfamilies exist, some of which are developmentally significant. The 

RNA helicase encoded by the Drosophila maternal-effect posterior group 

gene Vasa is localised to the posterior pole of the oocyte, and is 

sequestered by the pole cells which are the progenitors of the germ line 

(Lasko and Ashburner, 1990). Females with both copies of Vasa deleted are 

sterile: they fail to complete oogenesis and cannot lay eggs (Lasko and
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Ashburner 1988). The putative Xenopus homologue of Vasa, XLVG1 

(Xenopus Vasa-Like Gene) has recently been cloned (Komiya et at, 1994). It 

is expressed in male and female germ cells but not detected in somatic 

tissues, and its function remains to be determined.

As in the case of Vasa, Drosophila ME31B mRNA is only detected in the 

adult female germ line. However, the authors do not exclude that a more 

sensitive assay might detect somatic expression: the closely related human 

RNA helicase p54 is detected in a variety of tissues (Lu and Yunis, 1992). 

ME31B, like Vasa, is expressed in oocytes, the transcripts persisting until 

early embryos. De Valoir et al (1991) propose that the RNA helicase 

encoded by ME31B has a specialized role in the translational regulation of 

specific mRNAs that are under translational control during late oogenesis 

and embryogenesis in Drosophila, such as the mRNAs encoding ribosomal 

proteins or important developmental regulators such as bicoid. The 

function of human p54 is unknown at this stage. Its size is consistent with 

the size of the major protein that was crosslinked to ATP in Xenopus 

mRNP (see Fig. 54).

With respect to the novel Xenopus oocyte mRNP RNA helicase, a yeast 

homologue can also be described. Yeast cells enter the meiotic cycle in 

conditions of poor nutrition, forming haploid spores that are stored in the 

ascus. For example, when the fission yeast Schizosaccharomyces pomhe is 

starved for nitrogen, the mating reaction is induced: cells are arrested in 

the Gi phase of the cell cycle, and either remain stationary in a resting 

state or start sexual differentiation (Kitamura et al, 1990). Various mutants 

have been isolated through genetic analysis identifying at least thirteen 

genes, including STE13 (Kitamura et al., 1990). The ste13 mutation is not 

lethal, but the yeast fails to undergo Gi arrest during nitrogen starvation 

and fails to enter meiosis (Maekawa et al, 1994). STE13 was cloned using
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functional complementation, and found to encode a DEAD-box RNA 

helicase which belongs to the same subfamily as Drosophila ME31B, 

human p54 and the Xenopus oocyte mRNP protein. Maekawa et ah (1994) 

propose that the RNA helicase encoded by STE13 has a role in regulating 

the translation of mRNAs encoding proteins required for meiosis. They 

found that the stel3 mutant could not be complemented with a Drosophila 

cDNA encoding the RNA helicase Vasa, but instead could be 

complemented with a Drosophila ME31B cDNA to which STE13 is more 

closely related. Therefore there is some specialised property of this as 

opposed to other RNA helicases which enables it to perform its particular 

function in meiosis.

The VLDEAD and HRIGRXXR motifs are essential for STE13 function: site 

directed mutagenesis changed DEAD to DPAD, and HRIGR to HGIGR, 

both abolishing the function of STE13 (Maekawa et al., 1994). These 

mutations disrupted the RNA helicase activity. The major differences 

between RNA helicases lie outside the highly conserved catalytic regions, 

and probably confer the different cellular localisations and biochemical 

specificities upon the different members of the family. For example, in the 

N-terminus of Drosophila Vasa and its Xenopus homologue XLVG1 there is 

an arginine/glycine rich area (known as the "RGG box") which is present 

in various RNA-binding proteins. The RGG box, originally found in 

hnRNPU, is also present in hnRNPAl and nucleolin; in general, sets of 

between six and eighteen RGG boxes have been found in various proteins, 

often interspersed with aromatic residues (Burd and Dreyfuss, 1994). This 

characteristic presumably enhances the ability of Vasa/XLVGl to bind to 

RNA, whereas other helicases, such as eIF4A, require auxiliary factors, 

such as eIF4B. Due to the conservation in the key regions responsible for 

ATPase RNA helicase activity, all the DEAD-box proteins are expected to



225

share the general ability to bind ATP and unwind RNA: other domains 

such as RNA-binding domains have been added to specific helicases.

Further experiments are planned in order to gain more information about 

the Xenopus oocyte helicase p54: (i) oligonucleotide primers have been 

prepared to clone it via PCR. A PCR product has been generated after the 

completion of this project and is being used to isolate full length cDNAs 

from the oocyte cDNA library, in order to determine the entire amino-acid 

sequence and to study its expression, (ii) Purification of the RNA-helicase 

is being attempted using column chromatography with the resin Blue- 

Sepharose, used by Pause et al. (1993) to purify eIF4A, and/or ATP- 

Sepharose. Once the RNA helicase is purified, its biochemical activity will 

be characterized, (iii) Eventually, a purified RNA helicase could be used to 

generate a more specific antiserum, providing a useful experimental tool.

6.5 The mRNA masking process

When mRNAs are injected into the Xenopus oocyte cytoplasms, they are 

translated. This has been known since 1971, when Gurdon et al. originally 

injected globin mRNA into oocytes. However, more recently it was noted 

that when reporter constructs were injected into the Xenopus oocyte 

nucleus rather than cytoplasm, they were not be translated (Braddock et 

al., 1990). Experiments have begun to address where and how mRNA 

masking occurs using microinjection techniques, and there is now some 

agreement that mRNA masking is initiated in the cell nucleus (Ranjan et 

al., 1993; Braddock et al, 1994; Bouvet and Wolffe, 1994).

Bouvet and Wolffe have studied the translational fate of a specific masked 

mRNA in the Xenopus oocyte, the histone HI mRNA (Bouvet and Wolffe,

1994). In Xenopus oocyte chromatin, histone HI is replaced by an 

alternative form, B4 (Smith et al., 1988). At the same time, histone HI
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mRNA is transcribed and masked, to be recruited for translation by the 

developing embryo. Bouvet and Wolffe (1994) measured the translational 

efficiency of injected or in vivo synthesized Hl mRNA by adding labelled 

amino-acids. It was found that when in vitro synthesized Hl mRNA was 

microinjected into the cytoplasms, it was able to translate; when injected 

into the nuclei, it was efficiently transported to the cytoplasm and also 

translated. The situation changed radically when a DNA construct 

containing the histone Hl gene was injected into the nuclei. It was found 

that in vivo transcribed histone Hl mRNA was masked from translation, 

that the masking effect was independent of the type of promoter used to 

drive its expression, and that masking was independent of the presence or 

absence of an intron in the construct. Masked histone Hl mRNPs were 

extracted and injected into the cytoplasms of a second oocyte, and did not 

translate; however when deproteinized, the mRNAs were able to translate. 

In other words, the histone Hl mRNA was only packaged into 

translationally silent mRNPs when transcribed in vivo from a 

microinjected DNA construct. The authors therefore propose that mRNA 

masking is transcription-dependent. However, they also show that 

microinjected radio-labelled histone Hl mRNA synthesized in vitro could 

be crosslinked to YB proteins, suggesting that although masking from 

translation is transcription dependent, binding to YB proteins is not.

At the same time, Braddock et al. (1994) have addressed similar issues. 

Braddock et al. injected fully capped and poly-adenylated mRNAs using 

CAT or LUC reporter constructs with which they could study translation. 

They found that when in vitro synthesized reporter mRNAs were injected 

into the nuclei, they entered the mRNA masking pathway. This contrasts 

with the fate of histone Hl mRNA, microinjected into nuclei (Bouvet and 

Wolffe, 1994; see above). In addition, the masked mRNA pathway was
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avoided when an mRNA construct containing an intron was used. A 

single point mutation in the splice donor site reversed this effect.

Braddock et al propose that in the absence of an intron, or in the presence 

of a faulty intron, mRNAs enter the masking pathway, and they point out 

that the mRNAs for c-mos, the core histones and histone Hl, which are 

masked in the oocyte, do not have introns. These results are at variance 

with the findings of Bouvet and Wolffe (1994). It is not clear whether or 

not all masked mRNAs are devoid of introns. Although the presence or 

absence of introns may influence the translational fate of an mRNA, other 

mRNA-specific effects might govern translatability as well. Further 

experiments are needed to clarify these issues.

Braddock et al (1994) also considered the role of YB proteins and their 

phosphorylation in the nuclear mRNA masking process. They found that 

masking could be reversed by the co-injection of anti-pp60 and anti-p54 

IgG, but not by control IgG delivered to the nuclei. The same antisera were 

used in an in vitro binding assay to block RNA-binding (Fig, 27). It follows 

that one of the 54/52 kDa proteins is involved in the nuclear mRNA 

masking process in addition to the YB proteins.

Messenger RNA masking was also blocked by delivering into nuclei either 

chemical inhibitors of casein kinase II or IgG raised against casein kinase II 

subunits. Moreover, Braddock et al (1994) found that treating the oocytes 

with progesterone also reversed masking, and resulted in the translation 

of the previously masked reporter constructs. Progesterone acts in vivo to 

promote the maturation of oocytes, which involves the recruitment of 

various mRNAs for translation (mRNA recruitment starts at oocyte 

maturation and continues throughout fertilization and early

embryogenesis). The un-masking process was blocked by okadaic acid, an 

inhibitor of phosphatase, in a dose-responsive curve. This is in agreement
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with the findings that the phosphorylation of YB proteins is necessary to 

maintain mRNPs translationally repressed. Messenger RNA un-masking 

was independent of poly-adenylation, because the addition of a terminal 

cordycepin molecule, an analogoue of adenosine which blocks further 

poly-adenylation, did not affect the translational recruitment of the 

reporter constructs after progesterone treatment. This control was 

necessary, because the recruitment of various maternal mRNAs at oocyte 

maturation coincides with further cytoplasmic polyadenylation (McGrew 

et al.f 1989; Simon et al., 1992; Sheets et al., 1994). The precise relationship 

between mRNA masking by the YB proteins and polyadenylation remains 

unclear.

Masking has also been studied in a somatic context in Xenopus, using the 

cell line A6 (Ranjan et al., 1993). These authors studied the expression of an 

hsp70-CAT DNA construct which was co-transfected together with a 

CMV-FRGY2 construct. The hsp70 promoter contains a Y-box sequence, as 

is the case for other promoters active in germ cells (Tafuri and Wolffe, 

1990). As might be expected, they found that the co-transfection resulted 

in a 3-5 fold increase in the transcription of the hsp70-CAT reporter. At the 

same time, there was a concurrent four-fold decrease in its translatability. 

The drop in translation was also achieved when the Y-box sequence in the 

hsp70 promoter was mutated, suggesting that the transcriptional effects 

mediated by the action of FRGY2 on the Y-box sequence are uncoupled to 

its mRNA-packaging translational effects.

In addition, Ranjan et al. (1993) co-injected constructs only expressing the 

CSD or the TD of FRGY2. They found that the CSD alone was able to 

enhance transcription, just as the intact protein does. This is in accordance 

with the ability of the prokaryotic cold-shock protein to promote the 

transcription of genes with Y-box like sequences in their promoters (La



229

Teana et at, 1991; Jones et at, 1992). In contrast, the TD alone had no 

transcriptional effect, but was able to repress translation of the construct. 

This is consistent with the biochemical data presented in chapter 4, 

according to which the TD binds efficiently to mRNA. Ranjan et at (1993) 

found that FRGY2 protein and hsp70-CAT mRNA co-fractionated in 

Nycodenz gradients in the mRNP fraction, which is consistent with 

FRGY2 packaging the hsp70-CAT mRNA construct thus determining its 

translational repression.

At this point the question arises: are the YB proteins indeed "RNA- 

histones", as has been claimed by Tafuri and Wolffe (1993b)? Following 

the identification of YB proteins in masked mRNP, Tafuri and Wolffe 

(1993) studied the distribution of YB proteins and specific mRNAs in 

Xenopus oocyte mRNPs using Nycodenz gradients. The mRNAs were 

divided into two categories: TFIIIA and FRGY2 mRNAs are translatable in 

the oocytes, whereas histone Hl and FRGYl mRNAs belong to the 

masked message pool. They found that FRGY2 co-fractionated with all the 

above mRNAs, and suggested that the YB proteins are ""RNA histones", in 

the sense that they package all mRNAs in the same way that histones 

package essentially the entire DNA genome. According to this model, the 

assembly of mRNP particles containing YB proteins is a default state, and 

the translational recruitment of mRNAs is mediated by proteins bound to 

the message-specific sequences in the 5' or 3' UTR (see reviews by 

Standart, 1993; Spirin, 1994). In confirmation of this idea, the separation of 

Xenopus oocyte mRNPs on CS2SO4 density gradients presented in chapter 

3 suggests that the major mRNP proteins, including the YB proteins, peak 

in the same fractions as translatable mRNAs, such as nucleolin, as well as 

masked mRNAs, such as c-mos.
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How are these findings reconciled with the observation that YB proteins 

alone, in vitro, can prevent translation (Kick et al, 1987) and that mRNPs 

immunoprecipitated with anti-pp60 contained some but not all mRNAs 

(Crawford and Richter, 1987)? Both rabbit reticulocyte p50 and Xenopus 

pp60 appear to achieve a translational block when reconstituted with the 

globin mRNA in vitro (Kick et al., 1987; Minich and Ovchinnikov, 1992). 

The packaging of mRNA by YB proteins in these examples might be 

enough to hinder the progression of translation, for example by 

preventing the binding of translation initiation factors. However, in vivo 

various other mRNP proteins are likely to be involved: other, less 

abundant regulators, might bind to specific classes of mRNA and target 

them for immediate or delayed translation. However, by default, the 

exclusive packaging by YB phosphoproteins might result in translational 

repression.

There is a further development with respect to what determines mRNA 

masking in the nucleus. In an earlier study by Braddock et al., (1990) an 

initial observation was made that an HIV-1 promoter fused to a CAT or 

LUC reporter could drive transcription, but translation of the construct 

was repressed. However, when a CMV promoter was used instead, the 

reporters were able to translate. This suggested that differences between 

promoters could determine differences in the translatability of the 

transcripts. In contrast, Bouvet and Wolffe (1994) found that different 

promoters do not influence the masking of HI mRNA in oocytes; 

however, their survey of promoter sequences was by no means 

exhaustive. In recent experiments, Gunkel et al. (1995), have investigated 

this issue further. By using similar HIV-1 promoter/CAT constructs, they 

have defined an area -340 from the transcription start site, which appears 

to be responsible for directing transcripts into the nucleus-dependent
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translational repression pathway. More specifically, they find that a three 

nucleotide substitution at position -340, which coincides with a sequence 

that can bind the haematopoietic transcription factor GATA-1, abolishes 

the translational block. Using gel-mobility shift assays, Gunkel et al. (1995) 

confirm the presence of an oocyte factor that binds to this sequence, and 

that binding to this site correlates with the ability to inhibit translation. 

They confirm again that anti-pp60 and anti-p54 IgG, and a specific 

inhibitor of casein kinase H, can reverse the translational block which 

originates in the nucleus, as was shown earlier (Braddock et al., 1994),

Thus Gunkel et al. (1995) propose that a GATA-binding activity is present 

in oocytes and is necessary for mRNA masking by somehow influencing 

the recruitment of YB phosphoproteins onto transcripts. The DNA- 

binding protein GATA-1 is a positively acting transcription factor, 

regulating most erythroid genes (Evans et al., 1990). GATA-1, as well as 

related proteins GATA-2, GATA-3 and GATA-4, have been cloned from 

Xenopus, and were detected in larval and adult tissues from early gastrula 

onwards (Zon et al., 1991). Members of this family contain two cysteine X 4 

zinc fingers, the second of which has been implicated in the recognition of 

the DNA target sequence (Yang and Evans, 1992). The crystallographic 

structure of the complex between the second zinc finger of chicken GATA- 

1 and its dsDNA target (AGATAAAC) has been determined (Omichinski 

et al, 1993). Binding is described in terms of specific interactions with both 

strands of the DNA target sequence, between the protein and the major 

and minor grooves, as well as the sugar/phosphate backbone. If the 

GATA-binding activity detected by Gunkel et al. (1995) is not due to 

Xenopus GATA-1 protein (only expressed in embryos and adults), could 

there be a related protein possessing similar zinc fingers?
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The oocyte protein C4SR (Appendix D) has two cys X 4 zinc fingers which

were selected using a riboprobe binding screen (see section 5.1). The 

second zinc finger in C4SR has the following similarities with the second 

(DNA-binding) zinc finger in GATA-1;

GATA-1 ...CSNCQTSTTTLW-RRSPMGDPVCNAC—GLYYKLHQ...
l I l ll I : ll I IIIC4SR . . .CKTC-- GNVNWARRS-- E—CNMCNTPKYAKLEE . . .

C4SR also contains a highly acidic stretch, which is also found in gene 

regulators such yeast GAL4. ln GAL4, the acidic region enhances the 

transcriptional effects mediated by a zinc-finger domain (Lin et at, 1988). 

At the C-terminus, C4SR contains an SR-rich area, which is found in a 

number of hnRNP and splicing factors in which it enhances 

protein:protein interactions and RNA-binding (Biamonti and Riva, 1994). 

lf C4SR, which is an oocyte-specific factor (Sommerville et al, unpublished 

observations), has the above features, might it correspond to the GATA- 

binding, mRNA masking factor described by Gunkel et at (1995)? No 

biochemical data is available yet about C4SR. The immediate test would 

be to synthesize the protein using a standard expression vector system, 

and to test its binding to dsDNA oligonucleotides containing the GATA 

sequence.

Whatever the identity of the GATA-binding mRNA masking factor, 

Gunkel et at (1995) have opened a new and unexpected line of research, 

showing that promoters can influence translational control. They present 

the notion of "productive" and "non-productive" transcription. ln 

"productive" transcription, nascent transcripts would recruit positive 

factors required for translation, whereas "non-productive" transcription
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would result in a default masking pathway involving the YB

phosphoproteins.

One immediate prediction is that promoter sequences of genes expressed 

in oocytes, whose mRNAs are masked, contain a similar GATA binding 

site. One example may be considered; the promoter of the enzyme cdk2 

(cyclin-dependent kinase 2). This enzyme is involved in regulating entry 

into the S-phase of the cell cycle, and its promoter has recently been 

cloned (Olive et al, 1994). The mRNA encoding cdk2 is a masked message, 

and is only recruited for translation when oocyte maturation and 

fertilisation are followed by the intensive cell proliferation activity in early 

embryogenesis. Its promoter was shown to be very active in oocytes.

Inspection of the promoter sequence reveals the following features, (i)

There are seven putative E2F-binding sites. E2F is a transcription factor 

known to be involved in the positive regulation of various cellular genes 

involved in cell proliferation, such as c-myc, c-myb, cyclin A, DNA 

polymerase, thymidine synthetase and thymidine kinase (Olive et ab,

1994). (ii) There are also two putative Y-box sequences: as has been 

discussed, YB proteins are thought to be involved in the positive 

regulation of germ cell as well as cell proliferation genes, (iii) A TATA-box ' 

is absent, as is the case in other cell proliferation genes such as c-Ki-ras 

(Pestov et ab, 1991) or PCNA (proliferating cell nuclear antigen, Travali et 

ab, 1989). (iv) Moreover, at position -442, there is the sequence GGATAA; 

at position -164, GGATAT, and at position -10, the sequence TGATAA.

These sequences, and especially the -10 sequence, compare favourably 

with the GATA-binding consensus (A/T)-G-A-T-A-(A/G) (Omichinski et 

ab, 1993). It may be significant that this sequence is very close to the 

transcriptional start site, immediately following one of the putative Y-box 

sequences. Likewise, a Y-box site is also present at position -370 in the
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NRE (negative regulatory element) of the HIV promoter, only thirty bases 

upstream of the GATA site described by Gunkel et al. (1995).

Finally, having discussed the biochemistry of the YB proteins, the

presence and function of an associated casein kinase II, as well as the

identification of an associated RNA helicase, simple models are proposed 

that attempt to summarise what is known about the Xenopus oocyte 

mRNA masking process. It needs to be stressed that many other 

unidentified proteins are probably involved, and the scheme is therefore 

likely to be an oversimplification. Some of these other proteins will be 

mRNA-specitic regulators, while others might be more general mRNP 

packaging proteins. Fig. 56 proposes the involvement of promoters in the 

mRNA masking process by illustrating two possible scenarios, and Fig. 57 

suggests the cytoplasmic process of mRNA storage and un-masking.

6,6 Concluding remarks

Having obtained mRNP particles, means of isolating YB proteins were 

developed. The YB proteins in particular were characterised in terms of 

their RNA-binding properties, differentiating between the CSD and the 

TD. The CSD is suggested to bind to polypurines and to be sensitive to 

Mg2+. Individual basic/aromatic islands within the TD were UV- 

crosslinked to riboprobe, and their binding specificity was influenced by 

the presence of polycations. This variability in binding specificities would 

explain the ability of the YB proteins to bind to a wide range of mRNA 

sequences. The presence of an mRNP-associated kinase activity, thought 

to be of the casein kinase II type, was confirmed. Phosphorylation of the 

YB proteins was shown to improve the stability of protein/RNA 

complexes.
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productive transcription

PEl PE2 +1 intron

Figure 56 Promoter-driven mRNA masking. Two transcription

scenarios are suggested. In "non-productive transcription", Gunkel et at

(1995) suggest that a GATA-binding factor is required for mRNA masking

(MF, masking factor). Binding of YB proteins (YBP) to the same promoter

is shown, but is not necessarily required for mRNA masking (Bouvet and •

Wolffe, 1994). Binding of the YB proteins to mRNA is however necessary

for masking, and requires casein kinase II phosphorylation (Kick et at,

1987; Braddock et at, 1994). In "productive transcription", different

transcription factors TFA and TFB bind to promoter elements PEI and

PE2, activating transcription. Splicing components and hnRNP ' proteins

bind immediately to the nascent transcript which is processed and enters •

the translation pathway. The presence of faulty splice sites, or the absence

of an intron, could drive the transcript into the masking pathway

(Braddock et at, 1994). •
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Figure 57 The process of mRNA un-masking. Masked 

mRNAs can be stored for many months in the cytoplasm. The 

key mRNA masking proteins are the YB proteins, consisting of 

a cold shock domain (CSD) and tail domain (TD). Efficient 

packaging by YB proteins is initiated in the nucleus and 

requires phosphorylation by an associated casein kinase H, 

CKn (Braddock et al, 1994; Gunkel et al, 1995; Sommerville et 

al, unpublished). The YB proteins can multimerize (Tafuri and 

Wolffe, 1992; Horwitz et al., 1994). The Bacillus subtilis protein 

CspB dimerizes via the p4 strand of the CSD (Schnuchel et al, 

1993; Schindelin et al, 1993), and Xenopus oocyte

phospholabelled YB proteins can also be crosslinked to mRNA, 

treated with RNase and recovered as dimers (Marello et al, 

1992). Other proteins are found in the mRNP, most of which 

are still unidentified, and are not shown here. Some are likely 

to be specific regulators of specific classes of mRNAs, while 

others may be more abundant, general mRNP proteins (the 

"RNA histones", Tafuri and Wolffe, 1993b). Here "p54" refers to 

the associated RNA helicase. At oocyte maturation, promoted 

by progesterone, a phosphatase activity dephosphorylates the 

YB proteins, thereby reversing the packaging of mRNA by YB 

proteins (Braddock et al, 1994). The RNA helicase could 

intervene at this point to prepare the mRNAs for translation by 

unwinding structures that would hinder translation, while at 

the same polyadenylation and various translation initiation 

factors come into play.



237

Masked mRNA
YB protein

y
Translation 
Inititation factors

RNA helicase activity: 
Unwind mRNA

Polyadenylation

TRANSLATION



238

Two cDNA doning techniques were used to isolate a variety of clones, 

including an intriguing new protein, AB21. Its yeast homologue RPD3 has 

a general role in gene regulation which has not yet been characterised 

biochemically. There was no conclusive evidence that AB21 is an mRNP 

protein: however, it is presumed to have a significant role in oogenesis at 

the level of gene regulation. On the other hand, sequencing of mRNP 

peptides has revealed the presence of a putative RNA helicase belonging 

to the DEAD-box family. Work is under way to clone it, and characterise it 

biochemically so as to define its role in the mRNA masking and/or un­

masking process.

It appears that the process of mRNA masking is initiated in the nucleus. 

More biochemical data relating to the nuclear masking process is required: 

current crosslinking experiments are confirming that YB proteins can be 

crosslinked to riboprobe in nuclear extracts, and that this process is 

influenced by the nuclear casein kinase II activity. These experiments will, 

it is hoped, complement the recently reported nuclear microinjection 

experiments (Ranjan et ah, 1993; Bouvet and Wolffe, 1994; Braddock et al, 

1994; Gunkel et ah, 1995). The mRNA masking process has not yet been 

understood in full, but research continues at a rapid pace.

Aberrations in the mRNA masking process, wherever it occurs, could 

result in the inappropriate translational regulation of certain mRNAs. YB 

proteins have been involved in cell proliferation as well as the 

transcription of retroviruses: it may be significant that productive HIV 

infection has been associated with cell proliferation (Schuitemaker et at, 

1994). Although the translational masking of reporter constructs whose 

transcription is driven by the HIV-1 promoter is described in Xenopus 

oocytes (Braddock et ah, 1990,1994; Gunkel et at, 1995), masking of HIV 

transcripts could occur in vivo in T-cells. If the YB proteins, as well as
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newly identified mRNP proteins, are significant players in these processes, 

they could become the targets of pharmacological and gene therapy.

In summary, the results have expanded our understanding of the

structure of the Xenopus oocyte masked mRNPs, but there is clearly much 

more to be learned. Many mRNP proteins are still to be identified, and the 

ones that have been identified need to be characterised further. The 

phenomenon of mRNA masking no doubt occurs in other tissues, and it is 

hoped that these findings will also apply to them. The words ""masked 

mRNP" (meaning stored, translationally repressed mRNAs + associated 

proteins) could be replaced by a simpler term, such as "maskosome" (as 

opposed to Spirin's “"nformosome").
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Appendix A

Xenopus laevis cyclin B1 mRNA 
Length: 1395 bp

1 CCACTTAGTG AGACGTCTCT TTCAGACTGG GGGGCTGCAG TGTGACTTGT
51 GGGTACAAAT AGTAAAGCTG ACTGCAGGTT TGCGCTTGAG AAAATGTCGC
101 TACGAGTCAC CAGAAACATG CTGGCAAATG CAGAAAACAA TGTGAAAACC
151 ACTTTGGCTG GAAAGAGGGT TGTTGCTACC AAACCAGGGT TGAGACCTCG
201 TACAGCCTTG GGAGACATTG GAAACAAGGC AGAGGTGAAA GTGCCAACAA
251 AAAAGGAATT AAAGCCAGCA GTAAAAGCTG CCAAGAAGGC AAAACCTGTT
301 GACAAATTGT TGGAGCCTCT TAAAGTGATA GAAGAGAATG TTTGCCCTAA
351 ACCTGCTCAG GTTGAACCCA GCTCACCAAG CCCAATGGAA ACATCTGGTT
401 GCCTCCCTGA TGAGCTCTGC CAGGCTTTCT CTGATGTCCT CATTCACGTT
451 AAAGATGTTG ATGCTGATGA TGATGGCAAC CCAATGCTGT GCAGTGAATA
501 TGTCAAGGAC ATTTATGCTT ACCTGAGGAG CCTTGAGGAT GCACAAGCAG
551 TCAGACAAAA CTACCTTCAT GGACAGGAAG TCACAGGCAA CATGCGTGCC
601 ATTTTGATTG ACTGGCTGGT CCAGGTGCAA ATGAAATTCC GTCTACTGCA
651 GGAGACAATG TTCATGACTG TTGGCATAAT TGACCGCTTT CTGCAGGAAC
701 ATCCAGTTCC CAAAAACCAG CTACAGCTTG TGGGGGTCAC GGCTATGTTC
7 51 CTTGCTGCTA AATATGAAGA GATGTACCCA CCAGAAATTG GAGACTTTAC
801 ATTTGTAACT GATCACACAT ACACAAAGGC TCAAATTCGG GACATGGAAA
851 TGAAGATACT TAGGGTGCTA AAGTTTGCAA TTGGCCGACC CTTACCCCTG
901 CACTTTCTTC GGAGAGCTTC TAAAATTGGA GAGGTAACTG CTGAACAGCA
951 TAGTTTAGCC AAATATTTGA TGGAACTTGT GATGGTGGAT TATGATATGG
1001 TACATTTCAC GCCTTCCCAA ATAGCAGCTG CTTCCTCCTG CTTGTCTCTC
1051 AAAATCTTAA ATGCAGGTGA CTGGACCCCA ACACTCCATC ACTATATGGC
1101 TTACTCTGAA GAAGATCTAG TCCCTGTTAT GCAGCATATG GCCAAGAACA
1151 TCATCAAGGT GAACAAAGGA CTAACCAAGC ATCTGACTGT TAAGAACAAG
1201 TATGCTAGCA GCAAACAAAT GAAGATCAGC ACGATTCCAC AGCTGAGGTC
1251 AGATGTTGTT GTGGAAATGG CCCGCCCACT CATGTGAAGG ACTACGTGGC
1301 ATTCCAATTG TGTATTGTTG GCACCATGTG CTTCTGTAAA TAGTGTATTG
1351 TGTTTTTAAT GTTTTACTGG TTTTAATAAA GCTCATTTTA ACATG
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Appendix B

Xenopus laevis (3tubulin clone 16.2,
3' end fragment

Length: 295 bp

EcoRl fragment: from an interanl site in the p-tubulin mRNA to the 
EcoRl site in the Xgtll linker sequence (italicized, after the poly(A) 
tail). Note the presence of purine-rich as well as pyrimidine-rich regions.

1 GAATTCACTG AGGCCGAGAG CAACATGAAC GACCTGGTGT CTGAGTACCA
51 ACAGTACCAG GATGCCACGG CTGAGGAGGA GGGAGAGTTT GAGGAAGGGG
101 AAGAGGAGGA AAATGCCTAA AGCTCCTTAT CACTTGTAAA TTATTCATCC
151 ATTTCTGCTC GTTTGTTCCA TTTATTTGTC ACCTGCATTT CTCTTCTCTC
201 CAGTTTCAAT GTTACCAGTT GTACAGAACG TTCCGTTCAT TAAAAGCATT
251 TTTCATACTG AAAAAAAAAA AAAAAAAAAA GGCGGCCGCG AATTC
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Appendix C

Database entry XLZNF (for C4SR)

LOCUS XlLZNF 3(65 bp .RNA VRT 03MAYYH993
DEFINITION XJaevis mRNA for zinc finger.
ACCESSION X7(6477
KEYWORDS zrnc finger.
SOURCE clawed rrog.
ORGANISM Xenopus Oaevis

Eukaryota; Animalia; Metazoa; Chordata; Vertebrate; Amphibia; 
Lissamphibia; Anura; Aecheobaieachia; Pipoidea; Pipidae.

REFERENCE- S (bases S to 365)
AUTHORS .R. and SommervinjJ.
TITLE DieecS 3^1^88011
JOURNAL SubmatSed (15-JAN-1993S M.R. Ladomery, SS Andrews Univessity/ Dep t 

of Biology, Bute Buildings, St. Andrews, Fife, KY16 9TS, Scotland, UK
STANDARD
COMMENT

full automatic

The sequence is an internal fragment including two putative C4 
zinc-fingers, cloned as a fusion protein by virtue of RNA-binding.
The estimated full transcript size is about 2.4kb. The mRNA is 
expressed at low level throughout oocyte development and is 
possibly a maternal message. The protein shows some similarities 
with a variety of steroid receptors.
NCBIgi: 65274

FEATURES Location/Qualifiers
source 1..365

/organism="Xenopus laevis"
/^^^^u^_-y^j5^=^"total ovarian tissue"
/clone_lib="full ovarian cDNA library"

BASE COUNT 143 a 47 c 100 g 751
ORIGIN

1 tgactggatc tgtccggata aaaagtgtgg gaatgtaaac tttgccagac 
51 gaaccagttg caacagatgt gggcgagaaa aaacaactga agctaaaatg 

101 atgaaagctg gtggaactga aataggaaaa accttagccg agaaaagccg 
151 tggattgttt agtgctaatg actggcaatg caaaacatgc gggaatgtaa 
201 attgggccag aagatcagaa tgtaatatgt gcaatacacc aaagtatgca 
251 aaactagagg aaagaacagg ttatggagga ggtttcaatg aacgtgaaaa 
301 tgtagaatat atagaacgcg aggaatctga tggagagtat gatgagtttg
351 gccggaaaaa aaaaa
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Appendix E

C4SR amino-acid sequence

Length: 337 amino-acids
Molecular weight: 37.9 kDa

Isoelectric point: 10.20

Features: two cys x 4 zinc-fingers (cysteines are in bold) are followed by a highly 
acidic region and an SR-rich region. The sequence DLSKY is repeated twice 
(underlined; positions 163 and 192) in the context of the acidic region.

1 MSTKNFRVSD GDWICSEKKC GNVNFARRTS CNRCGREKTT EAKMMKAGGT

51 EIGKTLAEKS RGLFSANEDWQ CKTCGNVNWA RRSECNMCNT PKYAKLEERT

101 GYGGGFNERE NVEYIERDES EGEYEEFGRK KKKYRGKPVA PKSVSKGDEK

151 EGEAEEEEEE EOELSKYKLE EEEEERKEEE EEEEEEEEEE GDLSKYNLAS

201 EEEEESKNKK STRSSRSKSR SSHSSSHTSS RSRSRSRSRS SSSSK.SSSRG

251 HSRSPGSKSR SSSRSHRGSS SPRKRSYAxSS RSSSSPERGK KRSRSRSSSG

301 ERKKKRSRSR STERRRGSSS GSSHSGSHSS NSKKKQN
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Appendix E

Database entry XLS27H 
(Xenopus laevis ribosomal protein S27)

LOCUS
DEFINITION
ACCESSION
KEYWORDS
SOURCE
ORGANISM

REFERENCE
AUTHORS
TITLE
JOURNAL

STANDARD
COMMENT

XLS27H 4(65 bp RNA VRT CN-MAY4993
X.Jaevis mRNA homologous to rat ribosomal protein S27.
X71350
ribosomal proten S27 homologue.
clawed
Xenopus laevis
Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Amphibia; 

Lissamphibia; Anura; Archeobatrachia;Pipoidea; Pipidae.
1 (bases 1 to 406)
Ladomeyy,M.R. and SommervilleJ.
Direct Submission
Submitted C05-APR-l<9?3S M.R. Ladomery,
University of St. Andrews, School of Biological and

Medical Sciences, Bute Building, St. Andrews,
Fife, KY16 9TS Scotland, UK
fulS automatic

The protein is highly homologous to the rat ribosomal protein S27 
(acc# X59375). It posseses clusters of charged residues and may 
have a zinc-finger like structure of the C4 type.
NCBIgi: 297124

FEATURES Location/Qualifiers
source 1..C66

/organism="Xenopus laevis"
/germline
/tissue-ypet^ovarani"
/cell_yp>e="oocyte"
/ctone_iib="X. laevis oocyte cDNA expression library" 

CDS 17..271
/gne="XENLA.S27homologue"
/note="putative zinc-finger protein; NCBI gi: 297125"
/codon_start=l
/pnxiuct="ribosomal protein S27 homologuie"

/iranslation="MPL AKDLLHPTPEEEKRKHKKKRLVQSPNSYEMDVKCPGCYKn'TVFS 
HAQTVVLCVGCSVVLCQPTGGlARLTniaZSiERRKQH"
BASE COUNT 106 a 109 c 104 g 87t
ORIGIN

1 cgcagctccg gagaacatgc cactcgctaa ggatctcctg cacccaactc ccgaggagga 
61 gaagaggaaa caaaaagaag agcgcctggt ccagagccaa aactcctatt tcatggatgt 
121 aaagggaaaa ggttgttgga agataaaaaa aggggtaagt cggLCCJCc(ca<aal aggtagtaag 
181 gggggtagga ggcagaagaa taatgtggaa gaacacgggg ggaaaagaga ggagagaaga 
241 gggttgtgaa gggaaaaaag agaaaaaata gtgtgaatgg agggagabae gatggggggg 
3 01 aggatggggg gggaggaagg aaagggggag ccattatgaa agggggaaba atagggggaa 
3 61 aatggggaat aagaaaaggg gagggaaatg ttggagaaaa cgfcfccJcgg
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- Jj • -w—1Appendix F

Alignment between Xenopus and Rattus 
ribosomal protein S27

XS27: Xenopus
RS27: Rattus
Cysteines are in bold; ( I = identity); (: = conserved substitution)

1
XS27 MPPAKDLLHP TPEEEKRKHK

i i i i • i i i i i
RS27 MPPLADLLHP

41
XS27 YKITTVFSHA

I I I II 1 1 I II
RS27 YKKTTVFSHA

i i i i i i i i i
SLEEEKKKHK

QTVWLCVGCS
1 I I I I I I I I I 

QTVVLCVGCS

Rattus S27:
Length: 84
Molecular weight 9.477 kDa
Isoelectric point 10.14

Xenopus S27:
Length 84
Molecular weight 9.475 kDa
Isoelectric point 10.14

40
KKKLVVSPNS YFMDVKCPGC 

I I I I I I I I I I I I I I I I I I I I 
KKRLWSPN^S YFMDVKCPGC

84
TVLCQPTGGK ARLTEGCSFR RKQH 

I I I I I I I I I I I I I I I I I I I I I I I I 
TVLCQPTGGK ARLTEGCSFR RKQH

Overall: 98.8 % identity, 95.2% conservation
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Appendix G

Database entry XLAB21 (for AB21)
IE XLAB21 standard; RNA; VRT; 2306 BP.
XX
AC X78454;
XX
ET 29-MAR-1994(Rel. 39, Created)
ET 12-APR-1995 (Rel. 43, Last updated, Version 10)
XX
EE X.laevis AB21 mRNA for RPE3 homologue
XX
KW AB21 gene; RPE3 homologue.
XX
OS Xenopus laevis (clawed frog)
OC Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Amphibia;
OC Lissamphibia; Anura; Archeobatrachia; Pipoidea; Pipidae.
XX
RN [1]
RA Ladomery M.R., Lyons S., Sommerville J.;
RT ;
RL Unpublished.
XX
RN [2]
RP 1-1040
RA Ladomery M.R.;
RT ;
RL Submitted (25-MAR-1994) to the EMBL/GenBank/EDBJ databases.
RL M.R. Ladomery, University of St. Andrews, Eept. Biology, Bute 
RL Buildings, St. Andrews Fife, Scotland KY16 9TS, UK 
XX
RN [3]
RP 1-1624
RA Ladomery M.R.;
RT ;
RL Submitted (13-EEC-1994) to the EMBL/GenBank/DEBJ databases.
RL M.R. Ladomery, University of St. Andrews, Eept. Biology, Bute 
RL Buildings, St. Andrews Fife, Scotland KY16 9TS, UK 
XX
FH Key Lccation/Qhaaiiiiers
FH
FT source 1.23305
FT /otgnnism-"Xeeopus lae'css"
FT /dvv_si/ee=''prevttellogleiic oocyts"
FT /cCone_lie="iambda ZAP, Stratagene; polyomal cDNA iibraiy,
FT Sommerville & Ladomery 1992"
FT CDS 12..1454
FT /prtiial
FT /eeee="AB2S"
FT p]rnd^icte^,y^<^f^!^t TPD3 homoCogus"
FT /olyA_sigeal 2264..2269
FT polyA^ske 2285..2305
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SQ Sequence 2305 BP; 679 A; 410 C; 544 G; 672 T; 0 other;

1 gcggaaggaa aatggcgctg actctaggaa caaagaagaa agtgtgctac
51 tactatgatg gtgatgttgg aaattattat tatggtcaag ggcatcccat

101 gaaacctcat agaattcgca tgacacacaa cctgctgctc aactatggac
151 tttaccgaaa aatggaaatc tttaggcccc acaaagccag cgccgaggat
201 atgacaaagt atcacagtga tgattatatc aaattcctgc gctccatacg
251 accagacaat atgtccgaat acagtaaaca gatgcagaga tttaatgttg
301 gtgaggactg tcctgtgttt gatggcctat ttgagttctg ccagctctct
351 gcagggggtt ctgtagcaag tgctgttaaa ctaaacaaac agcagactga
401 catttcagtg aactggtctg gtggccttca tcatgcaaag aaatctgagg
451 catctggttt ttgttatgtc aacgatattg tccttgccat cctggaacta
501 ctaaagtatc accagagagt tgtgtatatt gatatagaca ttcaccacgg
551 tgatggtgtc gaggaggcat tttacacaac cgatagggtt atgactgtgt
601 ccttccataa gtatggagag tattttcctg gaactggaga tctgagagat
651 attggtgcag ggaaaggcaa atactatgct gtaaattatg ccttacggga
701 tgggattgac gatgagtcct atgaagcaat ttttaaacca gtaatgtcca
751 aagttatgga aatgtttcag cccagtgcag tggtcttaca gtgcggagca
801 gattcattat ctggggatag actgggatgc ttcaatttga ccattaaggg
851 acatgcgaag tgtgtggagt ttataaagac ctttaacttg ccactgttga
901 tgttaggagg tggaggttac actatccgga atgtggctcg ttgctggaca
951 tatgaaacag ctgtggctct ggactctgag atccccaatg agcttccata

1001 taatgattat tttgaatatt ttggtccgga cttcaagctt cacatcagcc
1051 catccaacat gactaatcag aacactaatg aatatctgga gaaaattaag
1101 cagcgcctct ttgagaactt gcgcatgctc ccccatgctc ctggagttca
1151 gatgcaagcc gttgcagagg actccataca cgatgacagt ggtgaagaag
1201 atgaagatga tcccgacaag cgtatttcaa ttcggtcatc agataaaagg
1251 attgcctgtg atgaggagtt ctcagattct gaggatgaag gggagggagg
13 01 tcgcaaaaac gtggccaatt tcaaaaaagt aaaacgggtt aaaactgaag
1351 aggaaaagga aggagaggac aagaaagatg ttaaagaaga ggagaaagct
1401 aaagatgaga agacggatag caaacgggta aaagaagaga ccaaatcagt
1451 ctgatccttc aactatgggg agaaaatccg aagaccaaac taattctcat
1501 ggttttatat tttgtatatg ccctgtacag agccctacta tgaaatataa
1551 gtccacacat tctaaattat ttctgtccca ctggttgagg gggggtgaag
1601 tggtcgctgt agtggattaa gcttcacatc tgttaccttt ttttaagatt
1651 cacatctgt t acctttttac cagatgtttc cagctctttg gctttttttt
17 01 tttttttgac caaaaacttt ccatgttttc ctgtgcctct gtaatcttcg
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1751
1801
1851
1901
1951
2001
2051
2101
2151
2201
2251
2301

gtggtgcaat
ttgctgtcag
atgctcagga
aaggaggtgg
gagggatgga
gattccctgt
agcagatttt
ggattgtggg
ggagagtgtc
aatttttgtg
agaaaagctt
aaaaa

gcattacgga
actacagact
tcaggcatat
gttccagctg
agggggaagc
tcacttaatg
tagatgtgtg
gatttgcaat
tggattcatg
atgggaaatt
tgtaataaaa

tttatttccc
tttgctacag
gtacacttat
tcttccaaat
tgaagctcct
ctgctaaccc
gaaacctggt
ttgggtttct
gagtgaagaa
tctttttttt
tctggtactt

tgctcccttc
tacatgaaat
gctcaggatc
gaatttgaga
cttaaactaa
tcctccagat
ccacagttac
gcctttaatc
aatggagaat
tttttttatg
atacaaaaaa

tatacacact
atgtacactt
aggcagtgag
gggttacctt
actattcagg
tagttcatga
cttataatgg
ttagtgggtt
ttttatgtct
gttgagttgt
aaaaaaaaaa
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What the papers say

A role for Y-box proteins in cell 
proliferation
Michael Ladomery and John Sommerville

Summary
Members of the Y-box (YB) family of transcription factors are expressed in a 
wide range of cell types and are implicated in the regulation of a rapidly 
increasing number of genes. Although the biological activities of YB proteins 
appear to be varied, distinct patterns, relating to the timing of their expression 
and the identity of their target genes, are beginning to emerge. A recent 
report by I to et alP> focusses attention on cell proliferation and adds support 
to earlier suggestions^2-3) that a primary function of YB proteins is to help 
activate growth-associated genes.

YB proteins
The Y-box (YB) proteins comprise a family of gene regula­
tors, each containing a nucleic acid-binding domain which 
is highly conserved from bacteria to humansGG. The 
archaetypal form is represented by the bacterial cold- 
shock proteins, which consist of a five-stranded [--Darrel 
structure: the three N-terminal p-strands presenting a face 
with exposed aromatic and basic side-chains to interact 
with the nucleic acid (see ref. 6). Eukaryotic YB proteins 
consist of this conserved cold-shock domain (CSD) plus a 
series of alternating basic and acidic domains, which may 
specify further features of nucleic acid binding and protein- 
protein interaction. To date, most studies have focussed 
on the binding of YB proteins to the Y-box DNA sequence 
CTGATTGGYYUU. which contains a reverse CCAAT- 
box. The Y-box is present in the promoter region of a vari­
ety of eukaryotic genes and binding of YB proteins can 
result in either activation or repression of transcription. Tis­
sue-specific expression of YB piroeins indicates that they 
are involved in the regulation of distinct sets of genes. One 
set, already described, includes various vertebrate germ­
cell-specific genesW; a second set, now becoming appar­
ent, are genes involved in cell proliferation. Recent studies 
have highlighted cell types that are stimulated to express 
high levels of YB protein, which in turn may activate 
growth-associated genes and suppress tissue-specific 
genes.

Growth-inducible YB protein genes
The first indications of the involvement of YB proteins in 
cell proliferation came from studies by Sabath et al. on T-

lymphocytes stimulated with interleukin 2 (ILL?). Analysis of 
the ILL-’nduced genes in a cloned T helper lymphocyte 
line (L2 cells) revealed that one of these genes encoded 
the mouse YB protein, mYBlG), the corresponding human 
protein having been shown previously to bind specifically 
the Y-box sequences in promoters of major histocompati­
bility complex class I (MHC I) genesG) and in the 
enhancer region of the epidermal growth factor receptor 
(EGFR) geneG). Sabath at al. suggested that YB1-type 
proteins have a general function in growth-associated 
gene expressionG).

A general observation is that mRNA encoding YB pro­
teins is expressed at markedly different levels in different 
tissuesG) and at different stages of developmest(45). 
Grant and Deeley examined the expression of chicken 
YB1 mRNA in liver cells and showed that levels are high in 
the early embryo but decrease steadily throughout 
embiyogenesis and post-hatching until low levels are 
reached in the adult liverS3). However, they also found that 
chkYB-1 mRNA levels are 30- to 40-fold higher in the pro­
liferating hepatoma cell line LMH and could be increased 
to levels 10-fold higher than the adult level after adminis­
tering eCI4, an agent which chemically induces liver 
regeneraiionG). These results have been reinforced by the 
recent studies of Ito at al. who have cloned from rat liver 
the gene encoding RYB-a, a YB protein similar to YBlSi). 
Again, levels of RYB-a mRNA are shown to be high in 
foetal liver, low in adult liver and stimulated by partial 
hepatectomy. That the RYB-a gene is regulated coordi­
nately with tissue regeneration/cell proliferation gains fur­
ther support from studies on serum-stimulated quiescent 
fibroblasts (NIH/3T3 cells). Ito at al. have shown that fol-
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lowing serum stimulation, the RYB-a gene is rapidly acti­
vated, but blocking of progression into S phase by detach­
ing the cells or by treating the cells with gsnisisin, a 
specific inhibitor of tyrosine kinase, almost completely 
suppresses expression of the RYB-a geneO). Since genis- 
tein is known to inhibit the tyrosine kinase activity of EGFR 
and ppeosrc, the results suggest that expression of the 
RYB-a gene is involved in a signal transduction cascade 
leading to cell proliferation.

Y-box target genes
Several growth-associated genes have been shown to 
contain Y-box sequences in their promoter or enhancer 
regions. Among these are the genes encoding thymidine 
kinase°0’11), proliferating cell nuclear antigen 
(NCNAcyclinl.1 2), DNA polymerase a/13) and EGFRO). 
The presence of a Y-box and the absence of the usual 
TATA-box indicate coordinate regulation of these genes 
during cell proliferation. The obvious candidate trans-act­
ing factor is a YB protein, although detailed protein bind- 
ing/trarsciiption studies have not yet been reported in 
most examples.

One further example that has been studied in detail is 
the human mdr\ gene(14). This mullidreu--esisiance gene 
encodes an energy-dependent drug efflux pump which is 
overexpressed in certain cancers that have become resis­
tant to chemotherapy. Goldsmith etal. have made use of a 
doxorubicin-resistant ovarian carcinoma cell line to inves­
tigate nuclear factors binding to the mdr\ promoteo^o). 
Footprlnting analysis showed that a region between 
nucleotide positions -85 and -70, protected from DNasel 
digestion after protein binding, contains the sequence 
CTGATTGGCT, which matches the Y-box consensus. 
Mutation to CTGATGTGCT eliminated protein binding and 
deletion of the Y-box region led to markedly reduced 
expression of mdr promoter/CAT constructs. Allhough it 
has not been demonstrated that mdr] overexp^s^n is 
associated with the increased production of YB protein 
mRNA as detected in the proliferating tissues described 
earlier, it is interesting to note that multidrug-resistant can­
cer cells can also develop overexp^s^n of EGFRCO.

The involvement of YB proteins in T-cell proliferation 
has acquired increased significance with recent studies on 
transcription of the human T-cell lymphotrophic virus type I 
(HTLV-I). Kashanc-ii et al. have studied the downstream 
regulatory element 1 (DRE 1) region in the LTR of HTLV-I 
and the site-A region in the LTR of HIV, both of which con­
tain Y-box sequencsfOO). Cotransfection of Jurkat T-cells 
with a YB-1 expression vector and with wild-type and 
mutant viral promoter/CAT constructs demonstrated that 
the Y-box sequence was essential for efficient iransactiva-

iion(10). Kashanc-ii etal. did not find that YB-1 expression 
was induced by viral factors such as Taxi, but suggest, 
instead, that IL-2 induction of YB-1 , as described earlier 
for T-cell proliferation^), might lead to stimulation of latent 
viral gene expression and viral replication.

YB proteins can also downregulate gene expression
During cell proliferation there is not only upregulation of 
growth-associated genes, but also suppression of tissue- 
specific genes. This effect is seen in embryonic and regen­
erating liver and in hepatocarcinoma cells, where high 
levels of expression of the chkYB-1 gene are associated 
with low levels of expression of Ilver-specific genes such 
as the serum albumin gene and the estrogen-dependent, 
very-low-density apolipoprotein I (apoVLDLII) geneO). 
Fueheimoie, there is an inverse correlation between 
levels of RYB-a mRNA and aldolase B mRNA during rat 
liver developmenO^1).

Evidence for direct involvement of YB1 with a Y-box 
promoter to elicit negative regulation comes from studies 
on interferon— (lFN—Hnduced MHC I genes (e.g. the 
human DRA gene). Ting eta! have shown that cotransfec­
tion of IFN—-responsive human glioblastoma cells with a 
YB1 expression vector and DRA-CAT constructs results in 
Y-box-specific suppression of the IFN--activated DRA 
promoterO16). Since a positive regulator of DRA 
expression, NF-Y/YEBN, can bind to the DRA gene Y-box, 
transcription control can be interpreted as an interplay of 
positive (NF-Y/YEBN) and negative (YB1) regulators com­
peting for the same Y-box site^o).

YB proteins have a wide spectrum of activities
As a general principle, the actual effects of YB proteins on 
transcription regulation will depend on the composite 
structure of the promoter that contains a Y-box element, 
and also on the presence of other (competing or enhanc­
ing) regulatory proteins. The YB proteins are encoded by a 
mulligens fanilly0.10i16), different members of which may 
be expressed in different tissues or at different stages of 
development and recognize the promoters of different sets 
of genes. For instance, the Xenopus protein FRGY2 is 
expressed at high levels during early oogenesis whereas 
FRGY1 mRNA, although present in oocytes, is not trans­
lated until early embryogeneiio(1o). In this example, there 
is a fairly clear demarcation of functions: FRGY2 can regu­
late oocyte-specific genes, but more obviously binds to 
and packages mRNA molecules0o.01)l whereas FRGY1 
may have a more conventional role in promoting cell prolif­
eration during embryogenesis. However, even within a 
single tissue, a range of YB protein isoforms could be cre­
ated by differential phosphorylation, as has been
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described for the FRGY2 protensA2). The significance of 
variation in phosphorylation of YB proteins to influence the 
ability to bind specific promoters is not known.

In addition to Y-box elements, one class of promoter 
structure highllghted in several studies, including those of 
Grant and DeeleyA), is a pyrimidine-rich single strand of 
DNA, possibily made accessible in regions of H-form 
(triplex) DNA. Regions of strong purine-pyrimidine strand 
asymmetry that can adopt the H-form are identified as pro­
moter elements of the human c-myc geneA3), c-Ki-ras 
geneA3), EGFR geneA3) and foetal y-globin geneA4). In 
each instance, a YB protein specifically binds pyrimidine- 
rich strands. Although the pattern of expression of these 
genes fits the cell proliferation model already proposed, 
and indeed the stabilization of H-DNA by YB and other 
proteins has been suggested as a mechanism for up- 
regulating the c-myc geneAs), it must be concluded that 
regulation of gene expression by YB proteins might be 
effected through more than one type of promoter element. 
Therefore, the versatility of YB proteins, in being able to 
interact with Y-box promoters, H-DNA and mRNA, marks 
them out as key regulators of a range of growth-associ­
ated processes. Their true significance in this role should 
become apparent in the next few years.
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ABSTRACT
Eukaryotic Y-box proteins are reported to interact with 
a wide variety of nucleic acid structures to act as 
transcription factors and mRNA masking proteins. The 
modular structure of Y-box proteins includes a highly 
conserved N-termrnai cold-shock domain (CSD, 
equivalent to the bacterial cold-shock proteins) plus 
four basic C-termmai domains containing arginine 
clusters and aromatic residues. In addition, the basic 
domains are separated by acidic regions which contain 
several potential sites for seiire/ihieorire phosphoryl­
ation. The interaction of Y-box proteins, isolated from 
Xenopus oocytes (FRGY2 type), with RNA molecules 
has been studied by UV crosslinking and protein 
fragmentation. We have Identified two distinct binding 
activities. The CSD interacts preferentially with the 
poiypurines poly(A,G) and poly(G) but not poly(A), this 
activity being sensitive to 5 mM MgCl2 but not to 5 mM 
spermidine. In the presence of 1 mM MgCIa or 1 mM 
spermidine, the basic domains interact preferentially 
with poly(C,U), this activity being sensitive to 0.5 M 
NaCi. Binding of the basic domains is also sensitive to 
low corceniiaiiors of heparin. The basic domains can 
be crosslinked individually to labelled RNA. These 
results are discussed with reference to the various 
specificities noted in the binding of Y-box proteins to 
RNA and DNA.

INTRODUCTION
The Y-box proteins are the most evolutionarily conserved nucleic 
acid-binding proteins yet described, found in bacteria, plants and 
animals (1,2). The eukaryotic Y-box proteins were originally identified through their ability to interact with DNA containing 
a eeverse CCAAT box, the Y-box eequence CTGATTGGCCAA (3). This sequence ii found in a variety of promoter regions, including those of tlie MHC class II genes (3,4) and genes 
encoding germ cell-specific functions t1) and i n these contexts 
the Y-box proteins are considered to act as regulators of transcription. However, a range of Y-box proteins were subsequently characteried through thei i electric withpromoter tequences containing pyrnnidinq-rieh tingle-stranCed

DNA t5—7), apurinic DNA t 8,9) and even purine-rich tingle- strmded DNA t 10). Furthermore, the most ebucdactly expressed 
Y-box proteins, the FRGY2 class firm Xenopus oocytes (11) and the MSYl class tram mouse tpermatocytes, are tound bound 
to mRNA i 12,13). Thus a universal family of highly conserved 
proteins has been teported to tecognizq a diversity of nucleic tcid structures. Either the remarkable versatility in nucleic acid recognition i i a special property of all Y-box proteins and the 
in vitro conditions for their diverse binding properties have not yet been properly defined, or tle individua- Y-box proteins have 
evolved different tpqctncities. The Y-box proteins consist of a 
modular series of domiins, each of which has the potential to bind nucleic acids. Therefore the presence of multiplq binding 
domains and variatiins in their arranjgement might explain the 
different binding specificities of diffeqect Y-box proteins.The most highly conserved feature of eukaryotic Y-box proteins ii tine presence of a 70 amino acid domain which ii 43% homologous io the told-hock protem, CSPA,, of E.coli ( 14). The 
straclurq of a aorrevponding protein, CSPB, from B. subtilis has been tolved by crystnluoraphic t 15) and NMR t 16) analysis and 
consists of an antiparallql fine-stranned /-barel. More terently, 
this stmcture has been confirmed for CSPA i17,18). The three N-terminal /-strands present a face with exposed aromatic and 
basic side chains which could interact with nucleic acids. This 
cold-hock domain (CSD) ii aufficlect to bind Y-box toque^es 
in vitro and to drive the expression of bacterial cdd-shock- inducible genes t 19,20). Apart aram the mamm-lian protein unr 
(encoded by an ORF t ocated upstream of n-an.s'), which consists of fme iarinem tepeats of a CSD i21), eukaryotic Y-box proteins 
contem a single CSD plus a ieries of C-terminal charged eomeins. FRGY2 ii quite typical in containing four basic don-rains, rieh 
in arginine and aromatic sesiduqs, separated by tour domains sIiIi in acidic residues and potential sites for sqrine/thraonine 
phosphorylation t11,22,24). Arginine-rieh eomnms are a cconmon feature of many KNA-Iinding proteins (25) and their multiple 
presence in Y-box ercteins increahqh the potenna- tor nucleic tcid 
binding.

In Xenopus oocytes, Y-box proteins are expressed at high concentration ( — 0.1 ox/oocyte) as an equimolar pair (here FRGY2a = pp60 and FRGY2b = pp56; cf 11). They can be readily iiolated firm native mRNP particles (26,27) and by
*To whom correspondence should be addressed
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simple heat t reatment of oocyte homogenates ( 28). The particular 
advantage of working with native rather than with recombinant 
forms ( c that they are ( iolat-td ( c a ttatt of mtaseciicr with nucleic 
acid. Since phosphorylation ofFRGY2 tc aelavant, and possibly 
crucial, for binding to mRNA (26,29,30) and until 
phosphorylation sits are pinpointed and manipulated in vitro, 
proteins properly moCified in vivo are to be preferred.

In this aeporr we examine further the RNA binding preferences 
of the FRGY2 proteins and diccrimiciate between different binding 
domains by UV crosslicking and protein fragmeatation.
MATERIALS AND METHODS
Isolation of Y-box proteins
Poly(A)+ mRNP was tcollttd from the previtellogenic ovary of 
Xenopus laevis as described previously (30). To select the Y- 
box proteins, the eluate arom olicoOdT) cellulose (Pharmacia) was 
adjusted to 20 mM NaCl, 20 mM Tric-HCl, pH 7.5 (HTB), 
heated t o 80° C for 10 min, cooled at room t amperature for 5 
min, chillld on tce for 5 min and centriffued at 10,000 r.p.m. 
for 10 min (28). Under these conditions the Y-box proteins 
remain t n the supernatant and can be recovered quantitatively 
as a complex with mRNA. Mlltiple cycles of heat 
treatment/centrifugation t improve t he purity of t he preparation. 
All other mRNP proteins are denatured and can be recovered 
frrm the pellets. Riboprobes added to mRNP prior to heat 
trretment are recovered complexed with the Y-box proteins.
To teparate the Y-box proteins from mRNA, the heat-treetmant 

supernatant t c subjected to a further cycle of heat trretment t n 
the presence ofheparin —Sepharose CL 6 B t Pharmecia). About 
100 mg of RNP and 0.5 ml of tesic was suspended t n 1 ml of 
HTB and heated to 80°C. After tooling, with tonticuous thaking, 
the slurry was pipetttd mto a collnm and, after settlicg, was 
ricned with HTB. The RNA was eluted ecaer with 8 M urea 
or with 5 mM MgCL. 8 M urea also washed off c ontaminating 
proteins. Finally the Y-box proteins were tluttd with 1 M NaCl, 
dispensed icto alicuots and stored at —70°C. The purity of 
preparations was checked by SDS —PAGE, the Y-box proteins 
having apparent molecular weights of 60 and 56 kDa. 
Synthesis of riboprobes
The RNA used tor binding atadies corresponds to the 3' end t280 
nucleotides) of an mRNA encoding an oocyte-specific /--tbulin. 
Over 90% of this mRNA tc packaged as non-polysomal mRNP 
particles and tc tepresentative of mRNAs associated with Y-box 
proteins in Xenopus oocytes (N.Clark, M.Ladomrry, and 
J.Sommercille, unpublished). The tequence tc: GAAUUCACUG 
AGGCCGAGAG CAACAUGAAC GACCUGGUGU CUG- 
AGUACCA ACAGUACCAG GAUGCCACGG CUGAGG- 
AGGA GGGAGAGUUU AAGAGGAGGA AAAUGCC- 
UAA AGCUCCUUAU CACUUGUAAA UUAUUCAUCC 
AUUUCUGCUC GUUUGUUCCA UUUAUUUGUC ACC- 
UGCAUUU CUCUUCUCUC CAGUUUCAAU GUUACC- 
AGUU GUACAGAACG UUCCGUUCAU UAAAAGCAU- 
U UUUCAUACUG AAAAAAAAAAAAAAAAAAAA.
The trrnslaticn sttp codon UAA, the polyadenylation motif 
AUUAAA and a potential cytoplasmic polyadenylatioe ellmem 
UUUUCAU are underlined.
The RNA was synthesised by run-off (renscripticn from a 

cDNA subclone 1 n pBlueScript (Strataaene) t n the presence of 
[o-32F>]CTP as described previously t30). Dou^e-stranded RNA

was fomed by annealing equimolar amounts of iabellad sense 
strrads and unlabelled antisense ttrrnds. Remcieieg ticgle atreads 
were digested with riConuelease and the double-strraded probe 
was purified by phenol extracticn and ethanol precipitation.
Various tiCbpolemers were dissolved at 10 mg/ml t c distilld 

water (strek). The hetesepolemers poly(C,U) and poly(A,G) 
were dephosphorylated and 5' ends were end-labelled using 
[7--P2ATP (3,000 Ci/mnK)l) and polynucleotide kinase as 
reeemmended on the enzyme data sheet (Pharmesia).
Protein — riboprobe binding
0.1 /t of riCoprobe was added t o 2 /g of Y-box proteins (or 
RNP) and binding was accomplished t n a final volume of t0 pi 
by diiher: ti) dialysis frrm t M NaCl into HTB; or t iii diluticn frrm 20 t o 2 mM MgCl with HTB; or (ci) heat t reetment as 
described above. Protein — riCoprobe 1 ctasacticn was dialllnged 
by adding heparin, salts, urea or polynucleotides eitadr before 
or after the binding tttp. TonCitions for the arosslicking of RNA 
to proteins using UV t mht were as described previously (30). 
For quantitative assesement of crosslicking efficiency, 50 /I 
samples were tdjusted to t % SDS, 0.15 M NaCl, 5 mM EDTA, 
50 mM Tris — HO, pH 7.5, and extracted with an aqual volume 
of phenol—chloroferm t 1:1 mixture). After phase teparation, t he 
radioactivity t n aqueous and organic phases was measured and 
the percentage of 1 citial radioactivity extracted 1 nto the organic 
phase was calculated. For tCentifmcticn of proteins and proteolytic 
frraments crosslicked to tiCoprobe, samples were digested with

A B

Fraction
c

Figure 1. Elution of RNA and FRGY2 proteins from eeparir—Sepeaiose. (A) 
Riboprobe—protein complexes applied to the column elute in the ^ow-ierofge 
(FT) fraction. (B) Ribopioieir complexes formed in the presence of 
heparin -Sepharose bind to the resin, the riboprobe being eluted with 8 M urea, 
the FRGY2 proteins being eluted with 1 M NaCl. (C) Proteins in eluted fractions 
as detected by SDS-PAGE. Riboprobe was eluted with 5 mM MgCA in 
fractions 5 and 6; FRGY2 proteins were eluted with 1 M NaCl in fraction 9. 
Total protein preparation prior to chromatography is also shown (T).
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ribonuclease, denatured and separated by SDS-PAGE (30). Proteins transferred to nitrocellulose or present i b dribd gels were 
then examined for bound, protected radioactivity by autoradiography. The i bentity of t ransferred Y-box proteins or 
fragments was subsequently confirmed by i mmnnbUlotting with 
antiiodies raied against heat--reetmrnt supernatant.Binding of riboprobe to gel oanseere was pereonmed as eolluws. Transfers were washed t wice ior 10 min i i 6 M urea i i binding 
buffer i50 mM NaCl, 0.55% Tween-20, 10 mM Too —HCl, pH 
7.5). Ri0opro0r t 0.5- i .0 ng) was added i i 5 — 20 ml ofbinding buffer, tten i icubated for 30 - 60 min. Finally the tracsfere were 
washed t wice for i0 min i i binding buffer, ether with 50 mM NaCl (low salt wash) or with 500 mM NaCl thigh salt wash). The transeees were tten set up for autoradiography.
Band-shift assays were used to assess the binding of FRGY2 

proteins io end-labelld riboonlymers. Cnmulexes, fonned i i the presence or absence of MgCL and compttitors, were 
eluctraphnresed, without arosslinking, through 155% agarose i i 
20 mM Too —HCl. pH 7.5. The gels were fiixd i i 10% acetic acid, dried and set up for autoradiography.
Chemical proteolysis
Aspaoate — proline bonds were hydrolysed by iicubating crossliiked FRGY2oriOoprobe complexes (made using 10 /g 
of protein and 0.5 /g of i iioprol^e i n a final volume of 50 fl) ii 70% formic acid at 40°C for 24 h (31).
Cleavage at asparagine-glycine resiiues was achieved by ^nubating FRGY2 proteins i i 2% hydroxylaminr at 20°C for 4 h (32). The mixture was maintained at pH 9 with NaOH. 

Chemically claved proteins were extensively diatysed against 
HTB before use ii RNA binding.

RESULTS
FRGV2 proteins can bind RNA and heparin simultaneously
The Y-box proteins FRGY2a i pp60) and FRGY2b t pp56) can be purifiid from Xenopus oocyte mRNP particles i i three ittps: 
(i) seluctibn of pp>ly(A)+ RNP by affinity binding to oliio(dT) cellulose i 30); tii) heat lrertment of the poly(iA)+ RNP at 80°C 
foUlwed by chilliig and centriregation t 28); t (o) binding of the 
rrat-treptment i upematant to heparin - Sephe-ose eolluwed by ialt 
elution of the Y-box proteins i descried below). The RNA used ii ihe binding itudies descried here iepresents 280 nucleotides ofthe 3' end of an nncsP•specielc /-ttbulin mRNA i sse Mtteriale 
and Mtthois). Preliminary sttdies tnot shown) confirmed i hat this sequence, but not it double-stranded eonm made by 
hybridizing sense and antirense atrande, was highly reelcibnt i i 
binding FRGY2 proteins.
Cnmulrxes of FRGY2 proteins and RNA, eonmed in vitro but not crossliiked, do not bind io heparin — Sepharosr (Fig. lA), 

rndicatiig that tte arginine clusters i i the protein itil domains are not accessible for binding to heparin and are neutralied 
through protein — RNA and/or pratem-protein iittraction. 
Howveer. complexes fomied ii the presence of heparin- Sepharose are bound to the resin, the RNA component being 
relupned with 8 M urea or 5 mM MgCl2, and the proteins being subsequently relupsed with 1 M NaCl t Fig. IB and C; see alo 5,7). These results indicate that regions of positive charge 
(arginine clusters) ii the proteins iittract with the negatively 
charged heparin, but not at the expense of all of the protein iitoractibc with RNA. Thus, ii ii possible that recognition of

RNA tai be achieved i idrppcdently ofthe basic tharge domiins, for i bcttnce through the CSD (2).
RNA binding is blocked by a combination of heparin and 
Mg2+
Points of contact of Y-box proteins with RNA can be fiied by crossliiking with UV i rrediatibn t29,30). In principle, mlltiple 
RNA-iinding iitts within a tingle protein can be dircrimicated 
by differential blocking or by erenmenting the protein.
Contacts between FRGY2 proteins and RNA anc be astabliserd ii the presence of i0 /g/ml heparin, 3 mM MgC^l2, 0.5 M NaCl 

or 4 M urea, the percentage of ribbprobe radioactivity crosslibCkd to protein under ttese aonditiocs being i imilar to the aontrol value 
(Fig. 2A). Howveer, certain aombinatiocs of these igents, namely 
heparin plus MgCl2, heparin plus urea and NaCl plus MgCl2, almost completely prevent crossliiking (Fig. . 2A). Even 
RNA-protein complexes formed first and then irated with 
heparii/MgCl2 or heparin/urea before crossliiking are

Figure 2. Effect of different agents on tfie UV crosslinking of riboprobe to FRGY2 
proteins. (A) The binding buffer (20 mM NaCl, 20 mM Tris — HCl, pH 7.5) 
was adjusted with the agents shown prior to the binding of proteins to RNA, 
UV irradiation and phenol extraction. (B) Confirmation of crosslinking to FRGY2a 
and FRGY2b. In this experiment, the buffer was adjusted with the agents shown 
after the binding reaction. Then the complexes were UV irradiated, digested with 
ribonuclease and analysed by SDS-AAGE/autoradtography. Note that in (A), 
a minimum of one crosslinking event per protein-riboprobe complex is sufficient 
to be recorded as maximum binding, whereas in (B), the intensity of labelling 
is proportional to the number of crosslinking events.
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susceptible io dissociatim t Fig. 2B). That heparin and urea i hould 
cooperate io prevent binding and io disrupt complexes i i hardly 
surprising, since protein conformation and RNA secognitioc are 
llrgely dependent upon charge i nthvaclinn and hydrogen bonding. 
How/wer, the combined effect of i ow concentrations of heparin 
and Mg2 + ii more inthqesting and potentially useful.
Heparin and MgO+ block different binding domains
As mvntiocee earlier, the effect of heparin ti most i iiely io block 
the positively charged itil domains of the Y-box proteins, laving 
the CSD for inthqactinn with nucleic acid (in the absence of 
Mg2+). The additional effect of Mg2+ would therefore operate 
mainly through the CSD. That this ii, indeed, the case ii 
demnnrtrated by disrupting the CSD. In all vertebrate Y-box 
proteins whose sequence has been determined, there exists an 
unique NG ^pa^gim-glycine) site at the beginning of the 
second /-strand of the /-baarei. This site t...RNGYGFINR...) 
shows homology with the RNP-1 site of the RRbl-cnmeining 
family of RNA-eicding proteins (11,25). Cleavage of FRGY2 
proteins at ilie NG tite t see Fig. 5 A) with hydroxylamine t HA) 
results i n a protein preparation which still crosslmks io RNA i n 
the presence or absence of 3 mM MgCl2, this binding showing 
the ahaaacteristics ofheparin i ilhibitinc iimilar io those obtained 
with the native proteins (Fig. 3A). These results would be 
explained by a Mg2‘--induced block operating at, or near io, tlie 
CSD and a heparin block i mposed by binding io the basic tail 
donums. That the Mg2-induced block applies i o proteins with 
an intact CSD, but not io te HA-cleaved proteins, ii seen i n

Fig. 3B. It ii allo seen that heparin tnhibitinn of tail domain 
binding (in the HA-cleaved proteins) ii activated by loo 
concentrations of MgCl2 (< t mM). One further consequenci 
of disrupting the CSD t i that the itability of i ntevactinn with the 
rinoprobe ii substantially reduced. Thus 0.5 M NaCl appear 
to be iuff cient io prevent binding by the tnii domains of the HA 
cleaved proteins, yet has i ittl effect on crosslmking io die i ntac 
proteins (Fig. 3C).

A

Competitors 

—O— N(C,U)

n(A)

-•--o - p(A,G)

MgCl2 (mM)

B
—□— Native + MgCj —O— Native + heparin

A -.-o- HA + MgCl2 B — O-- HA + heparin

Figure 3. Effects of disrupting the CSD on the ability of FRGY2 proteins to 
bind riboprobe in the presence of heparin, MgCl2 and NaCl. Intact FRGY2 
(Native) and proteins cleaved with HA were crosslinked to riboprobe in the 
conditions indicated. (A) Heparin-sensitive binding activity in the presence and 
absence of MgCl2 (3 mM). (B) Mg0+-sersii1ve binding activity in the presence 
and absence of heparin (10 Mg/ml). (C) NaO-sensitive binding activity.

Figure 4. Effects of Mg0+ on the irieiaciior of FRGY2 proteins wit 
ribopolymers. (A) The Mg0O-irdfced switch in binding specificity. Th 
FRGY2 -riboprobe irieraci1or was challenged with a 100-eold excess ove 
riboprobe of poly(C,U), poly(A) or poly(A,G) at the concentrations of MgCl 
shown or in the presence of 1 mM EDTA. (B) Band-shift assay showing dire 
binding of ^^^tolab^Hed ribopolymers. The poly(A,G) probe (tracks 1 —4) an 
the poly(C,U) probe (tracks 5-8) were bound to FRGY2 proteins in the absenc 
(tracks 2-4 and 6) and presence (tracks 1, 5, 7 and 8) of 3 mM MgCl2 an 
in the presence of KXJ-fiold excess of unlabelled poly(A) (tracks 1, 2, 5 and 6' 
poly(A,G), (tracks 3 and 8) and poly(C.U) (tracks 4 and 7). The positions o 
unbound probe (P), protein-RNA complexes (C) and larger aggregates (arrow 
are indicated. Corf1emai1or that protem-RNA complexes have been formed i 
given by the relative crosslinking values obtained from the coreespordirg reaction

c
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Sequence recognition is influenced by Mg2+
We reported previously (30) that the FRGY2 proteins show a 
marked binding preeerecce for polypyrimidices, the 
retoro()olumer txily(C,U) being the best compotitoe of riOopeobe 
binding tested. These experiments were pemenmed i n the presence 
of Mg2 + , diiuttd from 20 mM (to destabilize native mRNP 
complexes) to 2 mM MgCl2 (to allm binding of t lie Y-box 
proteins to eibopro0e). As shown here, this binding preference 
can now Op ilrgely aoriboted to the toil dorniins. The results 
(Fig. 4A) cnnfirm that comeotition by poly(C,U) ii actually 
Mg2 + -dependntt. Of a range of polymers used to stody comettition i n tie absence of Mg2*, by far t he best compttitnrs 
were the polypurines, poly(A,G) and poly(G), but as with 
Mg2 + -dependent binding (30), CSD binding showed no 
compttOion by pnlyiA) (Fig. 4A. The pnlypueice-binding activity of the CSD was progressively inhibited by 1-3 mM 
MgCi2. In effect, a switch in binding affinity from poly(A,G) to polyiC.U) can be achieved simply by increasing the 
cnncenteaOon of Mgd2.

That FRGY2 proteins can i nttract directly with poly(A,G) or 
poly((C,U) depeiding on the binding conditions i o sIiowc by band- 
shift assays using i ubellud polymers (Fig. 4B). In the presence 
of 3 mM Mgd2, polyfA.G) in not bound, whereas poly(C.U) 
io rettraed as RNA —protein complexes tC). In the absence of

MgCi2, poly(A,G) forms complexes, whereas poly((C,U) to not 
bound. The binding reactions are unaffected by adding excess 
amounts of idabelled poly (A), but are competed by adding the 
same polymer as the bound probe i Fig. 4B). Addition of excess 
poly(C,U) in the a0secce of Mg2+ and excess poly(A,G) in the 
presence of Mg2+ improves binding peelbiipcy to ihe poly(A,G) 
and poly(C,U) probes, respectively. One further aocsequecce of 
adding excess poly(A,G) to the ieaction tn which ihe iai domains 
bind ihe poly(C,U) probe it that the complexes are driven tnto 
Crger aggregates (arrow in Fig. 4B). The molecular Oasis for 
this increased eotect of t it not obvious.
Fragmentation of FRGY2 proteins reveals multiple binding 
domains
As already discussed, the CSD of ihe FRGY2 proteins can be 
disrupted with HA cleavage at a unique NG sit iFig. 5A). In 
addition, hydrolysis of proteins with formic acid i FA) results tn 
preferential cleavage at aspartate-proline (DP) residues (31). 
A single DP sitt exists in FRGY2b (Fig. 5A), such that FA 
treptmect iesults t n an N-teemmal fragment codaming the CSD 
plus two basic domains and a C-termicar fragment codaming 
two basic dorniins. Production of these aregments from i oo>attd 
FRGY2O has been confirmed by i mmcoertaicicg tnot shown). 
In FRGY2a there aee three iurther DP aittr iFig. 5A), resultiig
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Kigure 5. RNA binding to chemically cleaved FRGY2 proteins. (A) Diagram of FRGY2a/b showing their linear structure, consisting of: the N-terminal region 
(N); the CSD (/31 -05); the acidic domains (Al - A4); the basic domains (BI -B4). The position of the HA-sensitive NG site and the positions of the FA-sensitive 
DP sites are indicated by arrows. Also shown are the potential sites of phosphorylation by the RNP-bound casein kinase II (asterisks). (B) Cleaved fragments retain 
RNA-binding activity. FRGY2 proteins (tracks 1 and 1') and fragments produced by HA (tracks 2 and 2') and FA (tracks 3 and 3') treatments were separated by 
SDS-PAGE. transferred to nitrocellulose and either immunostained using anti-FRGY2 (tracks 1-3) or incubated with riboprobe to produce the autoradiograph 
shown (tracks 1’- 3'). Positions of the major fragments C-terminal to the NG site (AN/31) and N-terminal to the DP sites in a2 (AA2 — A4) are indicated by arrows 
on the immunoblot. (C) Points of crosslinking (contact) are established throughout much of the length of the protein. FRGY2 — riboprobe complexes, formed under 
different conditions, were crosslinked, digested with ribonuclease, cleaved with FA and analysed by SDS — PAGE/autoradiography. Complexes were formed from 
10 /ig of protein and 0.5 ng of riboprobe in binding buffer with no addition (tracks 1 and 2) or with addition of: 3 mM MgCl2 (track 3); 10 jig of heparin (track 
4); MgCb plus heparin (track 5); 20 ng of poly(C,U) in the absence (track 6) or presence (track 7) of MgCl2; 20 ng of poly(A,G) in the absence of MgCl2 (track 
8). Indic'caed by arrows are the positions of; the intact proteins (FRGY2); the N-terminal fragments (AA2 — A4); the C-terminal fragment from FRGY2b (B3 4 
B4); the C-terminal fragments from FRGY2a (B3 and B4). (D) Individual basic tail domains can bind RNA in the absence of a functional CSD. HA-cleaved proteins 
were bound to riboprobe and then crosslinked and treated with FA as described above. Complexes were formed in the absence (tracks 1 and 2) or presence (tracks 
3-5) of 3 mM MgCU and with the addition of 2 ng heparin (track 4) or 20 ng of poly(C,U) (track 5). Fragments could be aligned with those produced by FA 
treatment alone and run on the same gel (track 1). Identity of fragments as shown for (C).
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in a t Cnilar N-adrmieaS freamdna plus two rmaSl fragments each 
containing a single basic domcin.
The major HA-cleaved fragments (AN/31) and FA-cleaved 

fragments (AA2-A4) can be clearly teee in the tmmunobloa t hown 
(Fig. 5B, tracks 2 and 3). That these fragments retain RNA- 
binding activity t c seen tn (Iis duplicated blot, which has bdde 
incubated with t abellad eiCopeobd (Fig. 5B, tracks 2' and 3'). 
In (his particular assay, binding was accomplished tn the absegee 
of Mg2+, therefore tabdllice; of arrgmdnts with disrupted CSDs (AN/31) t c poor t n comparison with fragments containing t ntact CSDs (AA2-A4). Furthermore, washing of (he flltasr tn higher 
salt (O.5 M NaCl) resulttd t n complete stricpicg of t abel from 
fragments lacking a fugctional CSD (not shown), again 
dmphecizigg (haa binding by (hd basic (ail domains tc rdlaticdly 
sala-2egsitivd. Further analysis aocussed on binding of riCoprobd 
to proteins and (hdie fragments which had not been previously 
denatured.The tntaea FRGY2 proteins were erosslicged to leboprobd, 
fragmented by acid (aratmega, (aedtad with ribonukldasd and then 
separated by SDS— PAGE. Autoradiography reveaie which of 
the fragments were m contact with rhd radiolabelld RNA. As 
shown tn Fig. 5C (rak 2), the FA-cleaved arramdgts cogtaimng 
icoratad basic domains were crosslidced to the ribopeobd. The 
best comdatitivd comCinations were again heparin (l-rak 5) and 
poly(C,U) (trrak 7) in the pedsdncd of Mg2+. Note that 
poly(A,G) is a strong eomda)itor when the tntaea protein with 
a functional CSD t c t nvolved rtraak 8). The use of HA-cleaved 
fragments in binding prior to crosslicldng and separation 
kogflcmed that they behave as basic (sC. domeins, t .e. teCoprobd 
binding is competed by poly(C,U) and heparin and not by 
poly(A,G) t n die pedsdgcd of tow cogcentratiogs of Mg2+ ( not 
shown). Further FA digestion of tae HA-cleaved mtterial at DP 
sites generates tndividual t abelled basic domains (Fig. 5D, tacks 
2 and 3), which correspond to those produced by FA cleavage 
of FRGY2—riCoprobe compldxds (trrak 1). Again, binding is 
competed by heparin (tarak 4) and poly(C,U) (trrak 5) in (he 
pedsdgcd of Mg2+.
To what extent tequeged adcoggition by the dieefrdga binding 

domains of FRGY2 proteins is Mg2+-depdgdegt rather than 
cation-segsiaivd was chekkdd by substituticg spdrmidigd for 
MgCl2 tn binding adaktiogs prior to crosslickigg. The tdsults are 
summrtized tn Table 1 and tead (o (lie main eogklue)ons (hat: 
(i) The CSD tnteracte preferentially with poly (A, G), (o a tlichtly 
lesser degree with poly(G), (not shown), but not at all with 
poly (A), this activity being specifically inhibited by 5 mM 
MgCt2; (ii) a lew eogedntratiog of cations, 1 mM of dithdr 
MgCl2 or spermidine, is required for a specific mtesacticn of

tail domains with poly(C,U), this activity being t ost t n 0.5 M 
NaCl or competed by heparin. As shown previously (30), 
poly(C,U) competes for protein binding, on a mass:mass basis, 
almost equally with the more complex rinoprobd sequence. 
Similarly, in conditions favouring poly (A, G) binding, the 
synthetic tinbporymde competes almost as welt as (he riCoprobe 
(not shown). Howvver, the optima) recognition sequence, and 
hdged ttr frequency of ockueregcd t n (he different rinoprobds, 
in stCl unknown for each of (lie binding activities.

DISCUSSION
The procedure outleted here for the purificaticn of Y-box proteins 
from mRNP tould tn principle be (pplied dlsewhdre, for example 
to extract. Y-box proteins frrm t omatic t iceudSl where (hhy may 
be much t ess abundant (han (n Xenopus oocytes. It t c aesemed 
that the treetment employed does not disrupt the binding 
spdeificitiee of the proteins and, tn particular, that the told-hock 
domain t c either stable at 80° or in at (east able to ednaturd 
coredetly. Pheemertanility appears to be a gdgdral property of 
Y-box proteins; for insttgcdl the human YB-1 Y-box—DNA 
complex tc resistagt to heating to at (east 69° °C (3).The t nitial observation was tiat the combined acticn of heparin 
and Mg2+ comyletely blocks binding of FRGY2 proteins to 
RNA. That Mg2+ inflyencds the activity of Y-box proteins n 
apparent in other studies, notably with YB-1 (9), where it is 
suggested that Mg2+ dnhancde binding to apurigie DNA. and 
with unr (33) where binding to both DNA and RNA targets 
reveals a sensitivity towards Mg2+ at about 1 mM. The unr 
protein consists of t 5-fold repeat of the CSD with no auxiliarr tail domeins. It may be inferred that a similar sensitivity tc Mg2+ applies to (he single CSD of Y-box proteins. The effek 
of Mg2+, at (east on FRGY2 binding to RNA, appears to be 
2-fold: (o interfere with binding by the CSD and (o ffvour binding 
by the (ail domains over (tte range t —5 mM. Phdsd (wo effects appear to be due to diffesegt types of molecular mechanism 
because the first t c spdcifie to Mg2+l whereas the second car 
be obtained with (he tttuetueally distinct cation rpdemtdind. The 
contribution of heparin, to the blocking of RNA binding is 
explained by the intesacticn of this polyagiog with the arginine 
clusters contained tn the (ait domeins, (hus competing efficients 
with RNA for binding sites.
To date, the ability of FRGY2 (ail domains (o bind RNA has 

bddn discussed ( 34), but not considered t n detail. In (he presm 
sttdy we thow that (fter RNA binding, UV (rrrdiaticn (nd proteii 
fragmettation, individual tail domains of FRGY2 have bedt 
crosslinged (o riCoprobe. Furthermore, crosslicging of rinopeebl

Table 1. Effect of cations on the binding specificities of PRGYA domains*

Cations iCCcX:
Cold-shock domain 
poly(A,G) poly(C,U)

Basic tail domains 
poly(A, G) poly(C,U)

0.1 M Na+ 4- — 4- —

0.5 M Na+ 4- - 0 0
I mM Mg2 + -f - (+) 4-

5 mM M+2+ 0 0 - ' 4-

5 mM Spermidine3 + 4- (+) - 4-

*EfBciency of crosslinking to riboprobe was measured in die presence of poly(A/G)/ poly(C,U), both at 40 /ig/ml and the concentrations 
of NaCl, MgCl2 or spermidine shown. Scores of + represent competition levels of >90% of controls (minus competing polymer); 
scores of - represent competition levels of <20% of controls; and scores of (+) represent intermediate values. Scores of 0 indicate 
that no binding to riboprobe could be obtained under- the conditions shown.



5588 Nucleic Acids Research, 1994, Vol. 22, No. 25

to HA-cierved fragments confirms that the iai domains can bind 
to RNA t ndependectly ofa ^^unctionri CSD. Loss of function of 
the CSD after treetment of FRGY2 proteins with HA ti inferred 
from t he marked t ncrerse observed t n i ensitivity of RNA beneing 
to heparin and NaC. The NG deavage site lim within the 
j2-traiiC of tie CSD and cleavage would result in aomplete ioss 
of the 11-strand from i he main part of the protein and disruption 
of the /2-strand t irelf. Since the 01 -/—-strands of the bacterial 
cold-hock proteins have been idectifi id ss foiming tlie ttnicture 
which interacts with nucleic acids (15 — i 8) and since deletion 
of part of the /2-traaN of die NSEP-1 Y-box protein results i n 
loss of DNA-niceicg activity (5), t t t i reasonable io ahshme (hat 
FRGY2 would ienilarly tooe tie functic of it CSD on clqvrge.
The reported binding specificity of Y-box proteins to DNA ii remarkably varied, in addition to interactim ofY-box proteins 

with Y-box promoter elements of vertebrates (3,22,35,3(5), 
HTLV, HFV and RSV (37,38) and bacteria (19,20), there appeas 
to be an affinity for pyrimidine-rich elements in tlie promoters 
of c -myc i5), y-globin t 7) and tlie i iner-specific gene apoVLDLII 
(6), and now alo for purine-rich elements t n tlie LTR of RSV 
(10). One possibility ii that ihe different specificities observed 
are due i o eireeranceh between Y-box proteins in regions t ess 
cocselvee i hac i he essentially i nvariant CSD. Although tlie ial 
domains gqcvrally consist ofalnraatiig basic and acidic regions, 
their sequence ii Not conserved between different proteins. A 
second pctsibility i i that die Y-box proteins all recoeninq a iimilai- 
range of iequencet but that different targets are recognized by 
different protein doiinins. This aspect has been investigated in 
the NNA-niceicg studies reported here, and similarities in the 
mode of binding of Y-box proteins io DNA and to RNA can 
be considered. For example, most of the htudiqs mneq on tlie 
binding of Y-box proteins to DNA emphasize the preeeared 
interactim with single-straaCed targets; mewlse, we note that 
double-stranded RNA presents a poor binding template. 
Furthermore, two Y-box proteins involved in developmental 
regulation, FRGY2 t22) and MSYl (12,13), have important roles 
in masking mRNA from translation, in addition to their gene 
regulatory activities, tneeed, Y-box proteins i n general may have 
a role in mRNA packaging.In our RNA-nicding assays we describe a preference for ihe 
polypul•invs p(A,G) and p(G), but not p(A), a binding mediated 
by the CSD. In reeitioc we describe a crtinn-dependect 
preference for polypyrimieines due to the tail domicis. This 
second type of binding has all of tlie characteristics that we described erriiel• when Mg2+ was an t ntegral component of the 
biccling reaction (30). By analogy, tlie various DNA binding 
activitiis io far reported may be due io the activity of the CSD, 
ttil domains or a cooperative combination of both, depending 
oc the rerction conditions used. In the context of binding to 
promoter elements, i he Y-box proteins may be associating with 
DNA via ihe aocperatioc oebcth types of domim. The presence 
of an actual Y-box DNA ellment appears cot to be essential for 
binding io cqrtain promoters where, for example, an H-DNA 
structure ii induced in regions of strong purine-pyrimidine 
strand <^1X1111117, exposing a pyiimidine-rich single itrand from 
a t riillx strand (30). It i i i nterestiig io cote that ihe structure 
of H-DNA appears to be stabilizd by Mg2+ (7), which i a 
ffctor evtermined here tor fctienting itil domain binding to RNA. 
Mg2+ ii allo known io .stabiliie secondary structures in RNA 
(40), raiiiig ihe possibility i hat ir t nf lunce on FRGY2 binding 
ii through modifying the structure of the RNA itself. An 
rlternatiee possibility ii that Mg2+ ii involved directly in tlie

interactim between amino acids and nucleotide residues, as has 
been fuggqstee for the binding oeHeLa nanhcriptinn factor USF 
to the E-box (41).
Although the exact nature of tie molecular t nnractiin between 

Y-box proteins and nucleic acids ii unknown, we have shown 
that in vitro binding to RNA ii highly sensitive to ionic 
environment, so much to that tie acneity of tlie CSD ii dqsteoyed 
by 5 mM MgCl2 and that tlie nctteity of ihe basic tnil domains 
in binding polypyatmidines ii depqneene upon tlie presence of 
low concenerntionh of mutttealqne cations (Mg*g and 
spqamidine2g), Since the preference in sequence interactim t i 
different for the two binding reactions, tlie mixed poly purine, 
poly(A,G), being favoured by the CSD am the mixed 
pclypyaimidinq poly((C,U) being favoured by the tal domiins, 
a wide range of binding specificities could be achieved. Such 
veasatUity might be advantageous in packaging a wide vaiety 
of mRNA sequences, while at tlie ievq- of promoter binding, 
different elements such as tlie Y-box sequence and CT-rich 
strands could be recognized under different in vivo conditions.
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