
COMMUTATIVITY AND FREE PRODUCTS IN

THOMPSON’S GROUP V

Ewa Bieniecka

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2018

Full metadata for this thesis is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this thesis:
http://hdl.handle.net/10023/14652

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/159069747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/14652

Commutativity and Free Products
in Thompson’s Group V

Ewa Bieniecka

This thesis is submitted in partial fulfilment
for the degree of PhD at the University of St Andrews

10th November, 2017

Declaration

1. Candidate’s declarations:

I, Ewa Bieniecka, hereby certify that this thesis, which is approx-
imately 50,000 words in length, has been written by me, and that
it is the record of work carried out by me, or principally by myself
in collaboration with others as acknowledged, and that it has not
been submitted in any previous application for a higher degree.

I was admitted as a research student in January 2013 and as a
candidate for the degree of PhD in January 2013; the higher study
for which this is a record was carried out in the University of St
Andrews between 2013 and 2017.

Date signature of candidate .

2. Supervisor’s declaration:

I hereby certify that the candidate has fulfilled the conditions of the
Resolution and Regulations appropriate for the degree of Ph.D. in
the University of St Andrews and that the candidate is qualified to
submit this thesis in application for that degree.

Date signature of supervisor .

Date signature of supervisor .

3. Permission for publication:

In submitting this thesis to the University of St Andrews I under-
stand that I am giving permission for it to be made available for
use in accordance with the regulations of the University Library
for the time being in force, subject to any copyright vested in the
work not being affected thereby. I also understand that the title
and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research

i

ii

worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested
below, and that the library has the right to migrate my thesis into
new electronic forms as required to ensure continued access to the
thesis. I have obtained any third-party copyright permissions that
may be required in order to allow such access and migration, or
have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor
regarding the publication of this thesis:

PRINTED COPY: a) No embargo on print copy.

ELECTRONIC COPY: a) No embargo on electronic copy.

Date signature of candidate .

Date signature of supervisor .

Date signature of supervisor .

iii

Abstract

We broaden the theory of dynamical interpretation, investigate the prop-
erty of commutativity and explore the subject of subgroups forming free
products in Thompson’s group V .

We expand Brin’s terminology [11] for a revealing pair to an any
tree pair. We use it to analyse the dynamical behaviour of an arbitrary
tree pair which cannot occur in a revealing pair. Hence, we design a series
of algorithms generating Brin’s revealing pair [11] from any tree pair, by
successively eliminating the undesirable structures. To detect patterns
and transitioning between tree pairs, we introduce a new combinatorial
object called the chains graph. A newly defined, unique and symmetrical
type of a tree pair, called a balanced tree pair, stems from the use of the
chains graphs.

The main theorem of Bleak et al. [5] states the necessary structure
of the centraliser of an element of V . We provide a converse to this
theorem, by proving that each of the predicted structures is realisable.
Hence we obtain a complete classification of centralisers in V . We give
an explicit construction of an element of V with prescribed centraliser.
The underlying concept is to embed a Cayley graph of a finite group into
the flow graph (introduced in Bleak et al. [5]) of the desired element.
To reflect the symmetry, we present the resulting element in terms of a
balanced tree pair.

The group V is conjectured to be a universal coCF group, which
generates interest in studying its subgroups. We develop a better under-
standing of embeddings into V by providing a necessary and sufficient
dynamical condition for two subgroups (not both torsion) to form a free
product in V . For this, we use the properties, explored in Bleak and
Salazar–Díaz [8], of sets of so–called important points, and the Ping–Pong
action induced on them.

iv

Acknowledgements

Many thanks to Dr Collin Bleak, my research advisor, for all the fruitful
discussions about Thompson’s group V , and for his support during my
transition to PhD program; to Dr Martyn Quick, my research advisor, for
sharing his wisdom and expertise in writing mathematics; to my colleague
Hunter Spink for helpful conversations about automorphisms of graphs;
to Andrew Duncan and David Robertson for conversations about flow
graphs and conjugacy in V ; and also to Fenrir Thorvaldsen for always
being there for me.

The pictures of tree pairs are taken from the vTrees software pack-
age written by Collin Bleak and Roman Kogan [6].

Contents

Declaration i

Abstract iii

Acknowledgements iv

Table of Contents v

1 Introduction 1
1.1 History . 1
1.2 How V Has Been Studied 2
1.3 Motivation for Studying Embeddings into V 3
1.4 Description of Our Methods 3

2 Fundamentals of Thompson’s Group V 7
2.1 Cantor Space . 7
2.2 Prefix Substitution . 8
2.3 Tree Pairs . 11

Elements of V as Tree Pairs 11
Notation for Tree Pairs . 14
Equivalent Tree Pairs . 18

2.4 Family of Chameleon Groups 20

3 Dynamics via Combinatorics 21
3.1 Revealing Pairs . 21

Leaves . 22
Definition of a Revealing Pair 31
Classification and Chains of Leaves 33

3.2 Algorithm for Obtaining a Revealing Pair 41
Pre–Chains Graph . 42

v

vi CONTENTS

Chains Graph . 51
The Algorithm Part I – Maximal Tree Reduction 64
The Algorithm Part II – Detecting Torsion 69
The Algorithm Part III – Finding Attractors and Repellers 90
Conclusion and Interpretation 124

3.3 Rollings . 129
3.4 Important Points of an Element of V 137

4 Centralisers 147
4.1 Statement of Results . 148
4.2 Literature Review . 150

Flow Graphs . 150
The Centraliser’s Action on Important Points 153
The Slope Map S . 155
Centraliser of a Connected Non–Periodic Flow Graph . . . 159

4.3 Elements with a Prescribed Centraliser 166
Action of K on Rα . 166
Construction of α with Prescribed Torsion Subgroup

of its Centraliser 168
Construction of α with Prescribed Centraliser 173
Examples . 180

5 Free Products 189
5.1 Statement of Results . 190
5.2 Literature Review . 190

Ping–Pong . 191
Dynamics of Free Products 192

5.3 On Dynamics of Free Products in V 195

Bibliography 201

Chapter 1

Introduction

In this thesis we expand the theory of dynamical interpretation, investi-
gate the property of commutativity and explore the subject of subgroups
forming free products in Thompson’s group V . The family of Thomp-
son’s groups, consisting of three groups currently known as F , T and V ,
have been introduced in the mid-1960s by Richard J. Thompson in [31].
The group F was proposed as a possible candidate for an answer to a
very well–known problem in logic, while T and V were the first known
examples of finitely presented infinite simple groups.

1.1 History

In 1924 two Polish mathematicians published a paper which shocked
the public by questioning the paradigms of intuitive understanding of a
concept as fundamental as volume. Understandably, the Banach–Tarski
paradox [1], presenting a paradoxical decomposition of a sphere using a
particular group action on it, drew the attention of a lot of their contem-
porary researchers. In 1929 von Neumann [26] first defined the concept of
amenability for groups, and Tarski [29], [30] proved that a paradoxical de-
composition of the sphere can occur if and only if the group acting on it is
non–amenable. However, actual constructions seemed to rely on the usage
of a non–abelian free subgroup. Von Neumann [26] showed that existence
of a non–abelian free subgroup implies non–amenability. Henceforth, a
natural conjecture arose, which speculated whether non–amenable groups
are precisely those which admit non–abelian free subgroups. In the mid-
1950s the name of von Neumann was explicitly linked to this conjecture.
In 1965, when the problem remained both unsolved and increasingly pop-

1

2 CHAPTER 1. INTRODUCTION

ular, Richard Thompson [31] introduced the first potential counterexam-
ple to it, which we currently know as Thompson’s group F . The von
Neumann conjecture was disproved in 1980 by Ol’shanski [27], but F re-
mained a candidate for the first finitely–presented counterexample to the
conjecture. Only in 2013, Monod [25] provides a very natural counterex-
ample, which in fact is related to F , and in 2016 Lodha and Moore [23]
find a subgroup of this counterexample which is a non–amenable finitely–
presented group with no non–abelian free subgroups. Interestingly, the
problem whether F is amenable or not remains open to this day.

The Thompson’s group F remains the most famous of the groups
introduced by Thompson in [31]. However, he simultaneously defined two
other groups, currently known as T and V , which naturally generalise F
and satisfy the containments F ≤ T ≤ V . The Thompson’s groups F ,
T and V possess a set of unusual properties which make them natural
candidates for counterexamples in various conjectures in group theory.
The groups T and V are for that matter instances of infinite, finitely–
presented simple groups. In particular, the motivation for this work has
connections to the co–word problem, which will be explained later in more
detail.

Over the years, we also observe many new families of groups in-
spired by Thompson’s groups. Amongst most famous we have Higman–
Thompson family of groups Gn,r investigated in 1974 by Higman in [17],
groups of piecewise–linear homomorphisms of the real line analysed in
1985 by Brin and Squier in [12] and a family of groups of the form nV

introduced in 2004 by Brin in [11].

1.2 How V Has Been Studied

There are many approaches which have been taken in order to study
Thompson’s groups. They can be described using presentations, as for
instance in Cannon, Floyd and Parry [14], which often serves as a first
point of contact with these groups. In some recent studies, Bleak and
Quick [9] point out the resemblance of a presentation of V with finite
symmetric and alternating groups. In Higman [17] the interpretation
of V occurs via its action on an algebra, which approach was contin-
ued recently by Salazar–Díaz in [28]. Cannon, Floyd and Parry [14] also
describe how an element of V can be understood as a (non–unique) com-
binatorial object known as a tree pair. This is possibly the most widely

1.3. MOTIVATION FOR STUDYING EMBEDDINGS INTO V 3

used strategy, although it is often accompanied by other techniques. As
an example, it has been used in recent studies of Matucci [24] to construct
so called strand diagrams. In Bleak and Salazar–Díaz in [8], Thompson’s
group V is understood as a group of homeomorphisms of Cantor space.
This approach is continued and expanded by a new dynamical tool called
a flow graph in Bleak et al. in [5].

In this thesis, the group V is viewed as a group of bijections on Cantor
space and understood via this action. However, elements of V are also
depicted by tree pairs, and represented by new objects introduced in this
thesis, called chains graphs. We will describe our methods in more detail
in Section 1.4.

1.3 Motivation for Studying Embeddings into V

A context–free (CF) group is a group in which all expressions equal to the
identity form a CF language. The syntax of most widely used languages
in computer programming is CF (or almost–CF), because CF parsing is
well–studied, with efficient algorithms. A co–context–free (coCF) group
is a group in which the complement of all expressions equal to identity is a
CF language. Lehnert and Schweitzer show in [22] that V is a coCF group,
which implies that all of its finitely generated subgroups are also coCF.
There is a possibility that there exists a universal coCF group, namely
a group which contains all coCF groups as its subgroups. Lehnert [21]
proposes a candidate for a universal coCF group. Bleak, Matucci and
Neunhöffer in [7] obtain an equivalent version of Lehnert’s conjecture,
which suggest V as a universal coCF group. Because of this conjecture,
and because all finitely generated groups of V are coCF, the study of
embeddings into V is of particular interest. This provides motivation
for the research presented in Chapter 5, where we analyse dynamical
conditions required for free product embeddings.

1.4 Description of Our Methods

As mentioned before, V is understood as a group of homeomorphisms on
Cantor space. Studying this action of V enabled Bleak and Salazar–Díaz
in [8] to decide that the group Z2 ∗Z does not embed into V . Simultane-
ous studies and the development of a new combinatorial tool for analysing
this action enabled a thorough analysis of allowable isomorphism type of

4 CHAPTER 1. INTRODUCTION

centralisers of elements of group V by Bleak et al. in [5]. In Chapter 4 of
this thesis, I produce a converse to their main result, which results in The-
orem 4.1.2. My method focuses on constructing elements of Thompson’s
group V with prescribed isomorphism type of their centraliser, realising
all types predicted by the model from [5].

The dynamical tool developed by Bleak et al. in [5], known as a flow
graph, is derived from the concept of a special kind of a tree pair, de-
scribed by Brin in [11] and called a revealing pair. This type of tree pair
is useful for understanding the dynamics occurring on Cantor space un-
der the action of V . In [28] Salazar–Díaz presented a method to find all
revealing pairs corresponding to a given element α ∈ V , given any of its
revealing pairs. Interestingly, no formally written algorithm for obtaining
a revealing tree pair from a non–revealing tree pair was published, even
though the idea was known to be discussed by Collin Bleak and Daniel
Farley. Chapter 3 of this thesis presents my work obtaining the desired
algorithm. Moreover, in the process of analysing the problem, I use an
object inspired by a flow graph which I call a chains graph. The chains
graph allows for dynamical analysis of any tree pair, not only a revealing
tree pair. It helps to understand all possible behaviours which might oc-
cur in a tree pair (see Definition 3.1.27 and Corollary 3.1.29) and hence
allows for constructing an algorithm which eliminates behaviours unac-
ceptable for a revealing tree pair. In addition, we find types of tree pairs
which are related to revealing pairs, but unlike them are unique. We call
them balanced tree pairs. They are implicitly used in Construction 4.3.13
in Chapter 4 as more symmetric alternatives to revealing pairs.

Finally, relating back to embedding and non–embedding results, as
an example of an open question, it is not known whether surface groups
embed into V . Because of the presentation of surface groups, it seems
that understanding of how free products embed into V , and in particu-
lar what effect they have on Cantor space, would be useful for targeting
this problem. There is also a related open question posed by Bleak and
Salazar–Díaz in [8], whether for any free product in V we need to have a
Ping–Pong dynamics on Cantor space. We know that Ping–Pong dynam-
ics implies decomposition of the acting group as a free product, but the
converse doesn’t hold in general. In Chapter 5, I present my contribution
to a joint project with Bleak and Matucci on the subject of this open
question. In particular, my Theorem 5.1.1 states that if two subgroups
of V canonically form a free product, and if there is at least one element

1.4. DESCRIPTION OF OUR METHODS 5

of infinite order contained in one of them, then the groups admit a Ping–
Pong dynamics on a set of subsets of Cantor space. In order to prove
this theorem, I use techniques involving so called important points and
apply results from Bleak and Salazar–Díaz [8]. The joint project is in
progress of expanding this result to generalise to free products consist-
ing entirely of torsion, and also for finding Ping–Pong dynamics directly
on a set of points from Cantor space. One of the ideas is to apply the
construction used in Bennett and Bleak in [2] of Ping–Pong dynamics for
demonstrative groups.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals of Thompson’s
Group V

In this chapter, we will introduce standard concepts related to Thomp-
son’s group V , including its representation as a collection of tree pairs.
Sections 2.1 and 2.2 are based on exposition given in Bleak and Salazar–
Díaz [8], and in Bennett and Bleak [2], but expanded to fit our needs.

2.1 Cantor Space

Let X = {0, 1}. The set X will be called our alphabet, and the members
of X will be called letters. Let X∗ denote the set of all finite strings over
X, including the empty string ε, and let X+ denote the set of all finite
non–empty strings over X. The elements of X∗ will be called words.
Note that elements of X∗ may be viewed as elements of a monoid on the
set of generators X, where the product of two words is given by their
concatenation.

Define the infinite rooted binary tree T as a non–directed graph with
the following properties:

1. The vertex set of T is given by X∗.

2. The root of T is given by the empty word ε.

3. For any words u, v ∈ X∗, there is an edge between u and v, if and
only if, us = v or vs = u for some letter s ∈ X.

A vertex of T will also be referred to as a node or an address. Suppose
that u, v ∈ X∗. If there is a letter s ∈ X such that us = v, then we say

7

8 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

that u is a parent of v and that v is a child of u. More generally, if there
is a word w ∈ X∗ such that uw = v, then we say that u is an ancestor
of v and that v is a descendant of u. In this case we also say that u is a
prefix of v.

We can imagine the tree T in the following way. Its root ε is at the
top. It has two children, 0 and 1, both pictured to be situated a level
lower than ε. The child 0 is on the left side, and the child 1 is on the
right side. In general, given a node u of T , we draw its child u0 a level
below and to the left, and we draw its child u1 a level below and to the
right.

ε

0

00

000

...
...

001

...
...

01

010

...
...

011

...
...

1

10

100

...
...

101

...
...

11

110

...
...

111

...
...

The boundary of T is the set of all infinite strings over the alphabet
X, denoted as {0, 1}ω. We will also refer to them as infinite words. We
now identify the standard Cantor set C with the boundary of T .

We will extend the notion of a prefix to the following situation: sup-
pose that p ∈ {0, 1}ω is an infinite word, and w ∈ X∗ is a (finite) word.
If there exists an infinite word r ∈ {0, 1}ω such that wr = p, then we say
that w is a prefix of p. We also say that p underlies the node w.

2.2 Prefix Substitution

As mentioned before, the group V may be viewed as a specific collection
of automorphisms of Cantor space, under the operation of composition.
Before we define V , we will introduce the notation relating to the action
of V on C.

First of all, we will assume that V acts on the Cantor set on the right.
Hence, for any p ∈ C and any α ∈ V , we will denote pα as the image of
p under the application of α. This also implies that by convention, for

2.2. PREFIX SUBSTITUTION 9

α, β ∈ V , conjugation is given by αβ = β−1αβ and commutation is given
by [α, β] = α−1β−1αβ. Furthermore, we will define the support of α ∈ V
by Supp(α) = {p ∈ C | pα 6= p}. We will also define the orbit of p under
the action of 〈α〉 by O(p,α) = {pαk | k ∈ Z}. If this set is finite, we say
that the orbit is periodic. If this set has only one element, then we say
that the orbit is trivial.

We will now focus on the group V . Consider a finite non–empty
subset S of m words from X∗, such that the following holds: for each
point p in C = {0, 1}ω there is a unique word w in S, such that w is a
prefix of p. Note that S = {ε} is an acceptable choice of a set with one
element, as ε is a prefix for any point in C. As Holt and Röver in [18], we
call such a set a barrier. Another example of a barrier is set {00, 01, 1}.
The set {0, 00, 11}, however, is not a barrier, as points in C starting with
prefix 00 admit two prefixes from this set, while points starting with
prefix 10 admit no prefixes from this set. Notice that a barrier has a
natural lexicographic order inherited from Cantor space. For instance,
the elements of the set {00, 01, 1} are ordered as follows: 00 < 01 < 1.

Definition 2.2.1. The elements of Thompson’s group V are all maps on
C under the operation of composition, which can be defined as follows:

1. Fix a positive integer m.

2. Pick two barriers of size m with their elements in the lexicographic
order D = {u1, u2, . . . um} and R = {v1, v2, . . . , vm}.

3. Pick an m-tuple t = (t1, t2, . . . , tm) representing a permutation of
the set {1, 2, . . . ,m}.

4. An element α ∈ V represented by the triple (D,R, t) is given by
the following map on C: for all w ∈ {0, 1}ω and for all i such that
1 ≤ i ≤ m we define (utiw)α = viw.

Let us consider an example of an element of the group V defined as
above:

Example 2.2.2. Let m = 3, the barrier D = {00, 01, 1} and the barrier
R = {0, 10, 11}. We observe that 00 < 01 < 1 and hence u1 = 00,
u2 = 01 and u3 = 1. Similarly, we observe that 0 < 10 < 11 and hence
v1 = 0, v2 = 10 and v3 = 11. Let t = (2, 3, 1). We conclude that the map

10 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

α is given by:

(ut1w)α = (u2w)α = v1w so (01w)α = 0w

(ut2w)α = (u3w)α = v2w so (1w)α = 10w

(ut3w)α = (u1w)α = v3w so (00w)α = 11w

for all w ∈ {0, 1}ω.

Note that the representation of α by a triple is not unique. For in-
stance the identity map might be represented by both ({ε}, {ε}, (1)) and
({0, 1}, {0, 1}, (1, 2)) .

We refer to this type of map as prefix substitution. Note that the prefix
substitution map α can be extended to all elements of X∗ which have a
(not necessarily proper) prefix in the barrier D. Therefore, α induces a
partial action on almost all of the nodes of T . More precisely, for all
words w ∈ X∗ and for all i such that 1 ≤ i ≤ m, we have (utiw)α = viw.

We argue that the map α represented by a triple (D,R, t) is a bijection
on C. As D is a barrier, the map α is well–defined on each point of C.
As each element of C has a prefix in R, α maps onto C. As this prefix is
unique and because D is a barrier, the map α is also one–to–one. Hence
V ⊆ Sym(C).

As the map α is a bijection on C, it is invertible in Sym(C). We will
show that its inverse α−1 belongs to V .

Lemma 2.2.3. If α ∈ V then α−1 ∈ V .

Proof. Let (D,R, t) be a triple representing an element α of Thompson’s
group V . Let m be the order of the barriers D and R. Let the elements
of the barriers be given in the lexicographic order by D = {u1, u2, . . . um}
and R = {v1, v2, . . . , vm}. We know that the bijection α on C is given by
the map:

(uti)α = vi

for all i such that 1 ≤ i ≤ m. Hence, the map α−1 needs to be given by:

(vi)α
−1 = uti

for all i such that 1 ≤ i ≤ m. Consider the ordering of the set {t1, t2, . . . , tm}

2.3. TREE PAIRS 11

to be
tj1 = 1 < tj2 = 2 < . . . < tjm = m

for j1, j2, . . . , jm ∈ {1, 2, . . . ,m}.
Define t′ = (t′1, t

′
2, . . . , t

′
m) = (j1, j2, . . . , jm). Hence we may rephrase

the rule for α−1 as:

(vji)α
−1 = utji which implies that (vt′i)α

−1 = ui

for all i such that 1 ≤ i ≤ m.
Thus, the triple (R,D, t′) represents the element α−1 which confirms

that α−1 ∈ V .

We will prove in Lemma 2.3.10, when we develop our understanding
of equivalent tree pairs, that the composition of two elements of V is an
element of V . This is the last property we need, to show that V is a
group.

2.3 Tree Pairs

Elements of V as Tree Pairs

We will describe a very popular way in which elements of Thompson’s
group V are presented.

Definition 2.3.1 (Tree Pair). Let m be a positive integer, and let D and
R be two barriers of order m. Let D and R both be finite subtrees of T ,
such that D has the barrier D as its set of leaves and R has the barrier
R as its set of leaves. Let t be an m-tuple representing an arrangement
of numbers from the set {1, 2, . . . ,m}. Note that (D,R, t) is an element
of Thompson’s group V . We define a tree pair to be a triple (D,R, t).

A tree pair (D,R, t) representing an element α ∈ V is typically de-
picted by the trees D and R with their leaves decorated. We label the
leaves of the tree D with numbers from 1 to m, from left to right. For
the m-tuple t = (t1, t2, . . . , tm), we label the leaves of R with numbers
from t1 to tm, from left to right.

12 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

Example 2.3.2. Let us see how the element of V from Example 2.2.2
would look as a tree pair. Recall that m = 3, the barrier D = {00, 01, 1},
the barrier R = {0, 10, 11} and t = (2, 3, 1). The tree pair looks as
follows:

This visual representation makes it intuitive what the prefix substi-
tution for α is: for each i ∈ {1, . . . ,m} the leaf u of D labelled with
the number i is mapped to the leaf v of R labelled with tj = i for some
j ∈ {1, . . . ,m}.

We will show that this is indeed the same rule as given in Def-
inition 2.2.1 of elements of the group V . Let us consider all leaves
of D in their lexicographic order, namely u1 < u2 < . . . < um for
D = {u1, u2, . . . , um}. Note that for all i ∈ {1, . . . ,m}, the leaf ui is
decorated with the number i. Now let us consider all leaves of R in their
lexicographic order, namely v1 < v2 < . . . < vm for R = {v1, v2, . . . , vm}.
Note that for all i ∈ {1, . . . ,m}, the leaf vi is decorated with the number
ti. Hence, for all i ∈ {1, . . . ,m}, both uti of the tree D and vi of the tree
R are decorated with number ti. Hence, the map α is given by: for all
w ∈ {0, 1}ω we have (utiw)α = viw. This is precisely the rule with which
we defined elements of V .

A tree pair defined and understood in this way will then always rep-
resent an element of V . Also, by definition, each element of V can be
represented by (many in fact!) tree pairs. See Algorithms 2.3.9 and 3.2.28
for a description of methods of creating other tree pairs representing α
from a given tree pair corresponding to α.

Let us have a look at an example of a tree pair and the corresponding
bijection on the Cantor space:

2.3. TREE PAIRS 13

Example 2.3.3 (Example of a Tree Pair). Consider a tree pair (D,R, t)

represented by the tree pair below.

The set of all leaves of D is given by

D = {00, 010, 011, 1000, 1001, 101, 11}.

Also, the set of all leaves of R is given by

R = {0, 100000, 100001, 10001, 1001, 101, 11}

The 7-tuple t is given by (3, 7, 1, 4, 5, 2, 6). Hence, the tree pair (D,R, t)

corresponds to an element (D,R, t) of Thompson’s group V .

We will describe how this tree pair translates into a bijection on the
Cantor space via prefix substitution.

For all w ∈ {0, 1}ω we have:

(00w)α = 100001w

(010w)α = 101w

(011w)α = 0w

(1000w)α = 10001w

(1001w)α = 1001w

(101w)α = 11w

(11w)α = 100000w

14 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

Notation for Tree Pairs

Notice that α as in Example 2.3.3 might be interpreted as mapping leaves
of the tree D to the leaves of the tree R. Therefore, we give the following
names for these trees:

Definition 2.3.4 (Domain Tree and Range Tree). Consider a tree pair
(D,R, t). We call the tree D the domain tree of this tree pair, and we
call the tree R the range tree of this tree pair.

As we will be interpreting elements of V as tree pairs, it will be
convenient to have a notation for barriers as sets of leaves of tree pairs.

Definition 2.3.5 (Leaf Set). Consider a finite binary tree T . Define LT
to be a set of all leaves of T . In case T consists of a single vertex ε, let
LT = {ε}.

In particular, given a tree pair (D,R, t), we define:

1. the set LD to be the set of all leaves of the tree D, and

2. the set LR to be the set of all leaves of R.

As we view the tree D and the tree R of a tree pair (D,R, t) as finite
subtrees of the infinite binary tree T , we will view sets LD and LR as
sets of nodes of T . Note that this, in particular, implies that the sets LD
and LR do not need to be disjoint.

With this terminology, and recalling the partial action which an α ∈ V
induces on nodes of T , we can conclude that α induces a bijection from
LD to LR.

We will now introduce operations on trees. Suppose that (D,R, t) is
a tree pair. Recall that both D and R are viewed as subtrees of T . We
consider the intersection D∩R to be the subgraph of both D and R such
that D ∩R consists of nodes and edges common to both trees D and R.
Notice that D ∩R is also a tree. This coincides with the usual definition
of the intersection of graphs.

Lemma 2.3.6. Suppose that (D,R, t) is a tree pair. A leaf of the tree
D ∩R is one of the following:

1. a leaf of the tree D and a proper ancestor of some leaves of the tree
R,

2. a leaf of both the tree D and the tree R,

2.3. TREE PAIRS 15

3. a leaf of the tree R and a proper ancestor of some leaves of the tree
D.

Proof. Suppose that λ is a leaf of the tree D ∩ R. It means that λ is a
node of both trees D and R. However, the nodes λ0 and λ1 are either
not nodes the tree D or not nodes of the tree R, as if they were the nodes
of both, they would belong to the tree D ∩R and hence λ would not be
one of its leafs.

Hence we have three possible cases:

1. The nodes λ0 and λ1 are not nodes of the tree D but they are nodes
of the tree R. Hence, λ is a leaf of the tree D, and also a proper
ancestor of some leaves of the tree R (as R is a finite tree).

2. The nodes λ0 and λ1 are neither nodes of the tree D nor the nodes
of the tree R. In this case, λ is a leaf of both trees D and R.

3. By the same argument as 1.

Let the difference of trees D − R be defined as a (possibly empty)
forest such that e is the edge of D − R if and only if e is an edge of D
and not an edge of R, and let v be a vertex of D − R if and only if it is
contained in one of the edges of D −R. Each tree of this forest is called
a component of D −R. Observe that with this definition of D −R some
of the leaves of R might be vertices of D − R. We consider components
of D − R to be rooted at these vertices. For more detailed information,
see Lemma 3.1.3. We define the difference of trees R−D similarly.

Finally, let the union D∪R be a graph such that the vertex v belongs
to D ∪ R if v ∈ D or v ∈ R. Similarly, the edge e belongs to D ∪ R if
e ∈ D or e ∈ R. This is the usual definition for the union of graphs, so
we expand it to any graphs.

16 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

Example 2.3.7. Consider the tree pair (D,R, t) from Example 2.3.2:

The set of vertices of the tree D is given by {ε, 0, 00, 01, 1}. The set of
edges of D is given by {{ε, 0}, {ε, 1}, {0, 00}, {0, 01}}. The set of vertices
of the tree R is given by {ε, 0, 1, 10, 11}. The set of edges of R is given
by {{ε, 0}, {ε, 1}, {1, 10}, {1, 11}}.

Hence, the set of edges of the intersectionD∩R is given by {{ε, 0}, {ε, 1}},
and the set of vertices of D ∩R is given by {ε, 0, 1}.

Consider the difference D − R. Its set of edges is the set of edges
which belong to D but not to R, which is given by {{0, 00}, {0, 01}}.
Its set of vertices is given by the set of all vertices present in its edges,
namely {0, 00, 01}. Similarly, consider the difference R − D. Its set of
edges is the set of edges which belong to R but not to D, which is given
by {{1, 10}, {1, 11}}. Its set of vertices is given by the set of all vertices
present in its edges, namely {1, 10, 11}.

Finally, consider the union D ∪R. Its set of vertices is given by

{ε, 0, 00, 01, 1, 10, 11}

and its set of edges is given by

{{ε, 0}, {ε, 1}, {0, 00}, {0, 01}, {1, 10}, {1, 11}}

.

All of the graphs D ∩ R, D − R and R −D and D ∪ R are given in

2.3. TREE PAIRS 17

the following picture:

D ∩R

ε

0 1

D – R R – D
0

00 01

1

10 11

D ∪R

ε

0

00 01

1

10 11

Finally, let us define:

Definition 2.3.8. Let T be a domain or range tree of a tree pair, and
let v be a node of T .

Let us define vTv as follows. The vertices of the tree vTv are all
vertices of T having prefix v, and the edges are all edges of T between
the vertices with prefix v.

Let us now define a related tree Tv as follows. For each vertex vw

(w ∈ X∗) of vTv, the word w is a vertex of Tv. Also, for each edge
between vw1 and vw2 (w1, w2 ∈ X∗) in vTv, there is an edge between w1

and w2 in Tv.
Let u ∈ X∗. Let us also define the tree uT as follows. For each vertex

w (w ∈ X∗) of T , the word uw is a vertex of uT . Also, for each edge
between w1 and w2 (w1, w2 ∈ X∗) in T , there is an edge between uw1

and uw2 in uT .

Note that vTv is a subtree of T , but it is rooted at v. The tree Tv
bears the same ‘shape’ as the tree vTv, but it is ‘translated’ to the root
ε. The tree Tv is a subtree of T , but not necessarily a subtree of T . The
tree uT is a ‘translation’ of the tree T by the address u.

18 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

Equivalent Tree Pairs

We present an algorithm which illustrates how we can change a tree pair
representing α ∈ V into another tree pair representing the same element
α.

Algorithm 2.3.9 (Augmentation). Let (D,R, t) be a tree pair repre-
senting element α of V . Let us define a new (D′, R′, t′) as follows:

1. Pick a finite binary tree T , such that LT is a barrier.

2. Pick a leaf λ of the tree D.

3. We define the new tree D′ as the union D ∪ λT , and consider its
root to be at ε.

4. We define the new tree R′ as the union R∪ (λα)T , and consider its
root to be at ε.

5. Let m′ be number of leaves of the new tree D′. We label the leaves
of D′ with numbers from 1 to m′ from left to right.

6. For each word w ∈ LT , the expression λw is a new leaf of D′. Say
λw has a new number l in D′. Then we let the leaf (λα)w have the
number l in R′.

7. For each λ′ ∈ LD\{λ}, the leaf λ′ is also a leaf of D′. Say it has a
new number l in D′. Then we let the leaf λ′α have the number l in
R′.

8. We obtain the m′-tuple t′ by reading the numbers on the tree R′

from left to right.

The initial tree pair (D,R, t) and the resultant tree pair(D′, R′, t′)
correspond to the same element α. This can be deduced by construction
of (D′, R′, t′).

One can view the resultant tree pair as an expansion of the initial
tree pair, and we call the process an augmentation. If the set of leaves of
the tree T is given by LT = {0, 1}, then we call the algorithm a simple
augmentation. A process which would reverse a simple augmentation is
called a simple reduction, and we describe it in detail in Algorithm 3.2.28.

A simple augmentation from Algorithm 2.3.9 and a simple reduction
from Algorithm 3.2.28 present basic tools for transitioning between tree

2.3. TREE PAIRS 19

pairs representing same elements α of Thompson’s group V . In Corollary
3.2.31 we prove that any tree pair for α can be transformed into any
other tree pair for α using a finite sequence of simple reductions and
augmentations.

Lemma 2.3.10. If α, β ∈ V then αβ ∈ V .

Proof. Let α ∈ V be represented by the triple (Dα,Rα, t) and let β ∈ V
be represented by the triple (Dβ,Rβ, τ). If Rα 6= Dβ , then we can use
(possibly repeatedly) Algorithm 2.3.9 on the tree pair (Dα, Rα, t) corre-
sponding to the element α and the tree pair (Dβ, Rβ, τ) corresponding to
the element β. We aim to obtain new tree pairs (D′α, R

′
α, t
′) for α and

(D′β, R
′
β, τ
′) for β in the following way. We perform the augmentation of

(Dα, Rα, t) and the inverse image under the map α of each component of
Dβ − Rα. Then the tree R′α becomes the union Rα ∪ (Dβ − Rα). Thus,
it contains all edges and vertices from the tree Dβ , as well as all edges
and vertices from the tree Rα. Similarly, we perform the augmentation of
(Dβ, Rβ, τ) and each component of Rα−Dβ . Then the tree D′β becomes
the union Dβ ∪ (Rα −Dβ). Hence we get that R′α = D′β .

Thus, suppose that the triple (Dα,Rα, t) for α and the triple (Dβ,Rβ, τ)

for β are already such that Rα = Dβ . Let m be the order of all four bar-
riers involved. Let Dα = {u1, u2, . . . , um}, Rα = {v1, v2, . . . , vm} = Dβ
and Rβ = {w1, w2, . . . , wm}, each in the lexicographic order. Hence, we
have:

(utj)α = vj and (vτi)β = wi

for all i, j ∈ {1, 2, . . . ,m}. Therefore, we can combine these equations by
substitution j = τi to obtain the identities:

(utτi)αβ = (vτi)β = wi

for all i ∈ {1, 2, . . . ,m}. Hence, we define them-tuple T = (tτ1 , tτ2 , . . . , tτm),
so that the composition αβ is given by the triple (Dα, Rβ, T), and (uTi)(αβ) =

wi. This means that αβ is a member of V .

Corollary 2.3.11. The set V is a group.

Proof. We know that V ⊆ Sym(C). The identity map ({ε}, {ε}, (1)) be-
longs to V , so V is non–empty. We know that if α ∈ V then α−1 ∈ V

20 CHAPTER 2. FUNDAMENTALS OF THOMPSON’S GROUP V

by Lemma 2.2.3. We also know that if α, β ∈ V then αβ ∈ V by Lemma
2.3.10. Hence we conclude that V is a group.

2.4 Family of Chameleon Groups

The family of Thompson’s groups F , T and V was renamed as ‘chameleon
groups’ by Brin in [10], with V known as the ‘last chameleon’. We will
now briefly introduce the other two chameleons.

We recall Definition 2.2.1 for a description of V . We define Thomp-
son’s group F as follows:

Definition 2.4.1. The group F is defined to be a subgroup of the
group V consisting of all elements of the form (D,R, t) such that t =

(1, 2, . . . ,m) in the natural order.

We also define Thompson’s group T as follows:

Definition 2.4.2. The group T is defined to be a subgroup of the group
V consisting of all elements of the form (D,R, t) such that

t = (n, n+ 1, n+ 2, . . . ,m− 1,m, 1, 2, . . . , n− 1)

for some n ∈ {1, 2, . . . ,m}.

As F and T are not central to this thesis, we omit proofs that they
are groups.

Chapter 3

Dynamics via Combinatorics

In this chapter, we intend to familiarise the reader with the theory of
dynamics occurring in the action of an element α of Thompson’s group
V on the Cantor space. This understanding will be essential for pursuing
Chapter 4 on centralising α and Chapter 5 on exploring formation of free
products in V .

We start by presenting Brin’s [11] work on special kinds of tree pairs
for elements of V , called revealing pairs. New terminology complementing
and expanding Brin’s is introduced alongside in Section 3.1 to describe
behaviour occurring in non–revealing tree pairs. In particular, the new
classification of leaf chains, called iterated augmentation chains in [11],
allows us to detect and eliminate undesirable structures in a tree pair
to transform it into a revealing pair. We achieve this in Section 3.2 by
introducing and performing a series of algorithms on a new type of graph,
called the chains graph, which encodes tree pair behaviour. These algo-
rithms can also be used in different configurations for other purposes. In
Section 3.3 we present work of Salazar–Díaz [28] on how distinct revealing
pairs representing the same element α from V relate to each other. We
describe it in terms of the newly developed terminology. Finally, in Sec-
tion 3.4, we describe so–called important points, introduced by Bleak and
Salazar–Díaz in [8], which are best detectable by using revealing pairs.
Important points are of tremendous importance in Chapters 4 and 5.

3.1 Revealing Pairs

A revealing pair is a particular kind of tree pair representing an element
α of Thompson’s group V , introduced by Brin in [11], which reveals its

21

22 CHAPTER 3. DYNAMICS VIA COMBINATORICS

otherwise hidden dynamics. We expand Brin’s terminology to describe
all types of tree pairs.

In this section, we will develop basic terminology for leaves of trees
which form a tree pair representing an element of V . Using this termi-
nology, we will define a revealing pair of an element. We will finish by
providing a full classification of leaves for a revealing pair and the types
of sequences which these leaves form. We will provide an instance of a
typical revealing tree pair in Example 3.1.13 and we will gradually explain
its properties. All of this will help us better understand the dynamical
patterns of points from C under the action of an element of Thompson’s
group.

Leaves

Consider an element α in Thompson’s group V . Recall from Definitions
2.2.1 and 2.3.1 how α can be represented by a tree pair (D,R, t), where D
and R are finite binary trees with m leaves each, for some positive integer
m, and t is an m-tuple representing an arrangement of the numbers from
the set {1, . . . ,m}.

We can now proceed to start considering how we could discriminate
between different types of leaves of a tree pair. Our naming conventions
developed in this subsection will be essential for when we define a reveal-
ing tree pair in Definition 3.1.17.

Recall definitions of D −R and R−D from Section 2.3. Let us take
the first step to begin the classification of leaves of a tree pair by analysing
the following example:

Example 3.1.1 (Relative Position of Leaves in LD and LR). Consider
the tree pair (D,R, t) given by the picture below:

3.1. REVEALING PAIRS 23

Consider the graphs D ∩R, D −R and R−D:

D ∩R

ε

0 1

10 11

D – R R – D
0

00 01

11

110 111

Among the leaves of the domain tree D (on the left), the leaves 00

and 01, labelled with the numbers 1 and 2 respectively, are not leaves of
the range tree R, but are leaves of a connected component of D−R. The
leaf 10 of D, labelled with the number 4 in D, happens to be also a leaf
of the tree R, labelled with the number 2 in R. Finally, the leaf 11 of D,
labelled with the number 4, is not a leaf of R but it is a proper ancestor
of some of the leaves of R.

Similarly, for leaves of the range tree R (on the right), the leaves 10

and 111, labelled with numbers 3 and 4 respectively, are not leaves of
the domain tree D, but are leaves of a connected component of R −D.
Finally, the leaf 0 of R, labelled with the number 1, is not a leaf of D but
it is a proper ancestor of some of the leaves of D.

With the help of the example above, for a given tree pair (D,R, t) we
will now show how to group leaves of D and leaves of R into categories.
Let us start with the following definition:

Definition 3.1.2 (Neutral Leaf). Consider a tree pair (D,R, t) repre-
senting an element α from V . If there is an address of a node of T which
belongs to both set LD and set LR, then we call the leaf with this address
a neutral leaf of the tree pair (D,R, t).

The leaves of D fall into three main categories, and the leaves of R
also fall into three main categories, depending on their relative positions:

24 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Lemma 3.1.3 (Relative Position of Leaves in LD and LR). Consider
a tree pair (D,R, t) representing an element α of Thompson’s group V .
Each leaf of the tree D is one of the three categories:

1. a leaf of a component of D −R;

2. a neutral leaf;

3. a proper ancestor of a leaf of R and a root of a component of R−D.

Similarly, each leaf of the tree R is one of the three categories:

1. a leaf of a component of R−D;

2. a neutral leaf;

3. a proper ancestor of a leaf of D and a root of a component of D−R.

Proof. Let us suppose that λ is a leaf of the tree D, then it is either a leaf
of a component of D − R, which is Case 1), or a leaf of the intersection
D ∩ R. By Lemma 2.3.6, a leaf of the tree D ∩ R which is also a leaf of
D can be either a leaf of both trees D and R, which is Case 2), or proper
ancestor of some leaves of the tree R. In the latter case, it is also a root
of a component of R−D, which is Case 3).

By symmetry, the same proof holds for a leaf of R.

We will now define a special kind of a neutral leaf, namely a periodic
neutral leaf :

Definition 3.1.4 (Periodic Neutral Leaf). Consider a tree pair (D,R, t)

representing an element α from V , and a neutral leaf λ of that tree pair.
Then we call λ a periodic neutral leaf if there is a positive integer s such
that:

1. for all integers i such that 0 ≤ i ≤ s, the image λαi is a neutral leaf
of that tree pair;

2. the leaf λ is mapped to itself by αs, namely λ = λαs.

Note that by this definition, all leaves λαi are periodic neutral leaves.

Note that if the number s from the definition above exists and is
minimal, then λ, λα, λα2, . . ., λαs−1 are all distinct leaves of both the
tree D and the tree R, and α permutes them cyclically.

Not all neutral leaves, however, satisfy the conditions for being peri-
odic neutral leaves.

3.1. REVEALING PAIRS 25

Definition 3.1.5 (Non–Periodic Neutral Leaf). Consider a tree pair
(D,R, t) representing an element α from V , and a neutral leaf λ of that
tree pair. Then, we call λ a non–periodic neutral leaf if it is not a periodic
neutral leaf.

Lemma 3.1.6. Consider a tree pair (D,R, t) representing an element α
from V . The non–periodic neutral leaves of this tree pair are precisely
those neutral leaves that eventually get mapped outside the set of neutral
leaves under some positive (and under some negative) power of α.

Proof. We will prove the following equivalent statement. The periodic
neutral leaves of the tree pair (D,R, t) are precisely those neutral leaves
which do not get mapped outside the set of neutral leaves by any positive
power of α or any negative power of α.

Suppose that λ is a periodic neutral leaf of (D,R, t). Then by Defi-
nition 3.1.4, there is a positive integer s such that λαi is a neutral leaf
for all i such that 0 ≤ i ≤ s, and λ = λαs. Therefore, for any integer
s′, there exists an integer j such that s′ ≡ j mod s and 0 ≤ j < s. This
means that λαs′ = λαj , and so every image λαs′ is a neutral leaf. Note
that this statement is stronger than required.

Conversely, suppose that λ is a neutral leaf which does not get mapped
outside the set of neutral leaves by any positive power of α. As the trees
D and R have finitely many leaves, there are non–negative integers j and
k with j < k such that λαj = λαk. Take s = k − j. Then λαs = λ

and λαi is a neutral leaf for all 0 ≤ i ≤ s. Hence, λ is a neutral periodic
leaf. The proof is the same if instead, we suppose that λ is a neutral
leaf which does not get mapped outside the set of neutral leaves by any
negative power of α.

We will now start looking at the leaves from the leaf sets LD and LR
which are not neutral leaves. The two definitions of non-neutral leaves,
repellers and attractors, will be necessary for defining the central object
of this section, namely a revealing pair :

Definition 3.1.7 (Repeller). Consider an element α of V , represented
by a tree pair (D,R, t), and a leaf λ of a component of D −R. Then we
call λ a repeller if there is a positive integer s such that:

1. for all integers i such that 0 < i < s, the image λαi is a neutral
leaf;

26 CHAPTER 3. DYNAMICS VIA COMBINATORICS

2. the image λαs lies in LR\LD and is a proper ancestor of λ.

Definition 3.1.8 (Range of Repulsion). Consider an element α of V ,
represented by a tree pair (D,R, t), and consider a repeller λ from the
set LD, and its forward orbit of leaves λαi for 0 ≤ i ≤ s, such that: λαi

is a neutral leaf for all i such that 0 < i < s, and the image λαs lies
in LR\LD and is a proper ancestor of λ. Then we call λαs a range of
repulsion.

Notice that a range of repulsion is a root of a component of D − R.
Also, a repeller is a leaf of a component of D − R. We have a collective
name for all leaves of a component of D −R which are not repellers:

Definition 3.1.9 (Source). Consider an element α of V , and a tree pair
(D,R, t) representing it. A source is a leaf of a component of D − R

which is not a repeller.

Similarly to Definition 3.1.7, we define:

Definition 3.1.10 (Attractor). Consider an element α of V , represented
by a tree pair (D,R, t), and a leaf λ of a component of R−D. Then we
call λ an attractor if there is a negative integer r such that:

1. for all integers i such that r < i < 0, the image λαi is a neutral
leaf;

2. the image λαr lies in LD\LR and is a proper ancestor of λ.

Definition 3.1.11 (Domain of Attraction). Consider an element α of V ,
represented by a tree pair (D,R, t), and consider an attractor λ from the
set LR, and its backward orbit of leaves λαi for r ≤ i ≤ 0, such that:
λαi is a neutral leaf for all i such that r < i < 0, and the image λαr lies
in LD\LR and is a proper ancestor of λ. Then we call λαr a domain of
attraction.

Notice that a domain of attraction is a root of a component of R−D.
Also, an attractor is a leaf of a component of R−D. We have a collective
name for all leaves of a connected component of R − D which are not
attractors:

Definition 3.1.12 (Sink). Consider an element α of V , and a tree pair
(D,R, t) representing it. A sink is a leaf of a component of R−D which
is not an attractor.

3.1. REVEALING PAIRS 27

Below we present a worked example of a tree pair with the types of
all its leaves identified:

Example 3.1.13 (Leaf Types). Consider the tree pair (D,R, t) repre-
sented by the following picture:

Let us recall the definition of the difference of trees from Section 2.3
and hence identify components of D −R and R−D.

D ∩R

ε

0

00 01

010 011

1

10 11

D – R R – D
00

000 001

11

110 111

It turns out that there is only one component of D−R, it is rooted at
the node with address 00, and it is a single caret. Hence its leaves have
addresses 000 and 001. Note that 00 is a leaf of the tree R.

Similarly, let us identify components of R−D. It turns out that there
is also only one, it is rooted at the node with address 11, and it is a single
caret. Hence its leaves have addresses 110 and 111. Note that 11 is a leaf

28 CHAPTER 3. DYNAMICS VIA COMBINATORICS

of the tree D. All the remaining leaves, namely the ones with addresses
in the set {010, 011, 10}, are neutral leaves.

We will now identify prefix substitutions defined by this tree pair, in
order to recognise the types of leaves involved:

(000)α = 010 (001)α = 111 (010)α = 00

(011)α = 10 (10)α = 011 (11)α = 110

Let us systematically analyse the type of each of the leaves:

1. Leaves of D −R:

(a) Leaf 000:

(000)α2 = (010)α = 00

As 00 is a prefix of 000, leaf 000 is a repeller.

(b) Leaf 001:

(001)α = 111

As 111 is not a leaf of D and is not a prefix of 001, leaf 001 is
a source.

2. Leaves of D which are proper ancestors of leaves of R:

(a) Leaf 11:

(11)α = 110

As 11 is an ancestor of 110, leaf 11 is a domain of attraction.

3.1. REVEALING PAIRS 29

3. Neutral leaves:

(a) Leaf 010:

(010)α = 00

As 00 is not a leaf of D, leaf 010 is a non–periodic neutral leaf.

(b) Leaf 011:

(011)α2 = (10)α = 011

As 011 is mapped to itself by a positive power of α, leaf 011

is a periodic neutral leaf.

(c) Leaf 10:

(10)α2 = (011)α = 10

As 10 is mapped to itself by a positive power of α, leaf 10 is a
periodic neutral leaf.

4. Leaves of R−D:

(a) Leaf 110:

(110)α−1 = 11

As 11 is an ancestor of 110, leaf 110 is an attractor.

30 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(b) Leaf 111:

(111)α−1 = 001

As 001 is not a leaf of R and is not a prefix of 111, leaf 111 is
a sink.

5. Leaves of R which are proper ancestors of leaves of D:

(a) Leaf 00:

(00)α−2 = (010)α−1 = 000

As 00 is a prefix of 000, leaf 00 is a range of repulsion.

In the example above we observe each of the previously defined types
of leaves.

It will be shown later in Lemma 3.1.20 that the previously defined
leaves fully classify possible leaf types of a revealing pair.

Remark 3.1.14. For a general tree pair, consider Lemma 3.1.3: a leaf
of a domain tree is either neutral (periodic or non–periodic), a leaf of a
component of D − R (repeller or source), or a root of a component of
R−D. An example of the latter is a domain of attraction.

Similarly, a leaf of a range tree is either neutral (periodic or non–
periodic), a leaf of a component of R−D (attractor or sink), or a root of
a component of D −R. An example of the latter is a range of repulsion.

Thus, there are two remaining types of leaves which might occur in a
non–revealing tree pair (D,R, t) but have not been named:

1. A leaf of the tree R which is a root of a component of D − R and
which is not a range of repulsion.

3.1. REVEALING PAIRS 31

2. A leaf of the tree D which is a root of a component of R −D and
which is not a domain of attraction.

We wanted to propose a name for each them, for the sake of comple-
tion and because we will be working with these types of leaves in this
chapter:

Definition 3.1.15 (Range of Sourcing). Consider an element α of V
represented by a tree pair (D,R, t), and a leaf λ of the tree R which is a
root of a component of D − R. If λ is not a range of repulsion, then we
call it a range of sourcing.

Definition 3.1.16 (Domain of Sinking). Consider an element α of V
represented by a tree pair (D,R, t), and a leaf λ of the tree D which is a
root of a component of R −D. If λ is not a domain of attraction, then
we call it a domain of sinking.

The reason for this choice of names is, above all, consistency with the
already existing terminology. In general, if a leaf λ is a range of sourcing,
consider its backward orbit of leaves λαi for a negative integer r and
r ≤ i ≤ 0 such that the image λαr lies in LD\LR and it is not a proper
ancestor of λ. Then λαr can be either a source (hence the name range of
sourcing for λ) or a domain of sinking. Similarly, if a leaf λ is a domain
of sinking, consider its forward orbit of leaves λαi for a positive integer
s and 0 ≤ i ≤ s such that the image λαs lies in LR\LD and it is not
a proper ancestor of λ. Then λαs can be either a sink (thus the name
domain of sinking for λ), or a range of sourcing.

Definition of a Revealing Pair

Now, we are prepared to define the key object of this section, known as
a revealing pair, in terms of repellers and attractors:

Definition 3.1.17 (Revealing Pair for α ∈ V). Consider an element α
of the Thompson group V , and consider a tree pair (D,R, t) representing
α. Then we say that (D,R, t) is a revealing pair for α if:

1. every component of D −R contains a repeller;

2. every component of R−D contains an attractor.

32 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Example 3.1.18 (Revealing Pair). Consider the tree pair (D,R, t) of
Example 3.1.13 represented by the following picture:

Recall that there is only one connected component of D − R and it has
two leaves, 000 and 001. According to the analysis performed in Ex-
ample 3.1.13, leaf 000 is a repeller. Similarly, recall that there is only
one connected component of R −D and it has two leaves, 110 and 111.
According to the analysis performed in Example 3.1.13, leaf 110 is an
attractor. Hence, the conditions for being a revealing pair are met by the
tree pair (D,R, t).

For contrast, we will also give an example of a tree pair which fails to
be revealing:

Example 3.1.19 (Non–Revealing Pair). Consider the following tree pair
(D,R, t) representing α ∈ V :

There is precisely one connected component of D−R, and it is rooted
at the address 1. It has precisely two leaves, with addresses 10 and 11.
Now, (10)α = 00, which is not a leaf of the tree D. It is also not an
ancestor of the leaf 10, and so the leaf 10 is not a repeller. Similarly,
(11)α = 01, which is not a leaf of the tree D. It is also not an ancestor
of the leaf 11, and so the leaf 11 is not a repeller. Hence, the connected

3.1. REVEALING PAIRS 33

component of D−R rooted at the address 1 has no repellers. Therefore,
the tree pair (D,R, t) is not a revealing tree pair.

Notice that the tree pair gives the following prefix substitution for all
w ∈ {0, 1}ω:

(0w)α = 1w (10w)α = 00w

(11w)α = 01w

Consider these two rules that for all w ∈ {0, 1}ω we have (10w)α =

00w and (11w)α = 01w. They could be replaced by a single rule that
that for all w ∈ {0, 1}ω we have (1w)α = 0w.

Hence the element α is in fact torsion of order two, and an example
of its revealing tree pair is:

Note that both D−R and R−D are empty, so this tree pair indeed
satisfies Definition 3.1.17.

Classification and Chains of Leaves

After defining a revealing pair, which is the object which motivates this
section, we will take an opportunity to complete the classification of leaves
of a revealing tree pair and describe types of chains which they form. It
will prove to be helpful for understanding chains graphs in Section 3.2.

We will now complete the classification of revealing pair’s leaves:

Lemma 3.1.20 (Types of Leaves of a Revealing Pair). If an element α of
V is represented by a revealing tree pair (D,R, t), and if λ is an element
of the union of the leaf sets LD ∪ LR, then λ is of one of the following
types:

34 CHAPTER 3. DYNAMICS VIA COMBINATORICS

1. a leaf of a component of D −R, which could be:

(a) a repeller, or

(b) a source;

2. a leaf of the tree D and at the same time a root of a component of
R−D, which is a domain of attraction;

3. a leaf of the intersection of the tree D and the tree R, namely a
neutral leaf, which could be:

(a) periodic, or

(b) non–periodic;

4. a leaf of the tree R and at the same time a root of a component of
D −R, which is a range of repulsion;

5. a leaf of a component of R−D, which could be:

(a) an attractor, or

(b) a sink.

Proof. First, recall Remark 3.1.14. Thus, we only need to show that every
root of a component of R −D is a domain of attraction and that every
root of a component of D − R is a range of repulsion. Given Definition
3.1.17 of a revealing pair, each component of D − R contains a repeller,
which is mapped to the root of this component by some positive power
of α. Hence, this root is a range of repulsion. Observe that no other
leaves of this component can be mapped to its root, and so they are
sources. Similarly, each component of R−D contains an attractor, which
is mapped to the root of this component by some negative power of α.
Hence, this root is a domain of attraction. Observe that no other leaves
of this component can be mapped to its root, and so they are sinks.

Note that the lemma above also proves the uniqueness of a repeller
for a given a component of D−R, and the uniqueness of an attractor for
a given component of R−D.

Now we know all the different types of leaves which can occur in a
revealing tree pair. We also know the remaining types of leaves which
may occur in a non–revealing tree pair: see Definitions 3.1.15 and 3.1.16.
The next step which we are interested in is to determine what type of

3.1. REVEALING PAIRS 35

patterns the leaves form. Consider the following algorithm for forming
sequences of leaves, which we will call chains:

Algorithm 3.1.21. Consider a tree pair (D,R, t) representing an ele-
ment α of Thompson’s group V .

1. Pick a leaf λ ∈ LD\LR which has not been used in any of the
previous chains. Let k be a positive integer such that the leaf λαk

is a member of the set LR\LD and for all i such that 0 < i < k the
leaf λαi is a neutral leaf. Then, create a chain (λαi)ki=0.

2. Repeat the previous point until there are no more leaves left in
LD\LR which have not been yet used for forming a chain.

3. Pick a leaf λ ∈ LD ∩ LR which has not been used in any of the
previous chains. Let k be a non–negative integer such that for all
i such that 0 ≤ i ≤ k the leaf λαi is a neutral leaf of the tree pair
(D,R, t), and i = k + 1 is the smallest positive integer such that
λ = λαi. Then, create a chain (λαi)ki=0.

4. Repeat the previous point until there are no more leaves left in
LD ∩ LR which have not been yet used for forming a chain.

Note that we know from Lemma 3.1.6 that each non–periodic neutral
leaf of (D,R, t) is a part of a chain formed in Step 1) of the algorithm
above. Therefore, for the Step 3) we are only left with eligible periodic
neutral leaves.

Definition 3.1.22 (Leaf Chain). Consider a tree pair (D,R, t) repre-
senting and element α from V . Consider a chain (λαi)ki=0 for some leaf
λ ∈ LD and some non–negative integer k, formed by application of Algo-
rithm 3.1.21 to the tree pair (D,R, t). Any such chain (λαi)ki=0 is called
a leaf chain.

Note that Brin [11] called such an object iterated augmentation chain,
for the reason that its primary use was to perform an augmentation along
the entire chain. We are still interested in this process, implicitly in
Section 3.2 on transforming any tree pair into a revealing tree pair and
explicitly in Section 3.3 on transforming one revealing pair into another
revealing pair. However, we will use it also for deriving more information
about a given tree pair, for instance about important points of α defined
in Section 3.4.

36 CHAPTER 3. DYNAMICS VIA COMBINATORICS

More specifically, we can distinguish between the following two types
of leaf chains:

Definition 3.1.23 (Non–Periodic Leaf Chain). Consider a tree pair (D,R, t)

representing and element α from V . Consider its leaf chain (λαi)ki=0 cre-
ated in Algorithm 3.1.21. If the chain was formed in Step 1), and hence
λ ∈ LD\LR and λαk ∈ LR\LD, then such a chain is called a non-periodic
leaf chain.

Definition 3.1.24 (Periodic Leaf Chain or P–Chain). Consider a tree
pair (D,R, t) representing an element α from V . Consider its leaf chain
(λαi)ki=0 created in Algorithm 3.1.21. If the chain was formed in Step 3),
and hence λ = λαk+1, then such a chain is called a periodic leaf chain, or
simply a P–chain.

Note that a P–chain could consist of only one leaf.
In general, leaf chains create a partition for leaves of a given tree pair:

Lemma 3.1.25. Consider a tree pair (D,R, t) representing an element
α of Thompson’s group V . An application of Algorithm 3.1.21 to the tree
pair (D,R, t) partitions the leaves of the tree pair into disjoint leaf chains.

Proof. We will first show that no two non–periodic leaf chains share any
leaves. Then we will show that all leaves from the set LD\LR, all leaves
from the set LR\LD, and all non–periodic neutral leaves of the tree pair
(D,R, t) have been used to build non-periodic chain leaves. We will show
that P–chains are formed from periodic neutral leaves exclusively and
non–periodic leaf chains admit no periodic neutral leaves. Finally, we
will show that no two P–chains share any leaves.

Let λ1 and λ2 be two distinct leaves from the set LD\LR. Suppose
that there are non–negative integers j1, j2 such that λ1α

j1 and λ2α
j2 are

both leaves from the leaf chains which start at λ1 and λ2 respectively and
that λ1α

j1 = λ2α
j2 . Without loss of generality, let j1 ≤ j2. However,

as α is a bijection, this implies that λ1 = λ2α
j2−j1 . This implies that

j1 = j2, as the leaf λ2α
j2−j1 needs to be a leaf from the set LD\LR, just

like λ1 is. But then λ1 = λ2, which contradicts the initial assumption.
Hence, any two non–periodic leaf chains have no leaves in common.

Note that |LD| = |LR| which implies that |LD\LR| = |LR\LD|. As
each non–periodic leaf chain finishes with a leaf from the set LR\LD,
we conclude that all leaves from this set have been used for forming

3.1. REVEALING PAIRS 37

non–periodic leaf chains. Moreover, by Lemma 3.1.6, we must have used
all non–periodic neutral leaves for building non–periodic neutral chains.
Now consider a leaf from a P–chain. By Definition 3.1.4 each such leaf
is a periodic neutral leaf. Hence a P–chain and a non–periodic leaf chain
cannot have any leaves in common.

Finally, consider two P–chains (λ1α
i)k1i=0 and (λ2α

i)k2i=0, for some neu-
tral leaves λ1, λ2 and some non–negative integers k1, k2. Suppose that the
chain (λ2α

i)k2i=0 was created after the chain (λ1α
i)k1i=0. By the guidelines

of Algorithm 3.1.21, we have λ2 6= λ1α
i for all i such that 0 ≤ i ≤ k1. Now

suppose that there exists j such that λ2α
j = λ1α

i such that 0 ≤ j ≤ k2

for some i such that 0 ≤ j ≤ k1. But as α is a bijection and λ1 = λ1α
k1+1,

we have λ2 = λ1α
i−j . If i−j ≥ 0, this immediately gives a contradiction.

If i−j ≥ 0, then there is an integer n such that 0 ≤ i−j+n(k1 +1) ≤ k1,
and so λ1α

i−j = (λ1α
n(k1+1))αi−j = λ1α

i−j+n(k1+1), which is also a con-
tradiction.

Hence, all leaves of the tree pair (D,R, t) have been used to build leaf
chains, and every two distinct chains are disjoint.

We will now define three distinct types of non–periodic leaf chains:

Definition 3.1.26 (Non–Periodic Chains). Consider a tree pair (D,R, t)

representing and element α from V . Consider a non–periodic leaf chain
(λαi)ki=0 for some leaf λ ∈ LD\LR and some positive integer k.

• If λ is a repeller of the tree pair (D,R, t), then such a chain is called
an R–chain.

• If λαk is an attractor of the tree pair (D,R, t), then such a chain is
called an A–chain.

• If λ is a source and λαk is a sink of the tree pair (D,R, t), then
such a chain is called an SS–chain.

It will be shown later in Lemma 3.1.29 that the four types of chains
from Definitions 3.1.24 and 3.1.26 fully classify possible leaf chains of a
revealing tree pair. However, in a non–revealing pair, due to possible
occurrence of a range of sourcing leaf (see Definition 3.1.15) or domain
of sinking leaf (see Definition 3.1.16), we can encounter three more types
of leaf chains:

38 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Definition 3.1.27 (Chains of Non–Revealing Pair). Consider a tree pair
(D,R, t) representing an element α from V . Consider its non–periodic
leaf chain (λαi)ki=0 for some leaf λ ∈ LD\LR and some positive integer k.

• If λ is a source and λαk is a range of sourcing of the tree pair
(D,R, t), then such a chain is called an SRS–chain.

• If λ is a domain of sinking and λαk is a sink of the tree pair (D,R, t),
then such a chain is called a DSS–chain.

• If λ is a domain of sinking and λαk is a range of sourcing of the
tree pair (D,R, t), then such a chain is called a DSRS–chain.

It is of special importance to acknowledge these type of chains, as in
Section 3.2 on transforming a tree pair into a revealing tree pair they will
be targeted for elimination via described algorithms.

We will now prepare for classifying all possible chains of a revealing
tree pair with the following lemma:

Lemma 3.1.28. Suppose that (D,R, t) is a revealing tree pair for an
element α in V . Let (λαi)ki=0 be a non–periodic leaf chain for some leaf
λ ∈ LD\LR and some positive integer k. Then:

• The leaf λ is a repeller if and only if λαk is a range of repulsion.

• The leaf λ is a domain of attraction if and only if λαk is an attrac-
tor.

• The leaf λ is a source if and only if λαk is a sink.

Proof. Let l be the number of components of D − R. As (D,R, t) is
revealing, each of these components admits a repeller. Each repeller is
the beginning of an R–chain, which ends in a range of repulsion leaf. As
by Lemma 3.1.25 any two leaf chains are disjoint, the tree R admits at
least l range of repulsion leaves. As l is the number of components of
D−R, there cannot be more than l range of repulsion leaves. Hence, the
tree R admits precisely l range of repulsion leaves and the tree D admits
precisely l repellers. Thus, we can deduce that a non–periodic leaf chain
starts with a repeller if and only if it finishes with a range of repulsion
leaf.

Similarly, let l′ be the number of components of R−D. As (D,R, t) is
revealing, each of these components admits an attractor. Each attractor

3.1. REVEALING PAIRS 39

is the end of an A–chain, which begins in a domain of attraction leaf. As
by Lemma 3.1.25 any two leaf chains are disjoint, the tree D admits at
least l′ domain of attraction leaves. As l′ is the number of components of
R−D, there cannot be more than l′ domain of attraction leaves. Hence,
the tree D admits precisely l′ domain of attraction leaves and the tree R
admits precisely l′ attractors. Thus, we can deduce that a non–periodic
leaf chain starts with a domain of attraction leaf if and only if it finishes
with an attractor.

Recall the classification of leaves of a revealing tree pair given in
Lemma 3.1.20. By the pigeonhole principle, the leaf chain (λαi)ki=0 starts
with a source λ if and only if it ends with a sink λαk.

Note that as we considered all possibilities for the behaviour of a chain
of leaves of a revealing tree pair, we now have a complete classification of
chain types:

Corollary 3.1.29 (Types of Leaf Chains). Consider a revealing tree pair
(D,R, t) representing an element α of V . Any leaf chain of (D,R, t) is
one of the following:

1. P–chain;

2. R–chain;

3. A–chain;

4. SS–chain.

Proof. By Lemma 3.1.20 and Lemma 3.1.28.

In order to allow a better intuitive understanding of different types
of leaves and chains of a revealing tree pair, we provide the following
example:

40 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Example 3.1.30 (Leaf Chains). Consider the tree pair (D,R, t) corre-
sponding to an element α of V , represented by the following picture:

By Example 3.1.18, the tree pair (D,R, t) is revealing. Let us perform
Algorithm 3.1.21 for finding its leaf chains.

First of all let us identify D ∩R, D −R and R−D:

D ∩R
ε

0

00 01

010 011

1

10 11

D – R R – D
00

000 001

11

110 111

Now we can identify sets LD ∩ LR, LD\LR and LR\LD:

LD ∩ LR = {010, 011, 10}

LD\LR = {000, 001, 11}

LR\LD = {00, 110, 111}

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 41

Recall that the prefix substitution rules for α are given by:

(000)α = 010 (001)α = 111 (010)α = 00

(011)α = 10 (10)α = 011 (11)α = 110

Hence, we can identify the following leaf chains:

1. Non–periodic:

(a) Start with the leaf 000: 000
α7−→ 010

α7−→ 00.

Here the leaf 010 is neutral and the leaf 00 ∈ LR \ LD.

(b) Start with the leaf 001: 001
α7−→ 111.

(c) Start with the leaf 11: 11
α7−→ 110.

2. Periodic:

(a) Start with the leaf 001: 001
α←→ 10.

Let us now analyse each of the non–periodic leaf chains in order to
decide on its further type:

1. (a) The chain (000, 010, 00):

The leaf 00 is a prefix of 000. Thus, 000 is a repeller, 00 is a
range of repulsion and (000, 010, 00) is an R–chain.

(b) The chain (001, 111):

The leaf 001 is a leaf of a component of D −R which is not a
repeller (as 111 is not a prefix for it) so it is a source. The leaf
111 is a leaf of a component of R−D which is not an attractor
(as 001 is not a prefix for it) so it is a sink. Thus, (001, 111)

is an SS–chain.

(c) The chain (11, 110):

The leaf 11 is a prefix of 110. Thus, 110 is an attractor, 11 is
a domain of attraction, and (11, 110) is an A–chain.

3.2 Algorithm for Obtaining a Revealing Pair

In this section, we will show a series of algorithms which transform any
tree pair into a revealing tree pair representing the same element of

42 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Thompson’s group V . This will at the same time prove that revealing
pairs for a given element of V always exist.

We will learn how to transform a tree pair into a pre–chains graph,
and subsequently into a chains graph. The algorithms will rely on the
use of chains graphs. After performing algorithms on the chains graph,
we will be able to transform it back into a tree pair, which is revealing.

Pre–Chains Graph

Consider a tree pair (D,R, t) representing an element α of V . First of all,
we are interested in translating it into a graph which contains all the data
carried by the tree pair. The choice of working with a graph instead of a
tree pair is motivated by a higher perceived clarity of patterns occurring
in the type of graph which we construct.

Algorithm 3.2.1 (Pre–Chains Graph). Consider a tree pair (D,R, t)

representing an element α of Thompson’s group V . We will construct
a directed graph G = (VG, EG) with a set of vertices VG and a set of
labelled edges EG. We will allow multiple edges and loops.

1. Consider the intersection of the domain and range trees D∩R. We
define the set of vertices of the graph VG to be the set LD∩R.

Note that the set VG = LD∩R consists precisely of all neutral leaves
of (D,R, t) and all roots of components of D −R and R−D.

2. Each edge of the graph will be given by a triple, with the first
and second entry being vertices of the graph, and the third entry
being a label with metadata inherited from the tree pair. We will
discriminate between four distinct categories of labels for edges of
G, and we will represent that distinction by assigning a different
label type to each category, namely DR,DD,RR and RD.

Suppose that v is a vertex of the graph G.

(a) Suppose further that v is a leaf of the domain tree D. Consider
the image (v)α which is a leaf of the range tree R:

i. Label type DR. If (v)α is a vertex of the graph G, then
let there be an edge with label type DR from v to (v)α,
i.e. (v, (v)α,DR) ∈ EG.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 43

ii. Label type DD. If (v)α is not a vertex of the graph G,
then it must be a leaf of a component of R − D. Thus,
there is a proper ancestor w of (v)α which is a vertex of
the graph G. This implies that there is a word s ∈ {0, 1}+

such that (v)α = ws. Then let there be an edge with a
label type DD from v to w, namely (v, w,DD(s)) ∈ EG.

(b) Suppose instead that v is not a leaf of the domain treeD. Then
it must be a leaf of a range tree R, and a proper ancestor
of some leaves of the domain tree D. Consider each word
s′ ∈ {0, 1}+ such that vs′ is a leaf of the domain tree D, and
consider its image (vs′)α.

i. Label type RR. If (vs′)α is a vertex of the graph G, then
there is an edge with a label type RR from v to (vs′)α,
namely (v, (vs′)α, (s′)RR) ∈ EG.

ii. Label type RD. If (vs′)α is not a vertex of the graph G,
then it must be a leaf of a component of R − D. Thus,
there is a proper ancestor w of (vs′)α which is a vertex of
the graph G. This implies that there is a word s ∈ {0, 1}+

such that (vs′)α = ws. Then let there be an edge with
a label type RD from v to w, namely (v, w, (s′)RD(s)) ∈
EG.

3. Repeat Step 2) for each vertex v of the graph.

Definition 3.2.2 (Pre–Chains Graph). Each graph which can be ob-
tained from a tree pair representing an element of Thompson’s group V
following Algorithm 3.2.1 is called a pre–chains graph.

Lemma 3.2.3. Algorithm 3.2.1 produces a unique graph G for a given
tree pair (D,R, t).

Proof. Suppose that λ is a leaf of the domain tree D.

1. Suppose further that λ ∈ LD∩R, which means that λ is a vertex of
the graph G. Then by the inspection of the Algorithm 3.2.1 there
is precisely one edge starting at λ, and there are two mutually
exclusive possibilities for its label. If the unique edge starting at λ
is (λ, l,DR) for some vertex l ∈ VG, it means that (λ)α = l for this
leaf l of the range tree R. If instead the unique edge starting at λ

44 CHAPTER 3. DYNAMICS VIA COMBINATORICS

is (λ, l,DD(s)), it means that (λ)α = ls for this vertex l ∈ VG and
this word s ∈ {0, 1}+. The expression ls is also the address of the
leaf of the range tree R, to which the leaf λ is mapped by α.

2. Suppose otherwise that λ 6∈ LD∩R, which means that λ is a leaf of
a connected component of D − R rooted at a leaf λ′ of the range
tree R such that λ′ ∈ LD∩R, and there is a word s′ ∈ {0, 1}+ such
that λ = λ′s′. Then there are precisely two choices for the label
of an edge of the graph G indicating where λ is mapped by α. If
the edge is of the form (λ′, l, (s′)RR), then (λ)α = (λ′s′)α = l for
some leaf l of the range tree R. If instead the edge is of the form
(λ′, l, (s′)RD(s)), then (λ)α = (λ′s′)α = ls for some l ∈ VG and a
word s ∈ {0, 1}+. The expression ls is also the address of the leaf
of the range tree R, to which the leaf λ is mapped by α.

Lemma 3.2.4. For every pre–chains graph G, there is a unique tree pair
(D,R, t) representing an element α of V , such that the application of
Algorithm 3.2.1 to (D,R, t) results in the graph G. Moreover, we can
identify (D,R, t) from the graph G.

Proof. By definition of pre–chains graph, we may assume that there is a
tree pair (D,R, t) for α ∈ V such that when we apply Algorithm 3.2.1 to
it, it results in the graph G. We want to show that we can read all prefix
substitutions for α precisely as given by the tree pair (D,R, t) from the
pre–chains graph G.

We will show that for each edge of the pre–chains graph there is a leaf
λ ∈ LD and a leaf l ∈ LR such that λα = l. We will also show that the
collection of all these maps uniquely determines the tree pair (D,R, t).

Suppose that there is an edge between vertices v and w of the graph
G. Then we have the following cases:

1. The edge is given by (v, w,DR). Then the vertex v is a leaf of D,
the vertex w is a leaf of R and (v)α = w.

2. The edge is given by (v, w,DD(s)) for some word s ∈ {0, 1}+.
Then the vertex v is a leaf of D, the expression ws is a leaf of R
and (v)α = ws.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 45

3. The edge is given by (v, w, (s′)RR) for some word s′ ∈ {0, 1}+.
Then the expression vs′ is a leaf of D, the vertex w is a leaf of R
and (vs′)α = w.

4. The edge is given by (v, w, (s′)RD(s)) for some words s, s′ ∈ {0, 1}+.
Then the expression vs′ is a leaf of D, the expression ws is a leaf
of R and (vs′)α = ws.

Now notice that the set of vertices of a graph G is a complete set of
leaves of an intersection of the domain tree and the range tree of the tree
pair (D,R, t). This means that VG is a barrier, as defined in Section 2.3.
Recall Algorithm 3.2.1. By dichotomies presented between 2)a) and 2)b),
2)a)i) and 2)a)ii), and between 2)b)i) and 2)b)ii), each vertex v ∈ VG

must be a beginning of an edge in G. We will show that for each such v,
the edges of G uniquely determine the prefix substitution(s) for all points
of C underlying v.

Suppose that e is an edge with beginning v.

1. If the label type of e is DR or DD, then by Cases 1) and 2) above,
this edge corresponds to a single prefix substitution for the prefix
v, and we must have v ∈ LD.

2. If the label type of e is RR or RD, then consider all edges which
start at v. By 2)b) of Algorithm 3.2.1, these are given by:

e = e1 =(v, w1, (s1)R . . .)

e2 =(v, w2, (s2)R . . .)

...

ex =(v, wx, (sx)R . . .),

and the set {s1, s2, . . . , sx} is a barrier. Therefore, we have

vs1, vs2, . . . , vsx ∈ LD,

and we obtain a set of prefix substitutions for all of these leaves.

This determines prefix substitution(s) for all leaves of D with a given
prefix v. As VG is a barrier, we can recover prefix substitutions for all
leaves of D, which proves our lemma.

46 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Example 3.2.5 (Pre–Chains Graph). Consider the following tree pair
(D,R, t) representing an element α of V :

First, we identify the intersection of trees D and R:

ε

0

00 01

1

Hence, the set of vertices of the pre–chains graph G of the tree pair
(D,R, t) is given by:

VG = {00, 01, 1}

Now we proceed with the Algorithm 3.2.1 to identify edges of G:

1. Consider vertex 00. It is not a vertex of the domain tree. Its
descendants which are vertices of the domain tree are 000 and 001.
Let us consider each of them:

(a) (000)α = 00 and 00 ∈ VG so (00, 00, (0)RR) ∈ EG.

(b) (001)α = 010 and 010 6∈ VG, but 01 ∈ VG so

(00, 01, (1)RD(0)) ∈ EG.

2. Consider vertex 01, which is a vertex of domain tree. (01)α = 011

and 011 6∈ VG but 01 ∈ VG so (01, 01, DD(1)) ∈ EG.

3. Consider vertex 1, which is a vertex of domain tree. (1)α = 1 and
1 ∈ VG so (1, 1, DR) ∈ EG.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 47

Therefore, the set of edges of G is given by the set:

EG = {(00, 00, (0)RR), (00, 01, (1)RD(0)), (01, 01, DD(1)), (1, 1, DR)}.

Thus we can summarise our results with the following picture:

00 01

1

(1)RD(0)
(0)RR DD(1)

DR

The Pre–Chains Graph of the Tree Pair (D,R, t)

Properties of Pre–Chains Graphs

Let us expand the notation associated with pre–chains graphs. The ob-
jective is to be able to concisely and simultaneously refer to all types of
edges.

Notation 3.2.6. Let us perform the following unification of the notation
for edges of a chains graph:

1. An edge of a pre–chains graph of the form (u,w,DR) can be also
denoted as (u,w, ()DR()).

2. An edge of a pre–chains graph of the form (u,w,DD(s)) can be
also denoted as (u,w, ()DD(s)).

3. An edge of a pre–chains graph of the form (u,w, (s)RR) can be also
denoted as (u,w, (s)RR()).

Now we are in position to prove the following lemma:

Lemma 3.2.7. Consider a tree pair (D,R, t) representing an element
α of V , and its corresponding pre–chains graph G. Consider an edge

48 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(u,w, (s′)XY (s)) of the graph G for some vertices u,w ∈ VG, some letters
X,Y ∈ {D,R} and some words s′, s ∈ {0, 1}∗. Then both of the following
hold:

1. The word s′ is empty if and only if X = D.

2. The word s is empty if and only if Y = R.

Proof. By considering Algorithm 3.2.1 and Notation 3.2.6 we conclude
that there are precisely four types of the edge labels. They are as follow-
ing:

1. (u,w, ()DR())

2. (u,w, ()DD(r))

3. (u,w, (r′)RR())

4. (u,w, (r′)RD(r))

for some vertices u,w ∈ VG and some words r′, r ∈ {0, 1}+. This proves
the statement of the lemma.

Before we present any transformations of a pre–chains graph, let us
analyse some of its properties. They will follow naturally from properties
of the associated tree pair.

Definition 3.2.8 (Neutral, Domain and Range Vertices). Let (D,R, t)

be a tree pair representing an element α of Thompson’s group V . Let
G = (VG, EG) be the pre–chains graph of this tree pair.

1. If v ∈ VG is a neutral leaf of the tree pair (D,R, t), then we call it
a neutral vertex.

2. If v ∈ VG is a leaf of the domain tree D, and a proper ancestor of
a leaf of the range tree R, then we call it a domain vertex.

3. If v ∈ VG is a leaf of the range tree R, and a proper ancestor of a
leaf of the domain tree D, then we call it a range vertex.

Lemma 3.2.9 (Neutral Vertex). Let (D,R, t) be a tree pair representing
an element α of Thompson’s group V . Let G = (VG, EG) be the pre–
chains graph of this tree pair. If v ∈ VG is a neutral vertex, then v has
exactly one incoming edge with label type DR or RR (i.e., with the second
letter R) and exactly one outgoing edge with label type DR or DD (i.e.,
with the first letter D).

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 49

Proof. Suppose that v is a neutral leaf. This implies that v is a leaf of
both the domain tree D and the range tree R. As v is a leaf of the range
tree, by definition of the labelled edges, it cannot have an incoming edge
with label DD or RD. Furthermore, by properties of a tree pair, there
is a unique leaf u of the domain tree D such that (u)α = v. If u ∈ VG,
then there is an edge from u to v with a label DR. If u is not a vertex
of the graph G, there is a proper ancestor u′ of u, such that u′ ∈ VG. In
this case, there is an edge from u′ to v with a label (s′)RR, for the word
s′ ∈ {0, 1}+ such that u′s′ = u.

Similarly, as v is a leaf of a domain tree, by the definition of the label
types of edges, it cannot have an outgoing edge with label RR or RD.
As v is a leaf of the domain tree, then by properties of a tree pair there
is a unique leaf u of the range tree R such that (v)α = u. If u ∈ VG,
then there is an edge from v to u with a label DR. If u is not a vertex
of the graph G, there is a proper ancestor u′ of u, such that u′ ∈ VG. In
this case, there is an edge from v to u′ with a label DD(s), for the word
s ∈ {0, 1}+ such that u′s = u.

Lemma 3.2.10 (Domain Vertex). Let (D,R, t) be a tree pair representing
an element α of Thompson’s group V . Let G = (VG, EG) be the pre–
chains graph of this tree pair. Suppose that v ∈ VG is a domain vertex.
Then v has more than one incoming edge, each with label type DD or
RD (i.e., with the second letter D) and exactly one outgoing edge with
label type DR or DD (i.e., with the first letter D). Moreover, the exact
number of incoming edges is equal to the number of leaves of the connected
component of R−D rooted at v.

Proof. As v is not a leaf of the range tree R, it cannot have an incoming
edge with label DR or RR. The vertex v is, in fact, a proper ancestor
of more than one of the leaves of the tree R. Each of these leaves can
be represented as vs, for some word s ∈ {0, 1}+. Then for each such vs,
there is a unique vertex u of the domain tree D, such that (u)α = vs.
If u is a vertex of the graph G, then there is an edge (u, v,DD(s)) ∈
EG. Suppose u is not a vertex of the graph G. Then there is a proper
ancestor u′ ∈ VG of the leaf u, such that u′s′ = u for the word s′ ∈
{0, 1}+. Then, (u′, v, (s′)RD(s)) ∈ EG. As there is more than one proper
descendant of v which is a leaf of the range tree R, there are more than
one incoming edges, each with label DD or RD. As we quantify over s,

50 CHAPTER 3. DYNAMICS VIA COMBINATORICS

that exact number of incoming edges is equal to the number of leaves of
the corresponding connected component of R−D rooted at v.

For a proof of the case with a unique outgoing edge having the first
letter of its label being D, the argument is the same as the second part
of the proof of Lemma 3.2.9.

Lemma 3.2.11 (Range Vertex). Let (D,R, t) be a tree pair representing
an element α of Thompson’s group V . Let G = (VG, EG) be the pre–
chains graph of this tree pair. Suppose v ∈ VG is a range vertex. Then
v has exactly one incoming edge with label type DR or RR (i.e. with the
second letter R) and more than one outgoing edge, each with label type
RR or RD (i.e. with the first letter R). Moreover, the exact number of
outgoing edges is equal to the number of leaves of the connected component
of D −R rooted at v.

Proof. For a proof of the case with a unique incoming edge having the
second letter of its label being R, the argument is the same as the first
part of the proof of Lemma 3.2.9.

As v is not a leaf of the domain tree D, it cannot have an outgoing
edge with label DD or DR. The vertex v is, in fact, a proper ancestor
of more than one of the leaves of the tree D. Each of these leaves can
be represented as vs′, for some word s′ ∈ {0, 1}+. Then for each such
vs′, there is a unique vertex u of the range tree R, such that (vs′)α = u.
If u is a vertex of the graph G, then there is an edge (v, u, (s′)RR) ∈
EG. Suppose u is not a vertex of the graph G. Then there is a proper
ancestor u′ ∈ VG of the leaf u, such that u′s = u for the word s ∈
{0, 1}+. Then, (v, u′, (s′)RD(s)) ∈ EG. As there is more than one proper
descendant of v which is a leaf of the domain tree D, there are more than
one outgoing edges, each with label RR or RD. As we quantify over s′,
that exact number of outgoing edges is equal to the number of leaves of
the corresponding connected component of D −R rooted at v.

Remark 3.2.12 (Interpretation of Edge Labels). Let (D,R, t) be a tree
pair representing an element α of the Thompson’s group V . Let G =

(VG, EG) be the pre–chains graph of this tree pair.

Consider an edge e ∈ EG. There are four possible label types for
e. The label type reflects whether vertices which the edge is joining are
leaves of the domain tree D or the range tree R.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 51

First of all, if the first letter of the label type of e is a D, we know
that the initial vertex is a leaf of the domain tree D. It might or might
not be a vertex of the range tree as well. Otherwise, if the first letter of
the label type of the edge e is an R, we know that the initial vertex is not
a leaf of the domain tree, and hence by the construction of pre–chains
graph it is a leaf of the range tree only.

Secondly, if the second letter of the label type of e is an R, we know
that the end vertex is a leaf of the range tree R. It might or might not
be a vertex of the domain tree as well. Otherwise, if the second letter of
the label type of the edge e is a D, we know that the end vertex is not a
leaf of the range tree, and hence by the construction of pre–chains graph
it is a leaf of the domain tree only.

Chains Graph

We will now present how to further transform this pre–chains graph into
an object called the chains graph which will be the main tool in the
subsequent algorithms. This will involve replacing some neutral vertices
and their incident edges with single edges, which labels record the original
vertices. The chains graph is chosen over the pre–chains graph due to
being easier to work with in our set up. On the other hand, the underlying
reason for defining the pre–chains graph as an intermediate stage on the
way to the chains graph is our perception of the greater clarity of the
relationship between pre–chains graphs and tree pairs, especially through
Lemmas 3.2.7, 3.2.9, 3.2.10 and 3.2.11. We will show later that all of these
lemmas, and a few new ones, hold also for chains graphs.

Algorithm 3.2.13 (Chains Graph). Let (D,R, t) be a tree pair repre-
senting an element α of V , and G be its pre–chains graph.

1. Recall that by Lemma 3.2.9 that every neutral vertex of G has a
unique incoming edge. Consider a neutral vertex u1 satisfying the
additional condition that either:

• its unique ingoing edge has label type RR, and then it is the
form (v, u1, (s

′)RR) for a range vertex v and s′ ∈ {0, 1}+;

or:

• its unique ingoing edge is of the form (v, u1, DR) where v ∈ VG
is a domain vertex. Note that we view this edge as (v, u1, ()DR).

52 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Note that this composite condition happens precisely when the be-
ginning of the unique ingoing edge of u1 is not a neutral vertex.

Also, recall that by Lemma 3.2.9 that a neutral vertex of G has
a unique outgoing edge. Thus, in particular, the vertex u1 has a
unique outgoing edge. For the neutral vertex ui and its unique
outgoing edge ei, recursively define the following, starting with i =

1:

• If the end of the edge ei is also a neutral vertex, call this end
vertex ui+1. Then the edge ei is given by ei = (ui, ui+1, DR).

• If the end vertex of the edge ei is not a neutral vertex, then
call this vertex w, let k be the greatest integer such that uk is
defined, and terminate this recursive definition.

Then one of the following occurs:

• Either w is a range vertex and hence there is an edge

(uk, w,DR) ∈ EG,

• or w is a domain vertex and hence there is an edge

(uk, w,DD(s)) ∈ EG

with s ∈ {0, 1}+.

Now, perform the following procedures:

(a) Replace the edges

(v, u1,(s
′)XR)

(u1, u2,DR)

...

(uk−1, uk,DR)

(uk, w,DY (s))

for X,Y ∈ {D,R} with a single edge

(v, w, (s′)X(u1, . . . , uk)Y (s)).

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 53

(b) Delete the vertices u1, . . . , uk, each corresponding to a neutral
vertex, from the set VG.

2. Repeat Step 1) until there is no neutral vertex u1 inG which satisfies
the specified condition.

3. Pick a neutral vertex u1 of the graph G. Note that we require that
u1 has not been previously deleted.

For the neutral vertex ui and its unique outgoing edge ei, recursively
define the following, starting with i = 1:

• If the end of the edge ei is not u1, call this end vertex ui+1.
Then the edge ei is given by ei = (ui, ui+1, DR).

• If the end vertex of the edge ei is u1, let k be the greatest
integer such that uk has been defined so far, and terminate
this recursive definition. Note that the edge ei is given by
ei = (uk, u1, DR).

Then, perform the following procedures:

(a) Replace the edges

(u1, u2,DR)

(u2, u3,DR)

...

(uk, u1,DR)

with a single edge

(u1, u1, D(u2, u3, . . . , uk)R).

(b) Delete the vertices u2, u3, . . . , uk, each corresponding to a neu-
tral vertex, from the set VG.

4. Repeat the previous step until there is no unused neutral vertex in
G.

Definition 3.2.14 (Chains Graph). Each graph which can be obtained
from a pre–chains graph of a tree pair representing an element of Thomp-
son’s group V by following Algorithm 3.2.13 is called a chains graph.

54 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Remark 3.2.15. Notice that in Steps 1) and 2) of the Algorithm 3.2.13
by Lemma 3.1.6 we got rid of all vertices of G representing non–periodic
neutral leaves of the tree pair. Hence in Step 3) we have only these
vertices to consider, which correspond to periodic neutral leaves of the
tree pair. Hence for each remaining neutral vertex u1 we can always find
described sequence of leaves.

Lemma 3.2.16. Consider an input of a tree pair (D,R, t) representing
element α of V into Algorithm 3.2.1, and subsequently applying Algorithm
3.2.13 to the produced pre–chains graph. Let the resulting chains graph be
called G. Then, for each tree pair (D,R, t) there exists a unique chains
graph G, up to labels of vertices representing periodic orbits. Moreover,
the tree pair (D,R, t) can be identified from the graph G.

Proof. We already know by Lemmas 3.2.3 and 3.2.4 that a given pre–
chains graph corresponds uniquely to a tree pair which it was constructed
from. Hence, it is sufficient to show that a given chains graph corresponds
uniquely to the pre–chains graph which it was constructed from. Consider
both types of edges which are produced by Algorithm 3.2.13.

Each of the produced edges is of the form

(v, w, (s′)X(u1, . . . , uk)Y (s))

for some (not necessarily distinct) vertices v, w ∈ VG, some s′, s ∈ {0, 1}∗,
some X,Y ∈ {D,R}, a non–negative integer k and neutral vertices
u1, . . . , uk of the pre–chains graph obtained from the tree pair (D,R, t).
Such an edge represents the following prefix substitutions: (vs′)α =

u1, (u1)α = u2, . . . , (uk)α = ws. It is the same as for the original, now
replaced, edges of the pre–chains graph.

Hence, for each tree pair (D,R, t) there is a unique chains graphs G
derived from it, and the tree pair (D,R, t) can be identified from the
graph G.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 55

Example 3.2.17 (Chains Graph). Consider the following tree pair (D,R, t)

representing an element α of V :

First, we will construct the pre–chains graph for this tree pair, and
subsequently we will transform it into the chains graph.

The intersection of the trees D and R is given by:

ε

0

00 01

1

10

100 101

11

110 111

Hence, the set of vertices of the pre–chains graph G of the tree pair
(D,R, t) is given by:

VG = {00, 01, 100, 101, 110, 111}.

Let us also identify the forests D −R and R−D:

D – R R – D
100

1000 1001

111

1110 1111

Now we proceed with Algorithm 3.2.1 to identify the edges of the
pre–chains graph G:

56 CHAPTER 3. DYNAMICS VIA COMBINATORICS

1. Consider the vertex 00, which is a leaf of the domain tree. We have
(00)α = 01 and 01 ∈ VG, so

(00, 01, DR) ∈ EG.

2. Consider the vertex 01, which is a leaf of the domain tree. We have
(01)α = 00 and 00 ∈ VG, so

(01, 00, DR) ∈ EG.

3. Consider the vertex 100. It is not a leaf of the domain tree. Its
descendants which are vertices of the domain tree are 1000 and
1001.

(a) We have (1000)α = 101 and 101 ∈ VG, so

(100, 101, (0)RR) ∈ EG.

(b) We have (1001)α = 110 and 110 ∈ VG, so

(100, 110, (1)RR) ∈ EG.

4. Consider the vertex 101, which is a leaf of the domain tree. We
have (101)α = 100 and 100 ∈ VG, so

(101, 100, DR) ∈ EG.

5. Consider the vertex 110, which is a vertex of the domain tree. We
have (110)α = 1110 and 1110 6∈ VG, but 111 ∈ VG. Thus,

(110, 111, DD(0)) ∈ EG.

6. Consider the vertex 111, which is a vertex of the domain tree. We
have (111)α = 1111 and 1111 6∈ VG, but 111 ∈ VG. Thus,

(111, 111, DD(1)) ∈ EG

This process results in the following set of edges:

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 57

EG = {(00, 01, DR), (01, 00, DR), (100, 101, (0)RR), (100, 110, (1)RR),

(101, 100, DR), (110, 111, DD(0)), (111, 111, DD(1))}

Therefore, the pre–chains graph G is given by the following picture:

00

01

100 101

110 111

DR DR

(0)RR

(1)RR

DR

DD(0)
DD(1)

The Pre–Chains Graph of the Tree Pair (D,R, t)

By inspection we identify the set of all neutral leaves of the tree
pair (D,R, t) to be: {00, 01, 101, 110}. Notice that these are precisely
the vertices of the pre–chains graph which have exactly one ingoing and
exactly one outgoing edge.

Finally, we proceed with Algorithm 3.2.13 to transform G into the
chains graph of the tree pair (D,R, t):

1. Let us start with considering criteria for Step 1) of the algorithm:

(a) We pick vertex 00 for consideration. Its unique incoming edge
is (01, 00, DR) and 01 is a neutral leaf of the tree pair (D,R, t).
Thus vertex 00 does not meet the required criterion for Step
1).

(b) We pick vertex 01 for consideration. Its unique incoming edge
is (00, 01, DR) and 00 is a neutral leaf of the tree pair (D,R, t).
Thus vertex 01 does not meet the required criterion for Step
1).

58 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(c) We pick vertex 101 for consideration. Its unique incoming edge
is (100, 101, (0)RR). Hence 101 meets the criterion for Step
1).

i. The unique outgoing edge of 101 is (101, 100, DR). The
vertex 100 does not correspond to a neutral leaf of (D,R, t).

ii. We replace the edges (100, 101, (0)RR) and (101, 100, DR)

with a single edge (100, 100, (0)R(101)R).

iii. We delete the vertex 101 from the set VG.

(d) We pick vertex 110 for consideration. Its unique incoming edge
is (100, 110, (1)RR). Hence 110 meets the criterion for Step
1).

i. The unique outgoing edge of 110 is (101, 111, DD(0)).

ii. We replace the edges (100, 110, (1)RR) and (101, 111, DD(0))

with a single edge (100, 111, (1)R(110)D(0)).

iii. We delete the vertex 110 from the set VG.

2. We considered all possible neutral vertices to meet criterion for Step
1) and we made all required changes. Hence we proceed to Step 3)

3. We pick a neutral vertex which has not met the criterion for Step
1), say 00.

(a) The unique incoming edge of 00 is (01, 00, DR). The unique
incoming edge of vertex 01 is (00, 01, DR).

(b) We replace the edges (01, 00, DR) and (00, 01, DR) with a sin-
gle edge (00, 00, D(01)R).

(c) We delete the vertex 01 from the set VG.

4. There are no remaining neutral vertices which have not been deleted
or used. Hence we terminate the algorithm.

Note that in the second step the vertex 00 has been considered and
stayed in VG, while the vertex 01 has been deleted before there was a
need to consider it. Hence, the current graph G is the chains graph of
the tree pair (D,R, t). Its set of vertices is given by:

VG = {00, 100, 111}

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 59

Also, its set of edges is given by:

EG = {(00, 00, D(01)R), (100, 100, (0)R(101)R),

(100, 111, (1)R(110)D(0)), (111, 111, DD(1))}

Hence we have the following picture of the chains graph corresponding
to the given tree pair (D,R, t):

100 111

00

(1)R(110)D(0)
(0)R(101)R DD(1)

D(01)R

The Chains Graph of the Tree Pair (D,R, t)

Properties of the Chains Graph

We want to emphasise that Algorithm 3.2.13 could be instead written in
terms of a single local operation:

Remark 3.2.18 (Concatenation of Edges). We notice that Algorithm 3.2.13
has the effect of multiple application of concatenation of two edges joined
by a neutral vertex of a graph G which initially represents the pre–chains
graph. More precisely, we would obtain the same effect as the algo-
rithm, if every time we see a vertex v corresponding to a neutral leaf of
the initial tree pair and distinct edges (u, v, (s−)XR) and (v, w,DY (s+))

for some vertices u,w of the pre–chains graph, some words s−, s+ ∈
{0, 1}∗ and X,Y ∈ {D,R}, we concatenate them into a single edge
(u,w, (s−)X(v)Y (s+)) and cancel vertex v from the graph. The con-
catenation applies in the same way to already concatenated edges, which
means that every time we see a vertex v corresponding to a neutral

60 CHAPTER 3. DYNAMICS VIA COMBINATORICS

leaf of the initial tree pair and distinct edges (u, v, (s−)X(u1, . . . , uk)R)

and (v, w,D(u′1, . . . , u
′
k′)Y (s+)) for some vertices u,w of the intermedi-

ate graph between pre-chains graph and chains graph, some neutral leaves
u1, . . . , uk, u

′
1, . . . , u

′
k′ of the initial tree pair, some words s−, s+ ∈ {0, 1}∗,

X,Y ∈ {D,R} and some non-negative integers k, k′, we concatenate them
into a single edge

(u,w, (s−)X(u1, . . . , uk, v, u
′
1, . . . , u

′
k′)Y (s+))

and cancel the vertex v. Notice in particular how two successive edges
with label types XR and DY respectively turn into a single edge with
label type XY , which acknowledges the cancelled intermediate vertex in
the bracket between the letters. This phenomenon occurs implicitly also
in Algorithms 3.2.34, 3.2.44, 3.2.51, 3.2.57 and 3.2.64, which are presented
later on in this section.

The definition below is a restatement of notation given initially for
pre–chains graphs:

Definition 3.2.19 (Domain, Range and Neutral Vertices). Consider a
tree pair (D,R, t) representing an element α of V , and its chains graph
G. Let v be a vertex of the graph G.

1. We call v neutral vertex if it is a neutral leaf of the tree pair (D,R, t).

2. We call v a domain vertex if it is a leaf of the domain tree D but is
not a leaf of the range tree R.

3. We call v a range vertex if it is a leaf of the range tree R but is not
a leaf of the domain tree D.

The lemma below is a restatement of Lemmas 3.2.7, 3.2.9, 3.2.10 and
3.2.11 for chains graphs:

Lemma 3.2.20. Consider a tree pair (D,R, t) representing an element
α of V , and its corresponding chains graph G.

1. Consider an edge (u,w, (s′)X(u1, . . . , uk)Y (s)) of the graph G for
some vertices u,w ∈ VG, some letters X,Y ∈ {D,R}, some neutral
leaves u1, . . . , uk and some words s′, s ∈ {0, 1}∗. Then both of the
following hold:

(a) The word s′ is empty if and only if X = D.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 61

(b) The word s is empty if and only if Y = R.

2. If v ∈ VG is a neutral vertex, then v has exactly one incoming edge
with label type DR or RR and exactly one outgoing edge with label
type DR or DD.

3. If v ∈ VG is a domain vertex, then v has more than one incoming
edge, each with label type DD or RD and exactly one outgoing edge
with label type DR or DD.

4. If v ∈ VG is a range vertex, then v has exactly one incoming edge
with label type DR or RR and more than one outgoing edge, each
with label type RR or RD.

Proof. Given Remark 3.2.18 we notice that all the properties of label
types edges of chains graph used in proofs of Lemmas 3.2.7, 3.2.9, 3.2.10
and 3.2.11 are still valid.

Lemma 3.2.21. Consider a tree pair (D,R, t) representing an element
α of V , its chains graph G, and a neutral vertex v of the graph G. Then,
there is a unique edge of G which both starts and finish at v. This edge
represents full periodic orbit of neutral leaves (or a leaf) of the tree pair
(D,R, t).

Proof. In the pre–chains graph, every neutral leaf of the tree pair (D,R, t)

was represented by a vertex. In Remark 3.2.15 about Algorithm 3.2.13
we observe that each vertex corresponding to a non–periodic neutral leaf
has been deleted. Also, each vertex representing a periodic neutral leaf
which has not been deleted is the one chosen to be the start and end of
a new edge. This edge is unique and of the form (v, v,D(u1, . . . , uk)R)

for some non–negative integer k and some neutral leaves u1, . . . , uk of
the tree pair (D,R, t). This indicates that (v)α = u1, (u1)α = u2, . . .,
(uk)α = v. This is by definition a finite periodic orbit of neutral leaves.
Note that if k = 0, then v is fixed by α, and so on a finite orbit of size
one.

We present the following corollary as a useful summary:

Corollary 3.2.22 (Types of Vertices). At the end of Algorithm 3.2.13
applied to the pre–chains graph of a tree pair (D,R, t) to produce the

62 CHAPTER 3. DYNAMICS VIA COMBINATORICS

chains graph G, we distinguish between precisely three types of vertices of
our chains graph G:

1. A neutral vertex with a single edge starting and ending at it.

2. A domain vertex corresponding to a leaf of the tree D ∩R which is
a leaf of the domain tree D but not a leaf of the range tree R.

3. A range vertex corresponding to a leaf of the tree D ∩R which is a
leaf of the range tree R but not a leaf of the domain tree D.

Proof. Consider the fact that each vertex v of the chains graph G is a
leaf of the tree D ∩R. Furthermore, there three options: v can be a leaf
of domain tree D which is not a leaf of range tree R (a domain vertex), a
leaf of range tree R which is not a leaf of domain tree D (a range vertex),
or neutral leaf of (D,R, t) (a neutral vertex). Now by Lemma 3.2.21 we
further conclude that if v is a neutral vertex of the graph G, then there
is a single edge starting and ending at v. This proves the corollary.

Definition 3.2.23 (Chain Edge). Consider a tree pair (D,R, t) repre-
senting an element α of V , and its chains graph G. An edge e of the
graph G is called a chain edge.

The reason for giving a collective name of a ‘chain edge’ for each of
the edges of chains graphs is the following correspondence:

Lemma 3.2.24. Consider a tree pair (D,R, t) representing an element
α of V , and its chains graph G. Each edge of the graph G corresponds to
a leaf chain of the tree pair (D,R, t).

Proof. Recall Definition 3.1.22. Consider Algorithm 3.1.21 for finding
leaf chains applied to a tree pair (D,R, t) and rules for formation of
chain edges.

We observe that there is a non–periodic leaf chain (λαi)ki=0 for some
leaf λ ∈ LD\LR and a positive integer k if and only if there is an edge
(λ−, λ+, (s−)X(λ1, . . . , λl)Y (s+)) ∈ VG for a non–neutral vertex λ− of
the graph G and a word s− ∈ {0, 1}∗ such that λ−s− = λ, for l = k − 1,
for neutral leaves λi of the tree pair (D,R, t) for each positive integer i
such that 0 < i < k such that λi = λαi and for vertex λ+ of the graph G
and a word s+ ∈ {0, 1}∗ such that λ+s+ = λαk.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 63

We also deduce that there is a P–chain (λαi)ki=0 for some leaf λ ∈
LD ∩ LR and a positive integer k if and only if there is an edge

(λ0, λ0, D(λ1, . . . , λl)R) ∈ VG

for l = k, for vertex λ0 ∈ VG such that λ0 = λαj for some non–negative
integer j such that 0 ≤ j ≤ k and neutral leaves λi of the tree pair
(D,R, t) such that λi = λαj+i for each positive integer i such that 0 <

i ≤ l.

We draw particular attention to the following case:

Corollary 3.2.25. Consider a chains graph G corresponding to the tree
pair (D,R, t) representing an element α of Thompson’s group V . Suppose
that there is an edge e of the label type DR starting and finishing at the
same vertex. Then, the edge e corresponds to a P–chain of leaves.

Proof. By Lemma 3.2.21, Lemma 3.2.24 and Definition 3.1.24.

Note that the chains graph G may have other edges of DR type which
do not start and finish at the same vertex.

Remark 3.2.26. Let (λαi)ki=0 be a non–periodic leaf chain of a tree pair
(D,R, t) for some positive integer k. Let e be the edge of chains graph G
of this tree pair, corresponding to the given leaf chain.

Notice that the initial leaf λ of the leaf chain is always a leaf of domain
tree D and never a leaf of range tree R. However, λ might or might not
be a vertex of the chains graph G, depending on whether λ is a leaf of
the tree D ∩R or not. In case when it is a leaf of the tree D ∩R, it is a
vertex of G, and the first letter of label type of e is D. In case when λ is
not a leaf of the tree D ∩R, it is not a vertex of G, and the first letter of
label type of e is R.

Similarly, notice that the last leaf λαk of the leaf chain is always a leaf
of range tree R and never a leaf of domain tree D. However, λαk might
or might not be a vertex of the chains graph G, depending on whether
λαk is a leaf of the tree D∩R or not. In case when it is a leaf of the tree
D ∩ R, it is a vertex of G, and the last letter of label type of e is R. In
case when λk is not a leaf of the tree D ∩R, it is not a vertex of G, and
the last letter of label type of e is D.

64 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Under the correspondence of Lemma 3.2.24, we can prove the follow-
ing:

Lemma 3.2.27. Consider a tree pair (D,R, t) representing α ∈ V and
its chains graph G. An edge of G with label type RD corresponds to an
SS–chain.

Proof. Recall Definition 3.1.26 of an SS–chain. Suppose that

e = (v, w, (s−)R(u1, . . . , ul)D(s+))

is an edge of G for some v, w ∈ VG, some non–negative integer l, some
words s−, s+ ∈ {0, 1}+ and some neutral leaves u1, . . . , ul of the tree
pair (D,R, t). By Lemma 3.2.20, as v has an outgoing edge with the
label type starting with R, the vertex v is a range vertex. Similarly, by
Lemma 3.2.20, as w has an incoming edge with the label type ending with
D, the vertex w is a domain vertex. As vs− is not a leaf of the range
tree and ws+ is not a leaf of the domain tree, the edge e corresponds to
a non–periodic leaf chain (vs−, u1, . . . , ul, ws

+). We want to show that
vs− must be a source and that ws+ must be a sink. By Lemma 3.1.14,
as v is a range vertex, vs− is a leaf of a component of D −R, and hence
it can be either a repeller or a source. But ws+, the last leaf in the leaf
chain starting at vs−, is not a proper ancestor of vs−, hence vs− must
be a source. Similarly, by Lemma 3.1.14, as w is a domain vertex, ws+ is
a leaf of a component of R −D, and hence it can be either an attractor
or a sink. But vs−, the first leaf in the leaf chain ending at ws+, is not
a proper ancestor of ws+, hence ws+ must be a sink.

As vs− is a source and ws+ is a sink, by Definition 3.1.26 the leaf
chain (vs−, u1, . . . , ul, ws

+) corresponding to the edge

(v, w, (s−)R(u1, . . . , ul)D(s+))

is an SS–chain.

We will describe further correspondences between leaf chain types and
chain edges at points when they will be specifically used.

The Algorithm Part I – Maximal Tree Reduction

Consider a tree pair (D,R, t) representing an element α of Thompson’s
group V . We will now present the first of three parts of the algorithm,

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 65

which will transform (D,R, t) into a revealing tree pair which still rep-
resents the same α ∈ V . The aim of this part is to find a tree pair
representing α which domain and range trees have the smallest possible
number of leaves. It is not an essential part of the process, but it often
results in less data to analyse, as well as fewer leaves in the domain and
range trees of the final revealing tree pair. This part of the algorithm will
be introducing changes directly to the tree pair (D,R, t), as opposed to
the chains graph, in the form of iterated simple reduction.

Algorithm 3.2.28. Consider a tree pair (D,R, t) representing an ele-
ment α of Thompson’s group V . Suppose that there are words w1, w2 in
{0, 1}∗ such that all of the following hold:

• The addresses w10 and w11 are leaves of the tree D.

• The addresses w20 and w21 are leaves of the tree R.

• We have (w10)α = w20 and (w11)α = w21.

Then we will perform a simple reduction, given by:

1. Consider the tree D. Delete the vertices w10 and w11 of D and
delete the edges (w1, w10) and (w1, w11) of D. Let the resulting
tree be called D′. Note that the node w1 is a leaf of D′.

2. Consider the tree R. Delete the vertices w20 and w21 of R and
delete the edges (w2, w20) and (w2, w21) of R. Let the resulting
tree be called R′. Note that the node w2 is a leaf of R′.

3. We need to change t accordingly, so the new tree pair represents
the same element α. Let us suppose that the leaves w10 and w11

were labelled with numbers k and k + 1 respectively, for some k
such that 1 ≤ k ≤ m − 1. (They need to have consecutive labels,
as they are consecutive leaves in the tree D.) Now, perform the
following changes to the m-tuple t:

(a) Suppose that i ∈ {1, 2, . . . ,m} and 1 ≤ ti ≤ k. In this case,
we leave ti as it is.

(b) Suppose that for some i ∈ {1, 2, . . . ,m}, we have ti = k + 1.
In this case, we delete this coordinate ti from the m-tuple t,
creating an (m− 1)–tuple.

66 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(c) Now, consider all i ∈ {1, 2, . . . ,m} such that k + 2 ≤ ti ≤ m.
Simultaneously for all i, replace each occurrence of ti with
ti − 1.

(d) We call the resulting (m− 1)-tuple t′.

4. We now replace (D,R, t) by our new tree pair (D′, R′, t′). The
number m is now redefined to be such that the new t is an m-tuple.
This means that m has decreased by 1.

After each simple reduction, we test the new tree pair for existence of
such words w1 and w2. We terminate the algorithm when no such words
exist.

Definition 3.2.29 (Reduced Tree Pair). Consider a tree pair (D,R, t)

representing an element α of Thompson’s group V . If (D,R, t) remains
unchanged by Algorithm 3.2.28, then we call it a reduced tree pair.

Lemma 3.2.30. Given input of any tree pair (D,R, t) representing an
element α of V , Algorithm 3.2.28 terminates with output of the unique
reduced tree pair representing α.

Proof. With each iteration of a simple reduction we decrease the positive
integer m associated with the tree pair by 1. The number m cannot
become non–positive by performing the described reductions of the tree
pair. This is because the minimal number of leaves of D (and R) needed
to apply the procedure is m = 2. Hence the algorithm must terminate.
We know that the reduction can be applied when we can find words
w1, w2 ∈ {0, 1}∗ satisfying the criteria that:

1. w10 and w11 are leaves of the domain tree D,

2. w20 and w21 are leaves of the range tree R,

3. for all w′ ∈ {0, 1}ω, we have (w10w′)α = w20w′ and (w11w′)α =

w21w′.

After application of a reduction, the tree pair (D,R, t) changes to (D′, R′, t′),
but we are interested in showing that it still represents the same element
α. We know that now for all w′ ∈ {0, 1}ω, we have (w1w

′)α = w2w
′,

which is equivalent to the third condition above. We also observe that
for each other leaf λ of the domain tree D which is also a leaf of the tree
D′, the effect of α is the same by construction of t′. This is because if λ

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 67

was a leaf with a number l which is less than the number of the leaf w10

in the tree D, then λ still has number l in the tree D′ and the leaf (λ)α

has number l in both trees R and R′. If in contrast λ was a leaf with
a number l which is bigger than the number of the leaf w11 in the tree
D, then λ has number l − 1 in the tree D′ and the leaf (λ)α which had
number l in the tree R, has number l−1 in tree R′. This means that λ is
still mapped to (λ)α by the new tree pair. As all of these define where all
the points of C are mapped to under the new tree pair, and all of them
are being mapped in exactly same way as by the initial tree pair (D,R, t)

and final tree pair (D′, R′, t′), both tree pairs must represent the same
element α of V .

We will now show uniqueness of the reduced tree pair corresponding
to any tree pair representing fixed element α of V . For that purpose, we
will paraphrase and expand the proof from Cannon, Floyd and Parry [14]
of existence of a unique reduced tree pair for any element of Thompson’s
group F . Let us now assume that (D,R, t) is a reduced tree pair rep-
resenting α ∈ V . The proof is based on the fact that if the action of α
on all elements of C underlying a given address could be extended to a
partial map on that given address, then this address cannot be a non–leaf
node of the tree D. More formally, the conditions for Algorithm 3.2.28 to
stop with the tree pair (D,R, t) are equivalent to the following statement:
if an address u ∈ {0, 1}∗ is such that we have some address v ∈ {0, 1}∗

such that for all w ∈ {0, 1}ω we have (uw)α = vw, then no descendant
of u is a leaf of the tree D. This means that u is either a leaf of D, or
it is a proper descendant of a leaf of D. Now, as α can be interpreted as
a set of prefix substitutions, this statement provides a unique choice of
the set of prefixes pairs {(u1, v1), . . . , (uk, vk)} for some positive integer
k, such that for all integers i such that 1 ≤ i ≤ k we have (ui)α = vi and
{u1, . . . , uk} = LD for some tree D as well as {v1, . . . , vk} = LR for some
tree R. This gives a unique reduced tree pair (D,R, t) corresponding to
a given element α of V .

Corollary 3.2.31. Let α be an element of V and let (D,R, t) and (D′, R′, t′)

be tree pairs both representing the element α. Then there is a sequence
of simple augmentations and simple reductions which transforms the tree
pair (D,R, t) into the tree pair (D′, R′, t′).

Proof. Recall that a simple augmentation defined in Algorithm 2.3.9 and
a simple reduction defined in Algorithm 3.2.28 are inverse operations.

68 CHAPTER 3. DYNAMICS VIA COMBINATORICS

By Lemma 3.2.30 both (D,R, t) and (D′, R′, t′) admit a finite sequence
of simple reductions to the same reduced tree pair for α. This proves our
claim.

Example 3.2.32 (Reducing Tree Pair). Consider the following tree pair
(D,R, t):

At the moment the procedure of Algorithm 3.2.28 can be applied to two
pairs of addresses (w1, w2): (0, 1) and (11, 01). After the application to
(11, 01), we are left with the tree:

After the subsequent application of the algorithm to (0, 1), we are left
with the tree pair:

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 69

Now we recognise that a new pair of vertices (w1, w2) satisfying the
criteria for algorithm’s application has been uncovered, namely (1, 0).
After applying the algorithm to this last one, we have the following tree
pair:

At this point, the only candidate for a pair of nodes which could satisfy
the criteria for application of the algorithm’s procedure is (,), namely
a pair of empty nodes. However, this would require all points in C to be
fixed by α, which is not the case. Hence, we computed the reduced tree
pair for the initial tree pair.

The Algorithm Part II – Detecting Torsion

Consider a tree pair (D,R, t) representing an element α of Thompson’s
group V , and its corresponding chains graph G. As noted earlier, we will
not assume that (D,R, t) is reduced, but typically one applies Algorithm
3.2.28 first for efficiency. We will now present an algorithm which will
modify G and result in another chains graph corresponding to another
tree pair, which still represents the same element α of V , and which can
be identified from the resulting chains graph. The new chains graph will
admit no edges with label type DR which do not represent full periodic

70 CHAPTER 3. DYNAMICS VIA COMBINATORICS

orbits of its neutral leaves. We will also show that applying this algorithm
we will also detect all P–chains which will occur in the final revealing tree
pair. Therefore, after application of this algorithm we can easily decide
whether the element α is torsion.

Recall that by Corollary 3.2.25 any edge with label type DR and the
same start and end vertex represents a full periodic orbit of neutral leaves
corresponding to a P–chain. However:

Lemma 3.2.33. For a tree pair (D,R, t) representing α ∈ V and its
chains graph G, an edge with label type DR with distinct start and end
vertex corresponds to a DSRS–chain.

Proof. Recall Definition 3.1.27 for a DSRS–chain. Suppose that

(v, w,D(u1, . . . , ul)R)

is an edge of G for some v, w ∈ VG such that v 6= w, some non–negative
integer l and some neutral leaves u1, . . . , ul of the tree pair (D,R, t). We
know by Corollary 3.2.22 that v and w cannot be neutral vertices of G.
Hence, v is a domain vertex and w is a range vertex. Recall that by
Lemma 3.2.24 that this edge corresponds to a non–periodic leaf chain
(v, u1, . . . , ul, w). We want to show that v is a domain of sinking leaf and
that w is a range of sourcing leaf. As v is a domain vertex, it is a root of
a component of R−D, and hence it can be either domain of attraction or
domain of sinking leaf. But w, the last leaf in the leaf chain starting at
v, is not a proper descendant of v, hence v must be a domain of sinking.
Similarly, as w is a range vertex, it is a root of a component of D−R, and
hence it can be either range of repulsion or range of sourcing leaf. But v,
the first leaf in the leaf chain ending at w, is not a proper descendant of
w, hence w must be a range of sourcing.

As v is a domain of sinking and w is a range of sourcing, by Definition
3.1.27 the leaf chain (v, u1, . . . , ul, w) corresponding to the edge

(v, w,D(u1, . . . , ul)R)

is a DSRS–chain.

As we know that DSRS–chains cannot occur in revealing tree pairs.
The Algorithm 3.2.34 is aimed at eliminating these edges.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 71

Algorithm 3.2.34. Consider a tree pair (D,R, t) representing an ele-
ment α of Thompson’s group V , and its corresponding chains graph G.
Consider an edge of the graph G with a label type DR.

1. If the start and end vertex of the edge are the same, we leave it as
it is.

2. Suppose that the start vertex v of the edge and the end vertex w of
the edge are distinct. Suppose further that the edge joining them
is given by (v, w,D(u1, . . . , uk)R) for some non–negative integer k
and for some neutral leaves u1, . . . , uk. Then by Corollary 3.2.22
the vertex v is a leaf of the domain tree D but not of the range
tree R, and the vertex w is a leaf of the range tree R but not of the
domain tree D.

Recall from Definition 2.3.8 that we can denote the connected com-
ponent of R−D rooted at v to be vRv, and recall that Rv is then
the tree vRv ‘translated’ to the root ε. Similarly, recall from Defi-
nition 2.3.8 that we can denote the connected component of D−R
rooted at w to be wDw, and recall that Dw is then the tree wDw

‘translated’ to the root ε. Define the intersection of the trees Rv
and Dw by T = Rv ∩Dw.

We will now list all leaves of T . Notice that as T = Rv ∩ Dw,
each leaf of T is either a leaf of the tree Rv or of the tree Dw, and
possibly both. Let p1, p2, . . . , pl1 for a non–negative integer l1 be
addresses of all leaves of T which are in the same time leaves of Rv,
but not leaves of Dw. Let q1, q2, . . . , ql2 for a non–negative integer
l2 be addresses of all leaves of T which are in the same time leaves
of Dw, but not leaves of Rv. Finally, let r1, r2, . . . , rl3 for a non–
negative integer l3 be all leaves of T which are in the same time
leaves of Rv and leaves of Dw. Note that the collection of all these
leaves forms a set of all leaves of the tree T .

Perform the following action:

(a) Introduce new vertices to the graph G, namely wpi for all
i ∈ {1, 2, . . . , l1}, and vqj for all j ∈ {1, 2, . . . , l2}.

Recall that pi is a leaf of the tree Rv, for all i ∈ {1, 2, . . . , l1}. Hence

72 CHAPTER 3. DYNAMICS VIA COMBINATORICS

for each such pi there is a unique edge

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(pi))

for some u′ ∈ VG, some non–negative integer k1, some word s′ ∈
{0, 1}∗, some neutral leaves u′1, . . . , u′k1 of the tree pair (D,R, t),
and some X ∈ {D,R}.

Perform the following action:

(b) For each pi, replace the edge

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(pi))

with the edge

(u′, wpi, (s
′)X(u′1, . . . , u

′
k1 , vpi, u1pi, . . . , ukpi)R).

Recall by definition of pi that wpi is a proper ancestor of some
leaves of the tree D. Now, recall Definition 2.3.8 and consider the
tree Dwpi . For each leaf s of the tree Dwpi , we have an edge

(w,w′, (pis)R(w1, . . . , wlw)Y (sw))

in the modified graph G, for some w′ ∈ VG, some non–negative
integer lw, some addresses w1, . . . , wlw , Y ∈ {D,R} and some word
sw ∈ {0, 1}∗.

Perform the following action:

(c) For each pi and each leaf s of Dwpi , replace the edge

(w,w′, (pis)R(w1, . . . , wlw)Y (sw))

with the edge

(wpi, w
′, (s)R(w1, . . . , wlw)Y (sw)).

Recall that qj is a leaf of the tree Dw, for all j ∈ {1, 2, . . . , l2}.
Hence for each such qj there is a unique edge

(w, u′, (qj)R(u′′1, . . . , u
′′
k2)Y (s′′))

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 73

for some u′ ∈ VG, some non–negative integer k2, some word s′′ ∈
{0, 1}∗, some neutral leaves u′′1, . . . , u′′k2 of the tree pair (D,R, t),
and some Y ∈ {D,R}.

Perform the following action:

(d) For each qj , replace the edge

(w, u′, (qj)R(u′′1, . . . , u
′′
k2)Y (s′′))

with the edge

(vqj , u
′, D(u1qj , . . . , ukqj , wqj , u

′′
1, . . . , u

′′
k2)Y (s′′)).

Recall by definition of qj that vqj is a proper ancestor of some
leaves of the tree R. Now, recall Definition 2.3.8 and consider the
tree Rvqj . For each leaf s of the tree Rvqj , we have an edge

(v′, v, (sv)X(v1, . . . , vlv)D(qjs))

in the modified graph G, for some v′ ∈ VG, some non–negative
integer lv, some addresses v1, . . . , vlv , X ∈ {D,R} and some word
sv ∈ {0, 1}∗.

Perform the following action:

(e) For each qj , replace the edge

(v′, v, (sv)X(v1, . . . , vlv)D(qjs))

with the edge

(v′, vqj , (sv)X(v1, . . . , vlv)D(s))

Finally, recall that rh is a leaf of both trees Rv and Dw, for all
h ∈ {1, 2, . . . , l3}. Hence for each such rh there is a unique edge

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(rh))

for some u′ ∈ VG, some non–negative integer k1, some word s′ ∈
{0, 1}∗, some neutral leaves u′1, . . . , u′k1 of the tree pair (D,R, t),

74 CHAPTER 3. DYNAMICS VIA COMBINATORICS

and some X ∈ {D,R}. For each such rh there is also a unique edge

(w, u′′, (rh)R(u′′1, . . . , u
′′
k2)Y (s′′))

for some u′′ ∈ VG, some non-negative integer k2, some word s′′ ∈
{0, 1}∗, some neutral leaves u′′1, . . . , u′′k2 of the tree pair (D,R, t),
and some Y ∈ {D,R}. Note that these two edges do not need to
be distinct.

Perform the following actions:

(f) If the edges

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(rh))

and
(w, u′′, (rh)R(u′′1, . . . , u

′′
k2)Y (s′′))

are distinct, then replace these two edges with a single edge

(u′, u′′, (s′)X(u′1, . . . , u
′
k1 , vrh, u1rh, . . . ,

. . . , ukrh, wrh, u
′′
1, . . . , u

′′
k2)Y (s′′)).

(g) If the edges

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(rh))

and
(w, u′′, (rh)R(u′′1, . . . , u

′′
k2)Y (s′′))

are the same edge, then introduce the vertex vrh to the graph
and consider both of them be given by

(w, v, (rh)R(u′1, . . . , u
′
k1)D(rh))

In this case, replace this edge with a single edge

(vrh, vrh, D(u1rh, . . . , ukrh, wrh, u
′
1, . . . , u

′
k1)R).

(h) Delete the vertices v and w, and the edge between them from
the graph G.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 75

3. Repeat Steps 1) and 2) on each remaining edge with the DR label
type.

Lemma 3.2.35. Given an input of the chains graph G corresponding to
a tree pair (D,R, t) representing an element α of V , Algorithm 3.2.34
terminates with a chains graph for which the only edges of label type DR
are the ones for which the start vertex is the same as the end vertex.
Moreover, the resulting graph still represents the same element α of V .

Proof. We will first show that the process terminates. This is because
each time we apply Step 2) we either eliminate a DR edge from further
consideration, or we are diminishing number of edges of the graph G by
at least 1. Recall that the number of edges is a finite number (initial size
of EG is m, where t is an m-tuple from the tree pair (D,R, t)). In the
process we might or might not create new edges with labels DR, but this
ultimately does not matter as the total number of edges to consider is
always decreasing. Moreover, the algorithm continues if and only if there
are edges with label type DR with distinct start and end vertex. Hence,
when the algorithm stops, it produces a graph lacking such edges.

For the second part, we will look more closely what effect the edges
replacements have on prefix substitution rules. Recall that we will be
deleting the edge e = (v, w,D(u1, . . . , uk)R) for distinct vertices v and
w. The prefix substitution rules given by this edge are:

(1)

(v)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = w

Recall the process of augmentation from Algorithm 2.3.9. Recall the
tree T defined in Algorithm 3.2.34. In Algorithm 3.2.34 we perform the
augmentation of (D,R, t) by T at the leaves v, u1, . . . , uk. We know that
LT = {pi|1 ≤ i ≤ l1}∪{qj |1 ≤ j ≤ l2}∪{rh|1 ≤ h ≤ l3}. Then the prefix
substitutions could be described by (1a),(1b) and (1c):

(1a)

∀1 ≤ i ≤ l1

(vpi)α = u1pi

(ulpi)α = ul+1pi ∀1 ≤ l < k

(ukpi)α = wpi

76 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(1b)

∀1 ≤ j ≤ l2

(vqj)α = u1qj

(ulqj)α = ul+1qj ∀1 ≤ l < k

(ukqj)α = wqj

(1c)

∀1 ≤ h ≤ l3

(vrh)α = u1rh

(ulrh)α = ul+1rh ∀1 ≤ l < k

(ukrh)α = wrh

We could then cancel the edge e and represent these new prefix sub-
stitutions by a collection of following edges:

{(vpi, wpi, D(u1pi, . . . , ukpi)R)|1 ≤ i ≤ l1}∪

{(vqj , wqj , D(u1qj , . . . , ukqj)R)|1 ≤ j ≤ l2}∪

{(vrh, wrh, D(u1rh, . . . , ukrh)R)|∀1 ≤ h ≤ l3}

We know that the labels on each of the new edges have to be of the
type DR, because T is chosen so that it is a subtree of the tree Rv and
hence the first letter of the label must be D, and T is also chosen to be a
subtree of the tree Dw and hence the second letter of the label must be R.
However, even after adjusting vertices, these edges would not form the
chains graph corresponding to the new tree pair. This is because there
would be vertices with an incoming edge with second letter of the label
being R and with an outgoing edge with the first letter of the label being
D. Algorithm 3.2.34 is inspired by the principle of concatenation of such
neighbouring edges described in Remark 3.2.18. Let us analyse the effect
of the suggested replacements of edges:

1. For each integer i such that 1 ≤ i ≤ l1, the edge

(u′, v, (s′)X(u′1, . . . , u
′
k1)D(pi))

is replaced by the edge

(u′, wpi, (s
′)X(u′1, . . . , u

′
k1 , vpi, u1pi, . . . , ukpi)R).

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 77

Let us analyse what it means in terms of prefix substitution rules.
The initial edge encodes the following rules (2):

(2)

(u′s′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vpi

The resulting edge encodes the following rules (3):

(3)

(u′s′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vpi

 (2)

(vpi)α = u1pi

(ulpi)α = ul+1pi ∀1 ≤ l < k

(ukpi)α = wpi

 (1a)

Notice that for given pi the rules (3) are a union of rules (2) and
(1a). Hence, there has been no changes for α in this procedure. Note
also that the vertex wpi has been introduced as a new vertex of the
graph and replaced appropriately in the edges which were starting
from vertex w, with a proper descendant of wpi being mapped as
the beginning of the edge. Finally, the second letter of the label of
the introduced edge is R, as pi was not a leaf of the tree Dw, and
hence the vertex wpi becomes a range vertex of G.

2. For each integer j such that 1 ≤ j ≤ l2, the edge

(w, u′′, (qj)R(u′′1, . . . , u
′′
k2)Y (s′′))

is replaced by the edge

(vqj , u
′′, D(u1qj , . . . , ukqj , wqj , u

′′
1, . . . , u

′′
k2)Y (s′′)).

Let us analyse what it means in terms of prefix substitution rules.
The initial edge encodes the following rules (4):

(4)

(wqj)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k2

(u′′k2)α = u′′s′′

78 CHAPTER 3. DYNAMICS VIA COMBINATORICS

The resulting edge encodes the following rules (5):

(5)

(vqj)α = u1qj

(ulqj)α = ul+1qj ∀1 ≤ l < k

(ukqj)α = wqj

 (1b)

(wqj)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k2

(u′′k2)α = u′′s′′

 (4)

Notice that for given qj the rules (5) are a union of rules (1b) and
(4). Hence, there has been no change for α in this procedure. Note
also that the vertex vqj has been introduced as a new vertex of the
graph and replaced appropriately in the edges which were ending
at vertex v, with a proper descendant of vqj being mapped to as
the end of the edge. Finally, the first letter of the label of the edge
introduced is D, as qj was not a leaf of the tree Rv, and hence the
vertex vqj becomes a domain vertex of G.

3. For each integer h such that 1 ≤ h ≤ l3, the edges

e1 = (u′, v, (s′)X(u′1, . . . , u
′
k1)D(rh))

and the edge

e2 = (w, u′′, (rh)R(u′′1, . . . , u
′′
k2)Y (s′′))

are replaced by:

(a) If e1 6= e2, by a single edge

(u′, u′′, (s′)X(u′1, . . . , u
′
k1 , vrh, u1rh, . . . ,

. . . , ukrh, wrh, u
′′
1, . . . , u

′′
k2)Y (s′′))

Let us analyse what it means in terms of prefix substitution
rules. The two initial edges encodes the following rules (6) and
(7):

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 79

(6)

(u′s′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vrh

(7)

(wrh)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k2

(u′′k2)α = u′′s′′

The resulting edge encodes the following rules (8):

(8)

(u′s′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vrh

 (6)

(vrh)α = u1rh

(ulrh)α = ul+1rh ∀1 ≤ l < k

(ukrh)α = wrh

 (1c)

(wrh)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k2

(u′′k2)α = u′′s′′

 (7)

Notice that for given rh the rules (8) are a union of rules (6),
(1c) and (7). Hence, there has been no change for α in this
procedure.

(b) If e1 = e2, by a single edge

(vrh, vrh, D(u1rh, . . . , ukrh, wrh, u
′
1, . . . , u

′
k1)R)

Let us analyse what it means in terms of prefix substitution
rules. The initial edge is then given by

(w, v, (rh)R(u′1, . . . , u
′
k1)D(rh))

and it encodes the following rules (9):

(9)

(wrh)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vrh

The resulting edge encodes the following rules (10):

80 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(10)

(vrh)α = u1rh

(ulrh)α = ul+1rh ∀1 ≤ l < k

(ukrh)α = wrh

 (1c)

(wrh)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k1

(u′k1)α = vrh

 (9)

Notice that for given rh the rules (10) are a union of rules
(1c) and (9). Hence, there has been no changes for α in this
procedure. Note also that the vertex vrh has been introduced
as a new vertex of the graph, and the label type of the new
edge is DR, as it represents a new periodic orbit of leaves.

Note that this case illustrates how new periodic orbits of leaves
are discovered in Algorithm 3.2.34.

By these observations we can conclude that the resulting graph
is indeed a chains graph of a new tree pair, which represents
the same element α of V as the prefix substitution rules remain
the same.

Example 3.2.36. Let us consider the following tree pair (D,R, t):

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 81

Let us construct the intersection D ∩R:
ε

0 1

10 11

Hence, the set of vertices of the pre–chains graph is given by

{0, 10, 11}.

The set of edges of the pre–chains graph is given by

{(0, 11, DR), (10, 0, DD(0)), (11, 0, (0)RD(1)), (11, 10, (1)RR)}.

We will now transform the pre–chains graph into the chains graph G.
There is only one neutral vertex of the pre–chains graph, and it is 10.
It has precisely one incoming edge (11, 10, (1)RR) and precisely one out-
going edge (10, 0, DD(0)), which we merge together to obtain the edge
(11, 0, (1)R(10)D(0)).

Therefore, the vertex set of G is given by VG = {0, 11}. Its set of
edges is given by:

EG = {(0, 11, DR), (11, 0, (1)R(10)D(0)), (11, 0, (0)RD(1))}

Hence the chains graph for (D,R, t) looks as follows:

0 11
DR

(1)R(10)D(0)

(0)RD(1)

The Chains Graph of the Tree Pair (D,R, t)

We determine that there is precisely one edge of label type DR in
EG, and that its start vertex is distinct from its end vertex. Hence, we

82 CHAPTER 3. DYNAMICS VIA COMBINATORICS

will apply Algorithm 3.2.34 to G.

1. We identify an appropriate edge with label type DR: (0, 11, DR).

2. First of all, consider the component (0)R0 of R−D. It is given by

0

00 01

Therefore, the tree R0 is given by

ε

0 1

Also, the component (11)D11 of D −R is given by

11

110 111

Therefore, the tree D11 is given by

ε

0 1

The intersection T = R0 ∩D11 is also given by

ε

0 1

Therefore, we can identify the integers l1 = 0 (number of leaves
of T which are also leaves of R0 but not leaves of D11), l2 = 0

(number of leaves of T which are also leaves of D11 but not leaves
of R0) and l3 = 2 (number of leaves of T which are leaves of both
D11 and R0). Moreover, we identify the following addresses r1 =

0 and r2 = 1. Let us first consider r1 = 0. The unique edge
corresponding to r1 entering the vertex 0 which we are looking
for is (11, 0, (1)R(10)D(0)). The unique edge corresponding to r1

leaving the vertex 11 which we are looking for is (11, 0, (0)RD(1)).

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 83

(f) As these are distinct edges, we replace them with a single edge

(11, 0, (1)R(10, 00, 110)D(1)).

Let us now consider r2 = 1. The unique edge corresponding to r2

entering the vertex 0 which we are looking for is

(11, 0, (1)R(10, 00, 110)D(1))

The unique edge corresponding to r2 leaving the vertex 11 which
we are looking for is also

(11, 0, (1)R(10, 00, 110)D(1)).

(g) As these are the same edge, we replace it with a single edge

(01, 01, D(111, 10, 00, 110)R)

and also introduce vertex 01 to the graph.

(g) We delete vertices 0 and 11 from the graph.

Hence we end up with a new graph G′ such that VG′ = {01} and
EG′ = {(01, 01, D(111, 10, 00, 110)R)}, which looks as follows:

01

D(111,10,00,110)R

The Chains Graph G′

We want to find the tree pair corresponding to this chains graph. Leaf
sets of both trees D and R are given by LD = LR = {00, 01, 10, 110, 111}.

84 CHAPTER 3. DYNAMICS VIA COMBINATORICS

We also have the following prefix substitutions:

(00)α = 110

(01)α = 111

(10)α = 00

(110)α = 01

(111)α = 10

Therefore, the tree pair is:

Let us analyse what happened in Example 3.2.36. The chains graph
of the resulting tree pair indicates that it can be interpreted as five leaves
travelling on a single periodic orbit under the action of α. This fact is not
immediately clear from the graph of the initial tree pair, and the reason
for that is that the addresses 00 and 01 are simultaneously mapped to
addresses 110 and 111 respectively, and this was initially expressed as a
single map of address 0 to address 11, reflected by an edge with label type
DR. However, the immediate preimage in terms of prefix substitution of
the address 0 under the map α is not expressible as a single address.
Similarly, the immediate image in terms of prefix substitution of the
address 11 under the map α is not expressible as a single address. Hence,
if we wanted to uncover the whole periodic orbit involved in this example,
we had to perform simplification of the relevant DR edge, which was
joining a range of sourcing and a domain of sinking. This is the general
idea behind the Algorithm 3.2.34 which should give us intuition of what

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 85

happens in the algorithm and why.
Additionally, notice that in Example 3.2.36 with the application of

the Algorithm 3.2.34 we reduced the number of carets in D − R (and
equivalently in R−D) by the number of carets present in the tree T .

Lemma 3.2.37. Consider the chains graph G of a tree pair (D,R, t)

representing an element α of V , such that G is the output of Algorithm
3.2.34. Let v be a domain vertex of the graph G. Then v has a unique
outgoing edge, and the label type of this edge is DD.

Proof. By Lemma 3.2.10 and Lemma 3.2.20, the vertex v has a unique
outgoing edge e, and the first letter of the label type of this edge must be
D, and so its label type is either DR or DD. However, if the label type
of e was DR, then by Lemma 3.2.35 the end vertex of e would also need
to be v. This is not possible, as by Lemma 3.2.10 and Lemma 3.2.20 the
edge e cannot have an incoming edge with second letter of the label type
being R. Hence, e must have label type DD.

Lemma 3.2.38. Consider the chains graph G of a tree pair (D,R, t)

representing an element α of V , such that G is the output of Algorithm
3.2.34. Let v be a range vertex of the graph G. Then v has a unique
incoming edge, and the label type of this edge is RR.

Proof. By Lemma 3.2.11 and Lemma 3.2.20, the vertex v has a unique
incoming edge e, and the second letter of the label type of this edge must
be R, and so its label type is either DR or RR. However, if the label type
of e was DR, then by Lemma 3.2.35 the start vertex of e would also need
to be v. This is not possible, as by Lemma 3.2.11 and Lemma 3.2.20 the
edge e cannot have an outgoing edge with first letter of the label type
being D. Hence, e must have label type RR.

The lemma below gives technical background which is later used in the
Corollary 3.2.40 to prove that with Algorithm 3.2.34 we have uncovered
all periodic orbits of leaves.

Lemma 3.2.39. Consider the chains graph G of a tree pair (D,R, t)

representing an element α of V , which is the output of Algorithm 3.2.34.
Suppose that a word s ∈ {0, 1}∗ is such that some vertex of the chains

graph G or some neutral leaf of the tree pair (D,R, t) present in the label

86 CHAPTER 3. DYNAMICS VIA COMBINATORICS

of a chain edge of G is a prefix v for s. This means that s underlies this
vertex v of the graph or this neutral leaf v. Suppose also that there is a
positive integer l such that for all w ∈ {0, 1}ω we have (sw)αl = sw. This
means that some positive power of α fixes all words with some given finite
prefix.

Then there must be an edge

(u0, u0, D(u1, . . . , uk)R) ∈ EG

for some vertex u0 ∈ VG, some non–negative integer k and some neutral
leaves u1, . . . , uk of the tree pair (D,R, t), such that ui if the prefix v of
s for some integer 0 ≤ i ≤ k.

Proof. Suppose that there are s, v and l as in the statement of this
lemma. Suppose that there is an edge (u0, u0, D(u1, . . . , uk)R) ∈ EG for
some vertex u0 ∈ VG, some non–negative integer k and some neutral
leaves u1, . . . , uk of (D,R, t), such that one of the leaves u0, u1, . . . , uk

is a prefix v of s. Then for all w ∈ {0, 1}ω we have (sw)αk+1 = sw,
and k + 1 is the smallest positive integer satisfying this property, by the
nature of edges in a chains graph. Hence (k+1)|l. As k is a non–negative
integer, l is a positive integer as required. Hence, all the conditions of
the lemma are met and this case can occur. We will show that this is the
only possible scenario.

Suppose otherwise that s has a prefix which is a neutral leaf of a
chains edge with the label type RR, RD or DD. By Lemma 3.2.35 the
edges with label type DR represent the case above which we already
considered.

First suppose that there is an edge

(u, u′, (s−)R(u′1, . . . , u
′
k′)Y (s+)) ∈ EG

for some vertices u, u′ ∈ VG, some positive integer k′, some some neu-
tral leaves u′1, . . . , u′k′ , some words s− ∈ {0, 1}+ and s+ ∈ {0, 1}∗, and
Y ∈ {D,R}. Suppose that u′l′ is a prefix of s for some l′ ∈ {1, . . . , k′}.
Hence there is a word s′ ∈ {0, 1}∗ such that s = u′l′s

′. Recall that for
all w ∈ {0, 1}ω we have (sw)αl = sw. Then for all w ∈ {0, 1}ω we
have (sw)α−l

′
= (u′l′s

′w)α−l
′

= us−s′w. Also, us−s′w = (sw)α−l
′

=

(sw)αlα−l
′

= (sw)α−l
′
αl = (us−s′w)αl. Hence, the word us−s′ is such

that its prefix u is a vertex of the graph G and for all w ∈ {0, 1}ω we

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 87

have us−s′w = (us−s′w)αl.

Otherwise, suppose that there is an edge

(u, u′, (s−)X(u′1, . . . , u
′
k′)D(s+)) ∈ EG

for some vertices u, u′ ∈ VG, some positive integer k′, some some neu-
tral leaves u′1, . . . , u′k′ , some words s− ∈ {0, 1}+ and s+ ∈ {0, 1}∗, and
X ∈ {D,R}. Suppose that u′l′ is a prefix of s for some l′ ∈ {1, . . . , k′}.
Hence there is a word s′ ∈ {0, 1}∗ such that s = u′l′s

′. Recall that
for all w ∈ {0, 1}ω we have (sw)αl = sw. Then for all w ∈ {0, 1}ω

we have (sw)αk
′+1−l′ = (u′l′s

′w)αk
′+1−l′ = u′s+s′w. Also u′s+s′w =

(sw)αk
′+1−l′ = (sw)αlαk

′+1−l′ = (sw)αk
′+1−l′αl = (u′s+s′w)αl. Hence

the word u′s+s′ is such that its prefix u′ is a vertex of the graph G and
for all w ∈ {0, 1}ω we have u′s+s′w = (u′s+s′w)αl.

Therefore, without loss of generality, we can presume that s has a
prefix which is a vertex of the graph G.

Hence, suppose that s has a prefix which is a vertex u0 of the graph
G representing non-neutral leaf of the tree pair (D,R, t). By Corollary
3.2.22 vertex u0 is either a leaf of the range tree but not the domain tree,
or u0 is a leaf of the domain tree but not the range tree.

Suppose that vertex u0 is a leaf of the range tree but not the domain
tree. Then by Lemma 3.2.38 the vertex u0 has a unique incoming edge,
and the label type of this edge is RR. Hence, the beginning of this edge
is also a leaf of the range tree but not the domain tree. Hence for each
such vertex u0 we can build a unique sequence of vertices (ui)i∈N0 , such
that for all i ∈ N0 we have (ui+1, ui, (. . .)R(. . .)R) ∈ EG. Now, note that
|VG| < ∞, so at some point we must have uj = uj+j′ for a positive j′.
Choose minimal non–negative integer j such that uj = uj+j′ for some j′,
and then choose minimal positive j′ such that uj = uj+j′ . At first, we
will cover the case when j 6= 0 and then when j = 0.

Consider the case when j 6= 0. That is, u0 6= ui for all positive
integers i. Recall that vertices of the chains graph lie above pairwise dis-
joint subsets of C. Hence, for all h ∈ Z− we have {u0w|w ∈ {0, 1}ω} ∩
{(u0w)αh|w ∈ {0, 1}ω} = ∅. As α is a bijection on C then for all
h ∈ Z− we have ∅ = (∅)α−h = ({u0w|w ∈ {0, 1}ω} ∩ {(u0w)αh|w ∈
{0, 1}ω})α−h = {(u0w)α−h|w ∈ {0, 1}ω} ∩ {(u0w)αhα−h|w ∈ {0, 1}ω} =

{(u0w)α−h|w ∈ {0, 1}ω} ∩ {u0w|w ∈ {0, 1}ω}. This collectively means
that for all g ∈ Z\{0} we have {u0w|w ∈ {0, 1}ω} ∩ {(u0w)αg|w ∈

88 CHAPTER 3. DYNAMICS VIA COMBINATORICS

{0, 1}ω} = ∅. Note that {sw|w ∈ {0, 1}ω} ⊂ {u0w|w ∈ {0, 1}ω}. This
contradicts the assumption that there is a positive integer l such that for
all w ∈ {0, 1}ω we have (sw)αl = sw.

Consider the case when j = 0. This means that there is a positive
integer j′ such that u0 = uj′ , and we consider the smallest such j′. This
means that each of the vertices u1, . . . , uj′−1 overlies a subset of C which
is disjoint from the subset underlying u0. Now for each i ∈ {0, . . . , j′−1}
we have an edge (ui+1, ui, (si+1)R(. . .)R) for some words si+1 ∈ {0, 1}+.
For each i ∈ {0, . . . , j′ − 1} define a negative integer xi which is given
by (−1− k), where k is the number of neutral leaves chained in the edge
(ui+1, ui, (si+1)R(. . .)R). Then for all i ∈ N0 and all words w ∈ {0, 1}ω

we have ui+1si+1w = (uiw)αxi . Notice that this implies that for all i ∈ N0

and for all w ∈ {0, 1}ω we have

ui+1si+1si . . . s1w = (uisi . . . s1w)αxi = (ui−1si−1 . . . s1w)αxi−1+xi =

. . . = (u0w)αxi+...+x1+x0

Hence, the only way we can possibly map a point u0w to itself by a
negative power of α is if we map it back to a point with prefix u0. Define
X =

∑j′−1
i=0 xi and S = sj′sj′−1 . . . s1. If m is a negative integer and not

a multiple of X, then intervals u0w and (u0w)am are disjoint. Hence,
we only need to consider powers of αX . Notice that (u0w)αX = u0Sw.
Hence, the only point of the form u0w fixed by αX is u0S. Similarly for
all positive integers h,

(u0w)αhX = u0 S . . . S︸ ︷︷ ︸
h-times

w

the only point fixed by αhX is u0S. Therefore, for each negative power
of α, we either move all the points off the interval underlying u0, or we
fix at most one point. Now we come back the initial assumptions about
s which has u0 as its prefix. We know that there is a positive integer l
such that for all w ∈ {0, 1}ω we have sw = (sw)αl. This implies that also
(sw)α−l = (sw)αlα−l = sw. This creates a contradiction to the result.
Hence, such an s cannot exist.

Otherwise suppose that vertex u0 is a leaf of the domain tree but
not the range tree. Then by Lemma 3.2.37 the vertex u0 has a unique

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 89

outgoing edge, and the label type of this edge is DD. Hence, the end of
this edge is also a leaf of the domain tree but not the range tree. Hence for
each such vertex u0 we can build a unique sequence of vertices (ui)i∈N0 ,
such that for all i ∈ N0 we have (ui, ui+1, D(. . .)D(. . .)) ∈ EG. Now, note
that |VG| < ∞, so at some point we must have uj = uj+j′ for a positive
j′. Choose minimal non–negative integer j such that uj = uj+j′ for some
j′, and then choose minimal positive j′ such that uj = uj+j′ . At first, we
will cover the case when j 6= 0 and then when j = 0.

Consider the case when j 6= 0. Recall that vertices of the chains
graph lie above pairwise disjoint subsets of C. Hence, for all h ∈ N+

we have {u0w|w ∈ {0, 1}ω} ∩ {(u0w)αh|w ∈ {0, 1}ω} = ∅. Note that
{sw|w ∈ {0, 1}ω} ⊂ {u0w|w ∈ {0, 1}ω}. This contradicts the assumption
that there is a positive integer l such that for all w ∈ {0, 1}ω we have
(sw)αl = sw.

Consider the case when j = 0. This means that there is a positive
integer j′ such that u0 = uj′ , and we consider the smallest such j′. This
means that each of the vertices u1, . . . , uj′−1 overlies a subset of C which
is disjoint from the subset underlying u0. Now for each i ∈ {0, . . . , j′−1}
we have an edge (ui, ui+1, D(. . .)D(si+1)) for some si+1 ∈ {0, 1}+. For
each i ∈ {0, . . . , j′ − 1} define a positive integer xi which is given by
(1 + k) where k is the number of neutral leaves chained in the edge
(ui, ui+1, D(. . .)D(si+1)). Then for all i ∈ N0 and all words w ∈ {0, 1}ω

we have ui+1si+1w = (uiw)αxi . Notice that this implies that for all i ∈ N0

and for all w ∈ {0, 1}ω we have

ui+1si+1si . . . s1w = (uisi . . . s1w)αxi = (ui−1si−1 . . . s1w)αxi−1+xi =

. . . = (u0w)αx0+...+xi

Hence, the only way we can possibly map a point u0w to itself by a
positive power of α is if we map it back to a point with prefix u0. Define
X =

∑j′−1
i=0 xi and S = sj′sj′−1 . . . s1. Hence, we only need to consider

powers of αX . Notice that (u0w)αX = u0Sw. Hence, the only point of
the form u0w fixed by αX is u0S. Similarly for all positive integers h,

(u0w)αhX = u0 S . . . S︸ ︷︷ ︸
h-times

w

90 CHAPTER 3. DYNAMICS VIA COMBINATORICS

the only point fixed by αhX is u0S. Therefore, for each positive power of
α, we either move all the points off an interval underlying u0, or we fix at
most one point. Now we come back the initial assumptions about s which
has u0 as its prefix. We know that there is a positive integer l such that
for all w ∈ {0, 1}ω we have sw = (sw)αl. This creates a contradiction to
the result. Hence, such an s cannot exist.

Bringing all the conclusions together, our lemma gives the only pos-
sible result for given assumptions.

Corollary 3.2.40. Consider a tree pair (D,R, t) and its chains graph
G. After applying Algorithm 3.2.34 to G, we have identified all periodic
orbits of leaves which will occur in a final outcome of the whole process
presented in this section, namely resulting revealing pair. Each of these
orbits occurs if and only if a single vertex with an edge starting and ending
at itself with label type DR occurs in G.

Proof. By Lemma 3.2.21 and Lemma 3.2.39.

Note that with the lemma above, Algorithm 3.2.34 can be used on
its own for the purpose of finding all periodic orbits of leaves, to test for
their existence, or decide whether the element of Thompson’s group V is
torsion:

Corollary 3.2.41. Consider a chains graph G which is the output of
Algorithm 3.2.34 and which corresponds to a tree pair representing an
element α of V . Then α is torsion if and only if the only label type of
edges of G is DR.

Proof. If the only label type of edges of G is DR, then α is trivially
torsion. Conversely, if α is torsion then by Lemma 3.2.40 all of its periodic
orbits of leaves have been identified and they are represented by edges of
label type DR.

The Algorithm Part III – Finding Attractors and Repellers

Consider a chains graph G which is the output of Algorithm 3.2.34 and
which corresponds to the tree pair (D,R, t) representing element α of V .
We will now present a series of four algorithms which will modify the
given chains graph and result in another chains graph corresponding to
another tree pair, which represents the same element α of V . The new

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 91

chains graph will continue to admit no edges with label typeDR which do
not represent full periodic orbits of its neutral leaves, as after Algorithm
3.2.34. Moreover, each edge with label type RR of the new chains graph
will be guaranteed to admit a range of repulsion as its beginning and end
vertex (which means that it locates a repeller), and each edge with label
type DD of the new chains graph will be guaranteed to admit a domain
of attraction as its beginning and end vertex (which means that it locates
an attractor). It will be shown that these conditions are sufficient for the
new chains graph to represent a revealing tree pair.

Finding Attractors

The first two algorithms aim to transform the graph G into a new chains
graph where each edge with label type DD is guaranteed to admit a
domain of attraction as its beginning and end vertex. Hence, it will
indicate the location of an attractor.

It will be shown in Corollary 3.2.49 that any edge with label type DD
and same start and end vertex represents an A–chain. However:

Lemma 3.2.42. For a tree pair (D,R, t) representing α ∈ V and its
chains graph G, an edge with label type DD with distinct start and end
vertices corresponds to a DSS–chain.

Proof. Suppose that (v, w,D(u1, . . . , ul)D(s)) is an edge for some v, w ∈
VG such that v 6= w, some non-negative integer l, some word s ∈ {0, 1}+

and some neutral leaves u1, . . . , ul of the tree pair (D,R, t). We know
by Lemma 3.2.22 that v and w cannot be neutral vertices of G. Hence
both v and w are domain vertices. Recall that by Lemma 3.2.24 that
this edge corresponds to a non-periodic leaf chain (v, u1, . . . , ul, ws). We
are interested in what type of leaves v and ws are. As v is a domain
vertex, it is a root of a component of R −D, and hence it can be either
domain of attraction or domain of sinking leaf. But ws, the last leaf in
the leaf chain starting at v, is not a proper descendant of v, hence v must
be a domain of sinking. Now, as w is a domain vertex, ws is a leaf of a
component of R −D, and hence it can be either an attractor or a sink.
But v, the first leaf in the leaf chain ending at w, is not a proper ancestor
of ws, hence w must be a sink.

As v is a domain of sinking and ws is a sink, by Definition 3.1.27 the

92 CHAPTER 3. DYNAMICS VIA COMBINATORICS

leaf chain (v, u1, . . . , ul, ws) corresponding to the edge

(v, w,D(u1, . . . , ul)D(s))

is a DSS–chain.

As we know that DSS–chains cannot occur in revealing tree pairs,
Algorithms 3.2.44 and 3.2.51 are aimed at eliminating these edges.

The first algorithm presents an intermediate step, which eliminates
top vertices (defined below) from the graph.

Definition 3.2.43 (Top vertex). Consider a chains graph G which is
an output of Algorithm 3.2.34 and which corresponds to the tree pair
(D,R, t) representing element α of V . Let v be a domain vertex of G. If
each of its incoming edges has label type RD, then we call v a top vertex
of the graph G.

Algorithm 3.2.44. Consider a chains graph G which is an output of
Algorithm 3.2.34 and which corresponds to the tree pair (D,R, t) repre-
senting element α of V .

1. Pick a top vertex v of the chains graph G. As it is a leaf of the
domain tree D, by Lemma 3.2.37 it has exactly one outgoing edge,
and this edge has label type DD. Say that this edge ends at a
vertex w. Then (v, w,D(. . .)D(. . .)) ∈ EG. Note that as w is an
end vertex of an edge of the label type DD, w is also a domain
vertex.

Let the edge between v and w be given by

(v, w,D(u1, . . . , uk)D(s))

for some non–negative integer k, some neutral leaves u1, . . . , uk of
the tree pair (D,R, t) and some word s ∈ {0, 1}+.

Consider each edge finishing at v. By definition of top vertex, it
needs to be of the form (u, v, (s′′)R(u′1, u

′
2, . . . , u

′
k′)D(s′)) for some

vertex u ∈ VG, some non-negative integer k′, some neutral leaves
u′1, . . . , u

′
k′ of the tree pair (D,R, t) and some words s′, s′′ ∈ {0, 1}+.

As v is a domain vertex, at least two such edges exist by Lemma
3.2.10 and Lemma 3.2.20.

Let us now perform the following process:

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 93

(a) Replace each such edge

(u, v, (s′′)R(u′1, u
′
2, . . . , u

′
k′)D(s′))

with the edge

(u,w, (s′′)R(u′1, u
′
2, . . . , u

′
k′ , vs

′, u1s
′, . . . , uks

′)D(ss′)).

(b) Delete the vertex v and the edge (v, w,D(u1, . . . , uk)D(s)).

2. Repeat Step 1) until there are no more top vertices left.

Lemma 3.2.45. Consider a chains graph which is an output of Algorithm
3.2.34 which we input into Algorithm 3.2.44. Then, the algorithm termi-
nates with the chains graph G which admits no top vertices. Moreover,
the resulting graph still represents the same element α of V .

Proof. Note that with each cancellation of a top vertex, the vertex w

might or might nor turn into a top vertex. However, the total number
of vertices of the chains graph goes down by one in each iteration of the
process, and hence the algorithm has to terminate. As termination is
marked by the point when the chains graph admits no more top vertices,
we have proven the first part of the claim.

For the second part, we will look more closely at what effect the
edges replacements have on prefix substitution rules. Recall that we will
be deleting the edge e = (v, w,D(u1, . . . , uk)D(s)) for distinct vertices v
and w, where v is a top vertex. The prefix substitution rules given by
this edge are:

(1)

(v)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = ws

Let us consider what it would mean for the prefix substitution rules
if without changing α instead of having one whole leaf v travel to the
leaf ws under the action of powers of α, we split the leaf v further into
smaller pieces, namely introduce a tree rooted at the leaf v of the tree D
of the tree pair (D,R, t), at all neutral leaves u1, . . . , uk of both trees D
and R, and at the leaf ws of the tree R.

An example of a tree which we could introduce could be the tree Rv
rooted at the node v of the tree R. Then the prefix substitutions could

94 CHAPTER 3. DYNAMICS VIA COMBINATORICS

be equally described by (1’):

(1′)

∀s′ ∈ LRv

(vs′)α = u1s
′

(uls
′)α = ul+1s

′ ∀1 ≤ l < k

(uks
′)α = wss′

We could then cancel the edge e and represent these new prefix sub-
stitutions by a collection of following edges:

{(vs′, w,D(u1s
′, . . . , uks

′)D(ss′))|s′ ∈ LRv}

We know that the label on each of the new edges has to be of typeDD,
because Rv is chosen depending on the targets of incoming edges of v.
Also, the operation does not impact the fact that w is still a domain vertex
of the graph. However, even after adjusting vertices, these edges would
not form the chains graph corresponding to the new tree pair. This is
because there would be vertices with an incoming edge with second letter
of the label being R (v is replaced by vertices vs′, and edges coming into v
change the second letter D(s′) of their labels to R) and with an outgoing
edge with the first letter of the label being D. Moreover, vs′ is a neutral
vertex of the new tree pair, for all s′ ∈ LRv . Algorithm 3.2.44 is inspired
by the principle of concatenation of such neighbouring edges described in
Remark 3.2.18. Let us analyse the effect of the suggested replacements
of edges:

For each word s′ ∈ LRv , the edge

(u, v, (s′′)R(u′1, u
′
2, . . . , u

′
k′)D(s′))

is replaced by the edge

(u,w, (s′′)R(u′1, u
′
2, . . . , u

′
k′ , vs

′, u1s
′, . . . , uks

′)D(ss′)).

Let us analyse what it means in terms of prefix substitution rules. The
initial edge encodes the following rules (2):

(2)

(us′′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = vs′

The resulting edge encodes the following rules (3):

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 95

(3)

(us′′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = vs′

 (2)

(vs′)α = u1s
′

(uls
′)α = ul+1s

′ ∀1 ≤ l < k

(uks
′)α = wss′

 (1′)

Notice that for given s′ the rules (3) are a union of rules (2) and (1′).
Hence, there has been no change to α in this procedure.

From this observation we can conclude that the resulting graph is
indeed the chains graph of a new tree pair, which represents the same
element α of V , as the prefix substitution rules remain the same.

It is also important to realise that application of Algorithm 3.2.44
does not cancel the benefits of Algorithm 3.2.34:

Lemma 3.2.46. Consider a chains graph G which is output by Algorithm
3.2.34 and Algorithm 3.2.44 applied one after another. Then G remains
unchanged by a subsequent application of Algorithm 3.2.34, and so all the
properties of a graph which is output by Algorithm 3.2.34 are preserved.

Proof. The start vertex of each edge with label type DR of graph output
by Algorithm 3.2.34 is also the end vertex of that edge. Algorithm 3.2.44
neither cancels nor introduces any edges with label type DR. Hence,
if the graph G is an output of Algorithm 3.2.34 and Algorithm 3.2.44
applied one after another, it is still the case that beginning vertex of each
edge with label type DR is also the end vertex of that edge. Therefore,
the graph G remains unchanged under potential application of Algorithm
3.2.34.

96 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Example 3.2.47. Consider the chains graph G given in the picture be-
low:

000

001

01

100 101 110

111
(00)RR

(10)RR

(01)RD(0)

(11)RD(0)

(10)RD(1)

DD(0)

DD(1)

(0)RD(1)

(11)RD(1)

DD(0)

DD(1) DD(0)

The Chains Graph G

The graph G corresponds to the following tree pair (D,R, t):

We can read off the set of vertices of G and the set of edges of G from
the chains graph picture:

VG = {000, 001, 01, 100, 101, 110, 111}

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 97

EG = {(000, 000, (00)RR), (000, 01, (01)RD(0)), (000, 001, (10)RR,),

(000, 100, (11)RD(0)), (001, 01, (0)RD(1)), (001, 100, (10)RD(1)),

(001, 111, (11)RD(1)), (01, 101, DD(0)), (100, 101, DD(1)),

(101, 110, DD(0)), (110, 111, DD(0)), (111, 110, DD(1))}

We notice that the graph G has no edges with label type DR (and in
particular no edges with label type DR with distinct beginning and end
vertices). Hence by Lemma 3.2.35 it remains unchanged by Algorithm
3.2.34. We can therefore input it into Algorithm 3.2.44. Therefore, we
analyse the graph in order to identify top vertices. To start with, the only
candidates for top vertices are domain vertices, namely vertices from the
set {01, 100, 101, 110, 111}. Now, we can see that each vertex from the
set
{101, 110, 111} has an incoming edge with label type DD. Hence we
analyse the remaining vertices from the set {01, 100} and conclude that
all of their incoming edges are of the label type RD. Thus, we conclude
that they are both top vertices.

000

001

01

100 101 110

111
(00)RR

(10)RR

(01)RD(0)

(11)RD(0)

(10)RD(1)

DD(0)

DD(1)

(0)RD(1)

(11)RD(1)

DD(0)

DD(1) DD(0)

The Chains Graph G with Top Vertices Indicated

98 CHAPTER 3. DYNAMICS VIA COMBINATORICS

We now proceed with the application of Algorithm 3.2.44 to each of
these vertices:

1. Consider the vertex 01.

(a) It has one outgoing edge (01, 101, DD(0)).

(b) It has two incoming edges, namely (000, 01, (01)RD(0))

and (001, 01, (0)RD(1)).

(c) We replace the edge (000, 01, (01)RD(0)) with the edge
(000, 101, (01)R(010)D(00)).

(d) We replace the edge (001, 01, (0)RD(1)) with the edge
(001, 101, (0)R(011)D(01)).

(e) We delete the vertex 01 and the edge (01, 101, DD(0)).

2. Consider the vertex 100.

(a) It has one outgoing edge (100, 101, DD(1)).

(b) It has two incoming edges, namely (000, 100, (11)RD(0))

and (001, 100, (10)RD(1)).

(c) We replace the edge (000, 100, (11)RD(0)) with the edge
(000, 101, (11)R(1000)D(10)).

(d) We replace the edge (001, 100, (10)RD(1)) with the edge
(001, 101, (10)R(1001)D(11)).

(e) We delete the vertex 100 and the edge (110, 101, DD(1)).

At this point, the intermediate chains graph looks as follows, with its
only top vertex indicated:

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 99

000

001

101

110

111

(00)RR

(10)RR

(01)R(010)D(00)

(11)R(1000)D(10)

(10)R(1001)D(11)

(0)R(011)D(01)

(11)RD(1)

DD(0)

DD(1) DD(0)

The New Chains Graph with the Top Vertex Indicated

The vertex 101 is now a top vertex, and the algorithm needs to be
applied to it:

1. The vertex 101 has precisely one outgoing edge (101, 110, DD(0)).

2. There are four incoming edges, namely

(000, 101, (01)R(010)D(00))

(000, 101, (11)R(1000)D(10))

(001, 101, (0)R(011)D(01))

(001, 101, (10)R(1001)D(11))

3. We replace the edge (000, 101, (01)R(010)D(00)) with the edge

(000, 110, (01)R(010, 10100)D(000)).

4. We replace the edge (000, 101, (11)R(1000)D(10)) with the edge

(000, 110, (11)R(1000, 10110)D(010)).

100 CHAPTER 3. DYNAMICS VIA COMBINATORICS

5. We replace the edge (001, 101, (0)R(011)D(01)) with the edge

(001, 110, (0)R(011, 10101)D(001)).

6. We replace the edge (001, 101, (10)R(1001)D(11)) with the edge

(001, 110, (10)R(1001, 10111)D(011)).

7. We delete the vertex 101 and the edge (101, 110, DD(0)).

At this point the chains graph admits only two domain vertices 110

and 111, but each of them has an ingoing edge with the label type DD,
and hence none of them is a top vertex. Hence, Algorithm 3.2.44 termi-
nates. It terminates with the chains graph G with the vertices set given
by VG = {000, 001, 110, 111} and edges set given by:

EG = {(000, 000, (00)RR), (000, 110, (01)R(010, 10100)D(000)),

(000, 001, (10)RR,), (000, 110, (11)R(1000, 10110)D(010)),

(001, 110, (0)R(011, 10101)D(001)),

(001, 110, (10)R(1001, 10111)D(011)), (001, 111, (11)RD(1)),

(110, 111, DD(0)), (111, 110, DD(1))}

We could interpret Algorithm 3.2.44 as prolonging appropriate edges
with label type RD towards potential attractor(s). However, in the ex-
ample above we do not detect any attractors by the following lemma:

Lemma 3.2.48. Consider a chains graph G corresponding to the tree pair
(D,R, t) representing an element α of Thompson’s group V . Consider a
domain vertex v of G and its unique outgoing edge

(v, w,D(u1, . . . , uk)D(s))

for some vertex w of G, some non-negative integer k, some neutral leaves
u1, . . . , uk of the tree pair (D,R, t) and some word s ∈ {0, 1}∗. Then
v = w if and only if v is a domain of attraction leaf of the tree D and vs
is an attractor leaf of the tree R.

Proof. Suppose that v = w. Consider the edge (v, v,D(u1, . . . , uk)D(s))

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 101

of the graph G. It indicates that α admits the following prefix replace-
ments for all positive integers i such that 1 ≤ i < k:

(v)α = u1

(ui)α = ui+1

(uk)α = vs

By Definition 3.1.10 and Definition 3.1.11, v is a domain of attraction
leaf of the tree D and vs is an attractor leaf of the tree R.

Now, suppose that v is a domain of attraction leaf of D. Then there
is a unique sequence of leaves v, (v)α, (v)α2, . . . , (v)αl of the tree pair
(D,R, t) for some positive integer l, such that (v)α, (v)α2, . . . , (v)αl−1 are
neutral leaves of the tree pair (D,R, t), (v)αl is a leaf of range tree R but
not domain treeD, and (v)αl is a proper descendant of v. This is reflected
in the graphG by existence of an edge (v, v,D((v)α, (v)α2, . . . , (v)αl−1)D(s′))

for some non-empty word s′ such that vs′ = (v)αl. But v has a unique
outgoing edge, and so w = v, k = l − 1, for all positive integers i such
that 1 ≤ i < k we have ui = (v)αi and s = s′. Note that this implies
that vs is an attractor.

Corollary 3.2.49. Consider a chains graph G corresponding to the tree
pair (D,R, t) representing an element α of Thompson’s group V . Suppose
that there is an edge e of the label type DD starting and finishing at the
same vertex. Then, the edge e corresponds to an A–chain of leaves.

Proof. By Lemma 3.2.48, Lemma 3.2.24 and Definition 3.1.26.

The second algorithm transforms a chains graph which is an output
of Algorithm 3.2.34 and Algorithm 3.2.44 applied one after another into
a new chains graph where each edge with label type DD is guaranteed to
admit a domain of attraction as its beginning and end vertex, and hence
locates an attractor. Before we present this algorithm, we will prove the
following lemma:

Lemma 3.2.50. Consider a chains graph G which is an output of Algo-
rithm 3.2.34 and Algorithm 3.2.44 applied one after another. Then, each
domain vertex has a unique incoming edge with label type DD. Moreover,
each domain vertex v1 is a member of a unique set of domain vertices

102 CHAPTER 3. DYNAMICS VIA COMBINATORICS

{v1, . . . , vj} for some positive integer j, such that for all integers i such
that 1 ≤ i < j there is an edge (vi, vi+1, D(...)D(...)) ∈ EG and also
(vj , v1, D(...)D(...)) ∈ EG.

Proof. We will first show that there is a bijection between the set of
domain vertices and the set of edges with label type DD. Then we will
show that given that no top vertices are allowed, the conclusions of the
lemma must hold.

As by Lemma 3.2.46 the graph G remains unchanged by Algorithm
3.2.34, by Lemma 3.2.37 we know that each domain vertex admits pre-
cisely one outgoing edge, and the label type of this edge is DD. The
beginning of an edge with label type DD cannot be a range vertex, and
by Lemma 3.2.21 it also cannot be a neutral vertex (as neutral vertices
of chains graph are only at the beginnings and ends of edges of label
type DR). Hence, the beginning vertex of an edge with label type DD is
always a domain vertex. Note also that beginning vertex of any edge is
unique. Hence, there is exactly same number of domain vertices as edges
with label type DD in the graph G.

Now notice that by Lemma 3.2.45 none of the domain vertices can
be a top vertex and therefore by Lemma 3.2.10 and Lemma 3.2.20 each
of domain vertices must have at least one incoming edge with label type
DD. But each edge with label type DD has unique end vertex which is a
domain vertex. Hence as there is exactly same number of domain vertices
as edges with label type DD, by the pigeonhole principle, each domain
vertex must admit precisely one incoming edge with label type DD.

Finally, let us consider a domain vertex v1. It has precisely one
outgoing edge, and the label type of this edge is DD. Hence we can
build unique sequence (vi)N+ such that the graph G admits an edge
(vi, vi+1, D(. . .)D(. . .)). However, as |VG| < ∞, there will be repeti-
tions of vertices in the sequence. For any given vi which occurs in the
sequence for the first time, namely vi 6= vk for any positive integer k such
that k < i, the vertex vi+1 can either be a previously unlisted vertex,
or it can be v1, as all the other listed vertices v2, v3, . . . , vi already have
their unique incoming edge with label type DD identified. As |VG| <∞,
we must at some point finish at the vertex v1, say vj+1 = v1 for some
positive integer j. When we close the loop, all of the vertices involved in
the loop already have their unique incoming and outgoing edges of type
DD identified, so they cannot be used to build any other sequences with

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 103

starting vertices outside the set {v1, v2, . . . , vj}.
Therefore, we have proven the lemma.

We can partition the domain vertices into sets belonging to loops
joined by edges with label type DD.

Now we are prepared to proceed with the algorithm after which we
will have all the attractors which we need for a given α of V :

Algorithm 3.2.51. Consider a chains graph G which is an output of Al-
gorithm 3.2.34 and Algorithm 3.2.44 applied one after another. Suppose
that G corresponds to the tree pair (D,R, t) representing element α of
V .

1. Pick a domain vertex v such that its unique outgoing edge with
label type DD does not end at v. This vertex will remain in the
graph.

Identify the unique edge of label type DD leaving the vertex v, say
(v, u,D(u1, u2, . . . , uk)D(s)) for some vertex u ∈ VG, some non-
negative integer k, some neutral leaves u1, u2, . . . , uk of the tree
pair (D,R, t) and some word s ∈ {0, 1}+.

Identify the unique edge of label type DD leaving the vertex u, say
(u,w,D(u′1, u

′
2, . . . , u

′
k′)D(s′)) for some vertex w ∈ VG, some non–

negative integer k′, some neutral leaves u′1, u′2, . . . , u′k′ of the tree
pair (D,R, t) and some word s′ ∈ {0, 1}+.

Then perform the following action:

(a) Replace the edge (v, u,D(u1, u2, . . . , uk)D(s)) with the edge

(v, w,D(u1, u2, . . . , uk, us, u
′
1s, u

′
2s, . . . , u

′
k′s)D(s′s)).

Consider each other edge finishing at u. By Lemma 3.2.50 it must
be of the form (u′, u, (s′′′)R(u′′1, u

′′
2, . . . , u

′′
k′′)D(s′′)) for some vertex

u′, some non-negative integer k′′, some neutral leaves u′′1, . . . , u′′k′′ of
the tree pair (D,R, t) and some words s′′, s′′′ ∈ {0, 1}+.

(b) Replace each such edge with the edge

(u′, w, (s′′′)R(u′′1, u
′′
2, . . . ,

. . . , u′′k′′ , us
′′, u′1s

′′, u′2s
′′, . . . ,

. . . , u′k′s
′′)D(s′s′′))

104 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(c) Delete the vertex u and the edge

(u,w,D(u′1, u
′
2, . . . , u

′
k′)D(s′)).

(d) Repeat the process until the unique edge with the label type
DD leaving the vertex v also ends at v.

2. Repeat Step 1) until all domain vertices are at the same time be-
ginning and end vertices of their unique outgoing edges.

Lemma 3.2.52. Consider a chains graph G which is an output of Al-
gorithm 3.2.34, Algorithm 3.2.44 and Algorithm 3.2.51 applied one after
another. Suppose that G corresponds to the tree pair (D,R, t) represent-
ing element α of V .

Then the algorithm terminates with a new chains graph, with each
of its domain vertices corresponding to a domain of attraction leaf, and
hence locating an attractor.

Moreover, each connected component of R−D contains an attractor.
Also, the resulting graph still represents the same element α of V .

Proof. The algorithm terminates as each of its iterations reduces total
number of vertices by 1. The algorithm is defined to terminate when
each domain vertex is at the same time beginning and end of its unique
outgoing edge. By Lemma 3.2.48 this means that each of the domain
vertices v of G corresponds to a domain of attraction leaf, and hence
locates an attractor vs for some non-empty word s.

Moreover, connected components of R −D are in bijection with do-
main vertices of G, as each of the connected components of R − D is
rooted at a domain vertex. By Lemma 3.2.48 vs is an attractor and it’s
located at a leaf of the connected component rooted at v. As this holds
for each domain vertex v, we conclude that each connected component of
R−D contains an attractor.

For the second part, we will look more closely at what effect the edge
replacements have on prefix substitution rules. Recall that we will be
deleting the edge e = (u,w,D(u′1, u

′
2, . . . , u

′
k′)D(s′)) for distinct vertices

v and w. The prefix substitution rules given by this edge are:

(1)

(u)α = u′1

(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = ws′

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 105

Let us consider what it would mean for the prefix substitution rules
if, without changing α, instead of having one whole leaf u travel to the
leaf ws′ under the action of powers of α, we split the leaf u further into
smaller pieces, introducing a tree rooted at the leaf u of the tree D of the
tree pair (D,R, t), at all neutral leaves u1, . . . , uk of both trees D and R,
and at the leaf ws′ of the tree R.

An example of a tree which we could introduce could be the tree Ru
rooted at the node u of the tree R. Then the prefix substitutions could
be equally described by (1′):

(1′)

∀s′′ ∈ LRu

(us′′)α = u′1s
′′

(u′ls
′′)α = u′l+1s

′′ ∀1 ≤ l < k′

(u′k′s
′′)α = ws′s′′

We could then cancel the edge e and represent these new prefix sub-
stitutions by the collection of following edges:

{(us′′, w,D(u1s
′′, . . . , uks

′′)D(s′s′′))|s′′ ∈ LRu}

We know that the labels on each of the new edges have to be of the
type DD, because Ru is chosen depending on the targets of incoming
edges of u. Also, w is still a domain vertex of the new chains graph.
However, even after adjusting vertices, these edges would not form the
chains graph corresponding to the new tree pair. This is because there
would be vertices with an incoming edge with second letter of the label
being R and with an outgoing edge with the first letter of the label being
D. Algorithm 3.2.51 is inspired by the principle of concatenation of such
neighbouring edges described in Remark 3.2.18. Let us analyse the effect
of the suggested replacements of edges:

1. For each word s′′ ∈ LRu\{s}, the edge

(u′, u, (s′′′)R(u′′1, u
′′
2, . . . , u

′′
k′′)D(s′′))

is replaced by the edge

(u′, w, (s′′′)R(u′′1, u
′′
2, . . . , u

′′
k′′ , us

′′, u1s
′′, . . . , uks

′′)D(s′s′′)).

Let us analyse what it means in terms of prefix substitution rules.

106 CHAPTER 3. DYNAMICS VIA COMBINATORICS

The initial edge encodes the following rules (2):

(2)

(u′s′′′)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k′′

(u′′k′′)α = us′′

The resulting edge encodes the following rules (3):

(3)

(u′s′′′)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k′′

(u′′k′′)α = us′′

 (2)

(us′′)α = u′1s
′′

(u′ls
′′)α = u′l+1s

′′ ∀1 ≤ l < k′

(u′k′s
′′)α = ws′s′′

 (1′)

Notice that for given s′′ the rules (3) are a union of rules (2) and
(1′). Hence, there has been no change for α in this procedure.

2. The edge
(v, u,D(u1, u2, . . . , uk)D(s))

is replaced with the edge

(v, w,D(u1, u2, . . . , uk, us, u
′
1s, u

′
2s, . . . , u

′
k′s)D(s′s))

Let us analyse what it means in terms of prefix substitution rules.
The initial edge encodes the following rules (4):

(4)

(v)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = us

The resulting edge encodes the following rules (5):

(5)

(v)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = us

 (4)

(us)α = u′1s

(u′ls)α = u′l+1s ∀1 ≤ l < k′

(u′k′s)α = ws′s

 (1′)

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 107

Notice that for s′′ = s the rules (5) are a union of rules (4) and (1′).
Hence, there has been no change for α in this procedure.

By this observation we can conclude that the resulting graph is indeed
a chains graph of a new tree pair, which represents the same element α
of V , as the prefix substitution rules remain the same.

It is also important to realise that application of Algorithm 3.2.51
does not cancel the benefits of Algorithm 3.2.34 and Algorithm 3.2.44:

Lemma 3.2.53. Consider a chains graph G which is an output of Al-
gorithm 3.2.34, Algorithm 3.2.44 and Algorithm 3.2.51 applied one after
another. Then G remains unchanged by a subsequent applications of Al-
gorithm 3.2.34 and Algorithm 3.2.44, and so it keeps all the properties of
a graph which is an output of Algorithm 3.2.34 and of a graph which is
an output of Algorithm 3.2.44.

Proof. The start vertex of each edge with label type DR of an output
graph of Algorithm 3.2.34 is also the end vertex of that edge. Each of
Algorithm 3.2.44 and Algorithm 3.2.51 neither cancels nor introduces
any edges with label type DR. Hence, if the graph G is an output of
Algorithm 3.2.34, Algorithm 3.2.44 and Algorithm 3.2.51 applied one
after another, it is still the case that beginning vertex of each edge with
label type DR is also the end vertex of that edge. Therefore, the graph
G remains unchanged under potential application of Algorithm 3.2.34.
Moreover, by Lemma 3.2.48 Lemma 3.2.52, each domain vertex of the
graph G is an end vertex of an edge of the label type DD, and hence
it is not a top vertex. Hence, if the graph G is an output of Algorithm
3.2.34, Algorithm 3.2.44 and Algorithm 3.2.51 applied one after another,
it is still the case that it admits no top vertices. Therefore, the graph G
remains unchanged under potential application of Algorithm 3.2.44.

Example 3.2.54. Consider the chains graph G given in the picture be-
low:

108 CHAPTER 3. DYNAMICS VIA COMBINATORICS

000

001

110

111

(00)RR

(10)RR

(01)R(010,10100))D(000)

(11)R(1000,10110)D(010)

(10)R(1001,10111)D(011)

(0)R(011,10101)D(001)

(11)RD(1)

DD(1) DD(0)

The Chains Graph G

Notice that G is a final chains graph from Example 3.2.47, and hence
an output of Algorithm 3.2.34 and Algorithm 3.2.44 applied one after
another. We can therefore input it into Algorithm 3.2.51 in order to
create all possible attractors. To start with, we notice that neither of
the domain vertices 110 and 111 have an edge starting and ending at it.
Hence, we can pick any of them for application of the algorithm. Let us
pick the vertex 110.

1. The edge (110, 111, DD(0)) is the unique outgoing edge of the ver-
tex 110.

2. The edge (111, 110, DD(1)) is the unique outgoing edge of the ver-
tex 111.

3. We replace the edge (110, 111, DD(0)) with the edge

(110, 110, D(1110)D(10)).

4. There is one more incoming edge of the vertex 111, namely

(001, 111, (11)RD(1)).

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 109

We replace it with the edge

(001, 110, (11)R(1111)D(11)).

5. We delete the vertex 111 and the edge (111, 110, DD(1)).

At this point the new chains graph looks as follows:

000

001

110

(00)RR

(10)RR

(01)R(010,10100))D(000)

(11)R(1000,10110)D(010)

(10)R(1001,10111)D(011)

(0)R(011,10101)D(001)

(11)R(1111)D(11)

D(1110)D(10)

The New Chains Graph

We notice that there is only one domain vertex 110 left, and it has
the edge (110, 110, D(1110)D(10)) beginning and ending at it. Hence, the
algorithm terminates here. We can deduce that 110 is the unique domain
of attraction leaf of the new tree D, and 11010 is the unique attractor
leaf of the new range tree R.

Notice that we could have picked the vertex 111 to stay in the graph,
as opposed to vertex 110, and we would still obtain the desired results.
In this case an informal motivation for picking 110 to stay was that there
were only two edges finishing at vertex 111 as opposed to five edges fin-
ishing at the vertex 110, and the lengths of the edges from 110 to 111 and
from 111 to 110 had the same number of neutral vertices involved, namely
zero. This means that picking the vertex 110 produced one more caret
on each of the trees D and R, while picking vertex 111 would produce
four more carets on each of the trees D and R.

In general, depending on our needs, we might have different definitions
of best choice of the vertex which we pick. It might be for instance the

110 CHAPTER 3. DYNAMICS VIA COMBINATORICS

minimal number of new neutral leaves induced, the minimal depth of the
resulting tree pair, or some other condition.

Finding Repellers

The last two algorithms aim to transform the graph G into a new chains
graph where each edge with label type RR is guaranteed to admit a range
of repulsion as its beginning and end vertex. Hence, it will indicate the
location of a repeller.

It will be shown in Corollary 3.2.62 that any edge with label type RR
and same start and end vertex represents an R–chain. However:

Lemma 3.2.55. For a tree pair (D,R, t) representing α ∈ V and its
chains graph G, an edge with label type RR with distinct start and end
vertices corresponds to an SRS–chain.

Proof. Suppose that (v, w, (s)R(u1, . . . , ul)R) is an edge for some v, w ∈
VG such that v 6= w, some non-negative integer l, some word s ∈ {0, 1}+

and some neutral leaves u1, . . . , ul of the tree pair (D,R, t). We know
by Lemma 3.2.22 that v and w cannot be neutral vertices of G. Hence
both v and w are range vertices. Recall that by Lemma 3.2.24 that this
edge corresponds to a non-periodic leaf chain (vs, u1, . . . , ul, w). We are
interested in what type of leaves vs and w are. As v is a range vertex, vs
is a leaf of a component of D − R, and hence it can be either a repeller
or a source. But w, the last leaf in the leaf chain starting at vs, is not a
proper ancestor of vs, hence vs must be a source. Now, as w is a range
vertex, it is a root of a component of D − R, and hence it can be either
a range of repulsion or a range of sourcing. But vs, the first leaf in the
leaf chain ending at w, is not a proper descendant of w, hence w must be
a range of sourcing.

As vs is a source and w is a range of sourcing, by Definition 3.1.27
the leaf chain (vs, u1, . . . , ul, w) corresponding to the edge

(v, w, (s)R(u1, . . . , ul)R)

is an SRS–chain.

As we know that SRS–chains cannot occur in revealing tree pairs,
Algorithms 3.2.57 and 3.2.64 are aimed at eliminating these edges.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 111

The penultimate algorithm presents an intermediate step, which elim-
inates bottom vertices (defined below) from the graph.

Definition 3.2.56 (Bottom vertex). Consider a chains graph G which
is an output of Algorithm 3.2.34 and which corresponds to the tree pair
(D,R, t) representing element α of V . Let v be a range vertex of G. If
each of its outgoing edges has label type RD, then we call v a bottom
vertex of the graph G.

Note that the prerequisite for the two last algorithms is only Algo-
rithm 3.2.34.

Algorithm 3.2.57. Consider a chains graph G which is an output of
Algorithm 3.2.34 and which corresponds to the tree pair (D,R, t) repre-
senting element α of V .

1. Pick a bottom vertex v of the chains graph G. As it is a leaf of the
range tree R, by Lemma 3.2.38 it has exactly one incoming edge,
and this edge has label type RR. Say that this edge starts at a
vertex w. In any case (w, v, (. . .)R(. . .)R) ∈ EG. Note that as w
is a start vertex of an edge of the label type RR, w is also a range
vertex.

Let the edge between w and v be given by

(w, v, (s)R(u1, . . . , uk)R)

for some non–negative integer k, some neutral leaves u1, . . . , uk of
the tree pair (D,R, t) and some word s ∈ {0, 1}+.

Consider each edge starting at v. By definition of bottom vertex, it
needs to be of the form (v, u, (s′)R(u′1, u

′
2, . . . , u

′
k′)D(s′′)) for some

vertex u ∈ VG, some non-negative integer k′, some neutral leaves
u′1, . . . , u

′
k′ of the tree pair (D,R, t) and some words s′, s′′ ∈ {0, 1}+.

As v is a range vertex, at least two such edges exist by Lemma 3.2.11
and Lemma 3.2.20.

Let us now perform the following process:

(a) Replace each such edge

(v, u, (s′)R(u′1, u
′
2, . . . , u

′
k′)D(s′′))

112 CHAPTER 3. DYNAMICS VIA COMBINATORICS

with the edge

(w, u, (ss′)R(u1s
′, . . . , uks

′, vs′, u′1, . . . , u
′
k′)D(s′′)).

(b) Delete the vertex v and the edge (w, v, (s)R(u1, . . . , uk)R).

2. Repeat until there are no more bottom vertices left.

Lemma 3.2.58. Consider a chains graph which is an output of Algorithm
3.2.34 which we input into Algorithm 3.2.57. Then, the algorithm termi-
nates with the chains graph G which admits no bottom vertices. Moreover,
the resulting graph still represents the same element α of V .

Proof. Note that with each cancellation of a bottom vertex, the vertex
w might or might nor turn into a bottom vertex. However, the total
number of vertices of the chains graph goes down by one in each iteration
of the process, and hence the algorithm has to terminate. As termination
is marked by the point when the chains graph admits no more bottom
vertices, we have proven the first part of the claim.

For the second part, we will look more closely at what effect the edge
replacements have on prefix substitution rules. Recall that we will be
deleting the edge e = (w, v, (s)R(u1, . . . , uk)R) for distinct vertices v and
w, where v is a bottom vertex. The prefix substitution rules given by this
edge are:

(1)

(ws)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = v

Let us consider what it would mean for the prefix substitution rules
if without changing α instead of having one whole leaf v travel to the leaf
ws under the action of negative powers of α, we split the leaf v further
into smaller pieces, namely introduce a tree rooted at the leaf v of the
tree R of the tree pair (D,R, t), at all neutral leaves u1, . . . , uk of both
trees D and R, and at the leaf ws of the tree D.

An example of a tree which we could introduce could be the tree Dv

rooted at the node v of the tree D. Then the prefix substitutions could
be equally described by (1’):

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 113

(1′)

∀s′ ∈ LDv

(wss′)α = u1s
′

(uls
′)α = ul+1s

′ ∀1 ≤ l < k

(uks
′)α = vs′

We could then cancel the edge e and represent these new prefix sub-
stitutions by a collection of following edges:

{(w, vs′, (ss′)R(u1s
′, . . . , uks

′)R)|s′ ∈ LDv}

We know that the label on each of the new edges has to be of type
RR, because Dv is chosen depending on the origins of outgoing edges of
v. Also, the operation does not impact the fact that w is still a range
vertex of the graph. However, even after adjusting vertices, these edges
would not form the chains graph corresponding to the new tree pair.
This is because there would be vertices with an outgoing edge with first
letter of the label being D and with an incoming edge with the second
letter of the label being R. Algorithm 3.2.57 is inspired by the principle
of concatenation of such neighbouring edges described in Remark 3.2.18.
Let us analyse the effect of the suggested replacements of edges:

For each word s′ ∈ LDv , the edge

(v, u, (s′)R(u′1, u
′
2, . . . , u

′
k′)D(s′′))

is replaced by the edge

(w, u, (ss′)R(u1s
′, . . . , uks

′, vs′, u′1, . . . , u
′
k′)D(s′′)).

Let us analyse what it means in terms of prefix substitution rules. The
initial edge encodes the following rules (2):

(2)

(vs′)α = u′1

(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = us′′

The resulting edge encodes the following rules (3):

114 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(3)

(wss′)α = u1s
′

(uls
′)α = ul+1s

′ ∀1 ≤ l < k

(uks
′)α = vs′

 (1′)

(vs′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = us′′

 (2)

Notice that for given s′ the rules (3) are a union of rules (1′) and (2).
Hence, there has been no change to α in this procedure.

From this observation we can conclude that the resulting graph is
indeed the chains graph of a new tree pair, which represents the same
element α of V , as the prefix substitution rules remain the same.

It is also important to realise that application of Algorithm 3.2.57
does not cancel the benefits of Algorithm 3.2.34:

Lemma 3.2.59. Consider a chains graph G which is output by Algorithm
3.2.34 and Algorithm 3.2.57 applied one after another. Then G remains
unchanged by a subsequent application of Algorithm 3.2.34, and so all the
properties of a graph which is output by Algorithm 3.2.34 are preserved.

Proof. The start vertex of each edge with label type DR of graph output
by Algorithm 3.2.34 is also the end vertex of that edge. Algorithm 3.2.57
neither cancels nor introduces any edges with label type DR. Hence,
if the graph G is an output of Algorithm 3.2.34 and Algorithm 3.2.57
applied one after another, it is still the case that beginning vertex of each
edge with label type DR is also the end vertex of that edge. Therefore,
the graph G remains unchanged under potential application of Algorithm
3.2.34.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 115

Example 3.2.60. Consider the chains graph G given in the picture be-
low, which is an output of Algorithm 3.2.51 from Example 3.2.54:

000

001

110

(00)RR

(10)RR

(01)R(010,10100))D(000)

(11)R(1000,10110)D(010)

(10)R(1001,10111)D(011)

(0)R(011,10101)D(001)

(11)R(1111)D(11)

D(1110)D(10)

The Chains Graph G

We notice that the graph G has no edges with label type DR (and in
particular no edges with label type DR with distinct beginning and end
vertices). Hence by Lemma 3.2.35 it remains unchanged by Algorithm
3.2.34. We can therefore input it into Algorithm 3.2.57.

In the picture we indicated the only bottom vertex of the graph G.
We now proceed with the application of Algorithm 3.2.57. Consider

the vertex 001.

1. It has one incoming edge (000, 001, (10)RR).

2. It has three outgoing edges, namely

(001, 110, (11)R(1111)D(11))

(001, 110, (0)R(011, 10101)D(001))

(001, 110, (10)R(1001, 10111)D(011)).

3. We replace the edge (001, 110, (11)R(1111)D(11)) with the edge

(000, 110, (1011)R(00111, 1111)D(11)).

4. We replace the edge (001, 110, (0)R(011, 10101)D(001)) with the

116 CHAPTER 3. DYNAMICS VIA COMBINATORICS

edge
(000, 110, (100)R(0010, 011, 10101)D(001)).

5. We replace the edge (001, 110, (10)R(1001, 10111)D(011)) with the
edge

(000, 110, (1010)R(00110, 1001, 10111)D(011)).

6. We delete the vertex 001 and the edge (000, 001, (10)RR).

The new chains graph is given by the following picture:

000 110

(00)RR

(01)R(010,10100)D(000)

(11)R(1000,10110)D(010)

(1010)R(00110,1001,10111)D(011)

(100)R(0010,011,10101)D(001)

(1011)R(00111,1111)D(11)

D(1110)D(10)

The New Chains Graph

At this point the chains graph admits only one range vertex 000, but
it has an outgoing edge with the label type RR, and hence it is not a
bottom vertex. Hence, Algorithm 3.2.57 terminates.

We could interpret Algorithm 3.2.44 as prolonging appropriate edges
with label type RD towards potential repeller(s). In the example above
we detect precisely one repeller by the following lemma:

Lemma 3.2.61. Consider a chains graph G corresponding to the tree pair
(D,R, t) representing an element α of Thompson’s group V . Consider a
range vertex v of G and its unique incoming edge

(w, v, (s)R(u1, . . . , uk)R)

for some vertex w of G, some non-negative integer k, some neutral leaves
u1, . . . , uk of the tree pair (D,R, t) and some word s ∈ {0, 1}∗. Then
v = w if and only if v is a range of repulsion leaf of the tree R and vs is
a repeller leaf of the tree D.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 117

Proof. Suppose that v = w. Consider the edge (v, v, (s)R(u1, . . . , uk)R)

of the graph G. It indicates that α admits the following prefix replace-
ments for all positive integers i such that 1 ≤ i < k:

(vs)α = u1

(ui)α = ui+1

(uk)α = v

By Definition 3.1.7 and Definition 3.1.8, v is a range of repulsion leaf
of the tree R and vs is a repeller leaf of the tree D.

Now, suppose that v is a range of repulsion leaf of R. Then there is a
unique sequence of leaves (v)α−l, (v)α−l+1, . . . , (v)α−1, v of the tree pair
(D,R, t) for some positive integer l, such that (v)α−l+1, . . . , (v)α−1 are
neutral leaves of the tree pair (D,R, t), (v)α−l is a leaf of domain tree
D but not range tree R, and (v)α−l is a proper descendant of v. This is
reflected in the graph G by existence of an edge
(v, v, (s′)R((v)α−l+1, . . . , (v)α−1)R) for some non-empty word s′ such
that vs′ = (v)αl. But v has a unique incoming edge, and so w = v,
k = l − 1, for all positive integers i such that 1 ≤ i < k we have
ui = (v)αi−k−1 and s = s′. Note that this implies that vs is a repeller.

Corollary 3.2.62. Consider a chains graph G corresponding to the tree
pair (D,R, t) representing an element α of Thompson’s group V . Suppose
that there is an edge e of the label type RR starting and finishing at the
same vertex. Then, the edge e corresponds to an A–chain of leaves.

Proof. By Lemma 3.2.61, Lemma 3.2.24 and Definition 3.1.26.

The last algorithm transforms a chains graph which is an output of
Algorithm 3.2.34 and Algorithm 3.2.57 applied one after another into a
new chains graph where each edge with label type RR is guaranteed to
admit a range of repulsion as its beginning and end vertex, and hence
locates a repeller. Before we present this algorithm, we will prove the
following lemma:

Lemma 3.2.63. Consider a chains graph G which is an output of Al-
gorithm 3.2.34 and Algorithm 3.2.57 applied one after another. Then,

118 CHAPTER 3. DYNAMICS VIA COMBINATORICS

each range vertex has a unique outgoing edge with label type RR. More-
over, each range vertex v1 is a member of a unique set of range vertices
{v1, . . . , vj} for some positive integer j, such that for all integers i such
that 1 ≤ i < j there is an edge (vi+1, vi, (...)R(...)R) ∈ EG and also
(v1, vj , (...)R(...)R) ∈ EG.

Proof. We will first show that there is a bijection between the set of range
vertices and the set of edges with label type RR. Then we will show that
given that no bottom vertices are allowed, the conclusions of the lemma
must hold.

As by Lemma 3.2.59 the graph G remains unchanged by Algorithm
3.2.34, by Lemma 3.2.38 we know that each range vertex admits precisely
one incoming edge, and the label type of this edge is RR. The end of
an edge with label type RR cannot be a domain vertex, and by Lemma
3.2.21 it also cannot be a neutral vertex (as neutral vertices of chains
graph are only at the beginnings and ends of edges of label type DR).
Hence, the end vertex of an edge with label type RR is always a range
vertex. Note also that end vertex of any edge is unique. Hence, there is
exactly same number of range vertices as edges with label type RR in the
graph G.

Now notice that by Lemma 3.2.58 none of the range vertices can be a
bottom vertex and therefore by Lemma 3.2.11 and Lemma 3.2.20 each of
range vertices must have at least one outgoing edge with label type RR.
But each edge with label type RR has unique end vertex which is a range
vertex. Hence as there is exactly same number of range vertices as edges
with label type RR, by the pigeonhole principle, each range vertex must
admit precisely one outgoing edge with label type RR.

Finally, let us consider a range vertex v1. It has precisely one in-
coming edge, and the label type of this edge is RR. Hence we can
build a unique sequence (vi)N+ such that the graph G admits an edge
(vi+1, vi, (. . .)R(. . .)R). However, as |VG| < ∞, there will be repetitions
of vertices in the sequence. For any given vi which occurs in the sequence
for the first time, namely vi 6= vk for any positive integer k such that
k < i, the vertex vi+1 can either be a previously unlisted vertex, or it
can be v1, as all the other listed vertices v2, v3, . . . , vi already have their
unique outgoing edge with label type RR identified. As |VG| < ∞, we
must at some point finish at the vertex v1, say vj+1 = v1 for some pos-
itive integer j. When we close the loop, all of the vertices involved in

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 119

the loop already have their unique incoming and outgoing edges of type
RR identified, so they cannot be used to build any other sequences with
starting vertices outside the set {v1, v2, . . . , vj}.

Therefore, we have proven the lemma.

We can partition the range vertices into sets belonging to loops joined
by edges with label type RR.

Now we are prepared to proceed with the algorithm after which we
will have all the repellers which we need for a given α of V :

Algorithm 3.2.64. Consider a chains graph G which is an output of Al-
gorithm 3.2.34 and Algorithm 3.2.57 applied one after another. Suppose
that G corresponds to the tree pair (D,R, t) representing element α of
V .

1. Pick a range vertex v such that its unique incoming edge with label
type RR does not end at v. This vertex will remain in the graph.

Identify the unique edge of label type RR coming into the vertex v,
say (u, v, (s)R(u1, u2, . . . , uk)R) for some vertex u ∈ VG, some non–
negative integer k, some neutral leaves u1, u2, . . . , uk of the tree pair
(D,R, t) and some word s ∈ {0, 1}+.

Identify the unique edge of label type RR coming into the vertex
u, say (w, u, (s′)R(u′1, u

′
2, . . . , u

′
k′)R) for some vertex w ∈ VG, some

non-negative integer k′, some neutral leaves u′1, u′2, . . . , u′k′ of the
tree pair (D,R, t) and some word s′ ∈ {0, 1}+.

Then perform the following action:

(a) Replace the edge (u, v, (s)R(u1, u2, . . . , uk)R) with the edge

(w, v, (s′s)R(u′1s, u
′
2s, . . . , u

′
k′s, us, u1, u2, . . . , uk)R).

Consider each other edge starting at u. By Lemma 3.2.63 it must
be of the form (u, u′, (s′′)R(u′′1, u

′′
2, . . . , u

′′
k′′)D(s′′′)) for some vertex

u′, some non–negative integer k′′, some neutral leaves u′′1, . . . , u′′k′′
of the tree pair (D,R, t) and some words s′′, s′′′ ∈ {0, 1}+.

120 CHAPTER 3. DYNAMICS VIA COMBINATORICS

(b) Replace each such edge with the edge

(w, u′, (s′s′′)R(u′1s
′′, u′2s

′′, . . . ,

. . . , u′k′s
′′, us′′, u′′1, u

′′
2, . . . ,

. . . , u′′k′′)D(s′′′)).

(c) Delete the vertex u and the edge

(w, u, (s′)R(u′1, u
′
2, . . . , u

′
k′)R).

(d) Repeat the process until the unique edge with the label type
RR finishing at the vertex v also starts at v.

2. Repeat Step 1) until all range vertices are at the same time begin-
ning and end vertices of their unique incoming edges.

Lemma 3.2.65. Consider a chains graph G which is an output of Al-
gorithm 3.2.34, Algorithm 3.2.57 and Algorithm 3.2.64 applied one after
another. Suppose that G corresponds to the tree pair (D,R, t) represent-
ing element α of V .

Then the algorithm terminates with a new chains graph, with each of
its range vertices corresponding to a range of repulsion leaf, and hence
locating a repeller.

Moreover, each connected component of D −R contains a repeller.

Also, the resulting graph still represents the same element α of V .

Proof. The algorithm terminates as each of its iterations reduces total
number of vertices by 1. The algorithm is defined to terminate when
each range vertex is at the same time beginning and end of its unique
incoming edge. By Lemma 3.2.61 this means that each of the range
vertices v of G corresponds to a range of repulsion leaf, and hence locates
a repeller vs for some non–empty word s.

Moreover, connected components of D−R are in bijection with range
vertices of G, as each of the connected components of D − R is rooted
at a range vertex. By Lemma 3.2.61 vs is a repeller and it’s located at a
leaf of the connected component rooted at v. As this holds for each range
vertex v, we conclude that each connected component of D−R contains
a repeller.

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 121

For the second part, we will look more closely at what effect the edge
replacements have on prefix substitution rules. Recall that we will be
deleting the edge e = (w, u, (s′)R(u′1, u

′
2, . . . , u

′
k′)R) for distinct vertices

v and w. The prefix substitution rules given by this edge are:

(1)

(ws′)α = u′1
(u′l)α = u′l+1 ∀1 ≤ l < k′

(u′k′)α = u

Let us consider what it would mean for the prefix substitution rules if
without changing α instead of having one whole leaf u travel to the leaf
ws′ under the action of negative powers of α, we split the leaf u further
into smaller pieces, introducing a tree rooted at the leaf u of the tree R
of the tree pair (D,R, t), at all neutral leaves u1, . . . , uk of both trees D
and R, and at the leaf ws′ of the tree D.

An example of a tree which we could introduce could be the tree Du

rooted at the node u of the tree D. Then the prefix substitutions could
be equally described by (1′):

(1′)

∀s′′ ∈ LDu

(ws′s′′)α = u′1s
′′

(u′ls
′′)α = u′l+1s

′′ ∀1 ≤ l < k′

(u′k′s
′′)α = us′′

We could then cancel the edge e and represent these new prefix sub-
stitutions by the collection of following edges:

{(w, us′′, (s′s′′)R(u1s
′′, . . . , uks

′′)R)|s′′ ∈ LDu}

We know that the labels on each of the new edges have to be of the
type RR, because Du is chosen depending on the origins of outgoing
edges of u. Also, w is still a range vertex of the new chains graph.
However, even after adjusting vertices, these edges would not form the
chains graph corresponding to the new tree pair. This is because there
would be vertices with an outgoing edge with first letter of the label being
D and with an incoming edge with the second letter of the label being
R. Algorithm 3.2.64 is inspired by the principle of concatenation of such
neighbouring edges described in Remark 3.2.18. Let us analyse the effect
of the suggested replacements of edges:

122 CHAPTER 3. DYNAMICS VIA COMBINATORICS

1. For each word s′′ ∈ LDu\{s}, the edge

(u, u′, (s′′)R(u′′1, u
′′
2, . . . , u

′′
k′′)D(s′′′))

is replaced by the edge

(w, u′, (s′s′′)R(u′1s
′′, u′2s

′′, . . . , u′k′s
′′, us′′, u′′1, u

′′
2, . . . , u

′′
k′′)D(s′′′)).

Let us analyse what it means in terms of prefix substitution rules.
The initial edge encodes the following rules (2):

(2)

(us′′)α = u′′1

(u′′l)α = u′′l+1 ∀1 ≤ l < k′′

(u′′k′′)α = u′s′′′

The resulting edge encodes the following rules (3):

(3)

(ws′s′′)α = u′1s
′′

(u′ls
′′)α = u′l+1s

′′ ∀1 ≤ l < k′

(u′k′s
′′)α = us′′

 (1′)

(us′′)α = u′′1
(u′′l)α = u′′l+1 ∀1 ≤ l < k′′

(u′′k′′)α = u′s′′′

 (2)

Notice that for given s′′ the rules (3) are a union of rules (1′) and
(2). Hence, there has been no change to α in this procedure.

2. The edge (u, v, (s)R(u1, u2, . . . , uk)R) is replaced with the edge
(w, v, (s′s)R(u′1s, u

′
2s, . . . , u

′
k′s, us, u1, u2, . . . , uk)R). Let us analyse

what it means in terms of prefix substitution rules. The initial edge
encodes the following rules (4):

(4)

(us)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = v

The resulting edge encodes the following rules (5):

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 123

(5)

(ws′s)α = u′1s

(u′ls)α = u′l+1s ∀1 ≤ l < k′

(u′k′s)α = us

 (1′)

(us)α = u1

(ul)α = ul+1 ∀1 ≤ l < k

(uk)α = v

 (4)

Notice that for s′′ = s the rules (5) are a union of rules (1′) and
(4). Hence, there has been no change to α in this procedure.

By this observation we can conclude that the resulting graph is indeed
a chains graph of a new tree pair, which represents the same element α
of V as the prefix substitution rules remain the same.

It is also important to realise that application of Algorithm 3.2.64
does not cancel the benefits of Algorithm 3.2.34 and Algorithm 3.2.57:

Lemma 3.2.66. Consider a chains graph G which is an output of Al-
gorithm 3.2.34, Algorithm 3.2.57 and Algorithm 3.2.64 applied one after
another. Then G remains unchanged by a subsequent applications of Al-
gorithm 3.2.34 and Algorithm 3.2.57, and so it keeps all the properties of
a graph which is an output of Algorithm 3.2.34 and of a graph which is
an output of Algorithm 3.2.57.

Proof. The start vertex of each edge with label type DR of an output
graph of Algorithm 3.2.34 is also the end vertex of that edge. Each of
Algorithm 3.2.57 and Algorithm 3.2.64 neither cancels nor introduces any
edges with label typeDR. Hence, if the graphG is an output of Algorithm
3.2.34, Algorithm 3.2.57 and Algorithm 3.2.64 applied one after another,
it is still the case that beginning vertex of each edge with label type
DR is also the end vertex of that edge. Therefore, the graph G remains
unchanged under potential application of Algorithm 3.2.34. Moreover,
by Lemma 3.2.61 Lemma 3.2.65, each range vertex of the graph G is a
beginning vertex of an edge of the label type RR, and hence it is not a
bottom vertex. Hence, if the graph G is an output of Algorithm 3.2.34,
Algorithm 3.2.57 and Algorithm 3.2.64 applied one after another, it is
still the case that it admits no bottom vertices. Therefore, the graph G
remains unchanged under potential application of Algorithm 3.2.57.

124 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Example 3.2.67. Consider the chains graph G given in the picture be-
low:

000 110

(00)RR

(01)R(010,10100)D(000)

(11)R(1000,10110)D(010)

(1010)R(00110,1001,10111)D(011)

(100)R(0010,011,10101)D(001)

(1011)R(00111,1111)D(11)

D(1110)D(10)

The Chains Graph G

Notice that G is a final chains graph from Example 3.2.60, and hence
an output of Algorithm 3.2.34 and Algorithm 3.2.57 applied one after
another. We can therefore input it into Algorithm 3.2.64 in order to
create all possible repellers.

We notice that there is only one range vertex 000, and it has the
edge (000, 000, (00)RR) beginning and ending at it. Hence, the algorithm
terminates here without any action. We can deduce that 000 is the unique
range of repulsion leaf of the tree R, and 00000 is the unique repeller leaf
of the domain tree D.

Conclusion and Interpretation

We are now ready to prove two Theorems which were the motivation for
this section - that for a given element α of Thompson’s group V , there
always exists a revealing tree pair representing it, and that for any given
tree pair (D,R, t) representing α, we found a series of algorithms which
transform (D,R, t) into a revealing tree pair.

We start from a lemma which describes the relationships between
some of the constituent algorithms.

Lemma 3.2.68. Consider a chains graph G which is an output of Algo-
rithm 3.2.34 and which corresponds to the tree pair (D,R, t) representing
element α of V .

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 125

Then, application of Algorithm 3.2.44 and subsequently Algorithm
3.2.51 commutes with application of Algorithm 3.2.57 and subsequently
Algorithm 3.2.64.

This in particular implies that all properties of chains graphs resulting
from application of any of these four algorithms to G are valid for the
output graph, as long as Algorithm 3.2.44 is applied before Algorithm
3.2.51 and as long as Algorithm 3.2.57 is applied before Algorithm 3.2.64.

Proof. Consider the following exemplary sketch of the behaviour of the
graph G:

R

R

R

R

D

D

D

D

N N

RD

RD

RD

RD

RR

RR RR RD

RD

RR

DR DR

DD
DD

DD DD

Sketch of the Graph G

If we consider possible behaviours occuring in the graph G, we will
notice that we can partition vertices of G into three categories: range
vertices (denoted by R), domain vertices (denoted by D) and neutral
vertices (denoted by N).

126 CHAPTER 3. DYNAMICS VIA COMBINATORICS

The collection of neutral vertices is not connected to any of the range
or domain vertices, or even to each other as a matter of fact. By Lemma
3.2.21 each neutral vertex admits an edge with the label type DR which
starts and finishes at it. By Lemma 3.2.35 the graph G admits no other
edges with the label type DR. None of Algorithm 3.2.44, Algorithm
3.2.51, Algorithm 3.2.57 or Algorithm 3.2.64 has any effect on any neu-
tral vertices or any edges of label type DR. Hence the effect of these
algorithms on these parts of the graph commute.

The collection of range vertices admits all edges with the label type
RR among each other, as no domain vertex can have an edge with the
label type RR pointing in or out of it. The collection of domain vertices
admits all edges with the label type DD among each other, as no range
vertex can have an edge with the label type DD pointing in or out of
it. The only remaining part of the graph which needs describing is the
collection of edges with label type RD. Each such edge starts at some
range vertex and finishes at some domain vertex.

Consider areas of impact of Algorithm 3.2.44 and subsequently Al-
gorithm 3.2.51. Each step of each of these algorithms deals with and
changes domain vertices, edges with label type DD, and prolongs edges
with label type RD towards the end. Notice that at no point beginning
vertex or any of the neutral vertices of an edge with label type RD has
been amended.

Similarly, consider areas of impact of Algorithm 3.2.57 and subse-
quently Algorithm 3.2.64. Each step of each of these algorithms deals
with and changes range vertices, edges with label type RR, and prolongs
edges with label type RD towards the beginning. Notice that at no point
end vertex or any of the neutral vertices of an edge with label type RD
has been amended.

In conclusion, as the following pairs: Algorithm 3.2.44 and Algorithm
3.2.51; Algorithm 3.2.57 and Algorithm 3.2.64, act non–trivially on dis-
tinct and disjoint parts of the graph G, their effects on the graph G

commute.
This proves the conclusions of this lemma.

With the help of the lemma above we are finally ready to prove:

Theorem 3.2.69. Consider a chains graph G which is an output of Al-
gorithm 3.2.34 and subsequently Algorithm 3.2.44 and subsequently Algo-
rithm 3.2.51; Algorithm 3.2.57 and subsequently Algorithm 3.2.64, in any

3.2. ALGORITHM FOR OBTAINING A REVEALING PAIR 127

order of application of these two pairs. Graph G corresponds to the tree
pair (D,R, t) representing element α of V .

Then, the tree pair (D,R, t) is a revealing tree pair.

Proof. Recall Definition 3.1.17 of a revealing tree pair and Lemma 3.2.68.
By Lemma 3.2.52 each connected component of R−D admits an attrac-
tor, and by Lemma 3.2.65 each connected component of D−R admits a
repeller, and hence (D,R, t) is a revealing tree pair.

Hence, we have the following theorem as a corollary:

Theorem 3.2.70. For any element α ∈ V , there always exists a revealing
pair (D,R, t) representing it.

Proof. By Theorem 3.2.69.

A natural question to ask is why we decided to present five distinct
mandatory algorithms and one optional for finding a revealing pair for
given α.

The reason for presenting the optional algorithm is its potential to
reduce the amount of data which needs to be handled in the problem.
Yet, we did not want to create the impression that it is indispensable,
especially given that in some cases it might involve steps which would
need to be reversed by later algorithms.

Algorithm 3.2.34 needs to be performed as the first one among the
five essential algorithms. We feel that it deserves to exist in its own right
due to strong properties possessed by its output graph. This algorithm
uncovers all periodic orbits of leaves and hence can be used separately
e.g. for this purpose only, for deciding whether α is torsion or whether α
has any torsion at all.

There is benefit in realising that the search for attractors and repellers
can be performed separately, and for that reason we separated Algorithms
3.2.44 and 3.2.51 from Algorithms 3.2.57 and 3.2.64. However, what were
our reasons for splitting the search for attractors into eliminating top
vertices and picking the attractors, and similarly splitting the search for
repellers into eliminating bottom vertices and picking the repellers? The
main reason is that in each of Algorithms 3.2.51 and 3.2.64 we need to
make an explicit choice of which vertex remains in the graph and so where
the repeller/attractor will occur. Hence we wanted to leave the option of
not applying these two algorithms. Hence, we define the following:

128 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Definition 3.2.71 (Balanced Pair). Consider a chains graph G which
is an output of Algorithm 3.2.28, subsequently Algorithm 3.2.34, and
subsequently Algorithms 3.2.44 and 3.2.57 in any order of application of
these last two. Graph G corresponds to a uniquely determined tree pair
(D,R, t) representing element α of V . The tree pair (D,R, t) is called a
balanced (tree) pair.

Due to the deterministic nature of all algorithms involved in the defi-
nition above, we believe that there is a unique balanced tree pair for each
α ∈ V .

Finally, for a better understanding of how the resulting chains graph
of the resulting revealing pair links with leaf chains and previous way in
which we defined revealing pairs, we present this summary. At the end
of the process for obtaining a revealing pair, we end up with four types
of edges. They correspond to 4 types of chains:

Corollary 3.2.72. The resulting graph of the entire sequence of described
algorithms has each edge corresponding to a leaf chain as follows:

1. A vertex with an edge with label DR starting and finishing at itself
corresponds to a P–chain of leaves of the resulting tree pair.

2. A vertex with an edge with label DD starting and finishing at itself
corresponds to an A–chain of leaves of the resulting tree pair.

3. A vertex with an edge with label RR starting and finishing at itself
corresponds to an R–chain of leaves of the resulting tree pair.

4. An edge with label RD corresponds to an SS–chain of leaves of the
resulting tree pair.

Proof. Each of the above holds by:

1. Corollary 3.2.25,

2. Corollary 3.2.49,

3. Corollary 3.2.62,

4. Lemma 3.2.27.

3.3. ROLLINGS 129

3.3 Rollings

We know from Section 3.2 how to obtain a revealing pair for an element α
of Thompson’s group V , given any tree pair representing it. However for
any given α there are many revealing pairs corresponding to it. In this
section we will use leaf chains to rephrase the work of Salazar–Díaz [28]
on how to find all revealing pairs for α when initially given only one of
its revealing tree pairs. We will use this information to find all important
points, of an element α of V , which we will introduce in Section 3.4.

A rolling of a given revealing pair (D,R, t) representing an element α
of V is another revealing tree pair representing the same element α, which
has been obtained from the tree pair (D,R, t) using certain allowable
operations. We can move from any revealing pair to any other revealing
pair using rolling and inverse rolling operations, as proved by Salazar–
Díaz in [28].

Types of Rollings

We distinguish between three types of rollings – type E (standing for
elementary), type I and type II. We will describe algorithms used to
produce each of them. For clarity, we will give examples of each of the
rolling types.

Algorithm 3.3.1 (Rolling Type E (Elementary)). Consider a revealing
pair (D,R, t) representing an element α of V .

1. Pick any SS–chain or P–chain, associated with this tree pair, given
by (λαi)ki=0 for some leaf λ ∈ LD and some non–negative integer k.

2. Let T be any binary rooted tree.

3. For every leaf λαi in the chosen chain:

(a) If λαi ∈ LD, in order to obtain the new tree D′ attach a copy
of the tree T to D by identifying the root of T to the leaf λαi

of D.

(b) If λαi ∈ LR, in order to obtain the new tree R′ attach a copy
of the tree T to R by identifying the root of T to the leaf λαi

of R.

4. Change the tuple t to obtain a new tuple t′ such that the tree pair
(D′, R′, t′) represents α. To achieve this, apply extended version of

130 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Algorithm 2.3.9 corresponding to all augmentations introduced to
the initial tree pair.

Definition 3.3.2 (Rolling Type E). Suppose that the revealing pair
(D′, R′, t′) representing α ∈ V has been obtained from a revealing pair
(D,R, t) by using Algorithm 3.3.1, possibly numerous times. Then we
call (D′, R′, t′) a rolling of type E from (D,R, t).

Example 3.3.3 (Rolling Type E). Let (D,R, t) be the following tree
pair representing α ∈ V :

We notice that the leaves of this tree pair form a single P–chain given
by (0, 1), as 0

α7→ 1
α7→ 0. Hence this tree pair has no repellers or attractors.

Also, both D −R and R−D are empty, and so the tree pair (D,R, t) is
revealing.

Thus we can apply Algorithm 3.3.1 to its P–chain (0, 1) to obtain a
new tree pair (D′, R′, t′) which will be a rolling of type E from (D,R, t):

1. Let T be a single caret.

2. As both 0 and 1 are in LD, to create D′ we attach a copy of the
tree T to D by identifying the root of T to the leaf 0, and another
copy of the tree T by identifying the root of T to the leaf 1.

3. As both 0 and 1 are in LR, to create R′ we attach a copy of the
tree T to R by identifying the root of T to the leaf 0, and another
copy of the tree T by identifying the root of T to the leaf 1.

4. The new leaves of the tree D′ are given by: LD′ = {00, 01, 10, 11}.
We label them with numbers from 1 to 4 respectively.

5. None of the leaves of D′ is a leaf of D. Thus:

3.3. ROLLINGS 131

(a) The newly assigned number of the leaf 00 is 1. Hence we assign
number 1 to the leaf (00)α = (0)α0 = 10 of R′.

(b) The newly assigned number of the leaf 01 is 2. Hence we assign
number 2 to the leaf (01)α = (0)α1 = 11 of R′.

(c) The newly assigned number of the leaf 10 is 3. Hence we assign
number 3 to the leaf (10)α = (1)α0 = 00 of R′.

(d) The newly assigned number of the leaf 11 is 4. Hence we assign
number 4 to the leaf (11)α = (1)α1 = 01 of R′.

(e) In order to get t′, we read the numbers of the tree R′ in order
from left to right: t′ = (3, 4, 1, 2).

Hence, the new tree pair (D′, R′, t′) is given by:

Algorithm 3.3.4 (Rolling Type I). Consider a revealing pair (D,R, t)

representing an element α of V .

1. Pick any R–chain or A–chain associated with this tree pair given
by (λαi)ki=0 for some leaf λ ∈ LD and some non-negative integer k.

2. (a) If (λαi)ki=0 is an R–chain, define the tree C to be the compo-
nent of D−R rooted at λαk. Define Γ to be the word a1 . . . al

for some positive integer l and a1, . . . al ∈ {0, 1}, such that
λ = λαkΓ.

(b) If (λαi)ki=0 is an A–chain, define the tree C to be the compo-
nent of R −D rooted at λ. Define Γ to be the word a1 . . . al

for some positive integer l and a1, . . . al ∈ {0, 1}, such that
λΓ = λαk.

132 CHAPTER 3. DYNAMICS VIA COMBINATORICS

3. We will now pick a tree T as follows:

(a) Pick an integer j such that 1 ≤ j ≤ l.

(b) Split the tree C into two components T and T ′ where contains
the root of C and T ′ is rooted at the address a1a2 . . . aj .

4. For every leaf λαi in the chosen chain:

(a) If λαi ∈ LD, in order to obtain the new tree D′ attach a copy
of the tree T to D by identifying the root of T to the leaf λαi

of D.

(b) If λαi ∈ LR, in order to obtain the new tree R′ attach a copy
of the tree T to R by identifying the root of T to the leaf λαi

of R.

5. Change the tuple t to obtain a new tuple t′ such that the tree pair
(D′, R′, t′) represents α. To achieve this, apply extended version of
Algorithm 2.3.9 corresponding to all augmentations introduced to
the initial tree pair.

The word Γ for a given repeller or attractor will be of great importance
in Section 3.4. We will define it to be a spine in Definition 3.4.2 and
3.4.11.

Definition 3.3.5 (Rolling Type I). Suppose that the revealing pair
(D′, R′, t′) representing α ∈ V has been obtained from a revealing pair
(D,R, t) by using Algorithm 3.3.4, possibly numerous times. Then we
call (D′, R′, t′) a rolling of type I from (D,R, t).

3.3. ROLLINGS 133

Example 3.3.6 (Rolling Type I). Let (D,R, t) be the following tree pair
representing α ∈ V :

First we identify the leaf chains of the tree pair (D,R, t):

1. 000
α7−→ 1100.

2. 001
α7−→ 111.

3. 010
α7−→ 0.

4. 011
α7−→ 1101.

5. 1
α7−→ 10.

We recognise 3. to be an R–chain, corresponding to the only compo-
nent of D −R. We also recognise 5. to be an A–chain, corresponding to
the only component of R −D. Hence the tree pair (D,R, t) is revealing
and we can apply Algorithm 3.3.4 to it. For that, let us pick the R–chain
(010, 0) to obtain a new tree pair (D′, R′, t′) which will be a rolling of
type I from (D,R, t):

1. The word Γ is given by 10 and the tree C is given by the component
of D −R rooted at the node 0.

2. We pick j = 1 and so we cut the tree C at its node 1. The tree T
is the component which contains the root of C.

3. We attach a copy of T to D by identifying the leaf 010 of D to the
root of T to form D′. We also attach a copy of T to R by identifying
the leaf 0 of R to the root of T to form R′.

134 CHAPTER 3. DYNAMICS VIA COMBINATORICS

4. The leaves of D′ in order from left to right are as follows: 000, 001,

01000, 01001, 0101, 011, 1. We label them from 1 to 7 respectively.

5. (a) The newly assigned number of the leaf 000 is 1. Hence we
assign number 1 to the leaf (000)α = 1100 of R′.

(b) The newly assigned number of the leaf 001 is 2. Hence we
assign number 2 to the leaf (001)α = 111 of R′.

(c) The newly assigned number of the leaf 01000 is 3. Hence we
assign number 3 to the leaf (01000)α = (010)α00 = 000 of R′.

(d) The newly assigned number of the leaf 01001 is 4. Hence we
assign number 4 to the leaf (01001)α = (010)α01 = 001 of R′.

(e) The newly assigned number of the leaf 0101 is 5. Hence we
assign number 5 to the leaf (0101)α = (010)α1 = 01 of R′.

(f) The newly assigned number of the leaf 011 is 6. Hence we
assign number 6 to the leaf (011)α = 1101 of R′.

(g) The newly assigned number of the leaf 1 is 7. Hence we assign
number 7 to the leaf (1)α = 10 of R′.

6. In order to get t′, we read the numbers of the tree R′ in order
from left to right. As the leaves of R′ occur in the following order:
000, 001, 01, 10,

1100, 1101, 111, we deduce that t′ = (3, 4, 5, 7, 1, 6, 2).

The resulting tree pair (D′, R′, t′) is given by:

Algorithm 3.3.7 (Rolling Type II). Consider a revealing pair (D,R, t)

representing an element α of V .

• Pick any R–chain (or A–chain respectively) associated with this tree
pair given by (λαi)ki=0 for some leaf λ ∈ LD and some non–negative
integer k.

3.3. ROLLINGS 135

• Let T be the component of D − R (or R −D respectively) rooted
at the leaf λαk (or λ respectively).

• To create D′, attach a copy of the tree T to D by identifying the
root of T to the leaf λαk−1 (or λ respectively).

• To create R′, attach a copy of the tree T to R by identifying the
root of T to the leaf λαk (or λα respectively).

• Change the tuple t to obtain a new tuple t′ such that the tree pair
(D′, R′, t′) represents α. To achieve this, apply Algorithm 2.3.9 to
the initial tree pair.

Definition 3.3.8 (Rolling Type II). Suppose that the revealing pair
(D′, R′, t′) representing α ∈ V has been obtained from a revealing pair
(D,R, t) by using Algorithm 3.3.7, possibly numerous times. Then we
call (D′, R′, t′) a rolling of type II from (D,R, t).

Example 3.3.9 (Rolling Type II). Let (D,R, t) be the following tree
pair representing α ∈ V :

We identify the leaf chains of the tree pair (D,R, t):

1. 00
α7−→ 011

α7−→ 010
α7−→ 000.

2. 10
α7−→ 001.

3. 11
α7−→ 1.

We recognise 3. to be an R–chain corresponding to the only compo-
nent of D − R. We also recognise 1. to be an A–chain corresponding to

136 CHAPTER 3. DYNAMICS VIA COMBINATORICS

the only component of R −D. Hence the tree pair (D,R, t) is revealing
and we can apply Algorithm 3.3.7 to it. For that, let us pick the A–chain
(00, 011, 010, 000) to obtain a new tree pair (D′, R′, t′) which will be of
rolling type II from (D,R, t):

1. T is given by the only component of R − D, which is given by a
single caret.

2. To create D′ we attach a copy of T to D by identifying the leaf 00

of D to the root of T . To create R′, we attach a copy of T to R by
identifying the leaf 011 of R to the root of T .

3. The leaves of D′ in order from left to right are as follows:

000, 001, 010, 011, 10, 11.

We label them from 1 to 6 respectively.

4. (a) The newly assigned number of the leaf 000 is 1. Hence we
assign number 1 to the leaf (000)α = (00)α0 = 0110 of R′.

(b) The newly assigned number of the leaf 001 is 2. Hence we
assign number 2 to the leaf (001)α = (00)α1 = 0111 of R′.

(c) The newly assigned number of the leaf 010 is 3. Hence we
assign number 3 to the leaf (010)α = 000 of R′.

(d) The newly assigned number of the leaf 011 is 4. Hence we
assign number 4 to the leaf (011)α = 010 of R′.

(e) The newly assigned number of the leaf 10 is 5. Hence we assign
number 5 to the leaf (10)α = 001 of R′.

(f) The newly assigned number of the leaf 11 is 6. Hence we assign
number 6 to the leaf (11)α = 1 of R′.

5. In order to get t′, we read the numbers of the tree R′ in order from
left to right. As the leaves of R′ occur in the following order:

000, 001, 010, 0110, 0111, 1

we deduce that t′ = (3, 5, 4, 1, 2, 6).

3.4. IMPORTANT POINTS OF AN ELEMENT OF V 137

The resulting tree pair is given by:

Theorem 3.3.10. For an element α of Thompson’s group V , we can
transition from any revealing pair for α to any other revealing pair for
α using rollings and inverse rollings described in Algorithms 3.3.1, 3.3.4
and 3.3.7.

Proof. By Salazar–Díaz in [28].

3.4 Important Points of an Element of V

The term important points was first used in this context by Bleak and
Salazar–Díaz in [8], the reason being that these points were of key im-
portance for their consideration of free products in V . They will prove to
be indispensable in Chapter 4 on centralisers in V , and of central focus
in Chapter 5 on further properties of free products. They are described
in this last section of this chapter in hope of creating a fresh, lasting
impression suggested by recency effect.

In this section we will proceed to give a formal definition and explore
basic properties of important points. Informally, they should be consid-
ered as a special kind of points from C which lie on finite orbits under
the action of a given element α of V , while all other points from small
neighbourhood around them lie on infinite orbits. Moreover, the neigh-
bourhood around them either expands or contracts, and depending on
which of these two is occurring, we discriminate between repelling and
attracting important points of α. This property of being isolated from
other points lying on finite orbits discriminates important points from

138 CHAPTER 3. DYNAMICS VIA COMBINATORICS

those points of C which underlie periodic neutral leaves of a revealing
tree pair representing α.

Lemma 3.4.1. Consider an element α of the Thompson’s group V , and
a revealing tree pair (D,R, t) representing it. Consider a repeller λ from
LD and its proper ancestor (λ)αs from LR for some positive integer s. Say
that (λ)αs has address γs and λ has address γ0 = γsΓ, where γs, γ0 and
Γ are finite strings of numbers from the set {0, 1}. Then, pγ0 = γ0(Γ)∞

is the unique point of C with the prefix γs which is fixed by the map αs.

Proof. As αs induces a bijection on C and the image of the set of all
points with prefix γ0 = γsΓ is the set of all points with prefix γs, the
only possible points fixed by αs with prefix γs must in fact have prefix
γsΓ. As αs is such that it substitutes prefix γsΓ with γs, then the point
γs(Γ)∞ is the only point of C with prefix γsΓ which is mapped to itself by
the action of αs. Indeed, γs(Γ)∞ = γs(Γ(Γ)∞) = (γsΓ)(Γ)∞ = γ0(Γ)∞ =

((γs)α)(Γ)∞ = (γs(Γ)∞)α.

Definition 3.4.2 (Spine of a Repeller). Consider an element α of Thomp-
son’s group V , and a revealing tree pair (D,R, t) representing it. Consider
a repeller λ from LD with and its ancestor λαs from LR for some positive
integer s. Say that λαs has address γs and λ has address γ0 = γsΓ, where
γs, γ0 and Γ are finite strings of numbers from the set {0, 1}. Then, we
call Γ the spine of the repeller λ.

Remark 3.4.3. Consider a revealing pair (D,R, t) of an element α of V
and (D′, R′, t′) a rolling of type I from it on a given R–chain with repeller
λ ∈ LD (see Algorithm 3.3.4). Say that λαs is a proper ancestor of λ for
some positive integer s. Say that λ has address γ0 and λαs has address
γs. Then γsΓ = γ0 for a word Γ = a1a2 . . . al which is the spine of
repeller λ, where l is a positive integer and a1, a2, . . . , al ∈ {0, 1}. Then
for the choice of integer j such that 1 ≤ j ≤ l, determined by the rolling
(D′, R′, t′), we define ω = a1a2 . . . aj and ω′ = aj+1 . . . al. Then our new
repeller λω of (D′, R′, t′) has address γ0ω. Notice that γ0ω = γsωω

′ω.
Notice also that ((γsω)ω′ω)αs = (γsΓω)αs = (γsΓ)αsω = γsω so the
spine of the new repeller λω is given by Γ′ = ω′ω = aj+1 . . . ala1a2 . . . aj ,
which is a cyclic permutation of the letters in the word Γ.

Lemma 3.4.4. Consider an element α of the Thompson’s group V , and
a revealing tree pair (D,R, t) representing it. Consider a repeller λ from

140 CHAPTER 3. DYNAMICS VIA COMBINATORICS

5. 10
α7−→ 101: A–chain.

6. 110
α7−→ 1100: A–chain.

7. 111
α7−→ 1111: A–chain.

We recognise 2. as an R–chain corresponding to the only component
of D − R rooted at 00. We also recognise 5., 6. and 7. to be A–chains
corresponding to connected components of R −D rooted at 10, 110 and
111 respectively. Hence, the tree pair (D,R, t) is revealing, and we can
proceed to find all its repelling points.

The R–chain 2. consists of tree leaves 0001, 011, 00 and so its repeller
has spine 01. Thus, there are two corresponding repelling points given
by

Rα = {00(01)∞, 011(01)∞}

Remark 3.4.7 (Rα is finite). Note that each repelling point of α corre-
sponds to a distinct leaf of the tree D, and as the set LD is finite, the set
Rα must also be finite. Moreover, as the effect on α on C is independent
of the choice of a tree pair for it, Rα is also independent of the choice of
the tree pair representing α.

Definition 3.4.8 (Fixed Repelling Point of α). Consider an element α of
the Thompson’s group V , and a revealing tree pair (D,R, t) representing
it. If p is a repelling point of α and α fixes p, namely (p)α = p, then p is
a special kind of a repelling point called a fixed repelling point of α.

Note that a given revealing pair of an element α from V admits one
repeller per orbit of repelling points under the action of α. The repeller
highlights the position of one of the repelling points of α. The follow-
ing lemma helps us recognise how to highlight other repelling points by
choosing a different revealing pair:

Lemma 3.4.9. Let (D,R, t) be a revealing tree pair corresponding to α
of V . Say that (λαi)si=0 is an R–chain of (D,R, t) for some λ ∈ LD and
some positive integer s. Suppose that for each i such that 0 ≤ i ≤ s, the
address of λαi is given by γi. Also γ0 = γsΓ, where Γ is the spine of the
repeller λ. Consider the repelling point γi(Γ)∞ which underlies the leaf
λαi, for i ∈ {0, . . . , s−1}. In particular, consider γ0(Γ)∞ which underlies
the repeller λ.

3.4. IMPORTANT POINTS OF AN ELEMENT OF V 141

Now consider a single rolling (D′, R′, t′) of type II from (D,R, t) on
this R–chain. Then the leaf λαs−1Γ is a repeller of (D′, R′, t′) overlying
the repelling point γs−1(Γ)∞.

Proof. The tree pair (D,R, t) is such that for each i such that 1 ≤ i ≤
s− 1, λαi is a neutral leaf. Also, λ is a leaf of D and λαs is a leaf of R.
Let T be the tree given by the component of D − R rooted at λαs. By
Algorithm 3.3.7 the tree D′ is the tree D expanded by attaching a copy
of T by identifying the leaf λαs−1 with the root of T . Also, the tree R′ is
the tree R expanded by attaching a copy of T by identifying the leaf λαs

with the root of T . Hence, λ, λα, . . . , λαs−2 are neutral leaves of the tree
pair (D′, R′, t′), λαs−1Γ is a leaf of the tree D′ and λαs−1 is a leaf of the
tree R′. Notice that ((γ0)αs−1Γ)α = (γs−1Γ)α = (γs−1)αΓ = γsΓ = γ0.
Therefore, (λαs−1Γ, λ, λα, . . . , λαs−1) is an R–chain of (D′, R′, t′). This
implies that λαs−1Γ is a repeller, and the important point which it is
overlying is γs−1(Γ)∞.

After having defied and analysed properties of repelling points of α,
we need to mention attracting points of α. Informally, attracting points of
α can be understood as repelling points of α−1, and hence their properties
will be very similar:

Lemma 3.4.10. Consider an element α of the Thompson’s group V , and
a revealing tree pair (D,R, t) representing it. Consider an attractor λαk

from LR and its ancestor λ from LD for some positive integer k. Say
that λαk has address γk and λ has address γ0 such that γ0Γ = γk, where
γk, γ0 and Γ are finite strings of numbers from the set {0, 1}. Then,
pγ0 = γ0(Γ)∞ is the unique point of C with the prefix γ0 which is fixed by
the map αk.

Proof. As αk induces a bijection on C and the image of the set of all
points with prefix γ0 is the set of all points with prefix γ0Γ, the only
possible points fixed by αk with prefix γ0 must in fact have prefix γ0Γ.
As αk is such that it substitutes prefix γ0 with γ0Γ, then the point γ0(Γ)∞

is the only point of C with prefix γ0Γ which is mapped to itself by the
action of αk. Indeed, γ0(Γ)∞ = γ0(Γ(Γ)∞) = (γ0Γ)(Γ)∞ = γk(Γ)∞ =

((γ0)α)(Γ)∞ = (γ0(Γ)∞)α.

Definition 3.4.11 (Spine of an Attractor). Consider an element α of
Thompson’s group V , and a revealing tree pair (D,R, t) representing it.

142 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Consider an attractor (λ)αk from LR with and its proper ancestor λ from
LD for some positive integer k. Say that (λ)αk has address γk and λ has
address γ0 such that γk = γ0Γ, where γk, γ0 and Γ are finite strings of
numbers from the set {0, 1}. Then, we call Γ the spine of the attractor
(λ)αk.

Remark 3.4.12. Consider a revealing pair (D,R, t) of an element α of V
and (D′, R′, t′) a rolling of type I from it on a given A–chain with attractor
λαk ∈ LR (see Algorithm 3.3.4). Say that λ is a proper ancestor of λαk for
some positive integer k. Say that λ has address γ0 and λαk has address γk.
Then γk = γ0Γ for a word Γ = a1a2 . . . al which is the spine of attractor
λαk, where l is a positive integer and a1, a2, . . . , al ∈ {0, 1}. Then for
a choice of integer j such that 1 ≤ j ≤ l, determined by the rolling
(D′, R′, t′), we define ω = a1a2 . . . aj and ω′ = aj+1 . . . al. Then our new
attractor λαkω of (D′, R′, t′) has address γkω. Notice that γkω = γ0ωω

′ω.
Notice also that ((γ0ω))αk = (γ0)αkω = γkω = (γ0ω)ω′ω, so the spine
of the new attractor λαkω is given by Γ′ = ω′ω = aj+1 . . . ala1a2 . . . aj ,
which is a cyclic permutation of the letters in the word Γ.

Lemma 3.4.13. Consider an element α of the Thompson’s group V , and
a revealing tree pair (D,R, t) representing it. Consider an attractor λαk

from LR and the sequence of leaves λαi for 0 ≤ i ≤ k such that λ is a
proper ancestor of λαk. For 0 ≤ i ≤ k let γi be the address of the leaf λαi,
and let γ0Γ = γk for Γ ∈ {0, 1}+. Then for each 0 ≤ i ≤ k, pγi = γi(Γ)∞

is the unique point of C with the prefix γi which is fixed by the map αk.

Proof. Notice that for all 0 ≤ i ≤ k we have (γi)α
k = (γ0)αiαk =

(γk)α
i = (γ0Γ)αi = (γ0)αiΓ = γiΓ. Hence we deduce that an appli-

cation of αk has an effect of substituting prefix γiΓ in place of γi. Hence,
the lemma holds as a corollary of Lemma 3.4.10.

Definition 3.4.14 (Periodic Attracting Point of α). Consider an ele-
ment α of the Thompson’s group V , and a revealing tree pair (D,R, t)

representing it. Consider an attractor λαk from LD and the sequence of
leaves λαi for 0 ≤ i ≤ k such that λαk is a proper descendant of λ. For
0 ≤ i ≤ k let γi to be the address of the leaf λαi and let γ0Γ = γk. Then,
for each 0 ≤ i < k we will call γi(Γ)∞ a periodic attracting point of α, or
simply an attracting point of α. Also, let the set of all attracting points
of α be called Aα.

3.4. IMPORTANT POINTS OF AN ELEMENT OF V 143

Note that the word periodic is meant to emphasise the fact that at-
tracting points of α lie on finite orbits under the action of α.

Example 3.4.15 (Attracting Points). Consider the revealing tree pair
(D,R, t) given by the same picture as in Example 3.4.6:

Recall its leaf chains:

1. 0000
α7−→ 010

α7−→ 100: SS–chain.

2. 0001
α7−→ 011

α7−→ 00: R–chain.

3. 0010
α7−→ 1101: SS–chain.

4. 0011
α7−→ 1110: SS–chain.

5. 10
α7−→ 101: A–chain.

6. 110
α7−→ 1100: A–chain.

7. 111
α7−→ 1111: A–chain.

The A–chain 5. consists of two leaves 10, 101 and so its attractor
has spine 1. Thus there is one corresponding attracting point given by
10(1)∞.

The A–chain 6. consists of two leaves 110, 1100 and so its attractor
has spine 0. Thus there is one corresponding attracting point given by
110(0)∞.

The A–chain 7. consists of two leaves 111, 1111 and so its attractor
has spine 1. Thus there is one corresponding attracting point given by
111(1)∞.

Aα = {10(1)∞, 110(0)∞, 111(1)∞}

144 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Remark 3.4.16 (Aα is finite). Note that each attracting point of α corre-
sponds to a distinct leaf of the tree R, and as the set LR is finite, the set
Aα must also be finite. Moreover, as the effect on α on C is independent
of the choice of a tree pair for it, Aα is also independent of the choice of
the tree pair representing α.

Definition 3.4.17 (Fixed Attracting Point of α). Consider an element
α of the Thompson’s group V , and a revealing tree pair (D,R, t) repre-
senting it. If p is an attracting point of α and α fixes p, namely (p)α = p,
then p is a special kind of an attracting point called a fixed attracting
point of α.

Note that a given revealing pair of an element α from V admits one at-
tractor per orbit of attracting points under the action of α. The attractor
highlights the position of one of the attracting points of α. The follow-
ing lemma helps us recognise how to highlight other attracting points by
choosing a different revealing pair:

Lemma 3.4.18. Let (D,R, t) be a revealing tree pair corresponding to
α of V . Say that (λαi)ki=0 is an A–chain of (D,R, t) for some λ ∈ LD
and some positive integer k. Suppose that for each i such that 0 ≤ i ≤ k,
the address of λαi is given by γi. Also γ0Γ = γk, where Γ is the spine of
the attractor λαk. Consider the attracting point γi(Γ)∞ which underlies
the leaf λαi, for i ∈ {0, . . . , s− 1}. In particular, consider γk(Γ)∞ which
underlies the attractor λ.

Now consider a single rolling (D′, R′, t′) of type II from (D,R, t) on
this A–chain. Then the leaf λαΓ is an attractor of (D′, R′, t′) overlying
the repelling point γ1(Γ)∞.

Proof. The tree pair (D,R, t) is such that for each i such that 1 ≤ i ≤
s − 1, λαi is a neutral leaf. Also, λ is a leaf of D and λαk is a leaf of
R. Let T be the tree given by the component of R −D rooted at λ. By
Algorithm 3.3.7 the tree D′ is the tree D expanded by attaching a copy
of T by identifying the leaf λ with the root of T . Also, the tree R′ is the
tree R expanded by attaching a copy of T by identifying the leaf λα with
the root of T . Hence, λα2, . . . λαk, λΓ are neutral leaves of the tree pair
(D′, R′, t′), λα is a leaf of the tree D′ and λαΓ is a leaf of the tree R′.

Notice that ((γ0)αk)α = (γk)α = (γ0Γ)α = (γ0)αΓ = γ1Γ. Therefore,
(λα, . . . , λαk, λΓ, λαΓ) is an A–chain of (D′, R′, t′). This implies that

3.4. IMPORTANT POINTS OF AN ELEMENT OF V 145

λαΓ is an attractor, and the important point which it is overlying is
γ1(Γ)∞.

Definition 3.4.19 (Important Points of α). Consider an element α of
Thompson’s group V . Let the set of important points of α denoted by
Iα be defined as Iα = Rα t Aα.

Remark 3.4.20. Note that the set of points underlying neutral periodic
leaves of a revealing pair and important points of α is equal to the set
of points of C lying on finite orbits under the action of α. This has been
implicitly proven in Lemma 3.2.39. Moreover, there is a universal bound
on the sizes of all finite orbits in C under the action of α. This is because
of the following: there is a finite number of attractors and repellers for
a revealing tree pair for α. Each of the repellers and attractors is in
one–to–one correspondence with a finite orbit of important points under
α. Hence the set Iα is finite. The remaining points on finite orbits lie
precisely under periodic neutral leaves of a revealing pair for α. Each of
these leaves has a finite orbit under the action of α, and there are also
finitely many of them. Hence we can put a universal bound on the size
of the finite collection of finite orbits Let us say that it is n where n
is a positive integer. Therefore, we can also find a positive integer, for
intstance m = n!, such that αm admits only orbits of size 1 or ∞.

146 CHAPTER 3. DYNAMICS VIA COMBINATORICS

Chapter 4

Centralisers

In this chapter we intend to familiarise the reader with the structure
of the centraliser group of an element α of Thompson’s group V . The
main theorem of Bleak et al. [5] states the structure of the centraliser of
an element of V . In this thesis we provide a converse to this theorem,
by proving that each of the predicted structures is realisable. Hence
we obtain a complete classification of centralisers in V . We first give an
overview on general structure of CV (α) as derived in [5]. Then we discuss
in detail the theory which led directly to obtaining our results.

In [5], the centraliser is proven to split as a direct product of two
groups: one acting on the points from C lying in the closure of infinite
orbits under the element’s action, and the other acting on the remaining
points from C, all of which lie on finite orbits. While the general structures
of both groups are established in [5], it remained unclear whether all
possible realisations of the structure are achievable. (See questions (2)
and (3) in [5].)

In our work we use results from [5] to derive an algorithm for con-
structing an element α ∈ V with strictly prescribed centraliser. We
achieve that through embedding sufficient symmetry into its flow graph
object, so that the flow graph automorphisms realises the Cayley action
for any given finite group of our choice. These automorphisms give rise
to elements centralising α. Thus we conclude that anything allowed by
the classification of Bleak et al. is in fact realisable.

We make explicit use of revealing pairs and important points, as dis-
cussed in Chapter 3, to construct flow graph objects as introduced by
Bleak et al. in [5].

147

148 CHAPTER 4. CENTRALISERS

4.1 Statement of Results

Definition 4.1.1. Define C to be the class of all groups isomorphic to a
group of the following form:(

s∏
i=1

Mmi o V

)
×

 t∏
j=1

((Aj oψj Z) o Pqj)

for positive integers s,mi (s.t. m1 < m2 < ... < ms) and qj , groups
Mmi , Aj , and Pqj , and ψj ∈ Aut(Aj), such that i ∈ {1, . . . , s} and
j ∈ {1, . . . , t}, and such that:

• for each i, Mmi = Maps(C,Zmi), where Maps(C,Zmi) is the group
of continuous maps from C to Zmi under pointwise addition, and
where Zmi is the cyclic group Z�miZ under the discrete topology;

• for each j, Aj is a finite group;

• for each j, Pqj is the full symmetric group on qj elements.

Our main result of this chapter combined with the work by Bleak et
al. in [5] is the following theorem:

Theorem 4.1.2. Let C be the class of groups from Definition 4.1.1. Then
a group G belongs to C if and only if there is an element α in Thompson’s
group V such that G is isomorphic to CV (α), the centraliser of α in V .

We will give a very brief overview of what the class C corresponds to
dynamically. For more details, see [5].

Remark 4.1.3 (Flow Graph Properties). In order to give a dynamical
interpretation of Theorem 4.1.2, we need to briefly explain basic facts
about flow graphs. We will include a more detailed description of flow
graphs in Section 4.2.

A flow graph will in many ways resemble a chains graph of a revealing
tree pair for an α ∈ V . A flow graph of an element α ∈ V is a disjoint
union of connected graph components of two possible types: periodic
and non-periodic. The periodic type represents the points from C on
finite orbits under the action of α (excluding its important points Iα),
which are precisely the ones underlying leaves of P–chains of a revealing
pair for α. The non–periodic type corresponds to the closure of points
from C lying on infinite orbits under the action of α, which are precisely

4.1. STATEMENT OF RESULTS 149

the points underlying leaves of R–chains, A–chains and SS–chains of a
revealing pair for α.

Now, in Definition 4.1.1, if the given group is CV (α), then:

• The number s denotes number of distinct lengths of the P–chains
of a revealing pair for α.

• Each group of the form Mmi o V corresponds to a subgroup of the
centraliser acting on those points from C which are underlying the
leaves of P–chains of length mi of a revealing pair for α.

• Each group of the form Aj oψj Z represents a subgroup of the
centraliser corresponding to points in C supported under a single
component of the flow graph of α, which set is the closure of the
support of a set of infinite orbits.

• The number t indicates number of equivalence classes of non–periodic
flow graph components.

• Each qj is the size of the jth equivalence class of non–periodic flow
graph components.

• The action of the group Pqj on C induces a permutation on qj

isomorphic non-periodic flow graph components.

In [5] it has been proven that if a group is realisable as a centraliser
of an element α ∈ Vn, then it takes the form described in Theorem
4.1.2. It remained an open question which finite groups Aj (Question
(2) by Bleak et al. in [5]), and which automorphisms ψj ∈ Aut(Aj)

producing the semidirect action (Question (3) by Bleak et al. in [5])
could occur. Explicit examples of abelian Aj were known and indeed the
original question was whether Aj needs to be abelian. An obstacle to
understanding which groups were achievable is that, as Aj becomes more
complex, the elements α which induce Aj for this part of their centraliser
are rapidly growing in complexity as well (as measured for instance by
the complexity of their minimal representative tree pairs, the size of the
flow graph etc.). No examples of non-trivial ψj were known. The new
work presented in this chapter gives rise to the following two theorems:

Theorem 4.1.4. For any finite group A, there exists an α ∈ V such that:

150 CHAPTER 4. CENTRALISERS

1. a revealing pair for α has a connected non–periodic (CNP) flow
graph;

2. A is isomorphic to the torsion subgroup of α’s centraliser.

Theorem 4.1.5. For any finite group A and any automorphism ψ of A,
there exists an αψ ∈ V such that:

1. a revealing pair for α|ψ|ψ has a connected flow graph, which is non–
periodic;

2. α|ψ|ψ has centraliser isomorphic to A oψ Z with αψ generating the
subgroup Z.

Without developing the appropriate theory it would be a strong claim
to say that a particular example does not have more elements in its cen-
traliser. Therefore, examples for both of the theorems above are exhibited
in the last section of this chapter.

4.2 Literature Review

We will recall the results from [5] which we will be using in this chapter.
We will also rephrase and expand on them wherever we find it beneficial.

Flow Graphs

The flow graph of an element α ∈ V is a structure modelling dynamical
properties of the element α’s effect on Cantor space. It provides benefits
complimentary to these provided by tree pairs. It was first introduced by
Bleak et al. in [5] in order to provide better intuition for analysing the
centraliser of α. A flow graph is a directed labelled graph constructed
from a revealing pair for α. It is similar to the chains graph of this
revealing tree pair, but it emphasises different information carried by the
element α.

Here is how to construct the flow graph of a revealing tree pair:

Algorithm 4.2.1. Consider a revealing pair (D,R, t) for α.

1. List all the leaf chains for the revealing pair (D,R, t).

2. For each P–chain we draw a vertex for each of the neutral leaves of
this chain and we label each vertex with the address of this neutral

4.2. LITERATURE REVIEW 151

leaf. We draw an edge from one of these vertices to another if a
single iteration of α takes the first leaf to the second, provided that
these two leaves are not the same.

3. For each R–chain we draw a vertex. If the R–chain is longer than
two leaves, draw a directed edge starting and ending at this vertex.
Let the R–chain be given by (λi)

k
i=0, and λ0 = λkΓ for the spine

Γ. Label the vertex with a sequence of addresses of corresponding
repelling points λ0(Γ)∞ − λ1(Γ)∞ − . . .− λk−1(Γ)∞.

4. For each A–chain we draw a vertex. If the A–chain is longer than
two leaves, draw a directed edge starting and ending at this vertex.
Let the A–chain be given by (λ′i)

k′
i=0, and λ

′
0Γ′ = λ′k′ for the spine

Γ′. Label the vertex with a sequence of addresses of corresponding
attracting points λ′0(Γ′)∞ − λ′1(Γ′)∞ − . . .− λ′k′−1(Γ′)∞.

5. For each SS–chain we draw a directed edge. The first vertex of the
SS–chain belongs to a component of D−R which contains a single
repeller. Let v be the vertex (added in 3. above) corresponding
to the R–chain of this repeller. The last vertex w of the SS–chain
belongs to a component of R−D which contains a single attractor.
Let w be the vertex corresponding to the A–chain of this attractor.
Add an edge beginning at v and ending at w. Let the SS–chain
be given by (λ

′′
i)k
′′
i=0 for some positive integer k. We label the edge

with the sequence of addresses λ′′0 − λ
′′
1 − . . .− λ

′′
k′′ .

We will display a basic flow graph in the example below:

Example 4.2.2. Let α ∈ V be represented by the following tree pair
(D,R, t):

152 CHAPTER 4. CENTRALISERS

The leaves of the tree D which are not leaves of the tree R are 100, 101

and 11. Hence we can identify the leaf chains of this tree pair.

1. 100
α−→ 10. As 10 is a prefix for 100, this is an R–chain.

2. 101
α−→ 110. As 101 is a leaf of connected component of D−R and

110 is a leaf of connected component of R−D, this is an SS–chain.

3. 11
α−→ 111. As 11 is a prefix for 111, this is an A–chain.

4. The neutral leaves which remained unused in the leaf chains above
are 00 and 01. In fact, we have that 00

α−→ 01
α−→ 00. Hence,

(00, 01) is a P–chain.

Thus we conclude that the tree pair is revealing as there is one repeller
corresponding to the only connected component of D − R and there is
one attractor corresponding to the only connected component of R−D.
Hence we proceed as follows to construct the flow graph for the tree pair
(D,R, t):

1. For the P–chain (00, 01) we draw two vertices and we label them
with addresses 00 and 01 respectively. Then we draw a directed
edge from the vertex 00 to the vertex 01, and a directed edge from
the vertex 01 to the vertex 00.

2. For the R–chain (110, 10) we draw a vertex. We label the vertex
with the address of the underlying repelling point, namely 10(0)∞.

3. For the A–chain (11, 111) we draw a vertex. We label the vertex
with the address of the underlying attracting point, namely 11(1)∞.

4. For the SS–chain (101, 110) we draw an edge starting at the vertex
10(0)∞ and ending at the vertex 11(1)∞. We label the edge with
the sequence of addresses 101− 110.

The resultant flow graph is as follows:

4.2. LITERATURE REVIEW 153

00 01

10(0)∞ 11(1)∞
101-110

The Flow Graph of the Tree Pair (D,R, t)

Remark 4.2.3. As originally defined, the flow graph is constructed using
a revealing tree pair representing α, but in this chapter we relax this
condition and allow flow graphs arising from some specific types of tree
pairs, called balanced tree pairs, which do not need to be revealing. In
particular these will be tree pairs where chains graphs remain unchanged
by Algorithms 3.2.34, 3.2.44 and 3.2.57, but not necessarily by Algorithms
3.2.51 and 3.2.64. We use them implicitly in Construction 4.3.13. The
reason for doing so is to obtain a higher level of symmetry for these
objects and their corresponding tree pairs.

The Centraliser’s Action on Important Points

We will now prove that for α ∈ V the centraliser CV (α) of α acts on
the set Rα of repelling points of α and also on the set Aα of attracting
points of α. This fact emphasises the very restrictive nature of elements
centralising α, and at the same time provides us with a very powerful
tool for the subsequent analysis of CV (α).

Notice that all the statements in this subsection are true even if we
assume that α has no important points, in which case the action of CV (α)

on Iα is trivial.
We start with the following lemma:

Lemma 4.2.4. Let α be an element of Thompson’s group V . Consider
any r ∈ Rα and c ∈ CV (α). Then (r)c ∈ Rα. Similarly, if a ∈ Aα, then
(a)c ∈ Aα.

Proof. Let k be the smallest positive integer k such that (r)αk = r.
Now, pick a prefix λ of r such that the image (λ)c is a single prefix, and

154 CHAPTER 4. CENTRALISERS

(λΓ)αk = λ for Γ the spine of r. Thus r = (λ)Γ∞. This is possible as
r is a repelling point of α. Then, as c commutes with the action of αk

on Cantor space, we have (λ)c = ((λΓ)αk)c = (λΓ)cαk = ((λ)cΓ)αk).
Hence, the prefix (λ)cΓ is substituted by (λ)c under the action of αk.
Hence, αk fixes the point (λ)cΓ∞ and (λ)cΓ∞ is a repelling point of α.
Note that (r)c = ((λ)Γ∞)c = (λ)cΓ∞, which proves the claim.

A very similar argument proves that if a ∈ Aα, then (a)c ∈ Aα. Let
k be the smallest positive integer k such that (a)αk = a. Now, pick a
prefix λ of a such that (λ)αk = λΓ for Γ a spine of a and (λ)c is given by
a single prefix. Thus a = (λ)Γ∞. This is possible as a is an attracting
point of α. Then, as c commutes with an action of αk on Cantor space,
we have (λ)cΓ = (λΓ)c = ((λ)αk)c = (λ)cαk = ((λ)c)αk). Hence, the
prefix (λ)c is substituted by (λ)cΓ under the action of αk and thus, αk

fixes the point (λ)cΓ∞. Note (λ)cΓ∞ is an attracting point of α and that
(a)c = ((λ)Γ∞)c = (λ)cΓ∞, which proves the claim.

From the lemma above, we can conclude the following useful facts:

Corollary 4.2.5. Consider an element α ∈ V . The group CV (α) acts
on the set Rα and on the set Aα.

Proof. We already know that as c ∈ V , it acts on Cantor space. As c is
a bijection on Cantor space and Rα is finite, by Lemma 4.2.4 we have
(Rα)c = Rα, so CV (α) acts on the set Rα. Similarly, by Lemma 4.2.4
we have (Aα)c = Aα and so CV (α) acts on the set Aα.

Finally, the corollary below gives us another way to view the action
of CV (α) on Rα. We include it here because later in this section we will
explicitly work with the map q which it mentions:

Corollary 4.2.6. For a given α ∈ V , there is a homomorphism q such
that:

q : CV (α) −→ Sym(Rα)

with Ker(q) = {c | (r)c = r ∀r ∈ Rα}.

Proof. The map q is a natural homomorphism arising from the action of
CV (α) on Rα proven in Corollary 4.2.5. Moreover, all elements of Ker(q)
fix each of the repelling points of α as required.

4.2. LITERATURE REVIEW 155

The Slope Map S

We will now introduce the slope map S. Later on, a direct analysis of
S will help us determine the structure of the part of CV (α) which is of
immediate interest to us. The same slope map S was introduced in Bleak
et al. in [5] but described using continuous analysis on a unit interval in
which Cantor space can be embedded. However as we work with prefix
substitutions instead, these are the terms with which we will represent
the map S.

To start with, we will need a couple of definitions to build on in order
to define S:

Definition 4.2.7. Let us define the length function L : {0, 1}∗ → N0:
for any s ∈ {0, 1}∗, its length L(s) is given by number of digits in the
string s.

Definition 4.2.8. Suppose that α ∈ V . Consider any r ∈ Rα. Then the
function fr : CV (α)→ Z is given by:

fr(c) = L(λ)− L
(
(λ)c

)
where c is represented by the tree pair (D,R, t) and λ is the leaf of the
domain tree D such that λ is a prefix of r.

We obviously have many choices for a tree pair representing an α ∈ V ,
and so we will need to show that the map fr is well-defined. Before we
do that though, we will present an example of such a function to aid the
visualisation of the proof of fr being well–defined.

Example 4.2.9. Consider the following tree pair for α ∈ V :

156 CHAPTER 4. CENTRALISERS

We identify the following leaf chains:

1. 000
α7−→ 01

α7−→ 00 which is an R–chain;

2. 001
α7−→ 10 which is an SS–chain;

3. 1
α7−→ 11 which is an A–chain.

From the only R–chain we can then identify Rα = {00(0)∞, 01(0)∞}.
Hence as α ∈ CV (α), we can compute the following:

f(0)∞(α) =L(000)− L(01) = 3− 2 = 1

f01(0)∞(α) =L(01)− L(00) = 2− 2 = 0

Now we are prepared to prove:

Lemma 4.2.10. Suppose that α ∈ V . Consider any r ∈ Rα. Then the
function fr is well–defined.

Proof. Suppose c ∈ CV (α) and let c be represented by a tree pair (D,R, t).
Recall by Corollary 3.2.31 that any tree pair representing α can be ob-
tained by a finite number of simple augmentations and simple reductions
from any other tree pair for α. We will show that if (D′, R′, t′) is a simple
augmentation from (D,R, t), then both tree pairs yield the same value
fr(c). This will prove that fr(c) is independent of the choice of the tree
pair.

Suppose that λ is the leaf of D which is a prefix for r. If the single
augmentation was not performed on the leaf λ, then λ ∈ LD′ and fr(c) =

L(λ) − L
(
(λ)c

)
in both cases. Otherwise, if the single augmentation

occurred for λ, then only one of the leaves λ0 and λ1, of D′, is a prefix
for r. Say that λa for a ∈ {0, 1} is the prefix for r. Then, using the tree
pair (D′, R′, t′), the definition of fr(c) yields fr(c) = L(λa)−L

(
(λa)c

)
=

L(λ) + L(a)− L
(
(λ)ca

)
= L(λ) + 1− L

(
(λ)c

)
− L(a) = L(λ)− L

(
(λ)c

)
.

This is the same as when we used the tree pair (D,R, t), and hence the
function fr is well-defined.

By now we have built all the definitions necessary for us to define the
slope map S:

4.2. LITERATURE REVIEW 157

Definition 4.2.11. Suppose that α ∈ V . Define the function S :

CV (α)→ Z to be given by:

S(c) =
∑
r∈Rα

fr(c)

We set S(CV (α)) = 0 if Rα = {}.

We will want to show that S, defined on CV (α), is a group homomor-
phism. In order to do that, we will first prove the following lemma:

Lemma 4.2.12. Suppose that α ∈ V . For any r ∈ Rα and any c1, c2 ∈
CV (α) we have fr(c1c2) = fr(c1) + f(r)c1(c2).

Proof. Suppose that c1 is represented by a tree pair (D1, R1, t1), and λ1

is a leaf of D1 such that λ1 is a prefix for r. Similarly, suppose that
c2 is represented by a tree pair (D2, R2, t2), and λ2 is a leaf of D2 such
that λ2 is a prefix for (r)c1. Note that (r)c1 is another repelling point
of α as the centraliser of α acts on the set of repelling points of α by
Lemma 4.2.4. We are interested in where a prefix for r is being sent to
under the action of c1c2. Recall that c1 is a bijection from LD1 to LR1

and c2 is a bijection from LD2 to LR2 . Recall also that by definition
fr(c1) = L(λ1) − L

(
(λ1)c1

)
and f(r)c1(c2) = L(λ2) − L

(
(λ2)c2

)
. As

(λ1)c1 and λ2 are both prefixes for (r)c1, then either (λ1)c1 = λ2, or λ2

is a proper prefix for (λ1)c1, or (λ1)c1 is a proper prefix for λ2. Now we
will discriminate between these three cases.

First suppose that (λ1)c1 = λ2. In this case, (λ1)(c1c2) = ((λ1)c1)c2 =

(λ2)c2. Therefore, fr(c1c2) = L(λ1)−L
(
(λ1)(c1c2)

)
= L(λ1)−L

(
(λ1)c1

)
+

L(λ2)− L
(
(λ2)c2

)
= fr(c1) + f(r)c1(c2).

Otherwise, suppose that λ2 is a proper prefix for (λ1)c1. This means
that there is a positive integer k such that (λ1)c1 = λ2a1a2 . . . ak for
a1, . . . ak ∈ {0, 1}. Hence, there is a chain of augmentations from (D2, R2, t2)

to
(D′2, R

′
2, t
′
2), which still represents c2, such that λ2a1 . . . ak ∈ LD′2 and

λ2a1 . . . ak is a prefix for (r)c1. In this case, (λ1)(c1c2) = ((λ1)c1)c2 =

(λ2a1 . . . ak)c2. Therefore, fr(c1c2) = L(λ1) − L
(
(λ1)(c1c2)

)
= L(λ1) −

L
(
(λ2a1 . . . ak)c2

)
= L(λ1)−L

(
(λ1)c1

)
+L(λ2a1 . . . ak)−L

(
(λ2a1 . . . ak)c2

)
= fr(c1) + f(r)c1(c2).

Finally, suppose instead that (λ1)c1 is a proper prefix for λ2. This
means that there is a positive integer k such that (λ1)c1a1a2 . . . ak = λ2

158 CHAPTER 4. CENTRALISERS

for a1, . . . ak ∈ {0, 1}. Hence, there is a chain of augmentations from
(D1, R1, t1) to (D′1, R

′
1, t
′
1), which still represents c1, such that λ1a1a2 . . . ak

belongs to LD′1 and λ1a1a2 . . . ak is a prefix for r. In this case,

(λ1a1a2 . . . ak)(c1c2) = ((λ1a1a2 . . . ak)c1)c2 =

= ((λ1)c1a1 . . . ak)c2 = (λ2)c2.

Therefore,

fr(c1c2) =

= L(λ1a1 . . . ak)− L
(
(λ1a1 . . . ak)(c1c2)

)
=

= L(λ1a1 . . . ak)− L
(
(λ2)c2

)
=

= L(λ1a1 . . . ak)− L
(
(λ1a1 . . . ak)c1

)
+ L(λ2)− L

(
(λ2)c2

)
=

= fr(c1) + f(r)c1(c2).

Thus, in all cases we conclude that fr(c1c2) = fr(c1) + f(r)c1(c2) as
required.

Now we can prove the following lemma:

Lemma 4.2.13. Suppose that α is an infinite order element of V . Then
S : CV (α)→ Z is a group homomorphism.

Proof. We need to prove that for any c1, c2 ∈ CV (α), we have S(c1c2) =

S(c1) + S(c2). Recall from Lemma 4.2.12 that for any r ∈ Rα and any
c1, c2 ∈ CV (α) we have fr(c1c2) = fr(c1) + f(r)c1(c2).

Thus, we can conclude that:

S(c1c2) =
∑
r∈Rα

fr(c1c2) =
∑
r∈Rα

(fr(c1) + f(r)c1(c2)) =

∑
r∈Rα

fr(c1) +
∑
r∈Rα

f(r)c1(c2)

We recall that c1 acts as a permutation on Rα and hence:

S(c1c2) =
∑
r∈Rα

fr(c1) +
∑
r∈Rα

fr(c2) = S(c1) + S(c2)

This proves that S is a group homomorphism.

4.2. LITERATURE REVIEW 159

Centraliser of a Connected Non–Periodic Flow Graph

Recall that our main results summarised in Theorem 4.1.4 and Theorem
4.1.5 refer to the centraliser of α ∈ V , when α admits a single con-
nected non–periodic flow graph component. In this subsection we show
the result by Bleak et al. [5] that if α corresponds to a single connected
non–periodic flow graph component then its centraliser decomposes as
CV (α) ∼= Ker(S) o Z, with |Ker(S)| < ∞. Our constructions in the fol-
lowing section will allow us to prove that each isomorphism type K o Z
for a finite group K is realisable as a centraliser of some α ∈ V .

To start with, we want to show that centraliser of any α ∈ V splits
as a semidirect product of kernel and image of the slope map S:

Lemma 4.2.14. For a given α ∈ V such that α is of infinite order, there
is a natural short exact sequence:

0 −→ Ker(S) −→ CV (α) −→ Im(S) −→ 0

where Im(S) ∼= Z.

Proof. By Lemma 4.2.13 the function S is a group homomorphism from
CV (α) to Z. Hence there is a natural short exact sequence as indicated
and also Im(S) is a subgroup of Z. Hence, if Im(S) 6= {0} then Im(S) ∼=
Z. We will now show that S(α) 6= 0. Suppose that (D,R, t) is a revealing
pair for α and suppose that ((λ)αi)ki=0 is the R–chain of a repeller λ,
which exists by assumed properties of α. Let r be the repelling point
underlying the repeller λ. Then we can compute

∑
r′∈O〈α〉(r)

fr′(α) =
k∑
i=0

f(r)αi(α) =

k∑
i=0

(L((λ)αi)− L
(
(λ)αi+1

)
=

L(λ)− L
(
(λ)αk

)
> 0

We know that L(λ) − L((λ)αk) > 0 as λ is a repeller and (λ)αk is its
corresponding range of repulsion. The set Rα is a union of disjoint orbits
of repelling points under the action of α. S(α) is the sum of the positive
expressions as above over all orbits of repelling points. Hence, S(α) > 0

and thus Im(S) ∼= Z.

160 CHAPTER 4. CENTRALISERS

Note that we do not necessarily have to have a c ∈ CV (α) such that
S(c) = 1, i.e., S does not need to be onto.

We are trying to show that the group extension described in Lemma
4.2.14 is a split extension. In order to do that, we will first prove the
following general lemma:

Lemma 4.2.15. Let the groups K,G be such that the following is a short
exact sequence:

0 −→ K −→ G
ψ−→ Z −→ 0

Then G ∼= K o Z.

Proof. Let z ∈ ψ−1(1). Then Z ∼= Z = 〈z〉 ≤ G and as Ker(ψ) = K,
K ∩ Z = {1G}. Now consider any g ∈ G. If ψ(g) = k then g can be
expressed as g = (gz−k)zk. As ψ(gz−k) = ψ(g) + ψ(z−k) = k − k = 0,
then gz−k ∈ K and so G = KZ. As G = KZ and K ∩ Z = {1G}, we
have G ∼= K o Z ∼= K o Z as required.

Corollary 4.2.16. Let α ∈ V such that |α| = ∞. Then CV (α) ∼=
Ker(S)o Z.

Proof. By Lemma 4.2.14 and Lemma 4.2.15.

At this moment in order to proceed we need to introduce additional
restrictions regarding the nature of the flow graph representing an element
of V which we work with. We want to focus on the structure of a single
non–periodic component, and for that we define:

Definition 4.2.17. Consider an α ∈ V and its flow graph. Suppose
that the flow graph is connected and that almost all points from C lie on
infinite orbits under the action of 〈α〉 (with the exception of important
points Iα). Then the flow graph of α is called connected non–periodic, or
CNP flow graph.

Note that the chains graph of α as in the definition above is connected
and has no P–chains.

From now on we will require in our proofs that α has a CNP flow
graph. We will now prove a technical proposition which will come in
extremely handy in both this subsection and theoretical part of our con-
struction in Section 4.3. The following proposition in more general form
was first presented by Kassabov and Matucci in [19] where it was called
Stair Algorithm. The proof as it stands is new:

4.2. LITERATURE REVIEW 161

Proposition 4.2.18 (Stair Algorithm). Let α ∈ V have CNP flow graph.
Consider r, s ∈ Rα and c1, c2 ∈ CV (α). Suppose that:

1. (r)c1 = s = (r)c2;

2. fr(c1) = fr(c2).

Then c1 = c2.

Proof. First notice that (r)c1 = (r)c2 holds if and only if (r)c2c
−1
1 = r.

Consider fr(c2c
−1
1). By Lemma 4.2.12 we have fr(c2c

−1
1) = fr(c2) +

fs(c
−1
1). As (r)c1 = s we have 0 = fr(e) = fr(c1c

−1
1) = fr(c1) + fs(c

−1
1)

which implies that fs(c−1
1) = −fr(c1). Therefore fr(c2c

−1
1) = fr(c2) +

fs(c
−1
1) = fr(c2) − fr(c1) = 0, by the initial assumption. Let c = c2c

−1
1 .

We will prove that if (r)c = r and fr(c) = 0 for c ∈ CV (α), then c = e.
This will prove that c1 = c2.

Let (Dc, Rc, tc) be a tree pair for c. Let λ be the leaf of Dc which
overlies r. Then as fr(c) = L(λ) − L((λ)c) = 0, we know that (λ)c is a
word with the same length as λ. But note that (r)c = r and so both λ
and (λ)c are prefixes for r. As they have the same length, we must have
λ = (λ)c.

By Theorem 3.2.70 and Lemma 3.4.9 there is a revealing tree pair
(Dα, Rα, tα) representing α such that the repelling point r underlies a
repeller λ0, say. Let (λi)

k
i=0 be the R–chain of this tree pair corresponding

to the repelling point r. We will first show that c fixes the range of
repulsion λk and then that it fixes all leaves of this R–chain. Consider
(λk)α

−mk for the smallest possible non-negative integer m, such that λ
is a prefix of (λk)α

−mk. Note that such m exists as λ0 = (λk)α
−k = λkΓ

for the spine Γ of r = λk(Γ)∞, and so (λk)α
−mk = λk(Γ)m. As λ is a

prefix of (λk)α
−mk and λ is fixed by c, the word (λk)α

−mk is also fixed
by c, namely ((λk)α

−mk)c = (λk)α
−mk. As c ∈ CV (α), c commutes with

all powers of α. Therefore:

(λk)α
−mk = [(λk)α

−mk]c = [(λk)c]α
−mk =⇒ λk = (λk)c.

This means that c fixes the range of repulsion of the initial R–chain
(λi)

k
i=0. Now consider any non-negative integer l such that l ≤ k. Then:

λl = (λk)α
l−k = [(λk)c]α

l−k = [(λk)α
l−k]c = (λl)c.

162 CHAPTER 4. CENTRALISERS

Therefore c fixes all leaves from the R–chain (λi)
k
i=0, and so all the points

from Cantor space underlying these leaves are fixed by c.

Now we will show that c fixes all leaves from any SS–chains of the
tree pair (Dα, Rα, tα) which start with a source underlying the range of
repulsion leaf λk. Consider any such chain (λ′i)

k′
i=0. Then as by assump-

tion λ′0 is a descendant of λk, we have (λ′0)c = λ′0 as well. Moreover, for
any non-negative integer l such that l ≤ k′ we have:

λ′l = (λ′0)αl = [(λ′0)c]αl = [(λ′0)αl]c = (λ′l)c.

Therefore c fixes all leaves from the SS–chain (λ′i)
k′
i=0, and so all the

points from Cantor space underlying these leaves are fixed by c.

Next we will prove that c fixes the domain of attraction leaf of each A–
chain of the tree pair (Dα, Rα, tα) which overlies a sink which is fixed by
c. From this we will prove that c fixes all leaves of this A–chain. Consider
such an A–chain (λ

′′
i)k
′′
i=0. Say that λ′k′ is a sink such that (λ′k′)c = λ′k′ and

λ
′′
0 is a prefix of λ′k′ . Also let a be the attracting point of α underlying

the attractor λ′′k′′ . Recall the tree pair (Dc, Rc, tc) for c. Let λ′ be the
leaf of the tree Dc overlying a. We will now show that we must have
(λ′)c = λ′. As previously, there must be a non-negative integer m′ such
that (λ

′′
0)αm

′k′′ is a descendant of λ′. Then, (λ′k′)α
m′k′′ also has to be a

descendant of λ′. Recall that λ′k′ is fixed by c. Then:

(λ′k′)α
m′k′′ = [(λ′k′)c]α

m′k′′ = [(λ′k′)α
m′k′′]c.

Thus (λ′k′)α
m′k′′ is also fixed by c. Now consider that (λ′)c = λ

′′ for some
word λ′′ . Let (λ′k′)α

m′k′′ = λ′w for some word w. Then we have to have
(λ′w)c = λ′′w. But as λ′w is fixed by c, λ′ = λ

′′ and hence c fixes λ′.
Therefore, it also fixes (λ

′′
0)αm

′k′′ . As previously we have:

(λ
′′
0)αm

′k′′ = [(λ
′′
0)αm

′k′′]c = [(λ
′′
0)c]αm

′k′′ .

Hence, we have (λ
′′
0)c = λ

′′
0 . Therefore c fixes the domain of attraction

λ
′′
0 as required. Moreover, for all non-negative integers l ≤ k′′ we have:

λ
′′
l = (λ

′′
0)αl = [(λ

′′
0)c]αl = [(λ

′′
0)αl]c = (λ

′′
l)c.

Thus c fixes all leaves in the A–chain (λ
′′
i)k
′′
i=0.

Therefore whenever we have a sink under a domain of attraction such

4.2. LITERATURE REVIEW 163

that the sink is fixed by c, this domain of attraction and all its images
under positive powers of α are also fixed by c.

Similarly we can prove that for any sink underlying a domain of at-
traction which is fixed by c, the whole SS–chain finishing at that sink is
fixed by c. Also similarly for any range of repulsion overlying a source
fixed by c, this range of repulsion and all its images under negative powers
of α are fixed by c.

Recall that the flow graph of α is connected (and non–periodic).
Hence each R–chain, SS–chain and A–chain is connected to our initial
R–chain via a sequence of flow lines. Hence, all their leaves are fixed by
c. As any point x of Cantor space underlies a leaf of some of these leaf
chains, (x)c = x for all x ∈ C. Hence:

e = c2c
−1
1 =⇒ c2 = c1

This proves the lemma.

We continue with analysis of the structure of the centraliser of an α
which has the CNP flow graph. From now on, we are building a proof
that the group Ker(S) is finite.

Lemma 4.2.19. Let α ∈ V have the CNP flow graph and recall the
natural homomorphism q : CV (α) −→ Sym(Rα) introduced in 4.2.6 and
corresponding to the action of CV (α) on Rα. Then, Ker(q) ∼= Z. In
particular, there is a short exact sequence:

0 −→ Z −→ CV (α)
q−→ Q −→ 0

such that Q is a finite group.

Proof. We have that Im(q) = Q ≤ Sym(Rα) and so Q is finite. If we now
prove that Ker(q) ∼= Z, then there is a short exact sequence as required.

For simplicity of notation, let M = Ker(q). We will consider the
restricted map fr|M : M −→ Z. We will show that for any given r ∈ Rα
the function fr|M is an injective homomorphism. This will imply that
M is isomorphic to a subgroup of Z. Finally we will show that |M | > 1

which will prove that M is non-trivial, and hence isomorphic to Z.
First of all, recall by Lemma 4.2.12 that for each r ∈ Rα and any

c1, c2 ∈ CV (α) we have fr(c1c2) = fr(c1)+f(r)c1(c2). Thus, if c1, c2 ∈M ,

164 CHAPTER 4. CENTRALISERS

then in particular (r)c1 = r and so fr(c1c2) = fr(c1) + fr(c2). Hence the
restricted map fr|M is a group homomorphism.

Secondly, suppose that c1, c2 ∈ M are such that fr(c1) = fr(c2). As
c1, c2 ∈M , it means that both c1 and c2 fix the set Rα pointwise. Hence,
as α has the CNP flow graph, by Proposition 4.2.18 we need to have
c1 = c2. This implies that the homomorphism fr|M is injective.

Finally, let k = |Q| and q(α) = σ ∈ Q. Then αk ∈ M as q(αk) =(
q(α)

)k
= σk = 1Q, because the order of σ must divide the order of Q.

Moreover, |α| =∞ as α has important points. Hence 1V , α
k ∈M , which

implies that |M | > 1.
This proves that Ker(q) = M ∼= Z as required.

We will now prove a general result about structure of a group which
admits certain extensions, and apply it immediately afterwards to our
case of interest.

Lemma 4.2.20. Let G,Q,K,M be groups where M ∼= Z and |Q| = k <

∞. Assume that there are two short exact sequences as follows:

0 −→M
iM−→ G

q−→ Q −→ 0

and
0 −→ K

iK−→ G
ψ−→ Z −→ 0

Then |K| <∞.

Proof. Without loss of generality we may assume that the maps iK and
iM are the inclusion maps and so we can form the intersection K ∩M in
G. We aim to show that K is a torsion subgroup. Once we prove that,
as M ∼= Z, we can deduce that K ∩M = {1G}. As M = Ker(q), this
implies that the restricted map q|K : K −→ Q is an injection. Thus as
|Q| <∞, |K| = |q(K)| ≤ |Q| <∞.

Let z ∈ ψ−1(1) and Z = 〈z〉 ≤ G. Recall that also M ≤ G. As
Z ∼= Z , in particular Z is an abelian group and so all its subgroups are
normal in it. Hence we may consider the quotient Z�Z ∩M . By the
second isomorphism theorem, Z�Z ∩M ∼= ZM�M . Then Z�Z ∩M ∼=
ZM�M ≤ G�M ∼= Q. As |Q| < ∞, |Z : Z ∩M | < ∞. In particular,
|Z ∩M | > 1 and so as M ∼= Z, |M : M ∩ Z| < ∞. Recall that |Q| = k.
Hence we know that for all g ∈ G we have gk ∈M . Let m = |M : M ∩Z|.
Then we also conclude that gkm ∈M ∩Z. Now if in addition g ∈ K then

4.2. LITERATURE REVIEW 165

gkm ∈ M ∩ Z ∩K ≤ K ∩ Z = {1G}, as G ∼= K o Z by Lemma 4.2.15.
Therefore, K is a torsion subgroup of finite exponent.

Thus by the discussion at the beginning of the proof we conclude that
|K| <∞ as required.

Corollary 4.2.21. Let α ∈ V have a CNP flow graph. Recall the function
S from Definition 4.2.11. Then |Ker(S)| <∞.

Proof. Recall Lemma 4.2.14 and Lemma 4.2.19. Apply them to Lemma
4.2.20 for G = CV (α) and ψ = S.

We will also present our new alternative proof for Corollary 4.2.21
which does not use Lemma 4.2.20. We felt that both proofs should be
included for at least two reasons. First of all, Lemma 4.2.20 is more gen-
eral and it was only after careful examination of it that we understood
a construction that would work as an alternative proof. On the other
hand, precisely because Lemma 4.2.20 is more general, it does not high-
light the particular properties of the exact sequences with which we work.
Therefore, we present the following:

Lemma 4.2.22. Consider an α ∈ V with a CNP flow graph. Recall the
short exact sequences from Lemma 4.2.14 and Lemma 4.2.19:

0 −→M
iM−→ CV (α)

q−→ Q −→ 0

and
0 −→ K

iK−→ CV (α)
S−→ Z −→ 0

Recall that Q is finite and M ∼= Z. Then K is a finite group.

Proof. We will show that K ∩M = {1CV (α)}. This will imply that the
restricted map q|K is an isomorphism, and so K ∼= q(K) ≤ Q, which
implies |K| ≤ |Q| <∞.

Recall from the proof of Lemma 4.2.19 that α|Q| ∈M . AsM ∼= Z, say
that M = 〈β〉. Then there is a non–zero integer s such that βs = α|Q|.
Now recall from the proof of Lemma 4.2.14 that S(α) > 0. Hence we
have:

0 < |Q| · S(α) = S(α|Q|) = S(βs) = s · S(β)

Therefore, for any integer l, S(βl) = 0 if and only if l = 0. This implies
that K ∩M = {1CV (α)} as required and hence by the discussion at the
beginning of the proof, K is finite.

166 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

Finally, for a better understanding of elements of Ker(S) in our case
of interest, we present the following lemma:

Lemma 4.2.23. Let α ∈ V and let α have the CNP flow graph. Then
Ker(S) is precisely the set of torsion elements of CV (α).

Proof. Let T be the set of torsion elements of CV (α) and let K = Ker(S).
By Lemma 4.2.22, K is finite and so K ⊆ T . Conversely, let t ∈ T . This
implies that there is a positive integer s such that ts = 1CV (α). As S
is a group homomorphism, we have 0 = S(ts) = s · S(t) which implies
that S(t) = 0. This is equivalent to saying that t ∈ K and thus T ⊆ K.
Therefore, T = K as required.

4.3 Elements with a Prescribed Centraliser

The new work presented in this section combines new theory derivations
with some hands–on constructions. We start by presenting the details
of the action of the torsion part of the centraliser of an element α ∈ V
such that α admits the CNP flow graph, on its repelling points. The
implications of these details in the first place highlight conditions which
a successful construction of elements with prescribed centralisers need to
possess. We subsequently present two constructions which target ques-
tions (2) and (3) from [5] respectively. The answers to these questions
are stated in Theorems 4.1.4 and 4.1.5. Full implications of these to-
gether with the work from [5] are summarised in Theorem 4.1.2. Then,
the previously established theory allows us to conclude that there are no
more elements in the centraliser’s torsion subgroup or entire centraliser
respectively. The core idea of the constructions is to embed a graph with
a high degree of symmetry into the flow graphs of elements which we are
designing. We chose to use Cayley graphs for that purpose. Finally we
present examples of an application of each of the constructions. Note that
it is only verifiable after presenting all of the theory that the centralisers
are not bigger than stated in the examples.

Action of K on Rα

Let α ∈ V have a CNP flow graph and K be the torsion subgroup of its
centraliser. We will now perform a detailed analysis of the action of K on
the set of repelling points of α. The properties shown in this subsection

167

are crucial to proving that the torsion subgroup of the centraliser of the
element designed in Constructions 4.3.7 and 4.3.13 is not bigger than we
claim.

One of the properties of K which we can deduce from the previous
section is that K acts faithfully on the repelling points of α.

Corollary 4.3.1. Consider α ∈ V with a CNP flow graph. Then, Ker(S)

acts faithfully on the set Rα.

Proof. By the proof of Lemma 4.2.22, K ∼= q(K) ≤ Q ≤ Sym(Rα).

However, with a bit more work, we can prove an even stronger prop-
erty about the action of K on Rα, namely that every non-trivial element
of K moves each of the repelling points of α. Below we will prove this
fact and discuss its implications. We will also point out how it helped us
come up with an idea for our constructions.

Lemma 4.3.2. Let α ∈ V have a CNP flow graph. Let K be the torsion
of the centraliser of α. Then if (r)β = r for some r ∈ Rα and some
β ∈ K, then β = 1K .

Proof. Suppose that (r)β = r for some r ∈ Rα and some β ∈ K. First of
all, we will show that the restricted map fr|〈β〉 is a group homomorphism.
Recall from Lemma 4.2.12 that for any c1, c2 ∈ CV (α) we have fr(c1c2) =

fr(c1) + f(r)c1(c2). Hence as (r)β = r for all i, j ∈ Z we have:

fr(β
i+j) = fr(β

i) + f(r)βi(β
j) = fr(β

i) + fr(β
j).

Hence, fr|〈β〉 : 〈β〉 −→ Z is a group homomorphism. Now as β is an
element of torsion K, we have that β|K| = 1K . Hence, 0 = fr(1K) =

fr(β
|K|) = |K| · fr(β), which implies that fr(β) = 0. But by Proposition

4.2.18, as (r)β = r = (r)1K and fr(β) = fr(1K), we must have β = 1K .

Corollary 4.3.3. Let α ∈ V have the CNP flow graph. Let K be the
torsion of the centraliser of α and r ∈ Rα. Then StabK(r) = {1K},
|K| = |OK(r)|, |K| divides |Rα| and the action of K on OK(r) is regular.

Proof. By Lemma 4.3.2, if β ∈ K stabilises r, then β = 1K and so
StabK(r) = {1K} for all r ∈ Rα. By the orbit-stabiliser theorem |K| =

|OK(r)| · |StabK(r)| but as |StabK(r)| = 1 we have |K| = |OK(r)|. As

168 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

orbits of repelling points under the action of K are of size |K| each and
as they partition Rα into disjoint sets, |K| divides |Rα|. Finally, K
is transitive on OK(r) by definition. We will now show that for any
r, r′ ∈ OK(r) there is precisely one β ∈ K such that (r)β = r′. This will
prove that the action of K on OK(r) is regular. Suppose then that there
are β1, β2 ∈ K such that (r)β1 = (r)β2. This implies that (r)β1β

−1
2 = r

and by Lemma 4.3.2 it proves that β1 = β2.

Observation 4.3.4. Suppose that α ∈ V has a CNP flow graph and that
K is the torsion subgroup of centraliser of α. Equivalent results linking
K and Rα hold as well for Aα. In particular, for all r ∈ Rα and for all
a ∈ Aα, |OK(r)| = |K| = |OK(a)|. Thus the action of K partitions the
set of attracting points of α into orbits of the same size as the orbits of
the repelling points. Note that this does not imply that the number of
the repelling points is equal to the number of attracting points. We also
conclude that if β ∈ K stabilises any p ∈ Iα, then β is the identity map.

The remark below explains how we use the information above for the
new constructions, and how we know that we have identified the full
torsion subgroup of the centraliser.

Remark 4.3.5. Suppose that we can construct an α belonging to V with
CNP flow graph such that the torsion subgroup K of centraliser has a
subgroup K ′ which is isomorphic to a chosen finite group A. Then we
have the following inequalities:

|A| ≤ |K| = |OK(r)| ≤ |Rα|

for any r ∈ Rα. Hence, if we can construct α such that |A| = |Rα|, we
can conclude that A ∼= K ′ = K.

Construction of α with Prescribed Torsion Subgroup
of its Centraliser

For a given finite group A, we can now proceed to construct an α ∈ V
with a CNP flow graph and with torsion subgroup K of the centraliser
such that K ∼= A. This is where the connection with the Cayley graph
of A and flow graph of α will become apparent. Together with Lemma
4.3.10, the construction will imply Theorem 4.1.4.

Note that we are going to use standard notation A for a generic finite
group in our constructions. The reason to use A in Theorems 4.1.2, 4.1.4

169

and 4.1.5 was to remain consistent with the notation from Bleak et al. in
[5].

Remark 4.3.6. We will construct a general example of an α with all its
attracting and repelling points being stationary, and with one orbit of
repelling points and one orbit of attracting points under the action of K.

Construction 4.3.7. Let A be any finite group. We now construct a
revealing pair (D,R, t) for α:

1. Let h1 = g1 = 1A. Enumerate the elements of A = {g1, . . . , g|A|}.
Pick a generating set {h2, . . . , ht} for A for some integer t ≥ 1

(assume that the generating set is empty if A is trivial), and denote
S = {h1, . . . , ht}.

2. Pick a finite subtree of the infinite rooted binary tree T with pre-
cisely 2|A| leaves, and call it T0.

3. Pick two finite subtrees of the infinite rooted binary tree T with
precisely 1 + |S| leaves each, and call them Tr and Ta respectively.

4. Label |S| of the leaves of Tr by the elements of S, and similarly,
for Ta. The leaves which remain unlabelled will correspond to a
repeller and an attractor in the case of Tr and Ta, respectively. For
clarity of notation, label them both with a symbol h0. For each
integer i such that 0 ≤ i ≤ t let the leaf of Tr labelled with hi have
address Γhi in this tree. Similarly, let the leaf of Ta labelled with
hi have address Γ′hi in this tree.

5. Pick |A| leaves of T0 and label them with the elements of A. Say
that for each g ∈ A the address of the leaf of T0 labelled with g is
λg. To create the tree D we attach |A| copies of the labelled tree
Tr to the tree T0 by identifying the root of a copy of the tree Tr to
each of these labelled leaves of T0. Denote the copy of Tr which is
now rooted at the leaf of T0 with address λg as Tr(g).

6. Consider the unlabelled tree T0 again. Label the common leaves
of the trees D and T0 (namely those leaves of T0 which were not
picked in the process above) with elements of A. Say that for each
g ∈ A the address of the leaf of T0 labelled with g is λ′g. To create
the tree R we attach |A| copies of the tree Ta to the tree T0 by
identifying a root of a copy of the tree Ta to each of these labelled

170 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

leaves of T0. Denote the copy of Ta which is now rooted at the leaf
of T0 with address λ′g as Ta(g).

7. Now establish the flow lines. For each g ∈ A and j ∈ {1, . . . , t},
the leaf λgΓhj of the tree D will be mapped to the leaf λ′ghjΓ

′
hj

of
the tree R. Also, as mentioned earlier, the leaf λgΓh0 of the tree
D (repeller) is mapped to the leaf λg of the tree R. Similarly, the
leaf λ′g of the tree D, is mapped to the leaf λ′gΓ′h0 of the tree R
(attractor).

Lemma 4.3.8. The flow graph of α from Construction 4.3.7 is a CNP
graph.

Proof. We will consider the flow graph of α. We will show that it is CNP.
First of all α has a non-empty set Rα = {λg(Γh0)∞ | g ∈ A} of repelling
points and non-empty set Aα = {λ′g(Γ′h0)∞ | g ∈ A} of attracting points.
Hence if we show that the flow graph is connected, we can conclude that
it is CNP.

The flow graph has flow lines going out of its vertices for every de-
scendant of every address of the form λg being mapped somewhere by α
and has flow lines coming into its vertices for every descendant of every
address of the form λ′g being an image of the map α.

We will show that for all gi, gj ∈ A the vertex of the flow graph
representing the repelling point λgi(Γh0)∞ is connected to the vertex of
the flow graph representing the attracting point λ′gj (Γ

′
h0

)∞.
This is because g−1

i gj = hi1hi2 . . . hir for some hi1 , . . . , hir ∈ S\{h1}
for some non-negative integer r, and so:

λgiΓhi1︸ ︷︷ ︸
λgi

α−→ λ′gihi1
Γ′hi1

λ′gihi1
Γ′h1︸ ︷︷ ︸

λ′gihi1

α←− λgihi1Γh1 λgihi1Γhi2︸ ︷︷ ︸
λgihi1

α−→ . . .

. . .
α→ λ′gihi1 ...hir

Γ′hir = λ′gjΓ
′
hir︸ ︷︷ ︸

λ′gj

Moreover, if gi = gj (and so i=j), we have g−1
i gj = h1 and

λgiΓh1︸ ︷︷ ︸
λgi

α−→ λ′gih1Γ′h1 = λ′giΓ
′
h1︸ ︷︷ ︸

λ′gj

171

as required.
Thus α has a CNP flow graph.

We will now demonstrate how we want to embed A into V so that the
image of the embedding is the full torsion subgroup K of the centraliser
of α in V .

Lemma 4.3.9. Consider T0 from Construction 4.3.7 and the correspond-
ing finite group A. We have a faithful action of A on the leaves of T0:

φ : A ↪→ Sym({λg, λ′g | g ∈ A}) ≤ V.

which is defined by:

(λg′)φ(g) = λg−1g′

(λ′g′)φ(g) = λ′g−1g′

for all g, g′ ∈ A.

Proof. We will show that φ(A) acts on the set LT0 which will imply that
φ is a homomorphism. For all g′, g1, g2 ∈ A:

(λg′)φ(e) = λe−1g′ = λg′

(λ′g′)φ(e) = λ′e−1g′ = λ′g′

(λg′)φ(g1g2) = λ(g1g2)−1g′ = λg−1
2 g−1

1 g′ =

= (λg−1
1 g′)φ(g2) =

(
(λg′)φ(g1)

)
φ(g2)

(λ′g′)φ(g1g2) = λ′(g1g2)−1g′ = λ′
g−1
2 g−1

1 g′
=

= (λ′
g−1
1 g′

)φ(g2) =
(
(λ′g′)φ(g1)

)
φ(g2)

Thus we conclude that φ is a homomorphism. Additionally, the action
is faithful as in this case left multiplication by an inverse element has
trivial effect if and only if we are multiplying by an identity. Hence φ
is an embedding. Therefore, we will now regard φ(A) as a subgroup of
V .

172 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

Lemma 4.3.10. Let α be defined by a tree pair (D,R, t) created via
Construction 4.3.7. Then for each g ∈ A, the action of φ(g) defined in
Lemma 4.3.9 commutes with the action of α.

Proof. Pick any leaf of D. For all g, g′ ∈ A and all hj ∈ S we have three
cases to check:

1. (
(λg′Γh0)α

)
φ(g) = (λg′)φ(g) = λg−1g′ =

= (λg−1g′Γh0)α =
(
(λg′Γh0)φ(g)

)
α

2. (
(λg′Γhj)α

)
φ(g) = (λ′g′hjΓ

′
hj

)φ(g) = (λ′g−1g′hj
Γ′hj) =

= (λg−1g′Γhj)α =
(
(λg′Γhj)φ(g)

)
α

3. (
(λ′g′)α

)
φ(g) = (λ′g′Γ

′
h0)φ(g) = λ′g−1g′Γ

′
h0

= (λ′g−1g′)α =
(
(λ′g′)φ(g)

)
α

Hence, each element of φ(A) centralises α.

Corollary 4.3.11. Consider α constructed from a finite group A in Con-
struction 4.3.7. The torsion subgroup K of CV (α) is isomorphic to A.
This proves our Theorem 4.1.4.

Proof. By Lemma 4.3.8 the flow graph of the constructed α is CNP. By
Lemma 4.3.9 φ is an embedding of A into V . In Lemma 4.3.10 we showed
that all elements of φ(A) commute with α. Hence, as all elements of A
are of finite order, φ(A) is a subgroup of K, which is the set of all torsion
elements of the centraliser of α. Then as α has precisely |A| repelling
points, by Remark 4.3.5, we have A ∼= φ(A) = K.

Remark 4.3.12. We will now highlight the connection of the flow graph
of α to the right Cayley graph of A with generating set {h2, . . . , ht}.

Recall that the flow graph of α is CNP. It has the set of vertices being
orbits of important points of α under the action of α. As for all g ∈ A
we have (λgΓh0)α = λg, all the repelling points of α are stationary. Sim-
ilarly, as for all g ∈ A we have (λ′g)α = λ′gΓ

′
h0
, all the attracting points

of α are stationary. Hence the set of vertices of the flow graph for α is

173

Iα. Then, for all g, g′ ∈ A and for all h ∈ S, there is a unique flow line,
namely an edge of the flow graph, from the repelling point λg′(Γh0)∞

to the attracting point λ′g′h(Γ′h0)∞, with the label λgΓh − λ′ghΓ′h. Re-
place this label with label h. Now, consider the effect of φ(g) on this
flow graph. The repelling point λg′(Γh0)∞ is sent to the repelling point
λg−1g′(Γh0)∞ and the attracting point λ′g′h(Γ′h0)∞ is sent to the attract-
ing point λ′g−1g′h(Γ′h0)∞. Notice that there is still an edge with label h
from our image λg−1g′(Γh0)∞ to our image λ′g−1g′h(Γ′h0)∞.

Finally, for each g ∈ A, collapse the edge with label h1 = e between
vertices of the flow graph denoted by λg(Γh0)∞ and λ′g(Γ′h0)∞, and call the
new vertex g. We then recognise a right Cayley graph of A on generators
S\{h1}, with the set of vertices A and edges labelled by elements of
S\{h1}.

Construction 4.3.7 was inspired precisely by high degree of symmetry
of Cayley graphs. The group A represents automorphisms group of its
right Cayley graph. In its realisation as left multiplication by an inverse
element, its action commutes with the flow effect of α on it. This is the
case because the flow generated by α takes us along edges of the right
Cayley graph, and hence manifests as multiplying vertices on the right
by each of the generators of A.

Construction of α with Prescribed Centraliser

At last, we are interested in realisability of the entire centraliser of an
element of V with a CNP flow graph. By results in Bleak et al. in [5] it
must be of the form Aoψ Z for a finite group A and ψ ∈ Aut(A).

For any choices of a finite group A and automorphism ψ ∈ Aut(A)

the construction which we will present will result in an element αψ ∈ V .
This element αψ will have the property that α|ψ|ψ has CNP flow graph,

CV (α
|ψ|
ψ) = 〈φ(A), αψ〉 where φ is the embedding of A into V defined in

Lemma 4.3.9, and the group 〈φ(A), αψ〉 naturally decomposes as a semidi-
rect product φ(A) oψ 〈αψ〉. We will need to show both that 〈φ(A), αψ〉
centralises α|ψ|ψ , and that any element centralising α|ψ|ψ is in 〈φ(A), αψ〉.
This will prove Theorem 4.1.5.

Construction 4.3.13. Consider a finite group A. We construct a tree
pair for αψ almost like the element α in Construction 4.3.7. Here are the
crucial differences:

174 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

1. We pick an automorphism ψ ∈ Aut(A).

2. We assume that the length of Γh0 is 1. This means that in step 3
of Construction 4.3.7 the tree Ta has to be chosen appropriately, so
that in step 4 the leaf labelled with h0 must have address 0 or 1.

3. We define αψ as follows:

λgΓh0
αψ7→ λψ(g),

λgΓhj
αψ7→ λ′ψ(g)hj

Γ′hj ,

λ′g
αψ7→ λ′ψ(g)Γ

′
h0 ,

for all g ∈ A and for 1 ≤ j ≤ t.

If ψ = idA, then we recover Construction 4.3.7.

Below we will show that unlike in Construction 4.3.7 αψ and φ(A) do
not commute unless ψ is trivial.

Lemma 4.3.14. For any non-trivial ψ ∈ Aut(A), αψ and φ(A) do not
commute.

Proof. Let g, g′ ∈ A.

(
(λg′Γh0)αψ

)
φ(g) = (λψ(g′))φ(g) = λg−1ψ(g′)(

(λg′Γh0)φ(g)
)
αψ = (λg−1g′Γh0)αψ = λψ(g−1g′)

As ψ is not trivial, there exists g ∈ A s.t. g 6= ψ(g), and for such g:

λg−1ψ(g′) 6= λψ(g−1g′)

Definition 4.3.15. Let α ∈ V be represented by a revealing tree pair
(D,R, t). Let the set of all points from C underlying periodic neutral
leaves of (D,R, t) be denoted Pα. Let the set of all points of C lying on
finite orbits under the action of α be denoted Perα. Note that Perα =

Pα t Iα

Before we prove further properties of the centraliser of α|ψ|ψ , we need
to prove some more general facts about points in Cantor space under the
effect of different powers of the same element:

175

Lemma 4.3.16. Let α ∈ V . Then for any positive integer s we have:

1. C\Perα ⊆ C\Perαs ;

2. Rα ⊆ Rαs;

3. Aα ⊆ Aαs;

4. Pα ⊆ Pαs.

Proof. 1. Consider p ∈ C\Perα. Then by definition its orbit under the
group 〈α〉 is infinite and given byOp(〈α〉) = {. . . , (p)α−1, p, (p)α, . . .}
with (p)αi = (p)αj if and only if i = j. This orbit under the action
of the subgroup of 〈α〉 generated by αs splits into s orbits:

Op(〈α〉) = Op(〈αs〉) t O(p)α(〈αs〉) t . . .O(p)αs−1(〈αs〉).

Each of these orbits consists of infinite number of distinct points.
This proves that C\Perα ⊆ C\Perαs .

2. Consider p ∈ Rα. Then by definition there is a positive integer k
such that (p)αk = p and there is a prefix λ of p and a finite string
Γ such that (λΓ)αk = λ and p = λ(Γ)∞. Now consider αs for some
positive integer s. We have:

(p)(αs)k = (p)αk . . . αk︸ ︷︷ ︸
s times

=(p)αk . . . αk︸ ︷︷ ︸
s−1 times

= . . . = p

(λΓs)(αs)k = (λΓs)αk . . . αk︸ ︷︷ ︸
s times

=(λΓs−1)αk . . . αk︸ ︷︷ ︸
s−1 times

= . . . = λ

This proves that p ∈ Rαs .

3. Similarly, consider p ∈ Aα. Then by definition there is a positive
integer k such that (p)αk = p and there is a prefix λ of p and a
finite string Γ such that (λ)αk = λΓ and p = λ(Γ)∞. Now consider
αs for some positive integer s. We have:

(p)(αs)k = (p)αk . . . αk︸ ︷︷ ︸
s times

=(p)αk . . . αk︸ ︷︷ ︸
s−1 times

= . . . = p

(λ)(αs)k = (λ)αk . . . αk︸ ︷︷ ︸
s times

=(λΓ)αk . . . αk︸ ︷︷ ︸
s−1 times

= . . . = λΓs

176 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

This proves that p ∈ Aαs .

4. Consider p ∈ Pα. By definition there is a prefix λ of p such that
the orbit of λ under α is given by Oλ(〈α〉) = {λ, (λ)α, . . . , (λ)αk−1}
for some positive integer k with λ = (λ)αk. Now consider what hap-
pens to λ under the action of αs. Oλ(〈αs〉) = {(λ)αs, . . . , (λ)αlcm(k,s)}
with λ = (λ)αlcm(k,s). Hence the prefix λ for p is still on a finite
orbit, and so in particular p ∈ Pαs .

Corollary 4.3.17. Each of the containments from Lemma 4.3.16 is in
fact an equality.

Proof. This is because for all α ∈ V the sets C\Perα,Rα,Aα and Pα are
pairwise disjoint and their union is the whole Cantor set.

Lemma 4.3.18. The flow graphs of αψ and α|ψ|ψ are CNP.

Proof. Let us first consider the flow graph of αψ. We will show that
there is a sequence of flow lines linking λgi(Γh0)∞ to λ′gj (Γ

′
h0

)∞, for any
gi, gj ∈ A. Note that these are all repelling and attracting points of α.
Let

(
ψ(gi)

)−1
gj = hi1hi2 . . . hir for some hi1 , . . . , hir ∈ S\{h1}. Hence:

λgiΓhi1︸ ︷︷ ︸
λgi

αψ−→ λ′ψ(gi)hi1
Γ′hi1

λ′ψ(gi)hi1
Γ′h1︸ ︷︷ ︸

λ′
ψ(gi)hi1

αψ←−

αψ←− λψ−1(ψ(gi)hi1)Γh1 λgiψ−1(hi1)Γhi2︸ ︷︷ ︸
λgiψ−1(hi1

)

αψ−→ . . .

. . .
αψ→ λ′ψ(gi)hi1 ...hir

Γ′hir = λ′gjΓ
′
hir︸ ︷︷ ︸

λ′gj

Thus αψ is connected and as Iα 6= {} it has a CNP flow graph.
Let us now consider the flow graph of α|ψ|ψ . Recall from Corollary

4.3.17 that Rαψ = R
α
|ψ|
ψ

and Aαψ = A
α
|ψ|
ψ

. Hence if we show that the

flow graph of α|ψ|ψ is also connected, it will follow that it is CNP. We will

show that for each repelling point of α|ψ|ψ and each attracting point of α|ψ|ψ
there is a sequence of flow lines linking them. More formally, consider

177

any gi, gj ∈ A. Let (gi)
−1gj = hi1hi2 . . . hir for some non-negative integer

r and some hi1 , . . . , hir ∈ S\{h1}. Then:

(
λgi(Γh0)|ψ|−1Γhi1︸ ︷︷ ︸

λgi

)
α
|ψ|
ψ =

(
λψ(gi)(Γh0)|ψ|−2Γhi1︸ ︷︷ ︸

λψ(gi)

)
α
|ψ|−1
ψ = . . .

. . . =
(
λψ|ψ|−1(gi)

Γhi1︸ ︷︷ ︸
λ
ψ|ψ|−1(gi)

)
αψ = λ′gihi1

Γ′hi1︸ ︷︷ ︸
λ′gihi1

(
λ′gihi1

(Γ′h0)|ψ|−1Γ′hi1

)︸ ︷︷ ︸
λ′gihi1

α
−|ψ|
ψ =

(
λ′ψ−1(gihi1)(Γ

′
h0)|ψ|−2Γ′hi1

)︸ ︷︷ ︸
λ′
ψ−1(gihi1

)

α
−|ψ|+1
ψ = . . .

. . . =
(
λ′
ψ−|ψ|+1(gihi1)

Γ′h1
)︸ ︷︷ ︸

λ′
ψ−|ψ|+1(gihi1

)

α−1
ψ = λgihi1Γh1︸ ︷︷ ︸

λgihi1

(
λgihi1 (Γh0)|ψ|−1Γhi2

)︸ ︷︷ ︸
λgihi1

α
|ψ|
ψ = λ′gihi1hi2

Γ′hi2︸ ︷︷ ︸
λ′gihi1hi2(

λ′gihi1hi2
(Γ′h0)|ψ|−1Γ′h1

)︸ ︷︷ ︸
λ′gihi1hi2

α
−|ψ|
ψ = λgihi1hi2Γh1︸ ︷︷ ︸

λgihi1hi2

...(
λgihi1 ...hir−1

(Γh0)|ψ|−1Γhir
)︸ ︷︷ ︸

λgihi1 ...hir−1

α
|ψ|
ψ = λ′gihi1 ...hir

Γ′hir︸ ︷︷ ︸
λ′gj

From these calculations we conclude that the flow graph of α|ψ|ψ is
connected, and so by our previous consideration, it is CNP.

Lemma 4.3.19. Let A be any finite group, ψ ∈ Aut(A) and let αψ ∈ V
be the element constructed in Construction 4.3.13. Let φ be the embedding
defined in Lemma 4.3.9. Then the group 〈φ(A), αψ〉 decomposes naturally
as the semidirect product φ(A)oψ 〈αψ〉.

178 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

Proof. Let the tree pair constructed in Construction 4.3.13 be (D,R, t).
First notice that A is a finite group and αψ has infinite order, and so
φ(A) ∩ 〈αψ〉 = {1V }. We will consider all leaves of the tree R and the
effect of α−1

ψ φ(g)αψ on them for any g ∈ A. Our aim is to prove that the
effect is the same as that of φ(ψ(g)). Recall that there are three types of
leaves to consider:

1. λg′

2. λ′g′Γ
′
hj

for hj ∈ S

3. λ′g′Γ
′
h0

for all g′ ∈ A. Let us then proceed to check:

1.

(λg′)(α
−1
ψ φ(g)αψ) = (λψ−1(g′)Γh0)φ(g)αψ =

(λg−1ψ−1(g′)Γh0)αψ = λψ(g−1)g′ = (λg′)φ(ψ(g)).

2.

(λ′g′Γ
′
hj

)(α−1
ψ φ(g)αψ) = (λψ−1(g′h−1

j)Γhj)φ(g)αψ =

(λg−1ψ−1(g′h−1
j)Γhj)αψ = λ′ψ(g−1)g′Γ

′
hj

= (λ′g′Γ
′
hj

)φ(ψ(g)).

3.

(λ′g′Γ
′
h0)(α−1

ψ φ(g)αψ) = (λ′ψ−1(g′))φ(g)αψ =

= (λ′g−1ψ−1(g′))αψ = λ′ψ(g−1)g′Γ
′
h0 = (λ′g′Γ

′
h0)φ(ψ(g)).

Hence, α−1
ψ φ(g)αψ = φ(ψ(g)) and so the group 〈φ(A), αψ〉 decomposes

naturally as the semidirect product φ(A)oψ 〈αψ〉.

We will use the lemma above to prove the following:

Lemma 4.3.20. Let A be any finite group, ψ ∈ Aut(A) and let αψ ∈ V
be the element constructed in Construction 4.3.13 from A. Let φ be the
embedding defined in Lemma 4.3.9. Then φ(A) centralises α|ψ|ψ . More-

over, φ(A) is the torsion subgroup of CV (α
|ψ|
ψ).

179

Proof. Consider g ∈ A. By Lemma 4.3.19 we have α−1
ψ φ(g)αψ = φ(ψ(g)).

Hence α−|ψ|ψ φ(g)α
|ψ|
ψ = φ(ψ|ψ|(g)) = φ(g). This implies that φ(g) and α|ψ|ψ

commute and so φ(g) ∈ CV (α
|ψ|
ψ). Hence φ(A) ⊆ CV (α

|ψ|
ψ). As φ(A) is a

finite group and |φ(A)| = |R
α
|ψ|
ψ

|, by Remark 4.3.5 the group φ(A) is the

torsion subgroup of the centraliser CV (α
|ψ|
ψ).

Lemma 4.3.21. Consider αψ constructed from a finite group A in Con-
struction 4.3.13. The centraliser CV (α

|ψ|
ψ) decomposes naturally as

φ(A)oψ 〈αψ〉.

This proves our Theorem 4.1.5 for α = α
|ψ|
ψ .

Proof. By Lemma 4.3.20 the group φ(A) is the full torsion of the cen-
traliser CV (α

|ψ|
ψ). Thus by Lemma 4.2.16 the centraliser is of the form

φ(A) o Z with the generator of Z commuting with α|ψ|ψ . We know that

αψ commutes with α
|ψ|
ψ and so the group 〈φ(A), αψ〉 is a subgroup of

CV (α
|ψ|
ψ). Recall from Lemma 4.3.19 that the group 〈φ(A), αψ〉 decom-

poses naturally as a semidirect product φ(A)oψ 〈αψ〉. Now we will show
that for all β ∈ CV (α

|ψ|
ψ) we have β ∈ φ(A)oψ 〈αψ〉. This will imply that

φ(A)oψ 〈αψ〉 = CV (α
|ψ|
ψ).

Hence, consider any β ∈ CV (α
|ψ|
ψ). By Corollary 4.2.5 we know that

β permutes elements of the set R
α
|ψ|
ψ

. Let re be the repelling point

λe(Γh0)∞. Note that re is a stationary point of αψ as (λeΓh0)αψ =

λψ(e) = λe. Let rg = (re)β for some g ∈ A. By our construction,
there is a unique element of φ(A) which takes rg to re. Notice that
(rg)φ(g) = rg−1g = re. Therefore, (re)(βφ(g)) = (rg)φ(g) = re and so
βφ(g) stabilises re. Let x = fre(βφ(g)) and note that x ∈ Z. Now recall
from Construction 4.3.13 that we assumed that |Γh0 | = 1. As re is a sta-
tionary point of αψ, we have fre(αψ) = L(λeΓh0)− L(λe) = L(Γh0) = 1.
Thus by Lemma 4.2.12 we have:

fre(βφ(g)α−xψ) = fre(βφ(g)) + f(re)βφ(g)(α
−x
ψ) = x+ fre(α

−x
ψ).

But as (re)αψ = re the restriction map fre |〈αψ〉 is a group homomorphism
and so fre(α

−x
ψ) = −x · fre(αψ) = −x. This implies that:

fre(βφ(g)α−xψ) = x− x = 0.

180 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

To summarise βφ(g)α−xψ and φ(e) both stabilise the repelling point re
and fre(βφ(g)α−xψ) = 0 = fre(φ(e)). Thus by Proposition 4.2.18 we have
βφ(g)α−xψ = φ(e) which is equivalent to β = αxψφ(g−1). This implies that
β ∈ 〈φ(A), αψ〉 as required.

Examples

Finally we are ready to give justified examples of elements of V with pre-
scribed centralisers. In Example 4.3.22 below the torsion subgroup of the
centraliser is isomorphic to S3. In Example 4.3.23 below the centraliser
is isomorphic to C3 oψ Z where ψ is the non–trivial automorphism of
C3. The choice of examples was made so that Example 4.3.22 presents
the smallest case where the torsion subgroup of the centraliser is a non–
abelian group and Example 4.3.23 presents the smallest case where the
automorphism ψ is non–trivial.

Example 4.3.22. Consider A = S3 with the presentation

S3 = 〈a, b | a3 = 1 = b2, ba = a2b〉 = {e, a, a2, b, ab, a2b}

plugged into Construction 4.3.7. Here we will exhibit specific choices
regarding the trees T0, Tr and Ta together with labeling of their leaves by
elements of S3 for the generating set {a, b} of S3. Note that the copies of
the tree Tr are going to be rooted at the leaves with prefix 0 of the tree
T0 (the left part of the tree) and the copies of the tree Ta are going to
be rooted at the leaves with prefix 1 of the tree T0 (the right part of the
tree).

181

Hence we can read off the following information:

λe = 000000 λ′e = 111111

Γh0 = 111 λa = 000001 λ′a = 111110 Γ′h0 = 000

Γe = 0 λa2 = 00001 λ′a2 = 11110 Γ′e = 001

Γa = 10 λb = 0001 λ′b = 1110 Γ′a = 01

Γb = 110 λab = 001 λ′ab = 110 Γ′b = 1

λa2b = 01 λ′a2b = 10

Given the choices of T0 and Tr, the domain tree D from the tree pair
(D,R, t) which we are constructing for α is given by:

182 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

Recall that α represents the following prefix substitutions:

(λgΓh0)α = λg

(λgΓh)α = λ′ghΓ′h for h 6= h0

(λ′g)α = λ′gΓ
′
h0

Hence we can compute where each of the leaves of the domain tree D
are mapped by α:

1 : (λeΓe)α = λ′eΓ
′
e 2 : (λeΓa)α = λ′aΓ

′
a

3 : (λeΓb)α = λ′bΓ
′
b 4 : (λeΓh0)α = λe

5 : (λaΓe)α = λ′aΓ
′
e 6 : (λaΓa)α = λ′a2Γ′a

7 : (λaΓb)α = λ′abΓ
′
b 8 : (λaΓh0)α = λa

9 : (λa2Γe)α = λ′a2Γ′e 10 : (λa2Γa)α = λ′eΓ
′
a

11 : (λa2Γb)α = λ′a2bΓ
′
b 12 : (λa2Γh0)α = λa2

183

13 : (λbΓe)α = λ′bΓ
′
e 14 : (λbΓa)α = λ′a2bΓ

′
a

15 : (λbΓb)α = λ′eΓ
′
b 16 : (λbΓh0)α = λb

17 : (λabΓe)α = λ′abΓ
′
e 18 : (λabΓa)α = λ′bΓ

′
a

19 : (λabΓb)α = λ′aΓ
′
b 20 : (λabΓh0)α = λab

21 : (λa2bΓe)α = λ′a2bΓ
′
e 22 : (λa2bΓa)α = λ′abΓ

′
a

23 : (λa2bΓb)α = λ′a2Γ′b 24 : (λa2bΓh0)α = λa2b

25 : (λ′a2b)α = λ′a2bΓ
′
h0 26 : (λ′ab)α = λ′abΓ

′
h0

27 : (λ′b)α = λ′bΓ
′
h0 28 : (λ′a2)α = λ′a2Γ′h0

29 : (λ′a)α = λ′aΓ
′
h0 30 : (λ′e)α = λ′eΓ

′
h0

Therefore the range tree R from the tree pair (D,R, t) representing
our α is given by:

The torsion subgroup of the centraliser of α is the group φ(S3), for φ
defined in Lemma 4.3.9, which is generated by two elements of V , namely
φ(a) and φ(b). We will analyse the effect each of them has on leaves of
the tree T0 and hence read off the tree pairs for them. The general rules
of an action by φ(g) are given by:

184 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

(λg′)φ(g) = λg−1g′

(λ′g′)φ(g) = λ′g−1g′

Hence the effect of φ(a) on the leaves of T0 is:

(λe)φ(a) = λa−1e = λa2 (λ′e)φ(a) = λ′a2

(λa)φ(a) = λa−1a = λe (λ′a)φ(a) = λ′e

(λa2)φ(a) = λa−1a2 = λa (λ′a2)φ(a) = λ′a

(λb)φ(a) = λa−1b = λa2b (λ′b)φ(a) = λ′a2b

(λab)φ(a) = λa−1ab = λb (λ′ab)φ(a) = λ′b

(λa2b)φ(a) = λa−1a2b = λab (λ′a2b)φ(a) = λ′ab

Therefore the tree pair corresponding to φ(a) is given by:

Similarly, the effect of φ(b) on the leaves of T0 is:

(λe)φ(b) = λb−1e = λb (λ′e)φ(b) = λ′b

(λa)φ(b) = λb−1a = λa2b (λ′a)φ(b) = λ′a2b

(λa2)φ(b) = λb−1a2 = λab (λ′a2)φ(b) = λ′ab

(λb)φ(b) = λb−1b = λe (λ′b)φ(b) = λ′e

(λab)φ(b) = λb−1ab = λa2 (λ′ab)φ(b) = λ′a2

(λa2b)φ(b) = λb−1a2b = λa (λ′a2b)φ(b) = λ′a

185

Therefore the tree pair corresponding to φ(b) is given by:

We conclude that 〈φ(a), φ(b)〉 is the group which corresponds to the
torsion subgroup of centraliser of α in V .

The smallest non-commutative group has been chosen as an example
for A as an early problem was to decide whether torsion of the centraliser
could be realised only by abelian groups (see Question (2) of [5]).

Example 4.3.23. We will construct a tree pair for αψ such that the
centraliser of α|ψ|ψ is of the following form:

C3 oψ Z ∼= 〈a, b | a3 = 1, ab = a2〉

and where ψ is the non-trivial automorphism of C3.
Consider A = C3 with the presentation C3 = 〈a | a3 = 1〉 and ψ such

that ψ(a) = a2 plugged into Construction 4.3.13. Here we will exhibit
specific choices regarding the trees T0, Tr and Ta together with labeling
of their leaves by elements of C3 for the generating set {a} of C3. Note
that the copies of the tree Tr are going to be rooted at the leaves with
prefix 0 of the tree T0 (the left part of the tree) and the copies of the tree
Ta are going to be rooted at the leaves with prefix 1 of the tree T0 (the
right part of the tree).

186 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

Hence we can read off the following information:

Γh0 = 0 λe = 000 λ′e = 111 Γ′h0 = 1

Γe = 10 λa = 001 λ′a = 110 Γ′e = 00

Γa = 11 λa2 = 01 λ′a2 = 10 Γ′a = 01

Recall that αψ represents the following prefix substitutions:

(λgΓh0)αψ = λψ(g)

(λgΓh)αψ = λ′ψ(g)hΓ′h for h 6= h0

(λ′g)αψ = λ′ψ(g)Γ
′
h0

Thus we can compute more specifically:

1 : (λeΓh0)αψ = λe 4 : (λaΓh0)αψ = λa2

2 : (λeΓe)αψ = λ′eΓ
′
e 5 : (λaΓe)αψ = λ′a2Γ′e

3 : (λeΓa)αψ = λ′aΓ
′
a 6 : (λaΓa)αψ = λ′eΓ

′
a

7 : (λa2Γh0)αψ = λa 10 : (λ′a2)αψ = λ′aΓ
′
h0

8 : (λa2Γe)αψ = λ′aΓ
′
e 11 : (λ′a)αψ = λ′a2Γ′h0

9 : (λa2Γa)αψ = λ′a2Γ′a 12 : (λ′e)αψ = λ′eΓ
′
h0

187

Therefore the tree pair (D,R, t) representing our αψ is given by:

The torsion subgroup of the centraliser of α|ψ|ψ is the group φ(C3) for φ
defined in Lemma 4.3.9, which is generated by one element of V , namely
φ(a). We will analyse what effect it has on leaves of the tree T0 and hence
read off the tree pair for it. The general rules of an action by φ(g) are
given by:

(λg′)φ(g) = λg−1g′

(λ′g′)φ(g) = λ′g−1g′

Hence the effect of φ(a) on the leaves of T0 is:

(λe)φ(a) = λa−1e = λa2 (λ′e)φ(a) = λ′a2

(λa)φ(a) = λa−1a = λe (λ′a)φ(a) = λ′e

(λa2)φ(a) = λa−1a2 = λa (λ′a2)φ(a) = λ′a

Therefore the tree pair corresponding to φ(a) is given by:

188 CHAPTER 4. CONSTRUCTING ELEMENTS OF V

We conclude that 〈φ(a)〉 is the torsion subgroup of centraliser of α|ψ|ψ in

V and that the centraliser CV (α
|ψ|
ψ) naturally decomposes as a semidirect

product φ(C3)oψ 〈αψ〉.

Chapter 5

Free Products

In this chapter we present my contribution to joint work with Collin Bleak
and Francesco Matucci [4]. We intend to familiarise the reader with the
dynamics occurring on Cantor space under the action of a subgroup of V
when that group decomposes as a non–trivial free product. The new work
presented in this chapter relates to the work of Bleak and Salazar–Díaz
on free products in V in [8] where the non–embedding of Z2 ∗ Z into V
was proven.

The original question which inspired this work was posed by Bleak
and Salazar–Díaz in [8]. They asked whether each subgroup of V which
can be expressed as a free product of two non–trivial groups admits a
Ping–Pong action on Cantor space. A Ping–Pong, as in Definition 5.2.1,
is a dynamical structure occurring on a set on which a group acts which
assures decomposition of this group as a free product. The converse is
not true in general, as there are known actions of free groups on spaces
which admit no Ping–Pong structure, as shown by White [32].

We show in this chapter that whenever we have a subgroup of V which
can be decomposed as a free product of two groups which are not both
torsion, there is a Ping–Pong action on a set of subsets of Cantor space.
The Ping–Pong sets are constructed using important points, introduced
in Section 3.4, of an infinite order element of one of these groups. We
continue to work towards expanding our findings, especially to search for
Ping–Pong dynamics reflected in types of sets distinct to the ones from
our construction.

We also want to draw attention to the results of Bennett and Bleak
presented in [2] which state that the class of demonstrable subgroups
of V is precisely the class of virtually free subgroups of V . Note that

189

190 CHAPTER 5. FREE PRODUCTS

each free product of two finite groups is a virtually free group. For a
subgroup of V , being demonstrable means that there is a demonstrative
embedding of it into V . For a subgroup of V to be demonstrative means
that it acts on C in a specific way. Particularly, there is a finite address
w ∈ {0, 1}∗ such that, for each non–trivial element α of the group, there is
no point in Cantor space underlying addresses w and wα simultaneously.
This implies that if a demonstrative group can be decomposed as a free
product, it admits a Ping–Pong action on C. It is worth noting that this
Ping–Pong construction uses a different type of subsets of C than the one
described in our work.

5.1 Statement of Results

The main result of this chapter is given by the following theorem:

Theorem 5.1.1. Consider a group generated by two subgroups of V which
are not both torsion, say A and B. Suppose that the groups A ∗ B and
〈A,B〉 are isomorphic via the canonical map:

f : A ∗B −→ 〈A,B〉

a1 · b1 · a2 · b2 · . . . · ak · bk 7−→ a1b1a2b2 . . . akbk

for k ∈ Z, a1 ∈ A, a2, . . . , ak ∈ A\{e}, b1, . . . , bk−1 ∈ B\{e} and bk ∈ B,
i.e. for any element of A ∗ B in its normal form. Then there is a set
X of subsets of C such that the induced action of 〈A,B〉 is a Ping–Pong
action.

We will say that 〈A,B〉 canonically decomposes or factors as a free
product if the map f defined above is an isomorphism. We will further
explain what it means to admit a Ping–Pong action in Definition 5.2.1.

5.2 Literature Review

In this section, we present the statement and proof of Ping–Pong Theo-
rem, which is based on the proof found in de la Harpe [16]. The original
result, however, was first used by Klein in [15], [20] at the end of 19th cen-
tury. We also restate a theorem from Bleak and Salazar–Díaz [8] which
will be crucial for reaching conclusions of this chapter.

5.2. LITERATURE REVIEW 191

Ping–Pong

Definition 5.2.1 (Ping–Pong). Consider a group G acting on a set X.
Suppose A,B are non–trivial subgroups of G, such that |A| > 2. Suppose
that there are subsets XA, XB ⊂ X, such that:

1. XB\XA 6= ∅;

2. for all a ∈ A\{e}, we have (XB)a ⊆ XA;

3. for all b ∈ B\{e}, we have (XA)b ⊆ XB.

Then we say that the groups A and B admit a Ping–Pong on the set X,
or on the set XA ∪XB, or on the sets XA and XB.

We can also say that the groups A and B admit Ping–Pong dynamics
or a Ping–Pong action.

Theorem 5.2.2 (Ping–Pong Theorem). Suppose that G, X, A, B, XA

and XB are as presented in Definition 5.2.1. Then 〈A,B〉 factors as free
product A ∗B.

Proof. Suppose that the groups A,B and the sets XA, XB are as in Defi-
nition 5.2.1 and suppose that the Conditions 1), 2) and 3) from Definition
5.2.1 hold.

Let c1 ·c2 ·. . .·ck for some positive integer k be a non–trivial expression
in a normal form of a formal free product A ∗ B. Namely, c1, . . . , ck are
all non–trivial and for any consecutive ci and ci+1 (for 1 ≤ i < k), ci and
ci+1 are in distinct groups A or B.

Since |A| > 2, there is a ∈ A such that a−1(c1 · . . . · ck)a resolves as a
product d1 ·d2 · . . . ·dm in the normal form of A∗B such that d1, dm ∈ A.
Consider the following cases:

If c1, ck ∈ A then chose a = e.

If c1, ck ∈ B then chose a ∈ A \ {e}.

If c1 ∈ A, ck ∈ B then chose a ∈ A \ {e, c1}.

If c1 ∈ B, ck ∈ A then chose a ∈ A \ {e, c−1
k }.

In all cases the resolved product a−1c1 · . . . · cka = d1 · d2 · . . . · dm begins
and ends with a non–trivial elements of A. Now consider x ∈ XB \XA,

192 CHAPTER 5. FREE PRODUCTS

which exists by Condition 1). Then (x)d1 . . . dm = y ∈ XA by Conditions
2) and 3), and so x 6= y. Therefore, the product d1 . . . dm is non–trivial.
As d1 . . . dm = (c1 . . . ck)

a, we also conclude that c1 . . . ck is a non–trivial
word. As c1 · . . . ·ck was chosen as arbitrary and non–trivial in the normal
form of A∗B, this proves that there is no non–empty reduced word which
reduces to identity in 〈A,B〉. This proves the theorem, that A and B span
a free product.

Dynamics of Free Products

First, we will prove Lemma 5.2.3 which we will need for Theorem 5.2.4.
The lemma is new as stated and it uses prefix substitution, as consis-
tent with this thesis. A non–algebraic proof was presented in Bleak and
Salazar–Díaz [8].

Lemma 5.2.3. Let a, b ∈ V be non–torsion elements. Suppose that Ia ⊆
Ib. Let m and n be the smallest positive integers such that c = am and
d = bn have no non–trivial periodic orbits on Cantor space (see Remark
3.4.20). Then the commutator [c, d] fixes some prefix of each important
point of a.

Proof. First, notice that Ic = Iam = Ia ⊆ Ib = Ibn = Id by Corollary
4.3.17. Note that by definition of c, all important points of c are station-
ary under application of c. Similarly, by definition of d, all important
points of d are stationary under application of d. Then suppose that
p ∈ Ic = Ic ∩ Id. This means that (p)c = p = (p)d. Moreover, there are
finite words λc, λd,∆c,∆d such that λc(∆c)

∞ = p = λd(∆d)
∞ and one of

the following holds:

1. We have (λc∆c)c = λc and (λd∆d)d = λd. This means that p ∈
Rc ∩Rd.

2. We have (λc)c = λc∆c and (λd∆d)d = λd. This means that p ∈
Ac ∩Rd.

3. We have (λc∆c)c = λc and (λd)d = λd∆d. This means that p ∈
Rc ∩ Ad.

4. We have (λc)c = λc∆c and (λd)d = λd∆d. This means that p ∈
Ac ∩ Ad.

Now, let c′ be defined as follows:

5.2. LITERATURE REVIEW 193

• if p ∈ Rc then c′ = c;

• if p ∈ Ac then c′ = c−1.

Similarly, let d′ be defined as follows:

• if p ∈ Rd then d′ = d;

• if p ∈ Ad then d′ = d−1.

Then we can conclude that (λc∆c)c
′ = λc and (λd∆d)d

′ = λd. Without
loss of generality, suppose that |λc| ≥ |λd|. As λc and λd are both prefixes
for the point p, there is a (possibly empty) finite word λ′ such that λc =

λdλ
′. Note though that λc is a prefix of p = λd(∆d)

∞. Hence we have
λ′ = (∆d)

kb1b2 . . . bl for some non–negative integer k, bi ∈ {0, 1} for all
1 ≤ i ≤ l, and for b1b2 . . . bl a proper, possibly empty prefix of ∆d. Say
that ∆d = b1b2 . . . blbl+1 . . . b|∆d|. Then:

(λcbl+1 . . . b|∆d|b1b2 . . . bl)d
′ = (λd(∆d)

kb1b2 . . . blbl+1 . . . b|∆d|b1b2 . . . bl)d
′ =

(λd(∆d)
k+1b1b2 . . . bl)d

′ = λd(∆d)
kb1b2 . . . bl = λc

Let us then define Γd = bl+1 . . . b|∆d|b1b2 . . . bl and λ = λc. Thus (λΓd)d
′ =

λ and so p = λ(Γd)
∞. Now observe that:

p = (p)d′−1 = (λ(∆c)
∞)d′−1 = λΓd(∆c)

∞

p = (p)c′−1 = (λ(Γd)
∞)c′−1 = λ∆c(Γd)

∞

Therefore, in particular we have λΓd∆c = λ∆cΓd, as both the addresses
have the same length and are both a prefix for p. We claim that the
commutator [c, d] always fixes the address λΓd∆c.

We have the following cases to consider:

1. We have (λ∆c)c = λ and (λΓd)d = λ.

(λΓd∆c)[c, d] = (λΓd∆c)c
−1d−1cd = (((λ)c−1)Γd∆c)d

−1cd =

(λ∆cΓd∆c)d
−1cd = (((λ)d−1)∆cΓd∆c)cd = (λΓd∆cΓd∆c)cd =

((λΓd∆c)Γd∆c)cd = ((λ∆cΓd)Γd∆c)cd = (((λ∆c)c)ΓdΓd∆c)d =

(λΓdΓd∆c)d = ((λΓd)d)Γd∆c = λΓd∆c

194 CHAPTER 5. FREE PRODUCTS

2. We have (λ)c = λ∆c and (λΓd)d = λ.

(λΓd∆c)[c, d] = (λΓd∆c)c
−1d−1cd = (λ∆cΓd)c

−1d−1cd =

(λΓd)d
−1cd = (λΓdΓd)cd = (λ∆cΓdΓd)d = (λΓd∆cΓd)d =

λ∆cΓd = λΓd∆c

3. We have (λ∆c)c = λ and (λ)d = λdΓd.

(λΓd∆c)[c, d] = (λΓd∆c)c
−1d−1cd = (λ∆cΓd∆c)d

−1cd =

(λΓd∆c∆c)d
−1cd = (λ∆c∆c)cd = (λ∆c)d = λΓd∆c

4. We have (λ)c = λ∆c and (λ)d = λdΓd.

(λΓd∆c)[c, d] = (λΓd∆c)c
−1d−1cd = (λ∆cΓd)c

−1d−1cd =

(λΓd)d
−1cd = (λ)cd = (λ∆c)d = λΓd∆c

This proves our claim. Moreover, as p was chosen arbitrarily and inde-
pendently of the definition of c and d, it means that the commutator [c, d]

fixes a prefix of each important point of a. In particular, this means that
this commutator fixes all important points of α.

To complete the setting of the scene for presenting our findings, we
will quote the following theorem from B., Bleak and Matucci [4]. Most
of the proof is implicit in Bleak and Salazar–Díaz [8], but the specific
context is different.

Note that by a free basis of rank n we mean a set of n elements of V
which generate a free subgroup of rank n.

Theorem 5.2.4. Let a, b ∈ V be non–torsion elements. Suppose that
Ia ⊆ Ib. Then {a, b} is not a free basis of rank 2.

Proof. Let m and n be the smallest positive integers such that c = am

and d = bn have no non–trivial periodic orbits on Cantor space. Consider
the commutator γ = [c, d].

Note that if γ is torsion, then {c, d} is not a free basis of rank two. In
this case, {a, b} cannot be a free basis of rank two either, as 〈c, d〉 ≤ 〈a, b〉,
c = am and d = bn. Hence, we will assume that γ is not torsion. Let
r be a minimal positive integer such that θ = γr admits no non–trivial
periodic orbits on Cantor space.

5.3. ON DYNAMICS OF FREE PRODUCTS IN V 195

Here we will emphasise that c and θ do not admit non–trivial pe-
riodic orbits in their action on Cantor space. Also, by Lemma 5.2.3,
the commutator γ = [c, d] fixes a prefix of each important point of a.
Hence, θ = γr also fixes a prefix of each important point of a. Recall
that Ia = Ic. This means that the support of θ is disjoint from the small
neighbourhoods around important points of c. Therefore, by Lemma 4.4.
of Bleak and Salazar–Díaz [8], we can find a non–zero integer s such that
Supp(θc

s
) ∩ Supp(θ) ∩ Supp(c) = ∅. This property can be interpreted as

follows: for a power of c big enough, say cs, all the support which θ is
sharing with c can be moved entirely into the neighbourhoods of Ic by
conjugating θ by cs. As θ acts trivially in all of these neighbourhoods,
we conclude that there are no points in Cantor space which can be in the
support of all of the following three elements: c, θ, θcs .

From here, setting µ = ν = c and θ = γr, we can follow the dis-
cussion of [8] from the point immediately following the proof of Lemma
4.4. throughout to the end of the paper. In this discussion, the element
ω = [θj , (θc

s
)j] is constructed, with carefully chosen positive integer j

such that ω is torsion of order 1,2,3 or 6 by the analysis of the orbits of
all possible types of points its support. Hence, 〈θcs , θ〉 is not free of rank
2. This implies that 〈c, θ〉 = 〈c, cd〉 is not free of rank 2. This, in turn,
implies that 〈c, d〉 cannot be a free group of rank 2, and so finally, that
〈a, b〉 is not a free group of rank 2. This proves the theorem.

5.3 On Dynamics of Free Products in V

We shall proceed to prove Theorem 5.1.1. The theorem could be sum-
marised as follows: if a subgroup of V decomposes as a free product of
two groups, and at least one of them is not torsion, then these groups
admit Ping–Pong dynamics on a set of subsets of Cantor space.

Hence, we will assume that we have two non–trivial subgroups of V ,
A and B, which generate a free product. Without loss of generality, we
will assume that there is an element a ∈ A such that a is a non–torsion
element. This means that the set of important points Ia is non–empty.
There is also an induced action on the set X consisting of the full orbit
of Ia under the group 〈A,B〉. We will then proceed with construction of
subsets XA and XB. We will then prove that the sets XA and XB satisfy
the criteria from Definition 5.2.1. This will prove that A and B admit
Ping–Pong dynamics on X, and hence prove Theorem 5.1.1.

196 CHAPTER 5. FREE PRODUCTS

Note that we do not need an assumption about A and B generating
a free product for the following lemma:

Lemma 5.3.1. Let A and B be two subgroups of V . Let a be an infinite
order element of A. Consider the sets X, XA and XB:

X = {(Ia) · w | w ∈ 〈A,B〉}

XA =
∞⋃
i=0

{
(Ia) ·

∏i
j=1 bjaj | b1, . . . , bj ∈ B \ {e}, a1, . . . , aj ∈ A \ {e}

}
XB =

∞⋃
i=0

{
(Ia) · b0

∏i
j=1 ajbj | a1, . . . , aj ∈ A \ {e}, b0, . . . , bj ∈ B \ {e}

}
Then the group 〈A,B〉 acts on the set X, and the sets XA and XB are
as follows:

1. (XA)b′ ⊆ XB for all b′ ∈ B \ {e};

2. (XB)a′ ⊆ XA for all a′ ∈ A \ {e}.

Proof. The group 〈A,B〉 acts on the set X as each element of the group
represents a bijection on C.

Now, consider an element S = (Ia) · b0
∏i
j=1 ajbj of the set XB for

some non–negative integer i and a1, . . . , aj ∈ A\{e}, b0, . . . , bj ∈ B \{e}.
Let a′ be such that a′ ∈ A \ {e}. Consider the effect of a′ on S:

(S)a′ = ((Ia) · b0
i∏

j=1

ajbj)a
′ = (Ia) ·

i+1∏
j=1

b′ja
′
j

for b′1 = b0, b
′
2 = b1, . . . , b

′
i+1 = bi and a′1 = a1, a

′
2 = a2, . . . , a

′
i+1 = a′.

Therefore (S)a′ ∈ XA as required.
Now consider an element S = (Ia) ·

∏i
j=1 bjaj of the set XA for some

non–negative integer i and a1, . . . , aj ∈ A \ {e}, b1, . . . , bj ∈ B \ {e}. Let
b′ be such that b′ ∈ B \ {e}. Consider the effect of b′ on S:

(S)b′ = ((Ia) ·
i∏

j=1

bjaj)b
′ = (Ia) · b0

i∏
j=1

ajb
′
j

for b0 = b1, b
′
1 = b2, . . . , b

′
i−1 = bi, b

′
i = b′. Therefore (S)b′ ∈ XB as

required.

5.3. ON DYNAMICS OF FREE PRODUCTS IN V 197

Definition 5.3.2. Let A and B be non–trivial subgroups of V . Suppose
that the group 〈A,B〉 naturally factors as the free product A ∗ B. Let
the sets XA and XB be defined as in Lemma 5.3.1. Then let us define
the following subsets of the group 〈A,B〉:

TA =
∞⋃
i=0

{b1a1b2a2 . . . biai | b1, . . . , bi ∈ B \ {e}, a1, . . . , ai ∈ A \ {e}}

TB =
∞⋃
i=0

{b0a1b1a2b2 . . . aibi | b0, b1, . . . , bi ∈ B \ {e}, a1, . . . , ai ∈ A \ {e}}

T = TA ∪ TB

Remark 5.3.3. Note that with TA and TB defined as above, we can more
easily define sets XA and XB from Lemma 5.3.1:

XA = {(Ia) · w | w ∈ TA}

XB = {(Ia) · w | w ∈ TB}

Note also, that the union T = TA ∪ TB is in fact a right transversal for
the cosets of the group A in the group 〈A,B〉, as by assumption 〈A,B〉
is canonically isomorphic to a free product.

Now, we only need to prove that if A and B generate a free product
in V , then XB \XA 6= ∅. Then the sets XA and XB will be the sets on
which A and B admit a Ping–Pong.

Let us first prove a preliminary lemma:

Lemma 5.3.4. Suppose that a,w ∈ V such that |a| =∞. Then (Ia)·w =

Iaw .

Proof. We will first show that (Ia) · w ⊆ Iaw .
Let p ∈ Ra. Then p = λ(Γ)∞ for some words λ,Γ ∈ {0, 1}∗ where

there is a positive integer k such that (λΓ)ak = λ. Consider the image
p ·w. As w acts as prefix substitution, there must be a positive integer s
such that the following map is defined: (λ(Γ)s)w = λ′ where λ′ ∈ {0, 1}∗.
Then we also have also p · w = (λ(Γ)∞)w = λ′(Γ)∞. Consider the effect
of (aw)k on the point p · w:

[λ′(Γ)∞](aw)k = (λ(Γ)∞w)w−1akw = [(λ(Γ)∞)ak]w = (λ(Γ)∞)w = λ′(Γ)∞

Hence we know that the point p ·w is fixed by (ak)w. Now let us consider

198 CHAPTER 5. FREE PRODUCTS

the effect of (ak)w on the address λ′Γ which is a prefix of p · w:

(λ′Γ)(aw)k = (λ(Γ)s+1w) · w−1akw = (λ(Γ)s)w = λ′

Therefore the point p · w is a repelling point of aw. This proves that
(Ra) · w ⊆ Raw .

Let p ∈ Aa. Then p = λ(Γ)∞ for some words λ,Γ ∈ {0, 1}∗ such that
there is a positive integer k such that (λ)ak = λΓ. Consider the image
p ·w. As w acts as prefix substitution, there must be a positive integer s
such that the following map is defined: (λ(Γ)s)w = λ′ where λ′ ∈ {0, 1}∗.
Then we also have also p · w = (λ(Γ)∞)w = λ′(Γ)∞. Consider the effect
of (aw)k on the point p · w:

[λ′(Γ)∞](aw)k = (λ(Γ)∞w)w−1akw = [(λ(Γ)∞)ak]w = (λ(Γ)∞)w = λ′(Γ)∞

Hence we know that the point p ·w is fixed by (ak)w. Now let us consider
the effect of (ak)w on the address λ′ which is a prefix of p · w:

(λ′)(aw)k = (λ(Γ)sw) · w−1akw = (λ(Γ)s+1)w = λ′Γ

Therefore the point p · w is an attracting point of aw. This proves that
(Aa) · w ⊆ Aaw .

As (Ra) · w ⊆ Raw and (Aa) · w ⊆ Aaw , we have (Ia) · w ⊆ Iaw .
Now we will show that Iaw ⊆ (Ia) · w. Note that as choices of a and

w for the result above were arbitrary, we also have (Iaw) ·w−1 ⊆ Ia. This
implies that (Iaw) ⊆ (Ia) ·w. Hence together with our previous result we
have proven that (Ia) · w = Iaw .

Using the above, we proceed to prove the statement XB \ XA 6= ∅.
We will achieve it by first showing a considerably stronger property:

Lemma 5.3.5. Let A, B, and T be defined as in Definition 5.3.2. Sup-
pose that A contains an element a of infinite order. Then, if Iaw1 = Iaw2

for some w1, w2 ∈ T , then w1 = w2.

Proof. By Lemma 5.3.4 we have Iaw1 = Ia ·w1 and Iaw2 = Ia ·w2. Hence,
Iaw1 = Iaw2 is equivalent to Ia = (Ia) · w1w

−1
2 . Now, let us consider the

following cases:

1. At least one of w1, w2 is the identity. Without loss of generality, let
w2 = e and so the equation Ia = (Ia) ·w1w

−1
2 becomes Ia = (Ia) ·w

5.3. ON DYNAMICS OF FREE PRODUCTS IN V 199

for some w ∈ T .

2. Not both of w1, w2 are in TA \{e} and not both are in TB. Without
loss of generality, w1 ∈ TA \ {e} and w2 ∈ TB. Hence, there are
some positive integers j and k such that:

w1 = b1a1 . . . bjaj

w2 = bj+kaj+k−1bj+k−1 . . . aj+1bj+1

for some ai ∈ A \ {e} and some bi ∈ B \ {e}. Then:

w1w
−1
2 = b1a1 . . . bjajb

−1
j+1a

−1
j+1 . . . a

−1
j+k−1b

−1
j+k ∈ TB \B

Therefore, the equation becomes Ia = (Ia) ·w for some w ∈ TB \B.

3. We have both w1, w2 ∈ TA \ {e} or both w1, w2 ∈ TB. Without
loss of generality, let w1 be longer or of the same length as w2. The
word w1w

−1
2 might admit cancellations in the middle, at most as

many as the length of the word w2. Now, if w1 = w2, then there
is nothing to prove. Hence we will presume that w1 6= w2 and so
w1w

−1
2 is a non–trivial word which starts with a non–trivial element

of B, and may finish with a non–trivial word from A or B. Hence,
w1w

−1
2 ∈ T .

Thus, the equation becomes Ia = (Ia) · w for some w ∈ T .

Hence we will instead prove that if Ia = Iaw for some w ∈ T , then
w = e. Note that this equation is equivalent to Ia = I

aw−1 for some
w ∈ T . By Theorem 5.2.4 we conclude that {a, aw−1} cannot be a free
basis of rank 2. However, recall that the groups A and B canonically
form a free product.

Then, if w ∈ TB, namely it starts and finishes with a non-trivial
element of B, then each non—trivial power of the generator aw−1 , given
by (aw

−1
)m = wamw−1, admits no cancellations with the letter a on the

left or right. Hence, {a, aw−1} must be a free basis of rank 2, which gives
us a contradiction.

Thus, presume that w ∈ TA \ {e}. Hence suppose that w = w′a′ for
some words w′ ∈ TB and a′ ∈ A \ {e}. But then the word (aw

−1
)m =

((aa
′−1

)w
′−1

)m = w′(aa
′−1

)mw′−1 admits no cancellations with the letter
a on the left or right. Also, (aa

′−1
)m remains an element of infinite order,

200 CHAPTER 5. FREE PRODUCTS

and so again, {a, aw−1} must be a free basis of rank 2, which gives us a
contradiction.

Therefore, we must have w = e which gives us our desired conclusion.

Corollary 5.3.6. For the the groups A and B as in Definition 5.3.2, and
the sets XA and XB as in Lemma 5.3.1, we have XA ∩XB = ∅.

Proof. By Lemma 5.3.4 and Lemma 5.3.5.

Corollary 5.3.7. Let A and B be subgroups of V and a ∈ A have infinite
order. Let the map f be as defined in Theorem 5.1.1. Suppose that f is
an isomorphism (i.e. A and B generate a free product). Let the sets XA

and XB be as in Lemma 5.3.1. Then XB \XA 6= ∅.

Proof. Consider S = (Ia) · b for some b ∈ B \{e}. By definition, S ∈ XB.
However, by Corollary 5.3.6 the sets XA and XB are disjoint, and so
S ∈ XB \XA.

Finally, this last corollary in the same time proves Theorem 5.1.1,
which is the central result of this chapter:

Corollary 5.3.8. Let A and B be subgroups of V and a ∈ A have infinite
order. Let the map f be as defined in Theorem 5.1.1. Suppose that f is
an isomorphism. Let the sets XA and XB be as defined in Lemma 5.3.1.
Then the groups A and B admit a Ping–Pong action on the sets XA and
XB.

This proves Theorem 5.1.1.

Proof. By Lemma 5.3.1 and Corollary 5.3.7 the sets XA and XB satisfy
conditions from Definition 5.2.1.

Bibliography

[1] Stefan Banach and Alfred Tarski (1924), Sur la décomposition
des ensembles de points en parties respectivement congruentes, Fund.
Math. 6, 244–277.

[2] Daniel Bennett and Collin Bleak (2016), A dynamical definition of
f.g. virtually free groups, Int. J. Algebra Comput. 26, 105–121.

[3] Ewa Bieniecka, On constructing elements with a prescribed centraliser
in the Thompson’s Group V , (in preparation).

[4] Ewa Bieniecka, Collin Bleak and Francesco Matucci, Free subgroups
of Thompson’s group V , (in preparation).

[5] Collin Bleak, Hannah Bowman, Alison Gordon Lynch, Garrett Gra-
ham, Jacob Hughes, Francesco Matucci and Eugenia Sapir (2013),
Centralizers in the R. Thompson group Vn, Groups Geom. Dyn. 7,
no. 4, 821–865.

[6] Collin Bleak and Roman Kogan, vTrees, 2007 (updated 2015).

[7] Collin Bleak , Francesco Matucci and Max Neunhöffer (2016), Em-
beddings into Thompson’s group V and coCF groups, Journal of the
London Mathematical Society, vol 94, no. 2, 583–597.

[8] Collin Bleak and Olga Salazar–Díaz (2013), Free products in R.
Thompson’s group V , Trans. Amer. Math. Soc. 365, no. 11, 5967–
5997.

[9] Collin Bleak and Martyn Quick (2017), The infinite simple group V of
Richard J. Thompson: presentations by permutations, Groups Geom.
Dyn. (to appear).

201

202 BIBLIOGRAPHY

[10] Matthew G. Brin (1997), The chameleon groups of Richard J.
Thompson: automorphisms and dynamics, Inst. Hautes Etudes Sci.
Publ. Math. (1996), no. 84, 5–33.

[11] Matthew G. Brin (2004), Higher dimensional Thompson groups,
Geom. Dedicata 108, 163–192.

[12] Matthew G. Brin and Craig C. Squier (1985), Groups of piecewise
linear homeomorphisms of the real line, Invent. Math. 79, 485–498.

[13] Kenneth S. Brown (1987), Finiteness properties of groups, J. Pure
Appl. Algebra 44, 45–75.

[14] J. W. Cannon, W. J. Floyd and W. R. Parry (1996), Introductory
Notes on Richard Thompson’s Groups, L’Enseign. Math. 42, 215–256.

[15] Robert Fricke and Felix Klein (1897), Vorlesungen über die theorie
der automorphen funktionen, vol. 1, Teubner, Leipzig.

[16] Pierre de la Harpe (2000), Topics in Geometric Group Theory, Uni-
versity of Chicago Press.

[17] Graham Higman (1974), Finitely presented infinite simple groups,
Department of Pure Mathematics, Department of Mathematics,
I.A.S. Australian National University, Canberra, 1974, Notes on Pure
Mathematics, No. 8.

[18] Derek F. Holt and Claas E. Röver (2006), Groups with indexed co-
word problem, Internat. J. Algebra Comput. 16, no. 5, 985–1014.

[19] Martin Kassabov and Francesco Matucci (2012), The simultaneous
conjugacy problem in groups of piecewise linear functions, Groups
Geom. Dyn.,6, 279-315.

[20] Felix Klein (1883), Neue Beiträge zur Riemann’schen Functionen-
theorie, Math. Annalen 21, 141–218.

[21] Jörg Lehnert (2008), Gruppen von quasi-Automorphismen, PhD the-
sis, Goethe Universität, Frankfurt.

[22] Jörg Lehnert and Pascal Schweitzer (2007), The co–word problem for
the Higman—Thompson group is context-free, Bull. Lond. Math. Soc.
39, no. 2, 235–241.

BIBLIOGRAPHY 203

[23] Yash Lodha and Justin Tatch Moore (2016), A nonamenable finitely
presented group of piecewise projective homeomorphisms, Groups
Geom. Dyn. 10, 177–200.

[24] Francesco Matucci (2008), Algorithms and classification in groups
of piecewise-linear homeomorphisms, PhD Thesis, Cornell University,
Ithaca NY.

[25] Nicolas Monod (2013), Groups of piecewise projective homeomor-
phisms, Proceedings of the National Academy of Sciences of the
United States of America, 110, no. 12, 4524–4527.

[26] John von Neumann (1929), Zur allgemeinen Theorie des Maßes,
Fund. Math. 13, 73-–116.

[27] Alexander Ol′shanskĭı (1980), On the question of the existence of an
invariant mean on a group, Uspekhi Mat. Nauk 35, no. 4, 199–200.

[28] Olga Patricia Salazar–Díaz (2010), Thompson’s group V from a dy-
namical viewpoint, Internat. J. Algebra Comput., 20, no. 1, 39–70.

[29] Alfred Tarski (1929), Sur les fonctions additives dans les classes ab-
straites et leur application au problème de la mesure, C. R. Soc. Sc.
Varsovie 22, 114–117.

[30] Alfred Tarski (1938), Algebraische Fassung des Maßproblems, Fund.
Math. 31, 47–66.

[31] Richard J. Thompson (1965), Handwritten widely circulated notes.

[32] Samuel White (1988), The group generated by x 7→ x+1 and x 7→ xp

is free, J. Algebra 118, 408–422.

	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	History
	How V Has Been Studied
	Motivation for Studying Embeddings into V
	Description of Our Methods

	Fundamentals of Thompson's Group V
	Cantor Space
	Prefix Substitution
	Tree Pairs
	Elements of V as Tree Pairs
	Notation for Tree Pairs
	Equivalent Tree Pairs

	Family of Chameleon Groups

	Dynamics via Combinatorics
	Revealing Pairs
	Leaves
	Definition of a Revealing Pair
	Classification and Chains of Leaves

	Algorithm for Obtaining a Revealing Pair
	Pre–Chains Graph
	Chains Graph
	The Algorithm Part I – Maximal Tree Reduction
	The Algorithm Part II – Detecting Torsion
	The Algorithm Part III – Finding Attractors and Repellers
	Conclusion and Interpretation

	Rollings
	Important Points of an Element of V

	Centralisers
	Statement of Results
	Literature Review
	Flow Graphs
	The Centraliser's Action on Important Points
	The Slope Map S
	Centraliser of a Connected Non–Periodic Flow Graph

	Elements with a Prescribed Centraliser
	Action of K on R
	Construction of with Prescribed Torsion Subgroup of its Centraliser
	Construction of with Prescribed Centraliser
	Examples

	Free Products
	Statement of Results
	Literature Review
	Ping–Pong
	Dynamics of Free Products

	On Dynamics of Free Products in V

	Bibliography

