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Abstract:  Since the 1935 work of Landau and Lifshitz and of Kittel in 1946 all 

ferromagnetic, ferroelectric, and ferroelastic domains have been thought to be straight-sided 

with domain widths proportional to the square root of the sample thickness.  We show in the 

present work that this is not true. We also discover period doubling domains predicted by 

Metaxas et al. (Phys. Rev. Lett. 2008, 217208) and modeled by Wang and Zhao Q. (Sci. Rpts. 

2015, 5, 8887). We examine non-equilibrium ferroic domain structures in perovskite oxides 

with respect to folding, wrinkling, and relaxation and suggest that structures are kinetically 

limited and in the viscous flow regime predicted by Metaxas et al. in 2008 but never observed 

experimentally. Comparisons are made with liquid crystals and hydrodynamic instabilities, 

including chevrons, and fractional power-law relaxation. As Shin et al. [Soft Mat. 2016, 12, 

3502] recently emphasized: “An understanding of how these folds initiate, propagate, and 

interact with each other is still lacking.”  Inside each ferroelastic domain are ferroelectric 90-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/159069744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


degree nano-domains with 10-nm widths and periodicity in agreement with the 10-nm 

theoretical minima predicted by Feigl et al. (Nat. Commun. 2014, 5, 4677).  Evidence is 

presented for domain-width period doubling, which is common in polymer films but 

unknown in ferroic domains.  A discussion of the folding-to-period doubling phase transition 

model of Wang and Zhao is included. 

 

Introduction:  

Ferroelectrics for energy harvesting and other engineering devices generally require 

embodiments that have poled polarizations in ceramics.  Domain structures must be aligned 

in order for the photo-responses to add constructively.  Most researchers assume that the 

equilibrium domain structures of Landau-Lifshitz-Kittel are present (“Kittel Law”), but 

recent studies reveal highly non-equilibrium domain patterns and folding, which might 

adversely affect device performance. The two most important things about oxide ferroelectrics 

are: (1) In general they are not insulators.  PbTiO3 has a band gap of approximately 2.96 eV, 

approximately that of wide-gap III-V semiconductors such as GaN or II-VI's such as ZnO.  Therefore, 

especially in thin-film form, they are electrical conductors.  Hence it is necessary for device 

development to understand their band structure, to know accurate effective masses (typically, for 

example BaTiO3 and SrTiO3, they are n-type with light and heavy electrons, and electron effective 

mass m* of order 5.5-6.5 me, in contrast to the values m* = 1.0-1.4 me used, for example, in Refs. 1-

6), trap levels, and conduction mechanisms. (For example, In the present context, Turnbull6 has 

shown that elastic instabilities in nematics depend upon the relative mobilities of electrode-Injected 

electrons and holes.) On large-energy Fermi-level metal electrodes such as Pt (work function W = 

5.34 +/- 0.02 eV) or Pd or Au, their large electron affinities usually produce small Schottky barrier 

heights, of order 0.8-1.2 eV.  Because their mean free paths are small compared to the Schottky barrier 

widths, conduction is usually in the Simmons-limit of Schottky conduction, which yields current J(E) 

proportional to E exp (aE)1/2.  For low voltages the exponential is nearly unity, and J = bE results, 

giving the illusion of ohmic conduction (but unlike ohmic transport, insensitive to thickness and 

interface-limited). This aspect of Schottky barriers has been widely misunderstood; most recently Ref. 

7 has discriminated between Schottky currents and impurity banding and resulting space charge 



limited currents, based upon a low-voltage linear current-voltage relationship; however, such a 

criterion is invalid for oxides, where the Simmons' form of the Schottky Equation (valid for short 

electron mean free paths) is generally  

linear in J(V) at low voltages. In order to design optimum oxide electronics, it is important to 

understand bulk versus interfacial processes and to get effective masses and mobilities correct. As 

Morozova and Eliseev8 have pointed out, these semiconductor properties dominate domain wall 

relaxation times (a main part of the present paper), with an increase of x3 in carrier concentration 

decreasing relaxation time by a factor of x180.  (2) Six is bigger than three!  Direct tunneling through 

oxide films is typically limited to thickness d < 6 nm, whereas ferroelectric polarization is stable for 

d > 2.4 nm.  This gives a finite range of thickness for which ferroelectric tunnel junctions are attractive 

devices, as developed nicely by the THALES group of Barthelemy and Bibes et al. 9 Unfortunately 

for three decades the scientific community was under the impression, based upon misleading 

publications, that the minimum ferroelectric film thickness for stability was tens or hundreds of nm. 

This error delayed progress for many years. 

The fact that ferroelectrics are wide-gap semiconductors means that early work on them – 

including domain dynamics – that treated them as perfect insulators must be revised.  In 

particular, the fact that domain walls can be charged or uncharged, straight or curved, makes 

the assumption of equilibrium structures less likely than appeared a generation ago.  

Depletion and accumulation layers occur at or near interfaces and domain walls.  Charges 

accumulate or leak off with various relaxation times, and these and other causes can produce 

long-lived but non-equilibrium structures, which can be kinetically limited.   

Since 1935 it has been known that magnetic or ferroelectric domains often stabilize in 

rectilinear structures that can be easily calculated by assuming mechanical equilibrium.  Their 

domain stripe widths are found to be proportional to the square root of film thickness.  

Although first derived by Landau and Lifshitz,10 this was independently rediscovered by 

Kittel a decade later11 and is often referred to as the “Kittel Law.”  It also applies to many 

ferroelastic domains, as shown later by Roitburd.12 Very recently, however, it was shown13-15 

that some ferroics exhibit quite different patterns, with parabolic domain walls and stripe 

widths unrelated to the film thicknesses, or exhibit viscoelastic properties.16-18 Some of these 



have 5 nm-scale ferroelectric domains embedded inside micron-scale ferroelastic domains, 

with the contact angles of 45 degrees between the two, with what Vaclav Janovec first 

termed19 “walls within walls.”  The overall pattern is somewhat jumbled and described by 

Salje and Carpenter as a “domain glass.”20 The overlapping domains resemble those studied 

previously in smectic liquid crystals in terms of wrinkling21 and Helfrich-Hurault 

instabilities.22, 23 

The idea that switching in ferroelectrics can be mediated by an ultra-thin transient layer of 

ferroelastic planes with a dipole glass structure has been presented in a different context 

recently for PZT. 24 Hence the idea of glassy fluid layers and hence hydrodynamics playing 

a role in domain switching seems to be supported from different observations and models. 

Very recently it has been shown25, 26 that even glassy materials behave as having phase 

transitions where “standard elastic behaviour breaks down...and nonlinear elastic moduli 

diverge.”  This may be important in the present context of folding instabilities in glassy 

domain systems.  See also earlier work on jamming and disorder.27-29 

We emphasize that the basic ansatz in our discussion is that ferroelastic domain walls are a 

kind of folding, produced by stress; this is carefully argued previously by Lukyanchuk et al.29 

as the origin of domains in free-standing ferroelectrics. 

Experiment: 

These patterns may be detrimental to energy applications of ferroelectrics. Figure 1 below 

shows the TEM patterns in multiferroic submicron single crystals 80-120 nm thick of lead 

zirconate titanate iron tantalate (PZTFT).  The 5-nm ferroelectric domains can easily be seen 

inside the curved micron-diameter ferroelastic domains in Figure 1abcd with 45-degree 

intersections. Note however that they all seem to be right-handed tilts (no herringbone 

patterns). The ferroelectric domain tilts are at ca. 45o from the inside edges of the larger 

ferroelastic walls; this shows that the latter behave as external boundaries (such as surfaces 

or grain boundaries) and implies that the nm-wide ferroelectric stripes are 90o domains, since 

in-plane 180o walls cannot satisfy this 45o constraint.  The observed walls satisfy the 



requirement (P1-P2)  n = 0 that the ferroelastic wall be uncharged [here P1,2 are the 

polarizations of the two visible ferroelectric nanodomains and n is the normal to the 

ferroelastic wall]; however, they are sometimes at mutual angles of ca. 80 degrees or 100 

degrees, not 90, and hence have net strain 

Models: 

In order to discuss these phenomena, it is helpful to consider a few definitions.  Table I lists 

some characteristic temperatures for ferroelectrics, together with some instabilities known 

better in liquid crystals.  The temperature of most interest in the present context is probably 

the Kauzmann temperature.33 This is a theoretical temperature of great interest, because if it 

exists, it implies a true phase transition between supercooled liquids and crystalline states, a 

moot proposition for many years.  In the present context we use it loosely to mean a 

temperature at which domain patterns freeze in.  It is important that it lies below the Burns 

temperature (ordering of local, nanoscale polarizations), but despite its relationship with 

ordering, it has no known direct connection to Vogel-Fulcher freezing.  The latter is a semi-

empirical model parameter anyway, and generally it is not possible to infer a model from an 

empirical equation. 

Table I also lists some hydrodynamic instabilities known in liquid crystals.  The process we 

see in Fig.1 is likely to be caused by a sliding instability in which one layer of polarization 

domains pops up and slides over the adjacent layer.  Other hydrodynamic instabilities are 

well known in liquid crystals; for example, Delov et al. (Table I below) discuss how 

“hydrodynamic flow develops inside the flexoelectric stripe pattern...(and) electro-

convection sets in. 

It is useful to note that not all parabolic domain shapes need arise from hydrodynamic flow. 

Fig. 4 from Ref. 40 illustrates the growth rates for residual stress of out-of-plane wrinkles 

from a model calculation based upon wrinkling in a viscoelastic film.  This is for the case in 

which the film is rather isotropic and the stress ratio in the folded layer and viscoelastic 

underlayer is 80%. 



Table I:  Characteristic transition temperatures and hydrodynamic instabilities  

(For a full list and discussion of non-equilibrium patterning, see refs. 17, 18.) 

Transition temperature:                Simple description                                       Reference 

Burns temperature Tb  Localized polar nano-domains   (30)  

Vogel-Fulcher freezing d.c. dielectric peak T in relaxors   (31,32) 

    temperature  Tvf 

Kauzman temperature Tk      Fluid-crystal entropy equality    (33) 

Glass temperature Tg  Conventional label from brittle to rubbery  (34) 

 

Instability: 

Richtmyer-Meshkov  Shock-driven globular emission in fluid bilayers (35, 36) 

Helfrich-Hursault  Sliding instability of layers under mechanical stress (22, 23) 

Kauzmann     Glass-fluid equi-entropy temperature   (33) 

Parodi    Periodic instability in smectics under electric fields  (37) 

Bobylev-Pikin   Flexoelectric patterning in nematics    (38,39) 

 

Theory:  

In this short note an insufficient number of parameters are known for our viscous domain 

system; however, we can attempt some superficial contact with published theories:  ref. 40 

gives an expression for wrinkle wavelength  at long times (quasi-equilibrium) as  

   =  h {[2(1 – )HE]/[3(1 – ) h ]}1/4,    (1.) 

where h/H is the ratio of folded layer to underlying viscoelastic substrate layer; , Poisson’s 

ratio; C11, elastic constant; E, Young’s modulus;  is a short-time relaxation constant of order 

C11.  The value of  varies by 104 depending upon whether the folding process is slow 

viscuous flow or rapid; we assume rapid folding.  For our system  = 0.35, E = 67 GPa, C11 



= 1.8 x 1011 dynes/cm2 = 18 GPa (taken as typical of oxide perovskites), H = 90-120 nm, and 

h = ca. 8-15 nm (accurate perhaps to only +/- 50%).  Although the ratio E/ is not accurately 

known, this ratio occurs within a fourth-root, and hence  is relatively insensitive to its exact 

value and is generally40, 41 an order of magnitude larger than the film thickness h.  This 

estimates wrinkle wavelength as  = 30-50 nm, in reasonable accord with Figure 1. Other 

models32 give slightly different wrinkle wavelengths, but all have in common an 

approximately linear proportionality (h3/4 in Equation 1; h in ref. 41) between wrinkle 

wavelength  and film thickness h; note that this disagrees qualitatively with the square-root 

dependence of the Landau-Lifshitz-Kittel law. 

The same model [40] gives a critical folding stress of 

  c = {[2(1-) E  h]/[3(1-2)(1-2)H]}1/2   (2.)  

  

which for our parameters predicts ca. 65 GPa.  By comparison, the critical stress in BaTiO3 

is ca. 40 GPa (another typical perovskite oxide, PZT, does not even de-pole42 until 200 MPa), 

showing some consistency in the model and justifying our estimate of h. 

We can use the recent phase diagram of stress versus elastic coefficient from Wang and 

Zhao43 to estimate in general the fold to period-doubling phase transition.  They find this 

transition at a modulus ratio of ca. 10:1 for film/substrate (i.e., favored for soft substrates) 

and a large mismatch strain of ca. 30%, Fig. 2(a). For further numerical modeling of the 

folding to period-doubling transition in soft (biological) materials, see also Ref 44, in which 

Lihua, finds period doubling at strains as low as 10%. Additionally, Budday et. al.45 have 

shown that period doubling always precedes period tripling 

 

 

 



Summary of folded domains: 

We call attention to the fact that these instabilities and domain patterns, undesirable for 

energy applications, can be avoided by choosing ferroelectrics that are not also ferroelastic – 

a new criterion to consider.  That is the situation in any crystal in which the ferroelectric and 

paraelectric phases belong to the same crystal class.45 Examples are lead germanate 

(rhombohedral-rhombohedral),47 lithium niobate or lithium tantalate (rhombohedral-

rhombohedral),48 or KTiOPO4 (orthorhombic-orthorhombic),49 and many others. If other 

materials are employed, which change crystal class at their Curie temperatures, then attention 

should be paid to their processing and especially their poling in order to maximize 

performance in energy devices. The relationship between folding and relaxation times is 

discussed in refs 50-52. 

 

Further work: Absence of true chevron domains 

We note in Fig.1 the absence of chevron domains for the nm-scale ferroelectric domains 

within each ferroelastic domain.  Here the ferroelectric stripes are all at approximately 45 

degrees to the constraining ferroelastic walls. This is reminiscent of the behaviour of 

ferroelectric liquid crystals, where according to the model of Handschy and Clark,53 the 

presence of an in-plane polarization P destroys the chevron bistability.  The origin of chevron 

domains and their stability in smectic liquid crystals is discussed further by Rieker et al.54,55 

An important point in both magnetic domains56 and liquid crystal domains57 is that chevron 

structures are generally found only in large, extended systems and are suppressed in those of 

very small lateral area, such as the present case.  Lagerwall has pointed out58 that ferroelectric 

(smectic) films usually have polarization P out-of-plane, whereas chevrons are non-polar and 

therefore seldom favoured.  The dynamics of folds under biaxial compressive stress has very 

recently been shown elsewhere59 to result in curved domain walls and lenticular shapes; 

however, these authors emphasize that “The gradual in-plane compression of a solid film 

bonded to a soft substrate can lead to surface wrinkling and even to the formation of a 



network of folds for sufficiently high strain. An understanding of how these folds initiate, 

propagate, and interact with each other is still lacking.”  It is this network of folds and walls 

and their propagation and interaction that the present manuscript has addressed. 

 

Period doubling: 

If you look at the nm-scale ferroelectric domains in Fig 2(b), where the added lines along 

domain walls are guides to the eye, you will see that some adjacent walls differ by x2 in 

wall spacing.  Although it is possible that this arises simply because the overlapping 

domains differ in thickness, a factor of two can arise in a different way: The full phase 

diagram of shear modulus M versus film/substrate adhesion energy G gives an interesting 

result,60 with a triple point connecting buckling (delamination), creasing, and 

wrinkling.  But at a higher shear strain, the wrinkled phase undergoes period doubling.  So 

one possibility is that these data show a period doubling of domain stripe widths within a 

wrinkled phase.  Period doubling is not possible within the Landau-Lifshitz-Kittel model, 

because they assume infinitesimally small strains, whereas doubling requires nonlinear 

(large) strains. Note that the exact doubling of domain stripe widths cannot arise from 

coincidentally having layers twice as thick, because the Kittel Law varies not linearly with 

thickness but as its square root; hence an accidental doubling of stripe widths due to 

differing layer thicknesses would require a very unlikely thickness ratio of 1.414 within 

Kittel theory.  

 

Non-exponential stress relaxation: 

If ferroic domains are sometimes not in mechanical equilibrium, the next question to ask is 

how they relax with time.  There is a long-standing puzzle concerning the relaxation of 

stress in different systems and in particular whether this is best described by a power law or 

an exponential.  It is not practical to try to measure stress relaxation in our submicron-

diameter PZTFT samples (Figure 1), because of their size and the fact that they require FIB 



and TEM processing.  Therefore we turn to a simpler system of ferroelectric-ferroelastic 

domain patterns.  Previously we showed61 that the kinetics of some nano-ferroelectric 

domain walls in BaTiO3 satisfied the standard linear model of rheology with respect to 

spatial coordinates, with wall velocity v(x) = Ax, where x designates the distance from an 

external wall.  However, no attempt was made to describe the temporal dependence.  In the 

present section we show that this is a power-law, non-exponential decay, with some data 

compatible with a power ca. -1/4 on a time scale of hours.  The data x(t) are too sparse to 

reveal any stick-slip behaviour.  It may be important to note that the polarization time 

dependence P(t) in BaTiO3 is also known62 to give an exact power-law dependence for thin 

films 5 nm < d < 20 nm over a wide range of fields from zero to 530 kV/cm; the authors of 

ref. 59 did not give the exponent n, but visual inspection of their data (Fig.2b in ref. 62) 

suggests a value near n = 6. 

 

Non-exponential stress relaxation in thin films of viscoelastic materials, including polymers, 

has been a puzzle in recent years.40, 63-65 Typically a power law of t-1/4 is predicted by models 

of folding and creep,4  whereas Fondado et al. have shown66 that values equal to or greater 

than unity can be found for magnetic or dielectric relaxations, and Ikegami and Ueda showed 

fifty years ago67 that some BaTiO3 ceramics exhibited a logarithmic time decay for the 

positions <x(t)> we measure in Fig. 3; rather recently the Belfast group68 also fitted single-

crystal BaTiO3 film domain wall positions to a logarithmic dependence. It is not trivial to 

distinguish logarithmic dependences from power laws with small exponents n for sparse data 

sets, and in general this question has no definitive answer and may depend upon specific 

geometry.  Generally relaxations in dielectrics of form t-n are said to obey the Curie-von 

Schweidler Law.69 However, fitting such models in ferroelectrics has generally been limited 

to displacement currents, not domain wall positions, where 0.75 < n < 0.95. In the present 

work we show that these models are more accurate than exponential decay for data61 on 

ferroelectric BaTiO3 nano-domain positions x(t) over periods of 30 minutes to 20 hours 

(2x103 – 7x104 s) and find n ca. ¼ for typical data (Figure 3).  However, the uncertainty in 

this exponent is large for existing data and can range from 0.1 < n < 0.3 with the addition or 

subtraction of a few points.  These data are for domain walls colliding along an x-axis; after 



this event walls recoil at 90 degrees along the y-axis and give a rather different relaxation 

exponent n (ca. 1.9). Because such data exhibit n greater than unity one should not assume 

that this is simply an example of Curie-von Schweidler dependence t-n, nor Jonscher’s 

generalization to “universal dielectric relaxation,” because in those models it is impossible 

for n to be greater than unity.  Moreover, Jonscher’s universal relaxation law for dielectrics 

generally refers to displacement current J(t), whereas the position <x(t)>  = xo t
-n for a charged 

domain wall should contribute <dx(t)/dt> = xo t
-n-1 to such currents, worsening the agreement 

in the present case. However, it is known70-72 that values of n between 1.0 and 2.0 are 

observed in LiNbO3 and NaNO3 and generally imply long-range diffusion of ions (such as 

variable-range hopping), ignored in Jonscher’s theory.  

Generally more data are required to make these models quantitative for ferroic domain wall 

relaxation. As emphasized in Ref. 8, these times are strongly dependent upon carrier 

concentration in BaTiO3 (since the walls appear to be charged) and are therefore extrinsic.   

It has been known for thirty years73 that relaxation of domain structures in BaTiO3 is often 

dominated by “volume effects,” particularly the alignment of polarization with macroscopic 

strain and a gradual reorientation of polar defects.  In the presence of applied electric fields 

of ca. 200 V/cm these gave relaxation times fitted to exponential decay with relaxation half-

lives of order 100 s, much shorter than the zero-field values measured in the present work.  

However, domain relaxations on a time scale of 20 hours, as in the present study, were 

reported74-77 in 2014 with 50% decay reached in a few thousand seconds, as in our data. Very 

low (sub-Hz) frequency dielectric studies imply that these long relaxation times involve 

oxygen vacancy motion.78 

The ferroelectric domain periodicity studied here is slightly larger than the previous lower 6-

nm reported by Vlooswijk et al.79 or the 4-nm shown by Daumont et al.80  The wrinkled 

structure in the latter resembles some of the present data in Fig.1.  Our measured 10-nm 

widths agree with the minimum value theoretically predicted by Feigl et al.81 Those authors 

also find an h4/9 law relating domain width w to film thickness h, the same exponent originally 

published for folding in thin films by Holmes and Crosby82 (not cited in ref 81) but not yet 



verified in ferroic domains. Finally, the Obukhov model of strain relaxation in polymeric 

lamellae gives a power law with 1/4 < n < 2,83 as we observe.  Although the present domains 

are not polymeric, they are lamellar, and hence this might be relevant. 

The deeper question in this work is why BaTiO3 has ferroelastic and ferroelectric domain 

walls that are coincident, whereas PZTFT has ferroelectric walls inside the ferroelastic ones 

(“walls within walls”).  This is addressed by Janovec and Privratska19 and generally depends 

upon the coupling between mechanical strain and polarization, which is complex in systems 

with charged domains.  This in turn relates to nano-size and coherence lengths, since strain 

is unscreened whereas polarization is screened. 

Further details to be examined include whether the domain flows are thixotropic, like 

toothpaste (viscosity decreases with time at constant stress), or superplastic, or exhibit 

overshoot. A general review is given in ref. 84 and the specific application of Mittag-Leffler 

models of relaxation to dielectrics, with power laws, in ref. 85.  

We emphasize in concluding that it has been known theoretically for some time86 that 

domains should exhibit three regimes: (1) creep; (2) depinning; and (3) viscous flow.  

However, it has not been experimentally practical to study the flow regime prior to the 

present work. In concluding we note that the first clear evidence of diffusion of domain walls 

in ferroelectrics was shown in ref 87, where the Brillouin spectra of Ba2NaNb5O15 near its 

phase transition that exhibited linewidth G proportional to the square of momentum transfer 

q.  Such a q2 dependence is an unambiguous signature of diffusion. 

A whole issue of a journal has previously been devoted to nonequilibrium domain behavior, 

and in particular, power-law, nonexponential time dependences.  See Salje88 and other papers 

in this special issue: E. K. H. Salje, Phase Trans., 1998, 64, 1. 
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
 

Fig. 1.  Transmission electron micrographs of PZTFT, showing clearly in (a-d) 10-nm wide 

ferroelectric 90-degree domains nested inside ferroelastic domains at nearly 45-degree 

angles: Examples showing non-coplanar folds with chevron-like structures NOT at 90 

degrees.  

 



 

Fig. 2 (a) Phase diagram for folding to period-doubling transition in thin films.  Modulus 

ratio film/substrate is shown with threshold near 10:1 (soft substrate) versus misfit strain 

(ca. 30%).  The third axis is normalized adhesion energy between film and substrate. 

Adapted from Wang and Zhao (Ref 34); (b) domain stripe-width period doubling (straight 

lines are guides to the eye) 

 



 

 

Fig.3. a) Time dependence of ferroelectric domain wall relation x(t), from Ref. 52. Note that 

there is a power law with exponent n, and like the case of wrinkling, n approximates ¼; b) 

relaxation time after collision, showing exponent n near 2; note however that exponents as 

small as 0.25 are not incompatible with the error bars and that there is an energy loss after 

collision (lower velocities in 3b than in 3a). 



 

 

Fig. 4.  Model calculation for wrinkling anisotropy in a viscoelastic layer,31  as discussed in the text.  

The ordinate and abscissa are dimensionless measures of growth rates for residual stress.  The 

grapefruit-segment-like shapes are to be compared with experimental data for ferroelastic domains in 

Fig.1and suggest an alternative non-hydrodynamic origin; however, note that growth rate patterns are 

not the same as the resulting shapes of the ferroelastic domains, but only show how the latter develop 

anisotropy and hence might appear elliptical or parabolic, rather than circular. Copyright, R. Huang, 

Ph.D. thesis, Harvard University (used by permission). 

 

 

 

 

 



Graphical abstract 

 

 

 

"TEM micrograph of lead zirconate-titanate iron-tantalate (PZTFT) on 500-nm scale, showing 

nonequilibrium creases and ridges, together with domain spatial period doubling (left side) and 

redoubling (center right), in agreement with theoretical predictions." 


