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In this work we introduce boundary time-crystals. Here continuous time-translation symmetry
breaking occurs only in a macroscopic fraction of a many-body quantum system. After introducing
their definition and properties, we analyse in detail a solvable model where an accurate scaling
analysis can be performed. The existence of the boundary time crystals is intimately connected to
the emergence of a time-periodic steady state in the thermodynamic limit of a many-body open
quantum system. We also discuss connections to quantum synchronisation.

Introduction - Spontaneous symmetry breaking is a
cornerstone of physics and occurs at all energy scales,
in cosmology and high-energy physics as well as in con-
densed matter. Thermal or quantum fluctuations can
drive a system into a state that breaks, in the ther-
modynamic limit, some of the symmetries present in
its (thermo)-dynamical potentials [1, 2]. Can time-
translation invariance be spontaneously broken? The
possible existence of time crystals, first addressed by
Wilczek in [3], prompted an intense discussion [4–7]. A
no-go theorem [9] ruled out the existence of time-crystals
in thermal equilibrium in cases for which the energy is the
only constant of motion. The situation may be different
in the presence of additional extended conserved quanti-
ties [10], such as in superfluids [11] where time-crystalline
behavior was discussed in [12]. Ordering in time can also
occur, however, under non-equilibrium conditions (e.g.
by preparing the system in an excited state [13]).

An important step forward in our understanding
of spontaneous time-translational invariance has been
achieved in [8, 14, 15] where Floquet time crystals, a.k.a.
π-spin glasses, were introduced. The dynamics of these
systems, subject to a periodic driving, is characterised by
observables which oscillate at a multiple of the driving
period. Hence they break the discrete time-translation
symmetry imposed by the external drive. Floquet time
crystals were intensively explored from a theoretical point
of view in [16–22] and very recently experimentally ob-
served [23, 24]. A comprehensive review on time crystals
can be found in [25].

Here we predict a novel form of time-translation sym-
metry breaking: continuous Boundary Time-Crystals
(BTCs). In the BTC phase, symmetry breaking appears
in a (macroscopic) fraction of the system. Moreover a
BTC breaks the continuous time-translation symmetry,
i.e. the system self-organises in a time-periodic pattern
with a period which only depends on its coupling con-
stants. The idea borrowed from surface critical phenom-
ena [26] offer a very intuitive way to visualise BTCs. Only
the surface, representing the portion of the system where
time crystalline behaviour appear, is ordered. The rest

Figure 1. (Upper panel) A sketch of a boundary time crystal.
The system is composed by a bulk (B) and a boundary (b)

interacting trough an interaction term V̂ . The Hamiltonian of
the system is time-independent. After tracing out the degrees
of freedom of the bulk, the dynamics of the boundary is de-
scribed by the reduced density matrix ρ̂b. In the time-crystal
phase, the behaviour of collective variables will show persis-
tent oscillations in the thermodynamic limit. (Lower panel)
The boundary magnetisation of the BTC model discussed in
the paper is shown as a function of time, for different bound-
ary sizes. In the asymptotic condition, spontaneous symmetry
breaking appears in persistent oscillations when Nb →∞.

of the system, the bulk remains time-translationally in-
variant, see Fig. 1. We will give a more precise meaning
to this picture in the following of the paper where we
will show that BTCs are intimately connected to the ex-
istence of periodic motion in the steady state of open
quantum many-body systems.
Boundary time crystals - The emergence of a BTC

can be understood using the sketch given in Fig. 1 (top
panels). A d-dimensional quantum many-body system
is governed by a time-independent Hamiltonian Ĥ =
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ĤB + Ĥb + V̂ , with bulk and boundary systems ĤB and
Ĥb, respectively, and an interaction term V̂ . Denoting as
Nb (NB) the degrees of freedom for the boundary (bulk)
systems, we consider the case in which a macroscopic
fraction of the universe, the system (Nb → ∞), breaks
spontaneously time-translational invariance. The ther-
modynamic limit is performed with Nb, NB → ∞, with
the ratio Nb/NB → 0. In other words, it is a macro-
scopic system, but still small/infinitesimal compared to
the global system. This scaling is the crucial feature in
defining a boundary phenomenon. The precise identifica-
tion of the boundary layer (e.g. the nature or any notion
of spatial locality for its degrees of freedom) is thus irrele-
vant for our purposes. The whole system evolves accord-

ing to the Schrödinger equation |ψ(t)〉 = e−iĤt|ψ(0)〉,
with |ψ(0)〉 the initial state of the quantum system. The
boundary is fully characterised by the reduced density
matrix ρ̂b = TrB (|ψ(t)〉〈ψ(t)|) obtained by tracing out
the bulk degrees of freedom. Its dynamics is governed by
a completely positive, trace-preserving, map L̂ with

d

dt
ρ̂b = L̂ [ρ̂b] . (1)

Time-translation symmetry breaking at the boundary
appears as a non-trivial time-dependence of a (macro-
scopic) boundary order parameter Ôb, occurring only
in the thermodynamic limit. For infinitely large times
its expectation oscillates, limNb,NB→∞Tr[Ôbρ̂b] = f(t)
where f(t) is a time-periodic function. The definition of
BTC closely follows the one for the standard time crys-
tals [9, 16, 17]. The only, crucial, difference is that here
the order parameter is defined at the boundary.

The resulting physical picture is exemplified in Fig. 1,
taking a magnetic system as an illustration. In this exam-
ple a macroscopic magnetisation builds up at the surface
of a sample. The magnetisation shows persistent oscilla-
tions even though the dynamics of the whole system is
governed by a time-independent Hamiltonian. In Fig. 1
the boundary and the bulk are represented with different
symbols in order to stress that they may be described by
different degrees of freedom. Notice that the terms bulk
and boundary are used here to easily visualise the mech-
anism of spontaneous symmetry breaking and suggest an
intriguing connection with boundary critical phenomena.
What is really implied in the construction above is that
ordering in time occurs only in a macroscopic fraction of
the many-body system under consideration, rather than
in the whole bulk.

The boundary nature of time-translation symmetry
breaking in BTC has a number of important implica-
tions. First of all, the reduced density matrix ρ̂b in the
steady state will be generically non-thermal, hence the
no-go theorem [9] does not apply: a Hamiltonian system
can spontaneously break time-translation symmetry as
a boundary phase. Furthermore, given the well known
correspondence of the dissipative dynamics in Eq.(1)

and a unitary dynamics governed by a time-independent
Hamiltonian on an enlarged system (see e.g. [27]), the
BTC appears tightly linked to the existence of a time-
periodic steady state in an open quantum many-body
system, appearing though only for Nb →∞. In order to
discuss concrete examples we focus on boundary systems
described by Markovian maps, and comment further be-
low about more general dissipative maps.

The evolution of the boundary in the Markovian
case is described by a master equation where the Li-
ouvillian operator L̂ [·] has Lindblad form [27], L̂[·] =∑
α

{
ˆ̀
α · ˆ̀†α − 1

2{ˆ̀
†
α

ˆ̀
α, ·}

}
with ˆ̀

α the Lindblad opera-

tors [33]. The emergence of a time-crystal behaviour
in the long-time dynamics of the system is hidden in
the properties of the Liouvillian operator in the ther-
modynamic limit. In the BTC phase one should ex-
pect: i) a vanishing gap in the real part of the Liou-
villian eigenvalues, making the non-equilibrium steady
state subspace degenerate in the thermodynamic limit
with time-dependent coherences decaying over an infinite
time-scale; ii) a non-zero imaginary part for some Liou-
villian eigenvalues in such subspace in order to induce
non-trivial oscillations. The main question now is to find
a many-body system that displays the above mentioned
properties. Below we will present a model of a BTC.
A BTC model - We will show that a boundary time

crystal appears in a model used to describe cooperative
emission in cavities (see [28–32]). The boundary Hamil-
tonian Ĥb = ω0

∑
j σ̂

x
j consists in a collection of 1/2-spins

whose dynamics is governed by collective spin operators
Ŝα = 1

2

∑
j σ̂

α
j . The operators σ̂αj (α = x, y, z) are the

Pauli matrices acting on the j-th spins, and ω0 is the co-
herent splitting. The terms ĤB and V̂ (see the sketch in
Fig. 1) have to be constructed in such a way to give a
reduced dynamics at the boundary of the form

d

dt
ρ̂b = iω0[ρ̂b, Ŝ

x] +
κ

S

(
Ŝ−ρ̂bŜ+ −

1

2
{Ŝ+Ŝ−, ρ̂b}

)
.

(2)
In the previous equation, the collective raising/lowering
spin operators are given by Ŝ± = Ŝx ± Ŝy, κ is the ef-
fective decay rate, and S = Nb/2 is the total spin. In
the following the expectations of the observables are in-
dicated as 〈·〉 = Tr[·ρ̂b].

The specific form of ĤB generating the dynamics in
Eq. (2) will play no role. It is possible to derive it [33].
In the Supplementary Material we discuss in details how
such a construction can be made [34]. Moreover sim-
ilar Liouvillian dynamics have been extensively consid-
ered in the context of atomic systems coupled to cavity
modes. Typically, the scenario in which a model such
as Eq. (2) arises involves a system periodically driven
at a finite frequency, with a time dependent Hamilto-
nian. Depending on the specific driving, such an explicit
time dependence can be usually gauged away: one can
define a Hamiltonian leading to Eq. (2) which is time-
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independent in some specific choice of frame. As long
as such a Hamiltonian exists, and is physical, our inter-
pretation of the time-translation symmetry breaking as a
boundary phenomenon of a closed quantum system is rea-
sonable (see [34] for a detailed discussion). Moreover – as
we are going to show – the BTC shows a time-dependent
pattern whose period solely depends on the coupling con-
stants of the system and which is in general incommen-
surate with the driving period: the system breaks a con-
tinuous symmetry, rather than a discrete one. The BTC
is in apparent contradiction with the expectation that
the density matrix of a system in contact with a sin-
gle thermal reservoir attains a time-independent steady
state [35]. The solution to this apparent paradox lies in
the diverging boundary size, Nb → ∞, which leads to a
divergent decay time-scale for oscillations (see [34]), as
we better discuss below.

The steady state diagram of the model has two distinct
phases [28]. For ω0/κ < 1, the total magnetisation is
finite 〈Ŝz〉. In the opposite case, ω0/κ > 1, all spins
align along the x-direction. More details are reported
in [34].
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Figure 2. The eigenvalues λ of the Liouvillian are shown in
the weak dissipative case (ω0/κ = 1.5 – right panel) and in
the strong dissipative one for (ω0/κ = 0.5 – left panel), in a
system with Nb = 36 spins. The insets show a zoom over the
eigenvalues with largest real part. The eigenvalues are plotted
in units of κ.

The BTC appears for ω0/κ > 1. Its emergence is em-
bedded in the properties of the eigenvalues λ of the Li-
ouvillian L̂. The structure of the Liouvillian spectrum is
indeed different in the two phases. While for ω0/κ < 1
the spectrum is gapped (Fig. 2 left panel), and the eigen-
values with greatest values for their real part (i.e., the
eigenvalues closest to zero, recalling that Re(λj) ≤ 0)
have no imaginary values, for ω0/κ > 1 the spectrum
becomes gapless and the eigenvalues with greatest real
part have a non zero imaginary part (see Fig. 2). The
insets zoom on the spectrum emphasising the different
behaviour in the two limits.

In order to obtain a quantitative picture of the develop-
ment of the spontaneous symmetry breaking we perform
a finite-size scaling analysis of the real and imaginary
parts of the eigenvalues λ. In Fig. 3 (left panel) we anal-
yse the real part of the Liouvillian spectrum. In the weak
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Figure 3. (Left) Finite size scaling for the real part of the
Liouvillian eigenvalues in the BTC phase. The index j labels
the eigenvalues. The Liouvillian eigenvalues λj are ordered as
a function of their real part (|Re(λj)| ≤ |Re(λj+1)|, and j = 0
has zero real part). In the ω0/κ > 1 phase they scale to zero
as a power-law of the inverse system size. (Right) The imag-
inary parts of the eigenvalues show a band structure, with a
fundamental frequency separation Γω0/κ. For fixed excitation

thresholds (we only select λj such that ν = j2/Nb ≤ ε) the
width of the bands remains finite in the thermodynamic limit
(here we choose ν < 0.025). The widths of the bands tend to
decrease as we constrain to lower excitation thresholds. The
eigenvalues are plotted in units of κ.

dissipative case, the one of interest to us, the system is
gapless, with the real part of the eigenvalues closing with
the system size as a power law (at different rates). In
Fig. 3 (right panel) we show the imaginary part of the
Liouvillian spectrum. The imaginary eigenvalues of the
low Liouvillian excitations are described by bands, sepa-
rated by a fundamental frequency Γω0/κ, which depends
on the system parameters ω0/κ. These features of the
real and imaginary parts are the key elements for the
appearance of the BTC.

The magnetisation, for different numbers of lattice
sites, is plotted in Fig. 1 (lower panel). The system is ini-
tialised in the pure state with all spins aligned along the
x-direction. The oscillations decay for any finite size sys-
tem, the associated time scale grows with the system size
and diverges in the thermodynamic limit. This behaviour
is independent of the initial conditions, as e.g., starting
from thermal states or all spins aligned in different direc-
tions. Interestingly, the decay rate of the oscillations η
is related to the second excited eigenvalue of the Liouvil-
lian, in our case, the lowest excited eigenvalue with non
zero imaginary value (eigenvalues are ordered according
to the absolute value of their real part). A quantita-
tive analysis of the spontaneous symmetry breaking is
obtained by looking at the Fourier transform of 〈Sz(t)〉
(see Fig. 4). By performing a spectral analysis, we see
that the peaks appear at frequencies related to the sep-
aration between the bands shown in the right panel of



4

Fig. 3. The peaks become sharper as the system size is
increased. Most importantly, the decay rate η goes to
zero (right panel) as a power law L−β with the β ex-
ponent dependent on the system parameters w0/κ. The
finite-size scaling shows that the persistent oscillations
are associated to the spontaneous time-translation sym-
metry breaking because they occur only in the thermo-
dynamic limit. In the example we have discussed, the
thermodynamic limit incidentally coincides with an ef-
fective classical dynamics (the effective Planck’s constant
going to zero): this is true for instance in Fig. 4 and in
Fig. 1 when Nb →∞; details of the classical solution are
discussed in [34].
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Figure 4. In the right panel we plot the decay rate of the os-
cillations of the magnetisation η for distinct system sizes. In
the same plot we compare η with the eigenvalues with great-
est real part - thus smallest absolute values for the real part -
of the Liouvillian. In the left panel we plot the Fourier trans-
form of the average magnetisation (see lower panel in Fig. 1),
highlighting the oscillation frequencies of the dynamics. The
peaks are associated to the band separations in the imaginary
part discussed in Fig. 3. The inset of the left panel is the solu-
tion in the thermodynamic limit where the oscillations persist
indefinitely.

From the experimental point of view, a driven version
of this model can be realised using an adapted Raman
driving scheme [36] for cold atoms in an optical cavity,
connecting two low lying states via an excited atomic
state. Collective dissipation can be produced by using a
bad cavity (large loss rate) combined with a single Ra-
man drive: Purcell-enhanced Raman scattering leads to
optical pumping of the atoms, described by the same col-
lective dissipation considered here. Similarly, the Hamil-
tonian term Ŝx can be realised by a pair of drive lasers
coupling the ground states via excited states.

The boundary time-crystal we discussed in the model
of Eq.(2) is not an isolated point, but is robust to differ-
ent perturbations. First of all, the time-crystalline phase
appears in the whole region ω0/κ > 1. Moreover it is sta-
ble if additional perturbations are added to the unitary
part of the evolution. With a boundary Hamiltonian of
the form Ĥb = ω0Ŝ

x+ωx(Ŝx)2/S+ωz(Ŝ
z)2/S, the time-

crystal is still present for a wide range of the parameters
ωx, ωz 6= 0. In fact the ωx term improves the stability
of the time crystal, which is also present for small val-
ues of ωz; for ωz above some threshold, time-translation

symmetry breaking still exists but only for some initial
conditions (see [34] for details). It is worth mentioning
that robustness of a BTC phase refers to the persistence
of a periodic evolution in the thermodynamic limit, and
not necessarily to the rigidity of its period. The main
difference with respect to Floquet systems is that there,
since one is breaking a discrete symmetry, rigidity is in-
timately related to the period of the driving; instead,
in our case, since the dynamics is U(1) invariant, such
timescale is not present, and the period of oscillation is
allowed to change within the symmetry-broken phase.
This is a direct analog of the fact that in spatial crystals,
the spatial periodicity can be changed by changing the
particle-particle interaction.

It is also relevant to consider perturbations of the dissi-
pative part of the evolution, more specifically we focus on
terms non-local in time (this is equivalent to considering
a non-Markovian equation of motion). In order to have a
physical bulk Hamiltonian, it must be bounded from be-
low, and so it cannot have a truly flat density of states.
This implies a finite memory timescale for the bath, but
there is the possibility that this timescale can be ne-
glected, being far smaller than all the other timescales
in the system dynamics. This fact occurs if the lower
bound on the bulk spectrum is at energies much lower
than the frequencies of the system dynamics: in this case
an approximate Markovian description holds and the use
of a Markovian master equation is perfectly justified.

Other candidate systems for BTCs - An interest-
ing model that should show the same phenomenol-
ogy has been studied in [37]. Furthermore, many-
body limit cycles have been already seen in model sys-
tems of optomechanical arrays [38], coupled cavity ar-
rays [39, 40], interacting Rydberg atoms [41] and inter-
acting spin-systems [42]. Also in these cases the under-
lying (bulk+boundary) Hamiltonian can be constructed,
see Ref. [34]. In light of the analysis performed in the
present work, these limit-cycles now might be classified
as BTCs. It should be however kept in mind that a mean-
field approximation, employed in these works, may be
unable to support the very existence of limit cycles: it is
not clear to which extend this phase would survive when
fluctuations are included.

Other promising systems that it might be interesting
to consider to seek for different forms of BTCs are dissi-
pative topological systems. In this case the steady state
may develop a degeneracy in the thermodynamic limit
due to the presence of edge states [43, 44]. The existence
of a BTC phase should emerge from the competition of
the unitary and dissipative parts of the dynamics. Fur-
thermore the robustness should be inherently linked to
topological protection.

Finally a BTC, corresponding to a space-time order-
ing, represents in essence a synchronised dynamics in a
many-body open quantum system. This hints to a very
interesting and deep connection between time crystals
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and quantum synchronisation. Lately there has been an
intense effort to characterise synchronisation in the quan-
tum realm (see e.g., the review [45]). BTCs may offer a
different perspective on this problem.

Conclusions - In this work we introduced boundary
time crystals. In the same spirit as in the original defini-
tion given in [9], in the BTC phase the time-dependent
order parameter appears only in a portion of the sam-
ple (at the boundary for simplicity). The phenomenon
is analogous to surface critical phenomena. On looking
at the reduced dynamics at the boundary, one observes
that BTCs are intimately linked to the emergence of a
periodic dynamics in some macroscopic observable of an
open quantum many-body system. A crucial aspect of
the whole picture is that the periodic motion should ap-
pear only in the thermodynamic limit. We proposed an
example of a BTC phase in a solvable model where its
existence can be confirmed without resorting to any ap-
proximation. We finally discussed that BTCs can also
emerge from different mechanisms in topological systems.

While completing this manuscript, a few works ap-
peared [46, 47] analysing discrete time crystal phenomena
in periodically driven dissipative systems.
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