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CHAPTKft I

INTRODUCTION

The structure and evolution of stars depends very sensitively on the 

rate at which radiation is transferred outwards through the stellar 

material* For stars of the sun's mass and greater the hulk of the 

material is at temperatures above a million degrees, and an accurate 

knowledge of opacities under these conditions is important for calculating 

the time scales of various phases of stellar development* At these high 

temperatures the pressures are correspondingly large, ranging from the 

order of a hundred megobars and upwards* As a star evolves the 

composition of the material varies from almost pure tydrogen with a few 

per cent by mass of the heavier elements like carbon, nitrogen, oxygen, 

neon, sodium, magnesium, aluminium, silicon, argon, and iron, to a 

mixture of almost pure helium with the same heavy element mixture*

At the very high temperatures right in the centre of the star, 

thermonuclear reactions occur, providing the source of the stellar 

energy* However at these temperatures all the elements that can ever 

attain appreciable abundance are completely ionised, and the calculationa 

for the absorption and emission of radiation are simplified when there 

are no bound electrons* It is in the intermediate temperature range 

that the problem becomes more difficult* This text is concerned with 

the absorption and emission processes for stellar material in these 

conditions, and the calculation of opacity coefficients as the 

appropriately weighted averages over frequency of the resulting



absorption coefficients*

The mean free path of the average photon in the hot stellar 

interior is usually of the order of a few centimetres or less, and 

particle mean free paths are also very small, so that collisions 

maintain the matter in a steady state of ionisation and excitation* 

Temperature gradients can be estimated by considering the drop of about 
10? * K over a radius of 10^ ca. in a typical star* This implies that 

the temperature changes by only about 10**o K per centimetre, so that in 

travelling along a mean free path a photon moves through a region whose 

temperature varies by only a fraction of a degree. Thus the photon is 

absorbed by material that is at the same temperature as the emitting 

material. The matter and radiation temperatures are almost equal, and 

we have local thermodynamic equilibrium and can apply Boltsmann

statistics*
The macroscopic variations in T however, produce a net outward 

flux of radiative energy and a consequent variation in the radiation 

pressure with depth which is important in maintaining hydrostatic 

equilibrium in stars*

THE EUJATIOR 0? RADIATIVE TEARS; tRD THE PLANCK ARD RQSSLLARD MEANS

The change in specific intensity, I , of a beam of radiation of 
dlfrequency v, per unit path length through a material of density »TTV>QB

can be considered as follows. The beam will lose intensity by an 

amount kTlv due to absorption by the medium with absorption coefficient

kv per gram of the material* It will also gain intensity by the 

induced emission into the beam* The induced emission is proportional
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to the Intensity of the original beam, and is of the same direction, 

frequency, polarisation and phase. By the principle of detailed 
balance, and with the Boltzmann distribution for local thermodynamic 

equilibrium, the induced emission at temperature T contributes an amount
kT.-‘"A'% per unit path l.ngth. In addition the apontaneoue evasion 

contributes an amount Jv. Then

— 4 p »r, t lv -t li) (/ 1)
dr

absorption induced J po nJ cweo wf

t m i o w f w ifSi on

The spontaneous emission depends only on the states of the matter

and not upon the radiation field, so that for L.T.k. the spontaneous

emission is exactly the same as for the thermodynamic equilibrium when 
d T is sere, and the intensity is the Planck black body distribution.

Thus

(13)

If we assume that the actual radiation field at each point, 1T, 

does not differ greatly from the black body field Bv, and carry out a 

perturbation expansion then the flux is given by

fT - -
3 ds

(Hl
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Hence the total flux of radiation over all frequencies across a layer 

of stellar material may be expressed in terms of the Rosseland mean of

the absorption coefficient kR

oTt
otv
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U* K,
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7 2-u

4r^ (eu-i)
(h;n= ky 

k /

The weighting fuction W(u) is shown in the graph 1A«

If on the other hand we were interested in the total flux of

radiation emitted at a free surface then the appropriate mean over 

frequency would be the Planck mean,

THE ABSORPTION COEFFICIENT AM) THE PROCESSES CONTRIBUTING TO IT

Any process capable of removing quanta from an incident beam or 

emitting quanta into it* must be considered in the opaolty problem.

The ability of a particle to absorb radiation depends on such parameters 

as its charge, velocity, and energy, and upon its interaction with the 

surrounding potential field. Consequently, in calculating the opacity
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per gram of the mixture, we have to decide the possible states or olasses 

of particles we can have to absorb the radiation, and find the number of 

partioles per gram we expect to have in each class* Then for each 

particular class and frequency, we have to calculate the probability of 
absorption when an interaction takes place between a photon of that 
frequency and a member of the class* <e can then sum the contributions 

X'rom all the particles to obtain the absorption coefficient per gram of 

the absorbing material as a function of frequency, v.

The fraction of the flux of radiation of frequency v absorbed per 

gram is

L

where is the number of absorbers of type i per gram of the mixture, 
and 6*7fv) is the cross-section at frequency v for one of these particles*

Since the material is so highly excited that even the individual 

atome are almost ionised, all molecules will be dissociated and 

absorbing particles such as negative ions will certainly not appear*
On the other hand, processes such as pair production and annihilation 

occur only at much higher temperatures* To produce a free electron* 
positron pair requires an incident quantum of energy at least 2mc^, 

while even the production of a bounc electron and positron requires 
energies greater than mc2. Thus the absorption coefficient is the

result of a multitude of atomic and free eleotron interactions
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Involving many elements and many stages of ionisation*

The most important process is simple absorption and its inverse 

when a quantum is absorbed by an atomic system, its energy being 

transferred to excitation of the electrons* There ere three different 

types of this absorption. Firstly we can have an electron in a bound 
state of an atom excited to another bourn state, the familiar line 

absorption. It has been argued that although the individual lines are 

of great strength compared with other absorption processes, they will 

simply make a very small region of the spectrum opaque to radiation, 

and since the opacity is a weighted average over frequency of the 

absorption coefficient, the blackness of these small regions will not 
appreciably alter the opacity. However under the extreme temperature 
and density conditions of the stellar interior the individual lines 

are much broader than under normal terrastial conditions, and there will 

be an enormous number of lines of comparable strength arising from the 

various ionic configurations. Among the factors contributing to the 
line breadth are natural breadth, collision effects, both elastic and 
inelastic, find Doppler breadth, all of which are much more important in 

hot dense plasmas. Furthermore the Hosseland mean, being a harmonic 

mean, is very sensitive to the ”windows” in the spectrum, and the 

shape of the line many half-breadths from the centre may be significant.

Secondly a bound state electron may interact with a quantum of 

higher energy, and make a transition into the continuum of free states 

available - the photoelectric effect. In contrast to line absorption 

this process is possible tor cry energy of the incident quantum greater
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than the ionisation energy of the electron, and there is an absorption 

edge at the threshold frequency*

Finally there nay be transitions from one free state to another, 
and since there is a continuum of free states ary aaount of energy nay 
be absorbed by this process* Since the ability of a particle to absorb 
radiation depends on its binding to the nucleus to conserve momentum, a 

bound electron has a much larger photo-electric cross section than a 

loosely bound one at the same frequency, and the free-free cross sections 

will be even smaller* On the other hand a very large proportion of the 
electrons are free, and also at large frequencies below the ionisation 

edges, free-free absorption may be the only pure absorption process 
possible*

All these processes differ only In the nature of the initial and

final states of the atom* The radiation in each case affects the 
stability of an atom through the interaction of the stoats charge 

distribution with the electric and magnetic fields perpendicular to the 

direction of propagation of the radiation* Besides being absorbed, 

incident quanta may interact with atoms or electrons and emerge 

scattered from their original paths* Here the scattering is mainly 

Compton scattering by free electrons, and there is no inverse process 

corresponding to stimulated emission* Scattering becomes relatively 

more important at the higher temperatures or lower densities* The 

diagram 1B indicates the dominant processes under different conditions*
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STEFS IK COMPUTING OPACITIES

The steps necessary to calculate opacities may therefore be

summarised as fellows:-

(1) Calculation of the occupation numbers Ni

Statistical mechanics predict the relative probabilities of the 

various possible electron states given their energy levels and 

associated multiplicities* These have to be calculated according to 

quantum mechanical principles by adopting a feasible model for the atom 

and the surrounding potential field.
(2) Calculation of frequencies of absorption lines and ed^es

This is necessary to determine what particles contribute in the 
summation of (1.8) at each frequency, and is again a quantum mechanical
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problem In finding energy levels and intercombination rules for the 

various atomic configurations*
(3) Calculations of the cross sections for the various atomic processes

These require the transition matrix elements requiring knowledge of 

the quantum mechanical wave functions describing the possible initial and 

final electron states* Usually only dipole matrix elements are required*
(4) Line profiles

In order to discover how the strength of an absorption line is 

distributed as a function of frequency, it is necessary to consider all 

the various ways in which an atom evolves when perturbed by the various 

surrounding particles* This involves a time dependent perturbation 

approach and again requires knowledge of the transition matrix elements*
(5) The absorption coe.iV.bn-;.-., Mi. opacity

Having obtained the information listed in 1 - 4 the absorption 

coefficient for each element in the mixture say he tabulated as a 

function of frequency* Finally the opacity coefficient for the mixture 

may be found by forming the mixture spectrum from the element spectra 

according to their concentrations, and performing the appropriate 

integrals over frequency*

OUTLINE GF CHAPTERS

The following chapters 2 - 4 give details of how all this may be 

done* In chapter 2 a model for the atom will be discussed and a method 

given for finding energy levels* All the information required in steps 

1 and 2 is then derived* In chapters 3 and 4 the cross sections are 

given enabling the spectra to be formed* Chapter 3 deals with the



processes involving a continuum of photon frequencies, the bound-free, 

and free-free absorption and scattering. Chapter 4 pays attention to 

the development of the electron wave functions in time, and the 

contribution of line absorption.

In ohapter 5 the numerical procedures and approximations taken in 

adapting these methods to a form suitable for use on a computer, are 

given, and the results already obtained with suoh programs are listed

and discussed.

Before embarking on the present methods, however, the progress of 

opacity calculations hitherto will be briefly reviewed.

WTO gflW

Although Scwarschlld had developed the equations of radiative 
equilibrium for the outer layers of a star in 1906, most of the work 

on stellar interiors before Eddington's investigations, was based on 
convective models. In fifteen papers written between 1916 and 1926, 

Eddington establsihed the importance of radiation transport in the inner 

regions of stars and examined the consequences in stellar models. In

1923 Kramers had produced absorption cross sections by calculating the 

radiation emitted from the acceleration of an electron moving classically 

along a hyperbolic path in the field of a central nuclear charge. In

1924 Roeeeland emphasised the importance of working with a properly 

weighted mean of the coefficient of absorption. Eddington used the 

results of Kramers to estimate the opaolty according to the Rosseland 

mean, but found that the theoretical results he obtained were far too

—10—

small to be reconciled with the observations! value he found for
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Capella. The discrepancy could only be removed by allowing stars to 

have low mean molecular weights, that is, large hydrogen abundances.

The next advance became possible when Gaunt calculated absorption 

cross sections for bound free transitions near the threshold according 

to quantum mechanics, expressing his results in terms of the ratios to 

the Kramers cross sections. The cross sections were subsequently extended 

to higher frequencies. Gaunt himself only calculated a straight mean of 

the opacity with his results.

Stromgren considered the effect of Gaunt*s results but then used an 
•3average constant value of the Gaunt faotor to retain the simple v 

dependence of the Kramers cross sections. This simplification enabled 

him to perform the mean over the ftoaselsnd weighting function as a simple 

sum of terms corresponding to each absorption edge. He considered free* 

free absorption and bound*free absorption processes with pure unscreened 

Coulomb energy levels, and calculated opacities for various proportions 

of hydrogen and the Russell mixture. He assumed that the hydrogen affected 

the opacity by supplying extra electrons, but did not include the free-free 

absorption in the regions of the hydrogen nuclei themselves. Stromgren 

also investigated the effects of scattering and showed that it was 

important at high temperatures, although the different frequency 

dependence and the harmonic nature of the Rosseland mean made it 
impossible to combine scattering effects with pure absorption accurately, 

using Stromgren*s function and summation methods.
Morse (1%0) proposed an iterative scheme for finding more accurate 

average energy levels for the discrete states and better occupation 

numbers, based on the use of Slater integrals and depression of the
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continuum according to aero temperature Thome s-Kerml potentials. He 

carried out opacity calculations on four mextures using Gaunt factors for 
bound-free and free-free absorption calculated by Hansel and Pekeris (1935) 

The Morse results could not be improved until better Gaunt factors and 

more efficient computing methods were available, although several 

advances were made relevant to the lower temperatures and densities of 

the outer stellar layers.
In 1%7 Mayer presented detailed calculations obtaining the opacity 

of iron. He introduced the model for the atoms adopted in this thesis, 
in which it is assumed that the positively charged cores of the nuclei 

and attendant bound electrons are screened from each other by a uniform 

time-averaged distribution of free electrons. On the basis of this model 

he calculated average occupation numbers according to the "independent 

electron approximation". Scattering processes were discussed and account 

taken of the fact that scattering of induced radiation out of the beam 
is compensated exactly by induced scattering into the beam.

Mayer also paid much attention to including line absorption in hie 

opacity calculations, and studied the effect of both single lines and 

statistical treatment of large numbers of overlapping lines, on the 
Rosseland opacity. In the case of pure iron at a density of 7«83g»/cc 

and a temperature of 1000 eleotron volts, he found that the line 

absorption increased the opaolty by a faotor three over the continuous 

opaolty*

In 1955 Keller and Meyerott published opacities for 13 mixtures at 
5 7temperatures ranging from 10 to 2x10 degrees with refinements for

eleotron screening and pressure ionisation in elements heavier than
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helium, but they did not include line absorption*

Recently Cox at Los Alamos has given opacities over a wide range of 
pressures and temperatures. He includes all the processes of pure 

absorption and scattering following the principles established by 4ayer. 

The results clearly emphasise the importance of line absorption^

The present work aims to calculate opacities with special investi­

gation of the optimum use of tydrogenic Gaunt factors, and the seriousness 

of the deformation of the potential field from the Coulomb shape in the 

neighbourhood of the core electrons• The problem of line absorption and 

the various line broadening mechanisms will also be considered in detail. 

This Involves calculating the probability of all significant ionic 

configurations and the splitting of lines. In view of the sensitivity 

of a harmonic mean to the less opaque regions of the spectrum and the 

positions of the absorption edges, the splitting of the edges may also 

be important and this effect will be taken into account.
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CHAPTKK I I

£NWY UY2LS /.W OCCUr^TIOE NUMBER

In order to obtain wave functions and energy levels to desorlbe the 

possible eleotron orbits It Is necessary to decide upon the fora of the 
potential field In which the electron moves; this field will be a 

rapidly fluctuating function depending on the positions of all the 

surrounding particles* It is necessary to simplify the situation and 
obtain average energy levels by niderlng the time -averaged or 

statistical picture over many configurations* Having found the energy 

levels we can then proceed to consider the statistical mechanics of 

highly ionised material and to oaloulate the occupation numbers* 

fortunately at high temperatures these do not depend critically on the 
energy levels so that the simplifications are justified*

m Ay^gf. m ..mui tv kucthof movis "
When an electron penetrates very close to an atomic nucleus then 

the potential will tend to the unscreened Coulomb form Ze/r; that is, 

the interaction with the nucleus will dominate all other interactions*

In these regions we shall expect to find possible negative energy states, 

representing electrons with Insufficient kinetic energy to overcome the 

potential barrier and break away from the nucleus without stimulation

from some external source* The nuclei with their attendant bound

eleotrons will be embedded In a sea of high energy electrons moving 

freely from one Ion to the next* These electrons may have any total 

energy above that required to climb the potential barrier between ions, 

giving rise to a continuous spectrum*
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Since the ions will have net positive oharges they will tend to 

stand apart, when the intervening electrons will screen them from each 

other* We expect therefore that for the bound electrons the wave 

functions will be determined primarily by the nearest nucleus, 

secondarily by the nearest neighbours, and are scarcely affected by 

more distant nuclei* The fast moving free electrons will tend to 

accumulate very slightly round the nuclei according to the magnitude 

of their oharge, but at high tamper tures this effect is smaller, and 

we may assume that the time averaged distribution of free electrons is 

approximately constant throughout space* We thus have the picture, 

similar to that of a crystal lattice, with the ions at their average 

lattice positions and a uniform smeared out charge density due to the 

free electrons*
Supposing we divide up the volume V' into polyhedral oells centred 

on the lattice positions of the nuclei, of such a volume that the time* 

averaged number of conducting electrons inside just neutralises the 

ionif charge, and then deform these polyhedra slightly so that they 
become sperloal (see Fig* 2A)* Then there is no contribution to the 

potential outside any sphere from the charge within it* On the other 

hand the time averaged contribution to the potential inside the sphere 

fror ill the other ionic spheres will also be negligible* We thus 

assume that we can approximate the conditions by such a set of spheres 

since the slight redistribution of charge involved should only distort 

the value of the potential near the boundaries of the spheres* The 

radius °^ & sphere enveloping a nucleus of charge F is determined 

by the condition that the average oharge on such an ion Z' * shall be



Just equal to the number of free electrons enclosed.
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J

where & Is the density of free eleotrons. If N9 Is the number of atoms 
i < z»

of charge 2 in V. then the total number of free eleotrons in V* is zf/VZ' 

and since the density is uniform

r,«Ei£

The average potential due to 2* free eleotrons within a sphere 3 

co„Minl« . of oh.r„. 2 fo th.o

li-i (2 y
1

at distance r from the centre.

Now consider the potential field experienced by an eleotron well
within the sphere S which also has (n ) other electrons in the bound J
levels j. Then on an average there will also be 2* free eleotrons
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within S interacting with the electron where

Z* = z - ? (z^
J J

and the average potential due to the electrons and ions outside the 

sphere will be negligible, Henoe the time-averaged potential energy of 

the electron at a position r will be

V(r) - V(r) -f ZV /?- <)
r J J J Zv

where V.(r) is the average potential at position r due to an electron in 
«

the orbit J, and

Because the form of the potential at the boundaries of the atomic 

spheres is rather arbitrary, It is impossible to impose precise boundary 

conditions on the individual electron potentials, and furthermore we ere 

considering only a time-averaged potential, Moreover we can only solve 

the Schrodinger equation and obtain exaot energy levels by simple analytic 

means for a very restricted set of potential functions. However electrons 

restricted well within a sphere moving mainly in the field of the ion core 

are not seriously affected by the boundary behaviour, and bearing in mind 

the asymptotic form of the potential near the nucleus, we are Justified in



applying perturbation theory, using the Coulomb case aa the unperturbed 

solution. The discrete levels we obtain from the disorete Coulomb 

levels will actually be widened into bands by the periodic nature of 

the potential and by fluctuations in time. The band width is greater 

the higher the level so that above a certain band, all the bands may 
overlap and the upper states fora a continuum. The depression of the 
onset of the continuum in this way due to broadening of discrete levels 
with pressure effects, is to be distinguished from the degression of the 

continuum due to the feet that the potential in which an electron moves 

never reaches sere, as in the case of the infinite atom* In maty 

calculations the electron's potential function is artificially adjusted 

everywhere by a constant amount so that its minimum value does become 
xero, and the onset of the continuum of the spectrum conveniently 

coincides with eleotron energy xero. Mayer rather arbitrarily takes the 

relevant oonstant from the average value cf the potential within the 
atomic sphere. Morse estimates the effect by considering the value of 

the Thomas Fermi potential for xero temperature according to Slater and 

Krutter. He regards the atoms as spheres with radii determined for each 
nuclear charge so that the potential at the boundary is the same for 

all atoms. The magnitude of the boundary potential is then taken as 
the minimum potential corresponding to the maximum potential energy of 
an eleotron.

There ie however another effeot which has not been considered, the 
role of electron correlation. The electrons are discrete charges and 

not smeared out oh&rge distributions. Just as eleotrons can not escape 

unaided from an ion if they have insufficient kinetic energy to use up in
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penetrating the potential barrier between ions, so is the olose approach 
of two electrons limited by the energy available to overcome the 
repulsive forces between them. Each electron repels those around it in 

suoh a way that it tends to form a hole around it unpenetrated by other 
electrons.

When an eleotron moves towards the boundary of an atomic sphere 
another electron tends to replace it in the sphere increasing £*, and 
we can no longer consider interactions with the electrons and nucleus 
in that sphere alone as in (2.5) • Imagine the electron moving in a 

region between nuclear lattice points; then as before free electrons 
will intervene to screen the ionic oharges from the electron, but they 

will not approach close to the electron itself. The average charge 
distribution outside this forbidden region will remain the same. Henoe 

the average potential may be simulated by considering the uniform 

distribution of free electrons to extend throughout space with the lone 

at their lattioe positions, and then deducting the potential due to the 
offending overestimate of the eleotron density in the vicinity of the 

eleotron. The average maximum value of the potential energy in the 

region between ions ia then of equal magnitude and of opposite sign to 

the energy deducted for the "hole effect"•

However the free electrons will tend to avoid olose interactions

with other electrons evezywhere and not just at the boundary of the 

etomio spheres, so that a comparable deduction should also be made to 
the potential energy in (2*5) for this effect, say Vjj- Henoe if we 

adjust the potential energy by adding so that the maximum value 

between atoms is sero,then this quantity should also be deducted to allow
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for the eleotron correlations (see Fig. 2B). The net result Is that the 
average potential will take the form (2.5) with Z*« Z9 for orbits close 

to the nucleus and tend to sero between Ions as though Z Increased to 

£'+1 for more distant oxfelts, and we may calculate bouna energy levels by 
perturbation theory using (2.5) and consider a continuous spectrum above 

the value sero. The treatment of electrons with total energy around and 

Just below the average threshold of the continuum according to this 

scheme will be only approximate. Fortunately the statistical probability 

of these states is very low and they will have a small overall effect on 
the ocoup&tlon numbers. The series of Coulomb bound wave functions we 

need to consider is terminated as soon as the perturbed energy becomes 

positive.

CQMPAhlSVN .UTH uTHrtj

Another method of finding the average potential round a nucleus in 

a surrounding sea of electrons is the Thomas Fermi approach. Application 

of Fermi-Dirac statistics gives the particle density in phase space* and 

hence the total eleotron density st each point* in terms of the potential 

energy* and using Laplace*s equation a differential equation for the 

potential ie obtained. A sophisticated numerical integration treatment 

requiring an iterative process to fit the desired boundary conditions* 

gives the solution for the potential function for ary nuclear oharge* 

temperature and electron density or pressure. The broken line graph in 

(2.o) shows rV?(r)/e where V~(r) is the Thomas Fermi potential energy

of an electron at a distance r from the nucleus for the case of Neon st
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2»5 2.5a temperature of 10 electron volts, and a gas pressure of 10 

megobare. This is compared with the potential energy according to the 

previous sections averaged over the configurations according to their 

probability. The way in which the potential energy increases more sharply 

at short distances r in the first case shows the effect of the tendency

of electrons to cluster round the nucleus, but this is overestimated in 

the Thomes-fermi theoxy.
(K.B. The comparison is between the average potential energy which 

an extra electron inserted at any point would see due to all the particle s 
as distinguished from the potential energy for any one electron in the 

neutral charge distribution whose own effect has been deducted). The 

comparison graph for the unscreened Coulomb potential of course, corres­
ponds to the straight line rV^/a *10.

FBgTOMBJUflOH TH3SQ&T AMD THB BQPKE jSWSBBY LEVELS

£e now have to calculate the perturbed energy levels of the electron 
states when the potential energy is given by (2.5) using the Coulomb 

wave functions in the bare field of the nucleus as the unperturbed solu­
tions. These bound state wave functions are the solutions of

for the discrete values of £.»-(£ /n )fy where n may assume all positive 

integral values, and there are (21+1) possible solutions corresponding to
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values of m and two possible spin states, for eaoh pair of quantum 

numbers n and 1. The perturbing potential contributes the energy

V - H V (r) -f- / 7 -

and sinoe It is spherically symmetric and does not act on the spin it 
will not remove this degeneracy, although it will split the energy levels 
according to the angular momentum quantum number 1. To first order the 
change in ener^ from the Coulomb value will be the expectation value

aeh( = <^,j vp /^mK>

J J I

__ 2The second term follows simply from the r matrix element for the 
coulomb states which is given by (Bethe and Salpeter 1*17)

end using the normalisation of the wave functions

computed using Slater integrals.V (r) isThe terms in V^.(r) may be



is the potential energy of an eleotron at the point r in an ion sphere 
due to an eleotron in the jth bound orbit in the ion, averaged over 
each possible position of that electron according to its probability* 
Hence

•24*»

If the parameters nl correspond 

value of the interaction energy
to the ith level then the expectation 

of eleotrons in the ith and Jth levels

If we had taken into account exchange effects to allow for the 

indistinguishability of the bound electrons then we should also have hM 
to consider Integrals of the form

(see for Example Hartree, Chapter 3)



2 5*
tExpanding

f " ?jl
in the usual form in terms of Legendre

polynomials in , the cosine of the angle between the vectors r^ and

£j
- 7 Ufe fr,

7< -r,|

where
r,

kH
A*" Ki 'j

k
I^y rL > 5

and performing the angular integrations, each integral can be expressed 

as the sum of a finite number of terms in k. Usually h. . is very small 

compared with and we are Justified in neglecting exchange effecte, 

end the first tern for Jj, doninates ill the others. W» obtain

9) -■ II qjIj
(ho * J

where and are the redial wave functions, For Coulomb wave functions 

the result is conveniently expressed in terms of a Slater screening 
constant which is independent of the nuclear charge

6~~* - n F ( 1 ,)y ^77
(2 n)

AE^ *
dr

C,y



The final perturbed energy level of the state nl in Hydbergs la

thug
t. t \

- + - I + zS/J-5 n- (^l-3td-"M [W nl nl J J J 4,4 4/72

and the bound states of the ion are limited to those fbr whioh this 
expression is negative.

The interaction energies of bound level electrons are accurately 

given by the Slater integral method as long as there are not too easy 

bound electrons simultaneously interacting in the same ion. In the

conditions here where the atoms are almost ionised the results should be 
sufficiently accurate. Energy levels were calculated for Isolated Neon 

ions with pairs of bound electrons in various states according to a Her 
Hartree (i.e. without exchange and non»relatlvistlc) self consistent 

field treatment (SC?). This method takes into aocount the deformation 

of the eleotron wave functions due to the other electron®. As before 

each eleotron is assumed to move around the nucleus in a sperioally 

symmetric statistical field of the others) starting with Coulomb wave 

functions a potential is calculated for each wave function giving a new 

radial wave function. The new radial functions give a new potential and 

so on iteratively, until consistency between wave functions and potential 

is obtained.
In the table (2D) the Slater screening constants are compared with 

the corresponding quantities according to (2.19) calculated with the 

be* wave functions. The closeness of the results shows the small effect



of the deformations of the wave function# and Justifies the sufficiency 

of first order perturbation theory only. It will be shown later that 

the free eleotrons deform the bound electron wave functions very little

so that first order theory is sufficient in this oase also.

'f',' 7£?. ; "7 ’1 Z ■ V- 42^7
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Level of
interacting Is 2s
electron, j

Level of
perturbed
electron, 1

values given by SCF

Slater integral values

TABLE

COMPARISON OF VALORS OF



BY SC* *KD SLATER SCftSgXIKG *rPBOX
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Comparison of energy levels from an isolated Carbon ion in the 

2 2 1more complex configuration 1s 2s 2p is also given, showing the extent 

to whioh the theory deteriorates for the upper levels as the number of 
bound electrons increases relative to the charge on the nucleus* 
However even in this extreme configuration the 1s level agrees to/6,< 

and it is usually this level which contributes most to the Hosseland 
mean of the absorption coefficient for carbon at temperatures of the 

order of a million degrees and greater*

COMPARISON OF SRERGY LhVKISBY SC? ANp SUTUi SCWNJNG APPROXIMATION
FOH THh COBF1GORATIOK 1»22»22p1 IH CARBOH

screening constantslevel Energy by SC?

1s -23.81 Ry -20. 65

2s - 2.10 w - .212 •

2p - 1.56 M - . 95 N

TABLE 21.

As is to be expected the perturbation energy levels are consistently
higher than the self consistent field calculations* however the average

energy levels over the ionic configurations may be slightly lower than

the Thomas-Fermi levels for the same pressures and temperature because
of the clustering effeot of the free eleotrons in the latter case*

2 5 2 5Neon at T»10 * eV and P»10 e>mbars, where free eleotron interactions

contribute more than bound-bound interactions to the average energy, was
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compared with the Thomas-Kenai energy levels for the aeae ease*

gOMi 7J-.IS0W OF SMSRGY teVKLS IK TH0MAS-PKRM1 K1KU, .V1TH THK AVERAGE

KfgRGT LKYSLS OBTAINED BI PSKTOTBATIOB THEORY AT THK SAMS TEMPERATURE
AND PRESSURE. Tw1O2*5eV. P»102,5rt>ars. IN NEON

bevel agMT.to r«3s theor* Energy in T-f field
1s -91.373 By —60.667 I|y
2s -14.115 e -12.997 «

2p -13.875 e -12.592
3» - 2.165 N - 1.603 . -

5p - 2.038 «• - 1.426 •

Jd - 1.927 • — 1.166 «

TABLE 2F

thk permi-dikac statistics ■
The natter whose absorption properties we wish to find is 

prescribed by the pressure Pf the temperature T, and the constituent 
elements with their relative concentrations. Supposing that the total 

number of atoms in the volume V1 in a given oase is N $ then the 

number of atoms of charge Z is

(2 It)
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where 6/z , the fraction of atoms of charge £, is determined by the 

concentration of the element. ?he total number of electrons in V* is

N--1NlZ (2 IV

and we wish to determine how these are distributed among the various 
possible energy states discussed in the last section.

The Kenai-Dirac statistics predict that if each atom of oharge £ 

ha a a group of states, i, of degeneracy g^, then the most probable 

total number of electrons in these states averaged over the different 
possible configurations in the atom is

( //^£<1) 1 I

where /^and k is the Boltsmann constant. is a normalising constant 
suoh that the sum of electrons in all energy states is In this
expression is the energy according to (2.17) averaged over all the

possible ionic configurations which include an electron in one of the 
states i with quantum numbers n and 1. Hence

where n^ is the average number of eleotrons in the jth level which



interaot with an 1th level eleotron and £* is the average of Z* for the

level i«

Mayer assumes an Independent eleotron approximation In which the

number of electrons In the 1th level Is unoorrelated with the number 

of electrons in any other level J* Green Investigated the problem of 

interdependent eleotrons and showed that the error introduced by the 

Independent electron approximation is small at the higher temperatures

considered here: the effeot of correlation is to alter the value of
slightly by an amount proportional to 2 and the correction to the 

exponential term Is then of order • This means that for levels 
other than i, n’ is Independent of 1 and equal to 5. the average number

V— V
of eleotrons in the level j. However to find the average number of

eleotrons whioh accompany an eleotron in the state 1, both Mayer and

Green regard the problem as though the degenerate level could be

divided up into an undegenerate state corresponding to that occupied by

the electron, interacting with a group ol‘ degenerate states so
•that n^«n^(1-1/g^): this seems to ignore the fact that the occupied 

state can be any one of the g^ states. If F.(m) is the probability of 

m electrons in the level i then n' should be given by

-32-

a ? ( J'Vv-/ ) Pf (h<\ )
n\= I

- - I 4 Pt (o') (222.)

em 4 A »If n^ is large, then F^(0) is small, so that n^. is approximately

n^-1. If IL is small then the probability of having more than one electron 
1in the level is negligible so that n^ is aero. If nAi *>• greater than
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(f.#>

(2 11)

one then it will be sufficient to take n., as n.-1, and if n^ is less 

than or equal to unity

hjr- "j

M 5 I 0 , ni,~ f)
l L '

2^* may also be taken independently of the level i, as 

number of free electrons 2* associated with the nucleus 2. 

desired property that for electrons in close lying orbits

a-

wherees for electrons lying nearer the boundaries of the ion spheres in 

less probable orbits J J

Z * = f' Z " £n. l2 2-S)
L J J

Meyer and Green both ignore the possibility that the existence of 
an ith level is dependent on the particular ionio configurations* They 

assume that the ith level either exists to accommodate electrons for all 

ionic configurations of deeper electrons, or that there is never a bound 

ith level for any configuration, for an element at a fixed temperature 

and pressure in a mixture. This implies that the partition function 

varies discontinuously with the conditions and leads to inconsistencies

the average

This has the



between equations (2,20) and (2.21). A low occupation number in an upper 
state may indicate that the energy according to (2»21) is negative and 
the state is able to take this number of electrons. On the other hand 
the occupation number predicted by (2«20) may be so high that according 

to (2.21) the state does not exist I Obviously the possibility of 

obtaining a state does not vanish suddenly in this manner, and as the 
temperature and pressure increase the level will pass through a transition 

region where the probability of it existing gradually decreases. In 
this region the state will exist in those atoms with few oore electrons 
end will not exist in the ions with more bound electrons. For example

the average number of electrons in the Is state, n^ > will in general be 
non-integral (unless the binding energy is so large that / 

representing an average of the possible integral occupation numbers^ 
if n. and n? are the integers on either side of n then these will be 
the most probable numbers in any particular atom. If alters sign
when n^ is replaced by n^ or n_ then the state is obviously sensitive to 
ohanges in the occupation numbers of the 1s state in which electrons have 

the greatest screening effeot, and oust depend on the configuration.

This effect may be represented by considering the degeneracy as a
continuous function depending on the conditions through the n* . When 

J—
c state represents a tightly bound electron then it will exist for all 

ionic configurations and for tach state in the level so that gi2 will be 
2x(21*1), a constant as before, tfhen the conditions become such that the 

states corresponding to level i depend critically on the ionic configuration

then the degeneracy of the level should gradually be reduced until, when 

the probability that the states exist is negligible, the degeneracy
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function becomes zero.

Carrying out the formal analysis with a variable degeneracy function 
equation (2.20) becomes modified to

- Nz 3^___________ (221)

CM/

where depends on the partial derivatives of the degeneracy function

C z f lea ( I - Qjz
J 3p-

Since will be zero except for levels j in the transition region,

we need only consider the terms in due to these levels. Secondly it

can be seen that the logarithmic part of these terms becomes infinitely

large and negative as n tends to g and if is always a negative

quantity in the transition region, will become infinite.

Strictly speaking we should consider the probability f , that an 
Jr

atom Z can accommodate just p bound electrons in the ith level for all 

possible values of p by considering all the various ionic configurations. 

The degeneracy could then be written as

Jiz. : pr '

where is a funotion of p only. £(L would also be different from 
the independent electron since the n-. would chan«e nnd th* nr,t



order perturbation theory of (2*17) might be insufficiently accurate to 

determine the existence of the level in a given configuration.

Again the high temperatures help the situation for unless the 
conditions become degenerate and / is small the levels have to be very 
deep to become statistically important. The transition states are 

unlikely to have any electrons in them and hence do not affect the overall 
occupation numbers vezy much (although their existence may be important 
in other contexts), so that an approximate treatment is sufficient and 

detailed considerations of all the possible ionic configurations is not 

necessary. We can choose a degeneracy function for the 1th level which 
has the right qualitative behaviour as follows.

Supposing the average energy level given by (2«21) with the term 
due to other electrons in the ith level itself excluded, that is with 

nii*O, is • 1? this bare level is such that it can accomodate all
the electrons predicted by (2.20) with g^ taken to be the full degeneracy 

2x(21+1) and Eiz , then it will be assumed that the level has this

full degeneracy, and is sero. If LlZ is itself positive then it will 

be assumed that the ith level can rarely accommodate electrons under these 
conditions, with the corresponding sero degeneracy. If the average bare 
level can take a maximum number of electrons, p^, which is less than n^ 
given by (2.20), it will be supposed that on the whole ions with an i 

shell have pi or P^^.^ electrons in the ith level. If we find the number

of ways of arranging these electrons in the IL atoms such that there is*
a fraotion u of unfilled i-level atoms with p^-1 electrons, and a fraction 

v filled in the ith level with p^t then the formal methods of the Grand

—36—

Ensemble can be carried through giving the most probable ratio of u and v
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The average number of electrons In the level i is then

4 v

and a relation of the type (2*26) holds If the corresponding degeneracy 
function and IL,. are related by

f" (3,2.) - r " F(f>l-nll) if®

where
' 2.(2(H)

And FM-ylojy

In the case P®«iz max this iaplies g^ is equal to g± as we should

expect, and when p®0, and g^ are also aero. If we put
then

F(y)~ F(j-') - F^122mCky j - F1) 4 n

. - '-/>J

(130)



Oni/ercjtnce of iterative method of Solution for tlac 

Occupation numbers
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and the right-hand-aide depends only on n^ P* *e also have

-38-

/oj / It1 , C I <■ '-fj

The degeneracy funotion is now defined as a continuous function 

of n^ f’or any given value of £<x > and we o&n obtain a solution of 
(2.26) consistent with (2.21) in all cases, by iteration. Supposing we 
assume a trial solution n^, say n^,; then this gives a value of
and L using (2.20) and hence determines g4, and C . We can then find*—<■£ x^< 1
a new value, n^ from (2.26). The difficulty whioh arose with Mayers

discontinuous degeneracy funotion does not oocur now, as can be seen by
2 12comparing n^,, with the trial value ni?. Formerly n^ took on an almost

constant value up to the critical value of n4, at which changed

sign, when it suddenly assumed the value sero. Hence if this critical
value lay below that predicted by (2.20) there was no self consistent 

1 12value of ni2 such that and n^ were equal. With the continuous
degeneracy funotion as n^7 tends to the maximum possible value, p^, C,

2tends to infinity so that n^ tends to sero. On the other hand when
nU i’ Pi“1 ’ ci ia ”rO and eiz“8iz, mx 80 that aiz i’ •<luiv“lent to 
the value given by (2.20) with the full degeneracy. As n^, increases

from p -1 to p., g4 decreases from g.and C. increases x x xz xz, max x
2 21monotonically. Hence a graph of n.„ must cross the line n. «n , at some XZ XZ iZ

point and hence a solution must exist, (see fig. 2G)

The free electrons also obey Permi-Dirao statistics. The number 

of possible energy states in the interval E to E+dE per unit volume
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including spin, follows from the usual box normalisation

l 3

U* is a small correction term which allows for the fact that the mean

momentum of an electron increases as it moves into a region of negative 

potential energy. U* is given by

where is the average potential energy function of a free electron, 

and the integration extends throughout the volume V*. Except in the ion 
core regions the average potential energy due to the bound electrons is 

almost as though they were at the ion centre, and is approximately 

given by

/ t
- Il

I
(2 W

in each ionio sphere. Hence summing over the atoms we have
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Henoe the number of free electrons per unit volume in V* with 

energies between £ and £+d& is

top (o<+r£) 4-1

and the total nuaber in V’, Nf, la given by integrating over the energy 

and multiplying by the volume. Integrals of the form

J d£

may be written in terms of the Fermi-Dirac functions

oo n
C *

1
od?

ok
-H

ffaiS) o(£

where 1/

y = f>£

A'

For sufficiently large electron energies exp(x^^ ) is large 

compared with 1 and the distribution (2.J6) is almost the same as the 
plain Boltzmann distribution. As U* increases at higher densities the 
temperatures of interest increase and n remains small unless the matter 
becomes degenerate. The total number of free electrons is also given
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by adding up the free electrons in each ionic sphere, and hence

v' F, (^) - znJ1
k5 f

and this equation nay be used to determine
The equations given above determine the most probable distribution

of electrons among the energy levels for a given mixture and temperature 

and density* It remains to find how the density depends on the pressure 
P. The virial theorem implies that the pressure is equal to two thirds 
of the kinetic energy plus one third of the potential energy of the 
particles, per unit volume

Fv* Kt 4 i Ft 
5 3

In the case of an ideal gas the potential energy is negligible and the
mean kinetic energy of each independent particle is i kT so that this

2.
reduces to the form

Pv - NpkT

However the following table gives the average interaction energies for 

each type of particle in an atom of charge Z as well as the expected 

average number and the average kinetic energy.
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On adding the contributions from all the atoms in V’ we have

We now have a set of equations which can be solved iteratively.

If we guess a aet of average occupation numbers and a value of , 
then this gives us by (2*25)• The radii of the atoms can then be 
determined in terms of from (2.1) and (2.2), and (2.39) becomes

a quartic in , and hence we can find the number of atoms of each
element in V*. The number of free electrons, follows from the Z®, 

and we can find a new value of°^ by (2.37)• Calculating new energy 

levels with the n defined by (2.23) and Z* by (2.23), in (2.21), as 

given by the trial occupation numbers, we can find a new set of occupation 
numbers by (2.26) with the degeneracy function defined as in the paragraph 
preceding equation (2.29)• The process may be repeated until the trial 

and calculated occupation numbers are equal and a consistent solution

is obtained.

PKOB/B11ITY UK K/.CH 1OK1C CONFIGURATION

The ability of an electron in a given level to absorb radiation 

frequently depends on the ionic configuration containing it. However it 

has already been shown that the probability of any state being occupied 

is almost Independent of the configuration, in that deviations from the 

average energy levels are small in comparison with the characteristic 

energy kT. That ia, the probability that any particular state in the



group of levels Is oooupled Is

and
' -/iz

Is the probability that it is enpty. The probability of ary ionic 

configuration in which specific numbers of the degenerate states in each 

bound level are occupied, is thus equal to the product of the probabili­

ties that these states are occupied tines the product of the probabilities 

that all the other states are not. If we wish to know the probability
***• {$iz] 8,ta^es the i are bound,

irrespective of which particular states they are in each degenerate 

group, then there are

equivalent configurations corresponding to the various permutations and 
combinations. Hence

? l\_h:_____
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CHAPTER III

THE CONTIGUOUS OPACITY
In this chapter the interaction between radiation and electrons 

will be disoussed leading to the formulae for the absorption cross- 
sections, and these will be applied to the bound-free and free-free 
transitions* The bound-bound transitions require extra considerations 
to determine the line profiles, that is, the way in which the total 
absorption strength for each pair of levels is distributed as a function 

of frequency* This will be discussed in a later chapter*

Por the free eleotrons the pure absorption cross sections are 
relatively small and their scattering cress sections may be of comparable 

magnitude* The classical absorption cross sections for bound-free 
transitions (which usually dominate the opacity) from ary given level, 

vaxy as v * and hence the resulting speotrum of the absorbed radiation 

for each element is presented as the function

DM = C i/M

where C is a suitably chosen constant* The opacity of a mixture can then

be found by adding the individual spectra together according to their 
concentrations, and carrying out the appropriate integrations over u*

ON THE INTtRZCTION BETWEEN RADIATION AND ELECTRONS

In the preceding chapter the distribution of electrons in the 

various energy levels was considered on the basis of the nuclei and their 
attendant bound eleotrons floating in a sea of weakly interacting free 

electrons. It is now necessary to consider how an electron in a given
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energy state absorbs or emits radiation*

A beam of radiation affects an electron through its interaction 

with the eleotric and magnetic fields perpendicular to the direction of 
propagation of the beam. In order to oonsider the problem quantum 
mechanically the radiation field has to be quantised, and the whole 
system of particles and radiation oscillators considered together with 
the electromagnetic fields as small perturbations* The radiation is 
then represented by an ensemble of normal modes X each characterised by 

a frequency v, the d ireotion of propagation and the polarisation
£. • The energy of radiation of frequency v can only ohange by

multiples of hv corresponding to absorption or emission of integral numbers 

of photons, and each normal mode is treated as a vibrating system with 

wave functions appropriate to the simple harmonic oscillator*

The atoms are randomly orientated with respect to the radiation 

flux so we may average over the directions of propagation and polarisation 

relative to the coordinate axes, and since the wave number , •
of the radiation is much smaller than 10 ea so that exp(k*r) remains 

almost constant for values of r up to several Bohr radii, the dipole 

approximation is justified* first order perturbation theory then 
predicts that the transition probability from a given state of the 

radiation and eleotron to another is sero except for absorption or 

emission of a single photon*

Suppose that at some given starting time an electron 1 is in a state 

s of energy K* described by a stationary wave function • The 

probability that this electron subsequently makes a transition to another 
available state a, with energy E and wave-function y(6< , with absorption 

of a photon of frequency v, averaged over the spin of the states a and



may be expressed in terms of the momentum operator p and the two one- 
electron wave functions*

l(y) is the intensity of the incident radiation and the £-function 

implies that the transition can only take place if energy is conserved.

The momentum operator p arises because the interaction of the 

electron with a radiation field giving a vector potential / is

The derivation of this formula will be considered in more detail in the 
next chapter when the time dependence of the wave functions is considered. 

The present approximation in v/hich andy,^ are the stationaxy 

solutions of the time independent Schrodinger equation then follows as a 

particular case.

There are two alternative forms of the matrix element of the 

momentum operator £ in terms of the coordinate operator £ or the potential 
gradient operator VV*• These relations follow from the commutation 

relations with the electron hamiltomian.
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(55)

We have the three equivalent forms

au; • =
^71^^ Vut K^l Z I

* // + i/f K'*”'/
I(o 1\ M* 4j '

The wave functions and^t? may be expanded in spherical 

haraonios

** " 4n,./
(s.i)

h I Ma. r r

and using the spherical symmetry of the potential and the resulting 

independence of m of the radial wave functions,

yty7/ Ha
Pi]/'//*!

(21/1)12.1/3)

+ ] j"*■ I / Kcm^'hiv^i (i-f^)(i-^) \

2 /
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where the operator 0(r) takes the three forms

C(r)-r fit)

z I f I - 7-i^l - 1 m m ( 0 - Mn in//vi um

n*cl>od WMt '(wnC/WhS
I

r

M4 va^
according to whether the dipole moment, momentum, or potential gradient

fUrsula is used for M.as
Xn finding the eleotron distribution the electron states were 

conveniently divided into groups according to their pairs of quantum 

numbers n and 1 for the negative ener&r states,together with a continuum 

group. We can find the average cross section for an eleotron occupying 
any one of the states in a particular group S, giving the average fraction 
of an incident flux of radiation l(v) absorbed by such an eleotron in 

transitions to a group A, by averaging over the initial states in S and 

summing over a basis of possible final states in A. The result may be 

written in terms of a set of numbers f for the groups

1<y,jpi*

£ 
•re 5

7T fU /]/( (3-7?= if
oa A

/
3n fh "A.

where the summations are over the states in A end S and gk. is the order
a

of the group S.

For photon energies which are too low to put the electron into a 

continuum state after absorption the cross section is sero unless the 

energy is close to one of the discrete values corresponding to the average
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energy difference between two negative energy groups S and A* The 
cross seotions may then be written (eliminating the 5 -function)

<vS^ L^) ^8)
AtC

where b* (v) gives the fraction of the total absorption strength

two groups which is effective at frequency v.

fsA ,Ju#t the usual mean oscillator strength for the levels* The 
line profile requires more individual attention to the specific states in 

the groups and the way in which they evolve, and will be considered in a 
later ohapter*

In the case of a photon leaving the electron in the continuum the 

absorption cross section becomes

where the suffix C refers to the continuum. By (dfg^/dv), which will be 

referred to as the differential oscillator strength at frequency v by 
analogy with the bound-bound case, we mean the limit as Av->c
of J- times the contribution to f_„ from final states such thatAv bC

kw-d< Av/z

These transition probabilities have been derived without considering 

whether the final state is available to the electron; if a state is 

already oocupied by another electron in the atom then the Pauli principle 

forbids a transition into it* All states within a given level or with
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the same continuum energy have the same probability and the cross section

for a transition should
factor

V

therefore be multiplied by the availability

,) ^'D>

BOUKD ABSORPTION

Although the proportion of bound electrons is relatively small the 
large cross sections frequently make bound»free transitions the dominant 
source of absorption and this process will be considered first. In this 

case the initial states s in the group S are prescribed by quantum 

numbers n% 1% m*1, and the wave functions are of the form

so that the coefficients in the expansion of the initial wave function 
(5.4) are just

’ I

and m may vaxy from -1 to 1.

The possible final states for the eleotron represent the electron
in some directionbeing ejected XYoo the atom with some positive energy

J2,' ( Cbi, (pcj* an<* hence the wave functions behave asymptotically like
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outgoing plane waves plus scattered spherioal waves. Such wave functions
can easily be represented in the form (3«4) as a superposition of the

At'
spherical harmonic (partial wave) wave functions where

the radial wave functions / Ir ftre the solutions of the radial
c A J'

wave equation for electrons of energy £ in the atomic sphere. The
n 67;r - > behave like sin r- ...*- at large distances where

- *1/
Z

and the phase shift also depends on K*.
Bethe and Salpeter (p33) give the expansion of the continuum wave

function normalised to represent a unit density of outgoing free eleotrons 
travelling in the direction relative to the coordinate axes in
terms of the radial wave functions,

and | • The required expansion

i' ify ,0/1

where is the angle between y)

(3*4) may then be written
AU-/6 1

^,'3?

This enables us to find the matrix elements M in terms of the as
radial wave functions and Eg using (3«5)« These may vary

slightly with the ionic configuration in which the absorption takes place 
and the effective contribution to -/\rc from pairs of states requires a



further averaging over the different possible configurations I

according to the probability of their occurrence* The contribution to
•Ifcr from transitions to continuum states with energies £ to £ +d£ is SC ° a a a

-5>

TA/yc - r P
-r

t L

a#
3k -f.

(?«)

where M 7 is calculated for wave functions in the configuration I* as* J.
andj is the number of independent wave functions of the form
4 k J*e — — in the energy interval £ to £ +d£ with random direction of 

- a • a a
propagation J2 ~ ) fa )

) -- J2^EO

We obtain

df"d,v
ZPT

XMC 1 ‘ 3 <O * f OHfu/i

(s.k)

where 0(r) is defined by one of the three forms (j«6).

Kremers treated the problem of absorption in the field of a nucleus
of charge £ semi-classically and obtained the cross section

K

<?> V

iC

3fs Ck
z

n y
(5.«)
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The ratio of the quantum mechanical cross section to the Kramers value 

is a slowly varying function of frequency, the so called Gaunt factor 
Gg£4 (N.B. This definition has often been taken with a variable effective 

charge instead of I to improve the classical cross section but since this 
is an arbitrary quantity we shall keep to the above simple definition 
and keep the entire quantum mechanical dependence in the Gaunt factor)• 

Then _ ? $ 3
r (,).; 3 75 K

Z 4 u iG 7 +
fit m t ZJ

and

dv

(5-n)

C.t - C/jjK

The Gaunt factors for the hydrogenic wave functions in the potential 

due to a oentral charge for a state s with quantum numbers n and 1

and with energy Ks» end * continuum state of energy h^’w- ’^hv^

can be readily expressed analytically as a function of q - • Values
have been tabulated as for example given by Karxas and Latter (ref~l).

If we can find a simple correspondence between matrix elements for our 
non-hydrogenic potential and such a hydrogenic case then the cross section

may readily be defined in terms of the relevant hydrogenic Gaunt factor,
H- ,4

x A 
4

oh/

df-where is the differential oscillator strength for the hydrogenic
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case.

?or a given level n, 1 there are essentially two independent 

variables which may be varied in order to obtain such a simple relation,
and the continuum energy £**• In order to consider the problem 

thoroughly we need to oonsider the deformations of the wave functions in 

the average non-hydrogenic fields of a given ionic configuration.

Maxy calculations, including those of Meyer and Cox, have assumed 

that a perturbed bound energy level implies that the wave functions 

for absorption from that level may be approximated by hydrogenic ones for 

an effective charge 2 such that

and the continuum energy K • chosen equal to E so that v is the same as a an
v. This gives the simple result that

it

This was presumed to take aooount of electron screening but as we shall 

show a perturbation to an energy level does not necessarily imply 

screening. ?or example when an eleotron charge is confined in a sphere 

and then surrounded by a uniform shell of charge outside this sphere, 

the potential energy is raised uniformly everywhere inside but no fields 

are exerted. Hence in a quantum mechanical description the energy of the



electron would Increase but the wave function would remain the same shape* 

The way in which an electron orbit disturbs another depends on its position 

relative to the perturbed electron and the parent nucleus*

We have shown that the potential function for an eleotron near an 

atomic nucleus differs from the hydrogenic potential chiefly due to the 
other electrons in bound orbits and also due to bombarding free electrons 
within the atomic sphere. The different character of the electron effects 

can be seen qualitatively by applying the Kits variational principle to 
Coulomb wave functions with a variable charge parameter.

The potential energy function fbr an electron in the nvl* level of 
an ion which has [ n^ electrons in the levels f nlj is

-56-

I? 20

Using the Coulomb wave function with charge as the variable parameter 

the expectation value for the energy is

; Zy

(szz)

That is

oil,
n'l' - — 2 p-A 2?>uAX 1 Vc'1 n'l!

•^I2- tvi fa'l .I2- ' & A
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The kits variational principle implies that the best wave function 

corresponds to the value of Z* which makes the energy a minimum, that is
^2, = 0

The tera involving (z )“^ due to the free electrons is proportional to 

the density of free electrons* For levels which are deep enough to be 

statistically important it is always very small by comparison with the 

other terms, showing that the density of free electrons has to become very 
large before very much affected by them* Hence

Zft[ Z ~ ZL. A 6~ , ~ f'Vt' 1 / (*&)■» nl Jo/'

implying that the bound electrons may soreen the nuclear oharge

significantly but the free electrons vexy little* As we should expect 
those eleotrons readily penetrating inside the orbit n*l* soreen 

significantly whereas those lying outside have little effect* At higher 

temperatures and densities the perturbations to the energy levels may be 

largely due to free eleotrons and in this case the error of choosing an 

effective charge from the energy level is clear*
The Hits variational principle only indicates the best overall bound 

level wave function of the specified parametric form giving the best 

approximation for the energy* In finding the bound-free cross sections 

we are evaluating matrix elements between a bound electron state and a 

free electron state which may lay stress on their behaviour in a 
particular region of the atom* The radius which is most important will 
vary according to whioh operator 0(r) is used to evaluate the differential
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080iliator strength. The potential gradient weighting function lays 

stress on smaller radii than the momentum operator, whereas the dipole 

moment weighting function gives greater sensitivity to more distant 

regions.
The free and bound electron perturbations will now be considered 

separately in more detail in this context, the ai in each oase being to 

find hydrogenic wave functions which match the distorted wave functions 

throughout a region contributing significantly to aqy one of the three 

alternative radial integrals. 7e shall retain the model of the crystal 

lattice already introduced in the last chapter.

W KLECTgON I IHTUKBATlQhS

Imagine for the moment that we have a single bound eleotron in orbit 
round a nucleus of charge Z in a level n’l’ interacting only with the 
free eleotrons which penetrate within the eleotron sphere. The behaviour 

of the average additional potential is

(szs)

where 2* is such that it is equal to 2-1, the net charge of the enclosed 

ion, throughout the central regions of the sphere, and rises to Z near 

the boundary where the effeots of other atoms are important. The radial 
wave funotion n’l’ will then be a solution of



-59-

where

f 2

(i ?7)

which satisfies the boundary condition that r R , , remains finite as r 

tends to sero* The boundary conditions at large radii are variable and 
difficult to define. However admissible solutions should be small where 
the value of the potential energy rises above the energy level 

will be a rapidly decreasing functions whenever they cross into such a 

region*

The faot that the Coulomb potential of the nucleus is large in 
comparison with the potential due to the free electrons at small radii, 

the normal condition for perturbation theory, coupled with the fact that 

the free eleotron potential fluctuates considerably about the average at 
large radii, suggests that we investigate the behaviour of the wave 

functions in the central regions with a view to using the potential 

gradient integrals to find the differential oscillator strengths* Wa 
may write the exact initial and final state wave functions and R^ as

Sr^ and ^2*^2 where R^‘ and R^ are hydrogenic wave functions and the 

potential energy function is

r

The potential gradient formula to first order is then



'A—
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and we attempt to choose and s0 that tlie last two terms &re 

negligible.
Towards the nucleus the potential energy, *eVf> of the perturbation

flattens off at a constant value K® > where Z*»£-1 in this case
4Z' J

of a single bound electron* Now compare the solutions of (3.26) with 

V(r) given by

r
and by (3®2?) for the energy value

fl
Integrating outwards fro© the nucleus the solutions are very similar 
until the radius becomes such that the difference between K and -eVis 
no longer small in comparison with the functions V(r). If the two 

solutions are converging to small values in the classically forbidden 
regions by this time then they will differ markedly only in their 

exponentially decreasing tails where the second solution will decrease 

slightly faster than the first, and the normalisation to one electron in 
the atom will be the same.

However the first solution is identical with the usual Coulomb wave 
function for the potential function Ze/r and energy /n ^he

solutions deform continuously with small changes in the energy B^, 

and hence the band of solutions for the perturbed potential with energies
Qdose to L will all be very similar to this wave function and have nl

approximately the correct behaviour at the potential barrier between
atoms. If the energy level En’l’ given by (2.17) is very close to 
CS^+K. then the effect of the free electron potential varying as a function 

of r is negligible and the wave function is undistorted from the Coulomb
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one.

The same argument holds for the behaviour of the free-electron
wave functions near the nucleus. The wave functions for energy £ In a
the free eleotron potential will be very similar In shape to the
hydrogenic wave functions with energy furthermore the *.K.B.

approximation gives us that the amplitude of th< wave varies as
1 1 ?

/wa kW )
whenever the potential gradient is small. (The criterion is that

k ha ol /
_________ ____ << 1 .)

•' w* ■ • '■ ■The hydrogenic solution K ‘ 5 , for the radial wave funotion normalised < a
to One electron per unit volume at energy £ » for an infinite Coulomb 

field ha8 the asymptotlo behaviour
COS (b'r +

Hence if the W.K.B. approximation holds by the time eVf deviates 

significantly from K?then integrating out this solution in the free
electron field it will behave like

(US (kr+S)

y k.1
at the boundary where J is a different phase factor for this x*ield and 
k« y• Hence the normalised wave function (one electron per 

unit volume) will be /k^ times the hydrogenic wave function of reduced



energy I f near the origin*

Thia argument also implies that for continuum energies leas than 

£ftl the ware functions are like hydrogenic bound ware functions of high 

quantum number n. It is interesting to see what happens to the energy 

speotrum and corresponding ware funotions as we increase the density, 
effectively pressing in the Z* free electrons in a smaller sphere.

As the eleotrons intrude the ware functions are gradually deformed in 

the outer regions and at the same time the energies may take on wider 

bands of values which overlap to form a continuum. In other words as 

the eleotrons penetrate a bound eleotron orbit and soreen the nucleus 

the electron tends to move outwards particularly at large distances where 

it is more probable that it la completely screened, and can leak away 
altogether. The missing bound states are not really missing but Joined 

on to the states at the onset of the continuum.

In order to Justify the hydrogenic approximation and put 
R2^, w here to .how that the potential gradient integral converges 

well within the regions in whioh these are good approximations, #e can 

show that this is true when the energy difference between the initial and 

final levels ia sufficiently large and we shall then hare
7(r) - J+ J Sv(^
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f f“?f (I- hio)

where J'W’IA
Za/

representing th. correction terra fbr 5'V , is a monotonic increasing



function of r. Supposing that at frequency V, the ratio of the correction 
term to the uncorrected matrix element l(r) is K(v). Now if we choose a 

value of r> say r’, and we find that P(v) is less than f(r*) then we 
should expect that the matrix element l(r) must come largely from regions 

r less than r*, for otherwise the matrix element would have shown a 

greater sensitivity to the tail of • But at * ny frequency v using 
the commutation relations (3*2)

KJ- -J—
3 4 *- J- Zaz, /7T

In general the important regions will be those for which ?(tf) and f(r) 

are of the same order of magnitude or

—63**

3 4- L- u "7*3
A,

Hence

At these distances

V(r)

- 2 ft/
'zF'

r

LL-
ZZ^ *

(?5Z)



Hence our approximation will be good when f(v) is small. f(v) is 

proportional to the density of free electrons

fM-- 3ft <_ ir>

1

and hence is greatest at the higher densities and temperatures for any 

given frequency.
The Ho as ©land weighting function has a maximum about u*hv/kT*7 and

is small at low and high values of u (see graph 1A) so we are particularly

interested in obtaining good cross sections at intermediate frequencies.
In the Coulomb case the absorption cross sections for the levels vary
approximately as n with the principal quantum number, so that they
decrease rapidly with the binding energy to the nucleus as we should
expect. Furthermore the deeper levels are statistically more probable

so that at any frequency v it will be the bound levels which have the
greatest threshold frequencies below v, which will dominate the bound-
free absorption. At high tesqperatures the absorption edges of the deeper
levels will ooour at lower values of u and the absorption cross-sections
of the lightly bound levels will be less important. For example at 

2.5T»10 eV the frequencies coinciding with the maximum of the weighting 
funotion va7hT/h correspond to electron transitions with an energy 

increase of about 175 Hydbergc. The ionisation energies of 1s levels 

for elements up to about Silicon will fall below this value. The wave 

functions of the deeper levels converge well within the atomic spheres 

and hence they should be well represented by the wave functions

-64-
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associated with them.
Also at the frequencies v/7kT/h we find

3 2.
f fvy) /V 5- fc a0 B

shore B=Ky/k?. This expression is always small at the densities and
2 5temperatures considered here. In the example Just considered T«10 eV 

2 5with the pressure P»10 ttbars the density of free electrons is about 
•5.102^ per cc. and j?(7kT/h) is olose to 10*^1 Hence the regions where

the hy&roge&ic approximations for the wave functions do not hold will 
contribute little to the integrals we require.

Since the energy parameters of the hydrogenic wave functions vary 

by same amount as the ones with which they are associated in the free 
eleotron potential, the frequency is invariant

and so

■0 that

civ k_
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/t low frequencies where the approximation is not so good the correction 

tern may b e out out conveniently by an exponential factor or else 
ignored altogether sinoe it is small at high frequencies in ary case.

AMmiag oca computed gapht ncroas

Calculations were carried out on Neon in tt .xxture (5«A) which at 
2 5 2 5P»10 abars, T»10 eV has an average of one bound electron in each 

atom. The mean radius of the atom ar/l is 3*565&0 Bohr radii and there 

are up to six bound levels of which the last three are too lightly bound 

to be statistically important* Using the exact solutions for the wave 
functions in the average potential with nine free electrons computed 

numerically, Gaunt factors were calculated precisely for the first three 
levels and compared with various hydrogenic Gaunt factors. The conver­

gence of the integrals was investigated in each case and the way in which 

the radius of convergence decreased with increasing frequency for each 

given initial bound level was clearly shown. The wave functions were 
tested where possible by comparing Gaunt factors calculated from the 
potential gradient, momentum and dipole-moment operators. However at 
low continuum energies the dipole-moment, and occasionally the momentum 

integrals, did not converge within the atomic sphere, another reason for 
considering the potential gradient integral at low frequencies. The 
graphs (j.A) show the bound wave functions for the 1s, 2s, and 2p states 

and the corresponding Coulomb functions for the full charge Z as the 
functions f .(r),

/n( r

for values of Q? They are the same to within .01 and hence
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unresolved* The Coulomb states 1s, 2s, and 2p for an effective charge 
taken from the enerQr are also given for comparison* In Fig. JB

the s-state free electron wave functions are similarly compared for the 
energy of 40 lydbergs by plotting r75 (this corresponds to 

normalising the wave functions per unit density per unit energy interval)* 

The continuous line is the exact numerical solution, the dotted line the 
hydrogenic one for

(/»)’ *.,<) I

with the same energy (k*«k), and the dashed line the curve for rJ2^ 

times the hydrogenic wave function for reduoed energy I* - " £'K

Tn the table (JC) the actual Gaunt factors are given for eaoh level 

for a aeries of energies K in the oontinuum for the final state. In 

the first column are given the exact calculated Gaunt factors in the 
average potential of the nuoleus and 9 free electrons; in the second the
plain hydrogenic Gaunt factors for the full nuclear charge and same 
continuum energy are given. Xn the third ooluan the Gaunt factors taking 
an effective oharge from the bound energy level are shown and finally in 
the fourth column are the Gaunt factors obtained as explained here, using 
the full nuclear oharge and a reduoed continuum energy suoh that the 
frequency remains invariant.

BOUND KUCTxtOK x^mCTS
Many attempts have been made to account for the interaction of the
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other bound electrons on the oscillator strengths* The objection to 
using most of these methods again lies in the faet that they do not 
necessarily provide wave functions which are accurate throughout any of
the regions where the matrix elements for the oscillator strengths lay 
emphasis. For example the quantum defect method is based on the dipole 
length form for the oscillator strength for which the major contribution 
comes from the outer regions, where the potential is assumed very close

to a Coulomb one produced by an effective charge of the nucleus and bound 
electrons. The bound wave functions are approximated by hydrogenic wave 
functions with the same angular momentum parameters and an effective 
quantum number n *

where B^ ia the energy of the bound level. The difference between n and 

ia the quantum defect for the level. The continuum radial wave 

functions are expressed by choosing a combination of the two Coulomb wave
1+1functions with the given energy E behaving as r at the origin, and 

with the correct asymptotic behaviour with phases given by

whereyz is the extroplated quantum defect. The method is only applicable 

at low continuum energies

There is still the same difficulty in this method, of determining the 

effective oharge at large distances, especially when we may 

simultaneously have free electrons and surrounding atoms completely 

neutralising the potential at large radii. A serious result of the high



densities and the non^isolated atoms is the faet that the dipole length 

integrals do not necessarily converge within the finite atoaic boundaries, 
and the region in which we are most uncertain of the potential and wave 

functions is often critical.
The potential energy of an electron in the level n*l* is given by 

(3.21). The potential energy of the electron at the point r due to an 
electron in the state described by the wave function
over that electrons position is

-69-

o r

The first term is due to the charge inside the sphere radius r and given 
a potential just equivalent to a charge

at the centre, that is, it effectively diminishes the nuclear charge by 
this amount. The second term is due to the probability that the nl shell 

eleotron lies outside the sphere of radius r. If then all the nl orbits 
lie almost completely outside the range of the n*l' orbit then the 
potential is raised uniformly throughout this region and the effect is 
very like that of the free electrons, when the wave functions are 
deformed little by the interaction although the energy associated with 
them is raised. We can again aooount for this by choosing the energy £ t

-"0 .’J;'1

in the Coulomb approximation such that the frequency remains the same,

Vj^ with the same full nuclear charge Z.

If some of the orbits nl lie within or overlap the n*l* orbit then 
the same argument no longer holds and the potential can not be approximated
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by the full Couloab field of the nucleus for a sufficiently large radial

interval. This suggests that we should now attempt to obtain a better 
hydrogenic approximation by varying the seoond available parameter ’

to take account of screening by Just these inner levels,
Mosskowski and M^yerott investigated the electron screening of 

bound electrons in K and L shells using Hartree rave functions and 
calculating the fractional change in the radial matrix element to order 
1/*2. They reduced their results to an effective charge form neglecting 

the splitting of the 1 degeneracy -

and the prime on N . denotes that one electron is deducted from the n
number of electrons in the shell n*.

Retaining only terms of order 1/Z they expanded
constants in the form of the sum of a term
in the dipole length and a term varying inversely as

__ , * i
depending on the Slater screening constant <7,K 'I

the screening 
due to the change 
the frequency and

' hi

q-f /Zhz

n *Unfortunately the b^ also show considerable variation with frequency 

but the average total screening constants are about the magnitude of the 
Slater screening constants. Retaining higher order terms to 1/2 though 

not permitting a simple expansion equivalent to (3,41) improves agreement 

slightly between the Mosskowski and Slater screening values. The table



(JL) shows values of tfcft effective charge computed to both orders 1/2 
and 1/22, by Hosxkowski and Meyerott for the elements and configurations 

stated. The quantity Z-Z gives the value reducing 2 as though the 
electrons screened of the charge for the electron path according 
to the probability that they lie nearer to the nucleus, and nay be 
written approximately in terms of the Slater screening constants using 
(2.12) end (2.16), aa

H I < 1
4

”T~
Jf2)

where we include half screening for electrons in the same orbit. (The 
Slater screening constants used by Mosskowski and Meyerott are the 
empirical values given by Slater in 1930 which are independent of 1 and 
differ slightly from those evaluated by the formula (2.16).)

Zb15,Nk«2,Kl»0 
1/Z2 1/Z

<Vi

fa29,J^-2,NL«1 Z«29,^-2,Nl«4 Z-29,^-2,Kl«8
1/Z2 1/Z ‘ 1/Z2 1/Z 1/Z2 1/Z

0.00 .295 .394 1.216 1.508 2.78 3.81 4.86 7.37

0.25 .318 .360 1.788 1.720 ’ 2.50 2.29 3.45 3.03

0.50 .321 .337 ! 1.676 1.595 2.39 2.00 3.34 2.28

1.00 .314 .304 1.470 1.401 2.11 1.75 2.95 1.97

z-z .30
:

1. 70 2.75 4.15
J

Table JD Effective screening constants as evaluated by Moskowski and

Meyerott. (Ap.j. 124, 1956, ?540)
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It is evident tfc it the Slater screening approximation breaks down 

as the number of electrons increases relative to the nuclear charge, but

that it is better in ionic configurations with only a few bound electrons.

Uoskowski and Msyerott’s expansion is based on the radial matrix 

element and since the wave functions are not true solutions the 
relations (3.2) do not hold exactly and the exp nricn of the potential

gradient formula would differ in order 1/a . To investigate this sort

of screening approximation further, calculations were carried out to find

the exaot electron wave functions for the typical cases of Neon in which 

one electron was assumed to be in one of the levels 1s, 2p in turn, and 
to determine the Gaunt factors from these exactly for each level 1s to 
2p and several continuum energies. The results are shown in tables
(32). The figures in the columns B are the hydrogenic approximation fo„ ;

the Gaunt factors corresponding to frequency v, obtained using the 
effective charge 3^2 »2 to account for inner screening electrons, and

a continuum energy Eftt,

such that the hydrogenio frequency v„ remains the same as v, to take care 

of the perturbations from the outside electrons. For comparison the 
unscreened hydrogenic Gaunt factors are given in the square brackets and 

hydrogenic Gaunt faotors screened according to the binding energy of the 
initial bound level are shown in ( ).

The arguments applied in the previous section to the superposition 

of the free electron field on a Coulomb field depend only on the constant 
nature of the perturbing field over the range of the bound level electron 

under consideration, and are independent of the unperturbed field. The
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effects of the free e* ectrons and bound electrons outside the electron
orbit are additive end the correspondence TiE ->E t Is defined by their

combined contribution to the potential energy near the nucleus. Hence

when the effect of all the electrons are considered together the above
choice of 2 * and continuum energy 2 , will still be oorrect. We can 

eff a1
then write for all cases

/>/+/# >

’ £, .<0 

z*

The complications of taking a frequency dependent formula to Improve 

upon this screening approximation are considerable and such approximations 
are not necessarily consistent with the sum rule for the oscillator 
strengths which must always apply (Bethe and Salpeter P 260.) The 

frequency dependence is most Important In the case of several electrons 
oooupyxng the same shell and the probability of such configurations is 
small in most cases; If the error In the Gaunt factor in the case of 
more than one electron In the same orbit is 10% and the probability of 

this occurring is less then 1/10, then the percentage error on averaging 

over configurations is less than 1%.

furthermore the Gaunt faotors are slowly varying functions of 
frequency tending to values of the order of unity near the threshold 
edges, (see Pig. J/), so that it is usually sufficient to average over 

the ionic configurations I at frequencies above the highest component 
edge by using the average value 2 4 of Z and the Gaunt factors
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for the average parameters Z and eff and £ .
a’

However in the region between the lowest end highest configuration edges 
the average cross-section is

(j-k;

where the suamation is only over the configurations 1 of probability
TP for which the threshold frequency v7 c does not lie above v.

In the absorption problem here we have free electrons of all 

positive energies moving into the field of an atom from random directions 

These electrons interaot with the radiation field and may emerge with 
different energies and directions. (Fig. 3G)

<e shall find the fraction of the flux of radiation of frequency v

absorbed per atom when there is a unit flux of electrons per unit area

of energy E .s



£a

impinging on the nucleus fro© a direction ( &5 ) (jp? )« Is can then 

find the average cross section per atom per unit density of free electrons 
by averaging over the flux as a funotion of the energy»

Accordingly the incident uniform flux of electrons is described by 
a eave function which behaves asymptotically like an incoming plane eave 
in the direction plus a scattered spericrl outgoing wave. This
stay be expressed in the form (3.4) as a superposition of partial waves 

just as the final state wave functions in the case of bound-free 
absorption
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v1)- 2 2 ;2‘Si

kks ['0
(J.n)

again the j are the solutions of the radial wave equation 
Q.26) for energy £ and angular momentum parameter 1, which behaves
like J- £vk <f) for large r.

r
(N.B. This wave funotion is normalised to represent a unit flux of electron! 

with velocity v, not a unit density).

For the final states exactly as in the bound free absorption we have

4™ h^E^ 0<A z (h kk^<,

k

wave functions per unit energy interval representing outgoing electrons 

travelling in directions within the sold angle about
vbA defined by

- 2 L fluJL

tfc ) I



Hence

I;
«„ - i K <-■

(2Ul)(.2H3)

f2l+l)f2l-9

+ ll<Vt4

i X Ai;' t / J

( J 50)
Bound free absorption normally dominates the free-free absorption 

In the mixture except In conditions where the degree of ionisation is 
almost complete; it is not really necessary to consider the effects of 
bound electron screening and as we hare shown free electron screening is 
small. (This was confirmed by calculating oscillator strengths using 

the numerical solutions for the continuum wave functions in the average 
potential and oomparing with the corresponding unscreened Coulomb 
values). Hence we can use the Coulomb wave functions and potential 

gradient formula. Intigrating over J2^ and averaging over
the resulting cross section becomes

£,4 x fcc/ fviV h.y0 Ikt/ V U V

(? nJ

The Pauli exclusion principle makes little difference to the energy

distribution of free electrons so that q
a

1 and the velocity distribution
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ia very nearly Maxwell ian. The fraction of eleotrona with velocity Vx 

la then
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(J.2?

so that the total flux of electrons incident on the atom with thia 
velocity is

A

where la the density of free eleotrona*
Hence the total cross section per atom per unit density of free

eleotrona on averaging over the velocity ia

(?5t)

Thia nay be written in teraa of the classical Kreaers total cross section 
and a mean Gaunt factor



3 H /■fcKjX ratine, averaged btC-fiet (jpcurvf as “flA^C-hc^S

of ia h>r r&rioi/S of Y*”-Z£f.
kX
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The Gaunt factor

Thc classical cross section

*U 3/3 v3 J k,

varies inversely as the square root of the tempt- ^ture since

has been evaluated and tabulated by Karsas and latter as a function of 

the two temperature and frequency dependent variables

U-kv , <5 5S7
kJ kT

The graphs JH taken from the paper by Karsas and latter (Ref 7) 

shows the temperature averaged free-free Gaunt factors as functions of

u for various values of .

sassmig

The cross section for pure absorption by free electrons are small
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In fact It is only the scattered parts of the free wave functions which 
lead to absorption at all and first order Born approximation based only 

on their asymptotic plane wave behaviour gives a sero cross section. 

This implies that the second order process of scattering may be an 

equally important absorption process for free electrons.
In a scattering process the interaction between an incident photon 

and an aleotron perturbs the pair in such a way that the photon is 
absorbed with almost simultaneous re-emission in a new direction, (see 
fig. 31) for photon energies much less than mo 9 the nonrelativistic 

case, the frequency of the scattered photon is almost the same as that 
of the inoident photon and we have coherent scattering.

The total oross section for scattering of photons of frequency V 

by an electron at rest is given by the relativistic formula of Klein 
Nishina (Haltier P221)

J I (J 5<u
(lUZ)1 I J
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(5u>)
3 ’

la the classical Thomson cross section. Both the Planck and 
Bosseland means lay little weight on the absorption coefficient at 
photon frequencies with energies hv much greater than 10kT. At 
temperatures of the order of 100eV, f is of the order of 10*^ at most 

and hence the scattering cross-section par free electron is very nearly 
constant at the non relativistic and classical value throughout the
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range of interest.

THE COHTINOUS ELEMENT SPECTRA

We now have cross sections for various absorption processes for 

individual atonic partioles and wish to combine these for the total 
ensemble to fora a spectrum for the mixture from which the opaoity can
be calculated.

In each gram of the element of nuclear charge Z there are

atoms where A is Avogadro's timber and 11 is the atomic weight. Each O 2

atom has on the average n electrons in the level nl with an average 
cross section (which we assume to be sero at present below the lowest 

configuration component bound free edge, ignoring the line absorption). 

In addition there is a density of free eleotrona adding and average 

of to tk* cross section of each atom. Hence the cross

section per gram of the element 2 for pure absorption is

kZ,(U,t 4-°

By analogy with the derivation for the transition probability from 

the state s to the state a with a decrease in the number of photons in 

the radiation field, the transition probability from the state a to the 
state s with emission of a photon is the sum of two terms, a spontaneous

part
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and a term proportional to I(v)

? = J- -L_ Ii’ll-)I 9'f ^u)j (Z<>i)
Ln

It follows that, if the electrons obey Fermi-Dirac statistics the total 
stimulated emission at frequency v is Just a factor

- vA 7 ' *A€ - £

times the total pure absorption. Hence the total absorption is

2,aAj 7 I / (w)

In addition we have an average of Z free electrons per atom 

scattering radiation with cross section so that the total net 

absorption is

The dominant term in this expression is usually the bound free

xcontribution which varies as 1/v • For convenience it is better to 

change to the parameter ti-and tabulate a function which remains all 

the absorption characteristics but remains within reasonable bounds.

Such a function is D» -- (tl\

C ( I- <k) M
(3.66)
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where C is the numerical constant

f3 4, Uk**?0 : ^ Klof )Di

tfi Ck3

(W)

This function will now define the continuous spectrum of the element 
of nuclear charge Z9 that is the element spectrum excluding the 
contribution from the line absorption. The absorption coefficient per 
gram of the mixture follows from combining the individual element 
spectra together according to their concentrations by weight.

(w)

(M)
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CHAFER IV

LIKE ABSORPTION

In deriving the transition probability leading to the absorption 

cross section for frequency v for an electron in aqy specified initial 
state, the variety of the possible simultaneous perturbations due to 

the potential field of the electrons surroundings was Ignored. It was 

assumed that the electrons in each given ionic configuration remained 

indefinitely in undistorted states of fixed energy, for absorption to 
to take place. In the oase of bound free absorption, consideration of 
the various perturber states implies that eaoh infinitely sharp 

configuration edge should be replaced by a oontinous profile, but the 

effect on the opacity is smell when superimposed on the configuration 
splitting of edges. However, the various perturber interactions become 

extremely important in the case of bound-bound transitions, as they lead 
to absorption over several narrow bands of frequency instead of infinitely 
narrow lines.

As in the case of the bound-free absorption edges, the effect of the 
various core configurations is to split each line into a number of 

components. These correspond to the dependence of the energy difference 
of the two levels concerned on the occupation numbers and the Slater 

integrals. The effect of perturbers outside the core is to produce a 

continuous range of energy perturbations and hence broaden each line 

component into a continuous profile. The magnitude of the interactions 

with the other oore electrons is usually greater than of those with 

particles outside the core, so that in general the splitting with 

configuration tends to be greater than the broadening, and the components
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do not overlap.

The croaa*sectioni for bound-bound transitions are large, and as 

already mentioned the broadening may be very great in the conditions of the 

stellar interior. At the lower temperatures the splitting of lines and 

the greater tendency of electrons to cluster in the lower bound levels 

as well as the emphasis on lower frequencies, all tend to make line 

absorption relatively more important.

The broadening mechanisms and the resulting profiles are complicated 

and this chapter is devoted to discussion of the problem in some detail, 

starting off with the theory of absorption sc cording to time dependent 

perturbation theory. Fortunately at the temperatures under consideration 

here the opacity is not too sensitive to the exact profiles of the 

individual line components.

BY M aWM ifr, EVUWJS

We shall now return to the derivation of the oross-section for the 

absorption of radiation, treating the problem by time dependent 

perturbation theory, for an electron in a general oharga system.

The Hamiltonian for a charge system interacting with the radiation

field is

where the index 1 refers to the ith charged part io le of momentum p and
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mass in tho electronw^netic field and the are the

hamiltonians of the radiation field at frequency v , .At time 
t«0 the possible eigen states (t) of the time dependent Schrodinger 

equation for the hamilIonian H

(42)

are approximately the products of the single particle eigen functions

*he heailtonians

where is the average potential of the ith particle due to the other

partioles at that time.

f W ' /I /(M

k. t

Zt any time t the states of the particles may be expressed in

terms of such functions.

The radietion states may be described by

tj‘ « Mkl><
(It)
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where ft kv ia the 
in the state k, and

of the states. The
represented by wave

interaction term

energy of the radiation oscillator for frequency 

the exponential factor gives the time development 
combined system of radiation and particles may be 

functions of the form Vj ft) aIKi

£ A
L ---niC

in the hamiltonian H treated as a small perturbation. According to 

perturbation theory if a state is described by (o) fo) 

at time t*0, the probability that it is in the state y, fa) ( (t) 
time T is

where h . is the interaction hamiltonian.

afoen photons of frequency v are absorbed then the number of photons
in the final states must be less than in the initial state. Expanding 
the vector potential as thesum of the contributions of the individual

radiation oscillators

/ = < a J 41 e L(s>>c)
~ lx « (W

where e is the polarisation vector and k the propagation vector for the 

oscillator \ , it is found that the probability of such transitions is

sero unless
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In this case averaging over the polarisation and the direction of 

propagation of the radiation relative to the orientation of the system, 
the probability that a photon of frequency v has been absorbed due to 

this interaction, leaving the electron in a state a at time T is

where the replacement of ^w^by and^lf inulcctes that the wave 

functions may be regarded as functions of the coordinates of the ith 

particle on which the action of p^ has to be averaged over all other 

coordinates•

To find the average cross section for absorption for an electron 

in a given bound state with quantum numbers n and 1 initially, we have 

to average over the various possible wave functions and their development 

in time. The average cross section on summing over the available final 

states and dividing by the total incident flux in the time T, then

becomes

THE comi/Tioy MJKCnOW

Supposing we write the part of the(~weve funetienAcross section



depending on the wave functions as a sum of double integrals*

■ (w)

7

iihen the Integrals In (4*9) are absolutely convergent then we aay write 

each double Integral

where ffr) tends to sero as ? tends to Infinity* Splitting up the 

integrals in this way and putting
/-t'-r"/

the second part of each integral is the coaplex conjugate of the first



-90-

and hence in the limit

I Urlolt.e'^

2nL J 1
Z-o

where C(r) is the correletion function for the particle i.

i
C^Cr)-- /k '+d lf>L I t.i

(tit)

We shall now introduce the evolution operator U(t2>tp defined by

It-J-- (t,)

with the property that

W(t>r,o)- Wft'+rj t9 U/t'.o) M?
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S. then here

T
U /U-L/
I -)ctD I & o

TH& CftOSS SECTION IN THE ABSENCE 0? FWUWnONS

In the ideal case when the electron is isolated and quite

undisturbed until the interaction with the absorbed radiation takes 
place, then the Hamiltonian and the energy of the electron remains

constant. If (0) is the solution of

k M - k (hl)

then the time dependent wave function which is the solution of

ktf/N » lfc
J

is just

Yylth * t/6)

so that the operator U(t?,t.) takes the simple form

U (t,A>



In this case the correlation function is Just

e w K'tiiJo}/ft I
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where , k vj ~ E, \

?nd

7 j>, I
J-T\

The resulting transition probability (4*7) on restricting the final 

states a to some particular final state is

which is the foraula (J.1). The Dirac P-function implies that 

absorption can only take place when v®vas« However vgg itself will 
vary when we take account of the deviations from the stationary 

potential field and hamiltonian for which y({k antK^d are

eigenfunctions.. Also if the motion of the nuclei is included the 

Doppler effect becomes evident. ohen all these considerations are

taken into account absorption takes place over a range of frequencies 
the ? function is replaced by a broadened line profile b(v). In

and
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gwneral we may write

where

3

(w

TO£ EVOLUTION QPBfUTOH

In the general time dependent case, suppose that at ary time t the 
solutions of the time-independent Schrodinger equation for the 
instantaneous hamiltonian h^(t) for the ith electron, are the set^^j^ 

with energies

k £(t) fa. it 5

The evolution operator U, may be determined relative to these 
states as basis, as a function of time. We may write

0
/A)

j J (4.25)

-
Ic

r>7ivl v



where and h® are the energies of the states in the unperturbed 

case, so that the exponential factors give the development which the 
states would have in the approximation (4.18). The coefficients

(t) 4X1?- for all values of x and y provide the x,y
elements for a matrix representation of U(t,o)

LCl^>0)]yiy -

and from (4«14)

how suppose that we divide up the time into several small intervals 
Zi^such that Z-f tr

and consider what happens if, during the interval zS(? > the electron 
suffers a small change in the hamiltonian h. (t) due to the surroundinglk •
field. In general the wave functions j j* remain very much the same 

shape so that

but the coefficients / j1 and j j wiil differ both in phase and 

modulus. The changes in moduli implying that the electron i changes 

state, are referred to a s the inelastic effects of the perturbation, 

the changes in phase as the elaetio effects. The added effect of 
perturbations in the time interval t‘ to tVc may be written

M(v+v')-- (Ui)
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where

end

L-, < t'

Ur ' W > h-l

Time dependent perturbation theory determines the matrix for each 

individual U^. In general the diagonal elements of U*, are the only 

ones of sero order and the off-diagonal elements are proportional to 
the strength of the perturbation, The diagonal elements oan be written

is the phase change produced in the state j by the perturbation, and
the decay parameter, may be written in terms of the off-diagonal

elements of U • r

These off-diagonal elements are due to the probability that the

interaction h^ would send an electron in the state at time t^,

into another state, by the time tr»
(UJ

Jfc kf I I
-, ff/- e;j t/t

oil? ft I'



In general is small for eaoh state k although the collective
%

effect giving may be considerable. 
We may write each U

u = u° +

r r f
(f.So)

D owhere Ur is the diagonal part of U*, and Ur is the off-diagonal part 

which is proportional to the strength of the perturbation. The leading 
term in in (4«26) clearly comes from the product of the
diagonal parts, which are commutative.

<4>Wv-| <v\

r-a

- U7 t'iX, t') + Z 1/f *’) (f.JO

where

V, (p+r/1)-- u
'P . 0'X+Z +

wT?
Mpu-/

D t> J> 
'fy-h ^y-i

0 . J>si 1 r
HFku-j h#vi-L

I?
kv

and V (t+T,t’) gives the sum of all the products of m matrices in which ft
s of the m are off diagonal and m-s are diagonal.

We have
C(t) = C/(t)+c

where CL 6r) is the part of 6tfr) due to thej and£ 

the sum of the terms due to the matrices V ((-
represents



Supposing we call the decay parameter and perturbational phase

change in the time interval to tg for the state j , )«*,«/ <^((-,,1,)

(that is,
■jj

then by (4.26)
'Sj ^L. Sjf

)

r-n

and (W)

j ‘ £ %■

where £(. and (p are the decay parameter end phase change for the

state j in the time interval At • r
Since the j and the available form bases for the

possible transition states we may use the closure property

£<^1- • /yiJ>-£{<vlJ^><^/

The summation over the states is thua equivalent to summation

over the states according to the probability that they are
available

t'-o



The total radiation of frequency v absorbed by the ensemble is

—98—

the sum of that absorbed by each electron. If the material is in a
>

steady state the distribution of electrons at time t will be the same 

as at time t«0, that is, the total number of electrons instantaneously 
described by the state at ary time tz remains constant. Hence on 

summing: over the contributions from all the eleotrona instantaneously 
in .t ti.. t ' «M amaing th. nu»b.r of electrons in the

state, and assuming that the various types of interaction occur randomly 

in time, the average absorption cross-section per electron in the 

state z for transitions to all states a is tnen7

I 1/ 1f«7fc CCxJdIx * J-±3 n/Aci/ >

J
C(x)= Av< £

= (--
i / 35)

ifaiar* ?(£>($ is tke probability of obtaining, the value & for the decay 

parameter

and the differential phase change



and the averaging is over all possible values of J and ?'•
Suppose that at time t*^ the states (j describe the electron 

in the field due to the nucleus and the other bound electrons in the

ion, that is at that precise instant in time none of the surrounding 
charged particles are particularly olose. Then in the time interval 4t 

the electron state is perturbed by the interaction with the radiation 

and by the surrounding particles. The interaction with the radiation 
uoes not alter the phase of the states^rC) but does, of course, cause

transitions to other states, and hence gives a decay faotor r 

giving rise to "natural broadening” • Cn the other hand the interactions 

with the other charged particles give rise to both elastic and inelastic 

effects which will depend on the charge, the position at time t and

the velocity of each particle.

Let the mean rate at which inelastic transitions take place from 

the states due to the interaction with the reaiation be •

Usually is small in spite of the intensity of radiation and

contributes very little to the total broadening. The interaction is 
constant in time and the decay parameter for the interval d t^ giving

Jthe probability e J, that an inelastic transition does not take place

Afrom the state in this interval takes the value

rf u

Similarly the quantity determining the decay due to inelastic collisions



where T^j is average reaction rate with colliding particles for an 

aleotron in the state •

In the case of elastic interactions with other particles the 

probability of a given type of particle perturbing an electron in a 

state at any time, and the manner in whioh simultaneous interactions 

with several such particles may be considered, depend on the duration of

the interactions relative to the lifetime of the state. If the

perturbing particles remain almost stationary over the time interval in 

whioh the absorption takes place, then they may be treated by the 

Holtsaerk theory. If, on the other hand, each particle is only close 

to the ion for a very short time, the phase is changed almost

instantaneously, and the total phase change produced by non-overlapping 

dollisions will simply be the sum of the individual phase shifts, This 

is the basis of the "impact theory".
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THE HQLTSMZfiK THEOHY

The Holtsmark theory finds the probability that the perturbing 

particles produce an electric field F on the ion at time t«0. If the 

field y * for some constant K , produces a change in energy
(k) for the state , then, if K remains almost constant, inelastic 

transitions due to the field are unlikely, and the phase change 

according to the adiabatic theory in the time r , is

</G0= L, (cZ X (4W)



The simplest version of the theory takes the field K as that due 

to the nearest ion. In this case the probability that the nearest 
particle is of charge Z, and at a distance between K and K+dK from the 

perturbed ion is

P(z,)olR. (Ul)

where n is the number density of slowly moving particles and P(Z,.) is 

the fraction of these of charge 2^. The homogeneous part of the field 

which this particle would exert on the ion is
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E" 'ElE

(ttl)

and hence we cm convert the expression (4.41) into a probability

distribution in where is conveniently chosen as

F ■ ( (W)

A

Mt) -- £ Pfeji /Z, ) \ cU
bi \ et '

Treating the elastic effects in this approximation on their own

pH)

CM- £ /,u

ct(L (tv

({K)



and the oroas-seetions for transition* from the discrete state* k with 

quantun numbers & and 1, to states a with quantum numbers n’ and 1\ 

with absorption of radiation frequency way then be written in terns 

of the oseillator strength f
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where the line profile is

h)-- (w)

U d< dv

and depanda on the functional dependence on of end

^0.1f thia ia linear

£kU) - ( + ) z /

' Zl A u

then

If U) - A, (/) is quadrat io in or nearly so

£\ (*0 - (<z) = /

-
(f. SO)

then o/c(
ptv
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and

depend on the ionic configuration and <7^^ 

has also to be averaged over these according to their probability*

This approximation may be improved by taking into consideration 
the effect of the potential V(R) on the probability of a neighbouring 

particle at distance R through the Boltsmann factor (see for example 

Mayer F42, Ref. 12). The binary approximation has also been extended 

to the case of several ions of the same charge perturbing the central 

ion simultaneously, on the assumption that the interactions between the 

perturbing ions are negligible. The total field ? exerted ia then the 

vector sum of the individual perturber fields and the probability 

distribution for K may be calculated using Markoff chain a
(e.g. Chandrasekhar. Ref 5). The asymptotic behaviour of the line 

profile is the same as in the nearest neighbour approximation. The 

Holtsmark broadening is difficult to combine with other broadening 

effects and it is to be hoped that there are few lines in which 

broadening by slowly moving particles, generally the heavy ions, is of 

the same magnitude as other broadening mechanisms, such as the impact 

broadening.

THE 1MP/CT /PPRQXIM/TIOM
We shall now review the impact approximation in whioh it is assumed
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that the phase shifts due to the distinct perturbations are scalarly 

additive and are either ooapleted within the time z If the time of 

closest approach is In this interval, or may be disregarded.
The phase change (T)produced In the one-electron eigenstate

by one perturber of charge In the time interval Z 9 depends on the 
time interval Z\t^ in which it makes its closest approach^, the velocity 

V, and in general on some other impact parameters 1 whose probability 
distribution <(1) is assumed known. The total phase change produced 

by all the perturbers is then

$ U’> fa)

where Q> fr) is the phase chance produced by the perturbers
TjrK

with the seme collection of parameters (f, K4) (which will be 
designated by x), and which make their closest approach in the same 

time interval Akr ,

Jn

N(r,t)

jrfa
fa

Ufa

We shall first compute the probability distribution 

of the differential phase change between the states a and k

due to the interactions with perturbers (rtx).

Suppose that v* is the mean frequency with which perturbers with

parameters x interact elastically with an electron in the state z> , times
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the probability that the interaction with the state would also be 
elastic* Then the probability that there are N(r,x) interactions of 

the type (r,x) contributing to the differential phase change

(N(r,x)){ (W)

We then have
<X)

N(r)x)'O
t, L NlV)

^r* fM-

(f. %)

Hlr,*)

Using the Dirichlet representation for the P-function

-foC
'S(i'-z)- -L fpty e (f57)

-oG

this becomes

provided
<4XM = fuXc)/y
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fe can now find the probability function P( ) in (4*35) •

The value of the decay parameter due to collisions and excitation or 

deexcitation by the radiation field ia

where

The probability of a phase difference (p between the states a and k due 

to the perturbation in time Z is

Pc<t>- /T (

(fitJ

and hence

/j - jW-

X /( P (

Substituting for P( ) and using the Dirichlet representation
for the j - function we obtain

jK z

-OC (fa)
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Substituttrif. thia Id (4.35) for the correlation function C( r )

where

C(x) - (t) x ( I-

CxiW -- e
(4-.it)

How applying the iapaot approximation, If r Is such that 

la Icfs than t then we assume that the phase change produced by the 

perturber, is the total phase change produced by the perturber

and this is independent of r.

In this case (tr)((() ia just

Zr/0 - /M by/(l) e

If tr > t then

and
(o(» )

</r)f (l) ~ /

Hence C^( z ) becomes

Zke to ‘ t

- (iv, + I IxllJt
- c

on expanding the exponent as the sum of its real and imaginary parts* 
Using (4*35) the oross-section for the absorption of radiation

of frequency v for the electrons making transitions from one of the
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discrete states 1 with quantum numbers *>!» to the states with 

quantum numbers n’l* in a given surrounding configuration I is

6 Z b'(^)

rV\ C

f is the oscillator strength and

to.(*h \------------------------------ 1

klk 2k q ■-+ Gut>

Hence to find the line profile in the impact approximation we need to 

know the phase shifts and the mean frequencies v* in addition to
rates YKCj-tj and i^^for the various pairs of states a andthe tr

k.

v* is just the mean frequency with which impacts of the type x 

occur, times the probability that such an impact does not terminate the 

states a and k,

' Zr\ 1/ H ( V; Z, ) I C (f-70)

where n(r9Z.) is the density of particles of velocity V and charge
"Jay -

£ • It is usually sufficiently acourate to take t and t

as unity in this expression since those sets of parameters x which are

likely to cause inelastic transitions cause rapidly fluctuating values

(0 which diminishes their contribution to w^ and w2.

Before calculating the phase shifts and transition rates there
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is an additional broadening factor which will be discussed, the effect

of nuclear motion*

THE DOPPLER XTOCT

In the previous discussion the wave functions and all the

particle coordinates have been relative to the nucleus of the radiating 

ion* If the velocities of radiating systems of mass X have a thermal 

ttmti . .ion, but other broadening effects are negligible then Doppler 

broadening results in a Gaussian line shape*

/<* / b' (*)
--- I Kft fa

V'l

with (half) half width

/V
by - v 7p

V 0 72J

The movement of the frame of refence may be combined with other 

broadening processes which are statistically independent by folding 

the line shapes together* When the dispersion profile of the impaot 

broadening ~

kJ 7 / V-
(4-v)

of half width and shifted by from the unperturbea central
frequency v° , is extended to include the Doppler motion the resulting



profiles are the Voigt profiles V(e*,x)
-110-

G)= 1 1 1/7 ~
u A A A

(4 74)

where

an‘J C- f g.-—---------- e/y (f 7f)
'I Mt 7i J^p^Ta^ J

broadening and inelastic impact broadening parameters 9^/^ ano

This profile will be sufficient when the Hoismark broadening due to 

slowly nowing ions may be ignored, and the inpact epproxiaation is 

valid for ' oat all particles* »e shall now calculate the natural 
and r

and then proceed to find phase changes according to the Lindhdlm 

classical path approximation*

BKQZLKMNG

To determine the natural broadening we have to find the mean 

rate at which the radietion of all frequencies incident on an electron 

in a state, causes transitions to all other states fa • This follows 
froa (4.22) and (4.23).

If h+ indicates a state of energy greater then Hy the 

energy of the state , then the probability of a transition from the 

state J to the available state b+ per unit time is
k->b+ -
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is the intensity of radiation incident at the angie SZ. 

and is given by

U\/3 I (4 71)

t1- eWtr_j

Using the wave functions for an electron in the time averaged potential 
field of the ion for the £and taking into account the availability 

of the final state, the probability per unit time of excitation to a h 

higher bound state is

/
g-f- *C'

IS)

7where B is the group of degenerate state is the oscillator

strength and v^+ is the natural frequency for the levels j and

The rate of excitation to the continuum is by analogy

E

ve fl V/- -2---------  ) (f.71)
n,es U /<r-' A

Similarly the probability per unit time of losses from the state j

due to stimulated emission is

11 £ Iff v V /1 _

R e -
(m)I
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where B indicates a group of states p-j of energy E^- lee^ than JS f 

and we have

hg-" -7g- (W

3j
BJ

Using the fact that the stimulated emission is —rs----
e -I

times the spontaneous emission the total rate of losssfrom state j by
emit.1or is

/"jrZtT
r I

c(uc jJB

(> <•<>

the ®ear transition rate from the level J?. due to the radiation 

is Just the sum of the three contributions
UA/;v, . tv'fefC Cm<^(te<C)

The reduced width r? /C f

then becomes J 2<T

<?“- I



Usuelly the contribution from excitation to the continuum is small 

by comparison with the other terms. The integral may be simplified 

using the faot that the Gaunt factor is a slowly varying function of 
frequency which may be approximated by the value at the threshold 
frequency for the level j, g.(0)<

Then

= j/0)

3\li T\

prd
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if E.(x) is the exponential integral

Hence given the oscillator strengths and finding the necessary 

exponential integrals for the energy levels, we can calculate the 

average rate of transitions from ary state j due to the radiation, 

that ia the natural broadening paramters f ,
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IKKL/^TIC COLLISIONS

There are two possible ways in which a par tide iopinging on an 

ion can perturb a bound electron* Either the interaction between the 
particle and electron can lead to a trrrsfer of energy from the 
perturber to the bound electron (or vice versa) in which case the 

interaction is inelastic, or the bound electron is only temporarily 

excited providing a phase shift but remaining in the same state after 

the impact. This section will consider the frequency with which

inelastic collisions occur*
The collision of an electron with an ion represents a many body 

problem and as such is incapable of exact solution* The simplest end 

commonbrt r /roximation for the inelastic effects is the Born 
approximation which may be satisfactorily applied to excitation and 

ionisation of bound electrons when the energy transferred is small 

compared with the energy of the impinging particle* A complete account 
is given by T.R. Carson (Ref. 4) but a brief summary will be given here*

Supposing that a bound electron is in a state i of energy B with 

wave f unction , and we wish to know the frequency with which impinging 
electrons of charge 2. and velocity V - fa , transfer energy to

i HA. V

such electrons leaving them in a final state j of energy E . SinceV
the energy must be conserved In such a case the final velocity of the 
particles will be \/^

ha.

'J
cK.tDescribing the impinging particles by plane waves e in

accordance with the Bom approximation we may write the transition

2&\.
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probability per unit time lor the bouna electron

where N(k) is the volume density of particles of energy ht

is the probability that the state . is available for the bound electron,J
and ia the result of scattering, of the inoident photons in all

aire< tions*

f ly^kJSJUd/L

"****'• differential scattering cross seotion for

scatter lag angle JL •

*?plyir.« the usual perturbation theory the Bom approximation

becomes

1, t«„l) . e-^

<?2)
where Z, is the charge of the perturbing particles* 

On using Bathe's formula

6xp t K. fZ

j

2 1 - - up t K

and changing to the variable K instead of k^, 

the cross section becomes

lJ
where t ‘t

1M> I MO I
k.’-ikr3

to
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ln which ■

The Bethe epproxiaation for eleotron Iapaot retains only the first 
non vanishing term in ^(K) when exp i(h.£) i« expanded in powera of 

K.r. This is valid when K.r remains small over the diaensions of the 

atom, Approximating the wave functions by these for the time 
averaged potential again, the selection rules are then the saae as for

the radiative transitions and analogously aay be designated as "allowed^ 
or "forbidden" according to whether the linear or quadratic terms in 

K are the leading terms. Both allowed and forbidden transitions are 
considered in (Ref • 4 ) but sinoe the forbidden transitions are very 

much less frequent than the allowed ones, they will contribute relatively 

little to the total probability of an inelastic collision for an eleotron 
in the state , and we need only oonslder the allowed transitions here.

Averaging over the initial states of energy and summing over the 
final states of energy we have

| CM* . (t«)

2h^

when the final states belong to another bound level J.

(W6)

k K
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Whan the hound electron Is excited to the continuum with energy 

between E^ and E^+dl. then we nay write the partial cross section as

——-

J ’J

EJ nay range fron 0 to B-Ip where 1± Is the Ionisation energy of the

Initial state, &hd hence on Integrating over

J
J

Ve nay take aocount of the Bethe approxlnatlon by lowering the 

upper llnlt of the Integration over K In (4*94)

*6

Kti.. I J>H4.UA,

fortunately the dependence on Kq Is not critical for the cross seotlon 

Is deternlned mainly by Calculations have shown that a good

choice for Kq (see Bates. Ref. 2) Is

fc ^0 . (E z I I
2^ ° 2-

(4.ioo)

Knln 1Mjr b* •* pre seed as an expansion In AEu • Although the 

Bom approxlnatlon Is not really valid at low impact energies, If

second order terns are retained as well as first order,

^'£>9

H4.UA
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where the upper sign refers to excitation and the lower to de-ex citation,

then the cross section has the right qualitative behaviour when S is no

longer large compared with • and excitation cross section

vanishes at the threshold • whereas the de-exoitation cross-seetion

remains finite when E«0 »

and for ionisation

The total frequency of eleotron impaota which excite the bound

electron to a level j or ionise it, is given by integrating (4*90) over 

the energy of the impinging electron*

/(e)« [N(£)VL a

= t’Jl- )
(4: IC4)

where is the density of free elctrons and

(t.105)



where f(6)d£ ia the fraction of inoident eleoirons with iapact energies
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in the range E to £+d£ and C (fi) is taken to be sero below the 

threshold for excitation* f(E) is very nearly

f (£)<*£ = 2

& l«v
ct£

so that

if

fa

"'J V >M [kT/2M x„ '■'T J 7 J --
(4 iol)

1(f) ■■ fa22t X

- IcjlaL 7 e Ckx2)
For ionisation to the oontinuua

excitation

de-exoitatlon

Ar 1 ft (hot)
AS?

f(r - f fa?*}**

— fa 14 £ jA* [ I(*> 

nS J x* A104)

on using (4.8$). Jt/fcT

These forsnalae give us the mean rate at whioh electrons in state ft

undergo inelast io transitions as the result of collisions with free 

electrons knowing only the osoillator strengths and the density of free

electrons* The cross sections for inelastic collisions with other ions 

will be of the same order of magnitude for the same velocity of impaot*

The reaction rates R^ will thus be a faotor times the reaction rate 

for free electrons, where m and M are the reduced masses of electrons

V

0
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and of the perturbing lone respectively, and so the heavy particle 

collisions will only play a minor part in the inelastic broadening.

The reduced width P , = A I , is thus
4:11b

ELASTIC PEBTURBATIOKS

In deriving the inelastic cross section we considered the 
probability that incident free electrons perturb the atom in suoh a

way that a bound electron altered its orbit permanently. In the event 

that a collision between a charged particle and an ion containing an el 

electron described by the wave function < , does not produce an inelastic 

transition we wish to know the phase shift produced by the interaction. 

Usually the incident particles are of high angular momenta and may be

treated by the Lindholm approximation in itiiich they are assumed to move 

classically along straight line paths.

Suppose that a perturbing partiole is described by a wave paoket 
centred at position r(t) where r(t) takes on a minimum value y 

with spatial spread and with mean velocity V and uncertainty CV.

If the partiole is to be described olassioally then the wave paoket
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must remain well localised during the time of interaction. This is

true if
end are smell* Now Zjr Al/

and hence 'V (< III)

fV L

where the parameter 1 refers to the angular momentum with respect to 

the ion* Hence the angular momentum parameter must be large for the

perturber to be treated classically*

For an eleotron with an average iapaot parameter of n 

where n is the number of partioles per co, and a typical velocity of

order Ik? , P is of the order
m

hL'
nV

,2.5In the case T«10~’-', P«102*-\ for the mixture in table £*▲ we have a 

typical value for an eleotron of [ (sOO

Small values of / imply that the gas is degenerate*

The additional assumption ;that the perturber trajectory ia a

straight line path and does not depend on the interaction with the ion, 
will be valid if the perturbers energy E is fuch greater than the 

interaction energy* If ItT,

& i>T>
f

(4-. lit)

Suppose that a particle of charge for which these assumptions

are valid, moves along a straight line path with velocity V such that
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it aakes Its closest approach / to an ion with an electron in the state 
at tiae t*. The position of the partiole at tiae t%t is then

-rr 4 y*-

*s wish to find the phase change to tlx* instantaneous
eigenfunction ^(t) in the tine interval (tpt,,)

~ J -I AEj.ckp ^ilt)

I. V

where ^Ej(t)« £j ft) ' £/ ,
E° being the unperturbed energy. If the iapact is effectively 
J

completed in the tiae Interval (t^tg) then the limits of integration 

may be extended to plus end minus infinity.

At time t"+t, using first order perturbed wave functions with the

f> (fr) for some time t before the perturbation, as the unperturbed wave 

functions, the energy of the interaction is to second order

(K.B. The faot that the wave funotion at time t"*t is not orthogonal 

to the represents only virtual transitions in this case. When 

tends to infinity again the wave funotion returns to the state before the 
perturbation, /j )

If 9^ is the angle between r and then we may write

z
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assuaing that the perturber has not penetrated inside the electron orbit. 

If the atom ie randomly orientated with respect to the incident electron

then

\ 'C&f) fatA)

lii'i

where (®z(p are the bound eleotron angular coordinates, and

the angular coordinates of the perturber, are functions of tine.

Taking the unperturbed wave functions as the tiae*averaged wave
functions once sore, the s®0 tens on the right hand side of (4»118) 

produoes the saae phase change for every state and hence does not 

contribute to the line broadening. Now oonsider the first term in 
(4.117) as a sun of contributions fron the various terns s. The odd 
terns all vanish since r PJco>&) is an operator of odd parity when n is 

odd, and in particular the s»1 tern is sero. The s»2 tern gives a total 

phase change
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Although thia matrix element do as not vanish for any particular value 

of a, the average value over a is sero. Hence the oont?4hytign of 

these terns to on expanding expression (4«&5) in powers of 

will be of order • Considering the seoond tern in (4.117)> the

first contribution is froa the s»1 tern in the expansion (4.118), when 

the first tern in (4*117) vanishes. We have for the state >n,l,a.

where

and

2m \ K‘ [Ic. ’ -r V ,7 »
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This phase shift Is Independent of the qu&ntua number m, and 

depends only on the qu&ntua numbers n and 1 for the perturbed state 
and the perturber j arameters ( ^ » V, Hence there Is no

averaging process over additional parameters In (4*65) • *•

have

and for the line k,a

-< /W&J (*/2#40) = t

<e can now oaloulate the real part of

where the summation In (4«27) Is now replaoed by Integration over V and

p» Is Just the average shift due to all the partloles outside the

Ion core, and Is already allowed for In the energies of the wave
functions for the average potential surrounding the Ion. Using (4.70)

for v we have x
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The gs , giving the probability of inelastic transitions, will only be 

appreciable for oloae impacts where the integrand ia oscillating fast 

as a function of , and hence we nay neglect then altogether since they 

make little differenoe to • Performing the integrations we

obtain

where is the number density of particles of charge 2 and reduced 
i

■ass , and the velocity distributions are assumed Maxwellian* The . 
*•

derivation of formula (4*128) by consideration of the general oase

for a^y value of r is given in appendix C*
2

Since the coefficients are proportional to and the mass 

dependence is only (M* j the contributions of ions and electrons are 

comparable*

IBMffiOTBML

Ve now have expressions for all the necessary quantities required 

to calculate the line profile for absorption between the levels k and 

a in a given configuration 1, and can add the line absorption into the 

speotrum*

The number of atoms of oharge 2 per gram of the element, in the 

configuration I is Just the total number of atoms, /h/l] times the
Z-
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probability of the configuration as given by (2*40)

^2,r r % ft So)

If the configuration I has n^ electrons in the level l«nl, with 

average absorption oross seotions at frequency v

for exoitation into the level a’l’, then the total line absorption 

minus the stimulated line emission per gran of the element is

The cross-section <r" , for Val^l in the configuration I is

hlM4 > rt I —'

The oscillator strength for the levels will depend on the inner parts 

of the wave funotions* The potential gradient matrix element for 

pairs of states k and a will be approximately the saae as the hydrogenio 

one for the corresponding states, and with an effective charge 

appropriate to the screening of the inner orbit, k»nl, by the electrons 

inside it in the configuration in terms of the Slater screening constants

Z* = Z - £-
M «i,

Thia implies an oscillator strength

n <r*
k"i" kij„uiu

share

AvI/fc'C - Ae/.u'l* )(.?")

kv, - zy (

ft 134) 

ft. >3$)
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and the absorption strength again varies as 1/A

Treating all the surrounding partloles in the iapact approxlaatlon

we hare the line profile

b , (<) :J- J.
H/l, hQ*

y I /2K
A ' TT ' A < {hit)

__vl
*z----------------

v + a*

~Ob

—i ~ 4 4 1 4 AxGm'z'J

7-

k.T

jW

and in teras of the average energy levels for the configuration 1, 

(2.17),

Changing to the variable u«hv/kT by analogy with (j»66) the line 

spectrum fbr the element 2 la

(iA.) U.M "- nZ (4-/3^

6



This may be added on to the continuous speotrum for the element 

and the appropriate integrals evaluated over the resulting mixture 

speotrum to find the total Ko a eel and mean opacity*
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ELEMENT Z CONG.BY FRACTION CONG.BY FRACTION
NUMBER OF ATOMS OF TOTAL WEIGHT

HYDROGEN 1

HELIUM 2

CARBON 6

NITROGEN 7

OXYGEN 8

NEON 10

ALUMINIUM 13

SILICON 14

IRON 26

.9247/

.07387

.00007

.00026

.00045

.00043

.00007

.00006

.00002

. 7440

.2360

.0007

.0029

.0057

.0070

.0015

.0013

.0009

TABLE 5A-C0MPOS ITI ON OF MIXTURE
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CBAPm V

NUMERICAL PROCEDURES AND RESULTS

Programs have been devised in fbrtran to calculate opacities along 
the lines indicated in the previous ohapters, and these have already 

been used on the St Andrews University I.B.U. 1620 computer on a sample 

mixture at several pressures and temperatures. The program falls into 

four parts} the first finds the occupation numbers and energy levels, 
the second computes the continuous spectrum Ignoring the splitting of 

edges with the ionic configurations, whioh is allowed fbr in the third 
section, finally the last stage puts in the line contributions to the 
•P eo tmm. The numeerica! procedures and approximations required in 

programming the calculations and sample results obtained at each stage

will now be discussed.

The mixture of elements investigated and their relative 
concentrations are given in table 5A. This is a mixture already studied 

by Cox and has the relative concentration by weight of heavy elements 
(Z^)t 0.02.

THE CALCULATION Of THE ENERGY LEVELS AMD OCCUPATION NUMBERS
The theory in chapter 11 provides an iterative method of solution 

for the energy levels and oooupation numbers. TO produce a convergent 

sequence of iterations we have to make a reasonable guess at a set of 

trial solutions. At any specified temperature, sufficiently high 

pressures given a very high degree of ionisation and it is sufficient 

to ignore all the bound electrons nnj,»0 » u#e Coulomb energy levels 
Ej-(Z2/n2)i<y., for the trial values. The results of low pressure



calculations oan than ba used as trial solutions at higher pressures*
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For a perfect gas, neglecting the potential energy terms, we have 

froa (2*37) for lar^e Z

j

£ ZV72 
2. Z

}^2 

T1 /

and froa (2*39)

Pv‘ x £ n (i+z')k7

so oat exp(k) varies as T2*^P*\

Trial values of </ were thus taken from such a foraula

Z - ' *1 4 1 / cj (£3)

where the teaperature T is In eleotron volts and the pressure, P, 

in Uegobars*

The Slater screening constants for calculating the energy levels 

are given In appendix D, table X, as the symmetric array of nuabers 

^4,1 - where n^ is the principal quantua number of the level 1

screened by jth level electron* The calculations also require values 

of the and functions. Since /J Is only a saall

correction term It Is sufficient to express the Incomplete Ferai-Dirac

functions in teraa of the complete integrals*
Hi/

mi Tu &)><*)

htytwpIP)1')

(rv

± 0
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the tables compiled by lfaoDougall and

For values of / greater than 4 the expansion of F^U*^) in teras of 

exp(* wimrgu rapidly

r j= /fV'

For values of less than 4»

Stoner for/^*0? and Ft/2U*o) were used. These values are also tabulated 

in Appendix D in table B. A maxiaum of fifteen bound levels was 

allowed for each element.

The iterative method outlined at the end of chapter II oonverges 

rapidly providing the trial values are reasonably close. In any case 

convergence can always be obtained by taking intermediate steps in

pressure.

A sample set of solutions for the average energy levels and

2 5 2 5oooupation nuabers for the mixture 5A at T«10 * and P«10 '^Mbars la 

given in table 5B.

m cownwoM bpbctbw toboot ccamunBAnon apuwuB fly na
The second stage of calculating the opacity involves building up 

the absorption spectra of the elements for scattering, free-free electron 

transitions and a preliminary treatment for the bound free transitions 

without paying much attention to the behaviour of the absorption edges.

From equations (3.65) and (3.66) we have for the continuous element

spectre
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The last terra, the scattering contribution, never vanishes for axgr 

value of u and gives a lower limit for the opacity. It ia therefore a 

convenient factor to consider first. Apart from the atomlo weight of 

the element it depends only on the soattering oross section

^7= 205 7o*zSf^v (£l)

and the average muster of free eleotrona per atoa of the element, Z* •

Ve have

The free-free absorption oross section depends on the teaperature 

averaged Gaunt factor. The values tabulated by Karsas and Latter are 

given in appendix D table C. from equation (j.55) becomes

(&M,, = g?oe*5 (£V

X.

for the bound-free absorption equation (j.44) gives the average 

oross section above the highest component edge. However until the 

various ionio configurations have been considered the threshold of the 

highest configuration edge is unknown. As a preliminary approximation it 

is assumed that the absorption cross section takes the form (3.44) down 

to the frequency corresponding to the average energy level nl and the
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speotrum is adjusted below the highest edge in the next section of the
_ f - ?

program* The average value ot for the oonflgur&tioi^ 7^

depends little on the various configurations of the outer orbit electrons 

since their screening constants are snail, and it Is only necessaxy to 

perform a relatively simple process for screening by electrons In the 

n«1 and n«2 shells* Thus the first approximation for

The hydrogenio Gaunt factors are again those of Karsas and Latter and 

are listed In table L of appendix D.

On these lines the spectra of the eleaents In 54 have been computed 

at 1000 points between u«0 and u»20 for 12 different combinations of 

pressure and temperature. The resulting opacities per gram of the 

individual elements fbr the mixture at T*102*^, P«102*^, calculated 

after each stage of building up the spectra are given in tabic 5C, and 

show the relative importance of scattering, free-free absorption and 

bound free absorption in a typloel case. The mixture spectrum was built 

up element by element and the opacity calculated eaoh time, and these 

figures are also shown. It can be seen how elements with lew concentrations 

oan dominate the opaoity of the mixture.

THS 1QKK UPmCVBmOKS

To develop the spectrum further, the probability of the various



contributing ionic configurations has to bo computed. Because of the 

vast number of configurations it is desirable to omit all uioso whioh 

are so improbable tlxat they are insignificant.

The probability of the configuration whioh has n^ electrons in 

the levels i in an atom of charge 2, is, according to (2,40)

in whioh p( and qL for the level i are ajad ^his Is

simply a product of the probabilities Pn that there are n. 7 electrons 
“lz

in the level 1,
%

In the case of the bound free absorption Just one of the levels is 

involved in particular, and in the line absorption, two levels, Fbr all 

possible oooupation numbers of these particular levels we can consider *

whioh configurations of the other levels have a greater probability than
5

say, £ , times the most probable configuration for these levels. This 

most probable configuration is the one in whioh we have the most probable 

number m. in each level, where m. is the biggest integer such that

In the event of equality equally probable. In some levels

deviations from m^ will be unlikely. This will happen in deeply bound 

levels which arc almost always full, m.9«g._, or in very lightly bound 

levels which are almost always empty, .



The probability that there are electrons in a level i is
-1>7-

P - P X 9<i" »%«. f,

*4.1+/ «1(J. ( ------ f
*1,2. M / K

(S-.n)

and the probability that there are electrons is

f = P
k j12.- *4^+1 / °L

(SV

Suppose that
(w

tZ

then

p <

*1^2 ^t2_

p >, <

and similarly, if

p (f/S)

12->m - m

p. < c p
r^-i x r 1 

iz

If both (5*14) and (5*15) hold then

P ,/ £ (*4tJ_+i)

and
K \ '".z :» ■



•13^

This iapilM that

The right hand side of this inequality ie sero if «i2M° or ®i£fcgiz but 

otherwise it is greater than $•

Henoe if a4- is a dear maximum so that the two next wo at probable 
*»

nuabers are both less probable by a factor £, then either

the next two moat probable values are 1 or 2, or and ***• naxt

most probable are g^-1 an<i *i£~2, ^“’thermore the probability of the 

fourth aost probable oeoupation nuabers in these oases is less than 

and we aay exolude configurations with such an occupation number, For 

such levels the number of possibilities to be considered for the 

occupation of the level is then three at aost. >\irtheraore the 

probability of configurations in which two suoh levels have their third 

most probable occupation numbers may also be negleoted.

In the calculations the levels not involved ae initial of final eta tee 

in the absorption process, were divided up according to whether their aost 

probable occupation numbers were at least ten times ae probable ae the 

next two most probable nuabers (i«e.£ «1/10), or not. In the foraer oaee 

only the three aost probable possibilities were considered, and if the 

conditions did not hold, occupation nuabers were considered both above 

and below a^ until n^ was suoh that Pn • The nuabers of

configuretlone considered were then reduced to feasible proportions, and 

it ie estimated that the total probabilities of the configurations 

excluded in this way was lees than 1^.
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SPUTTIMG OF BOUKP-gftgS ABSORPTION EDGES

When the various probabilities of the ionic configurations have

been oosiputed the bound free absorption edges can be corrected for 

configuration splitting* The average oross section in the region of 

the edges for a level nl is given by (3*45) and in calculating 

the edges were extended down to the threshold positions for the average 

energy levels using the oross sections obtained by expanding the 

range of validity of the cross-sections (3*44) to these frequencies* 

This aeans that

t ft 4 W ))

1 betfru iaa r 1 t 1

where
A.Ju). ) '/ %,r

u z -

and vvhtK j

or
‘f -th' Cut <4^- 

k.r

= 0

and 0 whan u< -fni (Tv- 

i.T

u is the threshold for the level nl in the configuration 1* 
nl, 1
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The difference in opacity of the Mixture 5.A when the edges were 

split in this way is shown for 12 different pressure and temperature 

conditions in table 5D by comparing the Rosseland mean opacities before 

and after splitting was included, The effect is wore evident at lower 

temperatures as we should expect,

THS UIQg- .SPKgfflM

The contribution of the line spectrum follows from (4«1J1) and 

(4«134)« It depends on the line splitting with configurations and on 

the profile of each component given by (4«136)

The Lorents half-width in (4,1J7) due to natural broadening and 

inelastic and elast io perturbations may be calculated from the average 

energy levels and osoillator strengths irrespective of the ionio 

configuration. As eaoh configuration coaponent and its probability is 

considered the central frequency for the line can be calculated and this 

gives the Doppler width and determines the line profile. The hydrogenio 

oscillator strengths are given in Appendix Dt table Et for pairs of 

states with different principal quantum nuabers n and n*. For the

oscillator strengths between levels of the same n we have



r
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In the calculations the components of eaoh line were added In to 

the speotrum separately, starting at the line centre and working 

outwards into the wings until the absorption strength was less than one 

per cent of the background speotrum* The necessary values of the Voigt 

funotion were extracted fron the tables of Fo saner and are listed in 

Appendix D, table f. for values of a* greater than 10 the profile is 

effectively Lorents. In the extreme wings of the line the asymptotio

form

was used*
The natural broadening was always very snail compar'd with the 

broadening due to inelastio collisions, and this was usually rather less 

than the elastio interaction broadening* The Doppler width was nornelly 

less than the Lorents width, that is a*)l. Increasing the ratio of the 

inelastio broadening considerably relative to the other broadening 

processes, and henoe altering the ratio of the Lorents width to the 

Doppler width, did not reveal great sensitivity to the line profile* 

There was slightly wore effect at lower temperatures*

The element spectra including lines are shown in the graphs 5.F



LOG T LOG P PLANCK.CTM ROSS.CTM COX.CTM PLANCK.L IN ROSS.LIN COX.LIN

3.0 5.5 99.71 3.196 2.934 99.86 v 3.293 2.997
3.0 4.5 11.69 1.082 1. 1 55 120.5 > 1.165 1 .208
3.0 3.5 1.553 .5153 • 5 66 7 1.672 .5443 .5887
3.0 2.5 .4715 .3797 .3906 .5125 .3915 .3961

2.5 3.5 206.6 21.33 17.91 222.7 23.56 19.88
2.5 2.5 25. 19 6.923 6.359 -55.20 10.31 8.374
2.5 1.5 3.184 1.419 1.531 5.916 2.588 2.116
2.5 0.5 .6520 .4947 .5308 1.913 .6090 .5863

2.0 1.5 421.3 61.88 52.40 503.8 119.8 84 .62
2.0 0.5 51.92 10.64 11.05 86.50 27.07 19 . 33
2.0 ~0.5 6.125 1.753 2.02 7 19.55 3.176 92 6
2.0 -1.5 1.003 .5555 — 15.50 .6730 —

TABLE 5G-0PACITIES OF MIXTURE ANU COMPARISON VALUES FROM THE COX OPACITIES
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for the case T»100eV end P».3l6Mbars. The mixture spectrum is

superimposed in fig 5.E with the element spectra combined according 

to their concentrations. The richness of lines in the regions 5^u<12 

demonstrates clearly how the line absorption oan be important; in the 

case shown it increases the opacity by about The Planck and

Kosseland mean opacities including the line absorption and splitting of 

absorption edges are given in the fourth and fifth columns of figures 

in table 5.G, for the twelve pressure and temperature conditions 

investigated.

COMPARISON 0? RESULTS AND CONCLUSIONS

The most recent opacities published are those of Cox at Los Alamos. 

These were also based on Mayer*s method for finding the occupation 

numbers, and used hydrogenic Gaunt factors and oscillator strengths.

In the second and third columns of table 5.G the Rosseland mean for the 

continuous spectrum of the mixture without configuration splitting of 

the edges, is oompared with the corresponding values obtained by 

interpolation in Cox*s table of opacities for the same mixture. Cox 

calculated the bound energy levels by taking the Bohr hydrogen-like 

theory for the nuclear charge diminished by the average shielding by 

the bound electrons according to the screening constants, and adding the 

perturbation of the free electrons. The average number of perturbing 

electrons interacting with an electron in the same level < was taken 

as ( p l ) tinea the average number in the level, and the energy 

levels were all adjusted for depression of the continuum. Hence the 

ionisation energies calculated by Cox tend to be lower than the present



ones. This increases the continuous opacity and accounts for the fact 

that the Cox values are larger at the lover pressures at each given 

temperature, where the free electron perturbations and the bound-free 

absorption are less significant.

However at higher densities the bound free absorption and the energy 

perturbations due to the free electrons, b eoome more important. The 

effective charges used by Cox in determining the appropriate bound-free 

hydrogenic Gaunt faotors were taken from the ionisation energies of the 

bound states, which include both bound and free electron perturbations 

and depression of the continuum, and these are considerably leea than 

the effective chargee used in thia thesis at higher densities. Sinoe 

the bound free cross sections are proportional to the fourth power of 

the effective charge (apart from the slow variation in the hydrogenic 

Gaunt faotor) the present values of the opacity inorease above Cox's 

values as the density and pressure inorease at oonstant temperature.

It is believed that at present no values of the opacity have been 

published which include splitting of edges, and as table 5.D indicates 

this can easily inorease the opacity by 1<$ or co.

Several other calculations have considered the lint absorption.

The Rosseland mean opaeitiea given by Cox on adding lines with a Lorentz, 

profile, and a half-width due to Sternheimer representing the inelastio 

collision width, are given in column 6 of table 5G. In agreement with 

hie results the figures in column 5 indicate the importance of the line 

absorption, which can double the opaoity. In faet, the present line 

treatment using the Voigt profile and combining the different broadening 

mechanisms of which the elaatio interactions are often more effective



than the inelastio collisions, tends to show even a slightly larger 

inorease in the opacity due to the line absorption than the Cox values.

It is now hoped to extend these calculations and compute the 

Rosseland mean opaoities for different Mixtures and oapy more pressures 

and temperatures within the range considered here in order to provide 

adequate tables for interpolation in the construction of stellar models
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APPENDIX A* THh ZKKMl-Llh>C STATISTICS AKP THS GRAhP SKSKMBLK

Let &• tfae sub space in the vector spacei^u of possible electron 

states in an atom of charge Z, corresponding to the energy • In an 
ensemble of n electrons and flL atoms of type 2 we may describe a systems 

distribution by the number of electrons, ^nl in a^oh subspace •
The vector space describing the possible states of the ensemble is 
isomorphic to the sub space of antisymmetric vectors in the n-fold 

tensor product ofA spaces* The choice of the anti-symmetric states 

corresponds to the Pauli exclusion principle whereby no two electrons 
can occupy the same state simultaneously*

Supposing that the average number of states per atom of energy 
approximately equal to £lL is g^ (i*e. g^ is the dimension of )

electrons into the h_ available distinct

states, supposing that the electrons are distinct, we have

(h'z

vectors corresponding to the same distribution in the tZ state*

Allowing for the indlstlngulshability of the electrons we have

G/T fNaJ'
L ----------------------

vectors corresponding to the distribution; n^j.
It follows that the a prior. probability of the distribution

—146—

then if we wish to put
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eharaotariaed by f*l(l I la proportional to

7| /] A(i)
z t

Hence we have, assuming that ^£^giS*°iZ^’ Nzniz ere large

If A/z ^zljn’^z)

(This follows froa Stirling*s fornulae

, X v2n ( h/{)

Coy ft I *V A1 Lcjn - H f 1 CcJ faw)

)

Supposing we allow a slight variation in the n^ and the g^

Hence when the degeneracy is a variable function of the n^.

A, ■ Z
7<i J 'Dnjl J
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and so

- f Nz b>j Nzf^t-^z))

EUJN^>J

z fz^ f { fy""' u3(^"1‘l) * [^

^"iz. jj2

(A -3)

Me wish to consider variations In (AJ) subject to the conditions 

that the total number of electron® remains constant and that the total 

energy of the ^ysten is constant. The first condition gives

The total energy £ of the electrons Is the sun of their kinetic 
energies and of their Interactions with the nuolel and each other.
Let he the average interaction of the JZth and kZth state electrons,
then the energy of the electrons in an ion with n^ in the levels 1 

msy b. written a. a quadratic exp re. .ion in tha

1 ' (M

r- 0where b,z is the interaction with the nucleus plus the kinetic energy

of an 1th level electron.



Thia suggests that we wr ite the average energy of the ion in the f ore

-U9-

(£'Z * (AS)

where n*^ ia the average number of jth atate eleetrona interacting with 

another in the ith.

By symmetry

"'m £ \zn)z <Jt-
(fit)

and If the variation* in the i nn | ere independent then

Az ^JlZ ’ M (A 1)

Hence the variation in the total energy ia

- £A4 p jiz ^jz) j*

(NeB, There la no diatinotion here between discrete and continuum levels* 
The indices J and i refer to any energy aubspaces yti(Z , )•

The moat probable distribution will be that for whloh P has a 

maximum, that ie
*- S'bcjP-o

subject to the conditions
Jn - ' 0

<f^0

Using the method of Lagrange multipliers



and assuming that the ara linearly independent wa now have

where
£ - L- f H Z? /h/AdfZx /«€A.^/ h 2.21) ft-Q)
^2. ^'Z. J J/Z JiZ. k

•150.

and
7

z I
(AJD)

'D'bz

On considering tha total energy
/' '/t.r

and z/ aatst ba chosen such that tha total nunber of electrons la correct*

Hence

Tm MQgWtt^cr >mtQm»

In calculating tha probability of an alaotron occupying a given 
atata i it ia noraally aaauaed that tha nunbar of ways of arranging tha

N a 9 alaetrona in tha level ia given by an expression of tha fore2 xz
(N,9,)'

(Ntn„y



The degeneracy function will be defined such that thia expression 

always does give the a priori probability of the distribution corresponding 
to the occupation nuabera j being the number of permitted arrangeaents 

of the electrons in the levels* Supposing we consider small changes in 

the occupation nuabers and the corresponding effect on the degeneracy 
by selecting one more state for occupation and suppose first of all, 
that we select a state in the 1th level Itself for which we have a
choice of states. Then the number of possible configurations of

the

A4 f *>,»4 ) -■ M !^z)

electrons is
(W^)/ , ^,-v . (/IM

~—   ■ - X *---—  -- " *

-151*

Using Stirlings foraula for the factorials of large nuabers we have

^2 9u 5 ~ -I- ti)

7 Zes f\J m

J z l2- (Aft)

~ ^2 (^12.^ ) Zt^ ^2. S^lz) ~ Nz tytN tyli)

~Nz( ^tz^ (fjn - - Nlz)LcC)Kiz l.^z+ <fj,z -*J,t ' ■f'l,z)-hNziylzt



Hotaining tens in *nd £),2 to first ordwr only we obtain

-152-

m^7 is the average cumber of atate a available in the level i, <Sfhen 

^iz. ' iewy atate which ia not occupied ia available,
then ia aero and g^ ia a oonstant aa in the usual statistics.

If i« the maximum degeneraoy of level i can have and the n^

are such that a fraction u are not full with an average number and 
a fraction (1-u) are full with an average number p^ of electrons then

' /(2 U f J/Z^HAX

(ft /l)
^,z - /tz

Eliminating u

*Vj = I /Z.'-'
T I 2. ------------------------ ---------

If we insert this expression for m^,, in (A15) and change to new 

variables
t

then f^ depends only on the occupation numbers n^, and hence

’1“ --z.j/(V52klL

#hen the n. . becomes so large that the 1th levels are largely filled up aX



then in general few of the regaining a tons will still be able to take 

more than one eleotron in the level so that
rr'

In this oase (A18) nay be integrated to give G^. as a function of

^i2*1* thSD equal to the number of ways of choosing

one state from all the available states so that

Al, M 5,™

A solution giving this boundary condition is

F ' F I z7‘ ) ' F f/>, - A/„ ) -t ZA/ttv /y,) /cj 7>J

where Flyl'jlojy

If we partly ignore the dependence of on the average occupation 

nuabers of the other levels by taking f^ to be constant, hence 

neglecting the small changes in f^ and p^ for snail changes in the

n , so that

= o Cjt I J

Jll 1 Fz ^12. kj (AB) (Alb)

4 ft''- )

-15>

then
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As n.. tends to p. this expression for C. becomes infinite unless 12 i i
simultaneously n^ tends to G^, the degenerate oase. <<hen P^G^max 

then ' jbsx and Ci ** Bero corr*®Pon^n€ to the usual statistics.

Hence the tightly bound electron levels are un&ffeoted by these 
considerations and sInce the unoooupied continuum states are also all 
always available pmg^, f“or these too. However for levels in the 
transition regions which can not take the full electrons and
remain stable, then C* and G^ will vary. The graphs (A.A) show the 

effeotive degeneracy G^ as a Amotion of in the case
for the integral values of p^ from one to six. In eaoh graph G^ drops 

steeply as the occupation number tends to the maximum value p^.



hTM, S|.
The exponential integrals £H(x? for x^o ere defined by

They are required for n»1 in the evaluation of the inelastic collision 

rate and the natural broadening*

?or values of x less than 1 the power series expansion in x for 
^(x) is convergent

*0 z .»1 *
U>-

for values of x^( the funotlon x.eX.K^(x) may be spproxinated as 

the ratio of two polynomials in *• Accuracy to within 2*10 nay be 

obtained using polynomials of degree four

+ c(*) ;

Tha eoefficienta are ta^en froa Abraaowlta and Stegun, Ref 1 - P.231

•1 • 8.5733237401 
a2 - 18.0590160730 

e5 > a.6347608925 

a4 . .2677737343

b1 • 9.5733223454 

b2 a 25.6329561486 

b3 a 21.0996530877 

b4 - 3.9584969228

Tha integrals required in aquation (4.111)



f x 2 7; 5

J x1 ? J /t 2.
* T

■ay ba expressed in terms or £t (t) and £, f2T) using tha recurrence 

relation

*156*

Kef 1- 1956. Abraaowits and Stegun. Handbook of Mathematical Amotions. 
Dover. P.2J1



/fprog C. THE miWIW 0? Eg, INTgSRAja.HALF WBgHS 

IN THE, IMPACT, ^ROXIMATION

The total phase shifts produced by a perturber of charge 2^1 

with velocity V and impact parameter f1 , may be written in the form

VC

a oonstant*
leads to a half width for the elastic impaots for the line

k, a, given by

-157-

where

and C isw
This

Il dfdVtV'f /— /<n( ^) }

n(Vtzp is the number density of perturbers of charge Z^ with velooity 

V relative to the nucleus of the perturbed ion Z, where the velocity 

distribution is assumed Maxwellian*

and e number of particles per oo. of charge Z^*
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To evaluate the integral* for each charge Z. put
* oc

_ ftp /Vr (C/k'C/c)1," JVctfZii-f V,2i

0 0

and make the change of variable

c4 ( h

Then

cl H-r 00

Wo V'
1//1^ f vj 2»_ j (HwO/' 

WO

where = I 4 z4-/

«^5
I //-(to - jjl-cnt-} J — J

/~vt £ T»Wo

”[7^ ) Cu\ ((1-vOr^J y Z^Z-o/ZJ

00

J A

Henee
&D z 7 z

f=

V--0
1/

v\

Similarly the shift i»
Zn

Z-n
2n

: £ N (jjz

z, W c\

1,: t^r- t
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where

V=0
u *1

Usiz><

since m/w- hPl''3)P(%)--^- ft
3/5.

This is the fomula (4«128)»



Tabla A • Slater Screening Constanta

Tabla B - Fersai-Dirac Functions

Tabla C - Free-free Gaunt Factors

Tabla D - Sound-free Gaunt Factors

Tabla £ - Hydrogenic Oscillator Strengths

Tabla f • Voigt Unction
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Btm wo nn G*i'WT Factobj 

• = I, • = I

Electron 
Energy 
e z’R,

Photon

4»
Level.

n

Photon
Energy
6. Z«P»

Level

2) . 3*

• - 1 ■ 2

1000 (!%>• 1000(17) 6928 ( -7) 1000 ( 1 7) 2771 ( 4) 6928 ( 1?) 61 28 ( - 5)
till (11) 1111(12) 2078 ( -4) 1111(12) 8>14 1871 ( 15) 2078 (-4)
1000(11) 1000(11) 6928 1000 (ii) 2771 ( )) 6‘i.K 14) 6928
1111 (10) nn no; 2078 ( - 7) nn (io) 8515 1870 ( 121 2078 ( - 7)
IOOO i9) 1000 ( 9) 6926 1000 (9) 2770 ( 2 6926 ( - 11) 6926
111’ ,8) nn (H) 2076 ( 2 1 1111 (8) 8706 I»69( 9) 2076 ( - 2)
1000 (7) iooo i n 6906 10O0 ( 7 1 2767(-17 6906 ( 8) *90*
mi (6) nn (6) 20'9 ( 1 1 1111(61 82 76 l«7) ( -6) 2059 ( - 1 )
4000 (7) 4000 ( 7, 5410 4.4)0 (7) 1764 (0) 8525 1410
1041 2041 4747 2041 1898 2725 ( ') 4745
1000 1000 6717 1000 2686 6’14 6715
*♦*4 (4) 4447 (4) 9917 4447 (4) 5966 2271 1 4) 9914
2700 2701 1702 (01 2500 '207 7 206 1 7(1. ;o)
mi 1112 1894 nn •772 1 70) ( 7) 1894
4000 ()) 4010 ( 7) 2971 4002 ()) 1187 0) •411 29'2
2041 2051 7918 204 5 1567 1912 (-2) 5925
1000 1010 7129 1002 2042 508” 7142
♦*44 (J) 4744 (2) 6687 4469 (2) 2647 14’’( 1) <724
2700 2600 7800 2727 7079 7019 7g”5
1600 1700 85g5 1625 7*71 5100 8711
mt 1211 9129 1176 7497 7642 9716
6270 (1) 7270 (1) 9729 6'00 (1) 7612 15'7 (0) 1006 (1)
4000 5000 9979 4270 *777 2955 1045
,2'78 »7’8 994* 7028 7408 2’72 1058
2041 7041 9876 2291 7227 74 2. 1067
1762 2762 9721 181 2 5051 4045 106.
1277 2277 9771 1487 2842 4607 1076
1000 2000 9427 1250 2664 5106 1049
6944 (0) 1694 9177 9444 ( 0) • 2554 792' 1055
4444 1444 8*70 6944 2000 6'84 1009
2700 1270 8771 7000 1626 •187 9757 (0)

.1111 1111 8246 7611 12’9 8192 9)42
4000 ( - 1) 1040 80'6 2900 106’ 84'9 , 90! 1
2041 1020 8026 2704 1001 8718 8896
1000 1010 ■79$ 2600 9686 ( 0) 8545 88*
4444 ( - 2) 1004 •985 2741 9498 8558 8797
2700 1002 '900 2525 9471 4762 8'’9
till 1001 7976 2711 9784 8565 87”0
1000 (- )) 1000 7977 2701 9749 8 767 8'6)
mi (-4) 1000 797 7 2700 9746 856” 8761
1000( 7) 1000 7977 2 5<X) 9746 8567 8761
mi (-6) 1000 7f7> 2500 9746 8567 8761
1000 ( -7) 1000 •97) 2700 9746 8565 8761
mi (-•) iooo 797 J 2'00 9746 8567 8’6l
1000 ( - 9) 1000 79'7 2500 9746 8767 8761
ini (- tot 1000 797) 2500 9546 8567 8’6I
1000 (11) 1000 T9’» 2500 9746 8567 8’61
nn (-12) 1000 797) 2500 9546 8567 8’6I
IOOO( —17) 1000 797) 2 500 9 746 856” 8’61
nil (-14) 1000 797) 2700 9746 8567 8’6l
1000(- 17) 1000

_ - ..
797) 2700 9546 8567 8’6l

•The number u> puentbnea indicates the power ol ten multiplpng the entry and lutcredtng mtriei helow
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• - »
Beiti m 
Bnrrgy, 
E/M,

Photon
Energy.
4»,'Z«Ry

lew!
5

4i V w

1000(1))* 1000 (IJ) 62)4 (—4) 1848 (-16) 1569 ( - 29) 6928 (-5)
till (12) 1111 (12) l«’l (-5) 4988 (-15) 5526 ( -27) 2078 (-4)
1000 (11 ) 1000 (11) 6254 1847 (- 14) 1568 ( - 24) 6928
1111 (10) nil (io) 1870 (-2) 4988 (-12) 5525 ( - 22) 20’8 ( 4)
1000 (0) 1000 (9) 625) 1847 (-10) 1468 ( 19) 6926
mi (8) nil (8) 1869 ( - 1) 4984 (-9) 5522 ( - 17) 2076 ( - 2)
1000 ( 7) 1000 ( 7) 6216 1842 (-7) 1564 ( 14) 6906
nn (6) nn (6) 1845 (0) 4942 (-6) 5294 (- 12) 2059 ( - 1)
4000 (J) 4000 (4) 4069 227) (- 5) 4210 ( - 11) 5410
2041 2041 4270 6199 2240 ( - ,0) 4745
1000 iodo 6045 1790 (-4) 1526 ( 9) 6714
4444 (4) ♦445 (4) •924 4949 9915 9918
2500 2400 1171 (1) DM (-5) 4llJ(-8) 1402 ( 0)
1111 ■ 111 1704 4441 4027 ( - 7) 1894
4000 (») 4001 (J) 2670 I9’6 (-2) 4648 ( - 6) 2974
2041 2042 5416 5097 1849 (-4) 5924
1000 1001 4489 1 445 ( - 1 ) 1004 (-4) '144
4444 ( 2) 4446 (2) 5959 >940 6442 6741
2400 2411 6858 8022 2572 (- 4) 7889
1400 1611 7455 1 452 (0) 62)9 • 7)5
(111 1122 ’•04 2021 1 440 ( -2) 9452
6240 (1) 6461 (1) •009 4608 4246 1014 (1)
4000 4111 7g1g 444’ 9764 105 5
2”8 2819 7428 7101 1849 ( I) 1072
2041 2142 6944 8742 4064 1081
1442 1674 6458 1019(1) 4611 108)
1244 1546 5976 1144 6460 1081
1000 till 4424 1249 8564 1078
4*44 (0) •046 (0) 4746 1402 1442 (0) 1068
4444 4446 4844 1425 2107 1041
2400 4611 287 4 1449 4452 1024
till 2222 1976 1454 5049 98 M (0)
400u( 1) mi 1416 1277 6551 9458
2041 1414 1 246 1199 ’042 9294
1000 1211 1155 1150 *55) 9189
4444 ( 2) 1156 1102 1122 ’ 495 91 28
2500 1146 1085 nn 7442 9105
1111 1122 1072 1 104 7494 9089
1000 ( 4) 1112 1062 1098 ’62 4 9076
nil (- 4) till 1062 1098 7626 907 5
1000 ( - 4) till 1062 1098 7626 9075
nn ( «) llll 1062 1098 7626 90’4
1000 ( 7) 1111 1062 1090 7626 9074
nn (-■) llll 1062 1098 7626 90’4
1000 ( -9) nil 1062 1098 7626 9075
nn (-io) nil 1062 1098 7626 90’4
1000 ( - 11) nil 1062 1098 ’626 90’4
nn (-12) llll 1062 1096 7626 9075
1000 ( — 14) nn 1062 1098 7626 90’5
llll (-14) llll 1062 1098 ’626 90^'

.1000 (-14) nn 1062 1098 7626 9075

"The mamfeer ia prmffc—11 mduelai rt» powrr of ten multiplying rite entry end raurmliQg rntrin belnu

7a/,/< D P£



9 ac 4

Electron
twg).
E /•«,

Photon
Eneigy

4v,Z’J?>

Le»ei
4

4/ 9 4U «/

1000 ( 1 })• :oooii») 1109 ( - J) 4464 1 16) 5464 ( 29, 6928 ( -5)
nn (in llll (12) 4426 954) ( 15) 8418 ( 27) 207# ( 4)
I'.XXI ill) i OOO (It) 1108 ( -7, 5464 ( 14) >464 ( 24) 1154 ( )4) 6928
lilt CIO) llll (10) 5)24 9442 ( 12) 8417( 22) 2524 ( )2) 2078 { - ))
1000 (9) >txx> (9) 1108 ( I) 5464 ( 10) 146) ( 19) 1154 ( -28) 6926
mi (») till <•) 4)22 9)44 ( 9) 8410 ( - 17) 242)( 25) 2076 ( - 2)
IOOO('l -IOOO (7) .1104 (0) 144) ( 7, 4444 ( - 14, 1151 ( -21) 6906
111) (6) llll (6) 4294 9264 ( 6) 8449 ( 12) 2502 ( IS) 2049 (.11
ItXX (1) 4O0C (4) '456 426) ( 5) 1066, 10) 8881 ( -1’) MIO
2041 2041 7591 1162 ( 4) 5696 9)0) (-16) 4745

IOOO 1074 (1) 4457 4)57 ( 9) H19( 14, 671)
4444(4) 4444 (<) 1586 U15 ( 4) 2510 ( 8) 1882 (- 1)1 9918
2500 2400 208 5 260) 1041 ( 7) 1)88 ( 12) 1 502 (0)
nn llll 4028 • 515 766) .2299 ( 11) 1894
IOOO j )) 44X11 ()) 4 46 4704 (- 2) 9260 ( 6, 7714 ( - It)) 297)
2011 2042 6240 9)44 468! ( 5) 764)( 91 5924
,otw toot 8146 2'4O f t) 2559 ( 4) 8447 ( g) 5144
1411,2) 44X1 (2) 1054 12 1 7464 16541 >) 12)9 ( 6) 67))
nou 2X06 1218 ,502(0) 5994 797) 7 894
1600 lt>06 U22 2540 15” ( 2) )27O ( 5) 1744
mi 111’ 1 181 1778 5581 1009 , 4) 9)64
6250 (I) 6JI2 (1, ,4,7 67)0 1066 ( ’ I '629 101' (| )
4000 4062 1)79 9962 2448 2010 ( - )) 1056

284C 1 506 1)16(1) 4617 4422 1077
2041 2104 121’ 16,1 761) 1207 { - 2) IO<7
1'62 1625 11-24 18?1 ,140 (0) 2)40 1091
12>5 129? 1046 20W 1487 408) 1091
IOOO ,062 9426 (2) 2267 2090 6 '66 1089
e944 (0) 7469 CO, 8069 25,2 ’204 14l).( 1) 1082
4444 • * 659? 266? 494' ,248 1069
25oe >12' 46M 2617 7469 ’98’ 1047
llll 1746 2929 2240 10)4(I) 1992 (0, 1014
4ooe ; l > 1025 1864 17)4 116«> 5808 97)6 (0)
2044 8291 ( 1, 1549 1421 117) 4’2: 9'42
looe 7240 1)48 14M 1159 4)44 9408
4414 2) NSQ4 1259 1)11 1146 5’oe 942)
?w 6'PO 122' 128) 1140 5848 9291
llll 6 561 1200 1265 11)4 4940 9267
inoo ( 5) 6260 1181 1246 U)l 6026 9249
1111 ( - 41 6241 1 160 1246 11)1 6055 924*
IOOO I 5) 6240 1179 1246 11)1 60)4 9247
till ( - 6) 6240 1179 1 246 11)1 60)4 9247
kOOG 4 — 6250 1179 1246 11)1 60)4 9247
uii( 8) 6240 11 ?9 ,246 1151 60)4 9247
IOOO < 9) 624(1 1179 ,246 11)1 60)4 9247
I 111 f - 10) 6240 1179 1246 11)1 60)4 9247
lOOOf II) 6240 Il’9 1246 11)1 60)4 9247
llll ( - 121 62'0 11 ’9 1246 11)1 6044 9247
:ooo ( 11) 6240 1 1 ’9 1246 1141 60)4 9247
iiii r 14) 6240 11 ?9 1246 11)1 60)4 9247
10OO( - J \) 62*0

------- ------.--------
,179 1246 1151 60)4 9247

*TSe number m parenrhrws indicates thr power often multipJrm^ the enter and um< redm/i entries hek>w
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• - 5
Elect roo
*"»r87
irit,

ntoeon
Energy.

8»/2’«y

Level
5

Jr ’A w V

1000 (1))* iooo (15) !752 (- 5) 5545 (- 16) 6208 ( - 29) 6928 (-))
mi (in nn (12) 5196 * I496 (- 14) 1508 ( -26) 2078 (-4)
1000 (11) 1000 (11) 1752 (-2) 5542 (- 15) 6207 (-24) 5027 ( _ )4) 6928
1111 (10) nn (io) 5196 1496 (-11) 1508 (-21) 6619 (-52) 2078 ( - 5)
1000 (9) 1000 (9) 1752 (- 1) 5541 ( - 10) 6206 (- 19) 5026 ( - 28) 6926
mi (•) 111! (•) 5191 1495 (-•) 1507 (-16) 6614 (-25) 1020 ( 55) 2076 (-2)
1000 ( 7) 1000 (7) 1777 (0) 5525 (- 7) 6188 ( — 14) 5017 (-21) , 717) (-29) 6906
1111 (6) nn (6) 5147 1482 ( — 5) 1494 ( -11) . 6558 (-18) " 1012 (-24) 2059 ( -1)
4000 (5) 4000 ( 5) 8121 6820 1910 (-10) 2)28 (-16) 9977 (-25) 5410
2041 2041 n«6(i) I960 ( -4) 1021 (-9) 2459 ( 15) 2048 (-21) 4745
1000 IOOO 1679 5)71 6010 29)5( - 14) 5029 ( - 20) 6715
♦444 (4) ♦444 ( 4) 2479 17»5 ( 5) 4497 ( —8) 4954 (-»») 190) ( - 18) 9918
2500 2 500 5254 4165 1866 (-7) 5659 ( - 12) 2497 (-17) 1502 ( 0)
nil 1111 4752 1562 (-2) 1)75 ( -6) 6026 (- 11) 9297 (-16) 1194
4000 (5) 4000 (5) .7415 5927 1659 ( -5) 2022 ( -9) •666 (-14) 297)
2041 2041 9765 1529 ( 1) • 587 2005 (-8) 1682 (-12) 5924
1000 iooo 1274 (2) 4064 4549 (-4) 22l7(-7) 5798 ( -11) 5146
♦4*4(2) 4446 (2) 164< 1178 (0) 2964 t — 5) 5247 (- 6) 1251 (-9) 67)4
2500 2504 1902 .2402 107) ( —2) 20M (-5) 1450 (-8) 7897
.1600 1604 10M 4045 2820 8561 9149 •747
nil 1115 .2158 6057 6050 2640 (-4) 4059 ( - 7) 9471
6250 (1) 6290 (1) 2208 1074 (I) 1904 ( - 1) 1471 (-)) 4009 (—6) 1016(1)
4000 4040 2146 1588 4568 ♦24) 2225 ( -5) 1011
2778 2818 2029 2094 8221 1412 (-2) • 588 1080
2041 20*1 1881 2559 1552 (0) 5156 2584 (-4) 1090

.1562 1602 1742 2964 2019 6061 6484 1095
1255 1275 1600 5502 2804 1054 ( - 1) 1418 ( - 5) 1091
1000 1040 1467 557) 5681 1690 2785 1094
6044 (0) 7544 1255 59)5 160) 5610 8427 1089
4444 4844 9689 (1) 6127 •559 8212 2906 ( 2) 1078
2500 2900 6*45 5960 1258 (1) 1961 (0) 11 79 ( - 1 ) 10*0
till 1511 4145 5220 1650 4616 52 54 1050
4000 (1) •000 ( - 1) 2422 2275 1690 7969 1706 (0) 9925 (0,
2041 6041 1887 1878 1590 9242 2618 9719
1000 5000 1588 1651 1492 9890 558) 9'65
4444 (-2) 4444 1424 14*8 1421 1018 (1) 5918 9458
2500 4250 1566 14)5 1592 1027 4142 9416
mi 4111 1524 I )9? 1570 1045 4291 9581
1000 (-5) 4010 1295 1)69 1)54 1056 4418 9561
nn (-4) 4001 1290 1566 155) 1017 4429 9)78
1000 (-5) 4000 1290 1 566 1)52 10)7 4441 9578
nn (-6) 4000 1290 1566 1552 1^57 44)1 9)11
1000 ( - 7) 4000 1290 1)66 1552 1057 44)1 9)78
till ( -8) 4000 1290 1 566 1552 1017 44 51 9558
l000(—9) 4000 1290 1 566 1552 1057 44 51 9558
1111 ( - 10) 4000 1290 t 566 1552 10)7 44)1 9458
iooo (-id 4000 1290 1 566 1 552 1017 4451 9)58
nn (-12) 4000 1290 1 566 I >52 10)7 4451 9558
1000 ( -15) 4000 1290 1 166 1552 10)7 4441 9458
nn (-14) 4000 1290 1 566 1 552 1047 44)1 9478
1000 ( - 15) 4000 1290 1 566 1 552 ,047 44)1

______
9)78

•The number in ptremhnn mdxeiei the power of ten multiply,ng the entry end «u< reeding rotriei below
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tAMA £
kKBMOVm OKaXATOB

I ■“ 0

« u 13 <> 13 6.1 ?3 •3 94

1 414.' ^0)* 7910 (-1) 2899 ( — 1) 1J 94 ( - 1) 7799(-2) UH (-2) 51*l(-») 2216 ( — 2)
1 0000 4M9 (0) io** (0) 4195 .2161 (■ 1) .1274 (-1) *1*0 1W1
) - .4077 ( - 1) 0000 .0041 1210 (0) JIM 37)7 16M (-») IW(-I)
4 -»1»(-1) - Wl(-I) oooc .5442 1M1 (0) 5965 1227 19*0
5 -.1640 — .2228 -tw? 0090 407* .1549 (•) 671? 1675
4 - 1*54 -.9091 (-2) -.1701 (-1) - .23 16 0000 67»6 .1715 (0) 74*2
7 - 1004 . -.4756 - H2* - .524* ( —I) - 2902 0000 7404 Ml («)
• - 6921 (-1) -.2*24 - *04? (-2) -21*0 -691K-1) —.1177 OOOC *066
♦ -.4711 -.1*56 - 4*50 - 1155 - 2*49 - *446 <-I) - 4279 0*00

10 - MJ? -.126* -JIM - 1(300 (-2) -.1516 -3528 - 1007 - 4944
>1 -3480 - 9161 <- J) -.222* .4615 -9211 (-») -4*91 - 4112 (-1) *.UT|

u - 1**7 - 4*12 — .1619 - 3252 - 612* -4149 - 2049 - 4*06 (-1)

IJ - 1469 -.124* -3 221 - 2JO4 - 4*19 -.7647 (-*) -MIO - W19
14 -.1147 — .4145 9459 (-J) - 1*0* -.11*0 -.5405 — 317*{ —2) - <«M
1, - 94»5 ( — 4) - 5521 - 7491 - 140* - 2421 -1991 - 6J0* - 1671
16 — .77}} - 2704 - 6042 -.11*0 - 1*91 - 504* - 4811 - ’799 (-2)

10.1 11.1 12,1 U.1 HI 113 1*1

1 140' (-2) 12W(-2) 9214 (-}) 7227 (-J) .5774 ( - 1) 46*6 (-» J*56f-»
2 '9*6 3952 2246 (-2) I’M (-2) 1594 (-2) 1I27(-21 9244
J .7554 .5464 .4117 4175 2502 2009 1619 (-2)
4 U16( —1) *264 6791 11’! 4007 1164 2574
1 2275 ,1524( —I) .10*1 (-1) 7*06 6095 4769 1*11
4 4096 254* 1717 1224 (-1) 900* 6967 5479
? *211 410* 2*10 19*0 •U59(-l) 10U ( 1) .77*1
• 204' (0) 8951 4907 MJ *074 .146* 3111 (-1)
9 •770 .2215 (0) 9641 5100 HU 2*4* 1614

10 0000 .9459 2560(0) 1016 (0) 1409 3157 2415
11 - 5654 0000 101J (1) 2546 1106 (9) 6074 17»*
12 -3 515 -.6)29 .0000 1094(1) 2712 1177 fO) 64M
IJ - 5590 (-1) -1100 - 702} (0) □000 1154(1) 2*7* 1247 (0)
14 - 2990 - 62*2 -.1661 - 7719(0) 4000 1274 (1) M3
ii - 1*12 - JJ61 I -1) - 4975 (—1) -1850 - *416 (0) 0000 1291(1)
16 -1221 -.*061 -37)2 - 76»(~1) - 1996 - 9114 (01 OOOC

I “ I

•
l.o *•* W 13 4.9 *2 5.0 13

2 - 15*7 (0) .0000 • l>59( —I) .4958 (0) 1045 (-2) 3 21* (0) 1211 (-2) .44} 7 (-1)

J -3617 (-1) - 1450 (0) 0001) 0000 1225 ( — 1) 61*5 742* 1192 fO)
4 -*«(.’) - 1425 (-») - 1616 (0) - 1*12 (-1) 0000 oooc 5291 (-1) 6095
5 - 4646 -4JM - 4054 (-1) - 5485 (- 2) - Ill4 (0) .4617 (-1) oooc 0000
4 - 2600 - ,?210( -1) -.171} - 140J - 4*94(-l) - 9729 ( 2) - 2026 (0) - 1999 (-Q
7 -.1&5 -.4247 -912)(-2) - 7019 (-1) - 19*6 -3790 - 51*5 ( -l> - 1742
* - 1061 - 2727 -.1114 - 40 79 — 1076 - 1925 - 2246 - 6*04 (-J)

9 -?J*7(-») -.1*61 - 1621 - 2607 - 6599 (—2) - Ill! -32*5 - MOI
10 - 5551 -41*4 -.251* - ITT* - 1569 - 711* -.757* (-2) -.*071
II - 4002 — .9*40 ( — 1) - 1*29 - 1274 - 500* -.5041 — .5090 - 1M7
12 - 1071 - 74*4 - 1172 - .946} (-4) -.2266 - 1641 -.1602 - 9542 { — »
15 - 2409 - 5045 - 105* -721* -371? - 2724 - *662 -.6787
14 - 1925 4646 - «M2(-J) - 5468 - lll« - 2100 - 2011 —.5110
15 - 4 562 - 1756 - 6699 -45W - 1061 - 1615 - 1590 - 3070
14 -12*5 - 504 i - 5465 - «?• - *5*2 ( - 1) - 1110 -.1270 -1IH

9
6.0 63 7.0 7.2 • 0 •3 9.0 93

2 61*0 (-1) 214} (-1) 96UC-») 1215 (-1) 2K»<-1) 7716 (-2) 1J7O(-1) 5220 (-2)
1 1012 ( - 2) .5614 3 5 79 ( — 2) .2901 9412 37*1 (-1) 6119 llll(-l)
4 I2M(-1) 14*5(0) .5994 3255 .26*2 ( — 2) 1110 .1617 (-2) >021
5 7414 .624? |749(-1) 1570 (0) .7267 6755 3*51 .1656
4 0000 0000 9672 6514 227* (-1) 1656 (0) 949* .7212
7 - >245 (0) - 1171 0000 .0000 .1192 (0) 4*41 WU(-l) 1’5C (V)
• -.571* (-I) — 2564( —I) - 2469 (0) - 1564 0000 0000 .I4W (9) 7218
9 - 2494 - 1025 - 6271 (-1) - 54**( —1) - 2*95 - 3*71 0000 OOOC

10 - 1166 - 52*J (—2) -2M1 -319} - 6*25 (-1) - 4415( —1) - 2921 - 2194
ti - 6495 (-2) -3152 - 1502 - ?>10(-2) - 2977 -37*2 - 7»7t(-l) - 5544 (-1)
12 - 5721 - M61 — .9)6*(—2) -4»m - 1616 - 92*7 (-2) -3215 -3186
II - 407* - 1466 - «M4 - .2*42 -.1822 -5M -3767 -3142
14 -.1029 - 1067 - 4510 - 19*6 - 6921 (- 2) - W7l -.1164 - 687* (-2)
15 - 2122 - 791* ( — 1, -.1176 -3454 - 4*61 -.257* - 7492 (-2) — 35)5
14 -.1**6 — 3154 -.25*7 -31*2 - .1707 - 1W* -.5179 -31*4

“TW ■■■*■* pMMbM a.i — *»r peww W *»a*r«-4 >i— i4b»<»anw Uh

f .
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TABU F —ami

/-I

• 10A Utf >»A H.2 11A 112

amoiaian —

1U

1 nw(-ir 5*45 f-1) •244 (-4) -3714 (-» 4M4(-4) .3054 (-1) 4040 (-4)
3 tin 7M4 5054 (-J) 5545 2204 (-5) .4540 1754 (-))
4 1040 (-1) 1)13 ( —I) 74M 452* .5)40 Ml 5 40 TT
J 3)36 imo ‘5* (-W 1505 (-1) .1004 (—1) .1045 (-1) 7*4?
4 .5032 .3440 •Mr? , 1440 MM) 1645 !4Mt-l)
7 • 1I74(—1) 745 3 4770 410) 54M 34M 254?
■ .)>)? 1046(0) 1*04 (-1) 0041 .7«n 4437 4504
4 1649(0) 7400 A4M 1444 (•) .14)) (-1) 0514 3724

10 0000 OOM U474(0) OOM 4450 3044(0) 1045 (-1)
11 - 51)3 - 2025 OOM noo 2110(0) 0477 .5000
13 - 7932 (-1) -.4346 (-1) - 5501 - 5274 •OOM 4XMB 2)45 (0)
t) - 54)2 ‘-J4OI - 44M(-1) - 7414 (-1) -5414 - 5444 OOM
14 -1406 -.1541 - 5407 - 5M5 - 4440 (-1) — O45O( —5) -2046
n - 1144 -0215 (-2) -301) -.1504 — .5912 - - .4545 ( -1)
14 -4051 (-1) -.5415 - 1246 - O5M(-2) — 21)2 -.105) - .455?

1)3 14.0 14.2 150 152 1<A 14.1

1 1596 ( — 2) 5492 (-4) 1245 (-2) .5144 (—4) .1030 (-1) 1571 (-4) 4X7 (-«
> MM 1541 (-») 2444 1107 (-5) 2M1 .5015 1634 (-2)
4 5146 31)1 5445 2447 5544 .3014 (-)) .1555
J 7010 4034 .5452 4045 .4454 .)))) )711
4 .1149 (-1, 1040 (-J) 0470 0470 O4M 0050 .5115
7 .1171 I M2 I144(-l) 15)0 ( — 2) .44)1 1054 (- 1) .7153
• 27M 5059 1040 2147 1554 (-1) .1404 IO1K-1)
9 4’04 5544 244? 3)71 MM 23M .1445

10 8044 .4445 4451 41M 5147 .4M4 3111
II .1144(0) M44(-l) 4404 • I1M( —1) 5144 4470 .5102
u M3) 5554 2350 (0) 2)25 0052 .5344 f-t) .3404
IJ OOM ■2575 (0) 9240 4101 2554 (0) 1354 MM (0)
14 -.4144 oom MQ 1005(0) 4750 0454 34M
1) - 4444(-l) - 4074 - 4542 OOM OOM MM (0) 1017 n)
14 - VO44 - 1015 - 1051 - 4511 - 5042- OOM MM

/-2

•’r
Kt 3,1 4,1 43 5.1 53 43

5 -.4175 (0) OOM 1009 (-1) 1011 (1) 2110 (-1) .1546 (0) 0426 (—3)
4 - 'W4(-l) - 3?10(0) .0000 OOM 1702 (-1) 0902 .50)7 (-2)
5 — .2662 -0)54 (-1) -.3636 (0) -.1243 (-1) OOM OOM 40001-1)
6 -.1294 - 3340 » 6900(—I) - .1114 (-2) -3740/0) - 3239 (-1) OOM
7 -.7549 (-2) - 1741 -.3733 - 7902 (-3) -4419(-1) - 0205 (-2) “ 5400 ( 0)
■ -.4654 -.1033 - 1494 -1062 -.4053 — .2202 - 9440 (-1)
? -.5152 - 6692 (-1) -.121) -.1130 — 3144 - 1110 - 4527

10 -.2216 -.4411 - 0000(-1) -.IMO - IMO - .4423 (-)) - 3544
II -.1420 - 3326 - 3597 - 9199 (-4) - 9M3 (-1) - 4004 - 1464
12 -.1253 - 2404 -4009 -4353 - 6M4 - 2706 -MM(-l)
13 - 9574 (-5) - I9M - 3004 - 4033 -.4041 - 14M - 7014
14 - 7509 - 1494 - 2596 - 3709 - 3571 - 14M - 3 M2
15 - .6119 -.1201 - 1099 -.1905 -.2740 - 1143 - 5904
14 - 50M - 9774 (-3) - 1533 — 3)22 - 2326 — O490 ( —4) - 3124

■ \ 4.5 7.1 U 0.1 •3 43 •3

3 553»(-l) •4211 (—0) 2539(—I) 3*40 (-5) |442(-I) •1M4(-)) 9054 (-1)
4 1062 (0) 2174 (-2) 7124 .1133 (-1) 5459 4747 JI44(-1)
5 0443 1053 (-1) *946(0) 4M2 0042 2044 (-1) 4341
6 OOM 7024 •319 1539 (-D 2054(0) 41)7 0623
7 - 57M (-1) OOM OOM 4543 4M1 MOI (-») >1®I(O)
0 -.1149 - 4106(0) -0674 (-1) .OOM OOM 1104 (0) 0550
9 - 4I14(—2) - 1030 - 1771 - 43)4 (0) - 1101 M OOM

10 - 2141 - 4342 (-1) -.4734 (-1) -.1147 - 246) (-1) - 4340 -.1)13
11 - 1241 - 2322 - 3MS -.4053 (-1) — 0909 ( — 2) — .1100 - »2M(-1)
11 - 7950 (-3) -.1372 -1973 -.2474 - 4794 - 5I17( —1) - 1144
1) -.5431 -.1063 - 1272 - 1475 - Ml) - MM - 43M(-1)
14 - 3910 - ?597 (-l) - O?57 (-)) -.11)4 -.1019 - 1770 -37)4
15 - 2440 - 3634 — 04)3 -O136(-7) - 11)7 - IMO - 2423
16 - 2247 -.4332 -.4TM -4M1 — 9121( —)) - 0644 (-I) - 1474

■ ilraf tOr y «f mb aaitifiiriag Maaaay «a4 axxaaOiaf•Tfc.i
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'r«8

TABU

• 1*1 10.5 lt.l 11.5 12.1
~~

1X1

1 104? (-!)* 4MI (-2) 7445 (-4) 4111 (-2) 5674 (-4) 1179(-2) 4545 (-4)
4 4591 l!44(-l) 5015 (-5) 9517 .2144 (-5) 4481 1655 (- 5)
5 IKl(-l) .2552 4004 .1477 (-1) 5407 1171 (-1) 407 J
* •1170 .4419 1491 (-1) M24 1254 ( — 2) 1874 4415
7 4)54 9049 4154 4909 1599 1051 1707 ( - 21
• *44(-l) .1171 (0) 1070 (-1) .9451 1171 5157 5544
9 I4J4 (0) 4744 5154 .1141 (0) ■llll(-l) 4794 647)

14 0000 0000 1494 (0) 9041 1414 .2)14(0) I56O(-1)
It -.4401 - 1441 0004 0000 1955 (0) 4544 44'0
11 - Ill’ - 5994(-l) - 5054 -.1111 0000 0000 2220 (0)
It - 5541 (-1) - 1544 - 12M - 44U(-l) - llll - 1548 0000
14 -.2971 - 7946 ( — 7) - 5444 (-l) -.1494 -1)50 - 76)7 (-1) - 5554
It - 1444 -.4715 - 5111 — 9716 (—2) - 5912 (-1) 2241 - 1412
14 -.1164 -.1071 -1957 - 5765 - 4244 - 1151 - 4179 (-1)

• 11.1 14.1 15, 15.1 15.1 14,1 IftJ

1 1414 (-1) 5401 (-4) 1846 (—25 1717 (-4) 1701 (-1) 2307 (—4) 12,4 (-2)
4 .5144 1260 ( — 1) 5944 9911 .1115 7982 IMP
1 4554 5044 4444 2174 (-1) 5011 1841 (-?) 1947
6 1115 (-1) 4141 9741 4751 ’41* 569) 5615
7 1015 1191 (-») 1445 (-1) >724 1071 ( -t) 6415 4205 (-1)
s 5104 1205 .116) 1544 (-2) .1545 .»»(-») 11)1
• 5544 .4517 5541 .1721 4274 1411 1615

to .1016 (0) 4170 5401 4924 .1504 .1255 254)
II 2597 .1414 < - *) • 051 (6) 9514 7412 5744 5*4’
11 9649 5070 1479 x>7i r-1) .1049 (0) 1044, 1) 601)
It .0000 2486 (0) 1005 (I) 56»7 1544 2151 1124 (0)
14 - 1945 0000 0000 1755 (0» 1054 (I) 6529 I«"«
It - 4519 (-1) » 5454 - .5544 (0) 0000 OOOO 5025 (0) IC’5(11
14 - 15*4 - 1474 - 7400 (-1) - 6104 - 1719 (0) 0000

----------—i—J
0600

/« 1

✓r
M 4.1 5.2 5.4 M M

-—1

4 - ’244 (0) OOOO 8471 (-1) .1544(1) 1545 (-2) 1424 («) 5444 (- ) ) W54(-
5 -.1119 -4559(0) 0000 0000 2574 (- 1) .1145 (1) .4457 ( — 2) 224» (0)
4 5449. 1) -.1550 - 40)1 (4) 9409 (-1) 0000 OOOO 4155 ( -1) 1110 (I)
7 -.,424 - 5140 ( — I) - 1404 - 1509 - 5950 (0) - 2M6 (-») .XXX’ OOOO
• — -IO10 -.2414 - 5775 (-1) -.5007 (-)) -.1455 - 4417 (-2) - 5995 (0) - 441, (-
9 - 445) (-2) - 1555 -.1029 -.2297 - .61)9 (- 1) - 1'29 - .1502 - 4454 ( -

10 - 4545 - 9499 (-2) - 1425 - 1265 - 5299 - 7,44 (-5) -64*4(-t) 5014
11 - 5040 - 46,2 -.1194 — .7777 ( — 4) - 201’ - 4010 - J 544 - ,44,
11 -.2171 -.4415 — 4)44 ( — 2) -5178 - 1542 - 249’ - .21 a - 8159 ( -
15 -.1727 -.1477 -.6110 - 5447 -.944) (-2) - 1676 - 1452 —
14 -.1947 - 2411 - 4619 - 2479 - 49?) -1148 - 10)2 - 545,
15 - 1072 - 221, - 5548 - 2055 - 5511 - t”S ( 4) - 7691 { - ») - 2459
14 ->441(-») -.1792 - 2449 - 1507 - 4155 - 64r»e • ’460 1824

yr
M 9,2 9.4 10.1 >0,4 iU I’M >2,2

4 2455 (-1) 1542(-1) 14)2 (-1) 471) (-4) 4979 ( -2) 6)7, <-<) 5941 ( 2) 464, (-
5 4450 7905 4144 45O9(-9) 2)A6(—1) 2919 ( -9) 15I9(-,) 1999 < -
4 2455(0) .5001 (-1) 97)5 1529 (-2) 4990 8447 .29*6 5*78
7 1675 (1) 1145 (-1) 3514 (0) 4426 1044 (0) 2417 (-2) 5514 1411 ( -
6 .0040 4459 1045 (1) .1740 (-1) 2401 6744 1099 (0) 542)
9 - .7011 ( - 1) 0000 0000 1 M2 (0) .1045 (1) 2292 ( - 1) 2*54 4920

10 -.1559 - 4177 (0) - .949) ( -1) 0000 0000 15)0(0) 1076(1) 28)5 { -
11 - 4076 (-2) - 1602 - 1905 - 6472 -.1157 (0) OOM uooc 1)8* ,0)
12 -.2545 - 4999 (-1) - 7044 (-2) -1454 -4524 (-1) - 6649 - 1541 (0) OOOO
15 - 1144 - 1446 -.5451 - 7154 (- I) - 9466( —2) - I’ll - 1191 (-t) - 6921
14 -4504 (-5) -2401 - 1900 - 4401 -.4675 - ni’f-i) - 1209 - 177,
15 -.5774 - 1*17 - 1270 -.1505 - .2494 — .41)2 - 4015 (-2) - 7T»9(-
16 -.4152 - 1144 -4574,-1) - 1742 -.1711 - 260) --Mt’ ~.4X»

15.1 11.4 14.2 14.4 D.4 1*7 iM

4 5444 (-4) • W7(-l) 2*44 ( — 4) 2549 ( -1) JOT) ( — 4) 14)0 ( -2) .1454 (-4) ,454 <-
5 1427 ( — 5) .7424 104) (-1) 5554 .4167 4252 4*27 5547
6 1095 llll(-l) 4004 9*74 4100 (-9) ’290 1420 (-5) 54W
7 9045 .2197 <2)5 1541 (-1) .4525 11)0 (-1) 5599 8)41
a 20,0 (-1) 1402 t)M(-a) 2400 4900 1697 4)16 125) (-
9 4524 4177 2649 5012 17)1 (-2) 1)58 .1179 f-2) ,470

10 .UI9(-») .1177 (0) 5795 4421 1)74 5908 2194 2A9C
11 545’ .1779 1)55 (-1) 1211 (0) 4944 6441 4114 4142
ti .1449 «7) .1111(1) 40)9 2045 1401 (-1) 1244(0) 4225 4447
15 0000 OOM 2115 (0) 1144(1) 4624 2914 14)5 ( —I) 1277 (O)
14 - 7165 - 4204 (0) MM 4000 J5M (0) U67(l) 1246 290)
15 - 1451 - 4624 (-1) - 7617 - *542 (4) 0040 4000 2444 ( 0) 1194(1)
16 -.4444 (-1) -.1702 - 149) - 59M(-l) - 7*77 - 28*6 (0) j OOOO 6000

i AipM«Wa i

t-

4,2

171*1 5)
1 ««*(.-»
, txt,

j OOOC 
| - 611) (4)

I - 1550 
* - #7)7(-l) 

t - W4' 
j - 2290

- tw,
j »i,9,~j»

12.4

«i, (' - j i
.05*1-1)
1922
»♦»!

1141 (0)
JBBT
1695 ,1)
oooc

• I >74 (0)
-

1444
7445 ( — 2)

-TU.

hoc
_____ . -'.-



TABU g wiii iii 
(-4

44 1.1 6.1 <1 7.)
 1

4.1 4 1

J - 1047 (1)* 0000 7174 (-2) 1676 (1) 1174 ( 2) 2014 (0) M91 ( -»1 '992 - I)
6 - 1410 (•) - 0220 (0) 0000 OOOC IMO(-l) 1492 (') ’411( 21 2617 (0)
T - 4141 (-1) - 177» - 4412 (0) - 7491 ( - 2) 0000 oooo }M6(-l) 1197 (1 )
• - 2041 - 4172 (-1) - 1904 -1101 - »M1 (0) - 2099 oooo oooo
9 - llll - 1226 - 717# (-1) - '194 (-1) - 1974 - ))M( —2) -62’0(0) - M'4 ( 1)

10 - 6904 (-1) - 1414 - MSI - 1442 - 41)1 (-1) - 1006 - ana* - 6114 ( -2)
11 - 4412 - 1101 - 2299 - 7447 (-4) - 4791 - 4007 <-)) - 4112 (-1) - 2214
12 - 1277 - 0011 (-2) - 1491 - 4701 - 2191 - 2641 4 MO * 1021
1) - 2407 -.1777 - 1016 - 1047 - 1709 - 1404 - 2401 - 1199 (- 1)
14 - 1027 - <KX - .7127 (-2) -.2124 - 1190 - 10M - 1466 - 141’
11 - 142} - 1107 - X’O - 1141 - 4790 (-2) - 7174 (-4) - 1120 •- -7241
14 - 111! - 2401 - 4191 -.1161 - 6474 - 1M7 9747 (-2) - 1601

9.1 9.) 101 10,1 11.1 ll.l 12.1 12.1

1 1707 (-» 2)92 ( —I) 9021 ( - 4) ini(-i) 6049 (-4) 4270 (-2) 4027 (-4) Mil (-2)
4 1109 (-2) 7104 1144 (-1) 4400 )U9( —1) 2464( —1) 1942 (- 1) 1 119 (-1)
7 4177 2909(9} 2144 (-1) 1110(0) 1121 (-2) 1110 61)0 >209
• 5441 (-1) l»»(l) 1042 < -1) Mil 1791 1211(0) * ISIS (-2) 4261
9 0000 0000 7140 1MO(1) 1400 ( —1) 1107 MM 1241 (0)

\o -620) (0) -.19)7 (-1) oooo oooo 9774 1294 (I) 196} ( -1) >146
11 - 2040 - 1041 - 4}70(0) - 4241 ( I) OOOO OOOC 1214(0) (1)
12 -6071 (-1) - 1409 (-2) -.2111 - 1114 - 410} (0) - 1041 (0) 0000 oooo
11 - 4004 - 1727 - 9ll)( —1) - 1411 (-2) - 2142 - 2041 (- 1) -.0471 - 1}M (0)
14 - 2945 — .9)07 (-J) - 4994 - 2144 - Ml® (-1) - 7461 ( — 2) 2211 264) (- 1)
11 - 1990 - 7911 - 1102 - 14'0 - 1161 1142 9477 ( - 1) - 9602 f- 2)
14 - 1411 - 1944 - 2092 -.9017 (-1) - 1222 - 202} - 1)26 - 4692

• 11.1 11.1 14,1 11.1 •M 16.1

1 2014 (-4) 1747 (-2) 2004 ( 4) 2742 (- 2) H42 (- 4) 2047 ( - 1) 12M( -4) 160)( • 2)
4 DM (-»> 1011 ( - I) .9219 ?M) 6421 1411 1200 4147
7 .1974 2014 2OO4(-l) 1407 i -|) 1912(- 1) .1011 ( -1) I419(-l) 7)42
( 1047 (-2) 1719 6617 2422 . 4492 1642 1214 I221(-l)
9 2404 6764 1140 ( 2) 4004 9741 2691 4660 ,1009

10 7141 1114(0) MM 71M 2099 (-2) 4119 1119 (-2) 2901
11 7402 (-1) .1220 9404 1177 (0) 447’ 7411 2712 4179
12 1441 (0) 1102 (1) M29 (-1) 127} UM(-l) <411 (0) 1791 74#7
1) 0000 oooo 1716 (0) ■Hl (») 1400 llll 1M41-I) 1446 (0)
14 - OOM - 1442 (0) 0000 0000 1977 (0) llll (1) 4190 4190
11 - 2244 1261 ( -1) - 9074 - 1940 ( 0) oooo oooo 224) (0) 1114 (1)
14 - WM(-l)

I... . , , . . —
- 1209 - 2)22 - 191) ( - I) - 9104 - 2240 ,0> 0000 oooo

I - J

I

*
1.4 4.4 7.4 76 a.4 » 9.4 9.6

6 - 1172(1) oooo 6794 ( — 2) 2006 (1) 9010 (-)) 2169 (0) 2701 (-1) 1979 ( • I)
? -.1611 (0) -.1221 (1) oooo 0000 1710 (-1) .004(1) 2’29(-2) 29” (0)
4 - 4902 (-1) - 2174 (0) - 1119 (1) - 6479 (- 2) oooo oooo ll'l(-t) 1605 (1)
9 - 2121 - 7611 ( - 1) - 2)00 (0) - 0412 (- )) - 1094 (1) - 1 709 ( - 1 ) OOOO ooo

10 - 1121 - MOO - 9079 (-I) - 2420 - 2400 (0) - 2420 (-2) - 1070 (1) 1)10 ( -1)
II - 6’67 ( - 2) - 2017 - 4)2) - 1002 - 9944 ( - 1) - 0041 (-)) - 2)42 (0) '<’47 ( 2)
12 - 44)0 -.1219 - 2426 - '100 (- 4) - 1122 - )440 - 101I - 1691
11 -W02 - 0447 (-2) - 1600 - 296) )O4) - 1406 - I'M ( - 1) - 740,< ))
14 -.224} - 4009 -.11)1 - 1000 - 1902 - 1060 - )Ml - 1962
11 - 1691 - 4444 - 0291 ( - 2) - 1201 - 1176 - 6007 f- 4) - 220) - 2M*
16 -.1111 - )») - 6204 - 91»4 (-))

1 I,
-.1002 - 4’20 -1,44 - Ill)

• \
10,4 106 , 11.4 11.6 u.4 12.6 11.4 11.6

6 I212(-J) 2411 (- I) 4421 (-4) 12)1 (-1) M40( —4) 7)24 ( - 2) 2'09 ( — 41 4494 (-2)
7 4009 M44 1999 ( - 1) 4402 2141 (-1) .24)7 (—1) 1U2(-1) 140’ ( -t)
0 lM4{-2) 1120 (0) 101) (-2) .1210(0) • 1)2 MOI 4)01 • Mil
9 4010 (-1) 1611(1) 0479 MM 1010 (-2) 1160(0) 141) (-2) OOM

10 oooo oooo 677) (-I) .1X7(1) 11)1 (-1) 160) 4440 14)4 (0)
11 - 1040(1) - HM(-I) .0000 oooo .0044 IXI (1) 1490 ( -1) M’l
12 - 2190(0) - 0662 (- 2) - I0M (1> -.72)1 (-1) oooo oooo 1109 (01 1129(1)
11 - 1091 - 2070 - Ml) (0) - 1271 - 1064(1) - 9)1) (-1) oooo 0000
14 - M40(-l) - IM2 -.1127 - 4)M( — 2) - 2479 ( 0) -.1712 - 1076(1) - 120) (0)
11 - 1X7 - 7011 (-») - 000)(-l) - 199) - 11M - 60)2 (-2) - 272) (0) - 2240 ( -1)
16 - 2174 - 4219 -.1744 - 1090 - 4209 (-1) - 201) - 110) - 7946 ( — 2)

'TV nafaar « puaMlMMi i i <b» pawn o2 Ma i



/Wx
A 0.00000 .10000 .30000 .50000 .75000

V(A,O) 1 .00000 .89646 .73460 .61569 .60694
INT.VAL .94599 .80902 .67079 .55699 .46443

WIDTH/2 .83255 .88716 1.00433 1.13160 1.30367
INT.VAL .85952 .94444 1.06675 1.21599 1.39466

X
0.00 1.00000 1.00000 1.00000 1 .00000 1.00000

. 10 .99309 .99299 .992 77 .99256 .99229

.20 .97265 .97226 .97145 .97063 .96963

.30 .93952 .93870 .93702 .93534 .93330

.40 .89503 .89373 .89110 .88847 .88531

.70 .71203 .71003 .70606 .70222 .69775
1.00 .50000 .50000 .50000 .50000 .50000
1.50 .21022 .21874 .23416 .24731 .26063
2.00 .06520 .07732 . 10260 .12260 .14148
2.20 .03492 .05028 .07599 .09594 .11450

2.40 .01845 .03338 .05806 .07697 .09446
2.60 .00923 .02308 . 04583 .06320 .07927
2.80 .00436 .01682 .03728 .05295 .06751
3.00 .00195 .0)295 .03109 .04510 .05822
3.40 .00033 .00873 .02286 .03402 .04466

4.00 .00002 .00576 .01576 .02389 .03181
5.00 0.00000 .00348 .00970 .01491 .02009
6 • 00 0.00000 .00235 .00661 .01022 .01386
7.00 0.00000 .00170 .00480 .00745 .01014
8.00 0.00000 .00129 .00365 .00568 .00774

9.00 0.00000 .00101 .00287 .00447 .00610
10.00 0.00000 .00082 .00232 .00361 .00494
12.00 0.00000 .00056 .00160 .00250 .00342
15.00 0.00000 .00036 .00102 .00160 .00219
20.00 0.00000 .00020 .00057 .00090 .00123

TABLE F. THE VOIGT FUNCTION V(A,X*MIDTH/2)/V(A,0)



z CO

i AW

V(A,0 ) 
INT.VAL

1.00000 1.50000 2.00000 4.00000 10.00000

.42758 .32159 .25540 .13700 .05614O . (J ,iO<UU
.36809 .28511 .17900 .07980 0.00001

WIDTH/2
INT.VAL

1.48848 1.88866 2.31843 4.17840 10.07435
1.6842b 2.10068 3.23002 7.10531 0.0000*

X
0.00 

. 10 

.20 
.30 
.40

.70
1.00
1.50
2.00
2.20

OOOOO 1.00000 1.00000 1.00000 i.00000
99204 .99161 .99126 .9905/ .990)<
96868 • 96 7u4 .9 65 f7 .96322 .96154
93138 .92808 . 92 5 - .92060 .91743
88237 .87738 .87363 .86647 .8620 r

69375 • 68736 .68288 .67524 .67114
50000 . 0000 .50000 .50000 .50000
27087 .28448 .29226 .30297 .50769
15516 .17235 .18178 •19446 .20000
12782 .14446 .15358 .16586 . i 7 L 2 3

2.40 
2.60 
2.80 
3.00
3.40

4.00
5.00
6.00
7.00
8.00

9.00
10.00
12.00
15.00
20.00

10697 .12261 .13121 .14283 . 14793
09079 . 10 52 5 . 11324 .12408 .12887
07801 .09127 .09863 .10867 .11312
06775 .07985 .08661 .09588 .10000
05249 • 0 62 56 .06824 .07610 .07962

03774 .04547 .04988 .05604 .05882
02403 .02925 .03227 .03652 • u3 846
01665 .02037 .02254 .02562 .02703
01221 .01499 .01662 .01893 .02000
00934 .01149 .01275 .01455 .01538

00737 .00908 .01009 .01153 .01220
00597 .00 73 6 .00818 .00936 .00990
00414 .00512 .00569 .00651 .00690
00265 .00328 .00365 .00418 <00442
00149 .00184 .00205 .00235 .00249

TABLE F. THE VOIGT FUNCTION V ( A , X* W I DT H/2 ) / V ( A , 0 )




