David Kilkenny

A Thesis Submitted for the Degree of PhD at the University of St Andrews

1973

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14393

This item is protected by original copyright

SOUTHERN HEMISPHERE EARLY - TYPE STARS AT
 INTERMEDIATE AND HIGH GALACTIC LATITUDES

by

David Kilkenny

A dissertation subraitted for the degree of Ph.D. at the University of St. Andrews

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10171296
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\text { Th } 8071
$$

Deciaration

Except where reference jis made to the woxk of othens, the research described in this thesis and the composition of the thesis are my own work. No part of this work has been submittod for a higher degree at this or any other University. Under Oxdinance General No. 12, I was admitted to the Faculty of Science of the University of St . Andrews as a research student on the 1st October 1969, to caxry out photometrie and spectroscopic observetions of early-type stars at intermediate galactic latitudes, with the general ain of investigating the distribution and motions of these stars. I was accepted as a candjatate fox the degree of Ph. ${ }^{\circ}$. on the 1st Octobex 19'70, under Resolution of the University Court,1967, No. 1

Cextificate

I certify that Dayid Kilkenny has spent nine terms in research work at the University Observatory, St. Andrevis, that he has fulfilled the conditions of Ordinance General No. 12 and Senate Regulations under Resolution of the University Court,196?, No.1, and that he is qualified to submit the accompanying dissertation in application for the degree of $\mathrm{Ph} . \mathrm{D}$.
Abstract i
List of illustrations iii
List of tables v
Chapter I INTRODUCTION 1

1. The observing programme 2
2. General aims 3
Chapter IT UBV PHOTOMETRY 5
3. Instrument 5
4. Standard stars 6.
5. Observation and reduction 9
6. Corrections and smoothing 14
7. Errors 17
8. Interstellar extinction 19
Chaptex III H β PHOIOMETRY 25
9. Instrumentation 25
10. Standard staxs 26
11. Observation and reduction 26
12. Data improvement 29
13. Errors 34
14. Absolute magnitudes from β-indices 35
Chapter TV SPECPROSCOPY 41
15. The spectrograph 41
16. Observations 43
17. Redial velocity reductions 45
18. Errors 49
19. Spectral classification 50
Chapter V DATA TABLES 52
Chapter VI SMELLAR JISTRIBUTION AND GALACTIC STRUCTURE 66
20. Apparent distribution of the programme stars 66
21. Galactic spiral structure 68
22. Galactic distribution of the programme stars 70
23. Distant stars 72
24. Evolutionary and dynamical ages 74
25. Star formation 84
Chapter VII KINEMATICS AND HIGH VELOCITY STARS 87
26. Radial velocities 87
27. Space motions 88
28. High velocity stars 90
(a) Jarge radial velocity and proper motion stars 92
(b) High radiaj velocity stars 93
(c) Large proper motion stars 96
29. Helium Etars 99
Chapter VITI TNeERSJELLAR MATTER 101
30. Ca II radial velocities 101
31. The cosecant equation of reddening 103
Chapter TX SUMMARY AND SUGGESMTONS 106
Appendix I CURVATURE IN THE H β TRANSFORMATIONS 109
Appendix II SPACE VELOCITY COMPONENTS 113
32. Observed and galactic velocity components 113
33. The solar motion 114
34. Correction of radial velocity for differential galactic rotation 115
35. Correction of proper motion for differential gaiactic rotation 117
36. A Foxtran TV programme 118
Acknowledgements 126
References 127

Abstract

A survey of early-type stars at intermediate galactic latitudes was carried out in the southern hemisphere winters of 1970 and 1971. The observing programme was limited to negative declinations and covered a range in right ascension of approximately 12^{h} to 20^{h}. At the Royal Observatory, Cape Town, in 1970, UBV photoelectric measurements were made of 56 stars for which no UBV data existed and 20 stars which had been observed on one or two previous occasions, the intention being to obtain four separate measures of each star. In 1971, the Bochum University telescope at the E.S.O. site in Chile was used for $H \beta$ photoelectric photometry of over 200 intermediate and high Iatitude stars. Shortly afterwards, spectra for radial velocity determination and MK classification were obtained with the two-prism spectrograph and $74^{\prime \prime}$ reflector of Radcliffe Observatory, Pretoria. Work was concentrated upon some 60 stars not previously observed with spectroscopic equipment and selected on the basis of blue colour or possible high luminosity from photometric considerations. A few southern standard stars and stars from earlier Radcliffe programmes were re-observed as control or overlap stars. Chapters II - IV describe the observational procedures and reduction methods. Tables in chapter V contain results from the 1970-71 programmes plus UBV and spectroscopic data for intermediate and high Jatitude stars from vaxious other sources.

The remaining chapters are concerned with analysis and discussion of the observations. Chapter VI summarises some optical and radio determinations of the spiral structure of the Galaxy and compares the spatial distribution of the programme stars with these results. The possibility that early-type stars may be formed well away from the galactic plane is considered by comparison of
kinematic and evolutionary lifetimes of some stars at appreciable distances from the plane. In chapter VII, intermediate and high latitude stars are shown to participate in the differential rotation of the Galaxy and detailed analysis of the space motions of a number of high velocity stars leads to the conclusion that some may have sufficient energy to escape from the galactic system. The radial velocities of interstellar Ca II lines are shown in chapter VIII to be as expected for material in the solar neighbourhood involved in differential galactic rotation. An apparent deviation from circular motion, reported by observers investigating H II regions, is also present in the Ca II gas. Constants in the cosecant equation of interstellar reddening are re-determined and show an apparently significant difference between northern and southern galactic hemispheres.

Appendix I describes attempts to simulate the effect of $H \beta$ filters in order to explain the curvature in the transformations from instrumental to standard photometric systems. Appendix II gives details of the method used to compute stellar space velocities from proper motions and radial velocities and includes a short Fortran IV programme which implements the operations described.

following page.

1 Magnitude distribution of programme stars 9
2 Spectral type distribution of programme stars 9
3 Standord star colours 9
4 Intrinsic colours for $0 \cdots 10$ stars 21
5. Twomcolour diagram for B3 V programe stars 21
6 . Intrinsic colours and reddening lines for class IJI-V stars 23
7 Examples of instrumental to standard transformations 29
8 Mean curvature in Cape transformations 30
9 Mean curvature in La Silla transformations 30
10 Transmission curves for intermediate band filters 31
11 Residuals β (Cape) - β (La Silla) plotted against β (Cape) 32
12 Analysis of La Silla variable stars 35
13 $\sigma(\beta)$ against V-ma.gnitude for programme stars. 35
14 Cal.ibration of β-index in terms of absolute magnitude 38
15
Comparison of absolute magnitudes from β and MK types (a) 38
16 Comparison of absolute magnitudes from β and MK types (b) 38
17
Comparison of absolute magnitudes from β and MK types (c) 40
18 Distribution of programme stars in galactic comordinates 66
19 Optical spiral arm tracers 68
20 Optical spiral structure and neutral hydrogen distribution 70
21 Distribution of programme stars projected on to galactic plane 70
$220-\mathrm{B} 2$ programme stars projected on to galactic plane 72
23 Disixibution of programme stars pexpendicular to galactic plane 72
24 Distanit stars 74
25 Tsochronous curves 77
26 Radial velocities of programme stars relative to local standard of rest 87
27 Radial velocities corrected for effect of differential galactic rotation 87
28
Programme stars in the U, V plane 89
29 Twomcolour diagram for high-velocity stars 92
30 The proper motion of HD 112491 97
31 Radial velocities of interstellar Ca II lines 101
32 Ca TI velocities averaged over 10° intervals 101
33 Colour excesses against z-distances for staxs with $7^{\circ} \leqslant b<8^{\circ}$ 104
Illustrations (cont.)
following page
A 1 Simulated transformations (a) 110
A 2 Simulated transiormations (b) 111
A 3 Simulated transformations (c) 111
A 4 Simulated curvature compared with observed cuxvature 111
A. 5 Differential galactic rotation 114
A 6 Galactic rotation curve (Schmidt-Kaler, 1967) 116
A 7 Linear approximation to the rotation curve 116
A 8 Effect of differential galactic rotation on radial velocities 117
A 9 Effect of differential galactic rotation on galactic longitude proper motion component 118
A10 Conversion from equatorial to galactic proper motion components 118
1 Corrections to published colours in R.Obs.Bulletins 64 \& 121 8
2 Sample preliminary reductions for $25 / 26$ April 1970 13
3 Night corrections to UBV photometry 17
4 Internal errors of UBV photometry 18
5 Night transformations from natural to standard system following 30
6 H β filtex characteristics 31
7 Stellar lines used for radial velocity determinations 47
8 Positional, photometxic and spectroscopic data 54
9 Proper motions, reddening corrections and distance determinations 60
10 Stars near $I=345^{\circ}, b=-10^{\circ}$ 67
11 Possibly related stars 67
12 Apparently very distant stars 73
13 Masses and main sequence lifetimes of early-type stars 77
14 Dynamical and evolutionary ages of 89 Her \& HD 161796 79
15 Stars with dynamical age $>$ evolutionary or main sequence lifetime 81
16 High space velocities from proper motions and radial velocities 91
17 Estimates of the height of the reddening layex 104

INTRODUCRION

Most of the work on galactic spiral structure as defined by optical surveys of young objects, has for obvious reasons dealt with areas of sky close to the equatorial plene of the Galary. As a consequence, the equatorial regions have been extensively surveyed, at least as far as smoll and medium size telescopes are concerned. This is one reason for the present aurvey of early-type stars at interaediate galactic latitudes but there are several other considerations.

A recent northern hemisphere study by Kepner (1970) has demonstrated that spiral arms delineated by the distribution of neutral hydrogen appear to exiend to one or two kiloparsecs from the galactic plane. It is therefore of some interest to discover whether or not the earlytype stars asay from the plane show any tendency to follow similar apiral stixuoture to that traced by young objects near the plane. If intemediate latitude stars are linked to the spiral axms, this could prove useful for investigating distant galactic structure. A few degrees on either side of the gelactic equator, the obscuration caused by interstellar gas and dust becomes very much less than in the equatorial regions and it is possible to obsexve distant stars which are not heavily reddenod. In particular, it was hoped to obsexve stars related to the -II or Normemscutum spiral axm without the problem of heavy obscuration caused by material of the -I or Sagittaxius axm.

Finally, surveys of blue staxs at higher latitudes have often discovered unusual objects. Thackeray and Wesselink (1952) found the helitusn stax HD 168476 and surveys by Feast and Thackeray (1963) and Hill (1971) have located appacently noxmal early-type stars with high
radial velocities which cannot be attributed to the effect of differential galactic rotation.

1. The observing programme

The basis of the programe was a list of stars selected from the Henry Draper Catalogue (Cannon and Pickering, 1918-24). Dr. P.W. Hill made available a magnetic tape containing data for all 0 and B-type stars in the $H D$ catalogue plus a libraxy of acoess and sort programmes to retrieve and print the data. Thus a list was compiled of $0-35$ stars fainter than seventh magnitude and in the latituide range $7^{\circ}<b<15^{\circ}$, together with a secondary list of B8-9 stars in the same range. The lower latitude limit vas chosen to be above the nomul upper limit for near-equatorial surveys and also above the worst of the obscuring material. The upper limit is roughly equal to the lower limit of completion of a high latitude eaxly-type star suxvey carried out by Hill (1970). To the basic 0-B5 list were added several faint stars not classified by the $H D$ survey but with speotral types from the Cape Photographic Catalogue for 1950 (Stoy, 1966). These staxs are referred to by "CPD" numbers from the Cape Photographic Durchmustertugen (Gill and Kapteyn, 1899). AIso included in the primary observing list were a few B8m9 stars which were possible giants or supergiants. Such stars might have EDD catalogue comments "narrow lines" for exaurgle. Excluded from the programe were known vaxiable or binaxy stars and emissionline stars. To eliminate the lattor, an unpublished survey by Henize of H H-emission objects in the southern hemisphere was used and i am grateful to Dr. A.D. Thackeray for allowing me to consult the Radaliffe copy of this catalogue. Shortiy afterwards, the compilation by Wackerling (1970) was published and provided a useful check for emission stars.

It was originally intended to make UBV and HB measurements at the

Royal Observatory, Cape Town in the southern winter of 1970. The data thus obtained would then be used to select the bluest and most luminous stars for priority of observation with Radclife spectrographic equipnent in 1971. The 1970 HB programe was severely curtailed by poor weather and late delivery of the interference filters but, fortunately, observing time was made available by the RuhruUniversität Bochum on their 24-inch telescope at the Exuropean Southern Observatory site in Chile. This pornitted $H B$ measurements to be made of all the intermediate latitude programe stars together with high latitude stars from the survey by Hill (1970) and other sources.

2. General Aims

Photometric and speciroscopio reductions and results are described in chapters II -V. The UBV photometry is used to determine and correct for the effect of interstellax extinction on the V-mggnitudes of the programme stars. The HB-index provides a measure of the absolute magnitude of each star which in turn gives a distance esimate
 for radial velocity measurement of stellar and interstellar features but also yield an estimate of absolute magnitude by way of the MK classification system, and furnish a means of checking for binary or emission stars. With stellar distances we can investigate the space distribution of the programe stars and from radial velocities a study of certain kinematical effects can be made. If reliable proper motions exist, which is not often ine case with early-iype stars, space velocity components and total space motions can be calculated.

The use of HB photometry for absolute magnitude determination has advantages over MK-type luminosities in that the former uses a continuous rather than a discrete calibration and is, or should be, virtually free from personal systematic exrors. Of course there are
disadvantages with the photometric method; exroneous results will be obtained for multiple stars and stars with any trace of emission in the $H ß$ absorption line. The latter should be largely eliminated by rejecting staxs listed in H α surveys and the problem of multiple stars can be reduced by rejecting volocity variables. However, it is not certain that we can remove all exrors from these sources. Λ bt and Osmer (1965) have shown that rotational bxoadening of the HB line should not cause appreciable exrors provided the narrow interference filiter has a half width of about $30 \AA$ or more.

CHAPMER II

UBV PHOTOPEPTRY

In the pexiod May to August of 1970 , the Large Telescope User's Panel allocated 26 nights on the 40 -inch reflector (the "Filizabeth" telescope) of the Royal Obsexvatory Cape of Good Hope, to be used for UBV and $H B$ photometry of early-type stars. The UBV photometry and reductions exe doscribed in this chapter, the Hfs photometry in the next.

1. Instrumentation

The Elikabeth telescope of the Cape Oiservatory has been briefly described by Stoy (1964). It is a 40 minch (1.02m) reflector on a crosso axis mount and had a focal xatio of $\% / 20$ when observations were made at the Cassegrain focus. The telescope was simple to operate and could be set with accuracy such that it was never necessary to use the attached finding telescopes. On olmost every occasion the programene stax to be observed was found in the area or sky occessible with the field eyepiece of the photometer. The accuracy and easemof-setting of the telescope did much to minimise tine loss between observations, The Elizabeth tellescope has now been moved to the nev South Aprican Astronomical Observatory site near Sutherland in the Kaxroo region of Cope Province and is now $1 / 45$ at the Cassegrain focus.

The photometer at the Cassegrain focus, prior to the removal of the telescope, was of conventional design. The field eycpiece mentioned previously had a field of view of about ten minutes of axc in dianeter. A second eyeniece behind the diaphragm wheel enabled a stax to be positioned moxe precisely in the diaphragn centre, having
been approximately centred on the cxosswires of the field eyepiece. A range of diaphragm sizes was available. For UBV photometry, the filter slide carried the following filters:

For V	2 mm	Omag 302
B	4 mm	Schott $G G 13+1 \mathrm{~mm}$.

The photomultiplier was a quar'tzwindow E.M.I.6256A in a cooled housing. The 1.3 mm . of glass hed been added to the ultromiolet filter so that the conversion from the instrumentel (U-B) to the Johnsonmorgan, or standand, (U-B) would be more nearly linear. The standard UBV photometric system is based on the glass envelope R.C.A. 1 P2l photomultiplier which provides a short wavelength cut-off in the ultramiolet, unlike the quartz Firal tube. Cousins (2967 a) has given a mose deteiled discussion of the efforts to reproduce the standard system.

The photometer was used with a D.C. integrator which had a choico of integration times of 10,30 or 60 seconds; the 30 -second integration was used for all UBV measurements. The integrated output was displayed on a digital voltmeter and printed on a paper atrip for a more pemanent record. A differentiator and chart reconder were available for continuous monitoxing of the obsexvations.

2. Standard Staxs

Cousins (1967a) has published a list of UBV photometry for 900 stans brighter than fifth magnitude and south of $+10^{\circ}$ declination, compiled from lists published by a number of obsexvatoxies. The UBV system defined by these stars is believed to be constant over the southern sky and is vexy close to the standaxd system. Unfortunately, these stars were too bright to be observed with the Elizabeth telascoper
photometer combination and so stemdard stars had to be sought elsewhere. Many of the stars in the Harverd Imwegions observed by Cousins and Stoy (1962) are suitable for use as standards. The original paper lists $\mathrm{V},(3-\mathrm{V})$ and $(\mathrm{U}-\mathrm{B})_{\mathrm{c}}$, the latter colour being a Cape ($\mathrm{U}-\mathrm{B}$) in which the U filter was a Corning 9863; the trensformation from (U-B) $)_{c}$ to the standard U-B is not a singlemvalued relation. A later paper by Cousins (1967b) gives ($U_{a} 13$) on the standaxd system for most of the stars from the oxiginal paper. In accordance with Cousins' recommendations, the ($B-V$) and (U-B) colours were adopted unaltered and the V magnitudes of stars used as standards were adjusted by $+0^{m} .005$ to bring the photometry onto the same system as "Mean magnitudes and colours of bright stars south of $+10^{\circ}$ declination".

The f-regions are centred on -45° declination but the progremme stars are spread between about -75° declination and the celeatial equator, consequently it was not always convenient to use E-wegion standaxds. it was desirable to have standard stars located reasonably neax programine stars (in projection on the celestial sphere) so that standard and programe stars could be observed at approximately equal zenith distances and, of lesser importance, so that little time was lost setting the telescope and dome. Additional standards were selected from Royal Observatory Bulletins 64 and 121 (Cousins and Stoy, 1.963; Cousins, Lake and stoy, 2966) which give V and (B-V) for about 7000 southern stars and (U-B) for roughly a third of them. Again the V megnitudes of stars selected were adjusted by $+0^{m} .005$ but the (BuV) and (U-B) colours were corrected by the anounts show in Table 1 , a private communication from Dr. Cousins. For stars from R. Obs. Bull. 64 with $(U-B)<-0.50$ the equation

$$
\Delta(U-B)=-0.019+0.096(B-V)-0.038(U-B)
$$

was used to derive comeations to published values of ($\mathrm{U}-\mathrm{B}$).

Table 1
Corrections to published colours in R, Obs, Bul1. 64 and 121

Inclusive limits of ($\mathrm{B}-\mathrm{V}$)			$\triangle(B-V)$	$\triangle($ U-B $)$
-0.535	to	-0.485	$+0.01$	-0.05
-0.48		-0.435	+0.01	-0.045
-0.43		-0.385	+0.01	-0.04
-0.38		-0.33	+0.01	-0.035
-0.325		-0. 28	+0.01	-0.03
-0.275		-0.225	+0.01	-0.025
-0.22		-0.175	$+0.01$	-0.02
-0.1.7		-0.155	+0.01	-0.015
-0.35		-0.12	+0.005	-0.015
-0.115		-0.07	+0.005	-0.01
-0.065		-0.055	+0.005	-0.005
-0.05		-0.02	0.0	-0.005
-0.025		$+0.035$	0.0	0.0
+0.04		+0.085	0.0	+0.005
+0.09		$+0.095$	0.0	+0.01
+0.10		+0.14	-0.005	$+0.01$
+0.145		+0.19	-0.005	+0.015
+0. 195		+0.24	-0.005	+0.02
+0.245		+0.295	-0.005	+0.025
+0.30		+0.30	-0.005	+0.03
+0.305		$+0.40$	-0.005	+0.025
$+0.405$		+0.50	-0.005	$+0.02$
+0.505		+0.595	-0.005	+0.015
+0.60		+0.695	0.0	$+0.01$
+0.70		+0.79	0.0	+0.005
+0.795		+0.845	0.0	0.0
+0.85		+0.89	+0.005	0.0
$+0.895$		+0.99	+0.005	-0.005
+0.995		+1.025	+0.005	-0.01
$+1.03$		+1.245	+0.005	-0.005
+1.25		+1.305	0.0	-0.005
$+1.31$		$+1.58$	0.0	0.0
$+1.585$		$+1.645$	0.0	+0.005
+1. 65		$+1.86$	-0.005	+0.005

Stars to be used as standaxds were chosem from the lists detailed above so as to be in, or reasonably close to, the areas of rky containing the programme stars. Special care was taken to choose stars with good (UmB) measures as several of the E-region stars heve their listed (U-B) colours followed by a colon or doublemcolon indicating unreliability (Cousins 1967b). Many of the stars selected were of early-type, accoxding to HD classification, although later types were also used. Figures 1 and 2 show the distribution of the standand stars by magnitude and spectral type. It was difficult to find faint stars with good UBV measures, hence the concentration of stars between sixth and seventh magnitude. There were few good standands of very eardy type, although figure 3, the twomcolour diagram for the selsoted. stars, shows that at least some of them must be eaxlier than is indicated by the Harvard spectral types. As might be expected, mest of them appear to be only slightly reddened.
3. Observation and Reduction

The Cape methods of observation and reduction for general photometry in U, B and V were fairly closely followed (Cousins, 2966). The pattern of observation was to make every third star a standand stax. For the fixst standard star, several integrations would be made, usually on the B filter, and the digitised output from the strip printer checked for veriability. If the series of measurements showed more than $\alpha \%$ variability, the observing programne was not started; the variation was often the result of very thin cirrus cloud. If the "check" integrations proved satisfactory, obsexvations were made in the sequence: standaxd, two programe stars, standard, two programme stars, and so on, as noted above. In general, a different standard star was observed each time to minimise the possibility of systematic

Fig. 1 Magnitude distribution of standard stars

Fig. 2 Spectral type distribution of standard stars

Fig. 3 Standard star colours. Unreddened line from Johnson (1958).
errors. The chart recorder output was checked frequently and is traces showed signs of variability, other than the usual trace "noise", a further series of "check" integrations were made.

For individual stars, sky measures were made in B and V_{8} star measures in V, B and U, and finally sky measures in U and B. For a given filter, sky and star were observed at the same gain, though it was often necessany to increase the gain setting for star and sky measured through the U filter. This sequence of measures is efficient in that it requires few changes of filter. V and U measuxes for the stax are as close as possible to the sky measures through these filters, and B (star) is symmetrically placed between two B integrations of the sky which can be averaged to give B (sky). Fach of the seven integrations of the sequence was made for 30 seconds, a total of 3 吉 minutes integration time for a given star. With a little experience, it was possjible to observe about eight or nine stars per hour, generally less than haif the total. time spent on each star being necessary fox getting the telescope and dome, cheoking the stax field and so on.

It is nomal practice in Cape generel photometry to obsexve stars at roughly equel altitudes, usually at 30° or 40° zenith distance (Cousins, 1966). This was not always possible in the present programe, for example, sters further south than declination -75° are still more than 40° from the Cape zenith at upper iransiti. Generally, programne stars were observed at zenith distances smaller than 40° and, wherevers possible, the programe stars and the standaxd stars close to them on the observing list were observed at similar altitudes.

Whilst the various integrations were in progress on a given star, a note was made in the observing book of the star number (HR, HD or CPDD) and integrator gain setting, or settings. A clinometer, coxveniently calibrated in units of sec z (natural secant of zenith distance), had
been attached to the side of the telescope. The clinometer reading and local sidereal time of mid-observation were noted and logged during the B (star) integration.

UBV neasurements were made on ten nights or part-nights, in a total of only 57 hours observing. This rather poor recond, about 30% of the allocated time, was due almost entirely to the poor weather during the Cape winter. The prevailing southeasterly wind, which in sumer oreates goodtronsparency, if less than perfect seeing, tends to carry rain clovds in winter. With the wind fron the north or north-west, photoelectric photonetry was made wather risky by thin smoke from the industrial areas of Cape Town. Time lost because of instmmental failure was negligible。 The strip printer occasionally malfunctioned so that a check had to be kept on the printed output to exsuxe that it matched the digital voltmeter reading. In spite of the poor weather, some 367 UBV observations of progxame and standard stars were made. Excluding standard stars, 225 observaitions wexe obtained for 76 staxs, of which 56 had not been previously observed on St. Androws intemediate-latitude programnes. Most of the remaining 20 programme stars had been obsorved only once or twice by Dr. van Breda or Dr. Hill. Fourteen of the "new" stars were faint CPJ stars, many of which turned out to be very blue, for example, nine were more blue than (U-B)= -0.75 before correction for interstellar reddening.

During a chort visit to the Cape in July of 1971, about a dozen programe stars, mostly from the CPD, were observed but the porr weather prevented any really useful work. The 1971 observations were made and reduced in exaotly the same manner as the 19 '70 set and any future referenoe to 1970 data will also include the 1971 UBV observations.

The fixst stages of the preliminary reductions were carried out with an Olivetti dosk computer and a Cape programme used to reduce all

40-inch observations. Instrumental magnitudes u, b and y were calculated from the digitised output of the sirip printer by the usual expression magnitude $=$ constant $-2.5 \log _{10}{ }^{E}$
where $\mathrm{E}=\mathrm{star}$ measure - sky measure for a given filter. A different constant was used for each gain step to bring all measurements to the same gain. Next, $v, b-y$ and $u-b$ were corrected to the zenith using mean extinction coefficients

$$
k_{y}=0.20 \quad k_{b-y}=0.15 \quad k_{u-b}=0.30
$$

With standard and programme stars observed at similar altitudes, it is not usually necessary to measure actual coefficients for a given night (Cousins, 2966). $\mathrm{V}^{\mathrm{I}},(\mathrm{Biv})^{1}$ and $(\mathrm{U}-\mathrm{B})^{1}$ were computed using the colour equations

$$
\begin{aligned}
V^{2} & =y+0.03(b-y) \\
(B-V)^{1} & =(b-y)+0.04(b-y) \\
(U-B)^{1} & =(u-b)
\end{aligned}
$$

which were mean Cape equations in general use for the 40 -inch reductions. The constant temin usually added to the right-hand side of each equation, that is the "zero-point" required to bring the measurements onto the standard system, is taken care of by the next step of the reduotion. Table 2 shows how this was effected. The first three columns of the table are star number, underlined in the case of standards, amplifier gain and natural secant of zenith distance. The next three columns give the instrumental magnitudes and colours, corrected for colour equation and to one air mass. Columns 7 to 9 list $\triangle V, \triangle(U-B)$ and $\triangle(B-V)$, the differences between standard and instrumental magnitudes and colours for the ziandard stars. Shifted to the right in each of these columns are the interpolated zero-points for the programne stars. These differences. are added to the corresponding programe star magnitude and colouxs to give the last three columns which are preliminary values of $V,(U-B)$ and ($B-V$) on the standard
Sample nreliminaxy reductions for observations of $25 / 26$ April 1970

Sec z	∇^{1}	$(\mathrm{U}-\mathrm{B})^{3}$	$(\mathrm{B}-\mathrm{V})^{1}$	Zero points			Preliminary UBV		
				$\triangle \nabla$	$\triangle(\mathrm{U}-\mathrm{B})$	$\triangle(B-7)$	V	($\mathrm{U}-\mathrm{B}$)	(B-V)
1.30	4.022	1.038°	-0.669	2.02	-2.38	$+0.76$			
$1.18{ }^{*}$	4.022°	1.365°	-0.310	2.04	-1.38*	+0.74			
3.23	5.509°	0.717°	-0.730°	$2.04{ }^{\circ}$	-1.38 ${ }^{\circ}$	+0.74*	7.55°	-0.67	$+0.01{ }^{\circ}$
1.06	6.670	0.521	-0.824°	$2.04{ }^{\circ}$	-1.38°	$+0.75$	$8.7{ }^{\circ}$	-0.86*	-0.07°
1.34	4.282	1.122*	-0.741	2.05	-2.38°	$+0.75$			
1.27	5.577	0.515	-0.739°	2.05°	-1.38	+0.74	7.63	-0.86	0.00
1.25	5.722	0.583	-0.737	$2.05{ }^{\circ}$	-1. 37	$+0.73^{\circ}$	7.77^{*}	-0.78°	0.00
2.30	4.566	1.139^{*}	-0.781	2.06	-1.36°	$+0.72^{\circ}$			
1.27	7.471	0.675	-0.633	2.06	-1.36*	$+0.72^{\circ}$	9.53	-0.69	+0.09
1.07	5.967°	0.598°	-0,598	2.06	-1.36	+0.72	8.03	-0.76	+0.12
1.16	4.046°	1.416°	-0.616*	2.06	-1.36°	$+0.72$			

UBV system. By observing many standards, the constant of transformation or zero-point in the colour equation is allowed to vany slightly and. thus should remove any long period fluctuations in the atmospheric conditions or equipment sensitivity.

As shown in Table 2, for initial calculations three decimal places were retained but for the final stages only two are really significant. The dot or "pip" following the last decimal place indicates that the noxt figure, approwriately rounded, would be a five.

4. Corrections and moothing

Before the preliminary UBV results could be smoothed, certein corrections were required. A private commuication was received from the Cape observatory describing anendments to the colour equations. Cape observations of standard stars on the 40-inch telescope had been remreduced in groups, based on the state of the telescope mimrors between November 1965 and July 1971, and mall alterations to the colour equations for certain periods were found to be necessary. For the period in which observations were made for this dissertation, corrections of $+0.02(\mathrm{~b}-\mathrm{y})$ to ($u-b$) and $-0.01(b-y)$ to (b-y) were required. The new colour equations were then

$$
\begin{aligned}
V & =y+0.03(b-y) \\
(B-V) & =(b-y)+0.03(b-y) \\
(u-B) & =(u-b)+0.02(b-y)
\end{aligned}
$$

On the natural systom, (b-y) was not numerically greater than unity so the largest correction applied was $0^{m}, 02$.

In a private communication, Dr. Cousins noted results of (U.B) extinction coefficients computed from photoelectric scans of stellar spectra (Willstrop; 1965). From these coefficients, Dr. Hill derived a relation between the extinction in (U-B) and ($B-V$), (U-B) colours. The relation is non-linear and a result of the increase in Balmer series
absomption from O-- to A-type stars. The derivation is only described briefly here, since the work was done by Dr. Hill.

Stock (1969) has given the following empirical fommalae for the Balmer depression in unreddened or slightly reddened stars:

$$
\begin{array}{lr}
D=(U-B)+0.784-1.285(B-V) & \text { for }(B-V) \leqslant 0.60 \\
D=(U \mathrm{~m})+1.203-1.983(B-V) & (B-V)>0.60
\end{array}
$$

With data from 23 class III -V unreddened stars and using a method simjlar to that described by Hardie (1965), Hill derived

$$
k_{U \cdots B}=0.321-0.005(\mathrm{UmB})-0.04 \mathrm{D}
$$

and substituting for the Balmer depression gives

$$
\begin{array}{ll}
k_{U-B}=0.051(B-V)-0.045(U-B)+0.290 & (B-V) \leqslant 0.60 \\
k_{U-B}=0.079(B-V)-0.045(U-B)+0.273 & (B-V)>0.60
\end{array}
$$

The second equation was applicable to a few of the later type stars used as standards. The UBV colours of standards are well defined and $k_{U, B}$ could be computed directily. For programme staxs, preliminary colours had been calculated as described in II.3, using the value $k_{U-B}=0.30$. From these colours a corrected k_{U-B} was determined and the (U-B) colouns were revised. The procedure conld be used iteratively but in practice it was found that since none of the stars had been observed at low altitudes, the corrections were vexy small. Revised colours, corrected to the zenith were caloulated from

Revised $\left(U_{u-B}\right)^{1}=(U-B)^{1}-\Delta k_{0} \Delta X$
where $\Delta \mathrm{X}=$ sec $\mathrm{z}-1$ and $\Delta \mathrm{k}=\mathrm{k}_{\mathrm{U}-\mathrm{B}}-0.30$. The correction was made to (UBV) ${ }^{1}$ colours so that the last step of the preliminary reduction, the zerompint interpolation, could be re-caloulated. The largest value of $\triangle \mathrm{k}$ was less than 0.03 and for a zenith distance of 40°, sec $z=1.3$ hence $\Delta x=0.3$, and corrections should be $0^{m} .01$ or less. Most atters were observed at zenith distances less than 40° and so corrections wexe not necessary in many oases and only as great as
0^{m}. 01 in a few. Errors may occur for heavily reddened stars or superm giants where $\mathrm{k}_{\mathrm{U}-\mathrm{B}}$ will be uncertain, but such errors will be insignificant unless $\Delta \mathrm{k} . \Delta \mathrm{x}$ is large.

A few of the stars observed in 1970 had also been in earlier St. Andrews programmes by van Breda and Hill in 1968 and 1.969 respectively. All observers had used the same telescope, equipment and method of reduction, although the colour equations were slightly different for the three sets of data. In addition, some of the 1968 observations had been made at rather low altitudes so corrections to k_{U-B} were greater than 0^{m}. 01. Comparisons between the sets of observations were fairly satiafactory and considerable improvement had been made to the (U-B) data by application of the extinction coefficient corrections. For the preliminary data, the mean difference $\bar{D}(\bar{U}-\bar{B})$, where for a given star

$$
D(U-B)=(U-B)_{1970}-(U-B)_{1968} 1969
$$

was found to be $=0^{m} .030 \pm 0.017$ (s.d.) whereas for the corrected data, $\overline{D(U-B)}=-0^{m} .009 \pm 0.020\left(s_{0} \alpha_{0}\right)$.

In the smoothing process, programme stars with good UBV photometry were used as "secondary standards". The criteria used to select such stars were that a star should have at least four separate obsexvations of $V,(B-V)$ and $(U-B)$ and that the standard error of these observations should be less than or equal to $0^{m} .01$ for all three quantities. Twenty seven stars were found to satisfy these criteria. The quantities ΔV, $\triangle(B-V)$ and $\triangle(U-B)$ were remealculated for secondary standands as well as the oxiginal standards, and the Δ differences for the programe stars were not interpolated directly. Instead, running means of five etandaxds, primary and secondary, were used to derive new $\triangle V, \Delta$ (B-V) and $\Delta(U-B)$ for each standard star, including the secondary standards. For example, $\triangle V$ for the third standard was taken to be the mean of the first five standaxds, ΔV for the fourth standard was the mean of
standards two to six, and so on. Now Δ differences for the programme stars could now be intexpolated from the running mean differences. The nev values of $\Delta V, \Delta(B-V)$ and $\Delta(J-B)$ were then used to re-compute $\mathrm{V}, \mathrm{B}-\mathrm{V}$ and $\mathrm{U}-\mathrm{B}$ for all stars.

The magnitudes and colours of the primary standaxds were subtracted from the catalogue values to give mean differences for each night. These "night corrections" were rounded to the nearest $0^{m} .005$ and applied to all programme stars, including those used as secondary standards. Table 3 shows the actual mean differences $\bar{\Delta}_{N}$ for each night; n is the number of standards involved.

Table 3

Date	$\bar{\triangle}_{N}(\mathrm{~V})$	$\bar{\triangle}_{N}(\mathrm{~B}-\mathrm{V})$	$\bar{\Delta}_{N}(\mathrm{U}-\mathrm{B})$
24/25. iv. 70	-0.002	0.000	-0.002
25/26. iv. 70	+0.006	-0.002	± 0.006
9/10. v . 70	± 0.003	+0.001	-0.001
12/13. v.70	+0.002	-0.000	+0.002
1/2.vi. 70	0.000	+0.001	± 0.003
13/14. vi. 70	-0.002	-0.001	-0.002
14/15. vi . 70	0.000	+0.002	-0.005
26/27.vi. 70	+0.002	-0.002	-0.001
27/28.vi . 70	+0.001	0.000	-0.001
14/15.vii. 70	-0.002	+0.002	+0.000
18/19.vii. 71	± 0.003	+0.001	-0.001

The underlined quantities indicate where corrections were applied. As can be seen, with appropriate roundine; the largest correction added or subtracted on any night was 0^{m}.005.

5. Errors

The internal errors of the magnitudes and colours derived from 1970 data were calculated using σ, the standard deviation of a single
observation:

$$
\sigma=\sqrt{\frac{\sum_{i} \sum_{j}\left(x_{i j}-x_{i}\right)^{2}}{n-m}}
$$

where $\quad x_{i j}=j^{\text {th }}$ measure of V, Burv or U-B for the $i^{\text {th }}$ stax $x_{i}=$ mean value of $V, B-V$ or $U-B$ for the $i^{\text {th }}$ star
$m=$ total number of stars
$n=$ total number of observations.

Table 4 shows the internal erroxs for the preliminaxy and revised. photometry. Using all staxs with more than one observation and discounting possible variables, $n=181$ and $m=57$

Table 4

Intexnal erroxs of UBV photometry

	$\sigma(V)$	$\sigma(B-V)$	$\sigma(U-B)$
Preliminary	± 0.020	± 0.013	± 0.011
Revised	± 0.015	± 0.011	± 0.011

The smoothing process improved the errors in V considerably and in (B-V) to a Jesser extent. A small improvement was made to $\sigma\left(U_{\mathrm{v}}-B\right)$ but only in the fourth decimal place and therefore of little significance. The standerd deviations of the mean values of $V, B-W$ and $U W$ for each star were calculated using Bessel's foxmula for a sample from an infinite population:

$$
\sigma^{\prime}=\sqrt{\sum_{i}\left(\bar{x}_{i}-x_{i}\right)^{2}}
$$

Applying the criterion for variabjlity that $\sigma^{\prime} \geqslant 3 \sigma$ it was found that the stars eliminated from the computation of σ on the grounds of probable vaxiability, were in fact variable in. V if not in (B-V) or (U-B).

6. Interstellax Bxtinction

It would be impossible to detail more than a fraction of the work which has been done on the various aspects of the interstellar soattering of light, but some of the papers relevant to the effect of "reddening" on the intrinsic colours and magnitudes of early-type stars will be disoussed.

- When Johnson and Morgan (1953) defined the UBV system they also discussed the location of unreddened staxs in the (UwB)/(B-V) diagram and the effect of reddening on stellar colours. They described a method for determining the reddening of OB stars from observed colours by defining

$$
Q=(U-B)-\frac{{ }_{L_{U}} B B}{E_{B \cdots-V}} \cdot(B-V)
$$

where $E_{U-B}=(U-B)-(U-B)_{0}$ and $F_{B-V}=(B-V)-(B-V)_{0}$ are the "colour excessest or differences between observed and intrinsic colours. The quantity Q is independent of interstellas reddening but dependent on spectral type. $F_{U-B D} / E_{B-V}$ is the gradient of the "reddening line" on the twowcolour diagram. In other words, a selection of stars with identical intrinsic colours ($B-V)_{0}$ ($\left.\mathrm{Cm}-\mathrm{B}\right)_{0}$ but different amounts of reddening should form a line with slope $\mathrm{F}_{\mathrm{U}, \mathrm{B}} / \mathrm{E}_{\mathrm{B}-\mathrm{V}}$ passing through the point ($B-V$) 0 , (UwB) on the two colour diagram. Johnson and Moxgan gave a value of 0.72 ± 0.03 ($p_{\circ} e_{.}$) for the gradient of the reddening line. In principle then, given the observed colours of a stax it is possible to determine intrinsic colours when spectreal type is known and hence the colour excesses. If the spectral type is not know, it may be estimated by the "Q-method" since Johnson and Morgan calibrated Q in terms of spectral type. If the ratio of alsoxption in (B-V) to absorption in V is known then it is possible to remove the effect of interstellar absorption on the V-magnitude of a given star as follows:

$$
\begin{gathered}
\text { Absoxption in } V=A_{V}=R_{0} E_{B-V} \\
\text { Absoxption free } V \text {-magnitude } V_{0}=V-A_{V}
\end{gathered}
$$

and R is usually called the ratio of total to selective absorption.
In practice it is not quite so simple. Johnson and Morgan (1953) realised that stars of the same spectral type but different luminosity classes did not necessaxjily have the same intrinsic colours, and Hiltner and Johnson (2956) investigating the reddening line for 0 staxs Lound that the data could be represented by

$$
\mathrm{E}_{\mathrm{U}-\mathrm{B}}=0.72 \mathrm{E}_{\mathrm{B}-\mathrm{V}}=0.05 \mathrm{E}_{\mathrm{B}=\mathrm{V}}^{2}
$$

that is, the reddening line is slightly curved. They also investigated reddening in the region of h and X Persei, finding a value for R of 3.0土0.3, and noted that reddening of stars in the Cygnus rift was not consistent with other regions of the sky. Studies by Valker (1957) and dindholm (1957) showed that the gradient of the reddening line varied with spectral type. In view of these complications, Johnson (1958) remexamined the Q-method and, assuming a velue of 0.05 for the curvature coefficient, tabulated values for the gradient. He also gave values for the intrinsic colours of $0 \ldots$ AO stans of luminosity classes V, III, II, Ia and Ib. A recent survey by FitzGexald (1970) of some 7000 stars, including 2500 OB staxs in the U.S. Naval Observatory Photoeleotric Catalogue (Blanco et al., 1968), gives intrinsic colours for all "nomain spectrum/luminosity classes and lists the gradient of reddening lines as a function of NK type and (U-B) o. FitzGexald found the eurvature coefficient to be 0.05 , in accord with earliex results.

To remove the effect of interstellam extinction on the programme star magnitudes, it is necessaxy to detemine ($3-V)_{0}$ for each star; then the colour excess and hence the extinction in V. There are several proctical problems. It is important to have good intrinsic colours and. to be able to assign jntixinsic colours to each programme star as
acourately as possible since any error in E_{B-V} will be multiplied by the factor R. Finally, and perhaps most important, the value of R must be known.

Figure 4 shows the intrinsic colours for $0-40$ stars. Unbroken lines are from data by Johnson (1958) and the various symbols pepresent FitzGexald's (1970) data. Agreenent is good for luminosity classes V - II and,for this programme, Johnson's apparently smoothed values have been adopted with small modifications. The class V line has been extended slightly at the upper end in accordance with FitzGerald's results for $05-07$ stars and where Johnson's results for class III stars become uncertain, the class III line has been assumed identical to the class V line. This is supported by the FitzGerald data, which is also used for class II stars later than B5. Modifications are indicated. by broken lines in fig. 4. For supergiants there is another problem in that Johnson used two classes, $I a$ and $I b$, with class Iab presunably merged with these. Again the Fitzacrald data were used to modify the intrinsic colour lines given by Johnson. The resultant lines can be seen in fig. 4 where it is apparent that classes Iab and Ib are similar. The Ia colours given by Johnson are adopted although thexe is some disagreement wi.th Fitzcexald's results in the range $-0.7>(U-B)_{0}>-0.9$.

Having fixed intrinsic colour lines, the next step is to determine (B-V) $)_{0}$ for each programme star. It is common practice, when an MK-type is available for a star, to take the intrinsic colours from a tabulation such as those discussed above. This is somewhat unsatisfactoxy because the intrinsic colours quoted are mean values for a particular type of star and there will be a certain amount of soatter within each type. Also, any systematic errors in the classification will affect the intrinsic colours. As an illustration, programme stars classified B3V are plotted in fig. 5 together with part of the class V intrinsic

Fig. 5 Two colour diagram for B3V programme stars.
colour line and several approximate reddening lines. The stars seem to lie mostly in the region of the $B 1$ and $B 3$ reddening lines. Spectra of BIV and B3V stars are similar as far as hydrogen and He I lines are concerned; Bl stars are usually obvious by the pressence of faint OII blends at $4415-17,4317-20$ and $4070-76 \AA$. It is possible that the stars above the B 2 line in fig. 5 are in fact of class B1 but rotation effects have rendexed the faint features invisible at the dispersions used. This systematic effect would introduce exrors of up to $0^{m} .07$ in $(B-V)_{0}$ if all the fig. 5 stars were assumed to be B3V and to have (B-V) $=-0^{m}, 2$. Ignoxing the stars above the $B 2$ reddening line, the scatter of stars about the $B 3$ line and the assumption of $(B-V)_{0}=-0^{m} .2$ would still introduce errors of up to $0^{m} .03$. Both random and systematic errors will be multiplied by a factor of 3.2 when A_{v} is derived.

In the revision of the Q-method, Johnson (1958) gives an equation for calculating the ($\mathrm{B}-\mathrm{V})_{\mathrm{o}}$ colour of a star directly from the observed (B-V), (J-B) colours. In effect, the equation gives the (B-V) intercept of a reddening line with the intrinsic colour line for class V stars. The method is only valid for moin sequence staxs earlier than 10 but it indicates how intrinsic colouxs of any early-type star might be found wi.thout accurate knowledge of spectral type, provided the star is faixly "nozmal". If a (B-V)/(U-B) graph is drawn with intrinsic colour lines for each luminosity class and to this is added a sexies of reddening lines drawn from published values for gradient and cuxvature, then if the position of a reddened stax in the two colour diagram is known, i.ts position on the intrinsic colour line can be found by projection parallel to the nearest reddening line. In this way itt is hoped to reduce errors introduced by spectral classjification and, apart from luminosity exrors, the accuracy of the reddening correction is dependent on the determination of the reddening lines. Both Johnson (1958) and

FitzGerald (1970) give tables for rediening line gradients which are in good agreement for 0 and early B spectral classes. Maximum discordance occurs at about $(B-V)_{0}=-0^{m} .1$, roughly $B 8$, where there is a difference of 0.1 between the two sets of results. If, as an example, we assume $E_{B \sim V}=0.5$, then an error of 0.1 in the reddening line gradient will induce an exror of 0.02 in $(B-V)_{o}$. For the present programme, this estimate is pessimistic since most of the stans are earlier than B5 and very fer have $\mathbb{B}_{B-W}>0.3$. Hence, for stars which are not heavily xeddened, there is justification for believing the graphical method of estimating intrinsic colouxs to be superior to the method of assuming colours to fit a spectral type. Figure 6 is an example of the graphs used to detemane $(B-V)_{0}$. The intrinsic colour line is taken from fig. 4 and the gradients of reddening lines are from Fijtefferald (1970) who conveniently lists gradient as a function of (U-B) 0° The curvature coefficient is the generally accepted value of 0.05 .

A problem remains in that the detexmination of ($\mathrm{B}-\mathrm{V})_{0}$ is still dependent on the luminosity class and, as can be seen from fig. 4, an exror in classification between say II and III, could lead to an exxor of $0^{m} .05$ in $(B-V)_{0}$. There does not seem to be a simple way around this problem, although the fact that class III and V stars heve very similar intrinsic colours does reduce the probability of large errors. In practice, absolute magnitudes from β-indices were occasionally useful where IKK luminosity classes were uncertain.

The final hurdle is detemination of R, the ratio of total to selective absorption. There are three basjic methods:
(i) from the apparent increase in diameters of open clusters with distance, caused by an increase of apparent photometric distance due to extinction.
(ii) from variable extinction effects in a cluster. Comparisons of apparent magnitudes and colours can be made between stars

Fig. 6 Intrinsic colours and reddening lines for class III-V stars.
of the same absolute magnitude.
(iiii) from the colour differences between reddened and apparently unreddened stars over a range of colours.

Barly research by Korgan, Harris and Johnson (1953) and Whitford (1958) on coiour differences gave $R=3.0 \pm 0.2$. Johnson (1968) considered all three methods and suggested that $R=3$ should be regaxded as a minumum value and that R may be as large as 6 in some vegions. SchmidtoKaler (1967, 1971) has reviewed the argument against higher values for R. Briefly, a value of $\mathrm{R}=3$ has been shown to cause no systematic differences between photometric and geometric distances of clusters; the inclusion of non-fnembers in variable extinction studies of clustexs can produce erroneously high values of R; finally, circumstellar shells around 10 supergiants and some early-type staxs can result in inframred excesses in the application of the colour difference method and hence spurious results for R. Schmjdt-Kaler (2967) finds the most probable value for the ratio of total to selective extinction to $b \in R=3.2$ with regional variations of less than ± 0.5. Since this result seems to be the best available at the present time, it was used to calculate extinction corrections for the programe stars. It is not expected that any large variations in R will affect programne stars as these do not lie in regions of high obscuration. Small regional variations should be negligible because measured values of E_{B-V} are not large.

HB PHOTOIEETRY

On the original observing plan, the $H B$ photometry was to be carrjed out at the Cape along with the UBV programme. Unfortunately, late delivery of the interference filters, combined with poor weather at the Cape in July and August, severely restricted the aocumulation of data. Professor Schuidt-Kaler of the Astronomisches Institut der RuhrUniversität Bochum, had suggested making an application for observing time on the Bochum telescope at the European Southern Observatory sjite on Cerro La Silla in Chile. Bochum University kindly allocated seven. njghts, later extended to thirteen nights, in luay 1971.

1. Instrumentation

Details of the Cape 40-inch telescope and instrumentation were given in Chapter II. The UBV filter slide vas simple to remove and replace by a slide carrying narrow and internediate band filters for HB photometry. This, and the use of ten second instead of thirty second integrations, were the only instrumental chenges.

The Bochum installation, telescope and instrumentation have been described by Schmidt-Kaler and Dachs (1969) and some notes are reproduced. here. The telescope was a standard Boller and Chivers Cassegrain reflector of 24 -inches (61 cm) aperture and focal ratio $\mathrm{f} / 15$. Declination and right ascension drives had slewing, setting and guiding speeds which made the telescope easy to move from star to stax quickly and convenient for careful settinge A "finder" attached to the main telescope gave a field of view of $1 \frac{1}{2}^{\circ}$ diameter. The photometer was based on a desjign by Dachs and was of fajrly conventional design. The filter wheel, diaphragm slide, Fabsy lens and cold box were "plug-in" units which could be quickly
removed and exchanged for similar units. For HB photometry, an EMI 9502A photomultiplier was used, mounted in a Products for Research TW-200 cold box which, when filled with a solid carbon dioxide/isopropyl. alcohol mixture, maintained the tube at $\cdots 0^{\circ} \mathrm{C}$ for about six hours. A good supply of CO_{2} was provided each night and the cold box was filled 1. - 2 hours before observations were started and was refilled every four houxs during the might to ensure a safety margin. The amplifiex used with the photometer was a Koithley 416 piooammeter which had a. 4160 remote imput head on the telescope. Output was recorded on a Phillips PM8000 potentiometric recorder.

Intexference filters used at the Cape and La Silla observatories were manufactured by Bairdmatomic Inc. Details of the characteristics will be given later when the filters will be discussed and compased with regard to the transfomations from the instrunental to the standaxd system.

2. Standaxd stars

The fundamental reference for $H B$ standard stans is the list published by Crawford and Mander (1966) of stars observed at Kitt Peak National Obsexvatory. Host of these stars are in the northern hemisphere and are distributed axound the sky so that only a few were accessible for the present programme. A later list by Crawford, Barnes and. Golson (1970) contains B-indices for nearly 400 southern bright stars of Bm , Am and Fotype, many of which are well.-observed and suitable for use as standards. Ovex 100 OT stars were selected as potential standards, mainly from the latter list, but all primaxy standards likely to be easily accessible were included.
3. Observation and reduction

For obsexvations made at the Cape, with digitised output, the
procedure described by Crawford, and Mander (1970) was followed. Denoting observations through narrow and intermediate filters by N and W respectively, the sequence was NIWWNN on the star followed by NW on the sky. Since each observation was of ten seconds duration, the time required to make a sequence of observations on a given stax was about one minute, including moving the telescope from star to sky. Because of the shourt time involved, it was possible to use rather poor nights, not suitable for UBV photometry, even though only a single channel photometer was used. Star and sky measurements were made at the some gain for a given filter, although narrow and intermediate filter measures of the same star were not necessarily on the same anplifier gain setting. Sky measures were made after every star and generally the variation was small unless conditions wexe poor. Standard stars were observed after every four or five programe staxs and usually two standards were observed at the beginning and end of the programme on any given night.

Averages $\overline{\mathrm{N}}$ and $\overline{\mathrm{W}}$ were taken and the sky reading subtracted from them. Any gain difference between narrow and intemnediate fillters was removed and the natural or instrumental. system B-index was calculated from

$$
B^{\prime}=2.5 \log _{10}(\bar{W} / \sqrt{N})
$$

If the overall variation in the four N values or two W values was more than 2%, the value of B^{\prime} was enclosed in brackets in the reduction book to indicate a result of doubtful quality.

By the time the HB filtors reached the Cape, only the finst half of the night was usable as programe stiars were at large zenith distances after midnight; this was a small problem compared with the persistent bad weather. Observations were attempted on six nights but the total of useful observing time was only seventeen hours, during
which 113 observations were made on 62 programne stars.
The La Silla procedure was similar to that used at the Gape except that the output was a pen recorder and so the observing sequence was NWN on the star and NW on the sky. Each measurement was continued untj.1 a reasonable trace was produced, usually about a centimetre in length, although for fainter stars the traces were made longer. Standard stars were not observed as frequently as at the Cape but the atmospheric conditions were so good throughout the night that the average number of standards measured nightly was greater at La Silla than at the Cape.

Median lines were carefully ruled through the traces in the usual way; \bar{W} was then the height of the W (star) trace above W (sky) and $\overline{\mathrm{N}}$ was the average of the two N traces with \mathbb{N} (sky) as zero line for measurement, Natural system B-indices were oalculated as for the Cape data. Out of $12 \frac{1}{2}$ nights, one was slightly cloudy and unsuitable for photometry, on another the wind was too severe for the dome to be left open. Fxcluding standard stars, 803 observations were made on 233 stars. These were not all intermediate latitude stars as the programe included stars from Dr. Hill's high latitude programe. The observing was shared between Dr. Hill and myself.

Preliminary reductions of β^{\prime}-indices from instrumental to standard system were effected by using standard staxs in a least-squares solution of the linear equation

$$
B=a+b B^{\prime}
$$

A separate transformation was computed for each night. Cape solutions and some of the La Silla transformations were evaluated with the aid of a desk calculator, then a short computer programme was written, checked ogainst the original calculations and used to compute the remaining transformations. This programe proved useful for the further reductions because any dubious standards, poor observations and the like,
could be removed and new transformations computed very easily. Fxamples of transformations are shom in fig. 7. Prelimjanary internal errors for each set of observations were derived using the equation quoted in II. 5 for the standard deviation of a single observation and. were as follows

	σ	n (observations)	m (stars)
Cape	± 0.013	65	27
La Silla	± 0.023	722	200

excluding variable stars and stars with only one observation. A significant part of the exror in each case is almost certainly due to variable stars or faint stars with rather poor quality observations. These will be discussed in the section on exrors.

4. Data improvement

In addition to the rather large internal exrors in the preliminary results, there appeared to be a significant difference between measurem nents of the same star at the two observatories. The overlap data was rather poor, both in quality and number of stars involved, and so it was decided to try to improve all the data before attempting to remove any differences. A list was made of the poor and apparentily discrepant results and these were checked by re-measuring traces in the case of the La Silla data and remcalculating averages for the Cape data. This done, the B-mindices were remcomputed. A number of apparently good. measurements were included to act as "controls". By cheoking the measuring and calculations, a few small altexations were made but the most useful result of the process was the discovery of several errors of a gross kind, both of measurement and of computation.

The next step was to re-examine the standard. stars and the transformations from instrumental to standard system. Any standaxds

Fig. 7 Examples of instrumental to standard transformations. Upper transformation for Cape, $0 / 1$ Aug 70 Lower transformation for La Silla, 9/10 May 71
which might have been affected by transparency variations or which were otherwise suspect were removed and new transformations were computed. Final results for gradients and zero-points of the transm formations are listed in Table 5. As a check on the transformations, the instrumental system B-indices (B^{\prime}) for the standaxd stars were converted into standard system data. Thus for each night a set of "calculated standard" values was obtained for the standards observed. The differences

$$
\triangle B=B(\text { standard })-\beta(\text { calculated standand })
$$

were derived for each night and plotted against B (jnstrumental.). These graphs seemed to show that a curvature term was present in the transfomations, but not in the same sense for the two observatories. Rather than fit a curve to individual graphs, in which it must be admitted there was a good deal of scatter, it was decided to twy to obtain an average correction curve for each set of observations. For each standard used, the mean value of $\Delta \beta$ was plotted against the mean value of B (instrumental) and the resultant graphs are shown in figs. 8 and 9. The numbers used as data points indicate the number of measurements forming the mean point. In each case the curves were hand drawn through the weighted means of groups of data points. No attempt was made to fit polynomials to the points but the hand-drawn curves appear to represent the general trends reasonably well. From the graphs, tables of corrections were drawn up so that each programme star measurement, supposediy on the standand system, could be easily corrected according to the value of the instrumental. Bmindex.

It is important to remove the curvature effect; having done so, it is perhaps of interest to consider the possible causes of nonlinearity. The sitrongest contender is the difference between the two sets of filters and the fillers used to define the standand system.

Table 5

Night Transformations from natural to standard system

Date	a (zerompto)	b (gradient)	n (stars)
23/24.vi . 70	0.032 ± 0.079 (s.e.)	1.224: 0.037 (s.e.)	7
25/26. vii . 70	0.109 ± 0.100	2.193 ± 0.046	11
0/1. .vii. 70	-0.027 ± 0.105	$1.260: 0.049$	6
4/5 .vii. 70	0.103 ± 0.135	1.197 ± 0.064	9
9/10.vii. 70	0.069 ± 0.051	1.215 ± 0.051	16
7/8. v .72	0.354 ± 0.122	$1.24 .5 \pm 0.066$	15
8/9 . v . 71	0.325 ± 0.073	1.255 ± 0.039	20
9/10. v . 71	0.295 ± 0.057	2.263 ± 0.030	18
10/11. v . 71	0.253 ± 0.084	1.287 ± 0.044	18
121/12. v . 71	0.235 ± 0.052	1.296 ± 0.028	20
32/23. v . 71	0.285 ± 0.050	1.272 ± 0.026	21
13/14. v. 71	0.239 ± 0.096	1.289 ± 0.051	12
15/16. v . 71.	0.237 ± 0.148	1.289 ± 0.077	8
3.6/17. v . 71	0.188 ± 0.078	1.318 ± 0.041	19
18/19. v . 71	$0.21 .3 \pm 0.075$	1.309 ± 0.039	22

FIg. 8 Mean curvature in Cape transformations.

Fig. 9 Mean curvature in La Silla transformations.

Table 6 lists the main characteristios of filters used at the Cape and La Silla observatories and one of the sets used by Crawford (1964) at Kitt Peak.

Table 6
HB filter characteristics
Peak
wavelength

Kitt Peak	W	$4850 \AA$	$136 \AA$.	71%
	N	4858	29	58
Cape	W	4900	212	84
	N	4866	31	76
La Silla	W	4848	98	58
	N	4857	28	49

The Cape filters have a higher peak transmission percentage than the La Silla filters with the Kitt Peak set in between. The naxrow band filters are all similar but the Cape intermediate band is over twice as wide as that used at La Silla with the Kitt Peak filter between the two exiremes. Investigation of the transmission curves reveals that the He I. line at $4922 \AA$ may affect the intermediate band filter of each system in a different way. On the La Silla filter, the holium line can have little effect, falling at sbout 5% trensmission. On the Kitt Peak filiter it lies at 36% transmission and on the Cape filter at roughly 83% in the relatively flat region of best transmission. Figure 10 shows the transmission curves of the intemnediate band filters: from the three systens and the location of $H \beta$ and He I 4922. These are schematic dravings which show the flat plateaux of maximum transmission as rather less "noisy" than is actually the case. If the helium line affects the Cape filter, what effect should this have on

Fig. 10 Transmission curves for intermediate band filters.
a B-index? For a standard star, the natural system β-index will be smaller than if the helium line were not present, since $B=2.5$ log (W / N) and W is reduced by He I absorption in a range of about $2.60<\beta<2.75$. However the curvature induced in the transformations by this effect would be in the opposite sense to that observed. This qualitative conclusion was supported by numerical calculations described in Appendix I. It was found by simulation of filiter and spectrum that the helium line should not affect the La Silla transfosmations but should curve the Cape transformations very slightly in the opposite direction to the observed curvature.

A second possibility considered was the effect on the instrumental B-index when the HB absorption line has a non-negligible effect on the intemediate band filter. Simulated line profiles were convoluted with filter transmission curves (see Appendix I) and the observed curvature was reproduced moderately well. The size of the "theorerical" effect was less than that actuaily seen but it seems likely that the major part of the curvature is due to the difference in bandwidth of the intermediate filters of the three systems.

With corrections for curvature applied, the overlap stars, observed at both observatories, were remconsidered. The differences $\triangle B$ were re-calculated and a few stars suspected of variability were rejected as were four stars for which the difference depended on only one poor quality measurement at one of the sites. For the remajning stars, the mean difference was found to be $+0^{m} .001$ which is small compared with the standard error of a single observation. To calculate the mean, ΔB for each stax was weighted according to the minimum number of observations made at either site. The residuals axe plotted against B (Cape) in fig. 11. and although the scatter is quite large it seems that more points lie above the zero line as B increases; the weighted least

$$
\text { Fig. } 11 \text { Residuals } \beta \text { (Cape) }-\beta \text { (La silla) plotted against } \beta \text { (Cape). }
$$

squares solution verifies this.
The residual difference between the two sets of data is difficult to explain since one would expect any systematic effects to be removed in the transformations, unless there is a consistent difference between standard and programe stars. As far ass the pen recorder data were concerned, traces of standard stars were all fairly noise free because the standards were all bright stars whereas many programe stars vere faint and had high noise levels. It is thus possible that systematic personal errors could have occurred in judging the median level of a noisy trace and such erroxs should be reduced when the ratios of intexmediate to narrow band measures were taken. Six progranme stars near the celestial equator were obsexved by Dr , Hill during a visit to Kitt Peak in 1.972. Comparing his measures with La Silla measures produced the mean result B (KPNO) $-B($ La Silla $)=+0.004$. There was insufficient data to determine how well the KPNO -. Ja Silla relationship matches that for Cape -. La Silla but there is some similarity and in the absence of better data it seemed preferable to correct the La Silla results to the Gape data rather than vice versa. Supporting this deoision is the better precision of the Cape data, as indicated by the standard deviations, and the possibility that the difference is caused by personal errors in reduction of the chart recorder output. The following small corrections were applied to La, Silla B-mindices

$$
\begin{array}{cc}
\text { range } & \text { correction } \\
\beta \leqslant 2.560 & -0^{m} .001 \\
2.560<\beta \leqslant 2.615 & 0.0 \\
2.615<\beta \leqslant 2.670 & +0.001 \\
2.670<\beta \leqslant 2.725 & +0.002 \\
2.725<\beta & +0.003
\end{array}
$$

Therse are taken from the least squares solution in fig. 11. The two sets of data wexe then combined.

5. Frrors

In section 3 of this chapter it was noted that the standard deviation of a single observation for the Cape and La Silla HB measurements were $\pm 0^{m} .013$ and $\pm 0^{m} .023$ respectively. In the last section, attempts to improve the data were described; checking apparently dism crepant results, checking night transformations and removing curvature from the transformations. None of these would affect individual measurenents greatly, except the discovery of mistakes in measuring or computation, although all might contribute to reducing the scatter in the B-index of a given star. When the preliminary standard deviations were calculated it seemed likely that some variable stars had been included in the analysis simply because only the most obviously variable were rejected. As an interin criterion it was decjided to call any star for which the range of separate measures of the b-index exceeded $0^{m} .05$ a variable star. This is reasonable considering the preliminary standard deviations and the fact that the total range of B is only about 0^{m}.4. Exror analysis gave the following results

	σ	observations	stars	variable
Cape	$\pm 0^{m} .009$	60	25	7
La Silla	$\pm 0^{\mathrm{m}} .014$	644	180	29

Comparing these results with the preliminaxy σ, two more Cape stars and twenty more La Silla stars have been excluded as variable.

After combination of the data, the result $\sigma= \pm 0.013$ was dexived. Then for each star, the standard deviation σ^{\prime} was calculated by Bessel's formula as in Chapter II. Any star for which $\sigma^{\prime} \geqslant 3 \sigma$ was assumed to be variable and any star for which $2 \sigma \leqslant \sigma^{\prime}<3 \sigma$ has been marked in the data tables with a colon to jndicate probable variability. Six staxs designated as variable by the criterion 'range of $\beta>0^{m} .05$ ' were not variable by the test $\sigma^{\prime}>2 \sigma$. These six were included in a final analysis for σ but did not affect the preliminary detemination.

	σ	observations	stars	variables
Initial	$\pm 0^{\mathrm{m}} .013$	689	178	33
Final	$\pm 0^{\mathrm{m}} .013$	720	184	27

and the final result is unlikely to be changed by further analysis.
Investigation of the La Silla vaxiable stars showed many of them to be amongst the faintiest stars obsexved in this programe. The total number of programe stars in V-magritude intervals of $0^{m} .5$ were counted and the percentage of variables was calculated for each interval. Results are illustrated in the graph and histogram of fig. 12. It is clear that for stars brighter than $10^{3 n}$ the percentage of variables is small and fairly constant. Fainter than 10^{m} the percentage increases suddenly to over 50%. It seems certain that many of the fainter stars deacribed as "variable" might be better temmed "uncertain" in the sense that they axe fainter than the level above which the instrumentation and obsexver can produce consistent results.

Figure 13 is a plot of σ^{\prime} against apparent V-magnitude for all programme stars observed more than once. Since the La Silla data com. pxises over 90% of the total, it is not surprising that fig. 13 reflects the results of fig. 12. The small crosses in fig. 13 are mean points for each half magnitude interval, excluding points above the 2σ line. There is a very slight tendency for σ^{\prime} to decrease towards the brighter magnitudes, even if the mean point of $V=6.0$ is ignored. There does not appear to be any correlation between variability in B and small variations in V although the sample of stexs is too small for definite conclusions.

6. Absolute megnitudes from β indices

The photoelectric method of measuring the strength of HB has been in use for a number of years and several attempts have been made to calibrate β-index in terms of stellar absolute magnitudes. In this

Fig. 12 Analysis of La Silla variable stars. The graph illustrates the percentage of 'variables' in each half magnitude interval ; the histogram shows relative numbers of stars involved.

Fig. 13 Standard deviation of β-index against V-magnitude for programme stars.
section, the calibrations presently available will be briefly described and compared.

In a study of association II Sco, the Upper Scorpius region of the Scomen aggregate, Hardie and Crawford (1961) derived two calibrations of $\beta_{\text {g }}$ the first using all stars measured and the second using "single" or non-multiple stars. Not surprisingly, there was a small but significant difference between the two calibrations, the result for single stars agreeing quite well with more recent work. Both calibrations were based on the mean distance of stars in II Sco from work by Bertiau (1958).

A preliminary B / M_{v} relation was presented by Graham (1964) at the I.A.U./U.R.S.I. symposium on the Galaxy and Mogel.lanic clouds. In this calibration Graham used 165 early-type stars, mainly from young clusters and associations. Stars with well-determined MK types were chosen and. their absolute magnitudes taken from the MK Luminosity calibration by Johnson and Iriaxte (1958). Curves of best fit were computed for stars of luminosity classes I - IV and V and all classes together. Grahan found a small difference between curves for classes I - IV and cless V although the scatter of points about the mean curves in his fig. 1 seems to be quite large. Using the calibration, Graham (1967) derived distances for seven southern star clusters and Sco-Cen and found that distance moduli from his HB photometry agreed well with results by various aurkors using different methods.

An indirect approach was made by Fernie (1965) who used published Hr data and the fact that well-defined relationships exist between the equivalent width of $H \gamma$ and Crawford's B-index. As examples, Bappu et al. (1962) demonstrated that their photoelectrically measured Γ can be accurately transformed to B and Crawford (2958) has shown that provided B is less than about 2.85, a linear, well-defined transfomation can be made from H γ equivalent widths to the $H \beta$ index. Taking stars with β-indices and

Hr data from Bappu et al. (1962), Beer (1962) or Petrie (1953a, J.956, 1958, 1962), Fernie derived transformations from the various $\mathrm{H} \gamma$-indices to the β-index of Crawford. These transformations were used to calculate B-indices for stars in seven galactic clusters and, with published cluster distance moduli, Fernie was able to dotermine the absolute magnitudes of the cluster stars. The M_{v} / β calibration thus formed was, with the exception of 0 stars, independent of spectral type. The six 0 staxs in Pexnie's data lie on average $+1^{m} .0$ from the calibration curve. Apparently no attempt was made to differentiate between Juninosity classes in the analysis and so Fernie's calibration curve was remplotted with different symbols for class I - II, III - IV and V after the manner of Graham's fig. J. (3.964). It was apparent that most of the class IXI - IV staxs were above the mean curve; measurement showed the mean difference to be $-0^{m} .3$. The effect is not as large as that found by Graham (1954) and seems to be systemstic wather than to increase with decreasing absolute magnitude. Comparison is rather difficult because Graham only plots a somple of his total matexial and in the Fernie data there are only fourteen giants which is rather a small sample to base quantitative conclusions upon.

The most recent M_{V} / B relation, presented by Crawford (1972), was based on much more material than other authors have had available and will probably be considered as the definitive calibration for the foreseeable future. Crawford first detemined the shape of the relation for zeromege main sequence A and F stars in several clusters with a main sequence fitting procedure similar to that described by Blaauw (1963) for correlating M_{v} and (B-V) $)_{0}$. Age or evolution corrections were applied, based on information from uvby photometry. Nexit, the zerompoint was fixed by fitting the AF star curve to nearby staxs with trigononetric parallaxes. The relation between B and apparent magnitude,
V_{o} for B staxs in clusters was determined and the V_{o} scale converted to an absolute magnitude scale by forcing agreement on distance roduli. for B and AF stars in the Pleiades, $C X P$ Pr and IC 4665 clusters. The calibration thus derived was based on stars from over twenty clustexs and on many nearby field stars. Crawford indicates that stellar rotation appears to have no effect and age or evolution effects axe smaller than in previous cluster fitting attempts.

Figure 14 shows the various calibration curves described. For B greater than about 2.58, the Haxdie and Crawford (1961), Fernie (1965) and Crawford (1972) curves are in good agreement; Graham's (1964) curve is systematically half a magnitude above the othex three. The difference is difficult to explain without access to the data involved. It may be that Graham had a laxger proportion of evolved stars though this seems unlikely as his sters were selected from young associations and clusters. The Hasdie and Crawford (1961) calibration which did not exclude multiple staxs is close to Graham's calibration for $\beta>2.65$ but there is no obvious reason why he might have inoluded more unresolved binaries than other authors.

For evaluating absolute magnitudes of programme siaxs it was decided to use Crawford's 1972 calibration since this represonts by far the most exhaustive study. Using programme stars as a check, absolute magnitudes $\mathrm{K}_{\mathrm{V}}(B)$ were plotted against; $\mathbb{M}_{v}(S)$ derjved from Blaauw's (1963) calibration of MK types Fige 15 is the result. There appears to be a systematic diflerence of about half a magnitude between the two determinations of M_{v} although the scatter in the diagram is constiderable. The straight line is at 45° to the axes; open circles represent 1971 classifications and filled circles represent MK types from other souxces, mostly Radeliffe publications.

In IT. 6 an account was given of attempts to remove the effect of

Fig. 14 Calibration of β-index in terms of absolute magnitude. For the sake of clarity, the Hardie \& Crawford line for non-multiple stars is shown as separate points rather than a smooth curve.

Pig. 15 Comparison of absolute magnitudes from β-indices and MK types (a) Using visually classifjed spectral types

Fig. 16 Comparison of absolute magnitudes from β-indices and MK types (b) Using ' Q-method ' spectral types
interstellax reddening on the progxame star colours and ragnitudes. There were indications that spectral classification can result in quite large errors in the assumed intrinsic colours of a star, if for example, the spectral lines are nebulous. To reduce possible classification errors in fig, 15, spectral bypes were re-determined from observed colours using the Q-method in the graphical form described in II.6. Iuninosity classes had to be assumed correot as there was no simple way of detexnining them independently of both visual classifications and photoelectric $H \beta$ measurements. Stars represented in fig. 25 are remplotited in fig. 16 with the difference that the M_{V} of the abscissa are evaluated from annethod spectral types, designated $M_{V}\left(S_{Q}\right)$. It is evident that both systematic difference and scatter are snaller in the latter diagran. Expressed numerically, for $2 l 9$ stars;

Mean $\quad M_{v}(\beta)-M_{v}(S)=-0^{m} .40 \pm 0^{m} .11$ (s.e.)
Mean $\cdot M_{v}(\beta)-M_{v}\left(S_{Q}\right)=-0^{m} .24 \pm 0^{m} .09$ (s.e.)
The mean difference between $M_{v}(\beta)$ and $M_{V}\left(S_{Q}\right)$ is largely due to the more luminous stars which seem to deviate from the 45° line in fig. 16. In particular, if sjx stars for which $M_{V}(\beta)>-7$ are renoved, then the mean difference becomes 0.06 ± 0.08.

Undoubtedly erroxs remain in the luminosity classifications which, if systematic, could produce the observed effect. On the other hand, small systematic erxors in the β-indices would become more noticeable at higher Iuminosities due to the shape of the M_{V} / B calibration curve. Trace emission in HB cannot be entirely ruled out although known Hocmission stars were excluded from the analysis.

Several high latitude stars observed on the HIP programne had been classified on the MK system from Radcliffe spectra. Some of these stars were independently assessed by two or three classifiers;

MK-types were compared by Hill (1970) who provided a list of the independent classifications. The resulting absolute magnitude comparisons are illustrated in fig. 17. In each paix of graphs, $M_{v}(B)$ is compared wi.th $M_{v}(S)$ on the left and $M_{v}\left(S_{Q}\right)$ on the right. Straight lines are all at 45° to the axes. Results for classifier 2 are inconclusive as the data sample is small; results for classifiexs 1 and 3 show a very definite improvement in the correlation when S_{Q} spectral types are used. The greatest improvements tend to occur for stax's above the 45° line, in the range $-2>M_{v}(\beta)>-5$. I ann indebted to Dr. Hill for the dats, plotted in fig. 17.

Figures 25-17 imply that systematic errors, independent of classifier, may be inherent in absolute magnitudes detemmined directly from HK types. Since virtually all available spectral clasaifieation was performed with Radoliffe spectra, it is not possible to determine whether or not the observed effect is sensitive to the instrumentation, Use of spectroscopic absolute magnitudes without consideration of photometric information would seen to be unsatisfactory, with the danger of systematic errors in quantities dependent on spectroscopic parallaxes; for exaraple, stellar distances, stellar distributions and galactic rotation constants. The difference between Grahan's preliminary calibration of the B-index and later results (fig. 14) may have i.ts origin in classification effects similar to those described above. Feast and Shuttleworth (1965) used spectroscopically determined distances in their studies of early-type objects but applied a correction to remove systematic errors due to logarithmic bias.

Fig. 17 Comparison of absolute magnitudes from β-indices and MK types (c) Using classjifications by other observers

SPPETROSCOPY

The final part of the observational programe was photographic spectroscopy, principally for radial velocity measurement and kK classification, Spectra were obtained with the two-mpism spectrom graph at the Cassegrain focus of the Redcliffe 74-inch telescope. Thelve nights were allocated by the L.T.U.P. for this project, in June, July and. August of 1971.

1. The speotrograph

The construction of the Radcliffe two-prism spectrogreph has been desoribed in detail by Jackson (1951). The two 60° prisms are set for minimum deviation at $4200 \AA$ and there axe five interchangeable camera lenses with focal ratios ranging from $f / 8$ to $f / 1$. Onl.y the $f / 3.7$ "c" camera ($49 \mathrm{~K} / \mathrm{mm}$ at $\mathrm{H} \gamma$) and $\mathrm{f} / 2$ "d." cemera ($86 \mathrm{~K} / \mathrm{mm}$ at H H) weze used in this project as the programe stars were mostly too faint to permit efficiert use of higher dispexsions. The inside of the spectrograph is felt-aned for insulation and the internal temperature is regulated by a network of thermostatically controlled electrical resistance wire on the inner surface of the fellt. The ternperature of the spectrograph interior was noted at the beginning and end of each night and checked occasionally during the night. Intemal temperature varie, i ion was less than $\lambda^{\circ} \mathrm{C}$ on ten out of twelve nights and was never greater than $2^{\circ} \mathrm{C}$ 。

The spectrograph was carefully designed to minimise distortion of the optical path caused by changing orientation of the telescope, and Feast, Thackeray and Wesselink (2955) have described tests to determine whether or not such flexure effects were significant. They concluded
that "systematic exrons axising from reversal of the telescope must be less than $1 \mathrm{~km} / \mathrm{sec}$." and that no significant error arises "from a change in tilt of the spectrograph in an east-west direction of about 100° ".

The spectrograph slit is figured in a slight ourve so that spectral lines recorded on the photographic plate are not appreciably curved. Wesselink has measured iron-arc spectra (see Feast et al., 1955) and found that corrections to measured radial velocities for slit curvature musit be of the order of $0.01 \mathrm{~km} / \mathrm{sec}$. for the " c " camera. An effect of this size is completely negligible when compared with random measuring errors in earlymitype stars. A specially constructed mask enabled comparison spectra to be positioned close to either side of a stellar spectrum, for a choice of four stellar spectrum widths. light from an iron-aro unit attached to the side of the spectrograph was used to produce comparison spectra. Once a plateholder had been seoured in the spectrograph it could be moved perpendicular to the direction of dispersion, thus enabling up to ten d spectra or seven o spectra, together with comparison spectra, to be recorded on one 2×4 inch photographic plate.

Radcliffe observatory now has a new image-tube spectrograph and the two-prisn spectrogroph i.s not in general use. For several reasons it was thought preferable to use the old two-prism unit for this project'. It iss known to be extremely stable for radial velocity measucement and Radcliffe measurements of I.A.U. standard staxs are in close agreenent with the I.A.U. velocities (see, for exanple, Thackeray, 2966). Secondly, the Radcliffe obsexvatoxy has a collection of standaxd spectixa obtained with the c and d cameras of the two-prism spectrograph for use as comparison stars in wh classification. Finally, it was considered desirable to have continuity with published radial velocitjes which
exist for some of the intermediate-latitude stans (Hill, 197.).

2. Observations

Stars for the radial velocity observing programme were selected on the basis of the UBV HB measurements, priority being given to stars for which the photometry suggested high luminosity. Most of the intermediate-latitude stars for which MK spectral classification existed, had radial velocities determined by Hill (1971). Because the two-prism spectrograph has a well demonstrated stability for radial velocity work and beoause the, available observing time was not great, j.t was deoided not to observe many radial velocity standard stars. Instead, several intermediate and high-matitude stars previously observed by Feast, Thackeray and Wesselink (1957), Feast and Thackeray (1963) or Hill (1971) were included in the observing programme. In addition, HD 693 (Cape standaxd RI) was observed towands the end of the programe and HD 257457 (Cape standard R8) was used as a comparison star during a series of consecutive observations on helium ster HD 1684'76. The Cape standards are eleven stars selected from I.A.U. recommended standards and used by Evans, Menzies and Stoy (1959) in a series o: papers on fundamental data for southern staxs.

For a given camera lens, photographic emulsion, slit width and star magnitude, the exposure time required was calculated using a Radcliffe device similar to a slide rule but having three slides. In practice it was found that exposure times thus calculated were too Jong vecause the primary mirror of the telescope hed been re-aluminised earlier in 1971. A 30% reduction in exposure times produced acceptable spectra. Ironwarc comparison spectra were impressed on either side of each stellar spectrum before and after the stellax exposure. In other words, if a 30 second exposure was required to produce suitable iron-arc spectra, then the iron arc was allowed to run for 15 seconds
before and for 15 seconds after the stellar exposure. Obsearving time had been allocated in blocks of three, four and five nights and focus plates were taken, using iron-arc spectra as object, at the beginning of each set of nights and on the day after each camera lens change. No significant variation in the focus of either canera lens was observed.

As described in the previous section, only the o and d lenses (49 and $86 \AA / \mathrm{mm}$. respectively) were used. Radcliffe general observing notes recomnend that after a lens change it is best to allow two hours before attempting to determine the position of focus of the new camera. Hence the observing programme was arranged so that any lens change requixed was made at the end of a night, the focus plate taken late the next day and no time was lost wejting for the newly inserted lens to reach the temperature of the spectrograph intexior.

Most of the spectra were obtained with slit widths of 0.075 mm . for the c camera and 0.14 mm . fox the d camera, both of which gave a projected slit width of about 0.018 mm . Some spectra were obtained on the d camera to be used for MK classification and for these the sli.t width was set at 0.2 mm . giving a projected slit widtin of 0.027 mm . This results in some loss of resolution but produces spectra moxe directly comparable with the MK system which is based on spectua at $120 \AA / \mathrm{mm}$. (Feast and Mhackerey, 1963). Where possible, c camera spectira were widened to 0.42 mm . but for fainter stars it was necessary to restrict the width to 0.2 mm . Spectra from the d canera were widened to 0.5 or $0.25 \mathrm{~mm}_{0}$, the lattex being necessary for a fow of the faintest programe stars. The spectrum width ohosen for each star depended upon the required exposure thine; since only a limited amount of telescope time was available, exposures were, with one or two exceptions, kept to less than fifty minutes.

The photographic emulsion used throughout was Kodak II a O, the sensitivity of which had been increased by baking the plates for 72 hours at $50^{\circ} \mathrm{C}$. The II a 0 emulsion is sensitive to radiation of shorter wavelengths than about 5000 \& , but the glass prisms of the spectrograph cut off most of the ultramiolet radiation, so the spectra were really only useful in the range $3900-5000 \AA$. Fach exposed plate was photometrically calibxated by two exposures on a spot sensitometex, and then developed in an MQ solution which was agitated continuously duxing development. The plates were "fixed" for a mininum of 15 minutes and washed for at least 45 minutes.

Altogether, over 200 Cassegrain spectra were obtained for a total. of 75 stars; 590 and 217 spectra were of programme stass, 290 spectra were of standard and "overlap" stars from earliex Radcliffe programmes and. J.Oc spectra were of helium stax HD 168476.

3. Radial velocity reductions

A11. plates wexe measured on a Hilger and Watts longmsorev microm metex in the conventional mannex. A spectrum was carefully aligned with the dixection of motion of the sonew and positions of stellai lines and a selection of iron-arc lines were detemined, measuxing from long to short wavelengths. All lines in the stellar spectrum were measured, including nebulous and interstellar Ca IT linos where possible, but excluding very poor quality lines. Usually, about twenty iron-arc lines wexe measured, selected to give a reasonably even distribution in wavelength and to avoid very faint or vexy swong lines. The spectrum was then reversed and the same lines measured, starting with the shortest wavelengths and progressing to the Jongesti. Each reading; in forward or reverse direction was an average of four settings for a stellar line or two settings fox an iron-arc line, although more settings wexe made on nebulous on taint lines. The
difference between foxwaxd and reverse readings gives a measure of displacement on the plate whilst the sum of forvand and reverse readinges should be constant and provides a means to guard against gross exrors. Measuring a plate in both directions will tend to eliminate personal errors caused by estimating different line centres for emission and. absorption lines, and cumulative errors in the micrometex sorew.

Reduction of the raw data was performed with a Fortran programme (Hill, 197J.) which used the well.-detemined Radcliffe constants λ_{0}, c and n_{0} in the Hartmann formula for prismatic dispersion

where n in this case is the difference between foxward and reverse measurements. As with previous Radaliffe programmes, I.A.U. recommended wavelengths for $O B$ star spectra (Pearce, 1932) and inonwarc spectra (Edlér, 2955) were adopted. The Fortran programme dexived a correction curve for the Hartmann formula by fitting up to 7 th order polynomials to the jxon line residuals and adopting the polynomial with smallest standand deviation. The correction curves were nearly all of order 3, 4 or 5. A few manual reductions were performed but the results were not significently diffexent from those of the computex progranme.

Although all stellar lines on a given spectrum were measured and had velocjties computed, not all were used to derive the stellar radial velocity. Basic recommendations made by Petrie (1953b) were followed, with a few Radcliffe modifications. Table 7 lists the main speotral lines which, when measurable, were used to find the mean stellax velocity. All 0 II lines except 0 II 4069 were rejected as were He I 4713 and 4009. The interstellar Ca II Kmine at $3933 \AA$ was measured whenever present, but the H-Iine at $3968 \AA$ was only visible on a few spectra, usually if $H E$ was very nebulous or absent

Stellar lines used for radial velocity determinations
Line Spectral Comments types

H4861 Spectrograph focus imperfect and emulsion sensitivity poor
4340 B0-B8
4101 BOmB9 NIII 4097 implies NITI $4103 / \mathrm{H} 4101$ blend
3970 B $0-B 9\left\{\begin{array}{ccc}\text { CaII } 3933 \text { implies CaII } 3968 / \text { H } 3970 \text { blend } \\ 0 \text { II implies O II } 3973 / \text { H } 3970 \text { blend }\end{array}\right.$

He I	4921	
	4471	80--39
	4388	130-B8
	4120	B0-B9
	4026	B0-B9
	3964	B0-36
Si IV	4116	
	4089	
Si ITI	4569	B0.-B3
	4.552	B0-B3
Si II	4130	B3--B9
	4128	В3-89

Mg II 4481 B3-B9 Blended with Al. III earliex than $B 3$
C II $4267 \quad \mathrm{BO}-\mathrm{B9}$
0 II 4069 BO-B3 The only 0 II line retained by Petrie
N II 3995 BO-BS

He II $\left.\begin{array}{r}4686 \\ 4.541 \\ 4199\end{array}\right\} \quad 0$
He II 4541, 4199 imply blending of Balmex lines and He I 4026. In the hottest bitars only He II 4541 and 4199 are unblended.
as in the case of helium star HD 168476. The corrections $+10 \mathrm{~km} / \mathrm{s}$ to He I 4471 in class V stars and $+4 \mathrm{~km} / \mathrm{s}$ to He I 4026 inclass IIT $-V$ staxs were applied throughout, following Feast et al. (1957).

The radial velocity of a stax detexmined directly from a spectro.. gram requires certain corrections. These may be convenjently divided into instrumentation corrections and corrections for the motion of the Harth. Velooity additions described above for He I 4026 and 4471 axe probably due to line blending effects dependent on resolving power of the spectrograph and emulsion (Feast ot al., 1957). A further instrumental effect is described by peast and thackeray (2963) concerning systematic exrors of the d camere. The diffexence in measured velocities between c and d cameras was found to be related to the zenith distanoe of the star under observation and was attributed to systematic guiding erroxs occurring when the atmospheric dispersion of the star image lay across the spectrograph slit, Feast and Thackeray assumed the exror to have the form

$$
\Delta v(c-d)=k \tan z
$$

where z is zenith distance. They determined a value of +10.2 for k and adopted the correction $+10,2$ tan z for all d camexa velocjties. Wallis and Clube (1968) re-examined the difference, finding $k=9.5 \pm$ 2.8 (s.e.) from bright late-type staxs. In the present progranme, all. a camera velocities were comrected by +10.2 tan z.

When insibrumental corrections have been applied, a radial velocity still. contains two variable quantities, the annual and diumal velocities, V_{a} and $V_{d,}$ caused by the orbital motion and rotaition of the Earth. These velocjities must be computed for each spectrum since V_{a} for a giver star will vary from night to night and V_{d} will vaxy during the night. The maximum range of the annual variation is $-30 \mathrm{~km} / \mathrm{s}<\mathrm{V}_{\mathrm{a}}<+30 \mathrm{~km} / \mathrm{s}$ for a. star on the ecliptic; V_{d} is never numerically greater than $0.5 \mathrm{~km} / \mathrm{s}$.

Herrick (1935) has given tables to assist in the evaluation of V_{a} and V_{d}, but a Fortran programe writiten by Jones and Wood and revised by Hill (private communication) was used to compute the "Earth corrections". A list of values of $\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{d}}$ for all stans observed was recejved in a private communication from hadcliffe observatory and provided a useful check on the computations.

Mean programe star velocitios were calculated with a similar weighting system to that of Feast and Thackeray (1963). Spectra taken nith the c camera were given weight 1 , d camera spectra weight $\frac{1}{2}$. Any poor spectra, judged by high standaxd error for the velocity or relatively few lines used, were given half the appropriate weiglat.

4. Exroxs

Internal exrox analysis was carried out in similar fashion to those for the photometric date. Results for the standard deviation of a single observation were as follows:

	σ	observations	stars
Unweighted	$\pm 9.2 \mathrm{~km} / \mathrm{s}$	174	58
Heighted	$\pm 8.8 \mathrm{~km} / \mathrm{s}$	1.41 (weight)	58

Lititle is gained by use of weighted residual.s. The standexd deviation, σ^{\prime}, for each star was calculated and the oriteria $\sigma^{\prime} \geqslant 2 \sigma$ for possible variability and $\sigma^{\prime} \geqslant 3 \sigma$ for probable variability were applied. With $\sigma= \pm 9 \mathrm{~km} / \mathrm{s}$, three stars included in the original analysis were found to be possible varjables and were excluded from the final Enalysis which gave $\sigma= \pm 8.4 \mathrm{~km} / \mathrm{s}$. For the Ca IT K-line velocities a value of $\sigma= \pm 7 \mathrm{~km} / \mathrm{s}$ was found.

Internal exrors are rather large and probably aitributable to a combination of inexperience of the measurer and the generally poor spectra of eariy-type stars which tend to have few suitable lines in the $4000-5000$ \& region. In addition, a few plates were wather
underexposed which undoubtedly contributed to the scatter in some stellar velocities.

Assessment of external errors depends on half a dozen stars from previous Radcliffe programmes, observed in 1971 as overlap stars, plus two southern hemisphere standards. Mean differences are:
 which cen be considered to be negligible, $\overline{\Delta v}$ for the interstellar Ca II line becomes zero if one star is removed from the analysis. A further check was possible using ten stars neax the celestial equator observed by Neubauer (1.943) at Lick observatory. Significant differences between Radcliffe and Lick velocities have been reported and are also found for stars of the present programe.

$\overline{\Delta v}$ (Radel.iffe - Lick)	stars	source
$+13.4 \pm 3.2($ s.e.)	21	Feast and Thackeray (1903)
$+11.4 \pm 1.9$	31	Feast and Thackeray (1958)
$+14.3 \pm 1.2$	3	Hill
$+10.2 \pm 5.2$	10	This progranme (1971)

5. Spectral clessification

All d spectra and many c spectra were classified on a Hilger and Waits spectrum compaxatox at the Radcliffe observatory. Standard spectra taken by Radcliffe observers with the two - prism spectrograph were available for virtually all spectrum and luminosity sub-classes of the early-type stars. The "Atlas of stellax spectra" (Morgan et al., 1943) was used ass a guide to classification. The e spectra were later remclassified at St. Andrews but, since comparison speotra were not available, the "Atlas of stellar spectra" had to provide standards. This was unsatisfackory as not all sub-classes are represented in the Atlas photographs, These later classifications were given low veight.

I am grateful to Dr. P.W. Hill for second opinions on many of the d spectra classifications.

CHAPSER V

DATA TABLESS

The basje data for 197 internediate and high latitude staxs i.s arranged in two tables. UBV photometry, MK types and radial velocities are from a number of sources including the present programme; the HB photonetry is all from measurements made in the 1970-71 obsexving programmes, Tlable 8 contains positional, photometric and spectrom scopic information arranged in columns as follows:
(1) Stax number from the Henry Draper catalogue or Cape Photographic Durchriusterungen. In the table, CFI numbers are negative, the first two digits refer to the zone and the last four to the stax number within the zone.
(2), (3) R.A. and decilination for the epoch 1950.0.
(4), (5) Galactic longitude and latitude computed from 1950 equatorial comordinates using equations griven by Torgaind (1961).
(6) to (8) UBV photometry in the form V magnitude and ($B-V$), ($U-\cdots$) colours. A colon following any quantity indicates that the standaxd deviation for measurements of that star was more than twice the stomdard deviation of a single observation calculated in II. 5.
(9)

References for the UBV photometry. Numbered references are in a list following Table 9. No reference indicates that the photometry is based on 1970 observations alone, and (P) ' reans the photometry is "provisionel", being based on combinations of obsexvations made in 2.968, ' 69 or 'TO (by van Breda, Hil2l or Killsenny) for which final results were not available at time of writing.
HB photometry on the Crawford and Mander (1966) standard system. A colon indicates that σ^{\prime}, the standard derviation of measurements of a given stax, was greater than twioe the standard deviation of a single observation $\sigma_{\text {, }}$,
calculated in III.5. The letter 'V' indicetes $\sigma^{\prime}>3 \sigma$.

The number of separate observations forming the mean B-index.
(12), (13) Radial velocity, to the nearest km / s, of star and interstellax Ca II K-line respectively, A colon implies possible variability and ' V ' probable or definite variability. When the interstellar velocity is noted as possibly variable, this is presumably due to measuring effects or contamination by stellaw lines. The average number of plates per 1971 stellar velocity is three, although four stars in Table 8 have velocities based on only one 1971 spectrum each. These are $H D$ 116455, 148614 and 180629 and CPD $-59^{\circ} 6926$. The velocity of helium star HD 268476 is based on ten spectra at $49 \AA / \mathrm{mm}$.

Radjal velocity references, No reference means the velocity is from 1971 plates only. '(B)' indicates velocities from the "Bibliography of Radial Velociti.es" (Abt and Biggs, 1972). A few of these were originally published by Neubauer (1943) and have been corrected by $+10 \mathrm{~km} / \mathrm{s}$, following a suggestion by Feast and Thackeray (1963). This correction is in good agreement with observed differences between IJeubauer data and. 19\%1, results (see section IV.4).

Spectrun/ Iuminosity type on the MK system, with the usual suffices for emission, nebulous lines, etc. A colon jmplies uncertainty in the classification and a solitary TH refexs to stars with $H \propto$ in emission (Wackerling, 1970). References for MK classifications.

Positional, photometric and spectroscopic data

HO/CPD		ALPHA		LTA	1	B	v	B-V	U-8	REF	BETA	N	VEL	CA1t	REF	kK	TYpe	REF
87782	$10^{\text {b }}$	$0^{\text {b }} \mathrm{m}^{\mathrm{m}} 3$	-3	58	$2680^{\circ} 76$	16.52	8.17	-0.06	-0.38	(2)	2.745	4	km / s	km/s		B5	111	(2)
88799	10	- 9.5	-78	32	295.28	-18.39	9.26	+0.02	-0.43	(2)	2.725	4				65	v	(2)
89403	10	13.9	-78	44	295.60	-18.44	7.70	-0.03	-0.62	(2)	2.627	4	+10	49	(7)	B2	v	(2)
91323	10	29.5	-44	13	278.30	11.59	7.19	-0.15		(9)			417	+10	(3)	85	111	(3)
93840	10	46.9	-46	30	282. 15	11.10	7.80	-0.01	~0.90	(9)			-2	-12:	(3)	81	I	(6)
95029	10	55.2	-51	33	285. 64	7.17		-			2.595	3	-31	-5	(4)	B2	V	(4)
97185	11	18.3	-49	21	. 288.67	10.02	7.49	-0.10	-0.72	(2)	2.610	3	-12	- 2	(8)	84	V	(2)
97991	11	13.5	-3	10	262.33	51.74	7.41	-0.22	-0.91	(2)	2.615	4	424		(B)	81	v	(2)
97895	11	112.9	-29	13	279.07	28.87	8.77	-0.10	-0. 56	(2)	2.706	4				E 5	111	121
99205	11	121.7	-69	50	295.57	-8.52	-				2.591	3						
102657	11	146.4	-51	7	293.10	10.27	7.73	-0.03	-0.56	(2)	2.621	2				63	V	(2)
103715	11	153.9	-71	22	298. 59	-9.25	9.065	+0.185	$\cdots 0.765$		2.41	1	-23:	-8	(4)	82	NE	(b)
-721184	11	56.5	-73	9	299. 16	-10.94	10.68	-0.07	-0.93		2.576:	5	-217	-10		80	111	
105011	- 12	2.3	-65	16	298. 24	-3.08	6.32	*0.22	-0.50	(9)	2.569	3	-7	-9		88	IA	(to)
105139	12	23.6	-69	30	299.03	-7.26	7.55	+0.005	-0.655		2.647	4	+13	4:	(8)	53	III	\$8)
107788	12	220.6	-53	21	298. 73	9. 00	8.715	-0.10	-0.855		2.585	4	414	-17		82	v	
108230	12	23.6	-32	'3	296.75	30.25	9.34	-0.16	-0.81	(2)	2.62 :	4			,	85	11	121
108769	12	27.2	-34	13	297.92	28.16	9.05	-0.15	-0.78	(2)	2.649	4	-36	-8	171	63	V	(2)
109399	12	32.1	-72	26	301.72	-9.88	7.615	+0.005	-0.86		2.568	5	-5i	-1			SIITH	
109885	12	36.1	-71	20	301.96	-8.77	9.00	+0.145	-0.685		2.616	4	-29	45		83	V	
111079	12	244.7	-71	18	302.66	-8. 73	8.445	+0.07	-0.32		2.131	4						
111290	12	246.2	-71	26	302. 78	-8. 86	7.765	40.015	-0.795		2.595	4	-4	-8		81	III	
111022	12.	2.49 .6	-52	22	303.10	10.21	7.86	-0.045	-0.935		2.589	6	-9:	-10	(3)		5111	(3)
112192	12	252.3	-42	0	303.67	20.57	6.82	-0.13	-0.67	121	2.677	3	411:		(7)	85	v N	12)
112481	12	254.6	-49	29	303.94	13.09	8.36	-0.04	-0.74	(2)	2.610	6	-15	-13	(7)	02	18	(2)
112491	12	254.7	-53	49	303.87	8.75	9.615	+0.04	-0.67		2.642	4	-27	-17		02	V	
112510	12	254.9	-54	29	303.88	8.09	9.335	+0.005	-0.47		2.654	4						
-691743	12	27.2	-69	56	303. 71	-7. 35	9.43	+0.025	-0. 615		2.567	7	-37	-3		11	V \boldsymbol{H}	
112843	12	257.7	-72	20	303.68	-9. 76	9.53	+0.10	-0.705		2.563	5	-43	-42	141	02	111 :	(4)
113134	12	259.2	-51	30	304.63	11.05	9.12	0.00	-0.49		2.688	4						-
114200	13	3.2	-70	31	304. 54	-7.99	8.465	+0. 105	-0.905	(P)							E	
114442	13	38.3	-55	4	305.80	7.41	8.04	40.13	-0.76	(P)			-81	-2	(4)	02	V: NE	(4)
114444	13	39.1	-75	2	304.33	-12.50	10.32	-0.01	-0.79	(2)	2.551	6	-77:	-11	(7)	82	111	121
116455	13	321.5	-50	37	308.27	11.64	10.345	-0.01	-0.72		v		-2.7	-50		83	V	
116533	13	322.0	-51	34	308. 23	10.69	7.92	-0.07	-0.90	(2)	2.535:	5	-74	-13	(7)	82	IV N	(2)
116052	13	325.6	-78	35	304.88.	-16.13			.		2.555.	4	-472	-5i	(4)	09	111	(4)
117170	13	326.4	-53	44	368.59	8.45	7.635	-0.02	-0.71		2.631	4	-21:	-13	(8)	82	V	(8)
119069	13	338.8	-45	35	312.06	16.12	8.43	-0.20	-0.98	(2)	2.579	4	-126	-13	(7)	81	111	(2)
119109	13	340.1	-73	22	306. 70	-11.15	7.465	0.00	-0.515	(P)	2.704	4	V	46:	(8)	Bt	V	(6)
119608	13	341.7	-17	40	320.35	43.13					2.554	4	4281	+72	(3)	01	18	(6).

Table 8 (cont.). .

Table 8 (cont.)

Table 8 (cont.) .

HD/CPD		A) PFA	DEL	.ra	1	8	v	B-V	U-0	REF	BEYA	N	VEL	CAI!	REF		YPE	F
158659		${ }^{\text {h }} 28.1$	-11	7^{\prime}	13.42	12.24	10.0255	$+0^{m} .225$	$m_{-0.705}^{m}$	(P)	2.597	4	$\begin{aligned} & \mathrm{km} / \mathrm{s} \\ & 464 \end{aligned}$	$\begin{aligned} & \mathrm{km} / \mathrm{s} \\ & -5 \end{aligned}$		80	v	
158661	17	20.2	-17	4	8.30	9.06	8.20	40.205	-0.735	(P)	2.565	4	-1	-12		B0	1	
$-79^{\circ} 923$	17	29.4	-79	19	313.95	-23.34	10.38	40.33	40.26		2.78:	5	-9			B8	V	
159489	17	33.5	-45	6	345. 29	-7.10	8.25	-0.02	-0.61		2.626	4	49	-11		B3	V	
159792	17	35.0	-46	16	344.44	-7. 94	9.44	+0.145	-0.615	(P)	2.615:	3	V	-12		82	111	
159864	17	34.6	-17	47	8. 52	7.39	8.555	+0.245	-0.705	(P)	2.582	4	421	-5		BO	II!	
160207	17	37.1	-44	55	345.79	-7.54	8.40	-0.015	-0,42		2.686	4	417	-17		08	111	
160397	17	38.2	-48	48	342.54	-9. 72	9.775	-0.005	-0.43	(9)	2.646	4						
160878	17	40.7	-44	11	346. 77	-7. 71	8.65	-0.05	-0.69	(P)	2.653	4	-45	-22		82	Iv	
160993	17	41.5	-45	36	345.60	-8.57	7.73	+0.02	-0.82	(2)	2.561	6	-11	- 0	17)	81	t	(2)
160995	17	41.6	-48	17	343.27	-9.95	10.38	-0.05	-0.57	\{2)	v		\checkmark	-2	[7]	85	\checkmark	(2)
161306	17	42.4	-9	43	16.44	9.92	8.17	+0.575	-0.435	(P)			418:	+2:	(3)	B 0	HE	151
161633	17	45.2	-46	55	344. 78	-9. 77	9.82	-0.12	-0.95	(2)	2.614	6	-19:	-1:	171	80	Y	(2)
161961	17	45.9	-2	9	23.65	12.91	7.775	+0. 22	-0.72	(P)	2.574	4	43	-12.			. 5111	
161972	17	47.0	-46	12	345. 57	-9.69	9.34	-0. 11	-0.57		2.695	3	-3	- 9		B5	111	
162089	17	47.9	-47	48	344.24	-10.59	9.265	-0.03	-0.645		2.6<5:	4	-54:	-21		85	111	
. 163254	17	53.6	-41	58	349.90	-8.63	6.72	-0.075	-0.655		2.EB3	4	-51:	-5	(3)	85	NK SB	(3)
163522	17	54.9	-42	27	349.58	-9.08	8.43	-0.01	-0.86	(2.)	2. 558	6	*33	-1	(7)	81	1F	(2)
164073	17	58.0	-48	47	344.17	-12.57	0.03	40.035	-0.51		2.673	5						
164340	17	56.9	-40	4	352.06	-8.59	9.285	-0.14	-0.96		2.585	4	$0:$	-3		80	111	
164806	18	2.0	-58	33	335.34	-27.37	6.83	-0.10	-0.53	121	2.663	4	-9	-8	(7)	BS	111	(2)
165955°	18	6.5	-34	52	357.41	-7.43	9.19	-0.05	-0.82		2.613	5	-170V	-21		83	$v \mathrm{~N}$	
-761313	15	7.1	-76	43	317.98	-27.65	10.265	-0.135	-0.815		2.622	6	41	-2		82	V	
165938	18	7.7	-61	14	333.06	-19.09	8.21	-0.09	-0.46	(2)	2.693	3	-21	-17	(7)	85	111	(2)
. 166832	16	10.6	-36.	52	356.01	-9.10	8.39	-0.065	-0.50		2.634	3	-27	-16		88	[i's	
167003	10	11.3	-33	ε	359.41	-7.48	8.47	-0.13	-0.955	(P)	2.602	6	-31	-12			. 5111	
167321	18	12.9	-30	56	354.35	-10.44	8.93	-0.04	-0.31		2.746	4	,					
168476	18	18.8	-56	39	338.12	-18.70	9.30	-0.01	-0.69	(2)	2.499	4	-170	43		85	P	-
168785	18	19.5	-30	9	. 2.91	-7.65	8.47	+0.045	-0.735	(P)	2.604	4						
170305	18	27.5	-43	45	351.10	-14.99	7.90	-0.14	-0.63	(2)	2.691	4	-5	-10	(i)	83	v	(2)
170638	18	28.5	-30	5	3.85	-9.35	8.61	-0.015	-0.525									
171141°	18	31.5	-45	50	349.28	-16.51	8.38	-0.22	-0.96	(2)	2.597	4	42	48	(7)	at	111	(2)
171757	18	34.4	-28	2	6.30	-9.61	8.93 :	40.125	-0.805	(P)			.					
172094	18	36.6	-41	57	353.49	-15.80	8.28	-0.15	-0.88	(2)	2.583	3	444	+14	(7)	82	111	(2)
172127	18	36.7	-39	46	355. 58	-14.96	10.48	-0.12	-0.765		2.672	3	-712	48		05	V	(2)
172140	16	36.5	- 29	22	5.27	-10.60	9.76	-0.06	-0.90	121	2.58 :	4	+39:	-4:	(1)		. 5111	(2)
172533	18	35.6	-27	29	7.20	-20.21	8.305	-0.02	-0.495		2.628	4	-23	-7		85	111 :	
173502	18	43.6	-30	1	5.34	-12.27	9.725	-0.095	-0.92	(P)	2. 564	4.	464	45			. 5 V	
173994	18	46.9	-47	49	348.46	-19.62	7.07	-0.15	-0.71	(2)	2.665	4	-8:	45:	(7)	82	V	121
17452.4	18	48.7	-27	12	8.45	-12.11	7.78	+0.025	-0.495	(P)	2.691	4						

Table 8 (cont.)

Table 9 contains the following data:
(1)

HD or CPD number as in column (1) of Table 8.
(2), (3) Proper motion in R.A. and declination in arc seconds/annum.
(4) Proper motion references. A list of references follows the table.

Colour excess $E_{B-V}=(B-V)-(B-V)_{0}$ where $(B-V)$ is from Table 8 and $(B-V)_{0}$ is dexived as described in II. 6 .
Total extinction in the V-magnitude caused by interstellar natter and computed from $A_{V}=3.2 \mathrm{E}_{\mathrm{B}-\mathrm{V}}$.
(7) Absolute magnitude, $M_{V}(S)$, corresponding to the MK type. The calibration by Blaauw (1963) was used:
(8) Distance modulus, $\bmod =V-A_{V}-M_{v}(S)$.
(9) Stellax distance r, in parseos, calculated from 5 log $x=V-A_{V}-M_{V}(S)+5$.
(10) to (12) As column $s(7)$ to (9) but with $M_{V}(B)$, the absolute magnitude derived from the B-index, instead of $M_{V}(S)$.

Proper motions, reddening corrections and distance determinations

HO/CPD	MU(A)	MU(D)	R	$E(B-v)$	AV	m(s)	MOD(S)	DIST(S)	$\mu(\beta)$	M00 (β)	DIST(β)
	*	"		m	m	m		pc	m		pc
87782	-0,030	-0.016	s	0.06	0.19	-2.2	10.17	1085	-0.1	8.07	412
88799	-0.006	00.000	c	0.18	0.58	-1.0	9.68	864	-0.5	9.18	686
89403	-0.009	+0.013	s	0.17	0.54	-2.5	9.65	853	-3.0	10.15	1074
91323						-2.2					
93840	0.000	-0.003	s	0.21	0.67	-6. 2	13.32	4630		.	
95029						-2.5			-4.4		
97185		.		0.12	0.38	-1.3	8.40	479	-3.7	10.80	1449
97991	+0.022	+0.022	s	0.04	0.23	-3.6	10.88	1501	-3.5	10.78	1433
97895	-0.026	-0.017	5	0.07	0.22	-2.2	10.74	1407	-0.9	9.44	774
99205		.							-4.6		
102657	-0.016	-0.017	5	0.15	0.48	-1.7	8.95	616	-3.2	10.45	1230
103715	+0.006	-0.006	M						.		
-721184	+0.002	-0.006	N	0.23	0.74	-5.0 ${ }^{\circ}$	14.94	9745	-5.4	15.34	11716
105071	-0.015	-0.007	M	0.24	0.77	-7.1	12.65	3391	-5.8	11.35	1863
105139	-0.024	-0.022	M	0.22	0.70	-2.9	9.74	889	-2.3	9.14	674
107788	-0.007	+0.016	5	0.17	0.54	-2.5	10.66	1358	-4.9	13.06	4103
108230	-0.038	-0.028	M	0.02	0.06	-4.4	13.67	5435	-3.2	12.47	3127
108769	-0.040	-0.020	M	0.08	0.26	-1.7	10.49	1255	-2.2	10.99	1580
109399	0.000	-0.006	N	0.18	0.58	-4.7	11.73	2222	-5.9	12.93	3861
109885	-0.013	-0.023	H	0.41	1.31	-1.7	9.38	754	-3.4	11.08	1650
111079	-0.003	-0.023	M	0.23	0.74	.		-	-0.4.	8.10	417
111290	+0.002	-0.006	Y	0.27	0.86	-4.4	11.29	1816	-4.4	11.29	1816
111822	+0.002	00.000	S	0.27	0.86	-4.7	11.69	2183	-4.7	11.64	2283
112192				0.07	0.22	-1.0	7.59	330	-1.5	8.09	416
112481	+0.005	-0.003	M	0.19	0.61	-5.7	13.45	4902	-3.7	11.45	1951
112491	+0.030	-0.027	5	0.28	0.90	-2.5	'11. 21	1749	-2.4	11.11	1670
112510	-0.057	-0.026	S	0.16	0.51				-2.1	10.91	1526
-691743	-0.033	-0.004	M	0.31	0.99	-3.6	12.03	2556	-5.9	14.33	7372
112843	-0.014	+0.007	γ	0.36	1.15	-3.6	11.97 .	2436	-6.2	14.57	8233
113134	-0.005	-0.015	5	0.17	0.54		.		-1.2	9.77	901
114200	+0.063	-0.048	M					.		-	
114441	-0.004	-0.015	s			.			.	.	
114444				0.26	0.83	-3.6	13.08	4145	-7.0	16.48	19842
116455	-0.007	-0.007	s	0.24	0.77	-1.7	11.27	1796			
116538	-0.049	+0.025	s	0.22	0.70	-3.3	10.51	1268	.		.
116852				.		-5.7.	.	- .	-6.7		
117170	-0.008	-0.023	S	0.22	0.70	-2.5.	9.42	767	-2.8	9.72	881
119069	+0.007	-0.005	M	0.09	0.29	-4.4	12.54	3224	-5.2	13.41	4819
119109	+0.004	+0.001	M	0.17	0.54	-0.4	7.31	290	-0.9	7.81	365
119608	-0.014	+0.004	S	.		-5.7			-6.8		

Table 9 (cont.)

HD/CPD	mu(a)	MUSDI	R	$E(B-V)$	AV	M(S) ${ }^{\text {. }}$	MOD (S)	DIST(S)	M(\%)	$\operatorname{MOD}(\hat{\beta})$	DIST($\hat{\beta}$)
119644	$\stackrel{41}{-0.015}$	$\begin{gathered} n \\ +0.004 \end{gathered}$	M	${ }_{0.07}^{m}$	$0_{0.22}^{m}$	$\begin{gathered} m \\ -2.5 \end{gathered}$	10.37	$\begin{gathered} p c \\ 1189 \end{gathered}$	$m_{-2.4}^{m}$	10.27	$\begin{gathered} p c \\ 1135 \end{gathered}$
120086	-0.007	-0.012	5	0.04	0.13	-2.9	10.66	1356	-2.2	9.96	982
120377	-0.025	-0.011	M	0.19	0.61				-0.1	8.62	530
120958	+0.001	-0.007	M				-	.			-
121483	-0.013	-0.001	n			-2. 5			-1.8		
121968				0.07	0.22				-6.4	16.48	19824
121983	+0.019	-0.019	M	0.14	0.45	-2.9	10.55	1289	-4.6	12.25	2820
- 122180	-0.016	-0.081	\$	0.11	0.35				-0.9	8.65	539
122449	-0.021	-0.009	M	0.06	0.15	-2.2	10.12	1060	-0.9	8.82	582.
$-70^{\circ} 1704$	-0.007	-0.025	M	0.21	0.67				-1.3	10.14	1070
123884	-0.016	-0.010	5	. 0.06	0.19	-5.2	14.36	7474	-4.0	13.16	4301
124979	-0.015	+0.006	5	0.40	1.28	-5.0	12.25	2818	-5.2	12.45	3090
125924	+0.027	-0.036	5	0.06	0.19	-3.3	12.78	3610	-3.5	12.98	3959
-692055	-0.002	-0.006	N	0.37	1.18	-3.6	12.49	3156	-6.7	15.99	13158
-74i162	-0,004	+0.004	N	0.18	0.58	-1.0	10.65	1357	-2.4	12.06	2537
127493	-0.015	-0.004	5			-4.4			-5.7		-
$-7 \stackrel{\circ}{21} 542$	-0.006	-0.012	N	0.29	0.98	-4.4	13.63	5325	-3.7	12,93	3858
128585	-0.001	-0.015	5	0.24	0.77	-8.7	10.20	1097	-2.6	11.10	2661
-741221	+0.001	+0.030	M	0.18	0.58			.	-1.3	10.85	1509
129929	-0.005	-0.020	H	0.08	0.26	-1.7	9.53	805	-3.3	11.13	1685
-426798				0.27	0.86	-4.2	13.59	5238	-3.7	13.09	4161
132041	+0.001	-0.026	M	0.05	0.16	-2.2	9.84	- 928	-0.6	8.24	444
132907	-0.012	-0.036	ท	0.09	0.29	-2. 2	9.58	824	-1.0	8.38	474
132960		-		0.13	0.42	-4.1	11.07	1639	-3.9	10.87	1495
134411	+0.007	+0.020	M	. 0.06	0.19	-2.5	11.86	2363	-3.2	12.56	3262
134591	-0.021	-0.005	M	0.20	0.64	-2.2	9.93	968	-1.0	8.73	557
135485	+0.006	-0.042	5	0.03	0.10	-4.4	12.47	3124	-0.9	8.97	623
137179	-0.024	+0.006	M	0.14	$0.45{ }^{\text { }}$	-3.8	11.90	2401	-3.6	11.90	2401
137518	+0.014	-0.017	M				-				
137595	-0.026	-0.026	M	0.29	0.93	-1.7	8.26	449	-4.0	10.56	1295
-751197	-0.015	+0.012	N	0.20	0.64	-3.6	12.48	3133	-4.3	13.18	4325
138503	-0.003	+0.007	S	0.22	0.70	-1.0	9.39	757			
139431	+0.006	-0.011	H	-							,
132432	+0.005	-0.017	M	0.21	0.67	-1.9	8.81	580	-1.3	8.21	440
140205	-0.005	+0.019	C	0.09	0.29	.		, .	0.5	8.34	466
140249	-0.011	$+0.014$	c	0.14	0.45		-		-0.3	9.79	908
140277	-			0.10	0.32	- .			-2. 6	12.35	2951
140543	-0.019	-0.012	s	0.32	1.02	-4.7	12.59	3305	-7.4	15.29	11460
142754	+0.003	-0.005	M	0.45	1.44	-3.6	10.75	1412	-4.0	11.15	1698
143104	-0.014	-0.024	C	0.12	0.38	-2.5	11.42	-1928	-2.6	11.52	2019

Table 9 (cont.)

Table 9 (cont.)

HO/CPD	MU(A)	MU(0)	R	$E(B-V)$	AV	H(S)	MOD(S)	DIST(S)	$M(\beta)$	$\operatorname{MOD}(\beta)$	D1ST(β)
	"		-	m	m	m			m		$p \mathrm{c}$
-79 923	-0.009	-0.001	N	0.33	1.06	0.1	9.22	699	0.3	9.02	637
159489	-0.003	-0.015	M	0.18	0.58	-1.7	9.37	749	-3.0	10.67	1363
159792	+0.011	0.000	M	0.38	1.22	-3.6	11.82	2316	-3.5	11.72	2212
159864	-0.001	+0.009	5	0.54	1.73	-5.0	11.82	2314	-5.0	11.82	2314
160207	-0.003	+0.001	1	$0.14{ }^{\circ}$	0.45	-1.0	8.95	617	-1.3	9,25	708
160397	+0.002	-0.006	M	0.15	0.48				-2.3	11.59	2079
160878	+0.013	+0.004	M	0.18	0.58	-3.3	11.38	1891	-2.1	10.18	1088
160993	-0.001	-0.004	M	0.20	0.64	-6.2	13.29	4549	-6.3	13.39	4.764
160995				0.13	0.42	-1.0	10.96	1558			
161306	+0.006	-0.021	5	-							
161633	+0.002	-0.002	M	0.18	0.58	-4.4	13.64	5355	-3. 5	12.74	$35.3{ }^{\circ}$
161961	+0.025	+0.005	S	0.52	1.66	-4. 7	$10.80{ }^{\circ}$	1449	-5.5	11.60	2055
161972	+0.004	-0.014	M	0.06	0.19	-2.2	10.34	1173	-1.1	9.24	707
162089	+0.001	-0.009	M	0.12 .	0.38°	-2.2	11.07	1641	-2.3	11.17	1718
163522	+0.006	+0.012	is	0.18	0.58	-6.2	14.05	6468	-6.5	14.35	1426
164073	+0.008	-0.011	M	0.21	0.67				-1.6	8.95	618
164340	+0.010	40.003	M	0.15	0.48	-5.0	13,80	5754	-4.9	13.70	5495
154806	+0.011	-0.012	5	0.06	0.19	-2.2	8.83	585	-1.8	8.43	487
165955	+0.015	+0.002	${ }^{\prime}$	0.22	0.70	-1.7	10.18	1089	-3.6	12.08	2613
-7601313	+0.022	-0.028	H	0.12	0.38	-2.5	12.37	2986	-3.2	13.07	4122
165938	+0.020	-0.008	S	0.05 ,	0.16	-2.2	10.25	1122	-1.1	9.15	676
166832	40.012	-0.010	M	0.10	0.32	-1.0	9.07	651	-2.7	10.77	1425
167003	-0.002	+0.027	M	0. 16	0.51	-4.7	12.65	3400	-4.0	11.95	2463
167321	+0.003	-0.001	M	0.06	0.19				-0.1	8.83	585
168476	-0.003	+0.008	5								
168785	+0.022	+0.026	M	0.29	0.93				-4.0	11.54	2034
170385	+0.008	-0.005	1	0.04	0.13	-1.7	9.47	784	-1.2	8.97	622
170638	-0.002	-0.018	H	0.17	0.54						
171141	+0.002	+0.005	n	0.05	0.16	-4.4	12.62	3341	-4.3	12.52	3191
171757	-0.003	+0.058	S	0.43	1.38						
172094	+0.017	-0.006	M	0.10	0.32	-3.6	11.56	2051	-5.0	12.96	3908
172127				0.12	0.38	-1.0	11.09	1656	-1.6	11.69	2183
172140	-0.024	+0.007	5	0.23	0.74	-4.7	13.92	6092	-5.2	14.42	7670
172533	-0.001	-0.056	5	0.14	0.45	-2.2	10.05	1024	-2.9	16.75	1413
173502	-0.024	+0.013	11	0.21	0.67	-4.0	13.04	4070	-6.1	15.14	10705
173994	-0.016	+0.009	S	0.06	0.19	-2.5	9.37	750	-1.8	8.67	544
174524	+0.003	-0.023	S	0.19	0.61			.	-1.2	10.37	1186
175141				0.15	0.48				-0.2	8.95	616
175754				0.23	0.74						
175876	+0.020	0.000	S	0.22	0.70	-5.4	11.61	2104	-6.1	12.31	2905

Tlable 9 (cont.)

HD/CPD	mu(A)	MU(D)	R	$E(8-V)$	AV	H(S)	MOD (S)	OIST(S)	$N(\beta)$	MOD β)	DIST(β)
	N	*		m	m	m		po	m		pc
177014				0.26	0.83				0.3	8.12	422
177015				0.11	0.35			.			
177559	40.042	+0.013	S	0.23	0.74	-0.7	8.06	410	-2. 8	10.16	1078
177566	.			0.09	0.29	-4.4	14.31	- 7284	-7.6	17.51	31798
177989				0.24	0.77	-5.0	13.56	5157	-4.9	13.46	4924
178370	-0.007	-0.023	M	0.08	0.26	-2.9	12.15	2696	-4.5	13.75	5633
178487	-0.012	-0.011	S	0.38	1.22	-6.2	13.6\%	5355	-6.1	13.54,	5114
170661	-0.0.012	+0.027	S	0.33	1.06	-2.9	10.32	1160	-2.2	9.62	841
179007	-0.011	0.000	M	0.07	0.22	-2.9	12.67	3429	-1.2	10.97	1567
179202	-0.003	-0.037	5.	0.14	0.45	-1.0	8.90	803	-0.9	8.80	575
179407	-0.025	+0.037	5	0.28	0.90	-6.2	14.71	8765	-7. 3	15.81	14547
180629	-0.046	-0.019	S	0.11	0.35	-1.7	9.46	782	-1.1	8. 86	593
182975	-0.004	-0.008	5	$0.32{ }^{\circ}$	1.02				-1.9	9.24	706
183129	-0.016	-0.003	S	0.23	0.74				-1.4	8.79	573
183570	+0.014	+0.004	\$						-1.4		
183899	*0.017	-0.006	s	0.17	0.54	-3.6	12.85	3725	-3.7	12.25	3901
185534	*9.011	-0.012	S			*	-		-0.8		-
185842	+0.004	+0.007	5	-		-1.7		-	-1.6		
186610	40.003	-0.001	5	0.27	0.86	-4.4	13.17	4317	-5.1	13.87	5959
187311	-0.005	-0.012	M	0.02	0.06	-1.7	11.88	2383	-1.9	12.08	2613
287350	+0.004	+0.009	5	0.39	1.25						
187536	+0.012	+0.059	S	0.19	0.61	-3.6	12.45	3093	-5.1	13.95	6171
168618	-0.010	+0.012	S						-3.7		
195455	+0.026	+0.011	s	0.08	0. 26	-4.7	13.64	5355	-4.7	13.64	5355
204076	+0.026	-0.009	M	0.10	0.32	-3.6 ${ }^{\circ}$	12.07	2594	-5.0	13.47	4943
206144	-0.011	-0.013	5			-1.7	.				
208213	40.020	+0.002	M	0.05	0.16	-1.7	9.96	981	-2.2	10.46	1235
214080	-0.004	-0.012	S	0.14	0.45	-4.4	10.75	1413	-5.0	11.35	1863
214539	-0.015	-0.032	S	0.02	0.06	0.6	6.55	204	-4.7	11.85	2350
220172	-0.026	-0.012	5	0.03	0.10	-2.5	10.08	1039	-3.8	11.38	1891
220787	+0.007	+0.050	5	0.01	0.03	-1.7	9.96	985	-2.8	11.06	1635
$-4 \stackrel{\circ}{57545}$				-			15.3	11480			
$-4475,7 ?$.			13.0	3980	,		
-509971				\cdots.			14.6	8320			

References to Tables 8 and 9

Photometry, radial velocities and MK types.
(1) Feast, Stoy, Thackexay and Wesselink (1961)
(2) Hill (1970)
(3) Freast, Thackeray and Wesselink (1955)
(4) Feast, Thackeray and Wesselink (1957)
(5) Feast, Thackeray (1963)
(6) Jaschek, Conde and de Sierra (1964)
(7) Hill (1971)
(8) Thackeray, Tritton and Walker (1973)
(9) Blanco, Demers, Douglass and. FitzGerald (1968)
(10) Bidelman (private communication)
(B) Abt and Biggs (1.972); N.B. Neubauer (1943) stars corrected by $+10 \mathrm{~km} / \mathrm{s}$.

Proper motions
C Stoy (1966)
S Smithsonian Star Catalogue (1966)
y Hoffleit (1967, 1968)
Hoffleit, Eckert, Lii and Paranya (1.970)
Lu: (1971)
M Mean of S and Y data
N Mean of C and Y data

CHAPIER VI

STHLLLAR JITSRRIBUTTION AND GALACTIC STRUCTURG

1. Apparent distribution of prooramme staxs

The distribution of the progranme stars in galactic comordinates is illustrated in fig. 18. In some areas of the sky, the stars appear grouped together as if physically associated. As an example, ten stars near $1=345^{\circ}, b=-10^{\circ}$ exe listed in Table 10 with distances detemined by absolute magnitudes from both MK types and Ω-indices, and radial velocities. From this data the stass would appear to be unrelated; similar results were obtained for other apparent groupings, although a few pairs of apparently close stars may be remotely related. Table 11 gives data for two such pairs. HD 88799 and 89403 show good agreement in spectroscopic distance but not in the photometric determination. No radial velocity was available for HD 88799. If these stars were both at a distance of 850 pc , their linear separation would be about 5 po. The second pair of stars, HD 2201.72 and 220787, J.0cated at rather high latitudes, have similar distances and radial velocities. They were classified B2V and B3V respectively, from 1971 spectra, but Hill (1971) give B3V and B3III. The propen motions of the two stars are dissimilar but errors in $O B$ stax proper motions are usually quite laxge. On the assumption that these stars are at the same distance from the suns their separation will be of the order of 30 to 50 po , implying that they are unlikely to be connected now, although they may have had a common origin.

The programue stax distribution was compared with that of elusters and associations in the "AtJas of open star clusters" (Alter and Ruprecht, 1963). Only one star, HD 175141, had linemof-sight coincidence with a cluster, the star being apparently within the boundary of $\operatorname{NGC} 6716$.

Fig. 18 Distribution of programme stars in galactic co-ordinates

Table 10

Stars near $1=345^{\circ} \quad \mathrm{b}=-10^{\circ}$

Star (HD)	l	b	dist (s)	dist (B)	Rad. vel.
159489	$345^{\circ} .3$	$-7^{\circ} .1$	0.75 kpc	1.36 kpc	$+9 \mathrm{~km} / \mathrm{s}$
1.59792	344.4	-7.9	2.32	2.21	Var.
160207	345.8	-7.5	0.62	0.71	+17
160397	342.5	-9.7	-	2.08	-
160878	346.8	-7.7	1.89	1.09	-45
160993	345.6	-8.6	4.55	4.76	-.11
160995	343.3	-9.9	1.56	-1	Vax.
161633	344.8	-9.8	5.36	3.54	+.19
161972	345.6	-9.7	1.17	0.71	-3
162089	344.2	-10.6	1.64	1.72	-.54

Table 11

Possibly related stars

Star (HD)	l	b	dist (s)	dist (B)	Rad. vel.
88799	$295^{\circ} .3$	$-18^{\circ} .4$	0.86 kpc	0.69 kpc	-
89403	295.6	-18.4	0.85	1.07	$+.10 \mathrm{~km} / \mathrm{s}$
220172	68.1	-62.6	1.89	1.04	+27
220787	67.8	-64.4	1.64	0.99	+26

Alter, Belázs and Ruprecht (1970) Iist several values for the distance of NGC 6716, the most recent and numerically smallest determination was 760 pc. The distance of $H D 175141$ from the UBVB photometry is $620 \pm 50 \mathrm{pc}$, so it seens likely that the star is a loreground star between the cluster NGC 6716 and the sun.
2. Galactic spiral structure

Before investigating the programe star distribution, it will be useful to outiline the spiral axms by considering the distribution of objects generally thought to be good spiral arm tracexs. Figure 19 shows various young objects plotted in projection on the plane of the Galaxy, Seventy per cent of them are nearer the galactic plane than 100 pc and 90% are nearer than 200 pc. Many of the very distant objects are holf-Rayet stars and consequently these stars have a greater proportion of their number at large distances from the plane than other objects. The galactocentric distance of the sun is assumed to be 10 kpc .

The OB-associations were taken from the list by Ruprecht (1964); O-B2 clusters and H II regions were mostly from publications by Becker and Fenkart (1963) and Becker (2964). Also included axe six clusters at $2=291^{\circ}$ with distances between 1.2 and 3.9 kpc deternined by Schmidt and Santanilla (1964), and a group of earlymbpe staxs in Norma, at $1=327^{\circ}$ and a distance of 2.5 kpc (Bok, Bok and Graham, 2964). McCuskey (1970) has reported work by Hesterlund on groups of stars in Ara-Norma at $1=332^{\circ}$ and 337° with distances of 3.9 and 3.5 kpc respectively. Wolf--Rayet stars wers taken from a list by Smith (2968) and bright Cepheids were selected from a publication of Kraft and Schmiat (1963). Finally, a few distant $O B$ sters from the lists of Morgan, Whitford and Code (1953) and Beer (1964) were plotted; absolute magnitudes in the latter source being deternained from equivalent widths of Hr .

$$
\begin{aligned}
& \stackrel{\ell}{\ell} 180^{\circ} \\
& +{ }^{+} \quad \bullet_{\infty}^{\infty} \times{ }^{\infty}+^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{+}^{*}{ }^{*}+^{+} \quad+
\end{aligned}
$$

Fig. 19 Optical spiral arm tracers

Rohles (1967) in a statistical study of the relative value of various spiral amn tracers, concluded that OB-associations, 0-332 clusters, H II regions and Bpe stars of types BOMI (III.VV) were the best tracers. Bpe stars are not included in fig. 19 ; they exhibit a similar distribution to the othex early-type objects (Schmidt-Kaler, 1964a, b). Rohlfs (1967) excludes Cepheids and WolfmRayet stars as spiral am tracex's but indicates that bright Cepheids may be suitable. The Cepheids in fig. 19 are all brighter than $M_{v}=-4.3$, following Kraft and Schmidt (1963), and with the Wolf-Rayet stars, show substantial agreement with the distribution of other spiral arm tracers. Schmidtm Kaler (1.971) has recently shown Wolf-Rayet stars to be better for tracing spiral arms than was suggested by Rohlfs' analysis.

In fig. 19 the local feature is clear, extending for 3 kpo towards $1=50^{\circ}$ to 60° and about 2 kpe towards $1=200^{\circ}$. There may be an extension to the local feature out to 6 kpo from the sun at $1=240^{\circ}$. The Perseus or $+I$ spiral amm is evident at 2 to 3 kpc , between $1=90^{\circ}$ and an apparent cutmoff at $I=140^{\circ}$. A +II feature is sparsely defined in the range $110^{\circ}<1<180^{\circ}$ at about 4 kpc from the sun.

The Carina spiral feature extends along the line of sight at 1. $=290^{\circ}$, between 1 and 6 kpc from the sun. This feature probably extends much further, according to Bok, Hine and Miller (1970). The Carina region and the Sagittarius arm at 2.5 kpc in the direction of the galactic centre, are considered to form the $-T$ arm (e.g. Becker and Fenkart, 1.970). There is some evidence of a -II axm, although Westerlund's groups of stars in Ara and. Norma (see MoCuskey, 1.970), supposed to define the -II or Norma arm, lie beyond this feature in fig. 1.9 and may represent part of a -III arm. The picture is far from clear beyond the Sagittarius-Carina features.

Spiral axm tracers are represented schematically in fig. 20 togethex
with the relevant parts of a diagram of nevitral hydrogen distribution from the Hat Creek survey (Weaver, 1970). Hatched areas in fig. 20 indicate the reasonably well defined regions of fig. 19, whilst the broken lines are more tentative features, The solid lines represent the neutral hydrogen. Contrary to the discussion by Weaver (1970), there does not appear to be particularly good coxrespondence between the radio and optical spiral structure; there is no evidence from optical tracers to suggest that the local and Sagittarius features are linked. When fig. 19 is compared. with the neutral hydrogen distribution described by Kerr (1970), the correlation between radio and optical data is also poor.

Evaluation of the spiral structure from radio obsexvations has a weakness in that it is dependent upon some kind of galactic model for the distance determination of the hydrogen. The use of models of galactic rotation is especially restricted in the general direction of the galactic centre where differential effects on radial velocities are small. Further, Piddington (1973) has suggested that the neutral hydrogen may not be concentrated in spiral arms but could be more randomly distributed. He notes that where spiral structure is observed in other galaxies, it is "provided by the spiral tracers, comprising young stars and the gas ionized by those stars". Finally, Becker and Fenkart (1970) have shown that the local spiral structure, inferred from the distribution of HII regions and $a_{\text {B }} B 2$ clusters, is comparable with part of the structure of an external galaxy, $\mathbb{N G C} 1232$.

3. Galactic distribution of progranme stars

The programme star distribution is illustrated in fig. 21 which is drawn to double the scale of fig. 20. Distances are all projected on to the plane of the Galaxy and were determined from B-index absolute magnitudes where possible. Three stars had no $H ß$ measurements and

\qquad
1 kp.

Fig. 21 Distribution of programme stars projected on to plane of Galaxy. Schematic spiral arms are from fig. 20 and the scale is doubled.

MK-type absolute magnitudes were used instead. Spiral features are shaded areas or broken lines extracted from fig. 20. A few apparently very distant stars are not plotted and will be discussed in a later section.

There is a conspicuous group of stars in the region $300^{\circ}<1<360^{\circ}$, between 400 and 700 parsecs from the sun. The longitude boundaries may reflect the survey limits and the 400 po linit is almost certainly due to the magnitude and spectral type range of the survey. It was thought probable that this group of stars was an observationally selected sample from a fairly uniform galactic distribution of later B stars. Some 60% of the group has been classified in the range B5-6 (III-V), 20% are B3V or III and the remainder are mostily late B stars. With appropriate absolute magnitudes (Blaauw, 2963), approximate values for the apparent magnitude limit of the survey, and typical reddening corrections, the B5 (III-V) and B3V stars should be observed from 400 po to over 1 kpe from the sun, if the distribution is really uniform. However the observed density of $B 3-B 5$ stars appears to decrease sharply beyond 700 pc , although a few BSIII and several B3 stars are observed near the -I spiral arm. It may be a result of selection effects or it may be that the distribution of later B stars is "patchy" but unrelated to the very young object distribution, in either case it would be unwise to regard these nearby stars as spiral tracers.

Beyond the nearer stars, a moderate number of stars are superimposed on the CarinamSagittarius (-I) arm, but at greater distances the distribution seems to be fairly random. Schmidt-Kaler (1971) has suggested that objects used as spiral amm tracers should be very young because a spiral feature composed of objects with random motions of 10 to $15 \mathrm{~km} / \mathrm{s}$ will be completely smeared out in 50 million years. Combining data on the masses of early-type stars (e.g. Sohmidtmaler, 1965) with theoretical evolutionary tracks (Iben, 1967) we find that

B3V and B1.5V stars should have main sequence lifetimes of 4×10^{7} and 2×10^{7} years respectively. Hence the distribution of stars later than about B2 should not be expected to show galactic spiral structure. This agrees with the work of Beoker and Fenkart (1970) who have shown that the distribution of 0-B2. clusters coincides with that of the HII regions, whereas the open clusters with earliest spectral type B3-F8 have a uniform distribution. Figure 22 shows the $0-B 2$ progranme stars, including two Radcliffe intermediate latitude stars from Table 8 and excluding eight stars with variable radial velocity which may be binary or multiple systems. A definite gap can be seen between the local and -I arms although the local axm is hardly represented due to the suxvey limits; there is now more indication of a, -II axm and four or five stars are at a comparable distance to the tentatively identified feature at 4 kpc .

Figure 23 illustrates the vertioal distribution of the $0-B 2$ stars, that is the distribution of stars projected on to the $X Z$ plane, perpendicular to the galactic plane and passing through the sun and galactic centre. The bexred lines at $z=0$ indicate a cross section of the spiral axms at $1=0^{\circ}$; distant axms are very uncertain. Vertical structure is not apparent due to the projection of arcs into straight lines.

4. Distant stars

The stars listed in Table 12 are apparently more distant than 5 kpc , as derived from either MK-type or B-index absolute magnitnde. Up to roughly 6 kpc from the sun there does not appear to be any systematic difference between the two sources of distance determination; beyond 6 kpc the Ω-indices give greater distances. It is a direct result of the divergence from a 45° relation seen in fig. 1.6 for high luminosities. For extremely distant stars, B-index distances are often

Fig. $220-B 2$ programme stars projected on to plane of the Galaxy. Schematic spiral arms are from fig. 20 . The circled dot and barred cross indicate positions of the Sun and galactic centre respectively. Open circles represent distances from MK type absolute magnitudes; filled circles represent distances from β-index absolute magnitudes.

Fig. 23 Distribution of programme stars perpendicular to the galactic plane. Barred lines indicate cross sections of spiral arms at $\ell=0^{\circ}$, as sketched in fig. 20 .

Pable 12

Apparently very distant stars

$\begin{gathered} \text { Star } \\ (\mathrm{HD} / \mathrm{CPD}) \end{gathered}$	Dist (s)	Dist (B)	Comments
$-72^{\circ} 1184$	9.75 kpc	11.72 kpa	Very high radial velocity
108230	5.44	3.13	
$-69^{\circ} 1743$	2.56	7.37	
112843	2.49	8.23	
214444	4.15	19.84	Velocity variable
319069	3.22	4.82	High radial velocity
121968	-	19.83:	B uncertain
123884	7.47	-	
-69 ${ }^{\circ} 2055$	3.16	13.16	High radial velocity
$-72^{\circ} 1542$	5.33	3.86	
$-42^{\circ} 6798$	5.24	4.16	Velocity variable
140543	3.31	11.46	Velocity variable
145537	4.90	11.75	Velocity variable
248546	2.50	5.22	
$-74^{\circ} 1569$	7.25	9.56:	B uncertain; high radial velocity
152286	3.20	5.82	.
156359	9.37	24.64	
158243	5.77	3.81	
161633	5.36	3.54	Velocity variable
163522	6.47	7.34	
164340	5.75	5.50	Velocity variable
272140	6.09	7.67	Velocity variable
173502	4.07	10.71	
177566	7.28	31.80	High radial velocity
177989	5.16	4.92	
178370	2.70	5.63	High radial velocity
178487	5.36	5.11	
179407	8.77	14.55	High radial velocity
186610	4.32	5.96	
187536	3.09	6.17	-
195455	5.36	5.36	
$-45^{\circ} 7545$	11.48	-	Radcliffe star
--50 ${ }^{\circ} 9971$	8.32	-	Radcliife star; variable velocity

unreliable because most of these stars are amongst the faintest observed in this programme and, as fig. 13 shows, the average standard deviation of the B-index increases for fainter stars. As a result of this and the shape of the B / M_{v} calibration curve, the high luninosity, apparently faint stars will have the most uncertain distances.

Several of the apparently distant stars have variable radial velocity and are probably unresolved binary or multiple systems for which the present distance determinations can have little meaning. Seven of the stars in Table 12, plus a few others, have very large redial velocities which appear to be non-variable from 1971 plates and which in many cases cannot be accounted for by the effect of differentia]. gelactic rotation. These stars will be discussed in the next chapter. Figure 24 shows the distribution of stars in Table 12. The apparent distances of HD 114444, 156359 and 1.77566 are almost certainly overestimated although the distances of the last two are great whichever value jis used for the absolute magnitude (i.e. MK-type or B-index). There is considerable overlap between figs, 22 and 24.

5. Evolutionary and dynamical ages

Figure 22 suggests that the spiral structure in the galactic plane is followed by $0 \mathrm{~m} B 2$ stars even though these may be as much as 1 to 2 kiloparsecs from the plane. The evidence is not conclusive as the results are rather limited by the accuracy of the $H B$ photometry. For example, at $3 \mathrm{kpc}, \sigma(\beta)= \pm 0.013$, as determined in III.5, will give an uncertainty in stediar distances of $\pm 0.3 \mathrm{kpc}$. The majority of HB measurements in this programme were made from chart recoxder output and it is probable that the use of current integration, or pulse counting techniques for faint stars, would improve the accuracy of the B-indices. In addition, the small number of stars observed to be more than two or three kiloparsecs from the sun restrjcts the picture to the

1 kpc.

177566 •

- programme stars, β-index distances
- programme stars, MK type distances
- H I (Weaver, 1970)
-- H I (Kerr, 1970)
--- Carina spiral feature (Bok et al.,1970)
$\left.\begin{array}{l}- \\ \varrho\end{array}\right\}$ velocity variebles
- Sun
+ Galactic centre
-I and -II spiral features. Future observational programes concentrating . on rather fainter stars, say $V>10^{\mathrm{m}}$, and spectral types earlier than B3 could greatly improve and extend the material in fig. 22. Observations of very distant stars in this programe indicate that interstellar extinction should not be a problem at intermediate latitudes.

An interesting speculation arises from fig。 23 , the distribution of 0-B2 stars pexpendicular to the galactic plane. Early-utype stars exist in quantity up to 1 kpc from the plane and a small percentage are observed at greater distances than this, if stars of the present programne can be considexed at all representative. It is generally thought that early-type stiars are formed close to the galactic plane and if this is the case, then stars distant from the plane should be able to achieve their present positions in a time compatible with their evolutionary lifetimes. Otherwise, it is necessary to consider that blue stars can be formed well away from the galactic plane or that a significant proportion of the programne stars are subluminous. As to the latter possibility, particular stars have been discussed in some detail by other authons. Hill (1968) considered the space motion of high latitude HD 125924 to be unlikel.y for a normal B star, in particular the laxge motion towards the plane suggested the star was a subdwarf. Conversely, Berger, Fringant and Rebeirot (1970) have shown that despite the distance of $B D+6^{\circ} 2461$ from the plane (5.5 kpc), it could be a runaway B star which has achieved this height by virtue of very high velocity. They a.lso consider HD 125924 to be similar in nature and probable origin to $30+6^{\circ}$ 2461. In general, it might be expected that the programme stans have rather bright apparent magnitudes to include many subluminous stexs. Greenstein (1971) investigated 1.70 blue stars between 9th and 16th magnitude and found "the brighter stars are largely uninteresting, in that they seem noxmal.". Most of the subdwaxf or hot hoxizontal branoh
stars of Greenstein's survey were fainter than llth magnitude. However, the survey was concentrated in the galactic polar regions and the possibility that some of the programme stars are subluminous cannot be ruled out.

From the stars in Table 8 were selected all those more than 500 pc from the galactic plane, as calculated from both B-index and MK-type distances. Stars with $z(\beta)>500 \mathrm{pc}$ and $\mathrm{z}(\mathrm{s})>500 \mathrm{pc}$ totalled 56 , later reduced to 41 by elimination of two helium-rich stars and several possible or probable velocity variable stars. For each star an estimate is required of "dynamical time" or time taken to reach the observed z-distance and some estimate of the age is necessary for comparison wi.th tdyn.

Calculation of stellar ages is heavily reliant on theoretical models of stellar evolution. In a recent review paper, Iben (1972) gave the approximate formila

$$
t_{\mathrm{ms}} \sim 3.4 \times 10^{7}\left[\frac{7 \mathrm{M}_{\odot}}{\mathrm{M}}\right]^{1.9}
$$

for the duration of the main-sequence, hydrogen-burning phase of a population I stax of mass M. The formula is valid for massive stars with $M>3 M_{\odot}$, where M_{\odot} represents the solar mass. Estimates of the masses of eaxly-type stars have been given by several authors; in this case masses were taken from a review by Schmidt-Kaler (1965) and are listed in Table 13 with the corresponding main sequence lifetimes. These results for $t_{m s}$ are really upper limits for ages of main sequence stars, since theoretical studies of the evolution of massive stars ind.j.cate that when core hydrogen buming ends and shell hydrogen burning takes over, the stars move rapidly towards the red giant phase, leaving the $O B$ star region of the $H-R$ diagram in a time which is small compared with $t_{m s *}$

Table 13
Masses and main sequence lifetimes of earjly-type stars

Spectral type

05	$35 \mathrm{M}_{6}$
06	32
08	23
B0	15.5
B1.5	10.5
B3	7.6
B5	5.5

$\sim t_{\text {ms }}$
2×10^{6} years
2×10^{6}
4×10^{6}
8×10^{6}
2×10^{7}
3×10^{7}
6×10^{7}

Giant and supergiant stars present something of a problem because their masses are not well-known and because they are almost certainly evolved to an extent. Comparison of some of these stars with colourmagnitude diagrams of young open clustexs (Hagen, 1970) indicated their ages to be about five to ten million years. Since the age of a cluster can be determined by fitting its colour-magnitude diagram to theoretical curves of equal time in the H-R diagram, it seened reasonable to suppose that crude estimates of ages of stars could be similarly obtained, provided the staxs were young and luminous. Barbaro, Dallaporta and Fabris (1969) derived a set of isochronous curves in the $M_{v},(\mathrm{BmV}){ }_{0}$ diagram for comparison with cluster colour-magnitude arrays. They used theoretical evolutionary tracks by Iben for stars with masses between 2 and 15 solax masses, and by Stothers for a 30 solar mass star (see Barbaro et al. for references). Figure 25 reproduces part of fig. 2 from Barbaro et al., showing some of the isochronous curves. It can be seen that if a star is brighter than $M_{v}=-4$, or wellmervolved, a reasonable estimate of the age should be possible. No programme star is redder than $(B-V)_{0}=0.0$ but most of the giants and supergiants are more luminous than $M_{v}=-4$. Approximate ages $t_{\text {evol }}$ were derived and where overlap occurs, these ages are in fair agreement with hydrogen

Fig. 25 Isochronous curves. Reproduction of part of a diagram by Barbaro, Dallaporta and Fabris (1969).
burning lifetimes, $t_{m s}$.
Dynamical ages of stars are difficult to determine with any accuracy; the force field perpendicular to the plane is not well determined for the local region and can only be approximated for more distant regions by using galactio mass models. A method described by Searle, Sargent and Jugaku (1963) and used by them to find $t_{\text {dyn }}$ for high latitude supergiants 89 Herculis (F2Ia) and HD 161796 (F3Ib) is outlined here. They approximated the acceleration perpendicular to the plane at a height z for "any plausible trajectory" by

$$
\dot{X}(z)=K\left(z_{0}\right)\left(z / z_{0}\right)^{n}
$$

where $0<n<1$ and z_{0} is the height of the star at the peak of its trajectory. They found that

$$
t_{d y n}=\propto\left(\frac{z_{0}}{k\left(z_{0}\right)}\right)^{\frac{1}{2}}
$$

the constant of proportionality is "not critically dependent on the asswned trajectory" and is a function of n. Searle et al. adopted $\alpha=1.5$. To estimate the acceleration $K\left(z_{0}\right)$ at the peak of the trajectory, they multiplied the value of $\mathrm{K}(\mathrm{z})$ at I kpo above the sun (Oort, 1960) by the ratio

$$
\frac{K\left(z_{0}, R\right)}{K\left(z=1 \mathrm{kpc}, R=R_{0}\right)}
$$

from the relation between z and $K(z)$ given by Schmidt's (1956) galactic model. Searle et al. followed Schmidt in assuming the galactocentric distance of the sun to be 8.2 kpc . Mowever, if the model is used with $R_{\theta}=10 \mathrm{kpo}$, then the values of $K(z)$ in the solar region agree more closely with Oort's (1960) determination of $K(z)$, at least for $z<2 \mathrm{kpc}$. As a rough test, $t_{d y n}$ was re-computed for the two F-type supergiants with $\mathbf{R}_{\odot}=10 \mathrm{kpc}$. In Table 14, results are compared with the original results for $R_{\odot}=8.2 \mathrm{kpc}$.

Dynamical and evolutionary asos of 89 Her and HD 161796

The first four colums are from Searle et al. (1963) and it should be noted that theix t (evol.) is not detemined in exactly the same manner as the $t_{\text {evol }}$ of the present work; they used evolutionary calculations. by Hoyle (1960). The final column of Table 3.4 is the re-computed values of $t_{\text {dyn }}$ which seem to be in good agreement with t (evol.) if the stars were ejected from the plane very soon after fommation. With z_{0} in parsecs and $K\left(z_{0}\right)$ in units of $10^{-9} \mathrm{~cm} / \mathrm{sec}^{2}$, the equation for $t_{d y n}$ becomes:

$$
t_{d y n}=2.65 \times 10^{6}\left(\frac{z_{0}}{K\left(z_{0}\right)}\right)^{\frac{1}{2}} \text { years }
$$

which was applied to the stars with $\mathrm{z}>500 \mathrm{pc}$. The assumption was made that stars are at the peak of their trajectories, in other words the velocity perpendicular to the plane is zero at z_{0}. This is a reasonable approximation for most of the programe stars provided the W components of the space velocity are determined from radial velocities alone. When proper motions axe included, the space motions of many programe stars become extremely large, an effect which is almost certainiy more dependent on erroxs in the proper motions than on real velocities.

Of the 41 stars with $z>500 \mathrm{pc}, 19$ were found to have $t_{\text {dyn }}<t_{\mathrm{ms}}$ or $t_{\text {evol, }} 10 \mathrm{had} t_{d y n}>t_{\text {ms }}$ or $t_{\text {evol }}$ by a marginal amount and twelve had $t_{d y n}>t_{m s}$ or $t_{\text {evol }}$ by an amount which may be significant. The
latter group of staxs is listed in Mable 15. The first column gives the star number and MK-type, the second lists distance from the plane computed from B-index distance and MK-type distance. The next two colunns give W-velocities for four cases; for the star at djstances given by homindex and MK-type, both with and without proper motion components. The W components of the space velocities were computed as described in appendix II. An asterisk following a velocity indicates that the propex motion components are both greater than twice the standard deviation of the measurements. Where no asterisk follows a velocity, either the proper motion components are small compared with the standaxd deviation or two sources give widely differing values. In either case the proper motion is unreliable. The last three columns of Table 15 list $t_{d y n}, t_{m s}$ and $t_{\text {evol }}$ in units of millions of years; $t_{\text {dyn }}$ has been calculated for $z(B)$ and $z(s)$. Where $t_{\text {evol }}$ is given as a range of values, this represents the range covered by the difference between $M_{V}(B)$ and $M_{v}(s)$ when applied to the $M_{v} /(B-V)_{0}$ diagriam of isochronous curves. The stars in Table 15 will be discussed in some detail.

HD 249363 has $W>60 \mathrm{~km} / \mathrm{s}$ and so the "true" $t_{\text {dyn }}$ must be regarded as smaller than the quoted result, derived on the assumption that $W=0$. Proper motion components from the Sinithsonian Star Catalogue (1966) are very small, considerably less than the standard deviations. HD 97991 has annual proper motion components

$$
\mu_{\alpha}=+0^{\prime \prime} .022 \pm 0^{\prime \prime} .009 \quad \mu_{\delta}=+0^{\prime \prime} .022 \pm 0^{\prime \prime} .008
$$

which give the stax a considerable velocity in the z-direction, $\mathrm{W}=+150 \mathrm{~km} / \mathrm{s}$. For HD 97991 and $149363 . t_{\text {dyn }}$ is about 50% greatex than $t_{\text {evol }}$ but the dynamical time is over-estimated as both stans have appreciable velocities away from the plane.

With proper motions taken into account IDD 156359, 195455, 204076

Table 15
Stars with dynamical are \geq evolutionary or main sequence lifetime

Stiar	$\begin{aligned} & z(B) \\ & z(S) \end{aligned}$	$W(\beta)$ $W(s)$	$\begin{gathered} W(\beta) \\ W(s) \\ +p, m . \end{gathered}$	$\begin{array}{r} (\text { milli } \\ t^{(\beta y n}(\mathrm{s}) \end{array}$	s of $t_{\text {ms }}$	$\begin{aligned} & \text { ears) } \\ & \text { tevol } \end{aligned}$	
93840							
B1 I	+0.89 kpe	-3 kn/s	+31 km/s	27		8	
97991	$+1.12$	$+14$	+150 *	30	20	15-20	
B. V	+1. 18	+22	+160 *	31			
$-72^{\circ} 1184$	-2.22	+47	-150	- 42	7		
BO III	-1. 84	+42	-110	33			
219069	+3.78	-18	-220	20	8-12		
B1 III	+0.89	-24	-130	18.			
149363	$+1.67$	$+64$	-1	18	7-12		
B0.5 III	$+0.88$	$+68$	$+34$	18			
$-74^{\circ} 1569$	-3.06	+20	-760	26	8	6	
09.5 V	-2.32	+18	-590	22			
156359	-6.17:	+33	--1900:	100:	5-7		
09 III	-2.35	-3	-700	17			
279407	-2.63	$+28$	+2600	22	5-8		
30.5 I:	--1. 59	$+37$	$+1600$	11:			
3.95455	-2.85	$+13$	-470	22	J. 3		
B0.5 III	--2.85:	+13	-470	22:			
204076	-3.54	$+19$	-440	27	20	12-17	
B1 V	-1.86	+12	-230	24			
214080	--1.56	-2	-17	27		10-12	
B.1. III	-1.18	-4	-15	26			
220172	-1.68	-22	$+20$	30	20	17	
B2 V	-0.92	-23	-1	28			

and CPD $-72^{\circ} 1184$ and $-74^{\circ} 1569$ all have high velocities in the right direction to drastically reduce $t_{\text {dyn }}$. W components are very uncertain for these stars, but would need to be only a fraction of the computed values to give the stars sufficient energy to reach observed distances from the plane in times comparable with evolutionary lifetimes. It follows that the proper motions could be too small to be observed at present and yet equivalent to quite large W-velocities.

For HD 93840, 119069 and 214080, the anomalous results for $t_{\text {evol }}$ and. $t_{\text {dyn }}$ can only be reconciled with the proposition that all early-type stars oxiginate near the plane by invoking large uncertainties in the computations. In the case of HD 214080, values of W for the possibilities considered are small and yet the dynamical age is two or three times the estimated age of the star. The computed values of W for HD 119069 have opposite sign to the z-distance, implying motion towards the plane, although if radial velocity is considered alone, the effect is small. The Bl supergiant, HD 93840, has $t_{d y n}>3 t_{\text {evol }}$. It is worth noting at this point that if $H D 93840$ was misclassified and is really, for example, a Bl giant, then it will be nearer the sun and nearer the galactic plane than the present estimate, consequently $t_{d y n}$ will be smaller. Also, if the star is less luminous than supposed, its lifetine $t_{\text {evol }}$ might we longer than estimated. In other words, apart from the possibility of errors in the methods of calculating lifetimes, there may be errors in the data which would affect the final results. It is hoped that the use of $H B$ photometry minimises exrors in absolute magnitudes and that errors in (B-V) are small, so that "input" exrors will not be comparable to uncertainties in the methods.

Of the stars in Table 15, HD 179407 has the largest annual proper motion:

$$
\mu_{\alpha}=-0 n .025 \pm 0 n .017 \quad \mu_{\delta}=+0 " .037 \pm 0 " .018
$$

If these are accepted and the absolute magnitude is not greatly in error, then the resultant space motions are extremely large. HD 179407 was classifjed $B 0.5$ I: from one c spectrum, based mainly on the presence of 0 II blends at 4317-20 and 4425-17 \AA and the compaxatively strong N II 3995 line. The Si IV line at 4089 i is approximately equal to Si IIT 4552. The NK-type implies an absolute visual magnitude of -6.2 according to the calibration by Blaauw (1.963). Four measurements of the B mindex gave $B=2.547 \pm 0.010(s . e$.$) equivalent b \mathrm{Mv}=\cdots 7.3 \pm 0.8$. The radial velocity of HD 179407 relative to the sun $i s-1.37 \pm 4 \mathrm{~km} / \mathrm{s}$ from only 2 plates. If the stellar velocity is not variable, it is rather unusual, being large and of opposite sign to that expected from a stax at $1=24^{\circ}$ involved in differential galactic rotation.

Taking $M_{v}=-6.2$ gives HD 279407 a distance of 8.8 kpc . With proper motions included, the components of the space motion are

$$
U=-380 \mathrm{~km} / \mathrm{s} \quad V=\psi 3.060 \mathrm{~km} / \mathrm{s} \quad W=+1600 \mathrm{~km} / \mathrm{s}
$$

which seem unreasonably large. Could the star be subluminous? the interstellar Ca II K-line in the spectrum of HD 179407 ja strong and sharper than the stellar lines. The Kmline velocily, $+17 \mathrm{~km} / \mathrm{s}$, when corrected for the solar motion relative to the local standand of rest, is consistent with absorption by material within one or two kilopersecs of the sun, involved in differential galactic rotation。 HD 178487 is less than 3° from 279407 and was classified BO I on this programme. The former star has a distance estimated at 5.4 kpc and reddening $\mathrm{E}_{\mathrm{B}-V}=0^{\mathrm{m}} \cdot 38$. HD 179407 is slightly less reddened, $\mathrm{E}_{\mathrm{B}-\mathrm{V}}=0^{\mathrm{m}}$. 28, but is 2° further from the plane and could still be more distant than HD 178487 provided most of the reddening occurs within about 200 pe of the plane. From the evidence of reddening and the intexstellar calcium line, it appears jmprobable that HD 179407 is subluminous: Could the star be Iess Iuminous than supposed? It is conceivable
that the MK-type is B1 III instead of BO.5 I. In this case, the absolute magnitude would be - 4.4 and components of the space motion are still extremely large:

$$
\mathrm{U}=-200 \mathrm{~km} / \mathrm{s} \quad \mathrm{~V}=+390 \mathrm{~km} / \mathrm{s} \quad W=+710 \mathrm{~km} / \mathrm{s}
$$

There seem to be two possibilities; either the proper motion components are in error or $H D 179407$ really is a very high velocity stam. In the latter case, the stellar motion is not compatiple with formation near the galactic plane.

To summarise; of the small sample of 41 stars with $z>500 \mathrm{po}$, twelve appear to have lifetimes too short to enable them to reach their. present distances from the plane. For the most part, the dynamical and evolutionary lifetimes can only be reconciled with star formation near the plane of the Calaxy by assuming the very uncertain proper motions to be correct or by assuming large systematic errors in the computed lifetimes. The latter assumption seems more justifiable than the former, since inclusion of proper motions leads to improbably large space motions in many instances. In the case of HD 179407 it does not seem likely that it could have originated in the galactic plane unless it is subluminous.

6. Star formation

For stars with $z>500 \mathrm{pc}$ and $t_{\text {dyn }} \lesssim t_{\text {evol }}$, the differences $\Delta t=t_{\text {evol }}-t_{d y n}$ were calculated and the mean Δt found to be

$$
\overline{\Delta t}=0.2 \pm 3 \quad \text { (27 stars) }
$$

which is effectively zero and implies that if these stars were ejected. from the plane, then this occurred shortly after formation. This result is reasonable, for if early-type stars are formed in expanding stellar associations then stars which reach appreciable distances from the plane could represent the high velocity "tail" of the velocity distribution. Along similar lines, can the stars in Table 15 be related to "run-away" stars? Blaauw (1961) supposed run-away stars to be
secondary components of proto-double stars, the primary of which underm went rapid and violent mass loss, releasing the secondary as a result of the suddenly diminishing gravitational attraction. Ihree of Blaauw's stars were in the present programme or previous high-latitude studies (Hill, 1970, 1971), HD 97991, 149363 and 157857; the first two are in Table 15. Blaauw was unable to link any of the three with known associations because of the uncertain proper motions. Similarly, other stars of this programme are generally too distant or have proper motions too indeterminate to permit connection with associations.

It has been shown that most of the intermediate and high latitude early-type stars can be considered to have formed in or neax the galactic plane and been ejected shortly after formation, probably by notions originating in expanding stellar associations, possibly by more violent phenomena such as explosion of the primary of a binary system. The formation of young stars jis usually connected with OB-associations, open clusters and the concentrations of gas and dust in the plane of the Galaxy. but the possibility of star formation away from the plane should be considered. In the noxthern hemisphere, Kepner (1970) has show that the neutral hydrogen appears to extend vertically from the plane for up to 2 kpc . Isserstedt (1968a) has described stellar rings, apparently elliptical aggregates of young stars, presumed to be projections on to the celestial sphere of star groups in the form of ellipsoidal or spheroidal shells. According to Isserstedt (1968a, b), stellar rings exist in numbers to more than 1 kpc from the plane and for $\mathrm{z}<1 \mathrm{kpc}$ are useful spiral tracers. Schmidt-Kaler (1968a) investigated the reality of rings and found that up to 25% may be chance configurations but the majority are probably real. He considers them to originate in shock fronts produced by H II regions around high-luminosity stars such as P Cygni or Wols--Rayet stars; the latter
have been obsexved at more than 1 kpc from the plane in distant regions (Smith, 1968). It is difficult to imagine how a spheroidally distributed. group of stars could remain recognisable for very longi Isserstedt (1968a) gives 5×10^{5} to 2×10^{6} years for xing lifetimes, hence the disintegration of stellar rings could be a mechanism for producing early-type stans at appreciable distances from the plane. Very earliy spectral types do ocour in stellar rings, for example the 0-ring in Centaurus (Schmidt-Kaler, 1968b), but until rings at higher latitudes are observed in detajl, direct comparisons are not in order. Furthermore, it should be noted that some doubt has been cast upon the reality of stellar rings, for example, Crampton and Byl (1971) have demonstrated that stars of the Orion ring are indistinguishable from field staw in the regjon, and have shown the Aquila ring to be the effect of a chance projection of stars. rhus the possibility that rings are a source of early-type stars must, for the present, be considered a rather speculative hypothesis.

KINEMAPTCS AND HXGH VEIOCIPY STARS

1. Radial velocities

Radial velocities of programne stars are plotted in fig. 26 after correction for the solar motion relative to the local standaxd of rest and multiplication by $\cos \mathrm{b}$ to give the component of the radjal velocity parallel to the Gelactic plane. The solar motion used was that determined by Feast and Shuttleworth (1965). Excluded from fig. 26 are stars with "probable" velocity variation; possible variables are included but denoted by open circl.es. Some of the stars may be subluminous, for example, Hill (1968) has suggested HD 125924 is a hot sukdwarf. Curves are theoretical deteminations of the effect of differential galactic rotation on radial velocities of stars situated 2 and 5 kpo from the sun.

It would appear that the velocities of many of the stars in fig. 26 are at least partly a result of differential rotation of the Galaxy. There is undoubtedly considerable scatter in the diagram due to peculiar motions, as might be expected if the stars are supposed to oxiginate near the plane. Between latitudes 320° and 360° and particularly around $1=350^{\circ}$, an appreciable number of stars have posibive radial velocities where negative velocities are expected. The effect is not apparent for $1>0^{\circ}$. Admittediy the survey is not complete but there is a reasonable sample of stars in the range $0^{\circ}<1<25^{\circ}$ and very few have unusual velocities.

In fig. 27 are plotted the radial velocities from fig. 26 corrected for differential galactic rotation. Stellar distances for the correction were deternined from β--index absolute magnitudes where

Fig. 26 Radial velocities of programme stars relative to the local standard of rest. Open circles indicate possible velocity variables. Solid curves represent the expected effect of differential galactic rotation on velocities of stars at 2 and 5 kiloparsecs from the Sun. Star numbers are from the $H D$ and CPD catalogues.

Fig. 27 Radial velocities of programme stars corrected for the effect of differential galactic rotation. Possible velocity variables are excluded and half filled circles indicate stars for which the correction is uncertain.
available and only constant velocity staxs are included. Half filled circles represent stars for which the correction is uncertain. For HD 156359 and 177566 absolute magnitudes were taken from NK types rather than B-indices because the latter result in somewhat improbable distance determinations (fig. 24). Helium stiar IID 168476 was exoluded because of the uncertainty of its absolute magnitude. Most of the stars represented in fig. 27 have corrected radial velocities smaller than $40 \mathrm{~km} / \mathrm{s}$; for these the mean corrected velocity is $+1 \pm 19 \mathrm{~km} / \mathrm{s}$. High velocity stars may be considered to be those in the range $60<\mid$ velocity $\mid<160 \mathrm{~km} / \mathrm{s}$, though there are a few stars with very high velocities outside this range. Considering the available spectra, almost all high velocity stars show constant radial velocity, consistent with the low percentage of binaries observed by Blaauw (1961) in his analysis of run-away stars and attributed to the origin of these stars in disxupted binary systems.

Returning to a point made above, in both fig. 26 and 27 can be seen a tendency for stars between $1=340^{\circ}$ and 360° to have positive radial velocities. This effect may be related to similar observations by various authors investigating the radial velocities of interstellan Ca II and H II emission regions and has been ascribed to deviations from circular motion in the -I or Sagitarrjus arm. Courtès (1967) has summarised the data. Only about half the programe stars in the range $340^{\circ}<1<360^{\circ}$ have estimated distances such that they can be reasonably related to the -I arm so the effect, if real, may be more widespread. Radial velocities of interstellar Ca II lines will be discussed in the next chapter.

2. Space motions

The method used to determine space motions of stars has been described in detail in Appendix II. UVW components of the space motion
were computed for all stars which had not been found to have variable radial velocity. Initially, space motions were calculated from radial velocities alone, because for most distant early-type stars proper motions are not significantly different from zexo. Then space motions, including proper motions, were calculated for stars which had at least one component of the proper motion significant at the 2σ level, that is either $\mu_{\alpha} \geqslant 2 \sigma_{\alpha}$ or $\mu_{\delta} \geqslant 2 \sigma_{\delta}$ or both, where σ is the standard deviation of the measurement in question. The results are presented graphically in fig. 28. U and V are components of the space motion towaxds the galactio centre and in the direction of galactic rotation respectively. The solid circle centred on the local standard of rest has a radius of $65 \mathrm{~km} / \mathrm{s}$ and the broken arc has a radius of $365 \mathrm{~km} / \mathrm{s}$. These are reproduced from early work by Oort (2928); no stars had been located outside the axc and it was thought that this represented the velocity of escape from the Galaxy, in the solar neighbourhood. The circular velocity at the sun's galactocentric distance of 10 kpc is generally accepted to be about $250 \mathrm{~km} / \mathrm{s}$, implying an escape velocity in the direction of rotation of $315 \mathrm{~km} / \mathrm{s}$. At the present time it is considered that stars with velocities of this order move out as far as a "boundary" of the Galaxy at roughly 24 kpc from the centre (Schrnidt, 1965) but do not escape. Schmidt calculates the escape velocity near the sun to be about $380 \mathrm{~km} / \mathrm{s}$ and this limit will be adopted in following discussions on high velocity stars. In fig. 28, filled circles represent space motions computed from radial velocities aione; filled squares, motions computed from redial velocities plus proper motions. The cross at $U=+1.0 \mathrm{~km} / \mathrm{s}, \mathrm{V}=+13 \mathrm{~km} / \mathrm{s}$ represerts the solar motion relative to the local standard of rest. In each case, U, V notions were calculated with B-index absolute magnitudes where possible. Connected to many of the high velocity stax points in

Fig. 28 Programme stars in the U,V plane. See text for discussion.
fig, 28 are straight lines which indicate the difference in results when absolute magnjitudes are taken from the Blaauw (1963) calibration of MK-types. Many of the stars with significant proper motions had U, V components too large to fit into fig. 28 and are included in table 16 which listis stars with velocities greater than $\left(U^{2}+V^{2}\right)^{\frac{1}{2}}=65 \mathrm{~km} / \mathrm{s}$. References in Table 16 are to Smithsonian and Yale catalogues, as in Table 9.

For the majoxity of programme stars, only radial velocities were considered, hence the distribution in the U, V plane is dependent on galactic longitude. Line AA in fig. 28 corresponds to stars with $1 \simeq 300^{\circ}$ and line $B B$ is equivalent to $1 \simeq 25^{\circ}$. Nearly all programne stars were within these longitude limjits and cannot, therefore, be considered to be a representative sample for the purposes of statistical kinematics. It would, for example, be meaningless to fit a velocity ellipsoid to the data,

3. High velocity stars

For convenience of discussion, high velocity stars can be divided into three grcups; stars with high radial velocity and relatively laxge proper motion, staxs with high radial velocity but insignificant proper motion and stars with significant proper motion and low radial velocity. Because the progranme stars are mostly distant early-type stars, i.t might be expected that they would have very sma.ll proper motions although the corresponding tangential velocities could be quite laxge. A list of high velocity programme stars was compiled and inciuded the eleven proper motion stars of Table 16 , four of which have large xadial velocities, and fourteen stars with radial velocities greater than $60 \mathrm{~km} / \mathrm{s}$ after correction for differential galactic rotation (see fig. 27). A selection of the more interesting of these staxs will be considered in some detail after a few general notes.

Table 16

High space velocities from proper motions and radial velocities

Star.	$\begin{gathered} \mu_{\alpha} \\ \left(0^{14} .001\right) \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \left(0^{\prime \prime} .001\right) \end{gathered}$	Ref.	(NV_{v} from β-index)			(M_{V} from MK-type)		
					$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{V}}$	N		$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{V}}$	It
97991	$+22 \pm 9$	$+22 \pm 8$	S	$+62$	$+163$	+156	$+65$	$+170$	+162
108769	-55 ± 21	-19 ± 21	S						
	-2.5	-20	Y						
Mean	-40	-20		-199	-168	-175	--162	-126	-144
312491	$+30 \pm 2.4$	-27 ± 14	S	$+230$	+125	-220	$+24.5$	$+130$	--230
11.6538	-49 ± 15	$+25 \pm 11$	S				--255	-85	$+170$
125924	$+27 \pm 12$	-36 ± 1.2	S	$+806$	-217	-365	+748	-205	-315
137595	-28 ± 14	-33 ± 11	S						
	-24	-19	Y						
Nean	-26	-26		$+55$	-265	+11.	+96	-127	+33
158111	-40 ± 7	-16 ± 17	S	-35	-62	+54	-44	-107	+86
172533	--1 ± 18	-56 ± 18	S	-2	-348	-152	-5	-254	-2.09
179407	-25 ± 27	$+37 \pm 18$	S	-498	+1920	+2640	-385	$+1060$	$+1600$
187536	$+12 \pm 20$	$+59 \pm 17$	S	-319	$+.1760$	+200	--140	+870	+95
220787	$+7 \pm 15$	$+50 \pm 27$	S	-238	+325	$+70$	-141	+194	+32

High velocity objects of the present study show a fairly strong concentration towards the galactic plane, typical of early-type stars. Eighteen out of twenty-six lie between $|\mathrm{b}|=7^{\circ}$, the lower limit of the survey, and $|3|=21^{\circ}$. Apart from this concentration towards the plane, the sky distribution seems to be random.

Figure 29 is the two-colour diagram for high velocity stars. The intrinsic colour line for class V unreddened stars is included, together with approximate reddening lines for $B O$ and $B 1$ main sequence stiars. By colour, the stars are mainly $30-\mathrm{Bl}$ spectral types with 0.07 to 0.45 magnitudes of extinction in (B-V), plus a fow later types with $\mathrm{B}_{\mathrm{B}-\mathrm{V}}<$ 0^{m}.2. Comparing colours with spectral types, it is found that the stars are systematically bluer than the spectral types suggest. In other words, if spectral type S_{Q} (Johnson and Morgan, 1953) is derived from the colours, then for 22 class III -V stars, S_{Q} is systematically earlier than the visually determined spectral type by one subdivision. This effect was discussed in III. 6 and is not restricted to high velocity stars.
(a) Stars with large radial velocity and proper motion

Four stars fall into this category; HD 214539, a subluminous B9p star, according to Thackeray (1962); HD 125924, suggested by Hill (1968) to be a possible subdwarf; HD 137595 and 179407. The first two stars have been discussed by other authors; HD 137595 has a radial velocity of $+131 \mathrm{~km} / \mathrm{s}$ but this may be vaxiable (Hill, 1971).

HD 172407 was considered in VI. 5 where it was concluded that the star was unlikely to be greatly underluminous because of the strans interstellar Ca II line and the fact that the stax is reddened by $0^{m} .3$ in (B-V). The proper motion components convert into extremely large space motions if the absolute magnitudes suggested by Bajndex and MK-type are correct. In addition, the radial velocity, $-125 \mathrm{~km} / \mathrm{s}$,

Fig. 29 Two-colour diagram for high velocity stars. The intrinsic colour line for class V stars and approximate reddening lines for BO V and B1 V stars are sketched. Filled circles denote stars with high radial velocity; crosses indicate large proper motion stars.
is unusual for a noxmal population I star at $I=24^{\circ}$. An ultra violet spectrum showing the confluence of the Balmer sexies in this star would be useful and might determine whether on not it is subluminous.
(b) High radial velocity starg

CPD $-72^{\circ} 1184$ is, in tems of kinematic properties, one of the most interesting stars observed. Classified BO ITI from 19'7l spectra, the star has a radial velocity of $-217 \pm 5 \mathrm{~km} /$ from four plates with $86 \AA / \mathrm{mm}$ at $\mathrm{H} \gamma$. The proper motion is not significant and the B-jndex is equivalent to $M_{v}=-5.4 \pm 0.6$ in moderately good agreement with the $M K$-type which gives $M_{v}=-5.0$. These values of absolute magnitude yield distances of 11.7 and 9.75 kpo xespectively. Projected on to the galactic plane this locates the star near the Gaxina spiral feature (Bok et al., 1970) but with a latitude $b=-10^{\circ} .9$, CPD $-72^{\circ} 2184$ will be approximately 2 kpc from the plane.

HD 109399 and CPD $-7^{\circ} 1184$ have an angular separotion of less than 2°. The former has an MK.type of B1 Ib (Morgan, Code and Whitford, 1955), an estimated distance of 3.7 kpc and hence is 0.6 kpc from the galactic plane. The colour excess of HD 109399, $\mathrm{H}_{\beta \mathrm{KW}}=0^{\mathrm{m}} .18$, compared with $0^{\text {In }} .23$ for CPD -72° 1184, suggests that the latter star is more distent, particularly since it has a higher latitude. It is therefore unlikely that CPD $-72^{\circ} 1184$ is greatly underluminous.

Space motion components U, V and W were computed from the radial velocity of $\mathrm{CPD}-72^{\circ} 1184$ for a range of absolute magnitudes $-5.4 \leqslant$ $M_{v} \leqslant+3$. Gases plotted in fig. 28 are $M_{v}=-5.4$ and -5.0 , however, in no instance was the component V, in the direction of galactic rotaticn, less than $+160 \mathrm{~km} / \mathrm{s}$, a velocity which is improbable for a subdwarf. Combining this with a circular velocity of $250 \mathrm{~km} / \mathrm{s}$ at the sun's distance from the galactic centre gives CPD $-72^{\circ} 1184$ a velocity $V^{\prime}=410 \mathrm{kn} / \mathrm{s}$ in a frame of reference at rest relative to the galactio
centre. V 'is greater than the estimated velocity of escape from the Galaxy in the solax neighbourhood, $380 \mathrm{kn} / \mathrm{s}$ (Schmidt, 1965). The computation may seem unrealistic since CPD -72° 1184. is apparently very far away from the sun, but at a galactic longitude $I=299^{\circ}$, the star cannot be nearer the galactic centre than 8.7 kpc whatever value is assumed for the absolute magnitude, and at 9.75 kpc , CPD $-72^{\circ} 11.84$ would have a galactocentric distance of 9.9 kpc . Hence the above discussion is reasonable provided there are no significant, deviations from symnetry about the axis of rotation of the Galaxy.

In summary, the reddening and high positive velocity in the direction of galactic rotation suggest that CPD $-72^{\circ} 1184$ iss a luminous star rather than a subdwarf. It is a stax which may have sufficient kinetic energy to escape from the Galaxy.

HD 112069 and CPD $-69^{\circ} 2055$ have certain similarities and are discussed together. Some relevant data axe reproduced below:

	l	b	MK type	Rad. veloci.ty
CPD $-69^{\circ} 2055$	$311^{\circ} .16$	$-8^{\circ} .83$	B2 IIII	$-130 \mathrm{~km} / \mathrm{s}$
HD 119069	$312^{\circ} .06$	$+16^{\circ} .12$	B1 III	$-126 \mathrm{~km} / \mathrm{s}$

The proper motions axe small but both staxs must have appreciable tangential velocities to have reached their present locations. Velocity and MK-type of HD 119069 are by Hill (1971), the same dota for CPD - $69^{\circ} 2055$ are from two 1971 spectra. Neither star appears to have vaxiable velocity or variable UBVB; both stars are included in the U, V diagram (fig 28). The similarities in longitude, radial velocity and spectral type are striking. Distances wexe computed with the following results:

	β	n	Dist (B)	Dist (s)
CPD -. $69^{\circ} 2055$	2.555 ± 0.011 (s.e. $)$	6	$14 \pm 5 \mathrm{kpc}$	3.2 kpc
HD 2.1 .9069	2.579 ± 0.010 (s, e.)	4	4.8 ± 1.4	3.2

n is the number of separate measurements in each mean B-index. A spectral type error of one subdivision either way will lead to errors in the absolute magnitudes of about $\pm 0^{m} .5$, equivalent to approximately $\pm 0.8 \mathrm{kpo}$ in distance. Thus the MK-iype distances are identical and it may be that CPIJ $-69^{\circ} 2055$ and HD 11.9069 are related, possibly originating in the same stellar aggregate and deriving their velocities from some event ten to twenty million years ago.

CPD $-74^{\circ} 1569$, classified 09.5 V and with a radial velocity of - $123 \mathrm{~km} / \mathrm{s}$ from four 1971. plates ($89 \mathrm{~K} / \mathrm{mm}$), has a galactic latitude of -18.68. Spectroscopic and photometric distances axe 7.2 and 9.6 1ppo respectively, implying a distance from the galactic plane of 2.3 to 3 kpc. Differential galactic rotation will account for about half the observed radial velocity. In VI. 5 it was found that the distance of CPD $-74^{\circ} 1569$ from the plane was not compatible with the short lifetjme of an 09.5 V star unless the star had an appreciable W-relocity. Using estimated distances for CPD -74° 2569, it can be shown that vexy small proper motion components are equivalent to large space velooities. For example, the Yale data (Lu, 1971)

$$
\mu_{\alpha}=+0^{\prime \prime} .006 \quad \mu_{\delta}=-0^{\prime \prime} .008
$$

combined with distances of $7-9 \mathrm{kpo}$ give values of W in excess of $-200 \mathrm{~km} / \mathrm{s}$.

The extinction in ($B-V$) is only $0^{m} .14$ which is rather small for a distant star; the intersteilar K-line is present but not particulariy strong. The possibility that CPD $-74^{\circ} 1569$ is subluminous cannot be ruled out but in any case the star would appeax to be worth further study.

HD 177566 has been classified. B 1 III and has a radial velocity of $-131 \mathrm{~km} / \mathrm{s}$ (Hill, 1971). The B-index, based on only two measurenents, gives an extremely laxge estimate for the distance which is almost
certainly incorrect. Adopting the MK-type gives a spectroscopic distance of 7.4 kpc , locating the star 2.6 kpc from the galactic plane in the region of the 3 kpc "expanding" axm. No proper motion determination was found in the literature, probably because the star is faint $\left(V=10^{\mathrm{m}} .2\right)$. The galactic longitude is $1=355^{\circ} .6$ so that galactic rotation can account for only a small part of the observed velocity of HD 177566.

HD 178487 at galactic longitude $25^{\circ} .8$, has a velocity $-55 \pm 2 \mathrm{~km} / \mathrm{s}$, equal and opposite to that expected from the effect of differential galactic rotation at the estimated distance of the star. HD 3.78487 was classified B0.5 I from three plates at $49 \AA / \mathrm{mm}$. This is rather high dispersion for classification purposes but absolutie marnitudes from MK-type and B-index agree quite well. Spectroscopic and photom metric distance estimates are 5.36 and 5.11 kpc respectively, putting HD 178487 about 800 parsecs from the plane. The extinction in (B-V) is $0^{m} .38$ and there is no reason to suppose that the stax is subluminous; it appears to be an early-type run-away star.

(c) Large proper motion stars

HD 27921 is a high latjitude star included in the list of munaway stars published by Blaauw (1961), who computed a total space velocity of $-156 \mathrm{~km} / \mathrm{s}$ for the stax. A higher value, $-230 \mathrm{~km} / \mathrm{s}$, was obtained in the present analysis due to use of a slightly different absolute magnitude. Hill (1970) classixied HD 97991 as B I V, equivalent to an absolute magnitude of -3.6 , in good agreement with the $H ß$ result, $M_{v}=-3.5 \pm 0.2$. The latter result gives a distance of 1.4 kpe from the sun and 1.1 kpc from the galaotic plane. From the smithsonain Star Catalogue, the proper motions are:

$$
\mu_{\alpha}=+0^{\prime \prime} .022 \pm 0^{\prime \prime} .009 \quad \mu_{\delta}=40^{\prime \prime} .022 \pm 0^{\prime \prime} .008
$$

which seem quite significant. Plaskett and Pearce (293i) found the
radial velocity to be $-23.5 \pm 0.6 \mathrm{~km} / \mathrm{s}$. Combining the various results, the space motions were found to be:

$$
U=+62 \mathrm{~km} / \mathrm{s} \quad V=+163 \mathrm{~km} / \mathrm{s} \quad U=+156 \mathrm{~km} / \mathrm{s}
$$

A large, positive W-component is necessary if HD 97993 is supposed to have originated near the plane of the Galaxy. Referring back to the discussion of CPD $-72^{\circ} 1184$, it can be seen that HD 97991 has a similax V-component and so should be regarded as a potential "escope velocity" ster. At latitude $262^{\circ} .3$ and an estimated distance of 1.4 kpc , HD 97991 will be approximately 10 kpc from the galactic centre.

HD 112491 has a velocity $-27 \pm 3 \mathrm{~km} / \mathrm{s}$ from two plates at $49 \AA / \mathrm{mm}$ and one at $86 \mathrm{~K} / \mathrm{mm}$. It was classified. B 2 V , equivalent to an absolute magnitude of -2.5 , and the B-index gives $M_{v}=-2.4 \pm 0.2$. Both are equivalent to a distance of approximately 1.7 kpc . Smithsonian proper motions are

$$
\mu_{\alpha}=+0^{11} .030 \pm 0.014 \quad \mu_{\delta}=-011.027 \pm 01.024
$$

which give

$$
U=+230 \mathrm{~km} / \mathrm{s} \quad \mathrm{~V}=+125 \mathrm{kn} / \mathrm{s} \quad \mathrm{~W}=-220 \mathrm{~km} / \mathrm{s}
$$

and a total space motion of $350 \mathrm{kn} / \mathrm{s}$. The large W -component is motion towards the plane, as $H D 2124.91$ has a positive galactic latitude. The star may have originated in one of two clusters in the region sketched in fig. 30. Tracing the probable path of HD 112491 and assuming it to have had a constant velocity, it would have taken approximately helf a million years to reach its present position from cluster Ruprecht 106 and about two million years from NGC 3680. The "Catalogue of star clusters and associations" (Alter et ail., 1970) gives no information for the distance of Ru 106. Stars in this cluster are reported to be fainter than 15^{m}, so if Ru 106 were at comparable distance to HD 112491, the cluster stars would be about FO and later. Several distance estimates are available for NGC 3680 , the maxjmum being

FIg. 30 The proper motion of HD 112491. Approximate kinematical ages of the star relative to clusters
NGC 3680 and Ru 106 are shown.
1.7 kpc , although a recent detexmination indicates a smaller value. No spectral information is available for NGC 3680 but the cluster stars are 10th to 1.4 th magnitude, closer than Ru 106 to the apparent magnitude of $H D 21.2491(V=9.2)$.

If HD 1124.91 did originate in one of these cluster, the cluster will have moved since the event which produced the run-away star. This cannot be taken into consideration without more data on the cluster, however, the effect of differential galactic rotation will be small compared with the uncertainty in the stellar proper motion.

HD 13.6538 was classified B2 IVn by Hill (1971) who also determined its radial velocity as $-74 \mathrm{~km} / \mathrm{s}$. The Smithsonian Stax Catalogue gives proper motions:

$$
\mu_{\alpha}=-0^{\prime \prime} .049 \pm 0^{\prime \prime} .015 \quad \mu_{\delta}=+0^{\prime \prime} .025 \pm 0^{\prime \prime} .011
$$

At an estimated distance of 1.3 kpc , the correction for differential galactio rotation reduces the radial velocity to $-58 \mathrm{~km} / \mathrm{s}$ and the proper motion in R.A. to -0".046. Computed space motions are

$$
U=-255 \mathrm{~km} / \mathrm{s} \quad V=-85 \mathrm{~km} / \mathrm{s} \quad W=+170 \mathrm{~km} / \mathrm{s}
$$

Sketching a probable path of KD 126538 from the vicinity of the galactic plane indicates several possible clusters of origin but no particularly outstanding possibility.

HD 187536 has an absolute magnitude of -5.1 ± 0.6 from the $H B$ measurements and was classified B2 III (Hill, 1971) equivalent to $M_{v}=-3.6$. Adopting the smaller of these values, the resulting distance of 3.1 kpc when combined with proper motion components

$$
\mu_{\alpha}=+0^{\prime \prime} .012 \pm 0^{\prime \prime} .020 \quad \mu_{\delta}=+0^{\prime \prime} .059 \pm 0^{\prime \prime} .017
$$

gives

$$
\mathrm{U}=-3.40 \mathrm{~km} / \mathrm{s} \quad \mathrm{~V}=+870 \mathrm{~km} / \mathrm{s} \quad \mathrm{~W}=+95 \mathrm{kn} / \mathrm{s}
$$

and a total space motion of almost $900 \mathrm{~km} / \mathrm{s}$. HD 187536 could be subluminous, but the fact that radial velocity and proper motion in
R.A. are normal for an early-type star may indicate that a sizeable error exists in μ_{g} in this case.

HD 220787, was classified B3 V from 1971 spectra and B3 III by Hill (197J). The $\beta \rightarrow i n d e x$ is equivalent to an absolute magnitude of -2.8 ± 0.2 which agrees well with the latter classification. Proper motion components from the Saithsonian Star Catalogue are

$$
\mu_{\alpha}=+0^{\prime \prime} .007 \pm 0^{\prime \prime} .015 \quad \mu_{\delta}=+0^{\prime \prime} .050 \pm 0^{\prime \prime} .017
$$

Assuming $M_{v}=-2.8$ we obtain a distance of 1.6 kpc and

$$
\mathrm{U}=-240 \mathrm{~km} / \mathrm{s} \quad \mathrm{~V}=+315 \mathrm{~km} / \mathrm{s} \quad \mathrm{~V}=+70 \mathrm{~km} / \mathrm{s}
$$

The large, positive V-component may give HD 220787 sufficient energy to escape from the Galaxy if the proper motion is reilable. In this respect the star is similax to HD .287536 ; for both stars the space motion components are largely dependent upon μ_{δ}.

HD 220787 has a galactic latitude $b=-64^{\circ} .4$ and is estimated to be 1.4 kpe from the galactic plane. Kinematical and evolutionaxy lifetimes of the star, computed as in VI.5, are roughly equal and indicate ejection from the plane some 30 million years ago.

4. Helium stars

In a private communication to Dr. Hill, Bidelman described. CPD $-69^{\circ} 2698$ as having strong helium lines. The star had already been included in the internediate latitude programe and three specira were obtained. Balmer lines of hydrogen in the spectirum of CPD $-69^{\circ} 2698$ are comparable with those of CPD -69° 2055, classified B2 III on the present programme. The helium lines are much stronger in the former star. Relative intensities of pairs of helium lines in the spectra of CPD $-69^{\circ} 2698$ suggest luminosity class III or V. The B-index is equivalent to $M_{v}=-3.9$, in moderate agreement with MK-type B2 III although the uncertainty in the luminosity of a peculiar stan such as this will be large. The mean radial velocity, $-63 \mathrm{~km} / \mathrm{s}$, does not appear
to be variable and, at an estimated distance of 3 kpc , two thirds of the velocity would be attributable to differential galactic rotation.

The helium stax HD 168476, discovered by Thackeray (1954) and investigated in detail by Hill (1964, 1965a, b, 1969a), has no recorded hydrogen lines. Thackeray (1954) reported a radial velocity $-165.0 \pm$ $0.8 \mathrm{~km} / \mathrm{s}$ from 21 plates and noted some relatively small variations in velocity which, if real, could not be attributable to a regular fluctuation with a period in excess of one day. Single plates of HD 168476 were taken in June and Juiy, 1971. In August, one plate was obtained on the 3 rd and one on the 5 th ; on the 4 th , six spectra were taken, alternated with spectra of a radial velocity standard stiar HD 157457 (ßvans et al., 1959). No systenatic variation in radiad. velocity was established from these plates and j.t seems likely that any variation must be irregular. The total range of velocities was about $7 \mathrm{~km} / \mathrm{s}$ for the August 4 th plates. For all spectra obtained in 1971, the mean velocity of HD 168476 was calculated to be -170.1 ± 2.2 (s.e.) km / s from ten plates.

CHAPITER VIIII

INTHERSTMELIAR MATYMER

1. Ca II radial velocities

Radial velocities relative to the sun of interstellar Ca II lines from spectra of 127 intermediate and high latitude stars are plotted in fig. 31. This diagram contains the Ca II velocity data listed in Table 8 with the exception of spectra in which the K-line was judged. to be stellar or greatly affected by stellar absorption lines. In a very few cases it was possible to measure the H-line, in helium stars and sharp-line supergiants for example, but the greater part of the results depend on K --line velocities alone.

Mean results for the Ca II velocities are illustrated in fig. 32. The velocities were averaged for 10° intervals and represented by a filled circle in the centre of each longitude interval. No attempt was made to average longitude but comparison with fig. 31 shows that taking the midupoint of each interval is a good approximation in nearly every case. Small circles are means of three data points or less. Error bars indicate the size of the standaxd error of the mean and absence of error bars inplies representation of only one data point. Curves represent the computed effect of differential galactic rotation a.t 0.5 and 1 kpc ; most of the mean Ca II points lie between these two curves. This result might be expected for, considering that the programme stars have $|b|>7^{\circ}$ and assuming the Ca II gas to be concentrated towards the plane, the greater part of the absorption will occur within roughly 2 kpc of the sun, even for very distant stars. The Ca II velocities are then integrations of velocities between 0 and 2 kpc of the sun with a probable mean velocity somewhere under I kpc.
km / s

Fig. 31 Radial velocities of interstellar Ca II K-lines.

Fig. 32 Ca IT velocities averaged over 10° intervals. Error bars indicate the size of standard errors.

Mean points between $1=30^{\circ}$ and 70° are based on few spectra, mostily of high latitude stars, and are therefore of low weight.

Between $\lambda=330^{\circ}$ and 0° the mean points appear to be systematically more positive than expected, an effect which was also observed in the stellar velocities (VII.1) and in a study by Cruvellier (1967) of radial velocities of H II regions. Cruvellier suggests three possible causes of the anomalous velocities. First, that some of the H II regions do not have circular oxbits axound the galactic centre; the present work shows that if this jis the case then a percentage of stars and the Ca TI gas also have non-circular motions. The second hypothesis is that the local arm, including the sun, has a net movement away from the galactic centre. Against this, as Cruvellier points out, there is no equal and opposite effect observed for velocities of H II regions in the anticentre direction. Furthermore, velocities of Ca 1 II between $1=0^{\circ}$ and 30° are more or less as expected for local material involved in differential galactic rotation, whereas if the sun were moving away from the galactic centre, the systematic effect observed between $1=330^{\circ}$ and 360°. should also be present for $0^{\circ}<1<30^{\circ}$. The third possibility is that part of the Sagittarius (-I) arm is moving towards the galactic centre. A comment was made in VII. 1 to the effect that only half of the total number of programme stars with positive velocities and $330^{\circ}<1$ $<360^{\circ}$ could be related to the -I arm. However, nearly all these stars lie between the near edge of the $-I$ axm and the distant edge of the $-I I$ arm, as sketched in fig. 20. If there were an inter-arm connection of some kind between the -I and --II arms with a velocity component towaiais the galactic centre, then this aight explain the apparent superposition of "normal" and systematically positive velocities suggested by fig. 18 of Cruvellier (1967) and supported by fig. 31 of this dissertation. The H II regions observed by Cruvellier are mostly vexy close to
the galactic plane whereas the programe stars at 1 to 2 kpc from the Sun will be approxinately 200 to 500 pe from the plane. Hence, in the region $330^{\circ}<1<360^{\circ}$, it appeaxs that abnomal velocities of planar objects, in this case H II regions, are reflected by velocities of staxs with $z>200 \mathrm{pc}$ and intermediate latitude Ca II veloojities. Feast and Thackeray (1958) analysed early Radcliffe radial velocities, considering stars and Ca II lines divided into groups based on distance from the sun, r. The effect of systematically positive velocities is only suggested in one diagram, that for Ca IJ velocities in spectra of stars with $1 \leqslant r<2 \mathrm{kpc}$, but i.t is noticeable that in the Radeliffe analysis there tend to be few spectra of stars in the longitude range under discussion.

2. The cosecant equation of reddening

From the programine star photometry can be derived a measure of the vertical height of reddening material near the sun and the constant of proportionality in the cosecant representation of reddening. Abt and Golson (1962) approximate the density distribution of scattering material to that of a gas in hydrostatic equilibrium and obtain

$$
E_{B-V}=\alpha \operatorname{cosec} b\left(1-e^{\frac{-z}{\tilde{h}}}\right)
$$

where b and z are galactic latitude and distance from the plane of a given star and h is the scale height of the scattering material. An estimate of h can be made in the following way. Consider stars at the same non-zero latitude but different distances from the sun. As distance increases, $\mathrm{E}_{\mathrm{B}-\mathrm{V}}$ will increase, rapidly at first but tending to flatten out as the density of material approaches that of intergalactic space. A plot of $\mathrm{F}_{\mathrm{B}-\mathrm{V}}$ against distance should enable a crude estimate to be made of the thickness of the reddening layer. Colour excesses of programe stars were plotted against z-distances for various
latitude ranges; fig. 33 illustrates the 8° to 9° range. All results are listed in Table 17 together with the number of stars in each range.

Table 17

Estimates of the height of the reddening layer

Latitude range	Height	n
$7^{\circ} \leqslant \mathrm{b}<8^{\circ}$	175 pc	14
$8^{\circ} \leqslant \mathrm{b}<9^{\circ}$	200	23
$9^{\circ} \leqslant \mathrm{b}<10^{\circ}$	$250:$	14
$10^{\circ} \leqslant \mathrm{b}<37^{\circ}$	1.90	16
$11^{\circ} \leqslant \mathrm{b}<13^{\circ}$	21.0	15
$13^{\circ} \leqslant \mathrm{b}<17^{\circ}$	200	21

The unweighted mean of these results is 204 ± 10 (s.e.) parseos which compares moderately well with $\mathrm{h}=187 \mathrm{pc}$ obtained by Abt and Gol.son (1962) for the scale height of the soattering layer. A value $\mathrm{h}=200 \mathrm{pc}$ was adopted for the cosecant equation. For each programe star, a determination of α can now be made since, for a given star, b is known, $\mathrm{E}_{\mathrm{B}-\mathrm{V}}$ has been derived and z can be computed from stellax distances. Initially, \propto was calculated for stars in latitude zones similar to those of Table 17. No latitude dependence was apparent so the analysj.s was repeated for all stars, segregated into northern and southern galactic hemispheres, with the following results:

$$
\begin{array}{lll}
b>0 & \alpha=0.062 \pm 0.005 \text { (s.e.) } & 53 \text { stars } \\
b<0 & \alpha=0.051 \pm 0.003 & 97 \text { stars }
\end{array}
$$

Hill and Hill (1966) obtained $\alpha=0.049$ for faint blue stars at high negative latitudes and Abt and Golson (1962) derived $\alpha=0.057$ using stars near the north celestial pole. These results, together with the present analysis, sufgest there may be a difference between values of α in the two henispheres. The constant α represents the colour excess at the galactic poles (cosec $b=1$) and the difference could be

Fig. 33 Colour excess against distance from the gelactic plane for stars with $7^{\circ} \leqslant b<8^{\circ}$
Open circles represent negative latitude stars; filled circles, positive latitude stars.
explained by assuming the Sun to be slightly below the median plane of the scattering material. Gum, Kers and Westerhout (1960) have detexmined the distance of the Sun from the plane of the Galaxy to be $z_{0}=+4 \pm 12 \mathrm{pc}$, which is small and in the opposite sense to that expected from the evidence of stellar reddening presented above. Gum et al. used the distribution of neutral hydrogen to derive z_{0}, so the hypothesis that an appreciable solar z-distance causes the observed difference in α for northern and southern galactic hemispheres must be discarded unless there is a systematic difference in the distribution of gas and dust. A possible cause of the different results for α is thet the interstellar medium does not have a smooth distribution. Examination of the $\mathrm{E}_{\mathrm{B}-\mathrm{V}} / \mathrm{z}$ diagrams revealed that a few stars seemed to be more reddened thars the general sample. There are nine progranme stans with $\mathrm{E}_{\mathrm{B}-\mathrm{V}} \geqslant 0^{\mathrm{m}} .4$ and eight of them have positive latitudes, selatively high values of α and are earliex than type B1. Excluding these stars gives

$$
b>0 \quad \alpha=0.056 \pm 0.005 \text { (s.e.) } \quad 45 \text { staxs }
$$

in better agreement with the result for $b<0$ and very close to the Abt and Golson determination. The eight stars are spread between $1=316^{\circ}$ and $1=24^{\circ}$ so that if irregularity in the interstellax medium is the cause of higher reddening, it is not likely to be a jocal effect. The Lundmark-Melotte survey of dark nebulae (Lundmark, 1926) shows more dark regions in northern intermediate latitudes than in southern, for $330^{\circ}<1<20^{\circ}$. If the dust distribution reflects this asymnetry at all, then it is probably the cause of observed differences in α for northern and southern galactic hemispheres.

SUMMARY AND SUGGESTITONS

Analysis of the distribution of early-type stars at internediate and high latitudes has shown the earliest of these objects to be related to optically determined spiral structure in the plane of the Galaxy. Potentially the mosi important result of the distance estimates is that it has proved possible to observe very distant sters with medium ond small telescopes, largely due to the relatively small loss of light by interstellar extinction.

In VI. 5 consideration was given to the possibility that some of the early-type staxs with appreciable z-distances may have been formed away from the galactic plane. Stellar rings were suggested as a, possible source of such stars. Estimates were made of kinematical and evolutionary lifetimes of various stars but it was not possible to show conclusively that a significant proportion of stars were too young to have reached their present locations, assuming origin near the plane of the Galaxy. The principal ohstacle to proof or disproof of the hypothesis is the poor quality of proper motions available for earlymtype stars, a problem which is not likely to be overcome in the near future.

Chapter VII concentrated on radial and space velocities of programme stars. The radial velocities were shown to be related to the general pattern of galactic rotation; high velocity stars, with a few very high velocity exceptions, were considered to have radial velocities of about 60 to $160 \mathrm{~km} / \mathrm{s}$ relative to the standards of rest of their projected positions on the galactic plane. By this criterion, five to ten per cent of all stars considered had high velocities.

Detailed kinematic investigation of high velocity stars indicated that three may have sufficient kinetic energy to escape from the Galaxy, although in only one case, CPD -72° 2184, was the analysis independent of proper motion.

Logically, the next step would be to attempt to observe stars with fainter apparent magnitudes, perhaps extending the lower latitude limit to $|\mathrm{b}|=6^{\circ}$ or 5° in the hope of including more distant, albeit more reddened stars at roughly 1 to 2 kpc from the galactic plane. It is hoped to institute a programme based on objective prism surveys such as the catalogue "Luminous stars in the Southern Milky Way" (Stephenson and Sanduleak, 1971); similar projects in the northern hemisphere are at present being carried out by other St. Andrews observers. The northern hemisphere programme and extensions to the present work should greatly increase the data on early-type intermediate latitude stars. It is probable that more high velocity stoms will be discovered amongst the fainter stars, although proper motions will. still. be a major di.ffi.culity.

A region of particular interest is the Carina spiral feature, extensively discussed by Bok, Hine and Miller (1970) and by Graham (1970) who finds a distortion of the galactic plane in the region $285^{\circ}<1<300^{\circ}$. The $O B$ stars are concentrated symmetrically about the galactic equator out to 4 kpc from the sun, but between 4 and 10 kpc appear to deviate by 2° to 3° towards negative latitudes. The high velocity star CPD $-72^{\circ} 1184$ lies at $I=299^{\circ} .2, \mathrm{~b}=-10^{\circ} .9$ and is approximately 10 kpc from the sun according to present estimates. It might prove interesting to search for faint blue stars in the Carina region between $\mathrm{b}=-11^{\circ}$ and the upper limit of Graham's survey.

Time permitted only a brief discussion of interstellar matter. The velocities of interstellar Ca II absorption lines were show to
exhibit more or less the distribution expected from material within one or two kiloparsecs involved in differential galactic rotation. Determinations of constants in the cosecant equation of reddening were made, including an estimate of the height of the scattering layer. For the future, more accurate estimates of the scale height could be made using more stars and more distant stars. The northern hemisphere survey should provide comparison between positive and negative latitudes in the anticentre region, of the constant of proportionality in the cosecant equation. A rather more detailed examination of stellar and interstellar radial velocities in the region $325^{\circ}<1<360^{\circ}$ might shed light on the anomalous velocities observed. Existing measures of stars in and near the plane could be used to investigate the extent of the phenomenon.

Finally, a project which could be carried out with spectroscopic and photometric results of the present programme is the detexmination of the dust to gas ratio at intermediate and high galactic latitudes. Equivalent widths of Ca II lines will give an estimate of the mean Ca II gas density along the lines of sight to a selection of stars. These densities might then be related to radio measurenents of neutral. hydrogen densities. UBV photometry yields the colour excess $\mathrm{E}_{\mathrm{B}}-\mathrm{V}$ which depends on the dust column density.

Appendix . I

CURVATPUR TN THE HB TRANSFORVATTONS

The presence of a small but significant curvature in the transformations from the two instrumental HB systems to the standaxd system of Cxawford and Mander (1966) was discussed in III. 4 where it, was concluded that the difference in the intermediate filter bandwidths of the three systems was the probable cause of the curvature. The purpose of this appendix is to give details of the numerical calculations which support the conclusion.

Transmission curves for the Cape and Bochum (La Silla) filters were readily available. The filters used at the Cape were the property of St. Andrews University Obsexvatory and had been supplied with spectrophotoneter tracings of the transmission functions. Similar tracings existed for the Bochum filters and copies of these were made on La Silla. Astronomers at Kitt Peak National Observatory have used several sets of fillters which were, in general; fairly closely matched. An enlaxgement was made of a set of transmission curves published by Crawford (1964). For each filter, measurements were made of the percentage transmission, expressed as a fraction of unity, at $3 . \hat{A}$ intervals from 4650 to $5149 \AA$, so that 500 evenly spaced data points represented the transmission of the filter. These "digitised" transmission functions were stored on punched cards for computer analysis. The next step was to find suitable spectrophotometer tracings of early-type stans, covering the same sort of wavelength range as the HB filters, and reduce the tracings to a digitised form, taking measurements ot $1 \AA$ intervals of the intensity of a spectrum expressed as a fraction of the continuun intensity. Then a given spectrum could
be combined with a given filter by multiplying each point of the spectrum by the corresponding point of the filter and sumning the resultant products. For 500 points this would be exceptionally tedious to perform manually but with a computer such a convolution of filter and spectrum takes only a few seconds. From narrow and intermediate filter convolutions with a given spectrum, a simulated instrumental β-index can be computed by the usual formula. A short Fortran programine was written which performed the calculations described, computing from the input data, a numerical value of B. The programme also produced a graphical output of the simulated filter transmission functions and input spectrum.

To approximate the effect of He I 4922 on the β-index, data were extracted, in the form described above, from the spectrophotometric atlases by Wilson (1956) and Butler and Seddon (1958). These ablases cover a sufficient wavelength range for B1 and B2 main sequence and supergiant stars. Digitised spectra were combined vith digitised transmission curves of the three filter sets and the resultant instrumental B-indices for the Cape and La Silla simulated filters were plotted against corresponding indices for the Kitt Peak simulated filters. Results are shown in fig. Al where it can be seen that the La Silla transformation is linear and the Cape transformation nearly so; curvature in the latier case is not in the same sense as the observed curvature in the actual transformations. The range of spectral type covered is rather unsatisfactory due to the shortage of suitable data.

In the attempt to investigate the effect of variation of $H B$ absorption on the intermediate band filters, it wes decided to use theoretical line profiles as these were readily available for an adequate range of spectrum and luminosjity types. Mihalas (1964) has

Fig. A1 Simulated transformations
(a) effect of He I 4922 on intermediate filters
published profiles of HB and $\mathrm{H} \gamma$, computed for various values of log g and $\theta_{\mathrm{e}}\left(=5040 / T_{\mathrm{e}}\right)$. Log gian θ_{e} for different MK-types were obtained from "Astrophysical Quantities" (Allen, 1963) and, although the values of these quantities used by Mihalas did not always correspond exactly to a particular type of star, it was possible to match Mihalas profi.jes fairly closely to MK-types for a good range of early-type staxs. Profiles corresponding to types B9 V, IMI and I and spectral types B8, $B 5, B 3, B 2, B 1$ and $B 0$ for luminosity classes III and V were available. In addition, profiles equivalent to types 09 and 05 were used, for which Mihalas had included blending with the overlapping line of the Pickering series of He II at 4859 A. Equivalent widths of the line profiles varied from 19.6 to $1.7 \AA$.

Simulated B-indices were computed from convolutions of line profiles with Kitt Peak, Cape and Bochum (La Silla) filters and the last two sets of results were plotted against the first set as for fig. Al. The simulated transformations are illustrated in figures A2 and A3 where the curvature is apparent. Residuals were derived as for the actual transformations using $\Delta B=$ standard - Standard (calculated). In this case 'Standard' is the simulated Kitt Peak β-index and the residual $\triangle B$ is the difference between plotted point and least squares solution, measured parallel to the abscissa, as before. Figure A4 shows the $\triangle B / B$ (instrumental) points compared with the observed ixansformation curvatures reproduced from figs. 8 and 9. Zero-points of the observed curves on the B^{\prime} axes are arbitraxy. It appears that it is possible to reproduce the observed curvatures moderately well with a rather crude model. the actual effect is larger than the simulated offect and the Cape curve might be partially cancelled by the smaller effect of the helium line at $4922 \AA$, but as far as the enalysis goes, it indicates that the effect of $H B$ absorption on the intermediate band

Fig. A2 Simulated transformation
(b) effect of $\mathrm{H} \beta$ on La Silla intermediate band fillter

Fig. A3 Simulated transformation
(c) effect of $H \beta$ on Cape intermediate band filter

Fig. A. 4 Simulated curvature compared with observed curvature. Fi.lled circles are $\triangle \beta$ (standard - 'calculated standard') from simulated transformations in figures A2 \& A3. Solid lines are observed transformation curvatures from figures 8 \& 9 .
filters is non-negligible and is likely to produce a substantial. proportion of the observed transformation curvature.

Appendix II

SPACE VBLOCXTY COMPONENAS

The conversion of stellar tangential and radial velocities, t_{α}, t_{δ} and V_{r} into velocity components U, V and W in a translational galactic frame of reference has been reviewed by Hill (1969b) and will be briefly described in this appendix together with a Fortran programme to compute U, V and W with corrections for differential galactic rotation and the solax motion relative to the local standard of rest.

1. From observed to galactic velocity components

Observed components of stiellar motion are radial velocity V_{r} and proper motions in equatorial comordinates, μ_{α} and μ_{δ}. The latter must be converted into velocities tangential to the celestial sphere. Usually μ_{δ} is given in seconds of arc pex annum and μ_{α} in seconds of time per annum so that

$$
\mu_{\alpha}(\text { arcseconds })=15 \cos \delta \cdot \mu_{\alpha} \text { (seconds of time) }
$$

When μ_{α} is used in this appendix it will be μ_{α} (arcseconds). Since stellar proper motions are always vexy sraall, tangential velocities can be writien

$$
\mathbf{t}_{\alpha}=\mathrm{Kr} \mu_{\alpha} \quad \mathrm{t}_{\delta}=\mathrm{Kr}_{\delta}
$$

where r is stellar distance in parsecs and $K=4.738$ is a conversion faotor from parsec. aroseconds/annum to km / s. The velocity axes t_{α}, t_{δ}, V_{r} are dependent on the location of a star on the celestial sphere, so defining velocity axes \hat{x}, \dot{y}, 2 , with \dot{x} towards the vernal equinox, y towards $\alpha=90^{\circ}, \delta=0^{\circ}$ and $\frac{2}{2}$ towards the north celestial. pole, gives

$$
\begin{array}{cc}
t=-t_{\alpha} \sin \alpha-t_{\delta} \cos \alpha \sin \delta & +V_{r} \cos \alpha \cos \delta \\
y= & +t_{\alpha} \cos \alpha-t_{\delta} \sin \alpha \sin \delta+V_{r} \sin \alpha \cos \delta \tag{AX}\\
z= & t_{\delta} \cos \delta \\
t V_{r} \sin \delta
\end{array}
$$

which are the equations (3.5) given by Trumpler and Heaver (1953, p. 265) and are equivalent to matrix equation (2) of Hill (1969b). Three rotations are required to convert $k, \dot{y}, \&$ into U, V, W components and these are performed by Hill's equation (3)
$\left[\begin{array}{l}v \\ v \\ W\end{array}\right]=\left[\begin{array}{ccc}\cos l_{0} \sin j_{0} & 0 \\ \sin 1_{0}-\cos l_{0} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \sin \delta_{0} & -\cos \delta_{0} \\ 0 & \cos \delta_{0} & \sin \delta_{0}\end{array}\right]\left[\begin{array}{ccc}-\sin \alpha_{0} & \cos \alpha_{0} & 0 \\ \cos \alpha_{0} & \sin \alpha_{0} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{y}\end{array}\right]$
where $\alpha_{0}=12^{\mathrm{h}} 49^{\mathrm{m}}$ and $\delta_{0}=+27^{\circ} .4$ are the 1950.0 comordinates of the north galactic pole, and $I_{0}=33^{\circ}$ is the galactic longitude of the ascending node of the galactic plane on the celestial equator. Substituting, (A2) reduces to

$$
\left[\begin{array}{l}
u \tag{A3}\\
v \\
\mathrm{v}
\end{array}\right]=\left[\begin{array}{lll}
-0.066989 & -0.872756 & -0.483539 \\
+0.492729 & -0.450347 & +0.744585 \\
-0.867601 & -0.188375 & +0.460200
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
z
\end{array}\right]
$$

Using (A.) and (A3) we can convert from $t_{\alpha}, t_{\delta}, V_{r}$ to U, V, W velocity axes where U is directed towards the galactic centre, V is in the djrection of galactic rotation and W is directed towards the north galactic pole.

2. The solar motion

In theory, correction for the solar motion relative to the local standard of rest is simple. If the solar motion is represented by components $U_{\odot}, V_{\odot}, W_{\odot}$ then the radial velocity of a star relative to the local standard of rest is given by

$$
V_{*}=V_{o b s}+U_{\theta} \cos I \cos b+V_{\theta} \sin I \cos b+W_{\odot} \sin b
$$

where $V_{o b s}$ is the radial velocity of a star relative to the sun and l_{1} b are the stax's galactic comordinates. For the solar motions weighted mean results of. Peast and Shuttleworth (1965) have been used in all
calculations. These are

$$
U_{0}=+10 \pm 0.5 \mathrm{~km} / \mathrm{s} \quad V_{\theta}=+13 \pm 0.5 \mathrm{~km} / \mathrm{s} \quad \mathrm{H}_{0}=+6 \mathrm{~km} / \mathrm{s}
$$

and have the advantage of being determined from early-type stars. Errors introduced into stellar velocities by errors in the solar motion will be small compared with errors from other sources such as proper motion data or distance determination errors which will affect corrections for differential galactic rotation.
3. Correction of radial velocities for differential galactic rotation

Represented in fig. A5 are the local standard of rest, A, with a galactocentric distance R_{0} and circular velocity Θ_{0}, and a distant standard of rest, B, with galactocentric distance R and circular velocity $\Theta ; 1$ is the galactic longitude of B_{0}

Fig. AS

The radial velocity of B relative to A is the observed velocity due to differential galactic rotation and is given by

$$
v_{\mathrm{BA}}=\Theta \cos \theta-\Theta_{0} \sin 1
$$

The sine formula in $A B C$ gives

$$
\begin{aligned}
& \cos \theta=\frac{R_{0}}{R} \sin 1 \\
& \therefore \quad V_{B A}=\frac{\Theta R_{0}}{R} \sin 1-\Theta_{0} \sin 1 \\
& \therefore \quad V_{B A}=R_{0}\left(\Theta / R-\Theta_{0} / R_{0}\right) \sin 1 \\
& \therefore \quad V_{B A}= \\
& R_{0}\left[\omega(R)-\omega\left(R_{0}\right)\right] \sin 1
\end{aligned}
$$

where $\omega\left(R_{0}\right)$ and $\omega(R)$ are the angulax velocities about C of A and B respectively. The only assumption made is that A and B have circular orbits and for this reason the result is preferable to the Oort (1927) approximation formula which requires r / R_{0} to be small and is therefore restricted to within 1 or 2 kpc of the sun. For stars away from the galactic plane we have

$$
\begin{equation*}
V_{B A}=R_{0}\left[\omega(R)-\omega\left(R_{0}\right)\right] \sin 1 \cos b \tag{A4}
\end{equation*}
$$

In this case $\omega(R)$ should really be $\omega(R, z)$, a function of galactocentric distance and height above or below the galactic plane. However, $\omega(\mathrm{R}, \mathrm{z})$ is not well known and use of $\omega(R)$ should not lead to great errors in most cases as the majority of programme stars have $z<500 \mathrm{pc}$. To implement (A4), the function $\omega(R)-\omega\left(R_{0}\right)$ must be known. A determination of the function for B stars was made by Feast and Shutileworth (1965) and compared with observations of the 21 cm . line of neutral hydrogen. Schmidt-Kaler (1.967) revised the analysis using a slightly different value for the ratio of total to selectjve extinction, $A_{v} / E_{B-V}=3.2$. Figure $A 6$ is taken from Schmidt-Kaler's fig. 3 and is a. comparison of the amended B star rotation curve and the Leiden 21 cm . curve (Kwee, Muller and Westerhout, 1954). The agreement arpears to be good and it was decided to adopt this curve for the $\omega(R)-\omega\left(R_{0}\right)$ function. For Fortran programing, the curve rnast be in equation form and this was achjeved by fitting five straight lines to the curve as illustrated in fig. A7. Originally, this was intended as a first approximation for trial purposes but the maximun difference between curve and straight lines is only about $0.5 \mathrm{~km} / \mathrm{s}$ which compares favourably with errors in the B star mean points and is negligible when other sources of error in the correction for differential galactic rotation are considered. The straight line approximations were retained and are as follows:

Fig. A6 Galactic rotation curve (Schmidt-Kaler, 1967). The solid line represents the Leiden 21 -cm. rotation curve and the broken line is an extension based on the Schmidt (1965) mass model. Filled circles are Feast \& Shuttleworth (1965) B star results with adjusted reddening corrections by Schmidt-Kaler (1967).
$\omega(R)-\omega\left(R_{0}\right)$

Fig. A? Lineax approximation to the rotation curve. Solid line and filled circles are from fig.A6 . Broken lines indicate the five straight lines approximating the curve in computation.

R	5 kpc	ω	$=-6.45 \mathrm{R}+52.45$
5	$\leqslant \mathrm{R}<7 \mathrm{kpc}$	ω	$=-4.88 \mathrm{R}+44.40$
7	$\leqslant \mathrm{R}<10 \mathrm{kpc}$	ω	$=-3.33 \mathrm{R}+33.33$
$10 \leqslant \mathrm{R}<12 \mathrm{kpc}$	ω	$=-2.50 \mathrm{R}+25.00$	
$12 \leqslant \mathrm{R}$	ω	$=-1.16 \mathrm{R}+8.93$	

R is the galactocentric distance in kiloparsecs and $\omega=\omega(R)=\omega\left(R_{0}\right)$ 。 For $R<4$ and $R>15 \mathrm{kpc}$ the function is uncertain, being dependent on theoretical models; the linear approximations will also be unreliable.

With equations (A5) substituted in (A4), corrections for the effect of differential galactic rotation can be applied to programme star radial velocities. Also, $V_{B A}$ in equation (A4) can be sketched for constant values of r, the distance from the sun, to show the expected distribution in galactic longitude of observed redial velocities. Figure A8 shows resulits fox $x=1,2,3$ and 4 kpc with $R_{0}=1.0 \mathrm{kpc}$ and j.s the well known "double wave" when sketched for all longitudes. Asymmetry of the wave for laxge x is already noticeable at $r=2 \mathrm{kpc}$. Figure $A 8$ was useful as an overlay for plots of programe star velocities.

4. Gorrection of proper motion for differential falactic rotation

In a similar manner to the derivation of equation (A4) we can obtain equations for observed tangential velocities due to differential rotation of a distant standard of rest and the local standard of rest about the galactic centre. In galactic oxientation of proper motion comordinates we obtain

$$
\begin{aligned}
& t_{1}=R_{0}\left[\omega(R)-\omega\left(R_{0}\right)\right] \cos 1-r \cdot \omega(R) \cos b \\
& t_{b}=-V_{B A} \tan b
\end{aligned}
$$

where the function $\omega(R, z)$ is again appaoximated by $\omega(R)$. These equations can be re-written

$$
\begin{aligned}
\operatorname{Kr} \mu_{1} \cos b & =R_{0}\left[\omega(R)-\omega\left(R_{0}\right)\right]\left[\cos 1-\frac{x \cos b}{R_{0}}\right]-\omega\left(R_{0}\right) x \cos b \\
\operatorname{Kr} \mu_{b} & =-R_{0}\left[\omega(R)-\omega\left(R_{0}\right)\right] \sin 1 \sin b
\end{aligned}
$$

giving μ_{1} cos b and μ_{b} in areseconds per annum. The function $\omega(R)-\omega\left(R_{0}\right)$

Fig. A8 Effect of differential galactic rotation on radial velocities.
is as desoribed in section 3. With standard values for R_{o} and the circular velocity at R_{0} of 10 kpc and $250 \mathrm{~km} / \mathrm{s}$ respectivelys then $\omega\left(R_{0}\right)=25 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$ for the last quantity in the expression for μ_{1}. Figuxe A9 illustrates the effect of differential galactic rotation on μ_{1} for staxs in the galactic plane at distances of 0.5: 2.5 and 5 kpc from the sun, computed with the first of equations (A6). It can be seen that the eifect is smaller than the standand deviation of the proper motion for a typical early-type star.

The effect can be converted from galactic to equatorial components of proper motion. By resolution of components sketched in fig. Alo (a) we have

$$
\begin{align*}
& \mu_{\alpha}=\mu_{1} \cos b \cos \phi \cdots \mu_{b} \sin \phi \tag{A7}\\
& \mu_{\delta}=\mu_{1} \cos b \sin \phi+\mu_{b} \cos \phi
\end{align*}
$$

where μ_{α} is in aroseconds. ϕ is sometimes referred to as the galactic parallactic angle and is the angle between north galactic and north celestial poles at the stax under consideration (fig Al0). Fron the spherical triangle NCPMNPM in fig. AlO (b), the cosine formula gives

$$
\begin{equation*}
\cos \phi=\frac{\sin \delta_{0}-\sin \delta \sin b}{\cos \delta \cos b} \tag{A8}
\end{equation*}
$$

where $\delta_{0}=+27^{\circ} .4$ is the declination of the north galactic pole. Equations (A6) determine corrections μ_{b} and $\mu_{1} \cos \mathrm{~b}$ which, when substituted with (A8) into (A7), Give the required corrections to the observed proper motion components μ_{α} and μ_{δ}.

5. A Hortran IV programme

The short programme following this section is a simplified version of the oxiginal but contains the essential corrections described in this appendix. Tnput is star number, equatorial co-ordinates for the epoch 1950.0, galactic comoxdinates, star distance in parsecs, radial velocity corrected to the sun and proper motion components μ_{α} and μ_{δ} in

Fig. A9 Effect of differential galactic rotation on galactic longitude proper motion component.

Fig. A10 Conversion from equatorial to galactic proper motion components.
arcseconds. The programme converts equatorial and galactic comordinates into radians and calculates the sine and cosine of $\alpha, \delta, 1$ and b using standard library trigonometric functions (statements 18 ... 35). The distance of the star projected on to the galactic plane and distance from the plane are computed and, with the assumption $R_{\odot}=10 \mathrm{kpc}$, the galactocentric distance of the stax is determined (43-47). Statements 51-55 correct the redial velocity to the local standard of rest using the solar motion dexived by Feast \& Shuttleworth (1965). The function $\omega(R)-\omega\left(R_{0}\right)$ is determined in statements $66-70$, which are equivalent to equations (A5), and the corrected radial velocity is coraputed (71). Statlements 78 and 79 represent equations (A6) for the effect of differential galactic rotation on proper motion components μ_{j} and μ_{b}. The sine and cosjne of the galactic parallactic angle are found ($78-83$) and the corrections to μ_{α} and μ_{δ} are detemnined and applied (84-93). Iangential velocities are computed (97, 98), then the matrix corresponding to equations (Al) is formed and multiplied by the 3×3 matrix in (A3) to give the space motions U, V and $W(100-131)$. The subroutine MATRTX simply multiplies a 3×1 matrix with a 3×3 matrix and returns the product 3×1 matrix to the main programe. The total space motion is calculated (133 - 236) and the remainder of the programme is output control.

The oxiginal programme input was star number, equatorial comordinates (1950.0), obsexved magnitude and colours (UBV), (B-V) ${ }_{0}$, absolute magnitude, radial velocity and proper motion components. It had a subxoutine to compute galactic comordinates and, after correcting V-magnitude for interstellar extinction, computed U, Vand W velocity components for a range of absolute magnitudes including the input value. Whis was done with and without proper motion components for each case. The progranne in this form was very useful for investigating stars in
detail, testing the effect of different distance modulj. on the kinematical properties of high velocity stars, possible subdwaxfs and other interesting stars.
IMPLICIT REALE $(A-H, 0-Z)$
DTMENSION NAME $(3), S E(3,3)$, EG $(3,3), V E L(3), X Y Z(3), U V K(3)$

u
u

ひひひひひひひ
vue
いひひ

CONVERSION FROM OBSERVED TO EQUATORTAL VELOCITY AXES

CALL MATRIX(SE,VEL, XYZ)

CONVERSION FROM EQUATORIAL TO LOCAL GALACTIC VELOCITY AXES
$E G(1,1)=-0.066989$
$E G(1,2)=-0.872755$
$E G(1,3)=-0.483539$
$E G(2,1)=+0.492729$
$E G(2,2)=-0.450347$
$E G(2,3)=+0.744585$
$E G(3,1)=-0.867601$
$E G(3,2)=-0.188375$
$E G(3,3)=+0.460200$
CALE MATRIX(EG,XYZ,UVK)

Acknowledrements

I am indebted to my supervisor, Dr.P.W.Hill, for advice and encouragement and for assistance with observation at the Radcliffe and Furopean Souchern Observatories. I am most grateful to the directors and staffs of St. Andrews University Observatory, The Royal Observatory, Cape Town, Radcliffe Observatory and the European Southern Observatory. In each establishment I found useful advice freely given and assistance with matters academic and non-academic on many occasions. It is a pleasure to record thanks to Mr.J.B.Alexander, my acting supervisor at the Cape, for guidance and personal kindness, and to Dr.D.I.Crawford of Kitt Peak National Observatory who has communicated pre-publication results of his $H \beta$ photometry on several occasions. This material has been invaluable to my own research.

I am grateful to the Large Telescope Users Panel for observing time on the Radcliffe (Pretoria) and Elizabeth (Cape) telescopes and to the Astronomischen Institute der Ruhr-Universi.tät Bochum for a generous observing allocation on their telescope at the E.S.O. site in Chile. I should like to thank Prof. Schmidt-Kaler for suggesting I apply for time on the latter instrument which provided valuable narrow band data.

My work for this dissertation was supported by a research studentship from the Science Research Council and later by a scholarship from the University of St. Andrews. My visits to South Africa and Chile were financed by S.R.C. travel and subsistence allowances. I am indebted to the S.R.C. and University Avards Committee for the various grants which made observation and research possible.

I am grateful to Miss S.Easton for typing the final draft of the thesis.

Cousins, A.W.J. \& Stoy, R.H. (1962) R. Obs. Bull. 49
(1963) R. Obs. Bull. $\underline{64}$
Crampton, D. \& Byl, J. (1971) Pub. Dom. Astr. Obs. 13 , 427
Crawford, D.L. (1958) Ap.J. 128 , 185(1960) Ap.J. 132, 66(1964) I.A.U. Symposium 24,170(1972) I.A.U. Symposium 54, (in press)
Crawford, D.L., Barnes, J:V. \& Golson, J.c. (1970) A.J. 75, 624
Crawford, D.L. \& Mander, J. (1966) A.J. 71,114
Cruvellier, P. (1967) Ann. Astrophys. 30 , $10 \% 2$
Edièn, M.B. (1955) Trans. I.A.U. 2, 220
Evans, D.S., Menzies, A. \& Stoy, R.H. (1959) M.N.R.A.S. 119, 638
Feast, M.W. \& Shuttleworth, M. (1965) M.N.R.A.S. 130 , 245
Feast, M.W., Stoy, R.H., Thackeray, A.D. \& Weeselink, A.J.(1961) M.N.R.A.S. 122, 239
Feast, M.W. \& Thackeray, A.D. (1958) M.N.R.A.S. 118 , 125(1963) Mem.R.A.S. 68, 173
Feast, M.W., Thackeray,A.D. \& Wesselink, A.J.
(1955) Mem.R.A.S. 67, 51
(1957) Mem.R.A.S. 68, 1
Fernie, J.D. (1965) A.J. 70, 575
FitzGerald, M.P. (1970) Astronomy \& Astrophysics 4 , 234
Gill, D. \& Kapteyn (1899) Ann. Cape Obs. iv \& vGraham, J.A. (1964) I.A.U. Symposium 20, 71(1967) M.N.R.A.S. 135,377(1970) I.A.U. Symposium 38,262
Greenstein, J.L. (1971) I.A.U. Symposium 42,46
Gum, C.S., Kerr, F.J. \& Westerhout, G. (1960) M.N.R.A.S. 121, 132Hagen, G.L. (1970) Pub. Davia Dunlap Obs. 4 "An atlas ofopen cluster colour-magnitude diagrams"
Hardie, R.H. (1964) I.A.U. Symposium 24,243
Hardie, R.H. \& Crawford, D.L. (1961) Ap.J. 133, 843
Herrick, S. (1935) Lick Obs. Bull. 470

Lundmark, K. (1926) Upsal. Obs. Medd. No. 12
McCuskey, S.W. (1970) I.A.U. Symposium 38 , 189
Mihalas, D. (1964) Ap.J.Suppl. 2, 321
Morgan, W.W., Code, A.D. \& Whitford, A.E. (1955) Ap.J.Suppl 2,41
Morgan, W.W., Harris, D.L. \& Johnson, H.J.(1953) Ap.J. 118 , 92
Morgan, W.W., Keenan, P.C. \& Kellman, E. (1943) "An atlas of stellar spectra" , Chicago

Morgan, W.W., Whitford, A.E. \& Code, A.D. (1953) Ap.J. 118 , 318
Neubauer, F.J. (1943) Ap.J. 27,300
Oort, J.H. (1927) B.A.N. 2, 275
(1928) B.A.N. 4 , 269
(1960) 'B.A.N. 15,45

Pearce, J.A. (1932) Trans. I.A.U. 4,187
Petrie, R.M. (1953a) Pub. Dom. Astr. Obs. 2, 251
(1953b) Pub. Dom. Astr. Obs. 2, 297
(1956a) Pub. Donc. Astr. Obs. 10,287
(1956b) Vistas in Astronomy 2,1346
(1958) M.N.R.A.S. 118 , 82
(1962) M.N.R.A.S. 123, 501

Plaskett, J.S. \& Pearce, J.A. (1931) Pub. Dom. Astr. Obs. 2,99
Rohlfs, K. (1967) Z.Astr. 66 , 225
Ruprecht, J. (1964) Trans. I.A.U. 12B , 347
Schmidt, M. (1965) B.A.N. 13, 15
Schmidt, H. \& Diaz Santanilla, G. (1964) Veroff.Astr.Inst.Bonn 71
Schmidt-Kaler, Th. (1964a) Z.Astr. 58, 217
(1964b) Veröff. Astr. Inst. Univ. Bonn 71
(1965) in "Numerical data and functional relationships in science and technology"
Group VI, Vol. 1, p. 307, Springer-Verlag.
(1967) I.A.U. Symposium 31, 161
(1968a) Veröff. Astr. Inst. Univ. Bochum 1, 80
(1968b) Veröff. Astr. Inst. Univ. Bochum 1, 144
(1971) in "Structure and Evolution of the Galaxy" p. 85 , Reidel

Schmidt-Kaler, Th. \& Dachs, J. (1969) E.S.O. Bull. 5

