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In the name of Allah, Most Gracious, Most Merciful



A b s t r a c t

A theoretical study of Population II variables has been carried out using the non­

linear approach and using the more recent molecular opacities of Carson and Sharp 

(1991) with the atomic opacities of Iglesias and Rogers (1991). The calculations have 

been done using a computer code created by Dr. T. R. Carson.

More than fifty models have been constructed for different compositions for 

Hydrogen (X), 0.745, 0.749 and 0.750 and for Helium (Y) fixed at 0.250. These models 

belong to three types of stars, RR Lyrae, BL Herculis and W Virginis.

The aim of this study was to test the new opacities and compare them with the 

old ones (especially those of Carson).

Generally the periods of the old and new models are in very good agreement. 

However, the amplitudes of the new models tend to be fairly consistently smaller than 

those of the old models, tending towards greater agreement with observation. The new 

blue edges are shifted redward (toward lower temperature) with respect to the old, 

particularly for the larger values of the metal content Z, and less for smaller Z.

However, for the same composition all results are in excellent agreement with 

those of Carson, Stothers and Vemury (1981) using the opacities of Carson

The non-linear results obtained here show that the mass of RR Lyrae cannot be 

less than 0.6 Mswt, while on the other hand, the BL Her variables have mass greater than 

0.7 Msun.
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I n t r o d u c t io n

During the past fifty years the pulsating variables have played an important and 

rather controversial role in the drama of our unfolding knowledge of the outline and 

dimensions of the universe of galaxies. So, the object of this study was to model 

Population II stars using the non-linear pulsation analysis in the hope of obtaining 

velocity and light curves of similar amplitudes and features to those produced by the real 

stars. In this study we have used the more recent molecular opacities of Carson and 

Sharp (1991) with the atomic opacities of Iglesias and Rogers (hereafter, IR) (1991).

This thesis is divided into four chapters and four appendices.

In Chapter One part A, a review of the Population II Cepheids. In part B we 

review the three types of Population II that have been used in this thesis, these are RR 

Lyrae, BL Herculis and W Virginis. Therein given the main properties of each type and 

its importance.

In Chapter Two and Three the non-linear theory and the method of solution of 

the equations that have been used are described.

In Chapter Four the main results are presented and discussed.

In Appendix A we present the theoretical models for RR Lyrae, BL Herculis and 

W Virginis. In Appendix B the decaying models are presented.

In Appendix C the IR opacities are presented and compared with the Carson.

In Appendix D the linear theory is described.
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lA -l. P o p u la t i o n  II  C e p h e id s :-

Population II ( Pop II, hereafter) cepheids generally originate from low-mass 

stars of low metallicity which are undergoing post core Helium (He) burning stage of 

their evolution (Becker 1985). Pop II are divided into three main categories which are 

the BL Herculis (BL Her) stars, the W Virginis (W Vir) stars and the anomalous 

Cepheids, see Table 1-1. Low-mass Pop II stars evolve off the suprahorizontal branch to 

Asymptotic Giant Branch (AGB) where the Hydrogen (H)-burning shell re-establishes 

itself and the double burning shell phase begins. When the Hydrogen envelope is nearly

exhausted ( <5xlO “̂ M ) due to the last He shell flash on the AGB, one or two ̂ sun

loop-like excursions from the AGB are possible for certain models. These excursions 

can intercept the instability strip, causing a star to become a W Vir variable having a 

period about 10-50 days (Becker 1985, Clement e ta l 1985).
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Variable stars in the H-R diagram are classified, based on their observed 

properties, into distinct types. The underlying mechanism for the variability is generally 

felt to be due to four different causes (Becker 1986):

1) geometric effects.

2) rotation.

3) eruptive processes.

4) pulsation.

In our thesis the focus will be on the fourth cause.

Type II cepheids have periods ranging upward of 1 day (Carson et al. 1981), The 

discovery of many Type II cepheids led to the introduction of distinct subclasses, such 

as BL Her, W Vir and RV Tau stars as well as less well defined subgroups such as the 

anomalous cepheids, which are more luminous at a given period than cepheids found in 

globular clusters. They (type II cepheids) lie on the H-R diagram between the RR Lyrae 

variables, at low luminosity, and the RV Tauri and long period variables at high 

luminosity (Becker 1985). Figure 1-1 shows that RR Lyrae and W Vir occupy roughly 

the same location in H-R diagram as do the classical cepheids. The long, nearly vertical, 

region shown on the H-R diagram lying above the main sequence, contains both the RR 

Lyrae and W Vir , as well as the classical cepheid and other types of pulsating stars. 

Because of their peculiarities, no strict definition can be given for type II cepheids. It is 

mostly on the theoretical basis of stellar evolution theory that all the subclasses above are 

regarded as Pop II (Kovacs & Buchler 1988).

The appellation " type II cepheids " usually refers to those pulsating variables 

belonging to the older population of the Galaxy whose luminosities are greater than 

those of the RR Lyrae stars and overlap the classical cepheids (Population I ) (Kovacs 

& Buchler. 1988). We can identify these stars by their location -at least several classical 

cepheid scale heights above the galactic plane- or by their space velocities- which
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deviate by several sigma from that which is expected for young cepheid variables - 

(Wallerstein & Cox 1984). Type II cepheids are variables with periods greater than a 

specified value in globular clusters and similar star in the field. Therefore, we can easily 

place a substantial number of field stars in the type II class (Wallerstein & Cox 1984).

)50d
/  RV T a u r i  v a r ia b le s

C la ss ica l
c e p h e id s

C e p h e i v ariab les /R e d  s e m i-  
/  r é g u la

W V irg in is  
/  v a r ia b l e s  

/  Long, period
RR L y ra e  /  
v a r i a b l e s /

\ /  /  v a r i a b l e s
A v / / / /  /

6 -Ô  S c u ti v a r ia b le s

/  / S p e c t r u m  a n d  
m a g n e tic  v a r ia b l e s

D w a rf
c e p h e id s I  T a u r i  s t a r s

t  N o v ae  \ P o p u la tio n  I  Sun
m om sequence

F la r e
s t a r s

bO AO PC GO KO MO
(27000)  (10400) (7200)  (6 0 0 0 )  (5120) (3750)

S p e c t r a l  ty p e

Figure 1-1. Location of various types of intrinsic variables on the H-R diagram (Cox 1974, 
Figure 1).

Cepheid pulsation is an envelope phenomenon. The smallness of the pulsation 

amplitude in the deep stellar interior depends upon the cepheid's advanced stage of 

evolution and is consequently highly centrally concentrated (Cox 1985).

Due to the great age of the Pop II and of the old disk stars their masses are 

estimated to be less than 0.8 (Bohm-Vitense et a l 1974, Wallerstein & Cox
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1984, Becker 1985) - for a star to be in the instability strip its mass must be in the range 

0.75 -  0.50 M  - this low mass depends on the mass of the He-core left behind
SU/7

by the core and shell H-to-He burning (Wallerstein & Cox 1984).

The instability region, moves toward higher effective temperature ( 7 ^ ,

hereafter)  ̂with increasing He content, (i.e. decrease in H ), which leads to a decrease in 

the opacity (Christy 1966 , Pel 1985).

In Pop II stars there is no discrepancy between the mass that we obtain using 

evolution theory and using pulsation theory, as there is in classical cepheids, because

masses between 0.5 M  and 0.75 M  or even larger range in mass, if extreme
Sim  Sim

compositions are all considered, populate the horizontal and AGB. However, for 

classical cepheids there is a very strong dependence of a star's luminosity on the mass. 

An approximately accurate mass can be derived from a more approximate luminosity 

(Wallerstein & Cox 1984). The smaller M for a given L ,the lower 7 ^ ,  which means

that Pop II will show instability at lower 7 ^  than classical cepheids (Christy 1966), see

Figure 1-5.

The fact that metal-rich globular clusters do not contain Type II cepheids 

indicates that their metal abundance range from moderate to extreme deficiencies. Due to 

their low metals contents and lower opacity, allowing the main- sequence turn-off

^which is the temperature that a black body would radiate the same amount o f  energy that a particular 

body does, its a very important quantity because some o f  un-directly obsen’able parameters can be 

very sensitive to the accuracy o f  7 ^ ^ . An example is the pulsation mass which depends very strongly

on 7 ^ ^  because o f the relationship from which it is derived: p  oc ^ e ff
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mass to be so low, Pop II evolve faster than Pop I (Wallerstein & Cox 1984). 

Nevertheless, chemical peculiarities have been found in some cases, especially in the 

field variables. The blue edge position obtained from linear non-adiabatic models 

suggests He abundance between 0.25 and 0.50 (see for example, Carson et a l 1981, 

Bridger 1984, Kovacs & Buchler 1988 and Chiosi et a l 1992). In most of Type II 

cepheids spectra and during rising light there are strong absorption and emission lines of 

H and He I (Kovacs & Buchler 1988, Lebre & Gillet 1992).

While RR Lyrae stars have been extensively studied, the other Pop II cepheids 

have received less attention. The shorter period BL Her variables 

(0.1 < P < 10) have been studied by Carson and Stothers (1982), and the W 

Virginis variables (10 < P < 20) have been studied by Bridger (1984).

Many models have been constructed by Carson, Stothers & Vemury (1981) 

(hereafter CSV81) and Carson and Stothers (1982) (hereafter CS82). In our work we 

are going to use the same model parameters (i.e. the same mass, luminosity and 

effective temperature) as in CSV81 and CS82, but employ the more recent molecular 

opacities of Carson & Sharp (1991), and the atomic opacities of Iglesias and Rogers 

(1991).

Studying Cepheids and RR Lyrae stars, enables us to study the galactic structure, 

and therefore to know much about their luminosity and their intrinsic properties which 

can be determined from a studying of their pulsation. Also, the pulsating stars are 

known to be mostly in late stage of evolution, during or after core He burning, and from 

their pulsation characteristics we can impose some constraints on what their prior 

evolution may have been. Castor (1971).
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Pulsation theory shows that whenever a star's evolutionary track lies within the 

cepheid strip, the star is unstable to surface pulsation and the star should be recognisable 

as a cepheid variable (Becker 1985).

Table 1-1. This table shows a short summary about the pulsation variable stars 
(from Becker 1986).

S Dor High luminosity eruptive variables whose mass loss may be sue to a
global pulsation instability

a  Cyg Quasi-periodic supergiants having amplitudes of 0.1 mag, possibly
showing several radial and non-radial modes.

P Cep Early B pulsating giants having periods of hours and amplitudes of
around 0.1 mag. Some showing multiple modes and possibly non-radial 
modes.

X Cen Possible class of B subgiant variables having periods less than an hour
and amplitudes of 0.02 mag.

Be stars Rapidly-rotating, mass-losing B stars some of which show variability
which may be sue to pulsation. Example LQ And.

MAIA Struve's hypothetical variable sequence between p Cep and ô Set.
SRd Semiregular yellow giants and supergiants some of which show emission

lines, exhibit periods of 30 to 1100 days and amplitudes up to 4 mag. 
Example S Vul.

Ô Cep Radially pulsating (Pop I) variables having well-defined periods of 1 to
135 days and amplitudes generally from 0.1 to 2 mag. Some show 
multiple modes.

§ Set Dwarf to giant A-F stars having periods of hours and generally
amplitudes <0.1 mag. some show multiple modes and possibly non- 
radial modes.

PV Tel Helium supergiants that appear to pulsate with periods on the order of
days but with small amplitude about 0.1 mag.

R Cor Bor Hydrogen-deficient eruptive variables which also may show quasi-
periodic pulsatoinal behaviour having periods of 30 -100 days and 
amplitudes > 1 mag.

RV Tau Supergiant Pop II variables exhibiting a double wave light curve with
periods generally from 30 to 150 days and amplitude up to 5 mag.

W Vir Radially pulsating stars somewhat similar to ô Cep but arising from
stars of much smaller mass , More about this type of variables see
section lB-3.

BL Her Radial pulsators related to W Vir class but show a bump on the
descending part of the light curve and periods of 1 to 8 days. See section 
lB-2.

Anomalous RR Lyrae like variables of higher luminosity found almost exclusively in
Cepheids dwarf metal-poor spherical galaxies like Draco.
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RR Lyrae Radially pulsating A-type giants of disk and Pop II composition having
periods of about 1 day and amplitudes < 2 mag. Some show double 
mode behaviour. See section 1B~L

SX Phx Subdwarf Pop II equivalent of the Ô Set class having periods of hours
and amplitudes < 0.7 mag. Some show multiple modes and possibly non- 
radial modes.

Lc Slowly irregularly varying supergiants of type M showing amplitudes of
1 mag. Example TZ Cas.

SRc Semiregular pulsating supergiants having periods of 30 to several
thousand days and amplitudes of about 1 mag. Example a  Ori, OH - IR 
stars.

Lb Slowing varying irregular giants exhibiting no indication of periodicity.
Example CO Cyg.

SRa Semiregular giants showing MIRA-like behaviour but smaller
amplitudes <2.5 mag. and periods of 35 to 1200 days. Example Z Aqr.

SRb Semiregular giants showing periods of 20 to 2300 days that come and
go. Example AF Cyg.

MIRA Radially pulsating red giant and supergiant stars of disk and Pop II
composition having amplitudes > 2.5 mag and periods of 80 to 1400 
days.

GW Vir Multiperiodic, non-radially pulsating white dwarfs of very high
temperature.

DB Multiperiodic, non-radially pulsating, helium white dwarfs.
Variables

ZZ Ceti Multiperiodic, non-radially pulsating, hydrogen white dwarfs showing
periods on the order of minutes and amplitude from 0.001 to 0.3 mag.
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I B - L  R R  L y r a e  V a r t a b l e s :-

RR Lyrae are pulsating giants variables in the period range from about one- 

quarter of a day to a day (Schmidt et a l 1990). They are of spectral type A (rarely F) 

and brightness amplitudes not exceeding 1 to 2 magnitudes. The period and the form of 

the light curves always show the same characteristics, but there are cases in which 

departures occur. They are Pop II stars.

It is possible to determine the photometric parallaxes and so to produce for the 

first time a model of the Galaxy by using the RR Lyrae in globular clusters. Because of 

their concentration around the galactic nucleus, our distance from them and the direction 

towards their positions in space are the main attributes of this model (Strohmeier 1972, 

Lub 1987) .

They always show the same characteristic light curves, but they differ in two or 

three forms of Bailey's classification, see below. According to this classification the 

observations of RR Lyrae were logged into stellar catalogues (see Figure 1-2):

RRa, very asymmetrical light curve (a steep ascending branch) with sharp 

maximum and large amplitude (up to 1.6 magnitudes), and the mean period is 0.5 days.

RRb, this group has smaller amplitude ( about 0.5 magnitudes) and almost flat 

maxima, with a hump in light intensity on the ascending side and a corresponding 

shoulder on the descending branch, and the mean period is 0.7 days.
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RRc, this group has almost asymmetrical light curve, often sinusoidal, and 

amplitude of about one-half a magnitude, and the mean period is 0.3 days.

It’s clear from Figure 1-2 that group a and b are almost similar to each other, and 

also RR Lyrae itself manifests a type a light curve. However later in its 41-day cycle, it 

evolves type b characteristics, therefore, some authors join them together as one group 

called RRab, and the mean period range from 0.5 to 0.7 days. The RRab groups are 

believed to be pulsating in the fundamental mode, on the other hand, RRc in the first 

overtone mode (Hubickyj 1983).

140

145

150

140 — (b)

145

1-
150

14 5

150

Phase

F ig u r e  1 -2 . Typical light curves of RR Lyrae variables. Bailey's type a, b and c (Figure 38, 
Strohmeier 1972).
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Oosterhoff divided the RR Lyrae based on the mean period into two distinctive 

groups, I and IL Group I variable stars have a mean period of 0.55 days for ab stars and 

0.32 days for c stars, and the metallic spectral lines are weak relative to the solar 

abundance. Group II variable stars have mean period of 0.65 days for ab type and 0.37 

days for c type, and the metallic spectral line here is weaker than the other group 

(Hubickyj 1983).

In Figure 1-3 we show the relation between amplitude and period for RR Lyrae 

stars. We can easily see that there is a smooth transition between type a and type b, 

while those of type c are clearly distinct.

1-5

Type a

1-0
Type b

5

I
Type c

05

03 0-4 0-5 06 0-7 0-8 0-9
Period, days

Figure 1-3. We show the relation between amplitude and period for the three types o f RR 
Lyrae stars. The c types have the shortest periods and the lowest amplitudes. They are clearly distinct 
from the a and b types. (From Bohm-Vitense 1989 (1) Figure 16.6).
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Diethelm (1983) found the following: (1) The light curves of RR Lyrae (RRb) in 

V magnitude are smooth and exhibit only a small bump just before the ascending branch, 

see Figure 1-4. (2) The rise to maximum light is steep and (3) The (B-V)-(U-B) two- 

colour diagram resulting in a characteristic " Figure-eight" loop, see Figure 5 in 

Diethelm (1983), which is the most important, since it's a unique feature for all RR 

Lyrae.

V

RR LYRAE STARS

0.1

V716 OPH 1.116* 
 1628-0524

12.3

-1 2 .3BF SER 1.165*
.  1514*1638

CE HER 1.Î09* 
1739+f506

- • 12.6

1.328*
2103-1901

■12 4XX VIR 1.348*
- - 1414-06Q3

■12.3

sf-

UY ERI 2.213*  
0311-1037

UX NOR 2 .3 8 6  
'*  1 6 2 3 -5 6 4 0

0,6 0,8 0,0 0,2 0 .4  p h a s e

F ig u r e  1 -4 . A selection of RRd type light curves in V magnitude (Figure 1, Diethelm 1983 ).
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lB-2. B L  H e r c ttt .is  V a r i a b l e s :-

These variables are defined as any Cepheids of Pop II with period less than 3 

days (between 1 and 3 days). The shape of the light curves show the Hertzsprung 

progression. Of great practical importance is the existence of a small secondary bump, 

which results from the pressure wave produced in either the He or H ionisation zones 

and reflects off the interior core reaching the surface as a secondary maximum. This first 

shows up on the descending branch of the light curves at a period of about 1.2 days, 

progresses backward in phase until it reaches light maximum for stars with periods of 

about 1.6 days, and then switches to the ascending branch, where for periods of about 3 

days, it disappears (Carson & Stothers 1982 , Diethelm 1983 and Lawrence 1985 ).

Our question here is, how can a star be a BL Her? When helium is exhausted in 

the centre of the horizontal branch star, the star evolves upward in the H-R diagram into 

the suprahorizontal branch where the thick helium-burning shell phase is established. If, 

while on the horizontal branch, the star is located either inside or to the left of the 

instability strip in the H-R diagram, the post-horizontal branch evolution will cause the 

star's evolutionary track to intercept the instability strip. At this point the star should 

behave as a BL Her variable with a period between 1 -5  days (Becker 1985).

BL Her stars originate from a very narrow mass range of about 

0.6 ± 0.05 Msim- The total life time of this phase of variability lasts up to several

million years due to the evolution proceeding on a nuclear burning time scale (Becker

1985).

In Figure 1-5 the distinction between the short period ( P< 3 days) BL Her and 

the longer one (P>6 days) W Vir maybe clearly seen. The BL Her stars form a definite
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group at 2.0 ^ \o%{Lf Lsim) ^ 2 . 3  whilst the W Vir stars cover a wide luminosity 

range above log(Z / Lsinù ~ 2.5. This wide spread of luminosity is explained by the 

fact that the phase of AGB evolution at which the star executes a blue loop is very 

sensitive to the mass. This means that a small range of masses suffices to provide the 

large observed spread in luminosity, Bridger (1983).

L o g j- bot

4.0

-4

3.0

y*.3  .2 o 2f «

2.0

3.9 3.8 3.7 3.6

F ig u r e  1-5 . Shows theoretical HR diagram for Pop II Cepheids. The shaded region is the 
Pop I Cepheid instability strip. Also Shown are the theoretical models for the blue edge of the Pop II 
strip, with three different He abundance as indicated. Also shown the two distinction group W Vir and 
BL Her. Cluster variables are shown by dots and field variables by circles. (Demers and Harris 1974, 
Figure 2).
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Most of the short period (BL Her) Pop II Cepheids show similar light curves in 

shape. The following characteristics can be seen in most of BL Her light curves, a steep 

rising branch, a pronounced maximum, a secondary hump or shoulder on the descending 

branch and a quite large amplitude, (see Appendix A2 and Figure 3 in Kwee 1967 and 

discussion therein).

1B~3. W V t r g in is  V a r ia b l e s :-

These variables are defined as any cepheids of Pop II with period longer than 3 

days. They are the more luminous cepheids and they are identified with stars undergoing 

blueward loops from the second giant branch in response to He shell flashes or finally 

evolving to the blue as the H-burning shell near the stellar surface (Gingold 1976).

The W Vir variables - as we have seen - are considered to be the Pop II 

counterparts of the classical cepheids, see Figure 1-1 and table 1-1. Some of them 

exhibit RV Tau type behaviour (Clement et a l 1988).

These variables are AGB stars that undergo blue loops in response to He-shell

flashes. Models with envelope mass less than 0.22 loop enough to the blue to

reach the instability strip (Clement et a l 1988). Depending on the envelope mass, the 

star may enter the instability strip several times as a result of the adjustments between the 

two shells - Hydrogen and Helium burning shells - (Gingold 1976). The time spent in the 

instability strip varies inversely with mass and independently of Y, in the range 

2 0  X10 "̂ -  4 X10̂  years (Kraft 1972, Gingold 1976).
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The period range, say from 2-45 days, is roughly the same as for the classical 

cepheids. Most W Vir variables, however, have periods within the range of 2-20 days. 

They are high velocity objects and lie at great distances from the galactic plane (more 

than about 200-300 Parsecs, see for example Strohmeier 1972, Cox 1974) . Many of W 

Vir are found in globular clusters.

The light curves of the W Vir do not conform to the Hertzsprung relation, but 

they seem to be characterised by the presence of a shoulder on the descending branch, 

see Figure 1-6. The total magnitude range is about 1 magnitude, roughly the same as 

that of classical cepheids.

The radial velocity curves vary, in the same qualitative way as the RR Lyrae. 

A number of other qualitative similarities within velocity curves and spectral features 

of the latter kinds of stars suggest that qualitatively similar physical mechanisms are 

operative in the atmosphere of these two types of stars (Cox 1974).

The W Vir obey a period-luminosity relation, approximately parallel to and 

about 1,4 magnitude below the classical cepheids P-L relation, see Figure 1-7 (Cox 

1974).

W Vir stars originate from a narrow mass range which is about

0.6 + 0.1 M sun

Bumps in the light curves are surely the result of a near resonance between the 

fundamental mode and the second overtone period (Wallerstein & Cox 1984 ).

I : A-. y   ;
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Figure 1-6. Light curves o f twelve galactic W Virginis variables with star name and period (in 
days) indicated for each curve. Ordinates are apparent magnitude, abscissa are phase (from Cox 1974 fig. 
8).

1-4 m
Classicot
cepheids

W Virginis variables

RR Lyrae variables

- 0 5 0 0 5 1510
log TT

Figure 1-7. Empirical period-luminosity relation (schematic) for classical cepheids, W 
Virginis variables and RR Lyrae variables. Ordinate is absolute visual magnitude (from Cox 1974, fig. 9).
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The relative radial excursions of W Vir are much larger than those of the 

classical cepheids. The radius fractional semi-amplitudes are around 0.10 - 0.30, 

compared to about 0.05 - 0.10 for classical cepheids, (Cox 1974).

Observations, especially of the velocity variations, of W Vir are unfortunately 

rather scarce. The major observation concerning velocity is that the stars with periods 

above 13 days have highly asymmetric velocity curves frequently accompanied by H 

emission lines at rise to maximum light. This is probably caused by strong outward 

moving shock waves (Bridger 1984).

According to the shape, the light curves of cepheids (W Vir) divide into two 

major classes, see Figure 1-8 ;

1) Crested "C-type which shows a bump or standstill on descending light rather 

like the classical cepheids with period 5 - 1 0  days , Cox (1985).

2) Flat-top " F-type " sometimes has a bumps on rising light as cepheids with 

period 1 0 - 2 0  days, Cox (1985). The flat maximum may last for 0.3 in phase, Kwee 

(1967).

The C- and F- type variables occupy different positions in the H-R diagram. The 

crested variables are about half a magnitude brighter than the flattened one (Kwee 1968).

The mechanism for feeding stars into the Pop II instability strip at this point seem 

to be " blue looping " from the AGB caused by thermal instabilities in the He burning 

shell. As soon as the transition phase from He core-burning to He shell-burning is 

essentially completed and a definite narrow He shell has been found, the thermal
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instability previously found to be characteristic for models with He burning shell sets in

and causes the characteristic shell flashes (Schwarzschild & Harm 1970). If we make the

simple assumption that metallicity varies very little, or that it has little effect on the

evolution, then it is possible that a slightly higher mass star moving up the AGB executes

this blue-loop at a later stage, causing the star to have a higher luminosity when passing

through the instability strip producing a C-type variable (see discussions in section

lB-2). Thus we see that the C-type variables may be slightly more massive than the F-

type. Assuming the two classes follow the parallel period-radius relation, which is

independent of the chemical composition, then the mass ratio may be estimated as giving

Mc~1.3M/', where Me and M/  ̂refer to the crested and flatted masses respectively. This

fits into the range of possible masses given by Bohm-Vitense (1974) of

0.5 < M I M  < 0.75 (Bridger 1984).sun \ o /

The width of the instability strip depends on a combination of mass 

(increasing the mass leading to shift the blue edge to the higher temperature), 

luminosity (increasing the luminosity leading to shift the red edge to redder colours) and 

chemical composition. The red edge of the strip defined as the value of 7 ^  at which

the growth rate, 77, is maximum, (fractional amplitude increases per period, where

77 oc ^  ^  ^  ^ surface gravity, Cox (1980) and Chiosi et a l (1992)).

The growth rate of W Vir instability is very rapid because of the large luminosity to 

mass ratio (see for example, Davis 1974, Fadeyev 1993).

The blue edge is particularly well defined by the stars in globular clusters, while 

the red edge is less well defined. This maybe because differential line blanketing due to 

the spread in metal abundance affects the colours of the cooler stars more than 

the hotter ones, also maybe because of neglecting the effects of convection which are
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responsible for the existence of the red edge (Wallerstein & Cox 1984, Buchler & 

Moskalik 1992).

0 2 m ag 0.2 m agV 802 S g r  1375

v n e ?  Scr 1571
V1077 Sgr 

13ft

V7 t 1  Sgr  1572
V t I O  S g r  

13?8

V377

V 478

V 1303 S g r  
18?5

Figure 1-8. Observed Crested and Flat-toped light curves (Kwee 1967, Figures 4 and 5).
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2‘L T h e  N o n - L in e a r  T h e q r y :-

Here we will mention only the non-linear approach since the linear theory is 

expected not to be an accurate account for the location and width of the H-R diagram, 

(Christy 1966, Cox 1974). The linear theory, for the sake of completeness, is briefly 

discussed in Appendix D.

2-1-L T h e  P u l s a t i o n  T h e o r y ;-

Stars pulsate because of thermodynamic properties of their envelope material. 

Ionisation of H at about 10,000 K and the second ionisation of He at about 40,000 K 

produce destabilization by what has been called the gamma(y ) and kappa (K ) effect

as these are the possible mechanisms that may cause pulsational instability in stars 

(Bridger 1983).
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The pulsation constant Q  characterise the pulsation mode of a star, and is 

defined as :

Q=P, (2-1)

sun

where P  is the period and p  the mean density. As a function of stellar parameters, 

Q changes slowly for each mode, and it expresses the period-mean density relation for 

pulsation stars ( Pijpers 1993),

The gamma effect arises from the variation in ratio of the specific heat of the 

gas during ionisation. If the gas in the pulsation driving layers is compressed, much of 

the work done on this layer is used to ionise the gas and only a small part is used to raise 

its temperature. During a later part of a pulsation cycle, when the gas is expanding the 

ionisation energy is recovered with recombination occurring the phasing of this 

re-emergence of energy is delayed a bit so that it actually reinforce the expansion 

(Keeley 1970, Wallerstein & Cox 1984).

The kappa effect, which causes a strong driving of the pulsation in the region 

outside the H ionisation zone, is a material property that causes destabilization of stars. 

In this case the energy is not hidden for part of a cycle, but it is merely blocked by the 

higher opacity. Energy is allowed to flow more easily during expansion, and this gives 

the re-expansion a push. (Keeley 1970, Wallerstein & Cox 1984).

The growth or decay rate depends on the presence of material undergoing 

ionisation at a sufficient mass depth to influence the flow of energy - i.e. the growth of 

the pulsation period correlates with both the increase of the luminosity and the 

decrease of the effective temperature (Fokin 1990). The blue edge of the instability strip
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is set by the abundance of He. This is because, for the hotter stars, H ionisation driving 

is too near the stellar surface (Wallerstein & Cox 1984).

2 - 2  T h e  E otjattons O f  S t e l l a r  P u l s a t io n :-

In modelling pulsating stars we have to set three assumptions which are as 

follows;

(1) space is Euclidean ,i.e. flat space.

(2 ) mass is conserved.

(3) Newtonian theory expresses the gravitation; neglect the effect of special and 

general relativity.

2 -2 -2  T h e  B a s ic  E o u a t iq n s :-

The derivation of the basic equations of stellar pulsation which determine the 

stellar structure can be found in Cox & Giuli 1968, Novotny 1973 and Kippenhahn & 

Weigert 1990. The equations will be listed here without the derivation. These are in 

Lagrangian co-ordinates (i.e. co-ordinates that move with the bulk motion of a mass 

element when the mass is taken as the independent variable instead of the radius). 

Because the physical interpretation of the equation is clearer, simpler and more straight 

forward in the Lagrangian than in the Eulerian description, and also removes a number 

of potential difficulties at the stellar surface, the Lagrangian co-ordinates has been 

adopted here (Deupree 1976, Cox 1980 , Kippenhahn & Weigert 1990).
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The mass continuity:

â r  1
à  A f 4;r

The hydrodynamic equation (equation of motion):

â ^ r _ _  GMr  _ â P

(2-2)

-----------  (2-3)
à  f  r  â  M ,

Most stars are obviously in such long-lasting phases of their evolution that no 

changes can be observed at all. Then the stellar matter cannot be accelerated noticeably, 

which means that all forces acting on a given mass element of the star compensate each

other. In these cases we have the hydrostatic equilibrium when, — is equal to
à  f

zero.

The equations of mass continuity - (conservation of mass) equation 2-2 - and that 

of momentum - (equation of motion) equation 2-3 - determine the dynamical behaviour 

of the stellar envelope (Unno 1965).

The radiative energy transfer:

' r

(In some textbooks they use (2 x C rather than 4  O' )

where:

T : space variable (radius). 

t  : time variable.

M r  : mass enclosed within radius r. 

P  : density of matter at radius r.

(2-4)
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Lr : luminosity at radius r.
P  : total pressure at radius r.

T  : temperature at radius r.
: opacity at radius r.

CJ : the Stefan-Boltzmann constant.

(I : the radiation pressure constant = 7.56 x 10"'̂  erg cnf^ K  .

The conservation of energy equation  ̂:

=  S  <2.,,
â  t  Ô t  An r - p  â  r  â  t

where, E  : internal energy per unit mass,

V ; specific volume,

G  : energy generation,

Q : heat absorbed. Not to be confused with the pulsation constant.

The alternative form of energy conservation is

 ̂We can write the energy equation as 1

d  t a  t â  Mr
•1

where S and Q are the entropy and the specific heat respectively. First low o f  thermodynamics gives us |

!\F . =  Q  — W , where W=^PdV the work done, |

!
a  E  a  L  ^ a  V  3

so ,  =  - --------------- P --------+  g  v|
a  t a  M y  a  t \

1
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( #  r - r P ^ L )  = 0

(2-6)

These equations - along with formula for opacity, energy generation and 

equation of state and suitable boundary conditions - can be solved for the radial 

pulsation. Practical difficulties remains in the inclusion of convection in pulsation 

calculation. Convection means an exchange of energy between hotter and cooler layers in

= P —  4/r r"

_ p  — ~ P

æ
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a dynamically unstable region through the exchange of macroscopic mass elements, the 

hotter of which move upwards while the cooler ones downward. The moving mass 

element will finally dissolve in their new surroundings and thereby deliver their excess - 

or deficiency - of heat. Owing to the high density in stellar interiors, convective transport 

can be very efficient. However, this energy transfer can operate only if it finds a sufficient 

driving mechanism in the form of the buoyancy forces. Convection and pulsation tend to 

be mutually destructive phenomena. Rapid thermal alterations arising from pulsation may 

tend to prevent convection from becoming firmly established, while convection may 

conspires to quench pulsation by altering the thermal structure of the H ionisation region 

in a certain manner. This would imply that convection is relatively unimportant except 

when close to the red edge ( i.e. convection is able to quench the pulsation at relatively 

low pulsation amplitudes). By ignoring the convection the light and velocity curves are 

relatively unchanged (Christy 1966, Clayton 1968, Deupree 1977a, b, Buchler 1990). 

Neglect also of rotation and magnetic fields means that the only forces acting on a mass 

element come from pressure and gravity. We also assume that the diffiision 

approximation for energy transfer by radiation holds throughout (Christy 1967, Clayton 

1968, Strohmeier 1972, Stellingwerf 1975, Bridger 1983, Kippenhahn & Weigert 1990).

It is assumed that only the stellar envelope takes part of the pulsation, where 

there is no energy generation, and where we must include a realistic opacity law and an 

equation of state that includes ionisation, since these properties are basic to the existence 

of pulsation instability. For most problems, the central core of the star can be ignored. 

We believe that this region plays very little part in the pulsation.

The linear adiabatic theoi-y showed that the amplitude of the pulsation motion 

decreases very rapidly toward the stellar interior due to a rapid increase in density 

toward the centre, therefore we ignore the nuclear energy sources near the centre. In this 

case the energy generation, S,  equation 2-5, can be put equal to zero - i.e. the nuclear
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energy generation on the right hand side of the heat flow equation, (see for example,

Christy 1967, Bridger 1983 and Milligan 1989). Thus:

â E ^ p â V _ _ _ _ _  Ô L  _ _ â L  

Ô t  ô t  ^ T t r ^ p â r  p M

2-2-2. T h e  B o u n p a r y  C o n p it t o n s :-

The inner boundary is chosen such that the radius of the innermost zone in the

pulsation calculation is fixed at its equilibrium value which is

R  ( inner ) =  (2-*)

Thus, only the stellar envelope participates in the pulsation, this means that the 

luminosity and composition are constant in the initial model (Christy 1967, Bridger 

1983), since the core is assumed to be non-pulsating while radiating a constant 

luminosity. Thus, at the inner radius

and

 (2- 10)
inner

At the inner boundary the velocity is zero at all times and the luminosity is a 

constant (i.e. the core luminosity).

At the surface of the star we can see two boundary conditions, either: 

jP {tot-surface) ~  P{vad-surface) (2 - 1 1 )

or
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P  (tot—surface) ^ (2-12)

Dr, Carson used the second one in his program, where 

P{tot) the total pressure.

PfPQ^ is the radiation pressure which should be described by the time-dependent 

radiative transport equation. This is not possible, because it requires knowledge of the 

state of gridpoints several mean free path lengths away. Therefore, the radiative 

boundary condition is chosen to approximate the results of diffusion theory. The 

radiation pressure is important only at high temperatures (Clayton 1968, Milligan 1989). 

By using the Eddington approximation^, this can be expressed as

( D  1 = I t ' = I t '
d  X ^surface 4 -̂  ^ # 2  *̂

where :

T e f f  ’ effective temperature.

'J'^ ; surface temperature.

T ; optical depth.

^The Eddington or simply the T-x approximation is defined as follows 

4 3 4

I-..-— —L-ii: 1 j
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3-1. T h e  M e t h o d  O f  S o l t j t t o n :-

Equations 2-2, 2-3, 2-4 and 2-7 are treated as an initial value problem, to be 

integrated from initial conditions. In order to follow the non-linear behaviour of the 

model, it is necessary to put these equations in difference form, in a stellar envelope of 

about 50 mass zones. This procedure is described in Christy (1967). In our work, we 

will follow the same procedure as Milligan did in her Ph.D. thesis (1989), We will use a 

program written by Dr T. R. Carson. Some of the main features of this program are 

given here for the sake of completeness.

The first step is to integrate a static model and divide it up to 50 zones. The 

program allows two methods of division. One is simply zoning by mass, since we see 

the mass in each successively deeper zone is greater than the last by a constant, or equal 

sound travel time. Both of them gives us good results but the second one is faster which 

is the one that has been adopted. In both cases the mass remains in each zone constant 

with the time as the non-linear proceeds.



Chapter THREE Page-35-

The boundary between each zone is labelled i, where i = 1 is the innermost 

zone, and i = N  the outermost. The centre of each zone is labelled i - Yz. The radius 

is taken at the boundary. Therefore, would be the radius of boundary i at time f ,

where n specifies the time-step. The mass of the zone, A ]\/[. _y ,and the mass at the

boundary, A , are both useful quantities and are defined as follows:

A M i  - 1̂  =  M r  M i  -1 ; mass of the zone (3-1)

A M ,  =  ^  (A  M ,  - ) 4  +  A M ,  boundary (3-2)

and the specific volume V of the zone :

j r .  _  4 ^  ( Æ " y -

The re-zoned model extends inwards to about 0.1 - outside nuclear energy

producing region, where luminosity is constant and has a small amplitude of pulsation. 

We have now relaxed this envelope onto the same difference equations as used in the 

pulsation analysis, otherwise problems would arise in the pulsation calculations. The 

relaxation is achieved by an iterative scheme, which calculates y  and

from the outer boundary condition, then, for all W - 1 zones, it calculates p .  _y

from p .  and P ^ ■ Using the equation of hydrostatic equilibrium in its difference

form, it would work out temperature and density, obtains a value for p .  ,̂ and

compares that value with the stored one. If the corrections to the values of jRare more 

than a certain limit, the iteration is repeated. When the corrections are sufficiently small, 

the non-linear analysis can proceed (Milligan 1989).
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Velocity U  is taken at time « + V2 for best centring in time. Thus, the radius at 

the new time w + 1 is given by:

R7' = r :  (3-4)
where:

p;* 'A  =  u '^ 'A  (3.5)

= r ' “  f  (3-6)

A f  -  r  (3-7)

where At"*^  is not necessarily the same as At". The program changes the time-step as 

it process, in order to facilitate convergence. The first time step is usually the most 

stringent, so the time-step must be less than the time for sound to traverse any zone 

(Bridger 1983). Therefore,

'■/l T

A M <  (3-8)

where the square root is of the order of the mean velocity of sound on the stellar 

interior.

During the pulsation a shock wave develops, which can cause a rapid 

compression (but not an expansion), of some zones particularly in the H ionisation 

region. Therefore, we have to add an artificial viscosity pressure, which acts as an extra 

pressure which enabling the shock front to be spread over several zones, thus,

improving the stability. A large C q  makes a thicker shock front but greater stability

(Christy 1967). This is:
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= C g [M m  ( ^  ^ + y  ,0)] ' (w ,

where superscripts refer to time and subscripts to zone, and l | /  is of the order of 0 .1 . 

Stellingwerf (1975) found that when \ j /  = 0 we get a damping in the lower region of 

the envelope. As \ | /  gets larger the time steps gets bigger and the amplitudes are up to 

50% higher than those indicated by the observation (Kovacs 1990).

We can now write the equation of pulsation in difference form, and consider the 

boundary condition on them. The equation of hydrodynamic equilibrium, 2-3 , can be 

written as:

( r : y  a m

(3-10)

The boundary value of this is as follow:

Inner:

= 0  (3-11)

since there is no motion considered in the interior of a star.

Outer:
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- A f  {  G M « ( R n)
( r : y  A M

(3-12)

where V P  is \  The expression for the outer boundary condition is obtained by 

defining some fictitious pressure, ^  , beyond the outer surface of the star.

For a zero surface gas pressure we have:

(3-13)

(3-14)

P r  Fn-y = \^ W r-yrP .-y  (3-15)

since the atmosphere is almost isothermal. Then we can write with a good 

approximation (about 1% Bridger 1983)

P ^ , = i a f K - y ,  (3-16)

where is the radiation pressure at the surface.

Bridger also adopted mass zones increasing inwards by a constant factor OC (the 

Carson non-linear code which has been adopted -as mentioned earlier- incorporating 

mass zones of equal sound travel). Hence for consistency he used

1+OC
— —  A M at-K  (3-17)

2 a
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where,

A M k =  I  (  A M n.K +  )  (3-19)

The radiative energy transfer equation, 2-4, becomes:

z ;=[47i (r i Y  ] [ w i y - w i J ^ F :  0 -20)

where 2  is a suitable difference form of y Y  ^  ■

Then:

« _  4 (7  1

3 M,..y+Ki-y,^ M,-y  ̂ ^

Christy (1967) found that using this relation in the iteration of the heat equation failed 

to converge when the front was advancing outward with large amplitude. This is 

because this relation can not handle the large change in opacity across a zone that 

occurs in such cases. It gives too little weight to the larger opacity, that means , to 

minimise the error produced by the use of very coarse zoning in the region of H 

ionisation (Castor 1971, Bridger 1983). Therefore Christy developed a new difference 

expression for F. Thus:

3  K.'Lu K"
A 

K

(3-22)

is thG opacity in at i + Yz.

We can now write the energy equation, 2-5 , in difference form
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( piy+F:,)+QZIvTrrvlyy^
— ^ r T-H+ii r __ r«+i_ r 1

2 \--L/i JLdi jUm Jum J

(3-23)

This is solved at each time step, by a process of iteration, which is subject to the 

inner and outer boundary conditions. Since no energy generation takes place in the 

pulsation envelope (i.e. the energy generation equal to zero). The inner boundary 

conditions imply that the luminosity of the innermost zone is equal to the total 

luminosity of the model. Thus at i = 1 we can determine ,thus k

z r - [ 4 7 i  0 -24)

where is the mean luminosity.

The outer boundary condition makes use of the Eddington approximation. The 

surface luminosity is given by:

d—M. = 4Ti r^p
d  r

L = -(47t r '  ) ' [ i ^ | E ]  = - (4 n  /  ) ' [aw ]2F  

let, =

SO, L = (4 n r^  Ÿ H  = (4 n r^Ÿ A W 2 F

.*. flwc = , ^  j = (4ti )H  
4 n r^
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L = A t i { R ^ S  2 a T ,  (3-25)

Therefore we have to determine , which is the radius at which the

temperature is equal to the effective temperature, . Bridger (1983) found that 

and 7?jv-i i^ight be unreliable in some model. Now we can write down the outer 

boundary condition:

{ E t y r  E ' ly  +  [ l, { P l y  +  F ; \)  +  Q t y J V t y r V l y ^ ^  M .-y

= ^ t e . + z ; - - 2 ct 4%  W s - y + i R Z T m i y ] }

(3-26)

Equation 3-23 can now be solved for new temperature by using a

Newton-Raphson iteration method. Thus we can do by making a linear expansion of the 

various terms in the difference equations and solve each step of the iteration procedure. 

Let a superscript prefix denote the number of the iteration, and let ^  t>e the

correction to the temperature at each iteration i:

then we have:

• pi j-tH+1

" F l y  = 'ETk + 'A K : ;  (3-29)
^  fr/+X ■I

J
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" C  (R'r'ŸÎ {w":yrWi:'̂ ^FT' (3-31)
When equations 3-27 to 3-31 are substituted into the difference form of the 

energy equation, 3-23 , we get:

a . K  ‘a ^ : ; = ô . k

where:

a . x = ^ r ^ [ x . f  { w. : y r  (3 -3 3 )
^  W ,.y

(3-34)

(3-35)

5 , . x =  -  r : : - L : ] - ^ M , . y { E T y - E i y

+ [ |  ( p . x + 'p : ': U + a : x l L : ; - F : 'J }

(3-36)

 >«
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X '  =  4 7 l ( i ? r )  (3-37)

Equation 3-32 is a matrix equation of the form M X = D, where M is a 

tridiagonal matrix with elements Ot , P  and y  , X is the solution matrix containing

new values of and D is a column matrix with elements Ô. The equation can

be solved using a standard technique.

Equations 3-33 to 3-37 provide most of the elements of matrix M. The 

boundary conditions give the following values for the remaining elements:

•  ̂ M-bl ■ •

a y = 2(A rY  ( f : ' -  [ V ;'-V k ']}  (3-3»)
O Wy,

• /I4-1 • ^

p  = 2( x ' ) ' { V r + — ^ V ; ‘-  W y ] }  (3-39)
d Wy

y = 0  (3-40)

Ô K = 2 ( x ‘) ' { V r ' [ V ; ' -  (3 -« )

=  0  (3-42)

o  N-ŷ

(3-43)
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-  "  d  w . - K

(3-44)

0.-^=^ [ z ; - . + ‘z : ', - 2 a  (a" ,̂,W",-A AZ.WT-y)]~a M .-y  

{ z r K - p ; - K + R ( F . - K + > ; - K ) + c y

(3-45)

To solve the matrix, we look for two sets of equations Xl^.y and Yn.y such that

^ f v : : ÿ = x , . y ^ p r ; : ÿ + r . y  (3-46)

then

^ W : y = X . - y ^ W : : y  +  Y , - y  (3-47)

Substituting 3-47 into 3-32 and dropping time superscripts, we get:

-K ^

So we obtain:

(Xi+/2

and

Î
X . . =  n  —  (3-49)
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_ +  y , . y Y , - y

P(+x y
Y , . y = n ■ (3-50)

So starting at i =1 , all of X/+j^ and Yi+ŷ  can be calculated from 3-49 and

3-50. At the surface ~ 0 , i.e. Xs-y^ is zero, therefor,

W . - y  =  Y . - y  (3-Sl)

SO all the can be found from 3-48. Iteration proceeds until the temperature

correction terms are as small as is desired.

3-2. T h e  E q u a t io n  O f  S t a t e :-

In order to solve the stellar structure equations it is necessary to have an equation 

expressing the relation between P, T  and p  , and to have available values of entropy 

per unit mass, S, and internal energy, E, for the stellar material. Here the stellar 

envelope is assumed to be homogeneous and the radiation pressure is constant.

Let A., be the atomic mass of element i, be the abundance by mass of 

element i, CL. be the abundance by number of element i, and |Ll be the mean 

molecular weight, thus:

. . .
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P .

A,i=l

ZP , /
/ A i

The quantity N  may not be known, depending on whether the pressure or

density is known. If P  is known then N ~P  !K T , where N  = N - N  ,g !  n e

Pçr -  P  + . If the density is known then N = N  p / u  .Where the number5 ton e n o ^  I ~

density of element i is given by:

^  A o _ £ O L i (3.54)

where:

JV^ is Avogadro's number, and K  is Boltzmann constant.

If we let iV.. be the number density of element i in ionisation stage y, and I Z  
V ^

be the electron density. Then, the electron number density is given by: 

all all
N e  =  Y . l . j  (3-55)

y=i

This expression is non-linear in which can be solved by iteration.

If the formation of molecules is ignored, we can write the following expression:
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P=P.  + P + P  (3-56)ion e r

where :

the radiation pressure is

P  = -a T ^ , (3-57)r
3

the electron pressure is

P = N K T ,  (3-58)e e

the ion pressure is

P. = N K T  (3-59)ion n

;the electron number density 

;the nuclei number density 

N  ;the total number density of all particles

N  -  N  4 -N  (3-60)e n

The prefix Hon' denotes the contribution from free ions which remains to be 

calculated.

To find the number density N ^j  of element i in ionisation state j ,  we can use 

Saha's equation:



; 'ki
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N i f -  7=®

n V .® ,/D

N  ol! ..'i-'
'  z [ n w 7 ) ]

/ = 1  J = ( Ù j

in which we have:

(3-61)

(3-62)

& !

where,

; the highest ionisation state of element i .

P _  ; the partition function for the ionic species(ÿ)*

g .. ; the statistical weight of the outer shell.
U

V .. ; the number of electrons in the outermost shell.

; the ionisation energy. j

h  : the Planck constant. i
1j f l  ;the electron mass. |

The total number density of free ions is given by:
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all

e - « >
i - i  I

the partial entropy per unit mass is:

^ion  "  ^  ̂  ~  ^ io n . ^ i o n . ^ T  ]  (3-65)

and the partial internal energy per unit mass is:

1 all *̂7  ̂ Q
£ , = p [ z  ( 3 ^

^  i~l j=(ûf ^

the total energy per unit volume is given by

E=E.  + c  T ^ a f  -,ion V
(3-67)

c = —N  K  (3-68)
V 2  "

then;

E = E. + - N  K T+aT  (3-69)
ion 2  ^

TS = P+U+r[KT  (3-70)

in which the degeneracy factor T) is defined by:
Hon i
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g  / =  W  [ 2 ; r  A .  K T  i h Z -  (3-7i)

The equation of state also allow for the formation of the molecules and

C O ,  being the most abundant of the diatomic molecules. For these the abundances are 

readily obtained by the solution of quadratic equations since the equilibria are not 

coupled. The expression for the pressure and stellar thermodynamic properties are then 

suitably modified.

Some references that were useful here are; Christy 1967, Clayton 1968, Cox & 

Giuli 1968, Copeland et aL 1970, Bowers & Deeming 1984 , Bridger 1983 and Milligan 

1989.



CHAPTER
FOUR
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4-1, R e s u l t s  &  D i s c u s s i o n

In this work, as mentioned earlier, we have used a program code written by Dr. 

T. R. Carson. The input data were as follows: the star's mass, luminosity, effective 

temperature or radius, the hydrogen content X, helium content Y and metal content Z 

and number of the zones required. The results are shown in table 4-1. We have used the 

Iglesias and Rogers opacity tables which have been modified by Dr. Carson to include 

molecular opacity of lowest temperature. This work has been done using the SUN 

computer system at the University of St. Andrews.

In our work we have used the same parameters that were used by CS82 &

CSV81 (models 1 - 20), three models from Bridger 1983 (models 31, 32 and 34), five

models from Hubickyj 1983 (models 35 - 39), and the other models have been adopted 

by the author. Figure 4-1 shows our models in HR diagram, the observed stars - using 

table 1 in Bohm-Vitense et a l 1974 and tables 2-la and b in Bridger 1983 -. Also shown 

the observed blue and red edges, equations 4-1 and 4-2 respecivly, which have been 

adopted from Demers & Harris 1974 (these edges only for BL Her and W Vir stars).

lo;s(7:/Z,,un) = -10/75 lojg k43.5 O#-!)

loi,(jL/ I,un) = --10.75 lois 2:# -̂ 4:2.4 (.4-2)

However, the individual stars from Demers & Harris have not been located in 

Figure 4-1 since the temperatures were not given numerically.
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O b t e r v è d  S t a r s  ( B o h e m - V i t e n s e  e t  al .  1 9 7 4 )  

O b s e r v e d  S t a r s ( B r i d g e r  1 9 8 3 )

M o d e l
3 .6

O b s e r v e d  b l ue  edge  
( D e m e r s  & H a r r i s  
1 9 7 4 )

O u r  t h e o r e t i c a l  
b l ue  e dge

3 .4

3 .2

bOO

2 .4
O b s e r v e d  r e d  e d g e  
( D e m e r s  & H a r r i s  
1 9 7 4 )

2.2

2.0

0 0 0 < O ^ C 4 0 a o < 0 ' ^ C N Jc » o o o o Q O Q O Q o r « . r ^ i s . , r ^
c o c o c o c o n o c o c o c o c o

or». CO CO
CD CO

L o g  T e f f

Figure 4-1. Shows the observed stars, blue edge and red edge, and theoretical 
blue edge and models.

CO

CO CO CO CO

The main results are summarised in table 4-1 which contains the following;

KE  ; peak kinetic energy.

A ; full amplitude.

Asymmetry ; time spent on the descending branch of the surface velocity curve (or 

surface luminosity curve) divided by time spent on the ascending branch.

(j) ; phase after zero velocity on the ascending branch of the surface velocity

curve of the second (not necessarily the secondary) bump on this curve plus 

unity.

(j)̂  ; phase after mean bolometric magnitude on the ascending branch of the

surface luminosity curve of the second (not necessarily the secondary) 

bump on this curve plus unity.
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Table 4-1. Shows a summary of our models' results.

Parameter Model
1 2 3 4 5 6 7

M/Msun 0.6 0.6 0.6 0.6 0.6 0,6 0.6
log(L/Ljw«) 2.00 2.00 2.00 2.25 2.25 2.50 2.50
log Teff 3.81 3,78 3.75 3.78 3.75 3.78 3.75
R/Rsun 8.06 9.26 10.63 12.35 14.18 16.46 18.90
P(days) 1.14 1.53 1.91 2.39 3.25 3.99 5.41

KE (10^® ergs) 1.0 1.9 3.0 1.8 4.9 1.25 5.4

A r /r 0.17 0.20 0.25 0.20 0.28 0.15 0.27

AV(km/s) *17/24 46 50 48 43 47 26 43

A M bol 1,4 1.5 1.3 1.2 1.4 0.7 1.3

Asymmetry (vel.) 1.70 1.7 3.9 3.1 2.8 2.9 1.8
Asymmetry (lum.) 6.7 3.7 4.8 2.9 4.0 1.4 2.6

1.44: 1.49 0.87 0.95 0.82 1.85 1.40

1.55 1.48 0.89 1.02 0.87 1.88 1.38

X 0.745 0.745 0.745 0.745 0.745 0.745 0.745
z 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Parameter Model
8 9 10 11 12 13 14

M/Msun 0.6 0.8 0.6 0.6 0.6 0.6 0.6
\og(L/Lsun) 2.50 2.00 2.00 2.00 2.08 2.00 2.16
log Teff 3.72 3.81 3.83 3.82 3.83 3.79 3.82
R/Rsun 21.70 8.06 7.35 7.70 8.06 .8 .84 9.26
P(days) 7.20 0.94 0.96 1.04 1.19 1.35 1.48

KE(10^® ergs) 7.3 0.9 0.01 0.4 0.001 1.7 0.013

A r /r 0.26 0.10 0.05 0.10 0.005 0.23 0.018

AV(km/s) *17/24 31 30 13 28 1 56 4

A Mbol 1.2 0.9 0.4 0.9 0.04 1.6 0.1
Asymmetry (vel.) 2.8 3.3 1.5 1.3 1.0 1.5 1.1
Asymmetry (lum.) 2.0 2.2 1.2 2.1 1.1 4.3 1.1

4 ) .
*** 1.42 *** *** *** *** 1.62

0.83 1.48 1.55 1.60 *** 1.53 1.41

X 0.745 0.745 0.745 0.745 0.745 0.745 0.745
Z 0.005 0.005 0.005 0.005 0.005 0.005 0.005
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Parameter Model
15 16 17 18 19 20 21

M/Msun 0.6 0.6 0.6 0.55 0.55 0.55 0.6
\og(L/Lsun) 2.08 2.25 2.33 2.00 2.00 2.00 2 3 3
log Teff 3.80 3.81 3.80 3.79 3.795 3.825 3.79
R/Rsun 9.26 10.75 12.35 8.84 8.64 7.53 12.93
P(days) 1.52 1.92 2.42 1.50 1.55 1.17 2.75

KE(10^® ergs)
1.5 0.08 0.38 1.6 1.3 0.02 2.9

A r /r 0.17 0.04 0.09 0.21 0.21 0.03 0.26

AV(km/s) *17/24 37 9 17 50 49 6 48

A M bol 1.2 0.3 0.6 1.6 1.6 0.2 1.9

Asymmetry (vel.) 3.2 1.0 1.1 1.7 1.4 1.3 2.1
Asymmetry (lum.) 3.2 1.5 3.1 5.9 6.4 1.1 9.0

1.33 *** 0.89 1.23 *** 1.53 ***

4 > /
. 1.33 0.75 0.88 1.17 1.15 1.47 ***

X 0.745 0.745 0.745 0.745 0.745 0.745 0.745
z 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Parameter Model
22 23 24 25 26 27 31

M/Msun 0.6 0.6 0.6 0,6 0.6 0.6 0.6
log(L/Lsun) 2.33 2,08 2.08 2.50 2.00 2.00 2.80
log Teff 3.81 3.82 3.84 3.70 3.73 3.74 3.75
R/Rsun 11.79 8.44 7.70 23,80 11.66 11.13 26.70
P(days) 2.28 1.27 1.08 9.29 2.37 2.17 9.67

KE (10'*° ergs)
0.02 0.2 0.004 12.2 4.6 4.2 8.0

AR/R 0.02 0.07 0.009 0.40 0.28 0.28 0.33

AV(km/s) *17/24 4 17 2 51 50 53 39

A M bol 0.2 0.5 0.08 1.5 1.4 1.4 1.4

Asymmetry (vel.) 2.2 2.0 1,1 1.0 1.8 1.9 1.1
Asymmetry (lum.) 0.9 1.7 1.0 1.6 3.3 3.3 3.1

*** 1.45 *** *** 0.83 0.81 1.52

*** 1.49 *** *** 0.82 0.86 1.48

X 0.745 0.745 0.745 0.745 0.745 0.745 0.745
z 0.005 0.005 0.005 0.005 0.005 0.005 0,005

\  i ï  '."J
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Parameter Model
32 34 35 36 37 38 39

M/Mjm« 0.6 0.6 0.6 0.6 0.6 0.6 0.6
log(L/L5Mrt) 3.00 2.90 1.40 1.60 1.70 1.80 2.00
log Teff 3.75 3.75 3.88 3.869 3.863 3.856 3.844
R/Rsun 33.62 29.96 2.93 3.88 7.47 5.18 6.89
P(days) 12.99 11.60 0.21 0.34 0.43 0.55 0.88

KE (10'*° ergs)
*** 7.8 0.13 0.13 0.04 0.03 0.001

A r /r
*** 0.31 0.03 0.05 0.03 0.03 0.005

AV(km/s) *17/24 *** 31 21 21 10 7 14

AMZ>o/ *** 1.1 0.6: 0.5: 0.4: 0.3: 0.05
Asymmetry
(vel.) 11 1.0 2.33 1.0 0.89 0.82 1.04
Asymmetry
(lum.) *** 2.6 3.17 1.0 1.04 0.96 1.08

4 )»
*** 1.47 *** *** *** *** ***

*** 1.51 *** *** +** *** ***

X 0.745 0.745 0.750 0.750 0.750 0.750 0.750
z 0.005 0.005 0.000 0.000 0.000 0.000 0.000

Parameter Model
40 41 42 43 44 45 46

MfMsun 0.6 0.6 0.6 0.6 0.6 0.5 0.5
\og(LfLsun) 1.40 1.60 1.70 1.80 2.00 2.00 2.00
log Teff 3.88 3.869 3.863 3.856 3.844 3.844 3.83
R/Rsun 2.93 3.88 4.47 5.18 6.89 6.89 7.35
P(days) 0.22 0.34 0.43 0.56 0.89 0.99 1.12

KE (10'“’ ergs) 0.22 0.14 0.096 0.08 0.03 0.002 0.03

A r/r 0.06 0.04 0.03 0.04 0.03 0.008 0.03

AV(km/s)*17/24 25 21 14 11 8 2 8

A M W 0.98: 0.67: 0.45: 0.47: 0.26 0.064 0.22
Asymmetry (vel.)

1.94 *** *** *** *** *** 1.22
Asymmeti-y (lum.) 2.33 *** *** *** *** *** 1.00

4>o
**+ *** *** *** *** *** ***

4>/
*** *** *** *** *** *** ***

X 0.749 0.749 0.749 0.749 0.749 0.750 0.745
z 0.001 0.001 0.001 0.001 0.001 0.000 0.005
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Parameter Model
47 48 49 50 51 52 53

M/Mjm« 0.5 0.6 0.7 0.7 0.7 0.6 0.5
\ogÇLfLsun) 2.00 2.00 2.00 2.00 2.00 2.00 2.00
log Teff 3.83 3.83 3.83 3.83 3.81 3.81 3.81
R/Rsun 7.35 7.35 7.35 7.35 8.06 8.06 8.06
P(days) 1.11 0.99 0.90 0.92 1.06 1.17 1.33

KE (IGfo ergs) 0.1 0.3 0.5 *** 1.9 1.3 0.8

AR/R 0.06 0.08 0.07 0.5: 0.14 0.15 0.17

AV(km/s)*17/24 16 22 19 22: 43 42 42.5

A M W 0.52 0.74 0.67 0.52: 1.20 1.11 1.45
Asymmetry (vel.) 1.94 1.99 1.5 *** 2.64 3.17 1.41
Asymmetiy (lum.) 1.5 3.17 2/45 1.27 3.26 2J3 2.92

1.44 *** 11.35 *** 1.62 1.54 1.60

<l>/
1.47 1.18 1.33 1.35 1.60 1.54 1.59

X 0.750 ' 0.750 0.750 0.745 0.749 0.749 0.749
Z 0.000 0.000 0.000 0.005 0.001 0.001 0.001

In table 4-2 we are going to make a comparison of the present calculated period 

in column seven with others that have been calculated by CSV81, CS82, Bridger 1983 

(B83) in column two, Kovacs, Buchler and Marom 1991 (KBM91) in column tliree, 

Hubickyj 1983 in column four, Van Albada and Baker 1971 (VB71) in column five and 

Iben 1971 in column six.

Table 4-2.
Mode!
No.

Period
CSV81/CS82/

B83

Period
KBM91

Period
Hubickyj

1983

Period
VB71

Period 
Iben 1971

Period
Author

1 1.23 1.158 1.265 1.172 1.152 1.14
2 1.63 1.460 1.603 1.491 1.541 1.53
3 2.07 1.839 2.032 1.896 1.827 1.91
4 2.70 2.328 2.620 2.418 2.332 2.39
5 3.52 2.934 3.320 3.075 2.938 3.25
6 4.54 3.714 4.281 3.922 3.758 3.99
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7 5.95 4.680 5.425 4.987 4.724 5.41
8 8.44 5.897 6.876 6.342 5.949 7.20
9 1.02 0.970 1.046 0.964 0.961 0.94
10 1.04 0.993 1.080 0.999 0.988 0.96
11 1.13 1.073 1.169 1.082 1.067 1.04
12 1.22 1.153 1.264 1.166 1.150 1.19
13 1.47 1.351 1.482 1.376 1.343 1.35
14 1.56 1.446 1.601 1.475 1.445 1.48

15 1.59 1.453 1.602 1.483 1.448 1.52

16 2.07 1.848 2.067 1.901 1.852 1.92

17 2.67/2.47§ 2.318 2.618 2.405 2.328 2.42

18 1.58 1.426 1.569 1.460 1.419 1.50

19 1.64 1.455 1.606 1.497 1.450 1.55

20 1.24 1.155 1.267 1.177 1.151 1.17
21 2.503 2.833 2.605 2.514 2.75

22 ***** 2.146 2.419 2.220 2.156 2.28

23 ***** 1.245 1.368 1.263 1.242 1.27
24 ***** 1.068 1.168 1.076 1.065 1.08

25 ***** 6.879 8.052 7.445 6,938 9.29

26 ***** 2.146 2.380 2.226 2.131 2.37

27 ***** 1.987 2.199 2.054 1.973 2.17

31 12.60 8.196 9.780 8.910 8.351 9.64

32 17.30 11.908 14.485 13.118 12.211 12,99

34 14,60 9.879 11.902 10.811 10.099 11.60

35 ***** 0.206 0.224 0.210 0,215 0.21

36 ***** 0.329 0.362 0.337 0.342 0.34

37 ***** 0.417 0.462 0.429 0.433 0.43

38 ***** 0.533 0.594 0.551 0.553 0.55

39 ***** 0.859 0.967 0.983 0.887 0.88

40 ***** 0.212 0.224 0.210 0.215 0.22
41 ***** 0.337 0.362 0.337 0.342 0.34

42 ***** 0.426 0.462 0.429 0.433 0.43

43 ***** 0.544 0.594 0.551 0.553 0.56

44 ***** 0.873 0.967 0.893 0.887 0.89

45 ***** 0.968 1.091 1.011 0.995 0.99

46 ***** 1.111 1.218 1.131 1.108 1.12

47 ***** 1.081 1.218 1.131 1.108 111

48 ***** 0.960 1.080 0.999 0.988 0.99

49 ***** 0.868 0.976 0.899 0.896 0.90

50 ***** 0.903 0.967 0.899 0.896 0.92

51 ***** 1.033 1.143 1.056 1.045 1.06

52 ***** 1.140 1.265 1.172 1.152 1.17

53 ***** 1.281 1.427 1.327 1.292 1.33

not 2.67.
§ Lawrence 1985 found that there is a printing mistake in CS82 model no. 8 the period is 2.47 

* No calculations have been done for these models neither in CSV81, CS82 nor B83.



Chapter FOUR Page-59-

From the above table we can see that there are, more-or-less, an agreement 

between the present periods and the previous periods. Also, clearly seen that there are a 

disagreement between the periods that have been calculated by Bridger (1983) and that 

calculated by the other author (models 31, 32 and 34).

In our work we have used the Iglesias & Rogers (1991) (IR, hereafter) opacity 

tables which differ from the Los ALmos (LA, hereafter) and Carson opacity tables by

including more metal lines (a strong increase due to Fe line splitting). The LA opacités
I

considerably underestimate the contribution of the heavy elements such as Fe in two ]

temperature domains (Stothers & Chin 1991, Moskalik et al 1992). These (IR) tables 4

solved most of the major problems (Cox 1991, Kovacs et a l 1991). Tables 1C, 2C and 

3C, in Appendix C, represent the IR opacity for different composition. Each table gives 

log(K) for 34 values of log(T) with 9 values of log(p) S>r each temperature. The 

opacities for these tables are plotted in Figures 1C and 2C in Appendix C. For the sake 

of comparison we plotted the Carson opacities using table 5 in CSV81.

Comparing IR with Carson opacity when (X, Y, Z) = (0.745, 0.250, 0.005) we 

can see that - more-or-less-, for -5 ^ log(p) >-11, there is an agreement between the two 

opacities, while in the other hand this agreement failed for log(p) > -5 with log(7) <5.5. 

This disagreement may due to the heavier elements not the Hydrogen and Helium 

(Carson 1994, Private Communication)

Generally speaking we can say that using IR opacities the amplitudes and the 

period are less than that calculated with different opacities, this conclusion is the same to 

that found by Moskalik et a l (1992).

The blue edge with the new opacity tables, for RR Lyrae with Z = 0.001 and less, 

agree with the old one (for example Hubickyj 1983Who used the Carson opacities).
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However, on the other hand, the blue edge for log (L/Lsim) > 2.00 with Z = 0.005 shifted 

redward about 300 K, which agrees with that found for Pop I in Moskalik et a l (1992), 

see Figure 4-2. Once the model has been calculated to be a decaying one, and the light 

curve to be a sinusoidal (not always), the blue edge can be determined. Kovacs et a l 

(1991) found that the main effect of the IR opacities is to shift the non-linear ftmdamental

blue edge toward lower 7 ^  (redward).

Comparing our results, we can say that for RR Lyrae the mass can not be less 

than 0.6, if the star at 0.55 Msmi this star do not enter the RR Lyrae variable region (Cox 

et a l 1983), while for BL Her there can be variability with masses greater than 0,7 M sm  

if evolution theory includes them, but it does not.
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Figure 4-2. Shows the observed and theoretical blue edges.
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The bump progression in our models can be seen easily for the BL Her stars (see 

Appendix A). The centre of the progression lies between 1.5 - 1.55 days, whereas this 

centre in Carson & Stothers 1982 seems to occur at 1. 6  days.

L i g h t  C u r v e  S h a p e s :-

Here we are going to represent a comparison between the observed stars and the 

models that we have constructed. The comparison is based on the shape of the light 

curves, the luminosity amplitudes and on the shape of the velocity curves if available, 

see Table 4-3.

BL Her, the prototype of its class, with a period of 1.31 days, can be compared 

with model 1 (P=1.14). For comparison we show in Figure 4-3 the luminosity and 

velocity curves, observed and the theoretical one constructed by CSV81 which can be 

compared with our theoretical model No.l (see Appendix A-2).

MODEL STAR

F e l l

BL HERCULIS

MODEL STAR

t  (M « O
u

BL HERCULISn

PHASE FROM MAXIMUM LIGHT

Figure 4-3. Surface velocity and surface luminosity curves for BL Her and for the theoretical 
model with 1.23 day (model no. 1) o f CSV81. The velocity o f BL Her have been transformed to the 
astrocentric co-ordinate system (CSV81 Figure 5).
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BX Del (P=1.09) is a medium amplitude variable with a rather rounded feature 

light curve that is mimicked quite well by our theoretical light curves of either model 1 1  

(P=1.04) or model 9 (P=0.94). Similar in light curve and period to BX Del is XZ Cet 

(P=0.8231).

BF Ser (P= 1.165) with an amplitude about 1.5 mag. can be compared with model 

1, Similar in period to BF Ser are V716 Oph (P=1.1159) and model 51 (P=1.06).

KZ Ceil (P=l.519) is a distant halo star (CS82). Its rounded light peak and its 

prominent post maximum shoulder are represented in model 15 (P=1.52). Similar in 

period and light curve is HQ Cra (P=1.415),

RX Aur (P= 11.63). Its rounded light peak and its prominent post maximum 

shoulder are well represented in model 34 (P= 11.60).

XX Vir (P=1.348). Its sharp ascending branch and smooth descending branch are 

well represented in model 13 (P=1.35). Models similar in light curves and period are 18 

(P=1.50)and 19(P=1.55).

GL Cyg (P=3.37d). We can compare it with model 5 (P=3.25). The model's light 

curve seems not to be the same as the star's, but after smoothing the model's we get a 

good comparison. Similar in period to GL Cyg is BE Cra (P=3.334).

V553 Cen (P=2.06). Its flat light curve peak and a shock in the ascending branch 

are well represented in model 16 (P=1.92). This star seems to be near to the blue edge. 

The velocity curve of this star has been compared with the model's and gives a good 

comparison. Similar in light curve to V553 is RT Tra (P=1.95).
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VX Cap (P=l,3276). Its sharp ascending branch and slightly descending branch 

are well represented in model 53 (P=1.33).

TJX Nor (P=2.858). If we ignore its peak, the light curve is well represented in 

model 4 (P=2.39). Both have sharp ascending branch and slow descending branch.

V7 M l9 (P=0.244) is a medium amplitude variable, its light curve represented in 

model 40 (P=0.22).

V971 Aql (PI.624). Its sharp ascending branch and the shock on the descending 

branch are well represented in model 2 (P=1.53).

Model 3 (P=1.91). Its sharp ascending and the shock at phase 0.2 are well 

represented by either V439 Oph (P=1.839), VZ Aql (P= 1.668) or V839 Sgr (P=1.835).

VY Cyg (P=7.857). Its light curve can be represented by model 8  (P=7.20). 

Similar in light curve to VY Cyg is BB Her(P=7.507).

V802 Sgr (P=13.5135). Its flat top light curve is well represented in model 25 

(P=9.29). Similar in light curve to V802 Sgr are W Vir (P=l7.2768), V377 Sgr 

(P-16.19326) and V741 Sgr (P=15.156).
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Table 4-3. Observed stars that used for comparison with the models.

Star Period (days) A M References

BL Her 1.307 0 . 8 1.59 1, 2, 5, 6

BXDel 1.09
1.04

0 . 8 1 , 2

3
XZCet 0.8231 0.5 11

BF Ser 1.165
1.13

1.5 2

3
V716 Oph 1 . 1 2 1.4 1,3
KZCen 1.519 1.35 1.50 1,5
HQ Cra 1.415 1.05 1.07 2 ,4
RX Aur 11.62 0.7 13
XX Vir 1.348 1 .2 1.56 1.2,5
GLCyg 3.37 1.35 5
BE Cra L334 1 .2 5
V553 Cen 2  06 0.5 0  8 8 1, 7, 11

RTTra 1.946 0.75 2, 4, 11
VX Cap 1.3276 1.4 3
UXNor Z3858 1 .2 2.3
V7M19 0.244 0 . 2 12

V971 Aql 1.624 0.9 2 ,4
V439 Oph 1.839 0.75 0.93 1 , 2

VZ Aql 1 . 6 6 8 0.9 0.82 2,4
V839 Sgr 1.835 1 . 2 0.92 1,2,4
VYCyg 7.857 0.9 14
BB Her 7.507 0 . 6 14
V802 Sgr 13.5135 0.9 14
W Vir 17.2768 1 .2 0.30 14, 15
V377 Sgr 16.19326 1 14
V741 Sgr 13.156 1 0.31 14, 15

References;- (1) CS82. (2) Dicthelm 1983. (3) Lawrence 1985. (4) Kwee & Diethelm 1984. (5) 
Payne-Gaposchkin 1956. (6) Smith et aL 1978. (7) Lloyd, Wisse & Wisse 1972. (8) Michalowska-Smak 
& Smak 1965. (9) Zessevich 1966. (10) Lee 1974. (11) Dean et al. 1977. (12) Clement & Sawyer Hogg 
1978. (13) Mitchell, Steinmelz & Johnson 1964. (14) Kwee & Braun 1967. (15) Bridger 1983.

In this work we have been adopted the 50 mass zones as mentioned earlier. But 

for the sake of comparison a new model -model(56)- has been created which has the 

same parameters as model (1) but using 100 mass zones. Comparing the two models 

gives us the following ;
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With 50 mass zones the period and kinetic energy (P=1.14 day, KE (IQ̂® ergs) = 

1.0) were less than with the 100 mass zones (1.19,1.3 respectively). These two quantities 

with the 1 0 0  are, more-or-Iess, agreeable with CSV81. The amplitudes are less in the 100 

(AR/R=0.144, AV=43 Km/sec and /^Mhol =1.2 mag.) than in the 50 (0.17, 46 and 1.4 

respectively).

The features of the light and velocity curves in the 100 are more clearly than in 

the 50, see Figure 4-4. Unfortunately the 100 mass zone models required a very long 

time to converge compared with the 50 zone models (the 100 mass zone models required 

about 440 time steps for each period while in the 50 zone models it was about 250). This 

is to be expected since the maximum time step is controlled by the sound travel time 

across the zones.

CONCLUSTQN-

Generally speaking we can say that using the IR opacities we get results which 

agree well with previous work using different opacities.

Generally the periods of the old and new models are in very good agreement. 

However, the amplitudes of the new models tend to be fairly consistently smaller than 

those of the old models, tending towards greater agreement with observation. The new 

blue edges are shifted redward (toward lower temperature) with respect to the old, 

particularly for the larger values of the metal content Z, and less for the smaller Z.

Our non-linear results obtained here shows that the mass of RR Lyrae cannot be 

less than 0.6 Mstm, while on the other hand the BL Her variables have mass greater than 

0.7 Msun.
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Figure 4-4. Comparison between the light curves (top) and velocity curves 
(bottom), using a 50 mass zones (upper) and a 1 0 0  mass zones (lower).
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A p p e n d tx  a

Â A . L t g h t .  V e l o c i t y  & R a d iu s  C u r v e s  
F o r  T h e  R R  L y r a e  M o d e ls : -

In this Appendix, we present the light, velocity and radius curves of the RR 

Lyrae models. These light curves have been produced using a programme code created 

by Dr. T. R. Carson. For each model the mass, the luminosity, the temperature, the 

amount of hydrogen and metals and the period in days, are mentioned.
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A - 2 . T . t g h t .  V R T .ocrT Y  &  R a d t t t s  C u r v e s  
F o r  T h k  B L  T T kr M onK T .S :-

In this section, we present the light, velocity and radius curves of the BL Her 

models. These curves have been produced using a programme code created by Dr. T. R. 

Carson. For each model the mass, the luminosity, the temperature, the amount of 

hydrogen and metals and the period in days, are mentioned.



3SÆociel(49)

M

JP^O.SfO
11.0 ivr/AÆsww —o. 7 L.og ( L,y L,oi4.n}'^2.0 0 

L o g  T e f f '- -3 .8 3  
X '—O.TSO  Z  —0 . 0 0 0

10.5

10.0

9.5

9.0

8.5

8 . 0

<=»
P h a s e

2 0

1 0

2 0

P h a s e
•1E5

M

i

S3

52

51

50

49

<48

P h a s e



Tv<tociel(9)
JP—

11.0
8WM —O . g  1L,og( L.X Z,stert}"^Z.OO 

T .o g T e ff- -3 .S 1 .
O.OOS10.5

10.0

9.5

9.0

8.5

8 . 0

F’lna.se

I

2 0

1 0

1 0

2 0

30

jP ln .  a .  s  e
•1ES

59

58

58

56

5<4

53

52



Iv Io c ie l(4 8 )
JP — 0.£>£>

11.0
8 MM —0 . 6  L.og(I^y L .B u n )^Z ,0 0  
L.og ’T c f f '^ 3 .8 3  
X ’̂ O .^SO  Z  —0 . 0 0 010.5

10-0

o
9.5

9.0

8.5

6 . 0

P h a s e

g

2 0

1 0

1 0

2 0

IPlrk. As<e
•1ES

a .

1

53

62

51

50

P h a s e



Iv lo c ie l(a a )

11.s
JMlsxirt'^O.6 L.og ( I^sT€-n)'“Z.OO 

L o g  ’T e f f ’~3.8Z  
X ’-^O.T'^S Z —O.OOS1 1 . 0

10.5

10.0

9.5

0 . 0

8.5

M

I

r^H ase
2 0

1 0

I D

2 0

30

r* ti a s <e
R * - J E S

56

55

53

52

51

60

Ir*  I t  a  s  <e



3 V [ o c ie l ( 5 a )
JP —1 .0 6

11.0
J S / I . / , y  O J L o g  (  L . / I^st4.Tt)'^2i.OO 

Z.OS 'Teff-~3.8:L  
X  —0 .7 4 9  Z —0 . 0 0 110.5

10.0

9.5

9.0

8 .5

8 . 0

P i n  a  s  e

M.

M

g

30

2 0

1 0

2 0

30

40

P ln a se
•1ES

59

57

65

53

51

P  Ina s e



i v i o a e i ( a )
JP — 3 . 1 411.0 awM — 0 . 6  L.og ( L,y LBi4.n}'“2.00

ILog T & ff^3 .a %
3C —0 .7 4 5  Z —0.005

10.5

10.0

o e .s

9.0

8.5

8 . 0

<=> <3t>
F h a s e

■40

30

2 0

1 0

2 0

30

■40

a .
. 2
3

61

60

59

58

57

56

55

5<4

53

52

51



3 V I o a e l(5 2 L )
JP —

:s

11.0 JVr/JVf SWM —0.5  L.og ( L-y LAa%4.rt)<̂ 2i.OO 
j^og T c ff-^a .a a .
^  —O.Z49 Z —O.OOZ10.5

10.0

9.5

9.0

0-5

0 . 0

I P  I n  a i  s e

30

2 0

1 0

1 0

2 0

30

40

JPInase

J

IP<

1 E S
60

56

56

54

50

I P  I n  a .  s  e



lV [oc ie l(53 )

11.0
I\A ./ JS/Lghti’̂ O .s  L o g  (  L,y L.8urt)"^Z.OO 

L o g  r r e f f  — 3 , 8 ±
X ’̂ O.74^9 27 — 0 . 0 0 2

10.5

10.0

9.5

9.0

8 .5

8 . 0

3P In a s e
40

30

2 0

1 0

2 0

30

3?* In a s «

1E5

M

S

SO

58

56

52

50

17 In a  a e



Iv locael(a3)

11.0
Âdr/AdTsww—O-é» l^og(iy'L,B-u.Tt)'^2.00 

L a g  3.%^
X  —0.74:5  Z  —0 .0 0 5

10.5

10.0

0 .5o

9 .0

8 .5

8 . 0

P t ia s e

-o'

50

40

30

2 0

1 0

1 0

2 0

30

40

P  In. Ci. s e

1EG

M

1

70

65

60

55

50

P i n  a  s  e

S



3 S / I o c 3 L e l ( 1 8 )

R ^ t.S O11.0
Is/iy l\/I.s%4,rt^O.SS I^8T4.n}'^Z.OO

1^0 g  T e J ^ f ’̂ 3 .7 9
:xr—0 .7 4 S  z - ‘0 .o o s

10.5

1 0 . 0

Q.5o

g.o

8.5

8 . 0

•1ES

1

P h a s e
40

30

2 0

O

1 0

2 0

30

F h  Ase

70

65

60

55

50

P h a s e



3 V I o d e l ( 2 )

11.0
—0 . 6  Z.og( Z./ XaBTArty-^Z.OO 

ILog —3 .7 3
:x:—o .7 4 5  z -^ o .o o s10.5

1 0 . 0

9.5

9.0

e.5

8 . 0

Pin Else

M

40

30

2 0

1 0

O

1 0

2 0

30

40

P  In a s  e
1E5

75

70

P<5

65

60

55

P l n A s e



I v I o c i e l ( 1 . 9 )

11.0
2\/lBt4.n'^0 .s o  J^og (ï./^ IL,s%4.n)'^2..00 

I ^ o g  ’T e f f ’̂ 3 . 7 9 5  
X'-=0.7’4 S  Z'^O.OOS10.5

1 0 . 0

o 9.5

9.0

8.5

8 . 0

IP hase

30

2 0

1 0

Q

1 0

2 0

30

I»Jni
•1E6

3

8 8

82

80

58

56

54

52

I r * ln a s e



IvIocie l(3 )

JP — l . Ê » !
11.0

JVf/JVfsWM —0 . 6  I^og ( IL /TLsT4.n)'^Z.OO 
I^os: T c f f ^ 3 . 7 3
JC —O . T 4 5  Z ’̂ O.OOS

10.5

1 0 . 0

9.5

9.0

8.5

8 . 0

I P  I n  a  s e

M

M

A4

-40

30

2 0

1 0

1 0

2 0

30

-40

•tes I P  I n  a  s  e

8-4

80

76

6 8

I P  I n  «  s  e



lV toc ie l(27 )

J P — 2 . 2 71 1 . 0
JVr/JVf 8 WM—0 .6  ̂ L^og( L.y I^s%LTt)'^Z.OO 

1.0 s  ’T o f f --3.74:
X  — 0 .7 4 S  Z —‘O.OOS10.5

1 0 . 0

0.5

0 . 0

8.5

8 . 0

F H a se

M

30

2 0

1 0

1 0

2 0

30

lP lr» * i.a» e

R*1E5

a .

I

oo

80

70

60

IF* It a s e



Iv lo a .e l(2 6 )

1 1 . 0
s tj.r t““0  . s  (  IL,/'L ,a n .n )’“Z.OO

TLog; ’T e f f ^ B .7 3  
X.'~'0.74:S Z  — O.OOS

10.5

1 0 . 0

S . 5

8.5

8 . 0

I P t i a s e

30

2 0

1 0

1 0

2 0

30

40

P h a s e
R»1ES

M

1

1 0 0

05

OO

85

30

75

70

65

P  h a s e

i



lVIociel(3.5)

11.S
TVf/JVr8 wM — 0 .4? I L o g  ( IL.y I ^ b -u.t i) * ^ 2 , . 0  8  

L . o g  ’T e f f ’- - 3 . 8 0  
JX: —0 .7 4 5  Z  —0 .0 0 51 1 . 0

10.5

1 0 . 0

9.5

9.0

8.5

IP ln a ise

M

a

30

1 0

1C

2 0

30

40

Flfxaise:
*1ES

70

65

60

55

F Ira s e



Is/to d e l  (4 )
F - ^ 2 . 3 9

11.5
eMM —0 .5  L ,o g : (  Z , / '  I ^ B Z i .n ) ’̂ 2 . 2 S .  

L .O S  'T c f f- ^ 3 .7 ’8 
X -^0 .7 4 :S  Z ^O .O O S

1 1 . 0

10.5

1 0 . 0

0.5

9.0

8 .5

P h a s e

M

40

30

2 0

1 0

30

P h a s e
*1ES

&

95

90

85

80

75

P h a s e



3VEociel(5)
JP~^3.2S

11.G
AdC/AlsMrx — O.G L.og(JL/L^s%i.n)’“2 .ZS  

L.og 'T e f f '^ S .T S  
X ' ^ O . y ^ S  Z-^O.OOS

11.0

10.5

10.0

9.5

0 . 0

8.5

IP t ia is e

M

3

•40

30

2 0

1 0

O

1 0

2 0

30

«*=5

Fin. Ase
-1ES

115

1 1 0

105

1 0 0

95

90

85

80

F H a se



P ^ Z . 7 5
12.0 1 ^ / JMLextrt'^O .6 Z^og(L./ 1^6i4.rt)’=*Z.33 

L o g  ’T e f f - ^ 3 . 7 9  
X ^ 0 . 7 4 S  Z ’̂ 0 . 0 0 5

11.5

11.0

10.5

10.0

- 9.5

9.0

<=>
IP tia  s e

"s'

40

30

2 0

1 0

2 0

30

IP In asi
•1ES

1

1 1 0

105

1 0 0

95

90

85

30

75

70



Appendix A Page-69-

TJGHT. VELOCITY & RAPTTJS CURVES 
F o r  T h e  W  V ir  M o d e l s :-

In this section, we present the light, velocity and radius curves of the W Vir 

models. These curves have been produced using a programme code created by Dr. T. R. 

Carson. For each model the mass, the luminosity, the temperature, the amount of 

hydrogen and metals and the period in days, are mentioned.
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A p p e n d ix  B

In this Appendix, we present the light, velocity and radius curves of the decaying 

models. These curves have been produced using a programme code created by Dr, T. R. 

Carson. For each model the mass, the luminosity, the temperature, the amount of 

hydrogen and metals and the period in days, are mentioned. The amplitudes of these 

models are small with a sinusoidal shape (not always).
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A p p e n d ix  C

Table 1C. Shows the IR opacity for composition X=0.745, Y=0.250 and 
=0.005.

log (Opacity) CM /G
log(Rho) I I+l 1+2 1+3 1+4 1+5 1+6 1+7 1+8

log(T) I
3.7 -11 -2.8864 -2.8467 -2.4977 -2.0075 -1.4425 -0.8250 -0.1693 0.5643 1.1972
3.8 -11 -1.4456 -1.5229 -1.2827 -0.8958 -0.4589 0.0204 0.5538 1.1377 1.7865 '1
3.9 -11 -0.1588 -0.0269 0.1075 0.3187 0.6139 0.9872 1.4476 2.0072 2.6850
4.0 -11 -0.0089 0,6785 1.2798 1.5993 1.7849 1.9369 2.0554 2.1403 2.1917
4.1 -10 0.3736 1.2579 2.1024 2.5848 2.8124 2.8114 2.5818 2.1236 1.4369 i
4.2 -10 0.0797 0.7917 1.7544 2.6992 3.3444 3.6287 3.5557 3.1251 2.3371
4.3 -10 -0.0993 0.4717 1.3603 2.3737 3.3773 4.2785 5.0795 5.7803 6.3808
4.4 -10 -0.1735 0.2583 1.0817 2.1064 3.1734 4.2494 5.3368 6.4359 7.5464
4.5 -10 -0.1767 0.1774 0.8840 1.8918 2.9866 4.1422 5.3655 6.6566 8.0155
4.6 -9 0.1393 0.8201 1.7471 2.8086 3.9261 5.0992 6.3279 7.6124 8.9526
4.7 -9 -0.0666 0.5736 1.5467 2.5760 3.6059 4.6477 5.6993 6.7606 7.8317 -
4.8 -9 -0.2308 0.2214 1.0479 2.0933 3.1669 4.1082 4.9010 5.5452 6.0409
4.9 -9 -0.2987 -0.0148 0.6356 1.6072 2.6764 3.7307 4.7260 5.6646 6.5466 X
5.0 -9 -0.3264 -0.1334 0.3831 1.2559 2.2963 3.3657 4.3866 5.3589 6.2828
5.2 -8 -0.1026 0.1569 0.7774 1.6873 2.6264 3.4733 4.2120 4.8433 5.3673
5.4 -8 -0.3254 -0.1356 0.2680 0.9540 1.7210 2.4167 3.0024 3.4819 3.8552
5.6 -7 -0.4188 -0.2715 0.2246 0.9760 1.6274 2.1832 2.6788 3.1129 3.4854
5.8 -7 -0.4501 -0.4285 -0.3149 0.1272 0.9611 1.5911 2.0853 2.4620 2.7215
6.0 -7 -0.4474 -0.4446 -0.4117 -0.2707 0.2079 1.0014 1.6242 2.0590 2.3060 y
6.2 -6 -0.4493 -0.4240 -0.3567 -0.1704 0.3937 1.1429 1.5911 1.7026 1.4793 J;
6.4 -6 -0.4572 -0.4607 -0.4369 -0.3466 -0.0247 0.5419 1.0149 1.3409 1.5287
6.6 -5 -0.4614 -0.4592 -0.4439 -0.3603 -0.0411 0.3960 0.8339 1.3720 2.0057
6.8 -5 -0.4603 -0.4635 -0.4608 -0.4463 -0.3637 -0.1006 0.2765 0.8137 1.5224
7.0 -5 -0.4668 -0.4673 -0.4671 -0.4620 -0.4427 -0.3560 -0.1186 0.3067 0.9577
7.2 -4 -0.4729 -0.4731 -0.4722 -0.4643 -0.4337 -0.3278 -0.0737 0.3632 0.9847
7.4 -4 -0.4815 -0.4820 -0.4820 -0.4810 -0.4726 -0.4318 -0.3081 -0.0533 0.4226
7.6 -3 -0.4938 -0.4962 -0.4948 -0.4943 -0.4880 -0.4406 -0.3181 -0.0314 0.4780 i '
7.8 -3 -0.5175 -0.5171 -0.5171 -0.5159 -0.5146 -0.5052 -0.4606 -0.3448 -0.0288
8.0 -3 -0.5503 -0.5503 -0.5503 -0.5503 -0.5503 -0.5485 -0.5376 -0.5169 -0.3849
8.2 -2 -0.6029 -0.6029 -0.6029 -0.5974 -0.6121 -0.6009 . -0.6035 -0.6107 -0.2517
8.4 -2 -0.6863 -0.6863 -0.6863 -0.6863 -0.6832 -0.5843 -0.7943 -0.6516 -0.4343
8.6 -1 -0.8186 -0.8186 -0.8186 -0.7763 -1.0076 -0.1696 -0.7529 -0.3352 1.7566 ■1
8.8 -1 -1.0281 -1.0281 -1.0281 -1.0281 -0.6422 -0.9888 -2.1763 0.0160 2.1800 ■~s
9.0 -1 -1.3603 -1.3603 -1.3603 -1.3603 -1.3603 -2.7122 6.0626 -1.2497 4.1329 %

4

Vi-



Appendix C Page-72-

Table 2C. Shows the IR opacity for composition X=0.749, Y=0.250 and
2 = 0.001

log(Opacity) CM /G

ÏS

log(Rho) I I+l 1+2 1+3 1+4 1+5 1+6 1+7 1+8
log(T) I

3.7 -11 -2.9310 -2.9167 -2.5884 -2.1295 -1.6083 -1.0187 -0.3693 0.3434 0.9853
3.8 -11 -1.4460 -1.5316 -1.3019 -0.9233 -0.4984 -0.0380 0.4670 1.0075 1.6126
3.9 -11 -0.1591 -0.0269 0.1061 0.3148 0.6061 0.9748 1.4288 1.9784 2.6298
4.0 -11 -0.0243 0.6690 1.2726 1.5909 1.7702 1.9115 2.0151 2.0808 2.1086
4.1 -10 0.3431 1.2293 2.0853 2.5659 2.7959 2.8036 2.5890 2.1521 1.4929
4.2 -10 0.0361 0.7502 1.7260 2.6790 3.3280 3.6105 3.5299 3.0863 2.2796
4.3 -10 -0.1445 0.4234 1.3306 2.3531 3.3652 4.2736 5.0805 5.7858 6.3895
4.4 -10 -0.2111 0.2068 1.0410 2.0837 3.1592 4.2498 5.3577 6.4828 7.6252
4.5 -10 -0.2175 0.1271 0.8456 1.8674 2.9674 4.1408 5.4001 6.7454 8.1765
4.6 -9 0.0926 0.7752 1.7173 2.7925 3.9183 5.0881 6.3026 7.5618 8.8655
4.7 -9 -0.1165 0.5172 1.5027 2.5477 3.5912 4.6322 5.6680 6.6987 7.7244
4.8 -9 -0.2726 0.1611 0.9838 2.0338 3.1301 4.0981 4.9249 5.6105 6.1549
4.9 -9 -0.3357 -0.0706 0.5699 1.5434 2.6225 3.7052 4.7541 5.7710 6.7558
5.0 -9 -0.3714 -0.1870 0.3123 1.1927 2.2431 3,3306 4.3989 5.4479 6.4776
5.2 -8 -0.2587 -0.0047 0.6432 1.5744 2.5301 3.4483 4.3231 5.1548 5.9435
5.4 -8 -0.3889 -0.2648 0.0555 0.6814 1.4402 2.2141 3.0220 3.8656 4.7448
5.6 -7 -0.4343 -0.3418 -0.0001 0.6194 1.2792 1.9881 2.7766 3.6434 4.5886
5.8 -7 -0.4528 -0.4392 -0.3634 -0.0682 0.5795 1.2416 1.9018 2.5692 3.2440
6.0 -7 -0.4509 -0.4493 -0.4318 -0.3428 -0.0155 0.6376 1.2935 1.8723 2.3738
6.2 -6 -0.4532 -0.4406 -0.4007 -0.2820 0.1119 0.7408 1.2182 1.5168 1.6377
6.4 -6 -0.4577 -0.4595 -0.4478 -0.4021 -0.2192 0.1711 0.6380 1.1922 1.8405
6.6 -5 -0.4600 -0.4598 -0.4510 -0.4078 -0.2328 0.1102 0.6526 1.4913 2.6217
6.8 -5 -0.4597 -0.4622 -0.4611 -0.4521 -0.4033 -0.2298 0.1333 0.7687 1.6752
7.0 -5 -0.4661 -0.4661 -0.4661 -0.4631 -0.4491 -0.3881 -0.1905 0.2381 0.9650
7.2 -4 -0.4720 -0.4720 -0.4712 -0.4665 -0.4466 -0.3647 -0.1284 0.3412 1.0611
7.4 -4 -0.4809 -0.4809 -0.4809 -0.4796 -0.4742 -0.4454 -0.3401 -0.0772 0.4242
7.6 -3 -0.4926 -0.4951 -0.4937 -0.4934 -0.4878 -0,4477 -0.3306 -0.0416 0.4760
7.8 -3 -0.5163 -0.5160 -0.5159 -0.5148 -0.5136 -0.5054 -0.4635 -0.3516 -0.0383
8.0 -3 -0.5491 -0.5491 -0.5491 -0.5491 -0.5491 -0.5474 ■ -0.5377 -0.5198 -0.3905
8.2 -2 -0.6018 -0.6018 -0.6018 -0.5961 -0.6118 -0.5999 -0.6036 -0.6201 -0.3023
8.4 -2 -0.6852 -0.6852 -0.6852 -0.6852 -0.6820 -0.5830 -0.8103 -0.6853 -0.4685
8.6 -I -0.8174 -0.8174 -0.8174 -0.7743 -1.0147 -0.1430 -0.8580 -0.6083 1.2403
8.8 -1 -1.0270 -1.0270 -1.0270 -1.0270 -0.6338 -1.0367 -2.2010 -0,0688 2.0296
9.0 -1 -1.3591 -1.3591 -1.3591 -1.3591 -1.3591 -2.7352 6.2674 -2.3611 1.4377

llJ l A J. • ■-
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Table 3C. Shows the IR opacity for composition X=0.750, Y=0.250 and 
Z=0.000.

log(Opacity) CM /G
log(Rho) 1 I+l 1+2 1+3 1+4 1+5 1+6 1+7 1+8

log(T) I
3.7 -11 -2.9470 -2.9563 -2.6459 -2.2094 -1.7315 -1.2336 -0.7466 -0.3648 0.1048
3.8 -11 -1.4595 -1.5507 -1.3260 -0.9497 -0.5278 -0.0738 0.4181 0.9328 1.4602
3.9 -11 -0.1735 -0.0398 0.0921 0.2984 0,5861 0.9488 1.3943 1.9332 2.5713
4.0 -11 -0.0431 0.6536 1.2606 1.5806 1.7577 1.8880 1.9714 2.0080 1.9977
4.1 -10 0.3080 1.2004 2.0708 2.5515 2.7840 2.7971 2.5906 2.1647 1.5193
4.2 -10 -0.0053 0,7144 1.7051 2.6666 3.3197 3.6007 3.5132 3.0573 2.2330
4.3 -10 -0.1905 0.3768 1.3068 2.3400 3.3579 4.2769 5.0992 5.8245 6.4530
4.4 -10 -0.2462 0.1617 1.0084 2.0672 3.1496 4.2509 5.3738 6.5183 7.6843
4.5 -10 -0.2539 0.0836 0.8156 1.8514 2.9563 4.1393 5.4139 6.7801 8.2378
4.6 -9 0.0535 0.7434 1.6997 2.7823 3.9123 5.0829 6.2947 7.5476 8.8417
4.7 -9 -0.1640 0.4658 1.4711 2.5320 3.5844 4.6344 5.6802 6.7217 7.7590
4.8 -9 -0.3120 0.1023 0.9279 1.9948 3.1139 4.0843 4.8884 5.5260 5.9971
4.9 -9 -0.3664 -0.1167 0.5164 1.5001 2.5936 3.6984 4.7821 5.8458 6.8896
5.0 -9 -0.4074 -0.2267 0.2619 1.1477 2.2134 3.3169 4.4260 5.5409 6.6614
5.2 -8 -0.4019 -0.1441 0.5227 1.4776 2.4849 3.4390 4.3230 5.1379 5.8836
5.4 -8 -0.4519 -0.4012 -0.1782 0.3648 1.1934 2.1220 3.0208 3.8873 4.7212
5.6 -7 -0.4488 -0.4025 -0.2200 0.2330 0.9912 1.8885 2.8390 3.8465 4.9109
5.8 -7 -0.4567 -0.4477 -0.4013 -0.2289 0.2042 0.9324 1.8323 2.8858 4.0929
6.0 -7 -0.4567 -0.4559 -0.4464 -0.3936 -0.2074 0.2353 0.9639 1.9221 3.1101
6.2 -6 -0.4580 -0.4554 -0.4424 -0.3789 -0.1694 0.3056 1.0504 2.0386 3.2716
6.4 -6 -0.4588 -0.4590 -0.4554 -0.4368 -0.3544 -0.1029 0.4164 1.2142 2.2900
6.6 -5 -0.4611 -0.4597 -0.4552 -0.4286 -0.3197 -0.0257 0.5934 1.6364 3.0986
6.8 -5 -0.4631 -0.4632 -0.4618 -0.4550 -0.4166 -0.2770 0.0855 0.7617 1.7415
7.0 -5 -0.4609 -0.4659 -0.4669 -0.4639 -0.4530 -0.3987 -0.2150 0.2176 0.9713
7,2 -4 -0.4719 -0.4716 -0.4715 -0.4686 -0.4517 -0.3781 -0.1454 0.3362 1.0822
7.4 -4 -0.4806 -0.4806 -0.4806 -0.4795 -0.4743 -0.4503 -0.3505 -0.0827 0.4214
7.6 -3 -0.4923 -0.4948 -0.4934 -0.4931 -0.4888 -0.4498 -0.3333 -0.0443 0.4736
7.8 -3 -0.5160 -0.5157 -0.5157 -0.5145 -0.5133 -0.5062 -0.4641 -0.3533 -0.0383
8.0 -3 -0.5489 -0.5489 -0.5489 -0.5489 -0.5489 -0.5471 ■ -0.5373 -0.5207 -0.3924
8.2 -2 -0.6015 -0.6015 -0.6015 -0.5958 -0.6115 -0.6043 -0.6055 -0.6253 -0.2944
8.4 -2 -0.6849 -0.6849 -0.6849 -0.6849 -0.6816 -0.5826 -0,8491 -0.6830 -0.4909
8.6 -1 -0.8172 -0.8172 -0.8172 -0.7738 -1.0151 -0,1803 -0.9407 -0.6446 1.3474
8.8 -1 -1.0267 -1.0267 -1.0267 -1.0267 -0.6317 -1.0360 -2.6483 -0.0388 1.6775
9.0 -1 -1.3589 -1.3589 -1.3589 -1.3589 -1.3589 -2.7410 6.2736 -3.4044 1.4271
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Following we represent the IR opacity using the above tables and the Carson 

opacity for (0.745,0.250,0.005). There mentioned the composition and the density for 

each value being plotted.
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Foilowing we represent a comparison between the IR and Carson opacities for 

each value of log(/?), see text for more detail.

'1
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A p p e n p ix  D

D-1. T h e  L in e a r  T h e o r y :-

In the linear theory of stellar pulsation , the mathematics are linearized and the 

physics are approximated, i.e. the will known mathematical procedures after the 

linearization can be applied to obtain the solution.

The adiabatic theory, assumes purely adiabatic heat changes, and is useful for 

obtaining pulsation period alone, on the other hand the non-adiabatic theory allows us 

to determine whether the model is stable against pulsation or not and also to find the 

pulsation properties near the surface.

Following we are going to present the equations that we need for solving the 

problem of linear radial pulsation for a stellar model divided into a finite number of 

mass zones (the method of solution is out of the scope of this work and can be found 

in Castor (1971) and Milligan (1989)). The stars that we are going to discus are 

always spherically symmetric, the energy transports by radiation and in which we 

neglect the magnetic field and viscosity. Also we have to assume that the stellar 

material is chemically homogenous.

D -2 . T h e  E o u a tto n s:-

The model will be divided into N  spherical shells, in which the mass is fixed. 

Zones (shells) are numbers from 1 to TV, where 1 being the innermost and N being the

J
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outermost ( adjacent to the surface). The spheres bounding these shells we are going to 

call them interfaces and numbered from 1 to JV+1, where interface 1 being the stationary 

bottom boundary and interface iV+1 being the surface.

The radius and the luminosity defined on interfaces, where the other |

thermodynamic variables such as pressure, temperature, density,...etc, defined within

shells (zones).

The difference equations of linear non-adiabatic theory can be written as follows:

d r. GM. 2 P.-P.
- J F "  ~  ^ - i m p

r ( - -  , )
2 ^ I t 1- 1 Z” l^

 ̂f=-W
 ̂ 3 D M \

where the mass of shell i is

(D-4)

DMl. — M.^  ̂— M, (D-5)

and the mass within the interface i is

DM2. = \{D M \.^ -D M \._ ;)  (d-6)
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According to the difference equations (D-1) - (D-4) with time derivative set to 

zero, we assume that we are dealing with a model that is in equilibrium. Following the 

prefix Ô will indicate the infinitesimal deviation on any variable from its value in the 

model. The structure variable without this prefix will refer to the equilibrium model. 

Equations (D-1) -(D-4) will be linearized by expanding all the functions appearing in 

them in Taylor series about the equilibrium model, retaining only terms of zero or first 

order in perturbation. The zero order terms vanish by assumption. All the perturbation 

will be eliminated except those of r and S  using equations (D-2) and (D-4) and the 

equation of state, hence we define

X. = ̂ DM2. 5  r. (d -7 )

Y. = T . S S .  (D-8 )

The linearization of equation (D-4) for specific volume V i

- 5 p, = r,, ,-r;Sr,)  (d-9)

P: (O-XO)
^ D M 2 t  ' V ^ M 2 ^

S p
P D R \ , X , - ^  D R 2 , X , . ^  (D-ii)

D R \ ,  =  — P  
D M \  ^D M 2,

D R 2  = --------
D M \  ^ D M 2 ,M

A very useful forms of the non-linear equations for P  and T  are as follows.

(D-12)

(D-13)
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d ln P _ p  d\a.p^ p  (J',-\)dQ
dt dt P dt

r = p  X t  ^ Q \

' dt c T d t

therefore equation (D-14) becomes

(D-14)

d l n T d\ np \ dQ
~dt  ' dt  (D-15)

where denotes the specific heat per unit constant volume, and

. â  InP X

and the gammas are the adiabatic exponents:

„  /(f InP \
r , = (— —  h  (D-17)

â  Inp

r  1 r P  I n T
r , - l = ( — —  h  (D-18)

(7 Inp
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^ f i  — I ^ f i  P,\ I (̂ 3 1), P, 2 )

r 5  ( r . ) , , 8 _ £ , _ s _ e  I , ( r . - 1 ) ,  p, ^
P, i> J f  *

(D-20)

if the system, in its unperturbed state, is static and in thermal equilibrium so that 

I P l =  o  and ^  =  0
d t  d t

^ ( ^ ) = ( r , ) ,  ^  ( M ) + ( r y ) a  (D.21)
d t  ^  d t  ^  d t

The corresponding equation for the temperature variation is

^ ( M ) = ( r 3 - 0 ,  y  ( ^ ) + ^  (D-22)
d t  d t  P' d t

Therefore we can write equations (D-21) and (D-22) as follows

^ = ( r , ) .  T ,h  s ,  (D-23)

and

y  =  ( T - l ) ,  ^  +  ̂ S 5 ' ,  (D-24)
•̂ 1 r  ' V,/

Dropping equations (D-8 ) and (D-11) into (D-23) and (D-24) we get;
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^ ) , P ,  y + ( r , ) ,  (D i? l,X ,+ £ )i? 2 ,X ,,) (D-2S)

+ ( ^ 3 - 0 , { D R X X , + D R 2 , X , ^ ; )  (d-26)
v,i >

The linearization of equation (D-2) gives ;

ÔY_^ôR , ^ ï ^  7t, y,-i£>Ml,-.yr»-n 1 5 T.-,
L, R  '■ 7t-,-7t k ,-.DMU+ic.DM V  T,-.

+ {~4 -7t- _ K . D M l K r m  1 Ô T .
k ,-,DMU*k ,DM V T,

  K  i - \ D M X - \ K  ^ P
K ,-idMl-Yk ,DMI P,_,

_ k ,DM\,k ô) 5  p.
K,-xDMl-x+K,DMl p,

(D-27)

We are looking for the normal modes of radial pulsation by assuming that the time 

dependence is exponential, therefore we have to remove a factor exp(i(ot) from all the 

perturbation and replace d /d t by ia>, then we get

-CO 5 R  =  4 ^  ^ ^ ~ d a È  (D-28)

iG> T, S S. = ' (D-29)

Castor (1971) after some algebra he found



' f.l.t. - V'.ÿ. : .f-:'.
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coX, = G n  X - . + G 1 2, X + G 1  a X « +G 21 Y,-.+G2ZY,
(where/ ^  2, N) (D-30)

I Û) 7 ,  =  X l L X - . + X 1 2 X . + X i a X « + X 1 4 X , «

+ X 217-,+K22, Y+K23 , 7 .  t
(where / == 2, 7V-7) (D-31)

where (7s and JCs are elements of matrices G1 , G2 , K l and K2 , Milligan (1989). In

matrix form, these equations becomes

ü ) X  =  G l X + G 2  7  (D-32)

1(oY = K 1 X + K 2 Y  (d-33)

In equations (D-32) and (D-33) we have been used the following vectors

X = X „ ( i  = 2,N + i)  and 7  = i;,(/ = 1,AT),

If r  in (D-31) is equal to zero, then the adiabatic eigenfrequencies and 

eigenvectors obtained,

CO^X =  G 1  X . (D-34)

G 1  is real, symmetric tridiagonal matrix because of the way that we defined X .

The linear, adiabatic wave equation (D-1) becomes in finite difference form as:

COÔR, = Ô R -  - ^ { i R  S R i P r P j
DM2i

+ P t , { 5 P r S P j ]
(D-35)

where

A

7
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< j p , = [ r , p — I  (» -3 6 )
p

then using equation (D-11) we get

J  p  =  ( r ,  P  ) ,  ( D P I  X + D P 2 ,  x j  (D-37)

S p , - .  =  ( r .  P  ) , - . ( d P I - ,  X , - , + D P 2 - ,  X  )  (d -3 8 )

An alternative expression for ~ can be found if the acceleration in

equation (D-1) be zero then:

GM. . P — P. ^

Then we get:

2GM. „  ( P . - P .  , )
S R = - ^ ^ R  DM2 Ô R

i

using equations (D-7) and (D-39), equation (D-35) becomes as follows:

cdx,  =  X

+  { - ( r , p ) , - . D P L X M + [ ( r , p ) - D P i ,
V D M 2 ,  

-  ( r ,  p )m d p 2 , J  X  +  ( r ,  p ) ,  d p z  x J

(D-40)

Now the matrix equation (D-34) can be written as follows:
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û ) ^ , = G n x < . , + G i z x , + G n  x «  (d-«)

Hence, we can get the values of (j's by comparing (D-40) and (D-41)

G U  = (r . P  d R U  (D-42)

G 1 2 ,=  [ ( r x  ), D P I -  ( r .P ) ,_ ,D P 2 j
(D-43)

G13,= J d m i  ^

G 1 is symmetric matrix, that means Glli+i~ Gl 3,» which can be shown by 

using (D-12) and (D-13)

(r,p),
D M l yjDMZ VdM2m

(D-45)

(r.p),
'*+1D M l 4 D M Z 4 D M 2 ,

(D-46)

. - ,-T»' Î.   : ■■   i '■■■■' > ' - v'"' f
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Up to this point its possible to calculate most of the elements of the matrix G l .

Some of the references that are useful here are, Castor (1971), Cox (1980), 

Bridger (1983), Worrell (1985) and Milligan (1989).

»

' i

I
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