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A b stract

Spectroscopic and photometric observations of eight contact/ near-contact bina- .

ries are presented and analysed. Spectroscopic observations were obtained at 4200 Â ;1

(radial velocity spectra) and 6563Â (hydrogen-alpha line profiles). New photometric 

observations were obtained at visual and infrared wavelengths, and other previously g

published light curves are also re-analysed. Absolute dimensions have been obtained 

for five systems ; TYBoo, VWBoo, BX And, SS Ari and AGVir, and their evolutionary 

positions discussed. Four of the systems are found to be in marginal but poor thermal 

contact, exhibiting regions of apparent “excess luminosity” in their light curves. A 

qualitative analysis of these “hot spot” regions has been attem pted for the first time 

using spot models now incorporated into a light curve synthesis programme.

Substantial time for this project was awarded on telescopes funded by the United 

Kingdom Science and Engineering Research Council (SERC), comprising 14 nights at 

the Issac Newton Telescope (INT) on La Palma, and 4 nights at the United Kingdom 

Infrared Telescope (UKIRT) on Mauna Kea. Additional observations were made during 

an 8 night commissioning run on the Jacobus Kapteyn Telescope (JK T) on La Palma, 

and extensive observations were made with the Twin Photometric Telescope (TPT) 

at St Andrews University Observatory between 1985 and 1989. These resulted in 3

over 100 spectra at 4200Â and over 50 spectra at 6563Â (INT and JK T observations), 3

over 300 infrared photometric observations (UKIRT), and over 3500 visual photometric 

observations (TPT).

Of the five systems analysed in detail in this work, TYBoo appears to  be a nor

mal shallow-contact W-type system.

Both VWBoo and BX And exhibit regions of “excess luminosity” around the 

ingress and egress of secondary minimum which are well modelled by a warm spot on 

the cooler component sitting symmetrically around the neck joining the pair. Such a 

phenomenon may be expected to arise naturally in systems which have come into con

tact but are not yet/currently in thermal contact, exhibiting a tem perature difference 

between the components. BX And like other B-type systems seems to be reaching this



contact sta te  for the first time, but the position of VW Boo is uncertain, and whilst 

evidence tha t it could be in the “broken contact” state predicted by the TRO Theory 

is far from conclusive, its lower orbital angular momentum clearly marks the system as 

worthy of further study.

SS Ari and AGVir exhibit light curves with unequal quadrature heights. A t

tempts to  treat the higher quadrature as a region of “excess luminosity” due to an en

ergy transfer “warm spot” does not however provide a good model of this phenomenon. 

Since invoking a dark starspot model also does not provide a good explanation for 

such systems, it may be tha t tliis form of light curve distortion is due to an entirely 

different form of distorting surface phenomenon. Like BX And, AGVir appears to be 

just reaching contact for the first time, but like VW Boo, the slightly lower angular 

nipmentum of SS Ari warrants further study.
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C h ap ter 1

In trod u ction

1.1 In tr o d u ctio n

In recent years there has been much debate concerning both the evolution, and 

structural form, of close/contact binary star systems. Observational studies have in

vestigated possible anomalous surface luminosity distributions, in the form of dark 

starspots, on both binary systems and single rotating stars. Surveys of binary param

eters have looked for evidence of systems in the different evolutionary states predicted 

by theory.

The close, but detached, RS Canum Venaticorum(RS CVn) binaries exhibit er

ratic light curves which are almost certainly due to the presence of large-scale dark 

spots. The observational and theoretical evidence now seems overwhelming tha t stellar 

spots are a direct consequence of deep convection zones and rapid angular velocity (eg. 

Hall 1976, Mullan 1976a, 1976b, Gershberg 1978, Rodono 1980,1981, Vogt 1983).

Work on starspots has to date however been primarily centered on the single, 

spotted, BYDra stars, with the development of an analytical technique known as 

“Doppler Imaging” (Vogt & Penrod 1983a) which allows starspot features to be (at 

least partially) spatially resolved (see section 1.5.3.2).
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The contact, W UM a binaries can be split into two sub-categories (Binnendijk 

1965,1970). The “A-type” systems have the more massive component covered during 

primary eclipse, and are found to be generally well over-contact. The “W -type” systems 

have the less massive component covered during primary eclipse, and are found to be 

in thin or marginal contact (eg. Lucy 1973).

The A-type systems are believed to be evolved, and essentially in equilibrium, 

exhibiting stable light curves. The W-type systems are believed to be unevolved, and 

show several signs of not being in equilibrium, exhibiting erratic light curve changes.

The presence of large-scale dark starspots on the primary component has become the 

generally accepted explanation of W -type phenomenon (winning by default).

Surveys carried out at St. Andrews University Observatory of both early spec

tral type contact binaries (Bell 1987), and late spectral type contact binaries (McFar- 

lane 1986), have provided evidence for two evolutionary paths for the formation of 

contact binaries (Hilditch 1989).

Recently interest has focused on a possible third grouping of W UMa binaries, %

the so called “B-type”. Despite appearing to be well in contact, these systems exhibit 

a large temperature difference between components. Such systems are of great interest, 

since they may represent the evolutionary state of “broken contact” predicted by the 

TRO theory for the structure of contact binaries (see section 1.4.3). Also, rather than 

invoking dark starspots to model these systems, it has been proposed tha t an excess 

luminosity is required, indicative of the presence of a “hot spot” , possibly due to mass 

transfer between the components (eg. Kaluzny 1986c, McFarlane 1986).
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Figure 1.1: The light curve of SV Cam at different epochs. (Hilditch ei al. 1979).

1.2 T h e  R S C an u m  V en a tico ru m  S y stem s

These close but detached binaries consist typically of a G /K  subgiant, and a 

hotter F /G  main-sequence companion. They display a variety of photometric and 

spectroscopic peculiarities which cannot be explained in terms of simple eclipse geome

try, but which are almost certainly due to the presence of large-scale dark spots on the 

cool component, whose uneven distribution distorts the light-curve. (Figure 1.1).

Such spots have been modelled using a simplified kinematic dynamo (Shore & 

Hall 1980), and are formed by the eruption of enhanced toroidal fields. Shore & Hall also 

showed tha t such phenomenon would be related to both the evolutionary status, and 

the orbital parameters of the binary system. Although for a long time the evidence for 

spots was largely indirect, Ramsey & Nations (1980) claimed to provide direct evidence 

through a spectroscopic investigation of the TiO-band.

It is worth noting tha t starspot work on BY Dra stars has shown tha t although 

there is an analogy between starspots and Sunspots, there is some evidence (Vogt 1983)
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Figure 1.2: The outside-of-eclipse V  light curve of RS CVii from 1962 to 1982, showing 

the migration of a “Photometric Wave”. (Blanco et a l 1983).

tha t starspots are actually more analogous to Solar Coronal Holes a.nd Complexes than 

to Sunspots, as regards to size, shapes, lifetimes, and migratory motions. If true, then 

starspots are probably more a manifestation of global-scale processes occurring deep 

within the star than are spots on the Sun. Furthermore, some published spot tem

peratures for BYDra stars (Vogt 1981b, Oskanyanei al 1977) have shown decreasing 

temperatures which become negative (ie. a hot spot) as the cool spot disappears.

One of the outstanding features of many RS CVn-type binaries is the changing 

shape of the “wave-like distortion” which is superimposed on the eclipsing light-curve, 

and demonstrates retrograde phase migration. (Blanco ei a l 1983). (Figure 1.2).

If overall rotation is assumed to be synchronous, then this migration wave phe-
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nomenon can be interpreted as demonstrating tha t the spots must predominate in a 

surface zone tha t is ro tating faster than the average, ie. the equatorial region. How

ever such a conclusion, tha t certain zones on the star are subject to spots for years or 

decades, whilst the other hemisphere is essentially free of them, clearly needs explain

ing. (Rodono 1981, Rossiger 1982).

The RS CVn systems also display other unusual chromospheric and coronal ac

tivity, whose links with sunspot activity in the Sun has long been known. These include 

flare activity, strong C all emission lines, high (TV-excess, non-thermal radio frequency 

outbursts, and variable X-ray emission.

Although such systems are not yet actually in the process of tidal mass-transfer, 

the great majority of them clearly lie near the first phase of mass-transfer.
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Figure 1.3: The Common Convective Envelope model for W UM a Binaries. Hatched 

areas donate convection zones. The vertical dashed line is the axis of rotation. 

(Lucy 1968b).

1.3 T h e W U M a  C o n ta c t B inaries

These contact binaries traditionally have sinusoidal type light-curves, usually 

with roughly equal depth m inima, periods less than a day, and dwarf spectra A to 

K. (A less distinct population of OBA, hot contact systems also exists). They have 

mass ratios not equal to unity, and components w ith similar effective temperatures, 

ie. over-luminous secondaries. Lucy (1968a,b) first suggested the Common Convective 

Envelope(CCE) model for these contact systems. (Figure 1.3).

g:
III this model both components are surrounded by a CCE, leading to energy |

transfer from the more to less massive component to equalize the common surface 

brightness. The nature of this energy transfer is not understood (Robertson 1980), but 

almost certainly cannot exist in a s ta te of equilibrium (Lucy 1976, Flannery 1976).

An alternative to this model is to argue that the binary components are simply 4

evolved to some extent. This will almost certainly be the case for some systems, but 

various studies suggest tha t these cases are a minority of all systems. (Kaluzny 1985).
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Figure 1.4: The W UM a Binaries are divided into A and W-types, dependent upon 

which component is eclipsed during primary or secondary minimum. (Rucinski 1985).

1 .3 ,1  T h e  A / W  su b -d iv is io n

It was noticed rather early tha t contact systems could be divided into two groups 

(called A and W-types by Binnedijk (1965, 1970)), depending upon which component 

is eclipsed during primary or secondary minimum. (Figure 1.4).

The origin, and reality, of this division is uncertain, but generally the late G-K 

spectral types are W systems, whilst A-F types form the A systems. Also, the A-types 

tend to have smaller mass-ratios, and are generally hotter and more massive. Studies 

show that the A-type systems are well over contact, with their surfaces substantially 

exceeding their Roche “inner contact surfaces” . These systems are believed to be 

evolved, and essentially in equilibrium, exhibiting stable light curves. The W -type 

systems on the other hand are found to be in marginal/thin contact (Lucy 1973), and
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are believed to be unevolved. They show several signs of not being in equilibrium, with 

erratic period and light curve changes. Studies by Rucinski (1973, 1974), suggest tha t 

A-type systems have only shallow CCE’s (but with a greater degree of contact), whilst 

W-types have deeper CCE’s (with a  lesser degree of contact). Table 1.1 compares and fj

contrasts the two groups.

Mochnacki (1981) argued tha t the W -type systems were those containing un

evolved components. In this case, the deeper CCE’s in the W-types cause the secon

daries to exhibite a larger surface brightness than expected, and the primaries a lower 

surface brightness. Hilditch et al. (1988) demonstrated empirically that this was in

deed the case. Additionally the presence of dark starspots on the primary components,

(Mullan 1975, Eaton et al. 1980) has been invoked to help explain the erratic light curve 

changes seen in these objects.

However, some observations of W-type systems (Kaluzny 1983), seem to be ex

plained more adequately by the hypothesis of a temperature excess on the less massive 

component. Kaluzny also pointed out that for systems with large mass ratios, the 

assumption that spots are present only on the larger component is rather artificial. If 

the mass ratio is close to unity, the convective zones of both components would be of 

similar depth, so tha t spots, if they exist at all, should be created on both components. 1

It should also be noted tha t a few systems actually change their type. The classic 

example is TZBoo, which has been observed to alternate between A-type and W- 

type several times during recent years (Rucinski 1985). This behaviour has again been 

explained in terms of a non-uniform surface brightness distribution over the common 

envelope, caused by the presence of dark starspots.

1 .3 .2  T h e  ‘‘B -T y p e ’% P o o r  T h e r m a l C o n ta c t , W U M a  B in a r ie s

Recently, a group of near/m arginal contact binaries has received much attention.

These are the so called “B-type”systems (Lucy & Wilson 1979), which seem to be in 

poor thermal contact, and often display asymmetric light curves, and unequal depth 

minima. (Figure 1.5).
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Property A W Remarks
A

.

1. Spectral type earlier later differences slightly marked
Y

2. Luminoelty higher lower differences slightly marked
3. Maaa larger smaller. differences slightly marked ■1

4 , A ctivity moderate or strong or very !
(cUangea of absent strong (almost
light curvea. every system )
aayin metrics
of maxima) ÿ

5. Period either chan always changing Kelvin — Helmholtz time- j

ging or cons scale or slightly slower
tant

Q. Kftsa-ratio email larger upper lim it more certain
0 .0 8 -0 .5 4 0 .3 3 -0 .8 8

7. Degree of envelopes shallow envelo :
contact slightly  

thicker than  
in W -typo

pes

8. Photometric good poor (less
conformity to massive comp. '
the contact hotter)
model

9; Energy adiabatic supcradiabatic À

exchange parts o f the parts of the conv.
takes place in conv. en v e

lope
envelope i

10. Peculiar not too m any; m any; SW  Lao,
syatoma syatoma of g — 0.88; AB

very sm all g, And and ER Ori, .1
early-typo deviation from
contact sya- the mass-luminc- "1
toma sity  relation; 

m any other with  
changing light 
curves

i

Table 1.1: Comparison of A and W -type W UM a Binaries. (Rucinski 1973).
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Figure 1.5: Tlie F-light curve of the B-type binary, RV Crv, showing an apparent region 

of “excess” luminosity around first quadrature (McFarlane et al. 1986).

(The filled circles denote the observations, the solid cnrv(' is a theoretical fit using a 

convective atmosphere, and the dashed curve a radiative fit).
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These systems are found to be in a state of marginal, bu t poor thermal contact 

(the differences in the depth of m inima indicative of a large temperature difference 

between components). They are interesting in view of the predictions of the “Ther

mal Relaxation Oscillation (TRO) Theory” (Section 1.4.3). According to this theory, 

the unevolved W UM a systems undergo oscillations about a state of marginal contact.

Thus, such systems should spend some time interval in a semi-detached/broken config- .

with the more massive component filling its Roche lobe. In this phase when vXl

thermal contact between components is weak, or does not exist, such systems would be 

expected to exhibit EB-type light curves. Hence, such objects are good candidates for 

W UMa systems in this broken contact phase.

Unlike the RS CVn and W -type W UM a systems, there is less evidence on these 

objects of the erratic light curve changes attributed to dark spot activity. However, it 

has been found, when modelling these asymmetric light curves, tha t good fits cannot 

be obtained, due to an apparent region of “excess” luminosity.

Naqvi & G ronbech(l976) first proposed the hot spot hypothesis to explain these 

asymmetries, and recently analysis of such systems (eg. Hilditch et al. 1984, Hilditch &

King 1986,1988, Kaluzny 1983,1986a,b,c & McFarlane et a/. 1986) have made similar b

conclusions. These found tha t the light curves could only be fitted when the albedo 

of the secondary component was treated as a free parameter. The solutions gave an 

albedo greater than unity, which was interpreted as an abnormally hot region on the 

neck of the secondary, presuniably due to mass transfer. (Figure 1.6).

McFarlane et al. (1986) pointed out however that an abnormally cool region on the 

averted hemisphere would have the same effect as a hot region on the facing side. But 

in the analysis of the binary system RV Crv, McFarlane ei al. (1986) did find possible 

evidence for a hot spot in spectroscopic data, where observations around 0^25 showed no 

indication of an additional peak in the cross-correlation function, due to the secondary, 

whilst data around 0^75 showed this expected peak, suggesting tha t light from a hot 

spot in view at 0?25 could be shrouding the contribution from the secondary.
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Figure 1.6: V  and B  light curves of WZ Cep (top). Crosses denote observations, the 

solid curves are theoretical fits. The phase region of observed excess luminosity suggests 

the location of a Hot Spot on the component configuration (bottom). (Kaluzny 1986a).
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1.4 T h e  S tru c tu re  o f  C o n ta c t  B in aries

1 .4 .1  In tr o d u c t io n

Although the internal structure of contact binaries has been the subject of intense 

debate over the last 20 years, no satisfactory theoretical model has yet to emerge which 

explains all the observed properties of the W UM a binaries.

There have been many reviews of the observational and theoretical work in the 

subject, those recently by Shu (1980), Smith (1984), Rucinski (1986), and Hilditch, King 

Sz McFarlane (1988) providing comprehensive coverage across the field.

It is clear tha t some contact systems (predominantly the A-types) are evolved, 

and it is possible to obtain stable contact binaries using models with differently evolved 

cores.

But some systems (predominantly the W-types) clearly contain unevolved main 

sequence components. Two different approaches have been taken to model such sys

tems. The Contact Discontinuity (DSC) Theory sought to build an equilibrium model 

using zero-age main sequence stars of unequal entropy. The Thermal Relaxation Os

cillation (TRO) Theory took the approach tha t the systems were not in equilibrium, 

but evolving on a thermal time-scale. There is both observational and theoretical ev

idence tha t zero-age contact systems could be essentially an evolving, time-dependent 

phenomenon. However, both theories assume the conservation of angular momentum.

It now seems certain th a t angular momentum loss (through magnetic braking) 

plays a crucial role in binary systems, not just in modifying the structural models, but 

in the entire evolutionary scenario.

Observations have suggested th a t two paths for evolution into contact are possi

ble, via mass-reversal evolution, or via angular momentum loss. Angular momentum 

loss may also finally merge contact systems into single, rapidly-rotating stars (possibly 

FK Comae stars).
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1.4.2 O bservations

Observations of WTJma systems have provided useful constraints and tests for 

the theoretical models of contact binaries.

Contact systems seem to  prefer small mass-ratios, avoiding q = l, thus a t least 

for the unevolved systems, leading to the inevitable conclusion tha t there must be 

energy transport between components through the optically thick “neck” . The energy 

transport mechanism is still largely unsolved, bu t is undoubtably very complex. Some 

simplified models have been constructed (eg. Hazlehurst & Myer-Hofmeister 1973), but 

the full hydrodynamical problem involves sonic flow in a complicated geometry, with 

coriolis forces, convection, turbulence and shocks.

Hilditch et al. (1988) compiled the masses, radii and luminosities for 31 well stud

ied F-K contact, or near-contact binaries (ie. ones with spectroscopic mass ratios), and 

made several im portant conclusions.

As had been previously suspected, the primary components of the W -type sys- |

tems were found to be generally unevolved main sequence stars, whilst the primary %

components of the A-type systems were generally near to the terminal-age main se

quence. The secondary components of the A-type systems were also generally more 

over-sized than their W-type counterparts, indicative of the deeper-contact of the A- 

type systems. The magnitude of the luminosity transfer between components of the 

W-types systems was found to be in good agreement with that predicted by theory.

Two paths for evolution into contact were suggested ; (a) due to angular momen

tum loss from detached systems, via marginal-contact systems to the shallow-contact 

W-type systems, and (b) due to  stellar evolution from detached systems, via case- 

A mass transfer to semi-detached systems and then marginal-contact systems, to the 

deeper-contact A-type systems.

The lack of observed B-type systems indicative of the broken-contact phase of the 

TRO theory has also been a problem. They only seem to appear at periods greater than 

about 0.4 day, and although some are certainly in genuine contact, they seem to exhibit 

strange surface-brightness distributions indicating the presence of bright spots in the 

neck area connecting the two components. It is interesting to note tha t a similar bright
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spot has been observed on the early-type binary system SV Cen (Drechsel et al. 1982).

However, the three well-studied B-systems in the compilation of Hilditch et al. (1988) 

showed values of angular momentum and other properties which indicated that these 

systems could only be reaching contact for the first time, rather than being in a later 

cyclic phase.

1 .4 .3  T h e  C o n ta c t D is c o n t in u ity  T h e o r y

The Contact Discontinuity (DSC) Model was proposed by Shu, Lubow, &; An- |

derson (1976) who put an equal entropy common envelope on top of the unequal en

tropy, zero-age binary models of Bierman & Thomas (1972, 1973). This model satisfied 

observed light curve constraints, but required the maintenance of a temperature dis- 

continuity between the common envelope and the secondary component.

Shu et al. (1980) argued tha t a temperature inversion layer could be maintained i

by dynamical energy transfer for both possible contact cases (Figure 1.7). However, ■'%

Smith, Robertson & Smith (1980) showed tha t the DSC theory contained several se

rious and fatal inconsistencies, and there is general sceptism about whether a true 

equilibrium can be maintained in this way.

However, the DSC models may correctly describe contact binaries at particular 

stages of their thermal evolution, such as immediately after establishing contact in the 

TRO models.

1 .4 .4  T h e  T h e r m a l R e la x a t io n  O sc illa tio n  T h e o r y

Rucinski (1973) proposed tha t observed instabilities in W -type light curves im

plied tha t these systems were not in thermal equilibrium. On this basis, the Thermal |

Relaxation Oscillation (TRO) Model was proposed by Lucy (1976) and Flannery (1976).

This extended the original models of Lucy (1968a,b), allowing m atter as well as energy 

to be exchanged between components. When the total mass and angular momentum 

are preserved, these models are found to undergo relaxation-type oscillations with al

ternate long-lasting contact phases and relatively short semi-detached phases (Figure 

1.8).
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Figure 1.7: The Contact Discontinuity Model for the two possible cases : (a) Common 

Convective Envelope, and (b) Common Radiative Envelope. (Shu et al. 1976).
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When the total mass and angular momentum arc conserved, 
the system must undergo cycles around the state o f marginal contact 
which is never reached. The mass transfer in the contact phase drives 
the system to larger separations and smaller mass-ratios until the 
contact is broken. The reversal branch corresponds to phases when the 
primary, swollen by the additional luminosity AL, sheds mass onto the 
secondary component, which is now devoid of the additional energy.

àL ~>- Contact

S e m i 
d e t a c h e d

Figure 1.8: Lucy’s Thermal Relaxation Oscillation model for a low-mass Contact Bi

naries. (Rucinski 1985).

The main problem with the TRO model has been the lack of observed systems 

in the semi-detached phase, ie. with B-type light curves, and periods less than 0.4 days. 

Although some candidates have boon discovered, it is doubtful if they aro r'^nlly broken- 

contact examples of the TRO model, being equally well explained as either peculiar, 

evolved systems, not in broken-contact (Mochnacki 1981), or systems which are just 

evolving into a contact state for the first time (Hilditch et al. 1988).
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1.4.5 Angular M om entum  Loss

The Angular Momentum Loss (AML) Model (Mochnacki 1981 and Rahunen & 

Vilhu 1982) was proposed as a mechanism for keeping binary components in permanent 

contact, thus explaining the non-existence of semi-detached states predicted by the 

TRO theory. Angular momentum loss is used to  hold the system in the contact phase 

of the TRO model, so tha t the semi-detached phase never (or very rarely) appears. 

Hence the system moves to smaller and smaller mass-ratios along contact branches of 

the TRO cycles.

The TRO and AML models have explained many observed features ; the prefer

ence for marginal contact, evolution towards smaller mass ratios, and the shape of the 

period-colour diagram. Rahunen (1981) followed the evolution of a binary system, arti

ficially setting the AML ra te to exactly the value needed to maintain marginal contact, 

and found a good fit w ith observation.

The main question mark over AML is the need for a self-regulating mechanism 

to ensure the loss ra te is just sufficient to keep the system in contact. Too little and 

the system undergoes TRO-like oscillations. Too much and the components rapidly 

coalesce. Vilhu (1981) speculated th a t increasing contact would result in increased 

mixing in the common envelope, burying the surface magnetic field and decreasing the 

loss rate, thus providing the self-regulating mechanism. Rucinski (1986) also suggested 

tha t the amount of breaking in W  UMa systems may be lower than that for similar non- 

contact stars, since the stellar cores under the CCE may be up to half a sub-type earlier 

than suggested by the envelope, thus having weeker deeply-rooted magnetic structures 

than m ight otherwise be expected.
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1.5 P ro jec t  O u tlin e

1 .5 .1  In tr o d u c t io n

The development of theoretical models describing the evolution and structure of 

W UMa Binary systems has been impeded by a shortage of detailed information relating 

to short-period binaries.

The TRO theory in particular, has suffered from an apparent lack of observed 

systems whose components are either in a state of broken contact, or are in marginal 

contact, but possess widely differing temperatures.

Explanations of light-curve features in terms of anomalous surface luminosity 

distributions present a far from coherent picture of all the observed phenomena.

Crucially, the analysis of “spot” activity from light curve distortions is usually 

hampered by two problems

(a) In modelling spot activity to observed light curves, the lack of unique 

solutions is a severe problem, there being a fundamental relation between 

spot size and temperature.

(b) Interpretations of light curves are often made from theoretical fits where 

the mass ratio is trea ted as a free parameter. Yet it is well known that 

solution surface space exhibits a very shallow minimum with respect to the 

mass ratio parameter for systems exhibiting partial eclipses. Thus, model 

light curve fits cannot usually be certain without a spectroscopically defined 

mass ratio.

Furthermore, is it observationally possible to distinguish between an abnormally 

cool region on one hemisphere, as opposed to an abnormally hot region on the other 

hemisphere ?
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1 .5 .2  P r o je c t  O b je c t iv e s

Recent work at St. Andrews University Observatory surveyed a sample of early 

and late-type contact binaries, obtaining detailed photometric and spectroscopic infor

mation, in order to determine accurately the physical parameters for a representative 

sample of systems across the contact binary field.

Given the problems outlined in Section 1.5.1, and the emergence of B-type sys

tems (which may be in the crucial state of “broken contact” predicted by the TRO 

theory, as well as possibly exhibiting anomalous surface luminosity distributions), it 

was decided to move forward from the survey data to look more closely at the na

ture of the possible spot activity, particularly on B-type systems (given their possible 

evolutionary significance).

Initially, eight systems were selected for study, representing the range of typically 

observed phenomena.

SV Cam and XYUMa are short period RS CVn-type semi-detached systems whose 

light curves display the typical erratic variations attributed to dark spot activity.

BX And, SS Ari and AGVir all exhibit B-type light curves, with unequal depths 

of minima. AGVir had previously been studied by Kaluzny (1986c), who modelled the 

presence of a hot spot from light curve analysis.

TYBoo and VW Boo both exhibit light curves much more typical of the W UM a 

binaries, and neither system had previously been studied in great detail.

Finally the unusual system TZ Boo was also included, since it had been observed 

actually to change its type in recent years (Section 1.3.1).

All of these systems had had a t least one photoelectric light curve published pre

viously, but with the exception of TZBoo, no spectroscopic mass ratios were available. 

Thus observations were planned to obtain spectroscopy, and where possible new pho

tometry, in order to determine the physical parameters of each system; and then use 

this information to analyse H-a line profiles, and long wavelength-based colour obser

vations (verses orbital phase) in an attem pt to reveal the true nature of the surface 

luminosity distribution. (Section 1.5.3).

As the project evolved, the focus shifted away from a representative sample sur
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vey, and more towards the B-type systems, their structure and modelling of possible 

spot activity.

One reason for this shift was that the spectra obtained for the two RS CVn 

systems, SV Cam and XYUMa, revealed only the primary component. This lack of 

spectroscopic mass ratios, and other problems with “spot” related observations (out

lined below), curtailed any useful analysis of these systems, and so the spectra obtained 

for these two systems are only briefly noted in Chapter 8.

Also the two observational techniques used to study the nature of any spot ac

tivity both suffered from problems. The H-a observations did not achieve a dispersion 

or signal to noise ratio great enough to enable the spot analysis hoped for, and so these 

observations are also only reported briefly in Chapter 8. Simultaneous visual and infra

red photometric observations made to produce long wavelength based colours could not 

be reduced, due to an instrument malfunction (Section 2.3.2), but it was possible to 

produce infra-red light curves from the data, which may show extra evidence for the 

nature of spot activity.

Thus presented as the main part of this study, are the detailed analyses of five 

contact systems (BX And, SS Ari, AGVir, TY Boo, and VW Boo). All appear to be in 

marginal contact. Four of the systems show signs of not being in equilibrium, and the 

nature of possible spot activity is considered.

A detailed analysis of TZBoo was not possible due to distortions in the cross

correlation functions which are also noted in Chapter 8.

1 .5 .3  T h e  O b serv a tio n a l P r o g r a m m e

1.5.3.1 Spectroscopy and P h otom etry

Spectroscopic mass ratios were obtained for the five main systems presented here, 

and new optical photometry was obtained for two of these systems. The spectroscopic 

mass ratios allowed detailed analysis of light curves, to determine accurate physical 

parameters for each of the systems.

39

/à



40

1

1.5.3.2 D oppler Im aging

The H-a line profile was monitored with orbital phase for seven of the target 

systems, to search for line profile changes due to localised chromospheric emission 

associated with spot activity.

It was hoped to extend the work done on dark spots on BY Dra stars and some 

RS CVn systems to the contact binaries. For example. Figure 1.9 shows the correlation 

between the H-a emission and starspot visibility observed for the single, rotating star 

II Peg.

Also, Vogt and Penrod ( 1983a,b) exploited these line profile changes, in a tech

nique known as Doppler Imaging, to “map” spot activity. They showed how a dark 

spot would produce an emission bump in the absorption lines of a rotating star (Figure 

1.10), and that for stars of intermediate inclinations, some two dimensional information |

could be derived. They applied the technique to the RS CVn binary, V T llT au , to map 

spot positions on the primary component (Figure 1.11).

The observations made for this study are presented in Chapter 8, but the mag- 

itude of the proposed spot features, with the resolution and signal to noise obtained, 

proved insufficient to reveal any “emission bump” features. The work by Vogt on 

brighter BYDra and RS CVn objects achieved noise to signal of less than 1%, whereas 

the noise to signal for the observations of these contact systems was typically 4-5%.

1.5 .3 .3  Long W avelength based Colours

Observations over a wide wavelength base are required to help determine the 

nature of any anomalous surface luminosity distributions on marginal contact binaries.

Observations of colours with orbital phase at both the visual (V-B) and the infra-red 

(J-K) alone have shown no significant variations, but calculations for colours over a 

large wavelength base (V-K) have suggested tha t any contribution due to spots would 

become noticeable.
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Figure 1.9: The changing ff-a  emission line profile of II Peg, as a “spot” region comes 

into and out of view. (Vogt 1981a).

41

"L'._ . _



I
WITHOUT SPO T WITH SPOT

0  2
SECTION I>-

H
0  2CO 0 2

z
LU
f -
Z

0 2

0  2 IZ

0  2 0  2

SUM SUM
0 9

0 7

NORMALIZED
SUM

0.89
0.76

WAVELENGTH

Figure 1.10: How a darkspot on a rotating star will produce an emission bump in the 

absorption line profiles as it moves through the line of sight. (Vogt Sz Penrod 1983b).
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Figure 1.11: Doppler Imaging used to map spots on the primary component of the 

RS CVn Binary, V T llT au . (Vogt & Penrod 1983b).

An ideal opportunity to obtain simultaneous visual and infra-red photometry 

arose during this study with the commissioning of a simultaneous visual photometer 

on the United Kingdom Infrared Telescope.

Unfortunately, an initial fault with this new visual photometer rendered the visual 

part of our data unuseable (Section 2.3.1), and although our observations made during 

the commissioning run helped to correct the instrum ental fault, the long wavelength 

based colours hoped for could not be produced.

However, infra-red photometry was obtained for two of the systems presented 

here, providing valuable long wavelength light curves against which to test the system 

and spot parameters suggested from the analysis of other visual data.
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C h apter 2

O bservations, R ed u ctio n  and  

A n alysis

2.1 S p ectro sco p y

2 .1 .1  In tr o d u c tio n

The spectroscopic observations presented here were made by the author using the 

2.5-m Isaac Newton Telescope (INT) a t the Observatorio del Roque de los Muchachos, 

La Palma, and by Dr.R.P.Edwin using the 1.0-m Jacobus Kapteyn Telescope (JKT) 

also a t the La Palma observatory. The observations were made during four observing 

periods a t La Palma, as indicated in Table 2.1.

The objectives of the spectroscopic observations were two-fold

(i) To provide high-dispersion spectra throughout the orbital periods, cen

tred on the rich field of photospheric iron-lines a t 4200 Â in order to obtain 

well defined radial velocity measurements.

(ii) To monitor the Hydrogen-a line profile a t 6563 Â against orbital phase 

to search for line profile changes due to localised chromospheric emission, 

from starspots, or from energy transfer between the components.
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Object Peroid of Observation

TZBoo 1987 April 8 - 9

BXAnd 1987 November 7 - 9

SSAri 1987 November 8 - 1 1

SV Cam 1987 November 7 - 1 1

1988 February 4 - 11 |

XYUM a 1988 February 5 - 11 f

A GVir 1988 April 28 - May 2

VW Boo 1988 April 28 - 30

TYBoo 1988 April 29 - May 2

Table 2.1: Dates of Spectroscopic Observations 

t — observations made with the JKT.

An observing plan for each observing period at the telescope was prepared using 

the computer program PREDICT (Bell 1987) in order to maximise light curve coverage, 

and ensure increased radial velocity observations near quadratures, where there is the 

best chance of acquiring velocity measurements for both components of a binary.

PREDICT uses the position of the Observatory and object being observed, cou

pled with the best ephemeris available, to provide information on the position and 

orbital phase of the binary against time, for each night of observation selected.

2 .1 .2  O b serv a tio n s

Spectroscopic observations on the INT were made using the Intermediate Disper

sion Spectrograph (IDS) with a coated GEC Charged Couple Device (CCD) detector. 

This spectrograph is situated at the / /1 5  Cassegrain focus of the INT, and can be used 

with two folded, short Schmidt design cameras of focal lengths 235-mm (Camera 1), or 

500-mm (Camera 2).

The 500-mm camera was used throughout, with the Jobin-Yvon 1200 grating, 

to produce high dispersion spectra a t 16.7Âmm~^. This provided a useful range of 

approximately 200 Â across each spectrum.
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Observations were controlled using the INT software environment ADAM (Astro

nomical D a ta Acquisition Monitor). The grating’s position angle was switched between 

radial velocity and H-a spectra, to centre each spectrum on 4200 Â and 6563 Â respec

tively. For H-a observations, red fiat-fields, and red comparison lamp and standard 

star observations, a GG495 filter was used to prevent contam ination.

Before each observing run, the spectrograph was focused and adjusted for tilt 

and ro tation using ADAM routines. The focus was also checked at the s tart of each 

night. (Jorden & Lupton 1984).

Bias frames and flat-field integrations a t both wavelengths were recorded a t the 

beginning and end of each night. For the flat-fields, a Tungsten lamp source was used, 

with a slit w idth of 250/im and 140/im, and integration times of 200 s and 2 s, for the 

4200 Â and 6563 Â flat-fields respectively.

All stellar integrations were alternated with comparison-source exposures a t the 

corresponding wavelength, using a Cu-Ar lamp for wavelength calibration purposes, 

and to monitor any flexure in the instrum ent. Calibration integrations were 100 s with 

a slit w idth of 200 pm.

Stellar integrations were typically 1000 s at both wavelengths, this representing 

only a small fraction of the orbital phase of the target objects, as indicated in Table 2.2. 

The slit width was 200 pm, corresponding to % 1" on the sky.

Object Typical Integration/ s % % of Orbital Period

TZ Boo 1000 3.9

BXAnd 1000 1.9

SSAri 1000 2.9

SV Cam 1000 2.0

XYUma 1000 2.4

AGVir 800 1.4

VW Boo 1000 3.4

TYBoo 1000 3.6

Table 2.2: Typical Integration Times for Spectroscopic Observations

At regular intervals during each night of observation, radial velocity standard 

stars were also observed at both wavelengths to ensure th a t there were no systematic
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departures from the standard system, and to provide comparison spectra for cross

correlation of the radial velocity data. Standard stars were chosen to match the spectral 

types of the binary systems observed. The standard stars observed with each target 

binary system are listed in Table 2.3. The slit width for standard star observations was 

also 200/^m («1  " on the sky), and exposure times ranged from 600 s to 10 s, dependent 

on the brightness of each standard.

Also at regular intervals during each night, the CCD data frames collected were 

transferred on to magnetic tape in the FITS (Flexible Image Transport System) file 

format (Wells, Greisen &: H artenl981).

Standard Star Spectral Type Radial Velocity /  km s“ ^ Target binaries observed between 

standard observations

HD75935 G8 V -18.9 ±  0.3 TZ Boo

HD140913 GO V -20.8 ±  0.4 TZ Boo

HD693 F6 V 4-14.7 db 0.2 SSAri 6  BXAnd

HD32963 G2 V -63.1 ±  0.4 SSAri & SV Cam

HD36673 FO Ib 4-24.7 ±  0.2 BXAnd

HD84441 G1 Ilab 4-4.8 ±  0.1 SVCam& XYUMa

HD12929 K2 Illab -14.3 ±  0.2 SVCam & XYUMa

HD122693 F8 V -6.3 ±  0.2 TZBoo, VW Boo, TYBoo, & AGVir

HD145001 G8 III -9.5 ±  0.2 VWBoo & TYBoo

HD103095 G8 Vp -99.1 ±  0.3 VW Boo & TYBoo

HD89449 F6 IV 4-6.5 ±  0.5 AGVir

Table 2.3: Radial Velocity Standard Stars Observed

The same observing routine was followed for the spectroscopic observations made 

using the JKT. These observations were taken during a commissioning run at the 

telescope to fit a CCD detector (pixel size 22 pm ), similar to the INT detector, onto 

the telescope’s Richardson & Brealey design spectrograph which had been built at St 

Andrews. The twin of this spectrograph is in use at St Andrews University Observatory, 

and the design has been described in detail elsewhere (Edwin 1989). The dispersion of 

the JKT spectra was marginally higher at 20.0 A m m “  ̂ and only observations centred 

on 4200 Â were obtained.
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2.1 .3  R eduction

Preliminary reductions of the spectroscopic da ta were made using the STAR- 

LINK software package FIGARO (Shortridge 1986) for bias subtraction, flat-fielding, 

sky background subtraction, and removal of cosmic ray events. The resulting data were 

converted into a one-dimensional form for processing with the spectroscopic image- 

processing package REDUCE (Hill, Fisher, 8z Poeckert 1982a). This was used to lin

earize, rectify, and finally log-linearize the spectra, so tha t, in the case of the 4200Â 

observations, the spectra were in a form suitable for cross-correlation analysis.

All the spectroscopic FITS data  frames were read into the the University of 

St Andrews MicroVAXII computer using the FIGARO FITS routine, to create DST 

format files which were corrected for floating point notation.

The bias frames from an observing run (more than 40 frames) were averaged, to 

form a low readout noise bias frame for th a t run. This was then subtracted from all 

other data frames read from tape, to remove any electrical offset in the CCD detector. 

No significant night to night variations in the bias level were detected. (Jorden & 

Lupton 1984).

Next the flat-field data frames, at both wavelengths, were reduced, to form aver

age flat-fields at 4200 Â and 6563 Â for each night of observation. Before these flat-fields 

could be used to divide out any non-uniform detector response, any spectral response 

due to the flat-field lamp was removed. (Shortridge 1986).

This was achieved by fitting a smooth, low order, polynomial to the spectral 

response from the lamp, obtained by collapsing the flat-field in y, and then multiplying 

by the fitted value, before dividing by the flat-field to normalize the pixel values.

All reference arc and stellar observations were divided by the appropriate flat-

field.

Having been bias-subtracted and flat-fielded, the reference Cu-Ar data frames 

were simply summed over a given y range, to produce standard two-dimensional arc 

spectra. This y range was typically pixel row 150 to 180, chosen to correspond with 

the detector area across which the stellar spectra fell.
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Before stellar da ta  frames were reduced to the two-dimensional form, each frame 

was displayed, and cosmic ray events removed using the FIGARO CLEAN routine.

Each stellar spectrum was then summed over its y range (typically i/=160 to 180), and I

the sky background subtracted. The sky background was obtained by summing an B

equal y range of sky above each stellar spectrum (typically î/=260 to  280).

The two-dimensional arc and stellar spectra were converted from DST file format f!

to FITS file format, to allow final reduction of the stellar spectra to be made using the 

software package REDUCE.

This conversion was achieved using the STARLINK SPICA package. This was 

used to first convert the DST files into a one-dimensional memory file, wliich could 

then be converted into FITS files using another routine called SPICON (Hill 1983).

SPICON requires the pixel size of the detector (22 pm  for the CCD), and a central 

feature in each arc spectrum, which is manually identified. For the 4200 Â spectra, the 

4237.220Â feature was used for this identification, and the 6604.853Â feature used for 

the 6563 A arc spectra. Using the arc reference point identified for each arc/stellar data 

pair, SPICON outputs pixel calibrated “S” and “F ” FITS files containing the stellar 

and arc data respectively.

REDUCE was used to measure each arc spectrum, and thus linearize each corre

sponding stellar spectrum in wavelength.

Initially a “Standard Plate” was constructed for the Cu-Ar spectrum at each 

wavelength region (Aitkenl935). The Standard Plate predicts the position of lines in 

the spectrum, based on known spectrograph constants, such as grating equations and 

H artmann constants. The Standard Plates for 4200A and 6563A were created using 

the program STDPLATE (Hill & Fisher 1982), which generates these coefficients given 

manual identification of a relatively small number of widely-distributed features across 

a representative arc spectrum. STDPLATE measures line positions by fitting parabolae 

to the peak of each profile.

REDUCE measures each arc spectrum and uses it to wavelength linearize the 

accompanying stellar spectrum. Positions of selected arc lines are automatically mea

sured, and compared with predicted positions from the Standard Plate. Figures 2.1
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and 2.2 show a typical 4200 Â and 6563 Â Cu-Ar comparison arc spectrum respectively, 

with the lines selected for measurement shown. The residuals of the measured com

pared with the predicted line positions are fitted with a polynom ial wliich serves as 

a correction to the Standard Plate. Any mis-identified lines can be removed by pre

selecting a rejection limit. Using this technique it was found tha t the RMS error in 

each measured arc was typically less than 1 pm.

At this stage, the Earth Correction for each observation, due to  the motion of 

the observer, was also calculated and corrected for. Hence final radial velocities from 

the 4200 Â spectra are “true” velocities in the heliocentric system.

The stellar spectra thus linearized are output as REDUCE “W-files” . A typical 

“W-file” at both 4200 Â and 6563 Â is shown in Figures 2.3 and 2.4.

Finally the 4200 Â radial velocity stellar spectra were rectified and log-linearized 

using REDUCE, producing “R-files” and “U-files” respectively.

For rectification, a fit was made to each stellar continuum by manually select

ing a number of small wavelength ranges across each spectrum. For each range, the 

local stellar continuum is calculated, and a fit through these points made using the 

interpolation routine INTEP (Hill 1982c). This routine has the advantage of drawing 

smooth, stable curves through the points, rather than the usual oscillating curves of a 

typical polynomial fit. This continuum can than be divided from the stellar spectrum 

to produce rectified data.

The 6563 Â stellar spectra were also rectified using the above technique to produce 

“R-files” for final analysis.

2 .1 .4  A n a ly s is

2.1.4.1 6563 Â  H -a  Spectra

The H-a spectra in rectified R-file format were examined using the the stack 

plotting routine TSTACK (Hill 1986).
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Figure 2.1: Cu-Ar Comparison Spectrum at 4200 Â. The identified lines were used for 

automatic measuring by REDUCE.
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Figure 2.2; Cu-Ar Comparison Spectrum at 6563 Â. The identified lines were used for 

automatic measuring by REDUCE,
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Figure 2.3: A typical 4200Â stellar spectrum. (A W-file of BXAnd).
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Figure 2.4: A typical 6563Â stellar spectrum. (A W-file of BXAnd).
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TSTACK allows single or multiple spectra to be plotted, and also enables simple 

arithmetic functions to be performed. The specific wavelength range around the H-a 

profile was plotted to enable detailed examination of each line profile, both with and 

without smoothing. The spectra of each binary, taken throughout the orbital phase 

of the system, were also shifted to a common zero velocity, and then a “template” 

spectrum of the binary, taken at either 0?0 or 0?5 when only one component is visible, 

was subtracted from the other spectra of tha t system. However, for the reasons outlined 

in Section 1.5.3.2, neither these “residual” images, or the detailed profiles themselves 

revealed any “bump like” features attributable to starspots. Hence, the 6563 Â spectra 

briefly noted in Chapter 8 are simply presented by TSTACK plotted in orbital phase 

order without any smootliing.

2.1.4.2 4200 Â R ad ia l V elocity  S p e c tra

Relative radial velocities from the log-linearized stellar spectra (U-files) were 

obtained using cross-correlation techniques in the program VCROSS (Hill 1982b).

VCROSS calculates the Fourier transform of a known comparison star spectrum, 

and multiplies it with the conjugate Fourier transform of the programme star spectrum. 

The inverse Fourier transform of this product, suitable normalized, yields the desired 

cross-correlation function (CCF), whose peak corresponds to the relative radial veloc

ity  between the comparison and programme stars. VCROSS applies the Fast Fourier 

Transform (FFT) techniques of Cooley and Tukey (1965) to the digitised stellar spectra 

obtained from REDUCE, and uses the subroutine FOURT (Brenner 1970) to obtain 

the necessary FFTs.

All stellar radial velocity determinations presented here were carried out using 

VCROSS. The CCFs for each binary were optimised to produce the sharpest and best 

defined peaks in the CCFs in two ways.

(i) Windows across the useful range of the spectra, defining the spectral 

regions to be used for cross-correlation, were set up to  omit any ’gross’ 

spectral features which would dominate the CCFs, producing wide central
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peaks. In practise this meant om itting the broad Ca-I feature a t 4226 A.

(ii) Each binary was cross-correlated against the various standard stars, 

of similar spectral type, observed during observations of the binary (see 

table 2.3), and the standard which produced the best defined peaks in the 

CCFs was used for the velocity measurements. The standards thus used for 

cross-correlation with each binary are listed in Table 2.4.

Object Standard used for Cross-Correlation

TZBoo HD140913

BXAnd HD36673

SS Ari HD693

SV Cam HD84441

XYUMa HD84441

AGVir HD89449

VWBoo HD145001

TYBoo HD 122693

Table 2.4: Radial Velocity Standards used for Cross-Correlation with Binaries 

The resultant CCFs took one of two forms :-

(i) If the contribution of the secondary component to the spectrum of the 

binary is weak, either because there is a large magnitude difference between 

the components, or because the Doppler shift between components is not 

large enough to be noticeable (for example, around primary and secondary 

minima), then only a single peak due to the primary component will appear 

in the CCF, as illustrated in Figure 2.5.

(ii) If the contribution from the secondary is noticeable, for example when 

the Doppler shift between components is large (around first and second 

quadratures), then a double peak should be evident in the CCF, as illus

trated  in Figure 2.6.

The position of the peak/s in each CCF were measured within VCROSS by 

fitting a single-Gaussian profile when only a single peak was visible, and a double-
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Program * U0206 o21b ss ari 325/6 Comp * U0220 o21b hd633 541/2 42374237 RV 14.70
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Figure 2.5: A single peaked CCF showing only the Primary component. (SSAri at 

0^49 cross-correlated with HD693).
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Program * U0226 o21b ss ari 549/50 4237Comp * U0220 o21b hdB93 541/2 4237 RV 14.78
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Figure 2.6; A double peaked CCF sliowing Primary and Secondary components. (SS Ari 

at 0^26 cross-correlated with HD693).
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Gaussian profile when tw in peaks were evident. As the program is given the known 

radial velocity of the standard star used for the cross-correlation of each binary, and 

the stellar spectra had been reduced to the heliocentric system, then the velocities 

measured from the positions of the CCF peaks represent the true radial velocities of 

the binary components.

Finally, as a check tha t observations were compatible with the standard system, 

and tha t no hour-angle dependences, or other unforseen errors, were present during 

observations, the standard star spectra were cross-correlated against each other.

All the standard star spectra recorded whilst observing a given binary system were 

cross-correlated against each other, and a single-Gaussian profile fitted to the resultant 

single, sharp peaked CCFs. Since the velocities of the standard stars are known, the 

expected CCF velocity peak, due to the cross-correlation of any two standard star 

spectra could be calculated. The residual between the measured and calculated velocity 

peak for each cross-correlation was thus found (an 0-C ), and the mean residual and 

standard deviation for the set of standard star spectra recorded whilst observing each 

binary was calculated. These mean residuals and their standard deviations are listed 

in Table 2.5.

The standard star residuals indicate tha t the observations show no systematic 

deviations from the standard system outwith the intrinsic observational errors.

Having obtained stellar radial velocities from VCROSS, the data  for each binary 

was plotted against orbital phase (calculated from the best ephemerides available), to 

yield radial velocity curves for each binary component.

Each radial velocity curve was fitted with a sine wave, using the least squares anal

ysis program PULSAR (Skillen 1985). These sine wave fits enable the radial velocity 

semi-amplitudes for the primary and secondary components (FTi and K 2 respectively) 

and the systemic velocity (Vo) for each binary to be found, and thus the mass functions 

and projected semi-major axes of the orbits, with their standard errors, can be derived.

The sine waves were fitted to the radial velocity curves on the assumption of 

circular orbits, given tha t all the systems presented here show no indications of orbital 

eccentricity either in the radial velocity data itself, or in the photoelectric data data. 

Furthermore, there is theoretical support tha t such contact and near-contact systems
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Object Standard Star Residual/km  s ^

TZBoo -0.52 ±  5.03

BXAnd -0.83 ±  4.14

SSAri -0.48 ±  6.80

SV Cam -0.08 ±  6.80 V
+0.54 ±  3.97 t

XYUMa +0.54 ±  3.97 t

AGVir -1.70 ±  7.00
*

VWBoo -0.76 ±  8.80

TYBoo -0.76 ±  8.80

Table 2.5: Mean Residuals and Standard Deviations from Cross-Correlation of Stan

dard Star observed with each Binary System

f — residuals for those observations made with the JKT.

are almost certain to  have circular orbits, since the strong tidal forces present in such 

systems would act quickly to dampen any orbital eccentricity.
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2 .2  O p tica l P h o to m e tr y

:

I
■I

'■I

2 .2 ,1  In tr o d u c t io n

The systems observed spectroscopically in this work have all had at least one 

photoelectric light-cnrve previously published. Ideally we would have liked to have 

obtained new photoelectric photometry on all these systems, to analyse with our spec

troscopic mass ratios. This would also have enabled comparisons to be made with 

previously published data.

Of the contact binaries, three of the systems (SS Ari, TY Boo, and VW Boo) were 

too faint to be observed from St. Andrews University Observatory, so previously pub

lished photoelectric data  have been re-analysed here, using the now known mass ratios.

However, new photoelectric photometry in the V-band was obtained by the au

thor and Dr.S.A.Bell for BXAnd and AGVir, using the St. Andrews Twin Photometric 

Telescope.

1

%
i’‘

2 .2 .2  T h e  T w in  P h o to m e tr ic  T e le s c o p e  an d  D a ta  R e d u c t io n

The Twin Photometric Telescope (T PT) utilizes two 40 cm, / /1 5 , Ritchey Chre

tien reflecting telescopes mounted on a single fork, to obtain single-band, simultaneous, 

two-star photometry.

The advantage of simultaneous two-star photometry is illustrated is Figure 2.7. 

This Figure shows one n ight’s observations of the binary system TTAurigae, going 

through primary minimum, made using the T P T  (Bell & Hilditch 1984). The variable 

and comparison star counts from each photometer show the effects of thin mist towards 

the end of the night, which would have stopped single star photometry. However, the 

simultaneous variable-comparison ratio clearly shows that the two-star photometric 

system remains unaffected.

The T PT  allows one telescope to  be offset by up to five degrees with respect to 

the second fixed telescope, enabling the programme binary, and a nearby comparison 

star to  be observed simultaneously. The photometers employed are a matched pair of
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Figure 2.7: Observations of TT Aurigae illustrating the T FT  principle
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S-20 response EMI 9863A/350 photomultipliers, driven by a single EHT power supply, 

and housed in thermoelectrically controlled cold boxes. No significant relative drift 

between the photometer zero-points (in excess of 0^003) has yet been recorded during 

an observing season.

The observing technique, data acquisition, and reduction systems used with the 

T PT , and outlined here, have been described in detail elsewhere (Bell 1987).

D ata acquisition is controlled by a BBC microcomputer employing a FORTH 

ROM, and using an acquisition program written at St. Andrews by Mr. J.A. Stapleton. 

This program allows the observer to record the four types of observations required for 

the simultaneous monitoring of a variable and comparison star in one of four ’modes’ 

labelled 0,1,2, and 3. The observer can define the type of observation recorded in each 

mode. Table 2.6 shows the mode definitions used for the observations presented here.

Mode Type of Observation

Sky background measurements in both telescopes.

Comparison star measurements in both telescopes

(to give zero-point differences between the two channels).

Comparison star measurements in Reference telescope, 
and check star measurements in the Offset telescope 

(to monitor the stability of the comparison star).

Comparison star measurements in Reference telescope, 

and variable star measurements in the Offset telescope.

Table 2.6: Definition of D ata Acquisition Modes used for T PT  Observations

The data is written in ASCII format on to floppy disk, allowing simple file trans

fer to be made to the St. Andrews’ MicroVAXII computer. Each observation record 

contains the observation label, mode, filter used, end time of integration (in seconds 

since the previous midnight), the truncated Julian Date at the start of observations.
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the integration time, and the counts from each photometer.

T P T  da ta were reduced using two programs, SIMPHOT and SIMPLOT, written 

by Dr. S.A. Bell, designed specifically to reduce T PT  format data. SIMPHOT reads and 

reduces T P T  data transferred from floppy disc, and outputs files in a format suitable for 

the plotting and data manipulation routine, SIMPLOT. Tliis self-contained reduction 

system enables a simple flow of data  through the reduction stages, allowing a night’s 

da ta  to be reduced straight from the telescope within a m atter of hours.

To reduce the T PT  data, it is run through SIMPHOT twice. Each run of SIM

PHOT reads in the data, corrects the counts for dead-time effects, performs sky back

ground subtraction (described below), corrects for extinction in both channels, and 

outputs the differential magnitudes for the modes of observations made, (ie. variable 

minus comparison (V-C), check minus comparison (K-C), and comparison (channel 1) 

minus comparison (channel 2) (C 1 -C2 ) observations) against time, orbital phase, and 

airmass.

SIMPHOT plots the sky background measurements against time for both chan

nels, and offers the choice of two fits for the modelled sky background subtraction

(i) L2FHES (Powell 1967) fits a least-squares cubic-spline to the data points.

(ii) INTEP (Hill 1982c) fits an hermite-polynomial.

The user can then select the most plausible fit (L2FRES or INTEP) for the sky 

background subtraction.

The first run of the raw T P T  data through SIMPHOT allows the extinction and 

zero-point difference between channels to be evaluated. These are both initially set to 

zero, and the reduced output plotted using SIMPLOT (described below). The extinc

tion is evaluated by determining the slope of the comparison magnitude against airmass 

plot, and the zero-point difference found from the mean of the (C 1 -C 2 ) observations.

The raw data can then be finally reduced by re-running through SIMPHOT, using

the figures for the extinction and zero-point difference thus evaluated, or by adopting é
'i,

standard extinction values for the site. j

The SIMPHOT output files are plotted using SIMPLOT, which allows either the



differential magnitudes, or the individual channel magnitudes to  be plotted against 

time, phase, or airmass. It allows ’windowing’ on areas of interest, and individual or 

group removal of points. D ata plots can be fitted with splines or polynomials up to 

the nin th order (eg. for extinction and zero-point evaluations). Also time of minimum 

determinations for the final differential magnitude (V-C) da ta can be calculated within 

SIMPLOT, employing the method of Kwee and van Woerden (1956).

2 .2 .3  B X  A n d  - O b se r v a tio n s  a n d  A n a ly s is

Photoelectric photometry of BX And was obtained by the author and Dr. S.A. 

Bell using the T PT  during 1985 November, 1986 September to October, and 1988 Oc

tober to November.

The filter used for all these observations was comparable to the Johnson V-filter, 

and integration times were fixed at 60s. A 27'' aperture was employed to exclude the 

11*& magnitude visual companion of BX And which lies some 20" away at a position 

angle of 59° (Hall & Weedman 1971). Frequent monitoring of the position of BX And 

in the photometer diaphragm ensured tha t light from the visual companion did not 

contaminate the BX And data.

The comparison star used in all of these observations was BD-f39°476, and the 

check star used was BD4-39° 484. One, or both, of these stars have been used in pre

vious studies of BX And by Svolopoulous (1957), Castelaz(1979), Rovithis & Rovithis- 

Livaniou(1984), and Samecei aZ. (1989). No variability in either the comparison or 

check star has been noted in these studies, and the differential magnitudes, in the sense 

of check minus comparison, calculated from our observations were stable to better than 

0™01. The typical error in the differential magnitudes for our light curves of BX And 

are 0^006.

The first attem pts at solving the light curves of BX And were made using the light 

curve synthesis program WÜMA5 which implements the method of Rucinski (1976a,b,c). 

The analysis procedure has been described in detail elsewhere (Bell Sz Malcolm 1987), 

and brief details of the routine are given in the Appendix to this Chapter. The WUMA5 

code was used whilst awaiting a working version of LIGHT2.

The main light curve analysis prograJm used in this work, for BX And and indeed
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all the other photoelectric da ta, was LIGHT2 (Hill 1989). LIGHT2 is an expanded ver

sion of LIGHT (Hill 1979) which incorporates analytical techniques for contact as well 

as detached systems, as well as allowing cool or hot spot regions to be included in the 

model. Again the analysis procedure has been described in detail elsewhere (Hilditcli & 

King 1988), and brief details of the routine are given in the Appendix to this Chapter.

2 .2 .4  A G V ir  - O b se r v a tio n s  a n d  A n a ly s is

Photoelectric photometry of AGV ir was obtained by the author and Dr. S.A. 

Bell using the T PT  on 1989 March 7/8, 10/11, and 15/16.

The filter used for all these observations was comparable to the Johnson F-filter, 

and integration times were fixed a t 60s, with a 40" diaphragm employed throughout 

the observing run.

The comparison and check stars used in these observations were BD-fl3°2485, 

and BD-f 13° 2482, respectively. The comparison star has been used extensively in 

the majority of studies of AGVir, but for convenience of observing with the TPT, 

BD-f 13° 2482 was used as the check star in place of BD-f 13° 2405 which had been em

ployed in previous studies. No variability in the comparison had been found in previous 

studies, and the differential magnitudes, in the sense of check minus comparison, calcu

lated for this study were stable to better than 0™01. The typical error in the differential 

magnitudes for our light curve of A GVir is % 0^006.

As for BX And and the other systems presented here, analysis of the AGVir light 

curve was attempted using the light curve synthesis program LIGHT2 (Section 2.2.3 

and 2.5).
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2.3  In fra-R ed  P h o to m e tr y

2 .3 .1  In tr o d u c t io n

Two of the systems presented here (BX And and SS Ari) were also observed in “■
%

the infra-red by Dr.R.W.Hilditch,

Visual and infra-red photoelectric observations were made simultaneously in ei

ther the V  and K  bands, or the B  and J  bands, with the intention of forming the 

colours V -K  and B~J (see section 1.5.3.3).

Unfortunately the VISPHOT photometer used for the visual band photometry, 

and on its commissioning run during our observations, was found to have a temporary 

fault. A misalignment of the primary mirror image on the photomultiplier’s Lyot stop 

caused zero-point shifts in the visual data. Comparison star observations were found 

not to follow these drifts with sufficient accuracy to allow a reduction to the standard 

system (Adams 1988).

Although it was not possible to reduce the visual photometry to data coherent 

enough to warrant analysis, the infra-red photometric data could be reduced indepen

dently, to produce infra-red light curves for the two binaries.

2 .3 .2  O b serv a tio n s

The simultaneous infrared and optical photometry was obtained during 1987 

November 17-21 using the United Kingdom Infrared Telescope (UKIRT) with the UKT6 

and VISPHOT photometers respectively to make simultaneous J  B  and K  V  filter 

observations. Integration times for both systems were fixed at 80 s, and a diaphragm 

of 19.6" employed throughout the observing run. Several infrared and optical standard 

stars were observed during each night to allow transformation to the standard system. 4

BX And was observed during November 17-19, employing the comparison star 

BD-f39° 484 for these measurements. SS Ari was observed during November 19-21, and 

the comparison star BD-f-23° 277 employed.
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Since the UKIRT photometer defines the standard system, the infrared obser

vations were reduced as outlined in Section 2.3.3, with standard star measurements 

allowing zero-point determinations to be made for transformation to the standard sys

tem. These observations showed a scatter of approximately 0™02 about the standard 

system. There was no evidence for variability in the comparison stars within this limit, 

and the typical scatter in the differential magnitudes of the infrared light curves of 

BX And and SS Ari was «  0^03.

2 .3 .3  R e d u c t io n  an d  A n a ly s is

The infra-red photoelectric data were reduced to a differential magnitude, in %

the sense of variable minus comparison, by fitting a least-squares polynomial to the a

comparison observations for each night. The comparison star fits were produced using 

the computer routine SIMPLOT (see section 2.2.2).

The data were manipulated using a simple FORTRAN routine w ritten by the 

author. This routine reads in data from the “Observation Summary” output files 

produced at the telescope, performs the required reduction for the object of interest, 

and outputs data  in a format suitable for the SIMPLOT plotting and manipulation 

program.

For each J  j  B  ox K  / V  observation pair, the telescope’s output file records the ob

ject name, the aperture and filters used, start time (in UT), airmass, integration time, 

and the counts from the visual and infra-red photometer, along with their correspond

ing instrum ental magnitudes (in the sense of —2.SlogiQ{counts))^ and their associated 

errors.

Since the UKIRT photometers define the standard system, the instrum ental mag

nitudes logged a t the telescope were simply corrected for extinction. The values used 

for infra-red atmospheric extinction at the Mauna Kea site were the median values 

determined by Krisciunas et al. (1987) ; namely 0.1 and 0.07 magnitudes/airmass for J  

and K  respectively.

Standard star observations showed a scatter of ±0^02 about the standard system, 

and allowed zero-points for each night to be found. The scatter compares favourably 

with the instrument performance measured by previous observers (Williams 1988).

72



y • j

The comparison star da ta were reduced, using these values of extinction and 

zero-points, following the equation

Mgfj =  instrum en tal magnitude -f zero point - (extinction X airmass)

and a least-squares polynomial fitted to the comparison star da ta for each night using 

SIMPLOT.

The BX And and SS Ari data were finally reduced using the same reduction equa

tion to form the binary’s magnitude, interpolating the comparison star magnitude to 

the time of binary observation, and forming the resultant differential magnitude (vari

able minus comparison).

For the analysis of the infrared photometry, times of minimum for the BX And 

and SS Ari were calculated, as for the optical data, within the SIMPLOT program 

(Section 2.2.2). Similarly the light curve analysis employed the synthesis program 

LIGHT2 (Section 2.2.3 and 2.5). |
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2.5  A p p en d ix  - L igh t C u rve A n a ly sis  P rogram s

Two separate light curve synthesis programs are used in the analysis presented 

here (see Section 2.2.3), the bulk of the modelling being done using LIGHT2, an ex

panded version of LIGHT, to include hot spots in the basic contact binary model. 

Only a brief description is provided here as both programs have been described in 

detail elsewhere.

The light curve generation code for “over-contact” systems which forms the 

basis of the WUMA5 program was w ritten and discussed by Rucinski (I973a,b and 

1976a,b,c).

The “surface” of a common envelope of an over-contact system may be assumed 

to follow an equipotential surface lying between the inner and outer critical surfaces. 

Rucinski (1973a) defined a “fill-out factor” (f), which effectively measures the degree of 

contact in a system, such tha t f—1 when the envelope’s surface is coincident with the 

inner critical surface (marginal contact), and f=0 for coincident with the outer critical 

surface (deep contact).

Using a given fill-out factor and mass ratio, a binary’s common envelope “surface” 

can then be defined, and Rucinski’s code generates a light curve on this basis, includ

ing the inclination of the orbit and the relative increase of the local temperature of the 

less massive component. WUMA5 allows five fiuxes and limb-darkening coefficients to 

be specified for the desired central wavelength around the prim ary’s (reference) tem

perature. The program then calculates the emergent flux from the visible portions of 

the common envelope at each orbital phase step, taking into account limb and gravity 

darkening. (The reflection effect is negligible for these systems when the temperature 

difference between components is small).

Solutions were made for fill-out, inclination and relative temperature difference, 

fixing the mass ratio (at the spectroscopically derived value) and the primary temper

ature. The component radii can then be calculated from the mass ratio and fill-out 

factor solution from the tabulations presented by Mochnacki (1984).

77



The majority of light curve analyses presented here were made using LIGHT2 , 

an expanded version of LIGHT (Hill 1979).

LIGHT generates light curves for detached binary systems by employing Roche 

geometry, and using the radii, component temperatures, mass ratio and system incli

nation. It also trea ts heating and scattering effects in a realistic manner, and offers 

theoretical or observed limb-darkening coefficients, and black-body or model atmo

spheres for up to 90 wavelengths. The light curve is solved by means of CURFIT 

(Bevington 1969). (LIGHT can also trea t eccentric orbits, the presence of a th ird body, 

and non-synchronous ro tation if required).

LIGHT2  has been expanded to incorporate Rucinski’s code, described above, so 

tha t contact systems can also be analysed. Further, the new program allows “starspots” 

to be added to the contact systems, with up to  ten spots on each component (although 

only two spots may be included in the unknowns when solving a light curve). Each spot 

may be non-circular, of different temperature, and an absorption or emission region. 

Each spot is also subject to limb and gravity darkening. In total then, each spot may be 

defined by up to seventeen parameters if required, although the program’s author does 

give a timely reminder tha t, given enough parameters, it is possible to  fit any tiring.

A full description of the use of the program in the analysis of the systems pre

sented here is given in the relevant Chapters. For most of the work, LIGHT2  was used 

in the Rucinski “over-contact” mode, with the mass ratio and primary component tem

peratures fixed, and solutions for the secondary temperature, fill-out and inclination 

sought. Some simple spot models were also investigated, mostly with a single circular 

spot in the system, defined simply by position, size by radius, and temperature.
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C hapter 3

T he B inary S y stem  T Y B o o t is

3.1 In tro d u ctio n

The variability and W Ursae Majoris classification of TYBoo was discovered by 

Guthnick & Prager (1926), who derived a period of 0.31730 day.

A long-term visual study by Szafraniec(1953) determined a period of 0*^317146, 

and noted a possible cyclic period variation on the scale of 400 orbital cycles (127 days).

C arr(1972) published the first UBV photoelectric light curves of TYBoo, and 

found the period derived from his four times of primary minimum to be in agreement 

with Szafraniec’s visual determination. Carr’s light curve solution was of limited ac

curacy due to non-rectifiable distortions, but suggested tha t TYBoo was an A-type 

system consisting of two main-sequence (G3 and G7) components. Assuming a contact 

configuration, C arr’s solution leads to a mass ratio of 0.88 (Kopal 1978), implying tha t 

TYBoo is an A-type binary with W -type characteristics.

Niarchos(1978) re-analysed C arr’s data  using frequency domain techniques, and 

suggested that TYBoo was a W-type with a very small mass ratio of 0 .2 2 .

Samec & Bookmyer (1987) published new BV photometry, and concluded that 

the system as a whole had undergone a slight reddening since C arr’s observations (due 

at least in part to the different response curves of the two instruments used), but noted
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no apparent changes in the depths of the eclipse curves.

They derived a new ephemeris from the seven photoelectric times of minima 

available, bu t using 91 visual estimates, could not find evidence of the cyclic variation 

suggested by Szafraniec. They did conclude however that two period changes had 

occurred in a 19 year interval around 1945, but more recent photoelectric observations 

were insufficient to establish the nature of any current period variations in the system.

A light curve analysis of Samec &Bookmyer’s data  is, the author understands, in 

the process of being published.

Groismanef al. (1987) also report new VBI light curves for TYBoo, and Milone 

et al. (1987) report spectroscopic observations, but again the author understands that 

the analysis of these data is still to be published.

Here we present spectroscopic radial velocity data  for TYBoo, and use the mass 

ratio thus derived to analyse the light curve data  published by Samec & Bookmyer, 

and obtain accurate system elements.
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3.2  S p ectro sco p y

Radial velocity spectra of TYBoo, centred on 4200Â were obtained and reduced 

as detailed in Chapter 2.

Using the F 8  radial velocity standard s tar HD122693 for cross-correlation, the 

radial velocity measurements listed in Table 3.1 were obtained. The corresponding 

orbital phases of these measurements were derived using the ephemeris in Section 3 .3 .

H.J.D. Phase Vi

km s“ ^

(O-C) 

km s“ ^

V 2

km s“ ^

(O-C) 

km s“ ^

2447281.42069 0.7690 -134 +3.1 +180 —3.9

2447281.43596 0.8171 -132 -1 .9 +164 -4 .3

2447281.56317 0.2182 -158 -4 .5 -272 + 1 . 2

2447281.57782 0.2644 +62 -3 .2 -280 - 0 . 1

2447281.59247 0.3106 +59 —0.5 -265 +2.3

2447281.67493 0.5706 -7 5 + 1 . 0 ------------------ — .—

2447281.70486 0.6650 -123 -1 .7 +152 +5.5

2447281.71965 0.7116 -137 -3 .5 +179 +4.0

2447281.73434 0.7579 -138 -0 .5 +185 +0.5

2447282.48686 0.1307 +40 +4.5 -209 + 1.4

2447282.58000 0.4244 +19 +5.2 -170 -6 .4

2447283.68401 0.9054 -9 4 + 2 . 0 +91 - 0 . 1

Table 3.1: Radial Velocity data  for TYBoo

The sine wave fits to the radial velocity data  are shown in Figure 3.1. The re

sulting radial velocity semi-amplitudes for the prim ary and secondary components {Ki 

and IC2 respectively), and the systemic velocity (Vb) are given in Table 3.2, along with 

the derived mass function, projected semi-major axes of the orbits, and their standard 

errors.

The values of Vb̂  and differ by 11.8 km s“  ̂ almost certainly due to under

sampling of the radial velocity curves. However, this difference does not significantly 

affect the determination of the mass ratio, or other parameters in Table 3.2.
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Figure 3.1: Radial Velocities of the Primary and Secondary Components of TYBoo 

(closed and open circles respectively), plotted together with their Orbital Solutions.
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K \ (k m s“ ^) 101.4 ±  1.2

1 ^ 2  (k m s“ ^) = 232.2 ±  2.4

Yoi (k m s“ ^) = -36.0  ±  1.0

V0 2  (km s"^) = -47 .8  ±  2.1

<Ji (km s~^) t ~ 3.2

(72 (k m s” ^) t = 3.6

q (m2 /m i) = 0.437 ±  0.007

e = 0  (adopted)

ai • sini (R©) = 0.635 ±  0.008

a2  • sini (R©) = 1.455 ±  0.015

a-sini (R©) — 2.090 ±  0.017

mi • sin® i (M©) — 0.851 ±  0.016

m 2  • sin^ i (M©) 0.372 ±  0.007

Table 3.2; Orbital Elements for TYBoo 

t — r.m.s. scatter of a single observation.
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3.3 E p h em eris

Tlie period study presented by Samec & Bookmyer (1987), comprised largely of 

visual data, indicated tha t two period changes had occurred in a 19 year interval, whilst 

the newer photoelectric data suggested tha t the system was now more stable.

The author has compiled published times of minimum for TYBoo, starting with 

the la tter visual data used by Samec & Bookmyer (starting at approximately -35000 

cycles), and including new visual and photoelectric estimates published since their 

study. These data are shown in Table 3.3.

Residuals to  the data were calculated with respect to  the photoelectric ephemeris 

determined by Samec & Bookmyer

HJD 2446589.7906(±4) + 0.3i714964(±3)E

These residuals, plotted in Figure 3.2, show the second of the two period changes 

noted by Samec & Bookmyer (at -35000 to -25000 cycles). The newer photoelectric 

data indicates tha t little overall period change is currently occurring. However the 

lack of photoelectric data, and the scatter in the visual data, make it impossible to 

determine whether these general trends are due to abrupt or continuous changes.

A least-squares analysis of the photoelectric data yields a period of 0.31714968 day, 

in good agreement with tha t of Samec & Bookmyer. The fit to the photoelectric data 

show in Figure 3.2 indicates the current stable nature of the system, although the 

photoelectric data  does hint at a possible small scale sinusoidal or parabolic variation. 

Clearly more photoelectric observations are needed to determine the true nature of any 

such variations.

Given the current stability of the system’s period, the photoelectric ephemeris 

derived by Samec & Bookmyer was used to determine all the orbital phases presented 

in this study.
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Table 3.3: Times of minima for TYBoo.

H.J.D. Cycle Method Reference

2435217.498 -35858 VIS Szafraniec, 1956
2435240.478 -35785.5 VIS Szafraniec, 1956
2435603.440 -34641 VIS Szafraniec, 1957
2435903.469 -33695 VIS Szafraniec, 1958
2435933.442 -33600.5 VIS Szafraniec, 1958
2436074.408 -33156 VIS Szafraniec, 1958
2436361.431 -32251 VIS Szafraniec, 1959
2436727.410 -31097 VIS Szafraniec, 1960
2436728.373 -31094 VIS Szafraniec, 1960
2437015,380 -30189 VIS Szafraniec, 1963
2437027,428 -30151 VIS Szafraniec, 1963
2438882.428 -24302 VIS Szafraniec, 1966

2438961.403 -24052 VIS Szafraniec, 1966
2440367.7906 -19618.5 PE Carr, 1972
2440367.9487 -19618 PE Carr, 1972
2440368.7419 -19615.5 PE Carr, 1972
2440368.9003 -19615 PE Carr, 1972
2440369.6936 -19612.5 PE Carr, 1972
2440369.8517 -19612 PE Carr, 1972
2440370.8030 -19609 PE Carr, 1972
2443360.400 -10182.5 VIS Locher, 1977
2445102.368 -4690 PG Braune et al.., 1983
2445120.4393 -4633 PE Braune &: Mundry, 1982
2445815.474 -2441.5 VIS Hiibscher &c Mundry, 1984
2445816.432 -2438.5 VIS Isles, 1985

2445911.4057 -2139 PE Hiibscher et ah, 1985

2445934.402 -2066 VIS Isles, 1985
2446230.7751 -1132 PE Groisman et ah, 1987

2446587.7281 -6.5 PE Samec & Bookmyer, 1987

2446588.8392 -3 PE Samec & Bookmyer, 1987
2446589.7908 0 PE Samec & Bookmyer, 1987
2446590.7428 3 PE Samec & Bookmyer, 1987

2446591.8510 6.5 PE Samec h  Bookmyer, 1987
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Table 3,3: Times of minima for TYBoo — continued.

H.J.D. Cycle Method Reference

2446925.498 1058.5 PG Hiibscher & Lichtenknecker, 1988
2447205.5406 1941.5 PE Hübscher & Lichtenknecker, 1988
2447263.394 2124 VIS Locher, 1988a

2447263.5774 2124.5 PE Hiibscher Lichtenknecker, 1988

2447263.5781 2124.5 PE Hiibscher &: Lichtenknecker, 1988
2447269.414 2143 VIS Locher, 1988a

2447273.401 2155.5 VIS Locher, 1988a

2447276.424 2165 VIS Locher, 1988a
2447303.386 2250 VIS Locher, 1988a
2447349.372 2395 VIS Locher, 1988b

2447353.484 2408 VIS Locher, 1988b
2447368.400 2455 VIS Locher, 1988b
2447374.421 2474 VIS Locher, 1988b
2447381.407 2496 VIS Locher, 1988b
2447388.382 2518 VIS Locher, 1988b
2447612.442 3224.5 VIS Locher, 1989
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Figure 3.2: The Period behaviour of TYBoo over the last 35 years. (Open Circles 

represent visual times of minima; Open Stars represent photographic minima; and 

Filled Circles represent photoelectric minima). The At shown to the photoelectric data 

indicates the current stable nature of the system.
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3.4  P h o to m etr ic  A n a ly sis

Light curve analysis of TYBoo was carried out using the B-filter observations 

published by Samec & Bookmyer (1987). This consisted of 348 observations, reduced 

to a differential magnitude, with a probable error in a single observation of 0™009. 

The data were phased using the ephemeris given in Section 3.3, and are shown plotted 

in Figure 3.3. The analysis was performed using the light curve synthesis program 

LIGHT2  (described in Chapter 2 ).

The analysis by Carr (1972) gave a spectral type of G3 to the primary compo

nent of TY Boo, implying a temperature of some 5800 db 2 0 0  K (Popper 1980) which was 

adopted for this analysis.

Carr’s published colour index of (B-V) =  -f-0™71 implies a slightly later spectral 

type at some 5600 K or 5500 K (Popper 1980 and Bohm-Vitense 1981 respectively), but 

the colour excess for the system is unknown. The most well defined cross-correlation 

functions (Section 3.2) were obtained with an F 8  rather than a G5 standard star tem

plate, thus supporting a slightly earlier spectral type. The adopted temperature reflects 

a spectral range of some F 8  to G5 (Popper 1980).

W ith the mass ratio fixed at the spectroscopic value, the gravity darkening ex

ponents for both components (/?i,2 ) were fixed at the convective value of 0.08. The 

bolometric albedo for both components (0 :1 ,2 ) was fixed at 0.5, and the “fill-out” fac

tor ( / ) ,  secondary component tem perature (T2 ), and system inclination (%) were solved 

for.

The light curve solution obtained is shown plotted with the data, and the cor

responding 0 -C ’s, in Figure 3.3. Table 3.4 lists the solution parameters. The errors 

quoted for / ,  i and T2 are the standard deviations in each quantity, and the errors 

in the component volume radii r i and t'2 have been evaluated using the tabulation of 

Mochnacki (1984), combining the errors in the system mass ratio and fill-out factor. .

W ithin the limits of the observational scatter in the data, the light curve solution 

for TYBoo shown in Figure 3.3 cannot be refined further. W ithin these limits the 

system does not seem to exhibit any regions of “excess” luminosity.
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Figure 3.3; 1986 B-Alter light curve of TYBoo (Samec & Bookmyer 1987), with light 

curve solution (solid line), and corresponding 0 -C ’s (lower plot).
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Q = 0.437 (fixed)

T i(K ) =  5800 (fixed)

Oil,2 =  0.5 (fixed)

=  0.08 (fixed)

f =  0.871 ±  0.021

i(°) =  76.59 ±  0.16

r i  (mean) =  0.463 ±  0.002

V2 (mean) =  0.319 ±  0.002

T2 (K ) =  6185 ±  12

=  2.69 xlO-4

Table 3.4: Light Curve Solution for TYBoo (with standard errors).

In Chapter 1 it was described how systems which do show regions of excess 

luminosity have been fitted by allowing the secondary component’s albedo (« 2 ) to go 

free (eg. McFarlane et al. 1986). This technique produces secondary albedos greater 

than unity, which although of little physical meaning, does facilitate a crude method 

of synthesizing a region of enhanced brightness on the secondary component.

As a small, but by no means exhaustive test of this technique, the same method 

of solution was applied to TYBoo, a system which does not show signs of excess 

luminosity regions. For this second solution, the starting value of « 2  was set to 1 .0 , 

and the parameter was added to the list of solution variables to be solved. The solution 

obtained for TYBoo with the secondary albedo free is listed in Table 3.5.

It is encouraging tha t the difference between the two fits was negligible, and that 

the secondary albedo found its way back to the region of 0.5. It is also worth noting 

tha t there is very little information content in a single light curve for the secondary 

albedo.
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Q = 0.437 (hxed)

T i(K ) = 5800 (fixed)

a i = 0.5 (fixed)

0.301 ±  0.047

— 0.08 (fixed)

f = 0.870 ±  0.081

i(° ) = 76.86 ±  0.17

i'i (mean) = 0.463 ±  0,002

7*2 (mean) = 0.319 ±  0.002

7h(K ) = 6177 ±  11

= 2.37 XlO-4

Table 3.5: Light Curve Solution for TYBoo (with standard errors), allowing the sec

ondary albedo to go free.
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3.5  D iscu ss io n

The spectroscopic mass ratio and light curve analysis of the binary system TYBoo 

indicates tha t this system is a well behaved, normal looking W -type contact binary.

Comparison with future photoelectric light curves, and further photoelectric 

times of minimum are required to determine the nature of any current small period 

changes, and to show whether this system exhibits the type of erratic light curve 

changes usually seen in W -type systems, indicating the presence of large-scale dark 

starspots.

The astrophysical da ta  for TYBoo, derived from this analysis, are given in Table 

3.6. An error of 200 K has been adopted in the secondary component temperature, as 

the analysis standard error is certainly an underestimate, and takes no account of the 

uncertainty in the prim ary component temperature. The bolometric corrections have 

been taken from the compilation of Popper (1980). Since the colour excess is unknown, 

a value of zero has been used to calculate an upper limit for the distance estimate.

Figure 3.4 shows a  schematic diagram of the TYBoo system configuration.

Absolute dimensions Primary Secondary

M(M@) 0.92 ±  0.02 0.40 db 0.01

R (Ik )) 1 . 0 0  ±  0 . 0 1 0.69 ±  0.01

log g(cgs) 4.41 ±  0.01 4.37 ±  0.01

TTef/ (K) 5800 ±  200 6180 db 2 0 0

log lj/ -fO.Ol ±  0.06 - 0 . 2 1  db 0.06

4^75 db 0?15 5™28 db 0^14

B.C. - 0 “ 14 -0™06

My 4?89 ±  0^15 5?34 db 0™07

E (^_y) 0 (unknown)

Distance (pc) 270 ±  60 (upper limit)

Table 3.6: Astrophysical D ata for TYBoo.
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Figure 3.4: A schematic diagram of TYBoo at 0?18, based on this analysis.
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A comparison of the masses, radii, temperatures, and luminosities of the com

ponents of TYBoo (see Chapter 9), with those of other marginal-contact and contact 

binaries, complied by Hilditch et al. (1988) shows that both the primary and secondary 

components occupy the same regions in the M-R, M-L, and HR diagrams as other W- 

type contact binary components.

The primary component lies within the main-sequence band whilst the secondary 

component is %1.4 times larger than expected (adopting the low-mass, main-sequence, 

M-R relationship of Patterson 1984), showing the expected substantial over-luminosity 

in the M-L plane, and a location to  the left of the main-sequence band in the HR 

diagram (below the ZAMS line).
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C h ap ter 4

T h e B inary S y stem  V W B o o t is

4.1  In tro d u ctio n

The variability of VW Boo was discovered by HofFmeister (1935). Visual ob

servations by Zessewitsch(1944, 1954) determined its W Ursae Majoris-type nature. 

Binnendijk (1973) published the first, and so far only, photoelectric light curves for 

VW Boo, in the B  and V  wavelengths. These light curves were characteristic of a con

tact configuration system, bu t w ith unequal depth m inima, indicative of components 

which are not in thermal equilibrium.

Binnendijk’s solution of his light curve was based upon the technique of rectifica

tion and the Russell-Merrill method, and resulted in an orbital inclination and relative 

radii of the components not too far removed from the final solution presented here. Bin

nendijk noted that his theoretical light curve deviated significantly from his observed 

curve only a t the ingress and egress of the secondary eclipse.

Niarchos (1978) re-analysed Binnendijk’s da ta  using frequency domain techniques, 

and obtained a mass ratio estimate of q = 0.3 for the system.
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4.2  S p ectro sco p y

Radial velocity spectra of VW Boo, centred on 4200 Â were obtained and reduced 

as detailed in Chapter 2 .

Using the G8  radial velocity standard star HD 145001 for cross-correlation, the ra

dial velocity measurements listed in Table 4.1 were obtained. The corresponding orbital 

phases of these measurements were derived with the revised ephemeris in Section 4 .3 . 

Although this ephemeris works well for the secondary component data, the fit to  the 

primary data exhibits a shift of some 0?027, this difference between the two almost cer

tainly being due to under-sampling of the radial velocity curves, and remains unaltered 

if the two spectra obtained near the mid-eclipses are omitted from the analysis.

H.J.D. Phase Vi 

km 8 "!

(O-C)

kins'"!

V2

km s“ !

(O-C)

km s~!

2447280.39284 0.6749 +118 + 1 . 6 -177 - 1 . 2

2447280.42575 0.7711 +123 +6.9 -192 + 1 0 . 6

2447280.49845 0.9835 + 1 2 -2 .5 ------- -------

2447280.54530 0.1204 -5 5 +3.0 +173 -6 .7

2447280.57596 0 . 2 1 0 0 -7 4 +3.4 +232 -15.5

2447280.62195 0.3444 -5 4 -4 .2 +223 + 2 . 6

2447280.63726 0.3892 -3 2 -4 .1 +189 +10.5

2447280.66867 0.4810 +32 +5.0 ------- -------

2447280.70618 0.5906 +82 -6 .7 - 1 1 2 -19.5

2447281.48591 0.8692 +74 -7 .4 -142 +4.4

2447281.62704 0.2816 -6 9 + 1 . 8 +267 +14.0

2447282.44367 0.6680 +118 +3.0 -170 +0.9

Table 4.1: Radial Velocity data for VWBoo

The sine wave fits to the radial velocity data are shown in Figure 4.1. The 

resulting radial velocity semi-amplitudes for the primary and secondary components 

(7fi and K 2 respectively), and the systemic velocity (Vb) are given in Table 4.3, along 

with the derived mass function, projected semi-major axes of the orbits, and their
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standard errors. Again as in Section 3.2, there is a small difference between Vqi and 

hbj due to undersampling and uncertainty, particularly in the secondary component 

orbit.

To check if the phase shift or differences in the systemic velocity, due to under

sampling, introduced an additional error, the mass ratio was calculated from the ratio 

of the radial velocity semi-amplitudes, and from the average of the mass ratio values 

obtained from the data point pairs, using the systemic velocity defined by the primary 

and secondary component data respectively. These analyses give the values for the 

mass ratio listed in Table 4.2. Clearly from Table 4.2 the uncertainty in the sine wave 

fit phasing, due to data under-sampling, does introduce a small, but not significant, 

additional uncertainty in the determination of the mass ratio, and hence the value of q 

given in Table 4.3 was adopted for this analysis.

Method of Determination Mass Ratio

Ratio of Semi-Amplitudes 

Vb from Primary 

Vq from Secondary

0.431 ±  0.01 

0.426 ±  0.02 

0.425 ±  0.02

Table 4.2: Determinations of Mass Ratio for VW Boo
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Figure 4.1; Radial Velocities of the Primary and Secondary Components of VWBoo 

(closed and open circles respectively), plotted together with their Orbital Solutions.
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( km 8 99.2 ±  2.1

7̂ 2 (k m s“ ^) = 230.1 ±  5.4

V o ,(k m s- i) = 21.5 ±  1.5

V02 (km s~^) = 26.3 ±  4.2

<Ji (km s~^) t = 4.8

<72 (km s~^) t 1 1 . 1

q (m 2 /m i) = 0.428 ±  0.03

e r = 0  (adopted)

ai • sini (R@) = 0.671 ±  0.014

a 2 ' sini (R@) = 1.556 ±  0.037

a-sin i (R©) = 2.226 ±  0.039

m i > sin^ i (M©) = 0.887 ±  0.038

m 2 • sin® i (M©) — 0.382 ±  0.016

Table 4.3: Orbital Elements for VW Boo 

t — r.m.s. scatter of a single observation.
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4 .3  E p h em eris

The study by Binnendijk (1973) derived an ephemeris for VW Boo from the three 

photoelectric times of minima obtained from Binnendijk’s data, plus two photograpliic 

and live visual times of minima previously published. This produced the ephemeris 

(with no errors stated)

HJD 2441091.8840 +  0.3421934E

A literature search by the author revealed a further seven visual times of minima 

published before Binnendijk’s study, plus one photoelectric, four photographic, and 

nine visual times of minima which have been published by amateur astronomers since 

Binnendijk’s study.

These da ta are listed in Table 4.4. Residuals to the data were calculated with 

respect to Binnendijk’s ephemeris given above, and are shown in Figure 4,2.

Although there is a chronic lack of photoelectric data, and the visual data exhibits 

a large scatter, Figure 4.2 indicates tha t the period of VWBoo could currently be 

increasing, after a past duration of stability. Uncertainty in the system’s period may 

also be involved, and further photoelectric da ta  are required to determine accurately 

both the period and the nature of any changes occurring.

Using Binnendijk’s ephemeris to  phase the spectroscopic da ta  given in Section

4.2, was found to produce a substantial error in the orbital phasing, indicative of an O- 

C of the magnitude shown in Figure 4.2. This is supported by an am ateur photoelectric 

time of minimum from the same epoch, which also indicates a similar value of O-C with 

respect to Binnendijk’s ephemeris.

A revised ephemeris (indicated by the second line in Figure 4.2) based only on 

the photoelectric data yields

HJD 2441091.8840 -f 0.34219634E

and this revised ephemeris was used to phase the spectroscopic data presented in Section

4.2. Since three of the four photoelectrically observed minima occurred within three
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Table 4.4; Times of minima for VW Boo.

H.J.D. Cycle Method Reference

2431173.406 -28985 VIS Zessewitsch, 1954
2435127.609 -17429.5 VIS Szafraniec, 1956
2435151.570 -17359.5 VIS Szafraniec, 1956
2435168.505 -17310 VIS Szafraniec, 1956
2435197.434 -17225.5 VIS Szafraniec, 1956
2435223.439 -17149.5 VIS Szafraniec, 1956
2435228.423 -17135 VIS Szafraniec, 1956
2435244.498 -17088 VIS Szafraniec, 1956
2435576.371 -16118 VIS Szafraniec, 1957
2435933.431 -15074.5 VIS Szafraniec, 1958
2435976.378 -14949 PG Huth, 1964
2436339.482 -13888 VIS Szafraniec, 1959
2436631.422 -13035 VIS Szafraniec, 1960
2436672.483 -12915 PG Huth, 1964

2441090.8574 -3 PE Binnendijk, 1973

2441091.7137 -0.5 PE Binnendijk, 1973
2441091.8840 0 . 0 PE Binnendijk, 1973
2443358.390 6623.5 VIS Locher, 1977

2445120.433 11772.5 VIS Isles, 1985
2445441.400 12710.5 PG Hiibscher & Mundry, 1984
2445492.387 12859.5 PG Hiibscher & Mundry, 1984
2445494.435 12865.5 PG Hiibscher &: Mundry, 1984

2445740.586 13585 VIS Hiibscher & Mundry, 1984
2445742.643 13591 VIS Hiibscher & Mundry, 1984
2445808.365 13783 PG Hiibscher & Mundry, 1984
2445814.366 13800.5 VIS Locher, 1984
2446952.399 17126.5 VIS Locher, 1987

2446962.317 17155.5 VIS Locher, 1987

2446963.359 17158.5 VIS Locher, 1987
2446964.374 17161.5 VIS Locher, 1987
2447276.3988 18073 PE Locher, 1988
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orbital cycles, and the fourth (an am ateur determination) some 18000 cycles later, the 

formal error on the revised linear ephemeris above is extremely small and meaningless. 

It is noticed in Figure 4.2, tha t even with this revised ephemeris, the spectroscopic 

da ta  exhibit a phase shift of some -0 . 0 1  day with respect to this revised ephemeris 

based on an amateur photoelectric determination. On the basis of such limited data, it 

is not possible to resolve this discrepancy, bu t it should be noted that it represents a 

change in orbital period of just 0.05 s and has no effect upon the derived values of the 

semi-amplitudes of the velocity curves.
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4 .4  P h o to m e tr ic  A n a ly s is

A light curve analysis of VW Boo was obtained using the B-filter observations 

published by Binnendijk (1973). These da ta  consisted of 290 observations, reduced to 

a differential magnitude, with a probable error in a single observation of 0™007. The 

da ta were phased using Binnendijk’s ephemeris given in Section 4.3.

The analysis was performed using the light curve synthesis program LIGHT2  (as 

described in Chapter 2).

Kholopovei al. (1985) reported a spectral type of G5 for the primary component 

of VWBoo, which implies a prim ary tem perature of some 5800K (Popper 1980).

Hilditch & Hill (1975) published one Stromgren four-colour observation of VW Boo, 

at an orbital phase of 0?3003, which supports a primary temperature in this region, 

suggesting a value of some 5400K (Olsen 1984). Also the best cross-correlation func

tions (Section 4.2) were produced using a G8  standard star template.

Hence for this analysis, a primary tem perature of 5700 ±  200 K was adopted, the 

mass ratio fixed at the spectroscopic value, and the gravity darkening exponents for 

both components (/?i,2 ) fixed at the convective value of 0.08.

The first solution attem pted using LIGHT2  solved for a “standard” contact so

lution, with the bolometric albedo for both components (0 -1 ,2 ) fixed at 0.5, and the 

“fill-out” factor ( / ) ,  secondary component tem perature (Tg), and system inclination(e) 

as free parameters.

The light curve parameters obtained from this solution are listed in Table 4.5, 

and the theoretical fit is shown plotted, with the data, and corresponding 0-Cs, in 

Figure 4.3. The solution is similar to tha t of Binnendijk (1973), and the same standard 

errors are quoted as in the analysis of TY Boo (Section 3.4).

Although this “standard” contact solution fits the shape of primary minimum, it 

clearly fails to match the secondary minimum, exhibiting the significant deviations in 

the wings of the eclipse curve, noted by Binnendijk (1973).

Following recent techniques used to obtain more accurate fits for objects exhibit

ing such B-type light curves, (described in Chapter 1 , and eg. McFarlane et a i  1986),
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Q =  0.428 (fixed)

2 \(K ) =  5700 (fixed)

Û!l}2 =  0.5 (fixed)

/^lj2 =  0.08 (fixed)

/ =  0.716 ±  0.028

*(») =  76.19 ±  0.24

7*1 (mean) =  0.477 ±  0.006

7*2 (mean) =  0.329 ±  0.005

T2(K ) =  5221 ±  16

=  3.20 XlO-4

Table 4.5: “Standard” Light Curve Solution for VWBoo (with standard errors).

a second LIGHT2 solution was attem pted, allowing the secondary albedo (0 2 ) to be 

treated as a fourth free parameter.

This solution produced the parameters listed in Table 4.6, with a theoretical fit, 

as shown with the data and corresponding O-Cs, in Figure 4.4.

Although a secondary albedo of greater than unity has little physical meaning, it 

does allow for a crude synthesis of a region of enhanced brightness on one hemisphere 

of the secondary component. Comparison of the fits shown in Figure 4.3 and Figure 

4.4 indicates tha t this synthesis technique provides an improved fit to the observed 

light curve. Such analysis leads to the suggestion tha t there is some area of anomalous 

luminosity which resides (from geometric considerations) at, or near, the neck of the 

secondary component.

4 .4 .1  M o d e llin g  a  H o t  S p o t

LIGHT2 provides the facility for a number of hot/cool spots to be added to 

either binary components (as described in Chapter 2). Hence the author was able to 

attem pt a further solution of the VWBoo light curve, modelling a discrete region of 

enhanced luminosity (hot spot) on the secondary component, rather than treating the 

entire secondary albedo as a free parameter.
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9 =  0.428 (fixed)

T i(I{ ) =  5700 (fixed)

=  0.5 (fixed)

«2 =  1.695 ±  0.086

/̂ l52 =  0.08 (fixed)

/ =  0.810 ±  0.017

i(°) =  75.63 db 0.15

Ti (mean) =  0.470 ±  0.006

V2 (mean) = 0.322 ±  0.005

T2(K ) =  5216 ±  10

=  1.17 XlO-4

Table 4.6: Light Curve Solution for VW Boo (with standard errors), allowing the sec

ondary albedo to be a free parameter.

Geometric considerations of the fit shown in Figure 4.3 suggest that a hot spot 

would be centred at the sub-stellar point. A circular shape was assumed for the anal

ysis, but only simple boundary conditions employed, using a step function for the 

temperature change from the photosphere to hot spot.

For this “hot spot” analysis, LIGHT2 solved for the spot radius, (in degrees of 

arc), spot “over”-temperature,T« (ie. temperature over that of the surrounding photo

sphere), and the secondary component temperature, Tg. The values of inclination (z), 

and fill-out ( / ) ,  were fixed at the values found from the solution which treated the 

secondary albedo as a free param eter (listed in Table 4.6).

The secondary component temperature must be included in the solution since 

the spot is likely to be considerably smaller than one hemisphere of the star, whereas 

the values of i and /  are mainly defined by the primary eclipse, where the enhanced 

secondary albedo has no affect. To verify this method of solution, a test solution 

for VajTsyfji and T2 was also made, yielding results in excellent agreement with the 

solution for T^, T2 , and the adopted values for i and /  found from the free secondary 

albedo solution.
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Using this “ho t spot” model, the parameters listed in Table 4.7 were obtained, 

producing the theoretical fit shown, w ith the observed da ta and corresponding 0-Cs, 

in Figure 4.5.

Q = 0.428 (fixed)

Ti(K) — 5700 (fixed)

«1,2 = 0.5 (fixed)

/̂ 1,2 0.08 (fixed)

f = 0.810 (fixed)

i(° ) = 75.63 (fixed)

r i  (mean) 0.470 (fixed)

T2 (mean) = 0.322 (fixed)

T2(I{) = 5190 ±  12

= 1.43 xlO-4

Spot Parameters

Ta (degrees) = 36.6 db 1.4

Ta (above T2) = 634 ±  59

Table 4.7: “Hot Spot” Light Curve Solution for VWBoo (with standard errors).

Bearing in mind the problems of solution nonuniqueness, and the strong inter

dependence of Ta and Ta, it would appear from comparing Figure 4.3 and Figure 4.5, 

tha t a hot spot, modelled on simple mass transfer through the inner Lagrangian point, 

resulting in enhanced luminosity on the cooler component, can adequately explain the 

observed deviations from the “standard” contact solution.
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4 .5  D iscu ss io n

The light curve analysis of the binary system VW Boo presented here indicates 

th a t this system is one of the small, bu t growing number of B-type binaries whose 

observed light curves can be explained in terms of the normal transfer of energy between 

two components which are not in thermodynamic equilibrium.

McFarlane et al. (1986) quite rightly point out tha t such conclusions based only 

on light curve analysis could not easily distinguish between the suggested hot spot, 

and an equal bu t opposite cool region on the averted hemisphere of the secondary, due 

perhaps to extensive starspot activity. However, the hot spot scenario does have the 

advantage of appearing to be a na tural consequence of the thermodynamic environment 

in which these binaries find themselves.

The chronic lack of photoelectric times of minimum for VW Boo make it very 

difficult to  determine the nature and character of any orbital period changes occuring 

now. Further photoelectric light curves would also be useful to investigate if any changes 

in the apparent hot spot could be determined over a long time base.

The astrophysical da ta  for VW Boo, derived from this analysis, are given in Table 

4.8. As in Section 3.5, an error of 200 K has been adopted in the secondary component 

temperature, and the bolometric corrections have been taken from the compilation of 

Popper (1980). Since the colour excess is unknown, a value of zero has been used to 

calculate an upper limit for the distance estimate.

Figure 4.6 shows a schematic diagram of the VWBoo system configuration, indi

cating the location of the proposed hot spot on the neck of the secondary component.

A comparison of the masses, radii, temperatures, and luminosities of the com

ponents of VW Boo (see Chapter 9), with those of other marginal-contact and contact 

binaries, complied by Hilditch et al. (1988) indicates tha t the primary and secondary 

components occupy similar regions in the M-R and M-L diagrams, allowing for the 

smaller mass of VWBoo, as other B-type binary components.

The primary component lies on the main-sequence band, whilst the secondary 

component is over-sized and over-luminous compared with a standard low mass, main- 

sequence star (Patterson 1984).
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Figure 4.6: A schematic diagram of VW Boo at 0^35, based on this analysis, showing 

the proposed hot spot on the neck of the secondary component.
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Absolute dimensions Primary Secondary

M(M@) 0.98 ±  0.04 0.42 ±  0.02

R(R@) 1.08 ±  0.02 0.74 ±  0.01

log g (cgs) 4.36 ±  0.03 4.32 ±  0.03

TTe// (K) 5700 ±  200 5190 ±  200

log l,! L© 0.05 ±  0.06 -0.45 ±  0.07

MfcoZ 4?65 ±  0?16 5™87 ±  0"fil7

B.C. -Ofi"l6 - 0 “ 24

My 4fi"81 ±  0™16 6"fill ±  0?18

E (g_y) 0 (unknown)

Distance (pc) 160 ±  20 (upper limit)

Table 4.8: Astrophysical D ata for VWBoo.

The secondary component is also found to occupy an interesting position on the 

HR diagram, lying near the ZAMS line, to the left of the other B-type secondary com

ponents, and to the right of the W -type secondary components, which lie above and 

below the ZAMS line respectively. VW Boo then is the first such system to be found in 

this “gap” between the two types, appearing to be further “into” contact on the pos

sible evolutionary path  from B-type to W -type system. W hether this evolution from 

“first contact” or a cycle on some TRO path is difficult to distinguish (see Chapter 

9). The fact tha t tliis is the first object to be found in this region suggests tha t whatever 

evolutionary process is occurring may well be a rapid phenomenon. It should also be 

noted tha t the difference could simply be due to the uncertainty in assigning an effective 

temperature to the primary component.
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C h ap ter  5

T h e B in ary  S ystem  

B X  A n d rom ed ae

5.1 In tro d u ctio n

The short-period eclipsing binary BX And (HD 130878, SAO 37805, SVS995) is 

the brighter component of the visual binary ADS 1671 (S 215). Soloviev (1945) discov

ered its variability and noted that the light curve displayed Algol-like behaviour. A 

photographic study by Ashbrook(1951) using 200 Harvard patrol plates confirmed the 

binary nature of BX And and showed it to be a variable of the ^-Lyrae type. He also 

determined 25 times of minima from which an ephemeris was derived for the system.

Svolopoulos (1957) published the first photoelectric observations of BX And using 

yellow (5150 Â) and blue (4450Â) filters. He attem pted to analyse the light curves 

with the Russell-Merrill (1952) method but this proved unsuccessful. Todoran(1965), 

however, succeeded in obtaining orbital elements for BX And which suggested that 

the system was of moderate inclination and composed of two stars of quite different 

temperatures. A study of the times of minima by Chou (1959) suggested tha t the period 

of BX And had lengthened by approximately 0.3 s around 1952.

Castelaz(1979) obtained UBV  observations of BX And showing variations in the
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magnitude of the system a t maximum brightness. Anomalous “spikes” in the light 

curve were reported near primary minimum for which no satisfactory explanation was 

given. Castelaz also suggested tha t a period change took place between 1924 and 1936 

and tha t there was also evidence of a period variation around 1950.

Further photoelectric da ta in the B  and V  passbands were obtained by Rovithis 

& Rovithis-Livaniou(l984), hereafter RRL, during 1981-82 showing evidence of small 

night to night variations in the light curve and displaying clearly-defined shoulders 

evocative of a detached or semi-detached system. More recently Samecet uZ. (1989), 

hereafter SFK, have published UBV  data on BX And obtained during 1976. Their 

light curve is indicative of a contact system in which both components are consider

ably distorted. Derm anet al. (1989) have also published UBV  light curves of BX And 

obtained during 1987 which are similar in appearance to those of SFK.

Gfilmen et al. (1988) published a period analysis summarizing the times of min

im a observed by many authors. Their analysis confirms the occurrence of a period 

change between 1945 and 1950 and suggests another change around 1981. The period 

determined before 1945 and after 1981 was found to be 0.25 s shorter than tha t between 

1945 and 1981.

The changing shape of the light curve, the period variations and the large tem

perature difference between the components which appear to be in contact make this an 

interesting system to study. The lack of a spectroscopically-derived mass ratio makes 

the analysis of the light curve and the subsequent interpretation of the configuration 

of the system uncertain. The light curve variations could be explained in terms of 

either hot or cool spots on one or both of the components and evidence to support this 

contention may be forthcoming from simultaneous infrared and visual photometry.

119



5.2  S p ectro sco p y

Radial velocity spectra of BX And, centred on 4200 Â were obtained and reduced 

as detailed in Chapter 2.

The spectra were cross-correlated against the FOIb standard star HD 36673. The 

resulting radial velocity measurements, w ith their corresponding orbital phases, are 

given in Table 5.1. The observations were phased using the ephemeris given in Sec

tion 5.3. One radial velocity measurement for the primary component made at 0?06 

was omitted from the analysis because the rotational velocity of the star may have 

contaminated the measurement.

H.J.D. Phase Vi 

km s"^

(O-C)

km s“ ^

V2

kms~^

(O-C) 

km s“ ^

2447107.39044 0.7257 4-59 4-1.9 -241 4-11.8

2447107.42852 0.7881 4-56 4-0.7 -245 4-4.2

2447107.47221 0.8597 4-34 —0.2 -223 -16 .2

2447107.48745 0.8847 4-26 4-3.3 -187 -3 .3

2447107.59661 0.0636 t)-1 0 7

2447107.62919 0.1170 -127 -9 .0 ------ -------

2447107.69113 0.2185 -150 4-0.7 4-161 —4.1

2447107.71673 0.2605 -153 -0 .5 4-163 -5 .8

2447108.34498 0.2902 -145 4-4.4 4-160 -2 .5

2447108.39626 0.3743 -116 4-6.2 4-126 4-18.2

2447108.51847 0.5746 -1 0 -10 .4 ------ -------

2447108.54999 0.6262 4-27 -1 .0 -203 -8 .7

2447108.57808 0.6723 4-50 4-4.0 -224 4-6.5

Table 5.1: Radial Velocity data for BX And

t — This radial velocity measurement was omitted from the anal

ysis (see Section 5.2).

The sine wave fits to the radial velocity data are shown in Figure 5.1. The 

resulting radial velocity semi-amplitudes for the primary and secondary, K i  and K 2
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respectively, the systemic velocity Vq, the derived mass function and projected semi

major axes of the orbits, w ith their standard errors are given in Table 5.2.

K i  (km s~^) = 105.5 ±  1.9

1̂ 2 (k m s“ ^) = 212.3 ±  4.0

Voi (k m s“ ^) = -47 .2  ±  1.5

V0 2  (km s~^) — -43 .0  ±  3.5

<7i (k m s“ ^) t = 5.3

<72 (k m s” i)  t = 10.8

q (m2 /m i) = 0.497 ±  0.013

e = 0 (adopted)

ai -sin i (R©) = 1.272 ±  0.022

a 2 • sini (R©) = 2.559 ±  0.048

a* sini (R©) — 3.831 ±  0.053

mi • sin® i (M©) = 1.358 ±  0.045

m 2  • sin® i (M©) ~ 0.675 ±  0.022

Table 5.2: Orbital Elements for BX And

t  — r.m.s. error in an observation.
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Figure 5.1: Radial Velocities of the Primary and Secondary Components of BX And 
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5.3  E p h em eris

Gülmenet aZ. (1988) have presented a period analysis for BX And which shows 

two clear period changes around 1950 and 1981. The scatter in the pre-1950 photo

graphic determinations is approximately 0^02 and becomes somewhat larger around 

1950 making estimates of the period within tha t interval less accurate. However, the 

periods determined for the pre-1950 and post-1981 da ta are very the nearly the same 

whereas the period calculated for 1950 to 1981 is approximately 3x10“ ® day longer.

A to tal of ten times of minima, seven primary and three secondary, have been 

calculated from the new da ta  presented in this study (Section 5.4) using the method 

of Kwee and van Woerden(1956). These are listed in Table 5.3, along with the other 

available times of minima for BXAnd.

In view of the behaviour of the O — C  diagram presented by Giilmen ei al. (1988), 

linear ephemerides have been evaluated for each observing season based on the best 

defined time of minimum for each light curve and a period determined using a least- 

squares analysis of 24 times of minima (denoted by f in Table 5.3) since 1985. The pe

riod calculated and subsequently adopted for this study is 0.61011258 ±  0.00000034 day 

and the residuals for this determination are plotted in Figure 5.2. The same ephemeris 

has been adopted for the INT spectroscopic observations and the XJKIRT infrared pho

tom etry as they were obtained within two weeks of each other. The ephemerides used 

to phase the photometric and spectroscopic data presented in this study are as follows:

1985 T PT data 2446372.37192 ±  0.00009 4- E • 0.61011258

1986 T PT  data 2446705.49310 ±  0.00012 -b E • 0.61011258

1987 INT/UKIRT data 2447117.92790 ±  0.00010 -j- E • 0.61011258

1988 T PT data 2447465.69309 ±  0.00006 +  E • 0.61011258
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Table 5.3: Times of minima for BXAnd.

'.fi

'5

1

H.J.D. Cycle Method Reference S
2414688.54 -35797 PG Ashbrook, 1951 ":2

2414966.78 -35341 PC Ashbrook, 1951
2415282.80 -34823 PG Ashbrook, 1951 1
2416371.88 -33038 PG Ashbrook, 1951
2416860.55 -32237 PG Ashbrook, 1951 >

2417168.67 -31732 PG Ashbrook, 1951

2418542.70 -29480 PG Ashbrook, 1951

2420751.89 -25859 PG Ashbrook, 1951

2420803.74 -25774 PG Ashbrook, 1951
2421089.86 -25305 PG Ashbrook, 1951

2422942.79 -22268 PG Ashbrook, 1951

2423019.65 -22142 PG Ashbrook, 1951
2424064.77 -20429 PG Ashbrook, 1951

J

2427357.88 -15031.5 PG Ashbrook, 1951

2428502.68 -13155 PG Ashbrook, 1951

2429274.51 -11890 PG Ashbrook, 1951
2430306.79 -10198 PG Ashbrook, 1951

2430324.54 -10169 PG Ashbrook, 1951

2430339.17 -10145 VIS Ashbrook, 1951
*:

2430594.82 -9726 PG Ashbrook, 1951

2430597.83 -9721 PG Ashbrook, 1951

2430647.25: -9640 VIS Ashbrook, 1951

2430996.25: -9068 VIS Ashbrook, 1951 j

2431076.52 -8936.5 PG Ashbrook, 1951
i

2431438.60 -8343 PG Ashbrook, 1951
2433541.65 -4896 VIS Ashbrook, 1951
2433571.57
2433582.54

-4847
-4829

VIS
VIS

Ashbrook, 1951 
Ashbrook, 1951

2434242.672 -3747 VIS Ashbrook, 1952 1
2434261.59 -3716 VIS Ashbrook, 1953

2434699.652 -2998 PE Svolopoulos, 1957

2434710.6338 -2980 PE Svolopoulos, 1957

2434735.6485 -2939 PE Svolopoulos, 1957

2434743.5798 -2926 PE Svolopoulos, 1957
1
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Table 5.3: Times of minima for BXAnd — continued.

H.J.D. Cycle Method Reference

2436528.7777 0 PE Chou, 1959

2436538.54 16 PE Chou, 1959

2437180.688 1068.5 VIS Robinson, 1965

2438269.447 2853 PG Oburka, 1965 1

2439352.363 4628 VIS Braune ei al., 1970

2440100.398 5854 PE Pohl & Kizilirmak, 1970

2440103.448 5859 PE Pohl & Kizilirmak, 1970

2440133.344 5908 PE Pohl & Kizilirmak, 1970 I
2440496.363: 6503 PE Pohl Kizilirmak, 1970

2441186.4006 7634 PE Pohl & Kizilirmak, 1972

2441210.805 7674 PE Meyer, 1972

2441213.858 7679 PE Meyer, 1972

2441276.697 7782 PE Meyer, 1972

2441618.3634 8342 PE Kizilirmak 6  Pohl, 1974

2441679.371 8442 PE Kizilirmak & Pohl, 1974

2441900.538 8804.5 PE Kizilirmak & Pohl, 1974

2441951,485: 8888 PE Kizilirmak & Pohl, 1974

2443012.4755 10627 PE Pohl & Kizilirmak, 1977

2443033.8307 10662 PE Faulkner & Kaitchuck, 1983

2443034.7460 10663.5 PE Faulkner & Kaitchuck, 1983

2443086.294 10748 VIS Locher, 1977a

2443098.8043 10768.5 PE Faulkner &: Kaitchuck, 1983

2443099.7228 10770 PE Faulkner & Kaitchuck, 1983 J
2443142.434 10840 VIS Braune ei ai, 1979

2443175.344 10894 VIS Braune ei ai, 1979

2443405.401 11271 VIS Braune ei ai, 1981

2443430.406 11312 VIS Locher, 1977b

2443446.286 11338 VIS Locher, 1978a

2443456.338 11354.5 VIS Locher, 1978a

2443457.261 11356 VIS Locher, 1978a

2443488.361 11387 VIS Locher, 1978a

2443510.339 11409 VIS Locher, 1978a

2443776.343 11845 VIS Locher, 1978b

2443793.416 11873 VIS Locher, 1978b
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Table 5.3: Times of minima for BXAnd — continued.

H.J.D. Cycle Method Reference

2443809.279 11933 VIS Locher, 1978b
2443809.8924 11934 PE Castelaz, 1979

2443837.346 11979 VIS Locher, 1978c
2443848.339 11997 VIS Braune et al., 1981

2443876.3917 12043 VIS Isles, 1985

2444140.573 12476 VIS Isles, 1985

2444167.431 12520 VIS Isles, 1985

2444868.4446 13669 PE Rovithis & Rovithis-Livaniou, 1982

2445213.4622 14234.5 PE Rovithis &: Rovithis-Livaniou, 1983
2445217.4266 14241 PE Rovithis k. Rovithis-Livaniou, 1983

2445218.3475 14242.5 PE Rovithis & Rovithis-Livaniou, 1983

2445220.4784 14246 PE Rovithis & Rovithis-Livaniou, 1983
2445576.484 14829.5 PE Pohl et al., 1985

2445638.411 14931 PE Pohl et al., 1985

2446348.5782 16095 PE Pohl et al., 1986 (f

2446359.5598 16113 PE Pohl et al, 1986 (f

2446366.577 16124.5 PE Pohl et al., 1986 (f

2446372.37193 16134 PE TPT — this paper (f
2446376.64203 16141 PE TPT — this paper (f
2446380.60937 16147.5 PE TPT — this paper (f
2446705.49310 16680 PE TPT — this paper (f
2446709.46013 16686.5 PE TPT — this paper (f
2446718.31 16701 VIS Locher, 1987
2447040.4438 17229 PE Giilmen et al, 1988 (f

2447043.4947 17234 PE Gûlmen et al, 1988 (f
2447051.431 17247 VIS Locher, 1988a

2447062.4079 17265 PE Giilmen et al, 1988 (f

2447063.3246 17266.5 PE Gûlmen et al, 1988 (f

2447092.293 17314 VIS Locher, 1988a

2447093.5231 17316 PE Derman et al, 1989 (f
2447094.4395 17317.5 PE Derman et al, 1989 (f

2447106.352 17337 VIS Locher, 1988a

2447114.270 17350 VIS Locher, 1988b

2447116.4061 17353.5 PE Derman et al, 1989 (f

d

I
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Table 5.3: Times of minima for BXAnd — continued.

H.J.D. Cycle Method Reference

2447117.3193 17355 PE Derman et al., 1989 (j

2447117.92972 17356 PE UKIRT — this paper (f

2447153.299 17414 VIS Hubscher & Lichtenknecker, 1988

2447439.460: 17883 PE Gûlmen et al., 1988 (f

2447440.3766 17884.5 PE Gûlmen et al., 1988 (f

2447455.3223 17909 PE Gûlmen et al., 1988 (f

2447465.69309 17926 PE TPT — this paper (f

2447467.52424 17929 PE TPT — this paper (f

2447469.35329 17932 PE TPT —■ this paper (f

2447469.66060 17932.5 PE TPT — this paper (f
2447524.207 18022 VIS Locher, 1989

4

f — Times of minima used in the period determination for this paper.
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The residuals to the times of minima presented in Table 5.3 were calculated 

with respect to the ephemeris given by Chou (1959), and are shown plotted in Figure

5.3. Several interpretations of the data can be made other than tha t put forward by 

Giilmen et al. (1988), If the visual data  are omitted from the analysis on the grounds 

tha t they cover more or less the same time interval as the photoelectric data but with a 

considerably enhanced scatter, an alternative interpretation can be put forward for the 

photographic and photoelectric data. Although a rigorous analysis cannot be justified 

due to  the scatter in the photographic data, a sine wave can be fitted to  these data with 

a period of approximately 78 yr and an amplitude of around 0.015 day. This sinusoidal 

variation is plotted in Figure 5.3. However, if the photoelectric data are examined 

in isolation, a quadratic function can be fitted to  the residuals with respect to the 

ephemeris of Chou (1959) which could be ascribed to a mass transfer rate of about 

—4.3x10"® M© yr~^. These residuals and the quadratic function are plotted in Figure

5.4.

1

I

■I

If the assumption is made tha t the sinusoidal variation in the 0  — C  residuals is the 

result of the motion of a third body whose orbit is coplanar with tha t of BX And, then 

the to tal mass of the system can be estimated as approximately 2x10"® M©. Unless 

the orbit of the third body is nearly perpendicular to tha t of BXAnd, this explanation 

can be rejected as the to tal mass of BXAnd is approximately 2M©. However, if the 

sinusoidal variation is real and there is mass transfer in the system then the suggestion 

can be made tha t there appears to  be cyclic behaviour in the mass transfer rate with 

a period of around 80 yr. Figures 5.3 and 5.4 also show quite a noticeable scatter in 

the photoelectrically measured time of minimum residuals. The observed small-scale 

departures from the calculated ephemeris may be due to either fluctuations in the mass 

transfer rate from the primary to the secondary component or systematic measurement 

errors in times of minima which have been distorted by the presence of hot or cool 

spots on one or both of the stars.
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Figure 5.3: Period behaviour of BXAnd based on the ephemeris computed by Chou 

(1959), using all the available times of minima. The dotted line is a sine wave with a 

period of 78yr and amplitude 0.015 day.
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5.4  P h o to m etr ic  A n a ly sis

5 .4 .1  O p tic a l O b se r v a tio n s

New photoelectric photometry of BXAnd in 1985, 1986, and 1988, was obtained Â

1

and reduced to a differential magnitude as outlined in Chapter 2. Observations were f

made in the V  passband, with typical error in the differential magnitudes of 0^006.

The da ta  were phased using the ephemerides given in Section 5.3. The 1985 data 

consisting of 380 observations, the 1986 data consisting of 602 observations and the 

1988 data consisting of 1959 observations are listed in the Appendix to this Chapter, 

and are shown plotted in Figures 5.5, 5.6, and 5.7, respectively.

Although somewhat incomplete, the 1985 T PT data are similar to tha t of 1986, 

the only difference being an anomalous brightening of the system during the egress from 

secondary minimum in the 1986 data. Both of these curves are similar in appearance 

to the V  light curve of SFK. W ith the exception of the 1985 data where the coverage 

is poor, the remaining T PT  data and tha t of SFK show that the phases of maximum 

light for the system are displaced by about 0^02 towards secondary minimum. The 1988 

T PT  curve also shows a clear disparity (% 0’F02) between first and second quadrature 

which is not seen in the other curves. The depth of primary minimum of the 1988 

T PT  data shows a variation of approximately 0^03. The primary minima obtained on 

HJD 2447465 and 2447467 are deeper than that observed on HJD 2447469, the la tter 

showing good agreement with previous light curves. All the T PT  and SFK secondary 

minima have depths to within 0™01 of each other.

The major discrepancies between the available light curves arise when the V  

observations obtained by URL during 1981/1982 are compared with existing published 

data and that presented in this study. The depth of 1981/1982 primary minimum 

is the same as tha t of the deeper 1988 T PT  minima but the phases of maximum 

brightness are displaced by 0?08 towards secondary minimum. Secondary eclipse is 

approximately 0^05 shallower than has been found by other observers and both primary 

and secondary minima appear to be noticeably asymmetric. It should also be noted 

tha t the appearance of the 1981/1982 data are quite different from tha t of SFK and that
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presented here — not only are the quadratures flatter making the shoulders more clearly .J

defined, bu t the individual nights of da ta show no appreciable scatter and give the ii

appearance of smoothed data. Such m atters are not discussed by URL. A more detailed I
,1

comparison with the light curves obtained by Castelaz (1979) and Derman et a i  (1989)

cannot be made as the individual observations are not available to  the author. %

5 .4 .2  In fra red  O b se r v a tio n s

Simultaneous infrared and optical photometry of BXAnd was obtained and re- 

duced as described in Chapter 2. The J  and K  data were reduced to differential magni- 5

tudes with an accuracy of approximately 0™02, and phased using the ephemeris given 

in Section 5.3. The J  and K  observations are listed in the Appendix to this Chapter . >

and are shown plotted in Figures 5.8 and 5.9, respectively. I

The overall scatter in the J  light curve is approximately 0™02 whereas th a t for I

the K  light curve is 0^03. The increased scatter in the data for both light curves |

around first quadrature makes it difficult to assess the relative brightnesses of both 

quadratures but first quadrature appears to be approximately 0*^03 brighter than sec

ond quadrature. The depth of primary and secondary minima are 0“ 59 and 0™34 in J  

respectively and 0^54 and 0^39 in K. Both light curves appear to be quite symmetrical 

and similar in shape to the majority of the UBV  data.

5 .4 .3  C o lo u r  In d ic e s

Eggen(1967) published a colour index (J5 — V) = 0 “ 44 for BXAnd at maxi

mum light and a colour excess =  4-0^04 based on the colours of two nearby

field stars. He also noted tha t BXAnd shows slight reddening at both eclipses in

dicative of a contact configuration and that the common proper motion companion 

of BX And (ADS 1671B) has an E (s-v ) =0™24 suggesting tha t there is no physical 

connection with BXAnd. The period-colour relation plotted by Eggen showed that 

BX And lies in an area between regions occupied by detached and contact systems at 

an age of about 10® yr.
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5 .4 .4  L igh t cu rv e  a n a ly s is

For the analysis presented here, not only were the three new optical and two new 

infrared light curves analyzed, bu t the previously published V  da ta of SFK and RRL 

were also re-analyzed.

The first attem pt at solving the light curves of BX And was made using the light 

curve synthesis program WUMA5 (see Chapter 2).

The solution was initiated with an inclination i of 75°, a “fill-out” factor /  as 

defined by Rucinski (1973) of 1.0 (denoting marginal contact), the mass ratio q fixed at

134

SFK obtained {B — V) colour indices for BX And at primary and secondary min

imum of 0™484 and 0^426 respectively and mean value of 0*1̂ 450 for both quadratures.

These observations show slight reddening at primary minimum and a slight decrease 

in (B  — V )  at secondary minimum. Assuming that the contribution of the secondary 

component to the to tal light of the system is of the order of a few percent at sec

ondary minimum and that the colour excess is 0^04 then a temperature estimate can 

be made for the primary component. Using the (B  -  V)o-temperature tabulation given 

by Popper (1980) a mean tem perature of 6600 K can be inferred. This estimate is sup

ported by the Stromgren colour indices obtained by Hilditch & Hill (1975) at 0?58. If 

^{b-y) =  0'74E(j3_v)) then the (6 — %/)o-temperature tabulation of Popper would also 

suggest a temperature for the primary component of 6600 K. These estimates indi

cate tha t the primary component should have a spectral type of about F3. This is in 

good agreement with the classification of F3 given by Kholopovei uZ. (1985) and F2V 

given by Hill et aZ. (1975). Also the best cross-correlation function (Section 5.2) was 

produced using an FO standard star template. However, as the secondary eclipse is 

not total this tem perature estim ate must be regarded as a lower limit. The (B  — y)o- 

effective temperature calibration of Bohm-Vitense (1981) suggests a temperature for the :?

primary component of 6900 ±  200 K. According to Bohm-Vitense this estimate places 

the primary component below the limiting temperature for which models incorporating 

radiative equilibrium are required. A temperature estimate for the primary component 

of 6800 ±  200 K has been adopted for this analysis and gravity darkening exponents for 

both components have been fixed at their convective values of 0.08.
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a
ï

tha t derived spectroscopically and a fractional temperature difference x =  of |

—0.2 where T\ and Tg are the primary and secondary component temperatures respec-

tively. The bolometric albedos a i and 0 :2  for the primary and secondary components I

respectively were bo th fixed a t 0.5 and the gravity darkening exponents /?i and (32 for ÿ
%

the primary and secondary components respectively were fixed a t 0.08. Î

J
The results of the analyses for the 1985, 1986, and 1988 T PT  da ta are given 

in Table 5.4 and are plotted in Figures 5.5, 5.6 and 5.7 respectively. Similarly, the 

solutions to the UKIRT J  and K  data are given in Table 5.4 and plotted in Figures 5.8 

and 5.9 respectively and the V  data of SFK and RRL are also given in Table 5.4 and 

plotted in Figures 5.10 and 5.11 respectively. Clearly, the RRL data is unlikely to be 

fitted well by a contact solution because of the pronounced shoulders in the light curve 

and is presented here only for completeness. The most notable feature of these solutions 

is the poor fitting between 0?25 and 0^75. In particular, this inadequacy becomes most 

pronounced at around 0?38 and 0?62. The size of the departure a t these phases is clearly - Ç

visible in the 1985 and 1986 T PT  data where the fit is undeiiuminous by approximately 

0^04 but somewhat less so in the 1988 T PT  data. The departure of the fit from the data 

of RRL is at maximum at the phases already noted at a level of around 0™08. All of the 

T PT  solutions and also tha t of SFK suggest a mean fill-out factor of 0.79 indicating 

a substantial degree of contact. However, the fractional temperature difference x  is 

between —0.31 and —0.38 suggesting a secondary component temperature of around 

4400 K. It is difficult to see how such a large temperature difference between the two 

components can be sustained in a system with such a high degree of contact. However, 

the UKIRT data suggests a somewhat higher secondary component temperature of 

4600 K with a much shallower degree of contact ( /  =  0.93). The solutions all suggest a 

mean inclination for the system of 75°3.

Following the analysis in Section 4.4, the light curve synthesis program LIG H T2 

(see Chapter 2), was used to analyse the seven sets of data, treating the secondary 

albedo 0=2 as an additional free parameter. The details of these solutions are given in 

Table 5.5 and are shown plotted in Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11.

The solutions to  the T PT  and SFK data suggest a shallower contact configuration 

( /  =  0.88) with a secondary component temperature of around 4600 K and a secondary



Light curve X i / <7 (mmag.)

TPT V 1985 -0.363 ±0.016 73.78 ±0.42 0.763 ±0.023 15.2

TPT V 1986 -0.377 ±0.014 73.59 ±0.39 0.802 ±0.021 13.6

TPT V 1988 ~0.314±  0.008 76.16 ±0.29 0.803 ±0.017 9.3 .

UKIRT J 1987 -0 .304  ±0.011 76.27 ±0.36 0.935 ±0.018 13.3

UKIRT K 1987 -0.335 ±0.045 75.82 ±0 .34 0.930 ±0.017 11.1

SFK V 1976 -0.325 ±0.010 74.85 ±0.31 0.806 ±0.018 10.4

RRL V 1981/82 -0.399 ±0.037 76.46 ±1.03 1.305 ±0.083 32.8

Table 5.4: WTJMA5 solutions for BXAnd.

AU the above fits are based on spline fits to the original data evaluated every 0?01 with the 

exception of the 1987 infrared data where the original data were used.

albedo of between 3.5 and 6.0. Once again, the UKIRT da ta indicate a slightly hotter 

secondary in a very marginal-contact configuration ( /  =  0.98). The inclination of the 

system ranged from 74°0 to  74°9 w ith the 1988 T PT data giving an inclination of 75°4 

based on the deeper primary eclipse. Once again, the da ta of RRL yielded a very 

poor solution which featured a detached system with a secondary component whose 

temperature is 3360 K with and albedo of nearly 26!

Light curve T2 i / «2

TPT V 1985 4513 ± 2 1 74.00 ±0 .04 0.878 ±0.008 5.67±0.20 2.662x10“ ^

TPT V 1986 4472 ± 2 1 73.98 ±0 .04 0.882± 0.008 4.82 ±0.16 2.392x10-®

TPT V 1988 4640 ± 3 1 75.41 ±  0.07 0.865 ±0.014 4.05 ±0 .24 7.183x10“ ®

UKIRT J 1987 4674 ± 3 8 74.86 ±0.10 0.985 ±0.017 5.33 ±0 .54 8.528x10“ ®

UKIRT K 1987 4786 ±  68 74.36 ±0.13 0.981 ±0.020 5.99±0.89 1.463x10-4

SFK V 1976 4598 ± 1 6 74.67 ±0 .04 0.908± 0.007 3.46±0.11 1.852x10“ ®

RRL V 1981/82 3357 ±375 74.16 ±0.26 1.022± 0.023 25.7±12.4 3.854x10-4

Table 5.5: LIGHT2 solutions for BX And.

All the above fits are based on spline fits to the original data evaluated every 0?01 with the 

exception of the 1987 infrared data where the original data were used.

As discussed in Chapter 4, although solutions involving a secondary albedo of 

greater than unity have little physical meaning, the technique does facilitate a crude
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method of synthesizing a hemisphere of enhanced brightness on the secondary compo

nent. This leads to the suggestion tha t there is some source of anomalous luminosity at 

or near the neck of the system which resides on the secondary component. The poor fit 

to secondary minimum using the albedo models would suggest tha t there is a discrete 

hot spot on the secondary component which does not get eclipsed totally at secondary 

minimum.

As in Section 4.4, LIG H T2 was employed to model a hot spot close to the sub- 

stellar point on the secondary component. The spot parameters solved for were the 

spot radius r* (in degrees of arc) and the spot over-temperature, Ts which is the excess 

temperature of the spot over tha t of the surrounding photosphere. The symmetrical 

nature of secondary minimum suggests tha t the spot is centred at the sub-stellar point 

and initial solutions confirmed this, allowing the spot position to be fixed. The spot 

has been assumed to be circular for this analysis. It should be pointed out tha t the 

spot has very sharply defined edges in the temperature domain and tha t across the 

boundary of the spot the temperature increases as a step function from that of the 

photosphere to tha t of the spot itself.

Solutions were made for r*, Ts and T2 for all seven light curves adopting the 

values of i and /  found from the solutions with free secondary albedos. The secondary 

tem perature must be included in the solution since the spot is likely to be considerably 

smaller than one hemisphere of the star whereas i and /  are mainly defined by the 

primary eclipse where the enhanced secondary albedo has no effect.

The details of the solutions are given in Table 5.6 and are again plotted in Figures

5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11.

A test solution for T«, / ,  i and T2 was also made to verify the method of 

solution for the spot parameters. This yielded results in excellent agreement with the 

adopted i and /  found from the free secondary albedo solutions and the solutions for 

Tg, Ts and T2 .

W ith the exception of the data of RRL, the spot size ranges from 30° to 38° and 

the spot over-temperature from HOOK to 2200 K. The solutions for the 1985 T PT data 

and the XJKIRT data should be regarded with some caution as the light curves are not 

well defined on either side of secondary minimum, but the 1986 and 1988 T PT  data
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Light curve T2 rs T,

TPT V 1985 4335 ± 2 2 29.7±0.5 2215 ± 4 7 2.763x10-®

TPT V 1986 4381±  21 37.9 ± 0 ,8 1394 ± 5 5 2.603x10-®

TPT V 1988 4563 ± 2 8 35.0±1.3 1420 ± 7 5 7.472x10-®

UKIRT J 1987 4593 ± 4 0 35.6±1.9 1967 ± 142 8.760x10-®

UKIRT K 1987 4664 ± 6 9 31.9 ± 3 .5 2186 ± 246 1.434x10-4

SFK V 1976 4540 ± 1 6 36.8 ± 0 .9 1105 ± 4 8 2.026x10-®

RRL V 1981/82 3277 ±263 44.1 ± 2 .6 2662 ±317 3.737x10-4

Table 5.6: LIGHT2 spot solutions for BXAnd.

All the above fits are based on spline fits to the original data evaluated every 0?01 with the 

exception of the 1987 infrared data where the original data were used.

and tha t of SFK do show good agreement.

However, it has proved impossible to  obtain a satisfactory solution to the data 

of RRL which reflects a larger anomalous luminosity in the ingress to  and egress from 

secondary minimum. This could be interpreted as a larger and /  or hotter spot caused 

by enhanced mass transfer, an explanation which may be supported by the scatter in 

the O — C  residuals in Figure 5.4 at around 14000 cycles.
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5.5 D iscu ss io n

Tlie adopted photometric solution for BX And from this analysis is given in Table 

5.7. This represents the mean fill-out factor, inclination and secondary component 

temperature for all the light curve solutions with the exception of the da ta of RRL. 

The errors quoted for / ,  i and T2 are the standard deviations in each quantity. The 

volume radii of the primary component vi and the secondary component r2 have been 

evaluated using the tabulation of Mochnacki (1984). The corresponding errors in the 

volume radii have been estimated by combining the errors in the determinations of the 

mass ratio and the All-out factor.

0=1,2 =  0.5 (fixed)

A ,2 =  0.08 (fixed)

/ = 0.917 ±  0.049

i(«) =  74.55 ±  0.50

ri =  0.4484 ±  0.005

r2 = 0.3264 ±  0.005

T2(K) =  4500 ±  120

Table 5.7: Adopted light curve solution for BXAnd.

The resulting astrophysical da ta  for BXAnd are given in Table 5.8. An error of 

200 K has been adopted in the secondary component temperature as the error of 120 K 

given in Table 5.7 is probably an underestimate, and takes no account of the uncer

ta in ty in the primary component temperature. The bolometric corrections employed 

in the calculation of absolute magnitudes and the distance have been taken from the 

compilation of Popper (1980).

A schematic diagram of BXAnd is given in Figure 5.12 based on the adopted 

light curve solution and including a spot of radius 36°5 centred on the sub-stellar point 

on the secondary component.

A comparison of the masses, radii, temperatures and luminosities of the com

ponents of BX And (see Chapter 9) with those of other marginal-contact and contact 

binaries compiled by Hilditch et al. (1988), shows that the primary component is close to
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BX ANDR0N/1EDAE0 .497 : /  = 0 .917

Phase 136.80

■a

Figure 5.12: A schematic diagram of BXAnd a t 0^38 based on this analysis.

(A hot spot of radius 36°5 centred on the sub-stellar point on the secondary component 

is also shown).
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Absolute dimensions Primary Secondary

M(M@) 1.52 ±  0.05 0.75 ±  0.03

R(R© ) 1.78 ±  0.03 1.30 ±  0.03

^o^g(cgs) 4.12 ±  0.02 4.09 ±  0.02

T , / /  (K) 6800 ±  200 4500 ±  200

logJj/ L© 0.79 ±  0.05 -0 .20  db 0.08

2?79 ±  0^13 5^26 db 0*?20

B.C. - 0 ’1̂ 02 -0 ^ 5 2

My 2?81 ±  0™13 5?79 d: 0^22

E(js_y) -f0^04

Distance (pc) 160 ±  20

Table 5.8: Astrophysical data for BXAnd.

the TAMS relationship of Vandenberg(1985) and has properties similar to the A-type 

contact binaries and the B-type marginal-contact systems. The secondary component 

is 2-3 times larger than expected for its ZAMS mass and occupies the same region in 

the M-R and M-L diagrams as other B-type secondaries like RT Scl and RS Ind, or the 

secondaries of W-type contact systems. Thus, although BXAnd is in a shallow contact 

state (like the W-type contact systems), luminosity transfer is incomplete, or indeed not 

yet established. Hence the secondary component (just like those of RTS cl and RS Ind) 

lies upwards and to the right of the ZAMS line in the HR diagram, as expected for its 

increased radius, and not to the left of the ZAMS line as for the secondaries of W -type 

contact systems.

' BX And is therefore another example of the increasing number of shallow-contact 

/  marginal-contact binaries displaying evidence of mass transfer between the two com

ponents, but not (yet) (see Chapter 9), the thermal contact achieved in a common 

convective envelope (Hilditch 1989).
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5 .7  A p p en d ix  - N ew  P h o to e le c tr ic  D a ta

This appendix tabulates the new photoelectric data for BX And presented in this

study.

Tables 5.9, 5.10, and 5.11 list the V  filter observations obtained with the Twin 

Photometric Telescope a t St. Andrews during 1985 November, 1986 September - October, 

and 1988 October-November respectively.

Tables 5.12 and 5.13 give the J  and K  filter observations respectively, obtained 

with the United Kingdom Infrared Telescope during 1987 November.
3
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Table 5.9: 1985 TPT V  observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2446372.31338 0.9040 + 0 .100 2446372.37878 0.0112 + 0 .8 4 7 2446372.46146 0.1304 + 0 .020

2446372.31407 0.9062 + 0 .093 2446372.37948 0.0124 + 0 .641 2446372.46216 0.1316 + 0 .018

2446372.31477 0.9063 + 0 .102 2446372.38017 0.0136 + 0 .636 2446372.46284 0.1326 + 0 .016

2446372.31646 0.9074 + 0 .099 2446372.38087 0.0147 + 0 .638 2446372.46019 0.1447 + 0 .003

2446372.31616 0.9086 + 0 .105 2446372.38268 0.0176 + 0 .630 2446372.46089 0.1468 + 0 .001

2446372.31761 0.9110 + 0 .123 2446372.38327 0.0186 + 0 .622 2446372.46168 0.1469 - 0 .0 0 2

2446372.31831 0.9121 + 0 .120 2446372.38397 0.0197 + 0 .520 2446372.46228 0.1481 - 0 .0 0 3

2446372.31900 0.9132 + 0 .1 3 0 2446372.38466 0.0209 + 0 .618 2446372.46297 0.1492 - 0 .0 1 0

2446372.31971 0.9144 + 0 .1 4 2 2446372.38637 0.0220 + 0 .609 2446372.46471 0.1521 - 0 .0 1 3

2446372.32039 0.9166 + 0 .124 2446372.38960 0.0288 + 0 .481 2446372.46540 0.1532 - 0 .0 1 6

2446372.32336 0.9204 + 0 .169 2446372.39021 0.0300 + 0 .473 2446372.46610 0.1543 —0.010

2446372.32406 0.9216 + 0 .182 2446372.39089 0.0311 + 0 .462 2446372.46679 0.1656 - 0 .0 1 8

2446372.32474 0.9227 + 0 .193 2446372.39168 0.0322 + 0 .460 2446372.46749 0.1666 -0 .0 2 1

2446372.32644 0.9238 + 0 .193 2446372.39228 0.0334 + 0 .464 2446372.46927 0.1695 - 0 .0 2 9

2446372.32613 0.9249 + 0 .2 1 7 2446372.39486 0.0376 + 0 .424 2446372.46996 0.1607 - 0 .0 2 3

2446372.33128 0.9334 + 0 .266 2446372.39666 0.0387 + 0 .424 2446372.47066 0.1618 - 0 .0 2 6

2446372.33198 0.9345 + 0 .256 2446372.39626 0.0399 + 0 .410 2446372.47136 0.1630 - 0 .0 2 7

2446372.33267 0.9367 + 0 .266 2446372.39694 0.0410 + 0 .406 2446372.47206 0.1641 - 0 .0 3 0

2446372.33337 0.9368 + 0 .268 2446372.39766 0.0422 + 0 .398 2446372.47607 0.1707 - 0 .0 3 9

2446372.33406 0.9379 + 0 .269 2446372.39971 0.0466 + 0 .374 2446372.47677 0.1718 - 0 .0 4 3

2446372.33797 0.9443 + 0 .307 2446372.40040 0.0467 + 0 .368 2446372.47746 0.1730 - 0 .0 4 2
2446372.33867 0.9466 + 0 .327 2446372.40111 0.0478 + 0 .361 2446372.47816 0.1741 -0 .0 4 1

2446372.33936 0.9466 + 0 .348 2446372.40179 0.0489 + 0 .365 2446372.47886 0.1762 - 0 .0 4 4

2446372.34006 0.9478 + 0 .319 2446372.40249 0.0601 + 0 .349 2446372.48088 0.1786 -0 .0 4 6

2446372.34076 0.9489 + 0 .369 2446372.40418 0.0629 + 0 .328 2446372.48167 0.1797 - 0 .0 4 9

2446372.34262 0.9520 + 0 .369 2446372.40487 0.0540 + 0 .322 2446372.48227 0.1809 - 0 .0 5 2

2446372.34331 0.9631 + 0 .364 2446372.40666 0.0661 + 0 .318 2446372.48296 0.1820 - 0 .0 5 6

2446372.34400 0.9642 + 0 .3 6 7 2446372.40626 0.0663 + 0 .304 2446372.49083 0.1949 -0 .0 7 3

2446372.34470 0.9564 + 0 .378 2446372.40696 0.0674 + 0 .299 2446372.49223 0.1972 -0 .0 7 4
2446372.34539 0.9666 + 0 .3 8 3 2446372.42213 0.0823 + 0 .170 2446376.49981 0.7668 - 0 .0 8 7

2446372.34848 0.9616 + 0 .416 2446372.42282 0.0834 + 0 .170 2446376.60060 0.7669 - 0 .0 8 4
2446372.34918 0.9627 + 0 .426 2446372.42362 0.0846 + 0 .162 2446376.60120 0.7680 —0.083

2446372.34987 0.9638 + 0 .4 3 0 2446372.42421 0.0867 + 0 .166 2446376.60189 0.7692 —0.086
2446372.36066 0.9660 + 0 .440 2446372.42490 0.0868 + 0 .147 2446376.60260 0.7703 - 0 .0 8 6

2446372.36126 0.9661 + 0 .444 2446372.42740 0.0909 + 0 .134 2446376.60401 0.7727 - 0 .0 8 8

2446372.36870 0.9783 + 0 .616 2446372.42809 0.0920 + 0 .132 2446376.60470 0.7738 -0 .0 8 0

2446372.35940 0.9796 + 0 .617 2446372.42878 0.0932 + 0 .128 2446376.60640 0.7749 - 0 .0 8 3

2446372.36009 0.9806 + 0 .623 2446372.42948 0.0943 + 0 .126 2446376.60609 0.7761 - 0 .0 8 2

2446372.36080 0.9818 + 0 .631 2446372.43017 0.0966 + 0 .119 2446376.60679 0.7772 - 0 .0 8 6

2446372.36148 0.9829 + 0 .633 2446372.43232 0.0990 + 0 .106 2446376.61000 0.7826 - 0 .0 7 6

2446372.36301 0.9864 + 0 .540 2446372.43302 0.1001 + 0 .103 2446376.61070 0.7836 -0 .0 7 6

2446372.36370 0.9866 + 0 .646 2446372.43372 0.1013 + 0 .100 2446376.61140 0.7848 —0.076

2446372.36440 0.9877 + 0 .6 4 9 2446372.43441 0.1024 + 0 .092 2446376.61209 0.7889 - 0 .0 7 7

2446372.36609 0.9888 + 0 .666 2446372.43610 0.1036 + 0 .092 2446376.61278 0.7870 - 0 .0 7 8

2446372.36678 0.9899 + 0 .5 6 6 2446372.43962 0.1108 + 0 .068 2446376.62223 0.8026 - 0 .0 6 3

2446372.36884 0.9949 + 0 .666 2446372.44022 0.1119 + 0 .068 2446376.62292 0.8036 —0.063

2446372.36963 0.9961 + 0 .661 2446372.44092 0.1131 + 0 .068 2446376.62363 0.8048 - 0 .0 7 2

2446372.37024 0.9972 + 0 .666 2446372.44161 0.1142 + 0 .066 2446376.62431 0.8069 - 0 .0 6 2

2446372.37092 0.9983 + 0 .669 2446372.44230 0.1153 + 0 .054 2446376.62600 0.8071 - 0 .0 6 7

2446372.37162 0.9996 + 0 .570 2446372.44666 0.1207 + 0 .038 2446376.62909 0.8138 - 0 .0 6 3

2446372.37336 0.0023 + 0 .662 2446372.44626 0.1218 + 0 .032 2446376.62978 0.8149 - 0 .0 4 6

2446372.37406 0.0086 + 0 .663 2446372.44696 0.1230 + 0 .030 2446376.53048 0.8160 -0 .0 6 1

2446372.37474 0.0046 + 0 .560 2446372.44766 0.1241 + 0 .031 2446376.63117 0.8172 - 0 .0 4 2

2446372.37644 0.0068 + 0 .668 2446372.44834 0.1262 + 0 .028 2446376.63187 0.8183 - 0 .0 4 4

2446372.37613 0.0069 + 0 .661 2446372.46007 0.1281 + 0 .027 2446376.63331 0.8207 - 0 .0 4 0

2446372.37809 0.0101 + 0 .663 2446372.46076 0.1292 + 0 .026 2446376.63401 0.8218 - 0 .0 3 9
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Table 5.9: 1985 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2446376.63470 0.8230 -0 .0 3 9 2446376.66116 0.0138 + 0 .536 2446380.48171 0.2923 —0.081

2446376.63640 0.8241 —0.033 2446376.66186 0.0160 + 0 .640 2446380.48316 0.2946 - 0 .0 8 4

2446376.63609 0.8262 —0.036 2446376.66628 0.0206 + 0 .613 2446380.48384 0.2968 —0.088

2446378.64136 0.8339 - 0 .0 2 6 2446376.66697 0,0217 + 0 .603 2446380.48463 0.2969 -0 .0 8 1

2446376.64206 0.8360 - 0 .0 2 2 2446376.66666 0.0229 + 0 .606 2446380.48623 0.2980 - 0 .0 8 3

2446376.64276 0.8361 - 0 .0 2 2 2446376.66736 0.0240 + 0 .494 2446380.48692 0.2992 —0.083

2446376.64344 0.8373 - 0 .0 2 3 2446376.66806 0.0261 + 0 .479 2446380.49081 0.3072 —0.079

2446376.64414 0.8384 - 0 .0 2 3 2446376.66992 0.0282 + 0 .468 2446380.49160 0.3083 - 0 .0 7 8

2446376.64749 0.8439 —0.016 2446376.66062 0.0293 + 0 .464 2446380.49220 0.3096 - 0 .0 7 7

2446376.64819 0.8461 -0 .0 1 1 2446376.66131 0.0306 + 0 .469 2446380.49289 0.3106 - 0 .0 7 0

2446376.64888 0.8462 - 0 .0 1 2 2446376.66201 0.0316 + 0 .440 2446380.49369 0.3117 - 0 .0 7 6

2446376.54968 0.8473 —0.016 2446376.66270 0.0328 + 0 .447 2446380.49647 0.3148 - 0 .0 7 2

2446376.66028 0.8486 —0.005 2446376.66634 0.0371 + 0 .423 2446380.49617 0.3160 - 0 .0 7 2

2446376.56168 0.8606 -0 .0 1 1 2446376.66606 0.0382 + 0 .412 2446380.49686 0.3171 - 0 .0 7 0

2446376.66227 0.8618 —0.002 2446376.66673 0.0394 +0.411 2446380.49766 0.3182 -0 .0 7 1

2446376.85297 0.8629 + 0 .001 2446376.66742 0.0406 + 0 .397 2446380.49826 0.3194 - 0 .0 6 8

2446376.55366 0.8540 + 0 .006 2446376.66812 0.0416 + 0 .393 2446380.60974 0.3382 - 0 .0 6 6

2446376.66436 0.8652 + 0 .005 2446376.67044 0,0464 +0.371 2446380.61044 0.3394 -0 .0 6 6 f :

2446376.66200 0.8677 + 0 .026 2446376.67114 0.0466 + 0 .370 2446380.61113 0.3405 —0.060

2446376.56269 0.8688 + 0 .027 2446376.67183 0.0477 + 0 .366 2446380.61183 0.3416 -0 .0 4 9

2446376.66338 0.8700 + 0 .0 3 7 2446376.67263 0.0489 + 0 .360 2446380.61252 0.3428 -0 .0 4 6

2446376.66408 0.8711 + 0 .040 2446376.67323 0.0600 + 0 .344 2446380.61430 0.3467 - 0 .0 6 0

2446376.66477 0.8722 + 0 .046 2446376.67392 0.0611 + 0 .329 2446380.61600 0.3468 -0 .0 4 4

2446376.66644 0.8750 + 0 .046 2446376.67461 0.0623 + 0 .336 2446380.61669 0.3480 —0.046

2446376.56713 0.8761 + 0 .044 2446376.67631 0.0634 + 0 .316 2446380.61639 0.3491 - 0 .0 4 0 'ï j

2446376.66783 0.8773 + 0 .063 2446376.67600 0.0646 + 0 .312 2446380.61708 0.3602 -0 .0 4 3

2446376.69298 0.9186 + 0 .183 2446376.67669 0.0667 + 0 .311 2446380.62149 0.3675 —0.087

2446376.69367 0.9196 + 0 .197 2446376.69476 0.0863 + 0 .169 2446380.62220 0.3686 -0 .0 3 4

2446376.69437 0.9208 + 0 .200 2446376.69646 0.0864 + 0 .160 2446380.62288 0.3697 -0 .0 3 3
2446376.69606 0.9219 + 0 .2 1 0 2446376.69616 0.0876 + 0 .144 2446380.62367 0.3609 -0 .0 2 8

2446376.59676 0.9230 + 0 .207 2446376.69684 0.0887 + 0 .139 2446380.62673 0.3644 - 0 .0 2 8 C'y

2446376.69747 0.9258 + 0 .229 2446376.69764 0.0899 + 0 .128 2446380.62642 0.3666 -0 .0 2 6

2446376.69816 0.9270 + 0 .232 2446376.69896 0.0922 + 0 .117 2446380.62712 0.3667 - 0 .0 2 7
2446376.69886 0.9281 + 0 .242 2446376.69966 0.0933 + 0 .120 2446380.62781 0.3678 - 0 .0 2 7

2446376.69966 0.9292 + 0 .243 2446376.70034 0.0944 + 0 .122 2446380.62862 0.3690 —0.026

2446376.60026 0.9304 + 0 .2 4 8 2446376.70103 0.0966 + 0 .109 2446380.63693 0.3811 - 0 .0 0 1
1

2446376.61241 0.9603 + 0 .3 6 3 2446376.70173 0.0967 + 0 .105 2446380.63663 0.3823 - 0 .0 0 1

2446376.61368 0.9622 + 0 .3 7 7 2446376.70319 0.0991 + 0 .107 2446380.63732 0.3834 + 0 .001

2446376.61428 0.9634 + 0 .380 2446376.70388 0.1002 + 0 .0 9 7 2446380.63802 0.3846 + 0 .001

2446376.61498 0.9546 + 0 ,373 2446376.70468 0,1014 + 0 .090 2446380.64963 0.4036 + 0 .020 ■ i'c

2446376.61666 0.9667 + 0 .3 8 8 2446376.70627 0.1026 + 0 .094 2446380.66033 0.4047 + 0 .026 " à
2446376.62140 0.9651 + 0 .465 2446376.70697 0.1037 + 0 .097 2446380.66102 0.4069 + 0 .031

2446376.62210 0.9662 + 0 .467 2446380.46476 0.2646 -0 .1 0 3 2446380.66171 0.4070 + 0 .032 ■h

2446376.62279 0.9673 + 0 .468 2446380.46546 0.2666 - 0 .1 0 4 2446380.66240 0.4081 + 0 .039

2446376.62349 0.9686 + 0 .463 2446380.46614 0.2667 -0 .1 0 6 2446380.66436 0.4113 + 0 .0 3 7

2446376.62418 0.9696 + 0 .4 6 7 2446380.46684 0.2679 - 0 .1 0 0 2446380.66606 0.4126 + 0 .044

2446376.63032 0.9797 + 0 .616 2446380.46763 0.2690 -0 .0 9 9 2446380.66674 0.4136 +0.041

2446376.63101 0.9808 + 0 .626 2446380.46904 0.2716 -0 .1 0 6 2446380.66643 0.4147 + 0 .049

2446376.63171 0.9820 + 0 .6 2 7 2446380.46973 0.2726 -0 .1 0 0 2446380.56713 0.4169 + 0 .049

2446376.63240 0.9831 + 0 .634 2446380.47043 0.2738 -0 .0 9 6 2446380.66788 0.4336 + 0 .086 %

2446376.63309 0.9842 + 0 .6 3 2 2446380.47112 0.2749 —0.089 2446380.66867 0.4346 + 0 .086
à

2446376.63668 0.9883 + 0 .539 2446380.47181 0.2760 - 0 .0 9 6 2446380.66927 0.4368 + 0 .091 H

2446376.63628 0.9894 + 0 .638 2446380.47892 0.2877 -0 .0 8 7 2446380.66996 0.4369 + 0 .084

2446376.63697 0.9906 + 0 .553 2446380.47962 0.2888 - 0 .0 8 7 2446380.67066 0.4381 + 0 .086
- i

2446376.63767 0.9917 + 0 .644 2446380.48031 0.2900 - 0 .0 8 4 2446380.68723 0.4662 + 0 .140

2446376.63836 0.9929 + 0 .546 2446380.48100 0.2911 -0 .0 9 1 2446380.68793 0.4664 + 0 .131 a
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Table 5.9: 1985 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2446380,68862 0.4676 + 0 .1 3 7 2446380.62142 0.5213 + 0 .147 2446380.64240 0.6666 + 0 .108

2446380.68931 0.4686 + 0 .134 2446380.62212 0.6224 + 0 .161 2446380.64310 0.6668 + 0 .101

2446380.69002 0.4698 + 0 .141 2446380.62281 0.6236 + 0 .138 2446380.64379 0.5679 + 0 .1 0 7

2446380.59443 0.4770 + 0 .136 2446380.62640 0.6278 + 0 .132 2446380.65946 0.6836 + 0 .060

2446380.69612 0.4782 + 0 .1 4 2 2446380.62610 0.6289 + 0 .132 2446380.66016 0.6848 + 0 .066

2446380.69682 0.4793 + 0 .1 4 2 2446380.62679 0.6301 + 0 .136 2446380.66086 0.6869 + 0 .063

2446380.69661 0.4804 + 0 .148 2446380.62749 0.6312 + 0 .129 2446380.66166 0.6870 + 0 .059

2446380.69721 0.4816 + 0 .146 2446380.62818 0.6323 + 0 .128 2446380.66226 0.6882 + 0 .063

2446380.60831 0.4998 + 0 .130 2446380.63641 0.5442 + 0 ,119 2446380.66768 0.6971 + 0 .033

2446380.61317 0.6077 + 0 .146 2446380.63611 0.6453 + 0 .117 2446380.66837 0.6982 + 0 .034

2446380.61386 0.6089 + 0 .1 4 7 2446380.63680 0.6466 + 0 .113 2446380.66906 0.6993 + 0 ,023

2446380.61626 0.6111 + 0 .1 4 0 2446380.63760 0.6476 + 0 .113 2446380.66976 0.6006 + 0 ,019

2446380.61696 0.6123 + 0 .148 2446380.63819 0.6487 + 0 .117 2446380.69282 0.6383 -0 .0 3 0

2446380.62003 0.6190 + 0 .149 2446380.64102 0.6634 + 0 .113 2446380.69362 0.6394 -0 .0 3 1

2446380.62073 0.6201 + 0 .1 4 6 2446380.64102 0.6634 + 0 .113
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Table 5.10: 1986 TPT V  observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2446688.40730 0.9957 + 0 .5 6 6 2446688.48325 0.1201 + 0 .060 2446688.57208 0.2657 - 0 .0 9 8

2446688.40799 0.9968 + 0 .563 2446688.48394 0.1213 + 0 .039 2446688.67486 0.2703 - 0 .0 9 5

2446688.40870 0.9980 + 0 .8 6 7 2446688.48464 0.1224 + 0 .041 2446688.67664 0.2714 -0 .0 9 8

2446688.40938 0.9991 + 0 .566 2446688.48885 0.1293 + 0 .026 2446688.57623 0.2726 —0.096

2446688.41008 0.0002 + 0 .564 2446688.48954 0.1305 + 0 .020 2446688.57693 0.2737 - 0 .0 9 3

2446688.41189 0.0032 + 0 .664 2446688.49024 0.1316 + 0 .016 2446688.57762 0.2748 -0 .0 9 9

2446688.41269 0.0043 + 0 .666 2446688.49093 0.1327 + 0 .017 2446688.57922 0.2774 —0.084

2446688.41328 0.0065 + 0 .664 2446688.49162 0.1339 + 0 .016 2446688.57990 0.2786 —0.086

2446688.41398 0.0066 + 0 .663 2446688.60263 0.1619 - 0 .0 2 2 2446688.58060 0.2797 -0 .0 7 8

2446688.41467 0.0077 + 0 .6 6 0 2446688.60333 0.1631 - 0 .0 1 8 2446688.58129 0.2808 -0 .0 8 3

2446688.41641 0.0106 + 0 ,6 6 6 2446688.60401 0.1542 -0 .0 2 1 2446688.58199 0.2820 - 0 .0 8 2

2446688.41709 0.0117 + 0 .643 2446688.60471 0.1663 - 0 .0 2 7 2446688.58343 0.2843 -0 .0 8 0

2446688.41778 0.0128 + 0 .668 2446688.60640 0.1565 -0 .0 3 6 2446688.68412 0.2865 -0 .0 7 9

2446688.41848 0.0140 + 0 .634 2446688.50710 0.1692 - 0 .0 2 3 2446688.68481 0.2866 - 0 ,0 7 9

2446688.41916 0,0161 + 0 .6 4 7 2446688.60780 0.1604 -0 ,0 3 6 2446688.58550 0.2877 —0.076

2446688.42341 0.0221 + 0 .613 2446688.60848 0,1615 -0 .0 3 2 2446688.68620 0.2889 - 0 .0 7 8

2446688.42410 0.0232 + 0 .610 2446688.60917 0.1626 —0.036 2446688.68762 0.2910 - 0 .0 7 7

2446688.42480 0.0243 + 0 .496 2446688.50987 0.1638 -0 .0 3 5 2446688.68819 0.2921 - 0 .0 7 6

2446688.42649 0.0266 + 0 .496 2446688.51173 0.1668 - 0 .0 6 7 2446688.58888 0.2933 - 0 .0 7 7

2446688.42619 0.0266 + 0 .488 2446688,51241 0.1679 - 0 .0 5 2 2446688.68958 0.2944 - 0 .0 7 8

2446688.43871 0.0471 + 0 .3 4 9 2446688.61311 0.1691 —0.068 2446688.69027 0.2966 - 0 .0 7 2

2446688.43941 0.0483 + 0 .333 2446688.61381 0.1702 —0.061 2446688.60368 0.3176 -0 .0 6 6

2446688.44011 0.0494 + 0 .343 2446688.61460 0.1714 - 0 .0 6 2 2446688.60437 0.3187 - 0 .0 6 6

2446688.44078 0.0606 + 0 .323 2446688.62136 0.1826 - 0 .0 4 8 2446688.60606 0.3198 -0 .0 6 4

2446688.44341 0.0648 + 0 .297 2446688,52206 0.1838 —0.066 2446688.60576 0.3209 - 0 .0 6 0

2446688.44410 0.0660 + 0 .296 2446688.52276 0.1849 -0 .0 4 9 2446688.60644 0.3221 - 0 .0 6 2

2446688.44480 0.0671 + 0 .290 2446688.52344 0.1860 —0.066 2446688.60803 0.3247 —0,060

2446688.44648 0.0682 + 0 .289 2446688.52414 0.1872 -0 .0 6 6 2446688.60941 0.3269 —0.064

2446688.44619 0.0694 + 0 .276 2446688.62569 0.1897 —0,060 2446688.61010 0.3281 - 0 .0 6 0

2446688.44787 0.0622 + 0 .274 2446688.62638 0.1908 —0.058 2446688.61079 0.3292 - 0 .0 6 4

2446688.44867 0.0633 + 0 .278 2446688.52708 0.1920 -0 .0 6 0 2446688.61259 0.3321 - 0 .0 6 0

2446688.44924 0.0644 + 0 .260 2446688.52778 0.1931 -0 .0 6 4 2446688.61328 0.3333 —0.052

2446688.44994 0.0666 + 0 .2 6 0 2446688.52847 0.1943 —0.064 2446688.61397 0.3344 -0 .0 4 9

2446688.45063 0.0667 + 0 .2 4 8 2446688.54294 0.2180 -0 .0 7 8 2446688.61466 0.3365 -0 .0 4 8

2446688.45288 0.0704 + 0 .2 3 2 2446688.64363 0,2191 - 0 .0 7 7 2446688.61635 0.3367 -0 .0 5 6

2446688.46366 0.0716 + 0 .228 2446688.54432 0.2202 - 0 .0 7 7 2446688.61938 0.3433 - 0 .0 3 6

2446688.46426 0.0726 + 0 .219 2446688.64602 0.2214 -0 .0 7 8 2446688.62008 0.3444 - 0 .0 3 8

2446688.45495 0.0738 + 0 .210 2446688.54571 0.2225 -0 .0 8 1 2446688.62077 0.3465 - 0 .0 3 8

2446688.45664 0.0749 + 0 .216 2446688.54784 0.2260 -0 .0 7 9 2446688.62147 0.3467 - 0 .0 3 6

2446688.46861 0.0962 + 0 .1 2 2 2446688.64864 0.2272 -0 .0 7 6 2446688.62215 0.3478 - 0 .0 3 4

2446688.46931 0.0973 + 0 .1 1 9 2446688.64923 0.2283 -0 .0 7 5 2446688.63297 0.3656 - 0 .0 2 0

2446688.46998 0.0984 + 0 .111 2446688.64993 0.2294 -0 .0 7 6 2446688.63366 0.3667 -0 ,0 2 2

2446688,47068 0.0995 + 0 .1 0 7 2446688.65061 0.2306 -0 .0 8 3 2446688.63436 0.3678 —0.016

2446688.47137 0.1007 + 0 .102 2446688.65260 0.2336 - 0 .0 9 0 2446688.63504 0.3689 - 0 .0 1 0

2446688.47343 0.1041 + 0 .091 2446688.66319 0.2348 -0 .0 8 2 2446688.63574 0.3701 - 0 .0 1 2

2446688.47412 0.1062 + 0 .0 8 7 2446688.65388 0.2369 -0 .0 9 1 2446688.63688 0.3720 —0.010

2446688.47481 0.1063 + 0 .0 8 7 2446688.56467 0.2370 -0 .0 9 1 2446688.63766 0.3731 - 0 .0 1 0

2446688.47660 0.1074 + 0 .078 2446688.55526 0.2382 -0 .0 8 4 2446688.63826 0.3742 - 0 .0 0 6

2446688.47620 0.1086 + 0 .083 2446688.55746 0.2418 —0.088 2446688.68894 0.3763 - 0 .0 0 7

2446688.47797 0.1115 + 0 .069 2446688.55816 0.2429 -0 .0 8 6 2446688.63964 0.3766 -0 .0 0 1

2446688.47865 0.1126 + 0 .068 2446688.56884 0.2440 - 0 .0 8 9 2446688.64133 0.3792 —0.003

2446688.47935 0.1138 + 0 .065 2446688.55953 0.2462 - 0 .0 8 7 2446688.64202 0.3804 - 0 .0 0 6

2446688.48004 0.1149 + 0 .060 2446688.56023 0.2463 - 0 .0 8 7 2446688.64272 0.3816 - 0 .0 0 6

2446688.48074 0.1160 + 0 .068 2446688.67001 0.2623 -0 .0 9 4 2446688.64340 0.3826 + 0 .000

2446688.48187 0.1179 + 0 .0 5 6 2446688.67070 0.2635 -0 .1 0 3 2446688.64409 0.3838 + 0 .004

2446688.48265 0.1190 + 0 .043 2446688.57138 0.2646 -0 .0 8 9 2446688.65633 0.4022 + 0 .036

Î
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Table 5.10: 1986 TPT V  observations — continued.

H .J .D . P h ase (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) j

2446688.66601 0.4033 +  0.035 2446705.61319 0.0329 + 0 .449 2446709.46594 0.6117 + 0 .148 . 'i

2446688.65671 0.4045 +  0.041 2446705.61389 0.0341 + 0 .440 2446709.46664 0.6128 + 0 .162 ï
2446688.66740 0.4056 +  0.049 2446705.61458 0.0352 + 0 .433 2446709.46774 0.6146 + 0 .147 3-

2446688.66810 0.4067 +  0.048 2446705.62631 0.0528 + 0 .331 2446709,46842 0.6157 + 0 .147 1
2446688.66914 0.4084 + 0 .047 2446705.62600 0.0639 + 0 .323 2446709.46912 0.6169 + 0.144

2446688.66985 0.4096 +  0.062 2446706.62670 0.0651 + 0 .316 2446709.46981 0.6180 + 0 .144
f

2446688.66052 0.4107 + 0 .065 2446706.52739 0.0662 + 0 .314 2446709.47060 0.6191 +0.141

2446688.66121 0.4118 + 0 .058 2446706.62809 0.0674 + 0 .306 2446709.47231 0.6221 + 0 .149

2446668.66191 0.4130 + 0 .051 2446706.52974 0.0601 + 0 .293 2446709.47298 0.6232 + 0 .146 '1
%

2446688.66295 0.4147 + 0 .061 2446705.53044 0.0612 + 0 .284 2446709.47368 0.6243 +0.134 ■1
2446688.66364 0.4158 +  0.068 2446705.53113 0.0623 + 0 .276 2446709.47437 0,5265 +  0.140

.1
2446688.66432 0.4169 + 0 .064 2446705.63183 0.0636 + 0 .271 2446709.47606 0.5266 + 0 .135
2446688.66502 0.4181 + 0 .069 2446705.63251 0.0646 +  0.267 2446709.47619 0.5286 + 0 .142

2446688.66571 0.4192 + 0 .067 2446705.63424 0.0674 + 0 .244 2446709.47687 0.6296 +0.138

2446705.47494 0.9702 + 0 .472 2446706.53494 0.0686 + 0 .243 2446709.47756 0.6307 +0.141

2446705.47563 0.9714 +  0.476 2446705.63663 0.0697 + 0 .240 2446709.47826 0.6318 + 0 .135 î
2446705.47633 0.9725 +  0.477 2446705.53633 0.0709 + 0 .234 2446709.47895 0.5330 + 0.133

2446706.47702 0.9736 +  0.489 2446705.53701 0.0720 +  0.225 2446709.48085 0.5361 +  0.133

2446(05.47771 0.9748 + 0 .498 2446706.53883 0.0750 +  0.215 2446709.48163 0.5372 +0.131

2446705.47919 0.9772 +  0.504 2446705.53952 0.0761 + 0 .206 2446709.48223 0.5384 + 0.128 ■ Â

2446705.47988 0.9783 +  0.514 2446706.54022 0.0772 + 0 .191 2446709.48294 0.5396 + 0 .125 " i
î

2446705.48058 0.9795 + 0 .504 2446705.64090 0.0783 + 0 .192 2446709.48362 0.5406 + 0 .121

2446705.48127 0.9806 + 0 .523 2446706.64169 0.0795 + 0 .187 2446709.48468 0.5424 + 0 .118 ‘ï
2446705.48195 0.9817 +  0.630 2446706.64273 0.0813 +  0.177 2446709.48537 0.5435 + 0 .120 {

2446705.48318 0.9837 + 0 .532 2446705.54342 0.0825 + 0 .177 2446709.48606 0.6446 + 0 .116

2446706.48387 0.9849 + 0 .542 2446705.54412 0.0836 + 0 .1 7 7 2446709.48675 0.5458 + 0 .120

2446705.48457 0.9860 + 0 .534 2446705.54481 0.0848 +  0.162 2446709.48745 0.5469 +  0.113

2446705.48526 0.9871 +  0.544 2446705.64549 0.0859 +  0.152 2446709.49442 0.5583 + 0.098

2446705.48695 0.9883 +  0.549 2446709.43784 0.4656 + 0 .129 2446709.49511 0.5695 + 0.094

2446705.48788 0.9914 + 0 .558 2446709.43855 0.4668 + 0 .134 2446709.49681 0.6606 + 0.091

2446705.48857 0.9926 + 0 .566 2446709.43922 0.4679 +  0.131 2446709.49660 0.6617 + 0 .088

2446706.48927 0.9937 + 0 .562 2446709.43991 0.4690 + 0 .133 2446709.49719 0.5629 +  0.089

2446705.48996 0.9949 + 0 .567 2446709.44062 0.4702 +  0.132 2446709.49919 0.5661 + 0 .089

2446705.49065 0.9960 + 0 .566 2446709.44239 0.4731 + 0 .137 2446709.49988 0.5673 + 0 .086

2446705.49431 0.0020 +  0.567 2446709.44307 0.4742 + 0 .141 2446709.50057 0.5684 + 0 .086

■ i2446705.49500 0.0031 + 0 .564 2446709.44377 0.4763 + 0 .141 2446709.50127 0.5696 + 0 .077

2446705.49569 0.0042 +  0.566 2446709.44446 0.4764 + 0 .1 4 7 2446709.50196 0.6707 + 0 .078 ■

2446705.49639 0.0054 +  0.562 2446709.44517 0.4776 + 0 .145 2446709.50265 0.6718 + 0 .078 J .

2446706.49708 0.0066 +  0.566 2446709.44706 0.4807 + 0 .146 2446709.50334 0.5730 + 0 .073

2446706.49870 0.0092 +  0.556 2446709.44774 0.4818 + 0 .148 2446709.60403 0.6741 +0.074 .

2446706.49940 0.0103 + 0 .649 2446709.44843 0.4830 + 0 .152 2446709.60473 0.6752 + 0 .067

2446705.50009 3.0115 +  0.648 2446709.44913 0.4841 + 0 .156 2446709.60642 0.6764 + 0 .067

2446706.60078 0.0126 + 0 .646 2446709.44982 0.4852 + 0 .147 2440709.61708 0.6965 + 0 .038

2446705.50148 0.0137 + 0 .639 2446709.45180 0.4885 + 0 .146 2446709.61777 0.6966 + 0 .039

2446705.50295 0.0161 + 0.534 2446709.45260 0.4896 + 0 .144 2446709.51848 0.5978 + 0 .040

2446705.50364 0.U173 + 0.522 2446709.46319 0.490(5 + 0.146 2 1-16709.51915 0.5989 +  0.033

24 16705.50 131 ' ■ 0 1 ,s t + n 525 2 I I6709 46388 0 4919 -i-0 1 19 21-16709 510.<î-! 0.6000 + 0.03.3 1?
2446705.60603 0.0196 + 0 .522 2446709.45458 0.4930 + 0 .150 2446709.52143 0.6026 + 0 .030

2446705.60573 0.0207 +  0.511 2446709.46671 0.4966 + 0 .148 2446709.52213 0.6037 + 0.031

j2446705.50728 0.0232 +  0.501 2446709.45740 0.4977 +  0.152 2446709.62282 0,6049 + 0.031

2446706.50797 0.0244 + 0 .497 2446709.46810 0.4988 +  0.153 2446709.52351 0.6060 + 0 .028

2446705.60867 0.0255 + 0 .488 2446709.46879 0.4999 + 0 .151 2446709.62420 0.6071 + 0.021

2446705.60936 0.0267 + 0 .492 2446709.46949 0.5011 + 0 .155 2446709.62489 0.6083 + 0.021 -f!:

2446706.61007 0.0278 + 0 .482 2446709.46387 0.6083 + 0 .163 2446709.62569 0.6094 + 0 .025

2446706.61180 0.0307 +  0.463 2446709.46466 0.6094 + 0 .1 4 7 2446709.52629 0.6106 + 0 .019

2446706.61260 0.0318 + 0 .468 2446709.46626 0.6105 +  0.148 2446709.62697 0.6117 + 0 .016
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Table 5,10: 1986 TPT V  observations — continued.

î

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C )

2446709.62766 0.6128 + 0 .012 2446709.60810 0.7447 -0 .0 8 8 2446714.40110 0.6006 + 0 .020 ■1
2446709.62990 0.6166 + 0 .009 2446709.60879 0.7468 - 0 .0 8 8 2446714.40178 0.6017 + 0 .020 1
2446709.63069 0.6176 + 0 .008 2446709.61018 0.7481 - 0 .0 8 7 2446714.40247 0.6028 + 0 .019 &
2446709.63128 0.6187 + 0 .006 2446709.61088 0.7492 - 0 .0 8 7 2446714.40317 0.6040 + 0 .022 %
2446709.63196 0.6199 + 0 .002 2446709.61167 0.7603 - 0 .0 8 2 2446714.40749 0.6111 + 0 .006 -V
2446709.63266 0.6210 + 0 .008 2446709.61226 0.7616 —0.083 2446714.40818 0.6122 + 0 .003 4

2446709.63487 0.6246 -0 .0 0 1 2446709.61296 0.7626 - 0 .0 9 0 2446714.40887 0.6133 + 0 .003

2446709.63666 0.6268 - 0 .0 0 6 2446709.61364 0.7637 - 0 .0 8 9 2446714.40967 0.6146 + 0 .003

2446709.63626 0.6269 -0 .0 0 1 2446709.61434 0.7649 —0.088 2446714.41026 0.6156 + 0 .002  ̂;
2446709.63694 0.6280 -0 .0 1 1 2446709.61503 0.7660 - 0 .0 8 6 2446714.41262 0.6196 - 0 .0 0 8 g
2446709.63763 0.6292 - 0 .0 0 8 2446709.61863 0.7618 - 0 .0 7 9 2446714.41332 0.6206 - 0 .0 0 2

2446709.64439 0.6402 - 0 .0 1 7 2446709.61922 0.7629 - 0 .0 7 7 2446714.41401 0.6217 - 0 .0 0 3 t
2446709.64609 0.6414 —0.023 2446709.61991 0.7640 - 0 .0 7 8 2446714.41470 0.6229 —0.009 #
2446709.64678 0.6425 - 0 .0 1 8 2446709.62060 0.7661 - 0 .0 7 8 2446714.41639 0.6240 - 0 .0 0 7

2446709.66003 0.6496 - 0 .0 2 6 2446709.62129 0.7663 —0.076 2446714.41668 0.6261 - 0 .0 1 0 -4
2446709.56074 0.6606 - 0 .0 2 7 2446709.62199 0.7674 - 0 .0 7 3 2446714.41737 0.6273 - 0 .0 1 2

2446709.56142 0.6618 - 0 .0 2 7 2446714.36381 0.6396 + 0 .090 2446714.41806 0.6284 -0 .0 1 1

2446709.66211 0.6629 - 0 .0 2 9 2446714.36460 0.6406 + 0 .096 2446714.41875 0.6296 - 0 .0 1 6 i?
2446709.66280 0.6540 - 0 .0 3 0 2446714.36619 0.6417 + 0 .096 2446714.41944 0.6306 —0.015 ;

2446709.66349 0.6661 -0 .0 3 1 2446714.36689 0.6429 + 0 .088 2446714.43465 0.6666 —0.039 ■‘4
2446709.66420 0.6663 -0 .0 3 1 2446714.36668 0.6440 + 0 .087 2446714.43634 0.6667 —0.036

2446709.66488 0.6674 —0.030 2446714.36812 0.6465 + 0 .080 2446714.43603 0.6578 —0.046 I
2446709.66667 0.6686 —0.033 2446714.36882 0.6477 + 0 .083 2446714.43672 0.6590 —0.040 n
2446709.67134 0.6844 —0.060 2446714.36961 0.6488 + 0 .079 2446714.43742 0.6601 - 0 .0 4 4 a

ü2446709.67203 0.6866 - 0 .0 6 7 2446714.37021 0.6600 + 0 .082 2446714.43921 0.6630 - 0 .0 3 9

2446709.67273 0.6867 —0.063 2446714.37090 0.6611 + 0 .083 2446714.43989 0.6642 - 0 .0 4 3 i î
2446709.67343 0.6878 —0.066 2446714.37268 0.6640 + 0 .086 2446714.44059 0.6663 -0 .0 4 7

2446709.67410 0.6889 - 0 .0 6 7 2446714.37338 0.6661 + 0 .077 2446714.44128 0.6664 —0.043 f
2446709.67480 0.6901 —0.062 2446714.37407 0.6663 + 0 .074 2446714.44198 0.6676 —0.060

2446709.67649 0.6912 - 0 .0 6 6 2446714.37477 0.6674 + 0 .070 2446714.44381 0.6706 - 0 .0 4 4

2446709.67619 0.6924 - 0 .0 6 6 2446714.37646 0.6686 + 0 .074 2446714.44449 0.6717 —0.066

2446709.57688 0.6936 - 0 .0 6 9 2446714.37760 0.6621 + 0 .076 2446714.44618 0.6728 - 0 .0 6 3

2446709.67768 0.6946 —0.064 2446714.37830 0.6632 + 0 .069 2446714.44688 0.6740 - 0 .0 5 4

2446709.68032 0.6991 —0.066 2446714,37898 0.6643 + 0 .067 2446714.44667 0.6751 —0.056 r
2446709.68101 0.7003 - 0 .0 7 3 2446714.37967 0.6666 + 0 .058 2446714.44761 0.6767 -0 .0 5 6

2446709.68171 0.7014 - 0 .0 7 6 2446714.38037 0.6666 + 0 .069 2446714.44819 0.6778 - 0 .0 6 5

2446709.68240 0.7026 - 0 .0 6 8 2446714.38392 0.6724 + 0 .047 2446714.44887 0.6789 —0.068

2446709.68309 0.7037 - 0 .0 7 8 2446714.38462 0.6736 + 0 .047 2446714.44967 0.6800 - 0 .0 5 7

2446709.68378 0.7048 - 0 .0 7 6 2446714.38530 0.5747 + 0 .039 2446714.46026 0.6812 —0.069

2446709.68447 0.7059 - 0 .0 7 7 2446714.38600 0.6768 + 0 .044 2446714.46206 0.6841 —0.062

2446709.68618 0.7071 '—0.083 2446714.38669 0.6770 + 0 .048 2446714.46274 0.6852 - 0 .0 6 0 i
2446700.68686 0.7082 - 0 .0 8 8 2446714.38767 0.6786 + 0 .038 2446714.45344 0.6864 —0.063

2446709.69674 0.7260 - 0 .0 8 4 2446714.38837 0.6797 + 0 .032 2446714.45413 0.6876 —0.063

2446709.69744 0.7272 - 0 .0 8 2 2446714.38974 0.5820 + 0 .030 2446714.46482 0.6886 —0.062

2446709.69813 0.7283 —0.083 2446714.39044 0.6831 + 0 .030 2446714.46804 0.6939 - 0 ,0 6 7

2446709.69883 0.7295 —0.080 2446714.39210 0.6858 + 0 .036 2446714.46874 0.6961 - 0 .0 6 9

2446709.69961 0.7306 - 0 .0 7 9 2446714.39280 0.6870 + 0 .040 2446714.45943 0.6962 - 0 .0 6 7

2446709.60020 0.7317 - 0 .0 8 2 2446714.39348 0.6881 + 0 .030 2446714.46014 0.6974 - 0 .0 6 7

2446709.60090 0.7329 —0.088 2446714.39418 0.6892 + 0 .032 2446714.46082 0.6986 —0.068 &

12446709.60159 0.7340 -0 .0 8 1 2446714.39488 0.6904 + 0 .030 2446714.46217 0.7007 - 0 .0 6 8

2446709.60229 0.7361 - 0 .0 8 3 2446714.39674 0.5918 + 0 .034 2446714.46287 0.7018 —0.070

2446709.60298 0.7363 - 0 .0 8 3 2446714.39642 0.6929 + 0 .024 2446714.46366 0.7030 -0 .0 7 1

2446709.60633 0.7401 -0 .0 8 1 2446714.39712 0.6941 + 0 .033 2446714.46426 0.7041 —0.078

2446709.60603 0.7413 —0.086 2446714.39780 0.6962 + 0 .023 2446714.46496 0.7062 - 0 .0 6 9

2446709.60672 0.7424 —0.084 2446714.39860 0.6963 + 0 .027 2446714.47230 0.7173 —0.079 ..i-

2446709.60741 0.7436 - 0 .0 8 3 2446714.40040 0.6994 + 0 .021 2446714.47300 0.7184 - 0 .0 8 2
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Table 5.10: 1986 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2446714.47368 0.7196 —0.083 2446714.60648 0.7717 -0 .0 8 8 2446714.64849 0.8422 - 0 .0 1 4

2446714.47437 0.7207 - 0 .0 8 4 2446714.60618 0.7728 —0.081 2446714.56129 0.8468 -0 .0 0 9

2446714.47607 0.7218 -0 .0 8 1 2446714.50687 0.7739 - 0 .0 8 7 2446714.66448 0.8520 + 0 .007

2446714.47793 0.7265 —0.088 2446714.50766 0.7761 - 0 .0 8 7 2446714.66617 0.8631 + 0 .012

2446714.47862 0.7276 —0.090 2446714.60825 0.7762 -0 .0 8 0 2446714.55587 0.8543 + 0 .001

2446714.47931 0.7288 —0.085 2446714.52315 0.8006 - 0 .0 6 0 2446714.56666 0.8664 + 0 .006

2446714.48001 0.7299 - 0 .0 8 6 2446714.62384 0.8018 -0 .0 6 4 2446714.56725 0.8665 + 0 .004

2446714.48070 0.7311 - 0 .0 8 3 2446714.62452 0.8029 —0.067 2446714.56032 0.8616 + 0 .021

2446714.48330 0.7363 - 0 .0 8 4 2446714.52622 0.8040 - 0 .0 6 8 2446714.56102 0.8627 + 0 .018

2446714.48400 0.7366 —0.083 2446714.52591 0.8052 - 0 .0 6 9 2446714.66171 0.8638 + 0 .019

2446714,48469 0.7376 - 0 .0 8 6 2446714.52812 0.8088 —0.056 2446714.66240 0.8660 + 0 .021

2446714.48638 0.7387 - 0 .0 9 0 2446714.62879 0.8099 - 0 .0 6 5 2446714.66309 0.8661 + 0 .023

2446714.48607 0.7399 - 0 .0 8 6 2446714.52949 0.8110 -0 .0 5 1 2446714.56394 0.8676 + 0 .023

2446714.48698 0.7413 - 0 .0 8 8 2446714.63018 0.8122 —0.066 2446714.66464 0.8686 + 0 .024

2446714.48767 0.7426 - 0 .0 8 2 2446714.53088 0.8133 - 0 .0 6 0 2446714.56633 0.8698 + 0 .021

2446714.48837 0.7436 - 0 .0 9 1 2446714.63157 0.8144 -0 .0 6 6 2446714.66671 0.8720 + 0 .034

2446714.48906 0.7448 —0.088 2446714.53227 0.8166 —0.066 2446714.66969 0.8769 + 0 .040

2446714.48977 0.7469 —0.092 2446714.53296 0.8167 - 0 .0 6 3 2446714.67038 0.8780 + 0 .048

2446714.49266 0.7606 —0.086 2446714.53364 0.8178 -0 .0 4 9 2446714.57106 0.8792 + 0 .047

2446714.49326 0.7516 —0.083 2446714.53434 0.8190 —0.066 2446714.67176 0.8803 + 0 .0 4 8

2446714.49396 0.7628 - 0 .0 8 3 2446714.63695 0.8232 -0 .0 3 6 2446714.57246 0.8814 + 0 .063

2446714.49464 0.7639 - 0 .0 8 6 2446714.63764 0.8244 -0 .0 3 2 2446714.67316 0.8826 + 0 .068

2446714.49633 0.7560 - 0 .0 8 9 2446714.63833 0.8265 —0.034 2446714.67384 0.8837 + 0 .0 5 9

2446714.49639 0.7668 - 0 .0 8 5 2446714.63903 0.8267 - 0 ,0 3 4 2446714.57463 0.8848 + 0 .069

2446714.49708 0.7679 - 0 .0 8 3 2446714.63972 0.8278 .—0.030 2446714.57622 0.8860 + 0 .0 6 7

2446714.49778 0.7690 —0.087 2446714.54041 0.8289 —0,032 2446714.67691 0.8871 + 0 .064

2446714.49847 0.7602 - 0 .0 8 5 2446714.54111 0.8301 -0 .0 2 8 2446714.58026 0.8942 + 0 ,101

2446714.49916 0.7613 - 0 .0 8 5 2446714.54180 0.8312 - 0 ,0 3 2 2446714.58096 0.8964 + 0 .101

2446714.60103 0.7644 —0.091 2446714.54249 0.8323 -0 .0 2 3 2446714.58165 0.8966 + 0 .100

2446714.60172 0.7666 - 0 .0 9 0 2446714.64318 0.8336 -0 .0 2 3 2446714.58236 0.8977 + 0 .111

2446714.60242 0.7667 —0.096 2446714.64673 0.8376 —0.015 2446714.58304 0.8988 + 0 .115

2446714.60311 0.7678 - 0 .0 8 7 2446714.54641 0.8388 - 0 .0 1 7 2446714.68372 0.8999 + 0 .114

2446714.60379 0.7689 - 0 .0 8 7 2446714.64641 0.8388 - 0 .0 1 7
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Table 5.11: 1988 TPT V  observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447466.43857 0.5828 + 0 .0 6 0 2447465.46675 0,6290 -0 ,0 3 0 2447465.49064 0.6682 - 0 .0 4 9

2447466.43890 0.6834 + 0 .0 4 6 2447466.46710 0.6296 -0 .0 2 4 2447466.49099 0.6687 - 0 .0 6 6

2447466.43926 0.6839 + 0 .039 2447466.46744 0.6302 - 0 .0 2 9 2447466.49133 0.6693 -0 .0 6 8

2447466.43960 0.6846 + 0 .0 4 5 2447465.46819 0.6314 —0.026 2447466.49168 0.6699 - 0 .0 7 6

2447466.43994 0.6861 + 0 .043 2447466.46852 0.6319 -0 .0 2 6 2447466.49203 0.6706 —0.066

2447466.44030 0.6857 + 0 .039 2447465.46887 0.6326 —0.034 2447466.49238 0.6710 —0.060

2447466.44064 0.5862 + 0 .043 2447465.46922 0.6331 - 0 .0 2 4 2447466.49272 0.6716 - 0 .0 7 0

2447466,44099 0.5868 + 0 .036 2447466.46956 0.6336 —0.028 2447465.49640 0,6760 - 0 .0 7 9

2447466.44133 0.6874 + 0 .032 2447466.46991 0,6342 —0,030 2447465.49674 0.6765 -0 .0 7 0

2447466.44168 0.6879 + 0 .030 2447468.47027 0.6348 -0 .0 3 4 2447466.49609 0.6771 -0 .0 7 4

2447466.44461 0.5926 + 0 .031 2447465.47060 0.6363 -0 .0 2 9 2447466.49644 0.6777 -0 .0 6 5

2447466.44486 0,6931 + 0 .0 2 6 2447466.47096 0.6369 - 0 .0 2 6 2447466.49679 0.6783 —0.070

2447466.44621 0.5937 + 0 .020 2447466.47131 0.6366 —0.032 2447466.49713 0.6788 -0 .0 7 5

2447466.44666 0.6943 + 0 .023 2447466.47322 0.6396 - 0 .0 2 9 2447466.49748 0.6794 - 0 .0 7 2

2447466.44689 0.6948 + 0 .020 2447466.47366 0.6402 —0.030 2447466.49783 0.6800 -0 .0 7 1

2447466.44624 0.5964 + 0 .023 2447466.47390 0.6407 - 0 .0 2 9 2447466.49817 0.6806 - 0 .0 7 6

2447466.44669 0.6960 + 0 ,021 2447466.47425 0.6413 - 0 .0 2 7 2447466.49853 0.6811 - 0 .0 7 6

2447466.44694 0.5966 + 0 ,023 2447466.47460 0.6419 -0 .0 3 5 2447466.49888 0.6817 - 0 .0 7 7

2447466,44728 0.6971 + 0 ,023 2447466.47494 0.6424 -0 .0 3 2 2447466.49923 0.6823 - 0 .0 7 4

2447465.44763 0.6977 + 0 .012 2447466.47529 0.6430 -0 .0 3 4 2447466.49966 0.6828 - 0 .0 7 2

2447466.44832 0.6988 + 0 .0 1 3 2447466.47664 0.6436 —0.026 2447465.49991 0.6834 - 0 .0 8 3

2447465.44867 0.6994 + 0 .009 2447466.47699 0.6442 — 0.034 2447465,60026 0.6839 - 0 .0 7 8

2447466,44902 0.6000 + 0 .015 2447466.47633 0.6447 - 0 .0 3 6 2447465.60060 0.6846 —0.084

2447466.44937 0.6005 + 0 .018 2447466.47707 0.6469 -0 .0 3 1 2447465.60096 0.6861 -0 .0 8 1

2447466.44971 0.6011 + 0 ,018 2447466.47742 0.6465 -0 .0 3 1 2447466.60130 0.6866 —0.086

2447466.46006 0.6017 + 0 .009 2447466.47777 0.6471 —0.029 2447465,60166 0.6862 —0.083

2447465.46041 0.6022 + 0 ,016 2447466.47812 0.6477 - 0 .0 3 6 2447466.60201 0.6868 - 0 .0 8 7

2447466,46076 0.6028 + 0 .014 2447466.47848 0.6482 -0 .0 4 1 2447466.80662 0.6942 —0.086

2447466,46110 0.6034 + 0 .0 1 2 2447466.47881 0.6488 —0.038 2447466.60687 0.6948 —0.088
2447466.46146 0.6039 + 0 ,005 2447466.47916 0.6494 -0 .0 4 1 2447466.60721 0.6963 - 0 .0 8 8

2447465.46299 0.6066 + 0 .004 2447466.47961 0.6499 -0 .0 3 3 2447466.60766 0.6969 —0.093

2447466.45334 0.6070 - 0 .0 0 2 2447466.47985 0.6506 —0.046 2447466.60791 0.6965 - 0 .0 9 0

2447466.45368 0.6076 + 0 .003 2447465.48020 0.6511 - 0 .0 4 3 2447466.60826 0.6971 - 0 .0 8 9
2447466,46403 0.6082 + 0 .002 2447466.48126 0.6528 -0 .0 4 8 2447466.60860 0.6976 - 0 .0 9 3

2447466.46473 0.6093 —0.006 2447466.48161 0.6634 —0.039 2447466.60896 0.6982 -0 .0 8 7

2447466.45607 0.6099 —0,004 2447466.48196 0.6539 -0 .0 4 4 2447466.60930 0.6988 - 0 .0 8 8
2447465.45642 0.6104 - 0 .0 0 7 2447466.48231 0.6646 -0 .0 6 1 2447465,60964 0.6993 —0.091

2447466,46677 0.6110 - 0 .0 0 2 2447466.48266 0.6661 —0.049 2447465.60999 0.6999 —0.093
2447465.46611 0.6116 - 0 .0 1 3 2447466.48300 0.6667 —0.044 2447465.51034 0.7006 —0.093

2447466.46681 0.6127 - 0 .0 0 8 2447466.48336 0.6662 -0 .0 6 0 2447466.61069 0.7010 - 0 .0 9 4

2447466,46716 0.6133 - 0 .0 0 2 2447466.48369 0.6668 -0 ,0 6 4 2447466.61103 0.7016 - 0 .0 9 7

2447466,46760 0.6139 + 0 .000 2447465.48404 0.6674 - 0 .0 4 2 2447466,61138 0.7022 —0.094

2447466.46786 0.6144 - 0 .0 1 6 2447465.48439 0.6679 —0.063 2447465,61173 0,7027 - 0 .0 9 7

2447466.46820 0.6160 —0.016 2447465.48560 0.6598 -0 .0 6 0 2447466,61207 0.7033 - 0 .0 9 7

2447465.45864 0.6166 —0.012 2447466,48686 0,6603 - 0 .0 4 7 2447466.61242 0.7039 —0.088

2447466.46889 0.6161 - 0 .0 0 6 2447466.48619 0.6609 -0 .0 6 6 2447466.61277 0,7044 - 0 .0 9 4

2447466,46924 0.6167 - 0 .0 1 8 2447466.48664 0,6616 -0 ,0 6 4 2447466.61312 0.7060 -0 .0 9 1

2447466.46969 0.6173 - 0 .0 1 3 2447466.48690 0.6620 - 0 .0 4 7 2447465.62344 0.7219 - 0 .0 9 1

2447465.46994 0.6179 —0.016 2447465.48724 0.6626 -0 .0 6 8 2447465.62379 0.7226 —0.086

2447466.46432 0.6250 - 0 .0 2 2 2447466.48768 0.6632 -0 .0 6 1 2447466.62413 0.7231 —0.088

2447466.46467 0.6266 —0.033 2447466.48793 0.6637 -0 ,0 6 2 2447466.62448 0.7236 - 0 .0 8 7

2447466.46601 0.6262 - 0 .0 1 8 2447466.48828 0.6643 —0.068 2447465,52483 0,7242 - 0 .0 9 2

2447466.46636 0.6267 - 0 .0 2 6 2447465.48863 0.6649 -0 .0 5 1 2447466.62618 0.7248 - 0 .0 9 3

2447466.46671 0.6273 —0.030 2447466.48960 0.6666 -0 .0 6 2 2447466.52664 0.7254 - 0 .0 8 9

2447466,46606 0.6279 - 0 .0 2 2 2447465.48994 0,6670 -0 .0 6 1 2447465.62687 0.7259 - 0 .0 9 1

2447466.46640 0.6284 - 0 .0 2 6 2447466,49029 0.6676 -0 .0 6 0 2447466.52622 0.7266 - 0 ,0 9 3
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h ase (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447465.62657 0.7271 - 0 .0 8 7 2447465.66572 0,7748 -0 .1 0 1 2447466.68688 0.8269 —0.041

2447466.62691 0.7276 - 0 .0 9 3 2447466.66607 0,7754 - 0 ,1 1 5 2447466.58723 0.8266 - 0 .0 4 8
2447466.62726 0.7282 - 0 .0 8 8 2447466.66641 0.7760 - 0 ,1 0 7 2447466.68757 0.8270 - 0 .0 4 6
2447466.62761 0.7288 —0.089 2447465.55676 0.7765 - 0 .1 0 5 2447466.68792 0.8276 - 0 .0 3 3
2447466.62796 0.7293 - 0 .0 9 3 2447465.66711 0.7771 -0 .1 0 9 2447466.58827 0.8282 —0.043

2447466.62830 0.7299 - 0 .0 9 0 2447466.55746 0.7777 -0 .1 0 6 2447466.68861 0.8288 —0.038

2447466.62866 0.7305 —0.098 2447466.66780 0.7783 -0 .1 1 2 2447466.5^896 0.8293 —0.036
2447466.62969 0.7322 - 0 .0 9 1 2447465,65815 0.7788 -0 .1 0 7 2447466.68931 0.8299 - 0 .0 3 6

2447466.63004 0.7328 - 0 .0 9 2 2447466.66850 0.7794 -0 .1 0 9 2447465.68966 0.8306 —0.040
2447465.63062 0.7336 —0.090 2447466.66886 0,7800 -0 .1 0 9 2447466.69000 0.8310 - 0 ,0 3 2

2447466.63087 0.7341 - 0 .0 9 0 2447466.55919 0.7805 - 0 .1 0 3 2447465.59036 0,8316 - 0 .0 2 6

2447465.53122 0.7347 - 0 .0 9 2 2447466.66954 0.7811 —0,108 2447465.69070 0.8322 -0 ,0 2 8
2447466.63157 0.7363 —0.099 2447466.56989 0.7817 - 0 ,1 0 2 2447466.59106 0.8328 -0 .0 3 4

2447465.63191 0.7368 —0.090 2447466.56023 0.7822 - 0 .1 0 4 2447466.59139 0.8333 —0.038
2447465.63226 0.7364 - 0 .0 9 2 2447466.66068 0.7828 - 0 .1 0 0 2447465.69449 0.8384 -0 .0 3 3

2447465.63261 0.7370 —0.094 2447466.66093 0.7834 - 0 .1 0 8 2447465.69484 0.8390 - 0 .0 3 0

2447465.63296 0.7375 - 0 .0 9 7 2447466.66366 0.7877 - 0 .0 9 7 2447466.69619 0.8395 - 0 .0 3 0

2447466.63330 0.7381 —0.093 2447466.66390 0.7883 - 0 .0 9 4 2447466.69664 0.8401 - 0 .0 2 8

2447466.63366 0.7387 —0.094 2447466.66426 0.7888 - 0 .0 9 8 2447466.59988 0.8472 -0 .0 1 1

2447465.63400 0.7392 - 0 .0 9 6 2447465.66460 0.7894 - 0 .0 9 1 2447465,60022 0.8478 - 0 .0 1 8

2447465.63434 0.7398 - 0 .0 9 4 2447466.66494 0.7900 —0.098 2447466.60067 0.8484 - 0 .0 1 0

2447465.63469 0.7404 - 0 .0 9 7 2447466.66629 0.7905 - 0 .0 9 9 2447466.60092 0.8489 - 0 .0 1 1

2447466.63640 0.7416 - 0 .0 9 7 2447465.56564 0.7911 —0,096 2447465.60126 0,8496 - 0 ,0 2 1

2447466.53573 0.7421 - 0 .0 9 3 2447466.66599 0.7917 —0.086 2447465,60187 0.8606 - 0 .0 0 4

2447466.53608 0.7427 —0.094 2447465,56633 0.7922 - 0 .0 8 6 2447466,60221 0.8610 - 0 .0 1 9

2447465.53643 0.7432 - 0 .0 9 2 2447465.66668 0.7928 —0.093 2447466.60257 0.8616 - 0 .0 0 7

2447466.63677 0.7438 - 0 .1 0 0 2447466.66703 0.7934 —0.086 2447465,60291 0.8622 - 0 ,0 0 2

2447465.53712 0.7444 - 0 .0 9 7 2447466.66738 0.7940 -0 .0 9 1 2447465.60326 0.8628 - 0 .0 0 7

2447466.63986 0.7488 - 0 ,1 0 3 2447465.66772 0.7946 -0 .0 8 3 2447466.60387 0,8638 - 0 ,0 1 3

2447465.64022 0.7494 - 0 .0 9 3 2447465,66807 0.7961 —0.083 2447466.60422 0.8543 - 0 .0 0 7

2447465.64059 0.7500 - 0 ,1 0 7 2447466.66842 0.7967 -0 .0 8 1 2447466.60466 0.8549 —0,007

2447465.64164 0.7616 - 0 .1 0 0 2447466.66876 0.7962 - 0 .0 8 3 2447466.60491 0.8566 - 0 .0 0 4
2447466.64236 0.7529 - 0 .0 9 4 2447465.66911 0.7968 - 0 .0 8 6 2447466.60626 0,8660 - 0 .0 0 7
2447465.64270 0.7636 - 0 .0 9 7 2447466.66946 0.7974 .^0.087 2447466,60660 0.8666 + 0 .000

2447465.64306 0.7541 - 0 .0 9 6 2447466.66981 0.7979 -0 .0 8 2 2447466,60696 0.8572 -0 .0 0 1

2447465.64339 0.7646 - 0 .0 9 3 2447465.57016 0,7986 - 0 .0 8 2 2447466,60630 0.8677 -0 .0 0 1
2447465.64374 0.7662 - 0 .1 0 0 2447465,57338 0.8038 - 0 .0 7 2 2447466,60666 0.8683 - 0 .0 0 6

2447466.64409 0.7668 - 0 .0 9 3 2447466.57373 0.8044 -0 .0 7 6 2447466.60699 0.8689 - 0 .0 0 6

2447466.64444 0.7664 - 0 .0 9 9 2447466.67408 0.8049 -0 .0 7 2 2447466,61623 0.8740 + 0 .022

2447465.54478 0.7569 - 0 .1 0 2 2447466,67442 0.8056 —0.069 2447466,61668 0.8746 + 0 .040

2447466.64613 0.7675 - 0 .0 9 6 2447465.67477 0.8061 -0 .0 7 6 2447466.61692 0.8762 + 0 .031

2447465.64648 0.7581 - 0 .0 9 8 2447466.67512 0.8066 -0 .0 7 0 2447466,61728 0.8767 + 0 .028

2447466.54582 0.7586 - 0 .1 0 1 2447465.67647 0.8072 - 0 .0 6 7 2447466.61762 0.8763 + 0 .040

2447466.64617 0.7692 —0.092 2447465.67681 0.8078 —0.069 2447465.61797 0.8769 + 0 .030

2447466.64662 0.7698 -0 .1 0 1 2447466.67616 0.8083 - 0 .0 6 7 2447465,61831 0.8774 + 0 .041

2447465.64687 0.7603 - 0 .1 0 8 2447466.57651 0.8089 -0 .0 7 3 2447466.61866 0.8780 + 0 .029

2447466.64721 0.7609 —0.099 2447466.57686 0,8096 -0 .0 7 6 2447466,61902 0,8786 + 0 ,039

2447466.64756 0.7616 - 0 ,1 0 0 2447465.67720 0,8101 —0.067 2447465.61936 0.8791 + 0 .030
2447466.54791 0.7620 —0.098 2447466.57766 0.8106 —0,066 2447466.62138 0.8826 + 0 .058

2447466.54826 0.7626 - 0 .1 0 8 2447466.67790 0.8112 - 0 .0 7 2 2447465.62172 0.8830 + 0 .064

2447465.54860 0.7632 - 0 ,0 9 6 2447465.57824 0.8118 - 0 .0 6 6 2447465.62206 0,8836 + 0 .046

2447465.54896 0.7637 - 0 .0 9 7 2447466.67859 0.8123 - 0 .0 6 6 2447465.62241 0.8842 + 0 .066

2447466.66433 0.7726 - 0 .1 0 6 2447465.57894 0.8129 - 0 .0 6 4 2447465.62276 0.8847 + 0 .058

2447466.66468 0.7731 - 0 .1 0 3 2447465.57963 0.8140 -0 .0 6 4 2447466.62310 0.8863 + 0 .060

2447466.56603 0.7737 -0 .1 0 1 2447466.67998 0.8146 -0 .0 6 3 2447465.62483 0.8881 + 0 .072

2447466.66637 0.7743 - 0 .1 0 0 2447466.58663 0.8263 -0 .0 4 0 2447466.62618 0.8887 + 0 .081
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447466.62662 0.8892 + 0 .078 2447466.65508 0.9377 + 0 .287 2447465,68905 0.9934 + 0 .690

2447466.62687 0.8898 + 0 ,077 2447465,66542 0.9383 + 0 .2 7 7 2447465.68940 0.9940 + 0 .6 9 2

2447466.62622 0.8904 + 0 .079 2447466.66651 0.9400 + 0 .298 2447466,68976 0.9945 + 0 .600

2447466.62667 0.8910 + 0 .078 2447466,66685 0.9406 + 0 .302 2447466.69010 0.9951 + 0 .583

2447466.62691 0.8915 + 0 .084 2447466,66720 0.9412 + 0 .306 2447465.69044 0.9957 + 0 .699 %

2447466.62726 0.8921 + 0 .082 2447465.65756 0.9417 + 0 .308 2447465.89079 0.9962 + 0 .692

2447466.62761 0.8927 + 0 .082 2447466.66790 0.9423 + 0 .314 2447468.69168 0.9977 + 0 .691

2447466.62796 0.8932 + 0 .088 2447465.65824 0.9429 + 0 .323 2447466.69203 0.9983 + 0 .698

2447466.63062 0.8976 + 0 .122 2447466.66869 0.9435 + 0 ,329 2447466.60238 0.9988 + 0 .694
2447466.63096 0.8982 + 0 .113 2447465.66894 0.9440 + 0 .328 2447465.69272 0.9994 + 0 .690

2447466.63131 0.8987 + 0 .111 2447466.65929 0.9446 + 0 .323 2447466.69307 0.0000 + 0 .686 "4

2447466.63166 0.8993 + 0 .1 1 0 2447465.65963 0.9462 + 0 .336 2447466.69342 0.0006 + 0 .694

2447466.63201 0,8999 + 0 .120 2447465.66182 0.9487 + 0 .366 2447465,69376 0.0011 + 0 .696

2447466.63236 0.9004 + 0 .118 2447466.66217 0.9493 + 0 .363 2447466.69411 0.0017 + 0 .691

2447466.63270 0.9010 + 0 .115 2447465.66263 0.9499 + 0 .366 2447466.69446 0,0022 + 0 .592

2447466.63306 0.9016 + 0 .118 2447465.66286 0.9506 + 0 .362 2447465.69481 0.0028 + 0 .699

2447466.63339 0.9021 + 0 .129 2447465.66321 0.9510 + 0 .369 2447465.69627 0.0036 + 0 ,6 9 0

2447466.63374 0.9027 + 0 .128 2447465.66356 0.9616 + 0 .367 2447466.69562 0.0041 + 0 .689

2447466.63424 0.9036 + 0 .132 2447466.66390 0.9622 + 0 .369 2447465.69696 0.0047 + 0 .692

2447466.63469 0.9041 + 0 .1 3 7 2447465.66425 0.9627 + 0 .382 2447466.69631 0.0063 + 0 .694 +

2447466.63493 0.9047 + 0 .1 3 6 2447465.66460 0.9533 + 0 .376 2447466.69666 0.0069 + 0 .591

2447466.63628 0.9062 + 0 .148 2447466.66494 0.9639 + 0 .381 2447466.69701 0.0064 + 0 .681 4
2447466.63663 0.9068 + 0 .133 2447466.66721 0.9676 + 0 .417 2447466.69736 0.0070 + 0 .676

2447465.63698 0.9064 + 0 .140 2447466.66766 0.9682 + 0 .407 2447466.69770 0.0076 + 0 .688

2447466.63632 0.9070 + 0 ,146 2447465,66791 0.9587 + 0 .419 2447465,69806 0.0081 + 0 .583

2447466.63667 0.9076 + 0 .1 4 7 2447466.66827 0.9593 + 0 .423 2447466,69839 0.0087 + 0 .684

2447466.63702 0.9081 + 0 .144 2447466.66860 0.9599 + 0 .418 2447466,69971 0.0109 + 0 .678

2447466.63736 0.9087 + 0 .166 2447466,66896 0.9604 + 0 .431 2447466,70006 0.0114 + 0 .678

2447466.64021 0,9133 + 0 .171 2447466.66930 0.9610 + 0 .428 2447465,70041 0.0120 + 0 .671 , -j
2447466.64056 0,9139 + 0 .1 8 0 2447465,66964 0.9616 + 0 .439 2447466,70076 0.0126 + 0 .668

2447466.64091 0,9145 + 0 .166 2447465,66999 0.9621 + 0 .438 2447466,70110 0.0131 + 0 .668

2447466.64126 0.9150 + 0 .172 2447466.67034 0.9627 + 0 .466 2447466,70146 0.0137 + 0 .566

2447466.64160 0,9166 + 0 .1 7 7 2447466.67743 0.9743 + 0 .607 2447466,70180 0.0143 + 0 .568

2447466.64196 0.9162 + 0 .183 2447466.67778 0.9749 + 0 .620 2447466,70214 0.0148 + 0 .668

2447466.64229 0,9167 + 0 .182 2447466.67813 0.9766 + 0 .629 2447466,70249 0.0164 + 0 .671

2447466.64264 0,9173 + 0 .180 2447465.67848 0.9761 + 0 .634 2447466.70284 0.0160 + 0 .564

2447466.64299 0.9179 + 0 .1 8 7 2447466.67882 0.9766 + 0 .628 2447466.70334 0.0168 + 0 .661

2447466.64334 0,9185 + 0 .201 2447465,67917 0.9772 + 0 .566 2447465.70368 0.0174 + 0 .566

2447466.64382 0,9192 + 0 .196 2447465.67962 0.9778 + 0 .639 2447466.70403 0,0179 + 0 .667

2447466.64417 0,9198 + 0 .1 9 2 2447466.67986 0.9783 + 0 .533 2447466.70438 0,0186 + 0 .636 -

2447466.64462 0,9204 + 0 ,214 2447466.68021 0.9789 + 0 .648 2447466.70473 0.0191 + 0 .6 6 2

2447466.64486 0,9209 + 0 .2 0 7 2447466.68066 0.9796 + 0 .630 2447466.70607 0.0196 + 0 .561

2447466.64621 0.9216 + 0 .2 0 6 2447466.68141 0.9809 + 0 .649 2447466.70642 0,0202 + 0 .542

2447466.64566 0.9221 + 0 .2 1 2 2447466.68176 0.9814 + 0 .666 2447466.70677 0.0208 + 0 .646

2447466.64691 0.9227 + 0 .209 2447466.68211 0.9820 + 0 .666 2447466.70611 0,0213 + 0 .540

2447466.64626 0.9232 + 0 .2 1 7 2447466.68246 0.9826 + 0 .663 2447466.70646 0.0219 + 0 .642

2447466.64660 0.9238 + 0 .216 2447465.68280 0.9831 + 0 .666 2447466.71221 0.0313 + 0 .486

2447466.64696 0.9244 + 0 .221 2447466.68315 0.9837 + 0 .664 2447466.71266 0.0319 + 0 .488 ■À

2447466.66229 0.9331 + 0 .2 6 7 2447465.68360 0.9843 + 0 .566 2447466.71291 0.0326 + 0 .468

2447466.66264 0.9337 + 0 .260 2447465.68386 0.9849 + 0 .666 2447465.71326 0.0331 + 0 .473

2447466.66299 0.9343 + 0 .273 2447465.68419 0.9854 + 0 .676 2447466.71360 0.0336 + 0 .476 1
2447466.66334 0.9348 + 0 .270 2447466.68464 0.9860 + 0 .676 2447466.71396 0.0342 + 0 .469

2447466.66368 0,9364 + 0 .2 6 8 2447466.68766 0.9911 + 0 .680 2447466.71430 0.0348 + 0 .462

2447466.66403 0,9360 + 0 .271 2447465.68801 0.9917 + 0 .683 2447466.71464 0.0363 + 0 .456

2447465.66438 0.9366 + 0 .2 7 6 2447466.68837 0.9923 + 0 .696 2447466.71499 0.0369 + 0 .466

2447466.65473 0.9371 + 0 .282 2447465.68871 0.9928 + 0 .689 2447466.71634 0.0366 + 0 .446
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447466:71680 0.0372 + 0 .440 2447466.48322 0.2961 -0 .0 9 6 2447466.50773 0.3352 —0.069

2447466.71616 0.0378 + 0 ,444 2447466.48366 0.2966 -0 .0 8 8 2447466.60808 0.3368 - 0 .0 6 6

2447466.71660 0.0384 + 0 .441 2447466.48391 0.2962 —0.099 2447466.50843 0.3364 —0.062

2447466.71684 0.0389 + 0 .436 2447466.48638 0.2986 -0 .0 9 3 2447466.60877 0.3369 - 0 .0 6 5

2447466.71719 0.0396 + 0 .431 2447466.48673 0.2992 —0.098 2447466.50912 0.3376 - 0 .0 7 0

2447466.71764 0.0401 + 0 .436 2447466.48608 0.2997 - 0 .0 9 7 2447466.60947 0.3381 - 0 .0 6 2

2447466.71788 0.0406 + 0 .4 2 8 2447466.48642 0.3003 -0 .1 0 6 2447466.60981 0.3386 - 0 .0 6 7

2447466.71823 0.0412 + 0 .412 2447466.48677 0.3009 —0.091 2447466.61386 0.3463 - 0 .0 5 2

2447466.71868 0.0418 + 0 .404 2447466.48712 0.3014 -0 .0 8 6 2447466.61421 0.3458 - 0 .0 4 8

2447466.71893 0.0424 + 0 .426 2447466.48748 0.3020 —0.083 2447466.61466 0.3464 - 0 .0 6 4

2447466.72074 0.0463 + 0 .393 2447466.48782 0.3026 —0.087 2447466.61489 0.3470 —0.040

2447466.72109 0.0469 + 0 .399 2447466.48816 0.3032 -0 .0 9 4 2447466,61624 0.3476 - 0 .0 4 3

2447466.72144 0.0465 + 0 .393 2447466.48861 0.3037 —0.090 2447466.51669 0.3481 - 0 .0 4 6

2447466.72179 0.0470 + 0 .381 2447466.48900 0.3045 —0.090 2447466,61694 0.3487 - 0 .0 4 7

2447466.72213 0.0476 + 0 .3 7 7 2447466.48936 0.3051 —0.086 2447466.61628 0.3492 - 0 .0 4 8

2447466.72248 0.0482 + 0 .381 2447466.48970 0.3067 - 0 .0 9 7 2447466.61663 0.3498 - 0 .0 4 9

2447466.72283 0.0487 + 0 .370 2447466.49005 0.3063 - 0 .0 8 6 2447466.61698 0.3604 -0 .0 6 1

2447466.72317 0.0493 + 0 .3 7 6 2447466.49039 0.3068 -0 .0 8 7 2447466.51733 0.3610 - 0 .0 6 4

2447466.72362 0.0499 + 0 .362 2447466.49074 0.3074 -0 .0 9 0 2447466.61767 0.3615 -0 .0 4 2

2447466.72387 0.0604 + 0 .368 2447466.49109 0.3080 -0 .0 8 8 2447466.51802 0.3521 - 0 .0 5 6

2447466.72434 0.0612 + 0 .3 6 4 2447466.49143 0.3086 -0 .0 8 0 2447466.51837 0.3527 - 0 .0 4 8

2447466.72469 0.0618 + 0 .360 2447466.49178 0.3091 -0 .0 9 7 2447466.61871 0.3632 —0.043

2447466.72604 0.0624 + 0 .369 2447466.49213 0.3097 —0.080 2447466.51906 0.3538 -0 .0 3 1

2447466.72638 0.0529 + 0 .346 2447466.49418 0.3130 -0 .0 8 3 2447466.61941 0.3544 -0 .0 3 8

2447465.72673 0.0636 + 0 .3 3 7 2447466.49452 0.3136 - 0 .0 8 3 2447466.61976 0,3549 -0 ,0 3 0

2447465.72608 0.0641 + 0 .343 2447466.49487 0,3142 - 0 .0 7 3 2447466.62010 0.3666 -0 ,0 2 8

2447466.72643 0.0546 + 0 .3 3 7 2447466.49622 0,3147 -0 ,0 8 6 2447466.62045 0.3661 - 0 .0 3 0

2447466.72679 0.0662 + 0 .3 3 4 2447466.49667 0,3163 -0 ,0 8 8 2447466.52218 0.3689 —0.022

2447466.72712 0.0558 + 0 .336 2447466.49691 0.3169 - 0 .0 7 7 2447466.62262 0.3695 -0 ,0 2 9

2447466.72748 0.0664 + 0 .327 2447466.49626 0.3164 -0 .0 8 0 2447466.62287 0.3600 - 0 .0 2 2

2447466.72883 0.0686 + 0 .310 2447466.49661 0.3170 —0.073 2447466.62322 0.3606 - 0 .0 1 7

2447466.72918 0.0692 + 0 .308 2447466.49697 0.3176 -0 .0 7 6 2447466.62366 0.3612 -0 .0 3 1

2447466.72953 0.0697 + 0 .309 2447466.49730 0.3181 -0 .0 7 6 2447466.52391 0.3617 -0 .0 3 1

2447466.72988 0.0603 + 0 .302 2447466.49766 0.3187 —0.068 2447466.62426 0.3623 - 0 .0 2 2

2447465.73023 0.0609 + 0 .308 2447466.49800 0.3193 - 0 .0 7 2 2447466.62461 0.3629 -0 .0 1 9

2447465.73067 0.0614 + 0 .296 2447466.49834 0.3198 -0 .0 7 3 2447466.62495 0.3635 - 0 .0 2 3

2447466.73092 0.0620 + 0 .290 2447466.49869 0.3204 -0 .0 8 1 2447466.62630 0.3640 - 0 .0 1 9

2447466.73126 0.0626 + 0 .290 2447466.49904 0.3210 - 0 .0 7 7 2447466.62566 0.3646 - 0 .0 2 4

2447465.73161 0.0631 + 0 .291 2447466.49939 0.3216 -0 .0 8 3 2447466.62599 0.3662 - 0 .0 1 4

2447466.47716 0.2861 - 0 .0 9 8 2447466.49973 0.3221 -0 .0 7 9 2447466.62634 0.3667 - 0 .0 3 2

2447466.47761 0.2867 - 0 .1 0 0 2447466.60008 0.3227 -0 .0 6 8 2447466.62669 0.3663 - 0 ,0 2 4

2447466.47786 0.2863 - 0 .1 0 7 2447466.60043 0.3233 - 0 .0 7 6 2447466,62704 0.3669 - 0 .0 1 6

2447466.47821 0.2868 - 0 .1 0 2 2447466,50077 0.3238 -0 .0 7 4 2447466.62738 0.3674 —0.026

2447466.47866 0.2874 - 0 .0 9 7 2447466.60322 0.3278 —0.068 2447466.62773 0.3680 - 0 .0 2 4

2447466.47890 0.2880 - 0 .0 9 6 2447466.50356 0.3284 - 0 .0 6 7 2447466.52808 0.3686 - 0 .0 2 6

2447466.47925 0.2886 - 0 .1 0 7 2447466.60391 0.3290 —0.068 2447466.62843 0.3692 - 0 .0 1 6

2447466.47969 0.2891 —0.096 2447466.60426 0.3296 -0 .0 6 6 2447466.62877 0.3697 —0.008

2447466.47995 0.2897 - 0 .0 9 7 2447466.60461 0.3301 -0 .0 6 9 2447466.63110 0.3736 - 0 .0 0 4

2447466.48029 0.2903 —0.094 2447466.60496 0.3307 - 0 .0 6 0 2447466.63145 0.3741 + 0 .001

2447466.48079 0.2911 - 0 .0 9 7 2447466.60630 0.3312 —0.068 2447466.63179 0.3747 —0.006

2447466.48113 0.2916 - 0 .1 0 6 2447466.60666 0.3318 - 0 ,0 6 7 2447466.63214 0.3762 - 0 .0 0 6

2447466.48148 0.2922 - 0 .0 9 6 2447466.60699 0.3324 -0 .0 6 8 2447466.63249 0.3788 - 0 .0 1 2

2447466.48183 0.2928 - 0 .0 9 0 2447466.50634 0.3330 —0.068 2447466.63283 0.3764 + 0 .003

2447466.48218 0.2934 - 0 .0 9 3 2447466.50669 0.3335 —0.069 2447466.53318 0.3769 - 0 .0 0 6

2447466.48252 0.2939 - 0 .0 9 7 2447466.50704 0.3341 - 0 .0 5 9 2447466.63363 0.3775 - 0 .0 0 6

2447466.48287 0.2946 - 0 .0 9 6 2447466.60738 0.3347 -0 .0 6 8 2447466.63388 0.3781 -0 .0 0 8

1
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447466.53422 0.3786 -0 .0 0 9 2447466.67139 0.4396 + 0 .091 2447466.69930 0.4863 + 0 .154 4
2447466.53457 0.3792 -0 .0 1 2 2447466.67172 0.4401' + 0 .086 2447466.69965 0.4859 + 0 .1 6 9 4
2447466.53492 0.3798 - 0 .0 1 2 2447466.57207 0.4407 + 0 .086 2447466.60000 0.4866 + 0 ,173 e

2447466.83527 0,3804 - 0 .0 0 4 2447466.67243 0.4413 + 0 .101 2447466,60069 0.4876 + 0 .148
1

2447466.53661 0.3809 - 0 .0 0 7 2447466.67277 0.4418 + 0 .091 2447466.60104 0.4882 + 0 ,169

2447466.63631 0.3821 - 0 .0 1 2 2447466.67311 0.4424 + 0 .097 2447466,60139 0.4887 + 0 .164

2447466.53666 0,3826 —0.007 2447466.67346 0.4430 + 0 .087 2447466,60174 0.4893 + 0 ,160
2447466.53736 0,3838 - 0 .0 0 5 2447466.67381 0.4436 + 0 .091 2447466,60208 0.4899 + 0 .167

2447466.53770 0.3844 - 0 .0 0 8 2447466.67606 0.4472 + 0 .102 2447466,60243 0.4904 + 0 .161

2447466.54960 0.4037 + 0 .026 2447466.57640 0.4478 + 0 .096 2447466.60278 0.4910 + 0 .173

2447466.54985 0.4043 + 0 ,027 2447466,67675 0.4484 + 0 .108 2447466.60314 0.4916 + 0 .1 5 7

2447466.66020 0,4048 + 0 .029 2447466,57709 0.4489 + 0 .104 2447466.60483 0.4944 + 0 .169
2447466.56054 0.4064 + 0 .022 2447466.67744 0.4496 + 0 .107 2447466.60517 0.4949 + 0 .164
2447466.66089 0.4060 + 0 .032 2447466,67780 0.4501 + 0 .094 2447466,60652 0.4966 + 0 .174
2447466.55124 0.4065 + 0 .036 2447466,57814 0.4506 + 0 .102 2447466,60587 0.4961 + 0 .1 7 7

2447466.66158 0.4071 + 0 .030 2447466.67848 0.4612 + 0 .099 2447466.60621 0.4966 + 0 .173

2447466.55193 0.4077 + 0 .032 2447466.57883 0.4618 + 0 .104 2447466,60666 0.4972 + 0 .179
2447466.55228 0.4082 + 0 .027 2447466.67918 0.4523 + 0 .104 2447466.60691 0.4978 + 0 .161

2447466.56263 0.4088 + 0 .040 2447466.67952 0.4529 + 0 .114 2447466,60726 0.4984 + 0 .177
2447466.55297 0.4094 + 0 .032 2447466.67987 0.4536 + 0 .116 2447466,60760 0.4989 + 0 .158 '-4

2447466.55332 0.4100 + 0 .049 2447466.68022 0.4540 + 0 .116 2447466,60796 0.4995 + 0 .164
2447466.56367 0.4106 + 0 .037 2447466.68057 0.4646 + 0 .126 2447466.60830 0.6001 + 0 .168

2447466.56402 0.4111 + 0 .0 4 3 2447466.68091 0.4662 + 0 .116 2447466,60864 0,5006 + 0 .176

2447466.56436 0.4117 + 0 .046 2447466,68126 0.4567 + 0 .123 2447466,60899 0.6012 + 0 .174 4

2447466.55560 0.4137 + 0 .060 2447466.68161 0.4563 + 0 .117 2447466.60934 0.6018 + 0 .176 J

2447466.56596 0.4143 + 0 .046 2447466.58196 0.4669 + 0 .116 2447466.60969 0,6023 + 0 .177
2447466,65630 0.4148 + 0 .044 2447466.58230 0.4676 + 0 .119 2447466.61003 0.5029 + 0 .178

2447466.66664 0.4164 + 0 .048 2447466.58266 0.4680 + 0 .112 2447466.61038 0.6036 + 0 .181

2447466.65699 0.4160 + 0 .054 2447466.58944 0.4692 + 0 ,132 2447466.61073 0.5041 + 0 .177
1

2447466.65734 0.4165 + 0 .050 2447466.68979 0.4697 + 0 ,136 2447466.61108 0.5046 + 0 .176

2447466.56770 0.4171 + 0 .0 5 0 2447466.59014 0.4703 + 0 ,138 2447466.61142 0.5062 + 0 .181
2447466.65803 0.4177 + 0 .048 2447466.59049 0.4709 + 0 .132 2447466.61347 0.5086 + 0 .161

2447466.66839 0.4183 + 0 .0 4 9 2447466.59083 0.4714 + 0 ,140 2447466.61382 0.5091 + 0 .158

2447466.66873 0.4188 + 0 ,054 2447466.59118 0.4720 + 0 .130 2447466.61417 0.5097 + 0 .166

2447466.66907 0.4194 + 0 .046 2447466.69163 0.4726 + 0 .129 2447466.61461 0.6102 + 0 .169

j2447466.55942 0,4200 + 0 .067 2447466.69187 0.4731 + 0 .133 2447466.61486 0,5108 + 0 .163

2447466.56977 0.4205 + 0 .062 2447466.69222 0.4737 + 0 .143 2447466.61621 0.6114 + 0 .155

2447466.66011 0.4211 + 0 .068 2447466.69267 0.4743 + 0 .141 2447466.61555 0.6120 + 0 .164

2447466.66046 0.4217 + 0 .058 2447466,69292 0.4749 + 0 .136 2447466.61590 0.6126 + 0 .171

2447466.56081 0.4222 + 0 .070 2447466,69327 0.4764 + 0 .139 2447466.61626 0.6131 + 0 .166

2447466.66116 0.4228 + 0 .069 2447466,69361 0.4760 + 0 .138 2447466.61660 0.6137 + 0 .164

2447466.66160 0.4234 + 0 .063 2447466,69396 0,4766 + 0 .139 2447466.61694 0.6142 + 0 .160

2447466.66186 0.4239 + 0 .063 2447466.69432 0.4772 + 0 .161 2447466.61729 0.6148 + 0 .162 fî

2447466.66220 0.4245 + 0 .065 2447466.69466 0.4777 + 0 .139 2447466.61764 0.6154 + 0 .159
‘i

2447466.56721 0.4327 + 0 .078 2447466.69600 0.4783 + 0 .141 2447466.61799 0.6169 + 0 .166

2447466.66756 0.4333 + 0 .081 2447466.69636 0.4788 + 0 .144 2447466.61833 0.6165 + 0 .157

2447466.66790 0,4339 + 0 .074 2447466.69669 0.4794 + 0 .163 2447466,61868 0.6171 + 0 .166 ‘f
2447466.56826 0.4344 + 0 ,080 2447466,69604 0.4800 + 0 .149 2447466.61903 0.6177 + 0 .166

2447466.66860 0.4350 + 0 .084 2447466,69663 0.4808 + 0 .143 2447466.61937 0.6182 + 0 .166 "f:

2447466.66896 0.4356 + 0 .085 2447466,69689 0.4814 + 0 .147 2447466.61972 0.5188 + 0 .159

2447466.66929 0.4361 + 0 .087 2447466.69722 0.4819 + 0 .146 2447466.62007 0.6194 + 0 .166 J
2447466,66964 0.4367 + 0 .090 2447466.69767 0.4825 + 0 .142 2447467.40830 0.8113 - 0 .0 7 3

2447466.56999 0.4373 + 0 .0 8 2 2447466.59792 0.4831 + 0 .161 2447467.40864 0.8119 -0 .0 6 1

2447466.57033 0.4378 + 0 .0 9 4 2447466.69826 0.4836 + 0 ,160 2447467.40899 0.8124 —0.068

2447466,67068 0.4384 + 0 ,0 8 8 2447466.59861 0.4842 + 0 ,164 2447467.40933 0.8130 - 0 .0 7 4

2447466,67103 0.4390 + 0 .0 8 6 2447466.69896 0.4848 + 0 .164 2447467.40968 0.8136 - 0 .0 6 6 4::
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Table 5.11: 1988 TPT V observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

244746T.41003 0.8141 - 0 .0 7 9 2447467.43690 0.8682 + 0 .010 2447467.46313 0,9012 + 0 .107

2447467.41038 0.8147 - 0 .0 6 8 2447467.43726 0.8688 -0 ,0 0 1 2447467.47435 0.9196 + 0 .198

2447467.41072 0.8153 - 0 .0 6 2 2447467.43760 0.8693 + 0.001 2447467.47469 0,9201 + 0 .1 9 6

2447467.41107 0.8158 - 0 .0 6 4 2447467.43796 0.8699 + 0 ,005 2447467.47604 0,9207 + 0 .203

2447467.41142 0.8164 —0.060 2447467.43829 0.8605 + 0 ,016 2447467,47639 0.9213 + 0 .200

2447467.41270 0.8185 - 0 .0 6 8 2447467.43865 0.8610 + 0 .005 2447467,47573 0,9218 + 0 .211

2447467.41306 0.8191 - 0 .0 6 4 2447467,43899 0.8616 + 0 ,005 2447467.47608 0,9224 + 0 .206

2447467.41340 0.8197 - 0 .0 6 2 2447467.43933 0.8622 + 0 .010 2447467.47643 0.9230 + 0 .2 0 7

2447467.41374 0.8202 —0.064 2447467.43968 0.8627 + 0 .006 2447467.47678 0.9235 + 0 .219

2447467.41409 0.8208 - 0 .0 6 4 2447467.44003 0.8633 + 0 .016 2447467.47712 0,9241 + 0 .222

2447467.41444 0.8214 - 0 .0 6 8 2447467.44038 0.8639 + 0 ,020 2447467.47747 0.9247 + 0 .220

2447467.41479 0.8219 - 0 .0 6 7 2447467.44072 0.8644 + 0 .021 2447467.47782 0,9262 + 0 .230

2447467.41613 0.8225 - 0 .0 4 8 2447467.44107 0.8660 + 0 ,021 2447467,47818 0,9268 + 0 .2 2 7

2447467.41648 0.8231 - 0 .0 5 9 2447467.44142 0.8666 + 0 ,017 2447467.47851 0,9264 + 0 .2 3 7

2447467.41683 0.8236 - 0 .0 6 1 2447467.44176 0.8661 + 0 .019 2447467.47886 0.9270 + 0 .242

2447467.41628 0.8244 - 0 .0 4 2 2447467.44211 0.8667 + 0 .021 2447467,47921 0,9276 + 0 .242

2447467.41663 0.8250 - 0 .0 4 2 2447467.44247 0.8673 + 0 .028 2447467.47956 0.9281 + 0 .238

2447467.41697 0.8255 - 0 .0 4 8 2447467.44791 0.8762 + 0 .042 2447467.47990 0.9287 + 0 ,2 4 7

2447467.41732 0.8261 - 0 .0 4 7 2447467.44826 0.8768 + 0 .030 2447467,48026 0.9292 + 0 .262
2447467.41767 0.8267 - 0 .0 4 0 2447467.44860 0.8774 + 0 ,029 2447467,48061 0.9298 + 0 ,248

2447467.41801 0.8272 - 0 .0 5 3 2447467.44895 0.8779 + 0 .035 2447467.48095 0.9304 + 0 .266

2447467.41836 0.8278 - 0 .0 4 5 2447467.44930 0.8785 + 0 .042 2447467.48297 0,9337 + 0 .2 6 7

2447467.41871 0.8284 - 0 .0 4 8 2447467.44966 0.8791 + 0 ,041 2447467.48332 0.9343 + 0 .271

2447467.41906 0.8289 - 0 .0 3 9 2447467.44999 0.8796 + 0 .032 2447467,48366 0.9348 + 0 .2 8 7

2447467.41940 0.8295 —0.043 2447467.45034 0.8802 + 0 ,041 2447467.48401 0.9354 + 0 .278

2447467.42341 0.8361 - 0 .0 2 9 2447467.45069 0.8808 + 0 .046 2447467,48436 0.9360 + 0 .282

2447467.42376 0.8366 - 0 .0 2 3 2447467.46104 0.8814 + 0 .048 2447467.48470 0,9365 + 0 .284

2447467.42411 0.8372 - 0 .0 2 3 2447467.46138 0.8819 + 0 ,043 2447467.48605 0,9371 + 0 .298

2447467.42445 0.8378 -0 .0 2 1 2447467.46173 0.8825 + 0 ,060 2447467.48640 0.9377 + 0 .291
2447467.42614 0.8389 —0.022 2447467,46208 0.8831 + 0 .064 2447467.48675 0.9382 + 0 .300

2447467.42660 0.8395 - 0 .0 2 8 2447467.45242 0.8836 + 0 ,062 2447467,48609 0.9388 + 0 ,296

2447467.42619 0.8406 - 0 ,0 2 4 2447467.46277 0.8842 + 0 .048 2447467.48644 0.9394 + 0 .293

2447467.42663 0.8412 - 0 .0 2 1 2447467.46312 0.8848 + 0 .064 2447467.48679 0.9399 + 0 .313

2447467.42789 0.8434 - 0 .0 2 9 2447467,45347 0.8853 + 0 .066 2447467.48713 0.9406 + 0 .299

2447467.42823 0.8440 - 0 .0 2 3 2447467.46381 0.8859 + 0 .064 2447467.48748 0.9411 + 0 .297

2447467.42868 0.8446 - 0 .0 2 2 2447467,45416 0.8865 + 0 .062 2447467.48783 0,9417 + 0 .308

2447467.42893 0.8451 - 0 .0 1 7 2447467.45462 0,8871 + 0 .059 2447467,48818 0.9422 + 0 .316

2447467.42928 0.8457 - 0 .0 1 9 2447467.45663 0,8904 + 0 ,069 2447467.48852 0,9428 + 0 .3 1 0

2447467.42962 0.8462 - 0 .0 1 6 2447467.45688 0.8909 + 0 ,071 2447467.48887 0,9434 + 0 .316

2447467.42997 0.8468 - 0 .0 1 8 2447467.45723 0.8916 + 0,071 2447467.48922 0.9439 + 0 .3 1 7

2447467.43033 0.8474 - 0 .0 1 3 2447467.45767 0.8921 + 0 ,084 2447467.48957 0.9446 + 0 ,326

2447467.43066 0.8479 - 0 .0 1 3 2447467.46792 0.8926 + 0 .083 2447467.49172 0.9480 + 0 .348

2447467.43101 0.8485 - 0 .0 1 7 2447467.46827 0.8932 + 0 .081 2447467,49205 0.9486 + 0 .355

2447467.43136 0.8491 - 0 .0 0 8 2447467.46862 0.8938 + 0 ,075 2447467.49240 0.9491 + 0 .365

2447467.43171 0.8497 - 0 .0 1 1 2447467.46896 0.8943 + 0 .093 2447467.49275 0.9497 + 0 .360

2447467.43206 0.8502 - 0 ,0 1 3 2447467,46931 0.8949 + 0 .091 2447467.49310 0.9603 + 0 .370

2447467.43240 0.8508 -0 .0 1 1 2447467.46966 0.8956 + 0 .088 2447467,49344 0.9608 + 0 .375

2447467.43276 0.8514 - 0 .0 0 4 2447467.46001 0,8961 + 0 .092 2447467.49379 0.9514 + 0 .3 7 7

2447467.43310 0.8519 - 0 .0 1 4 2447467.46036 0.8966 + 0 .094 2447467.49414 0.9620 + 0 .384

2447467.43344 0.8626 -0 .0 1 4 2447467.46070 0,8972 + 0 .102 2447467.49448 0.9626 + 0 .380

2447467.43379 0.8631 - 0 .0 0 9 2447467,46106 0.8978 + 0 .097 2447467.49483 0.9631 + 0 .392

2447467.43414 0.8637 - 0 .0 0 1 2447467.46139 0.8983 + 0 .103 2447467.49618 0.9537 + 0 .401

2447467.43448 0.8542 —0.010 2447467.46174 0.8989 + 0 .096 2447467.49663 0.9643 + 0 .394

2447467.43686 0.8566 + 0 .0 0 3 2447467.46209 0.8996 + 0 .102 2447467,49587 0.9648 + 0 .398

2447467.43621 0.8670 + 0 .0 1 2 2447467.46244 0.9000 + 0 .101 2447467.49622 0.9564 + 0 ,410

2447467.43666 0.8576 + 0 .012 2447467.46278 0.9006 + 0 .105 2447467.49657 0.9660 + 0 .406
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Table 5.11: 1988 TFT V observations — continued.

H .J .D . P h ase (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )
2447467.49691 0.9565 + 0 .411 2447467.62224 0.9981 + 0 .586 2447469.28026 0.8796 + 0 .047 i
2447467.49726 0.9571 + 0 .4 0 6 2447467.62269 0.9986 + 0 .587 2447469,28060 0.8801 + 0 .028 . ï

2447467.49761 0.9677 + 0 .410 2447467.62293 0.9992 + 0 .698 2447469,28095 0.8807 + 0 .042 !
2447467.49796 0.9683 + 0 .417 2447467.52328 0.9998 + 0 .689 2447469.28130 0.8812 + 0 .064

2447467.49830 0.9588 + 0 .408 2447467.62364 0.0003 + 0 .597 2447469.28166 0.8818 + 0 .042 4
2447467.60231 0.9664 + 0 .468 2447467.62398 0.0009 + 0 .590 2447469.28199 0.8824 + 0 .066

2447467.50266 0.9660 + 0 .444 2447467.62432 0.0015 + 0 .588 2447469.28234 0.8829 + 0 .042
1

2447467.50300 0.9665 + 0 .473 2447467.52467 0.0020 + 0 .692 2447469.28269 0.8836 + 0 .061 1

2447467.50336 0.9671 + 0 .467 2447467.62602 0.0026 + 0 .693 2447469.28689 0.8904 + 0 .065

2447467.50370 0.9677 + 0 .469 2447467.62668 0.0036 + 0 .691 2447469.28724 0.8910 + 0 .069

2447467.50404 0.9682 + 0 .467 2447467.52693 0.0041 + 0 .596 2447469.28768 0.8916 + 0 .071

2447467.50439 0.9688 + 0 .4 7 6 2447467.62628 0.0047 + 0 .590 2447469.28793 0.8921 + 0 .0 7 5 ■§
2447467.50474 0.9694 + 0 .475 2447467.62663 0.0062 + 0 .593 2447469.28828 0.8927 + 0 .067

2447467.50609 0.9699 + 0 .476 2447467.52697 0.0068 + 0 .587 2447469.28863 0.8932 + 0 .080

2447467.60643 0.9705 + 0 .491 2447467.62732 0.0064 + 0 .684 2447469.28897 0.8938 + 0 .066

2447467.50578 0.9711 + 0 ,491 2447467.62767 0.0070 + 0 .581 2447469.28932 0.8944 + 0 .083

2447467.60614 0.9717 + 0 .5 0 0 2447467.62801 0.0075 + 0 .680 2447469.28967 0.8949 + 0 .080

2447467.60648 0.9722 + 0 .498 2447467.52836 0.0081 + 0 .6 7 7 2447469.29001 0.8965 + 0 .076

2447467.50682 0.9728 + 0 .490 2447467.62871 0.0087 + 0 .680 2447469.29067 0.8966 + 0 .090
2447467.60717 0.9734 + 0 .498 2447467.62906 0.0092 + 0 .682 2447469.29102 0.8972 + 0 .083

2447467.50762 0.9739 + 0 .611 2447467.62940 0.0098 + 0 .690 2447469.29137 0.8977 + 0 .076

2447467.60786 0.9746 + 0 .606 2447467.62975 0.0104 + 0 .681 2447469.29172 0.8983 + 0 .085

2447467.50821 0.9761 + 0 .516 2447467.53010 0.0109 + 0 .682 2447469.29206 0.8989 + 0 .0 9 6

2447467.60856 0.9756 + 0 .507 2447467.63046 0.0116 + 0 .671 2447469.29241 0.8994 + 0 .099

2447467.60891 0.9762 + 0 .6 1 4 2447467.63079 0.0121 + 0 .674 2447469.29276 0.9000 + 0 .092

2447467.61090 0.9796 + 0 .6 3 0 2447467.53114 0.0126 + 0 .667 2447469.29310 0.9006 + 0 .102

2447467.61123 0.9800 + 0 .532 2447467.53149 0.0132 + 0 .667 2447469.29345 0.9011 + 0 .107
"%

2447467.61168 0.9806 + 0 .840 2447467.63183 0.0138 + 0 .677 2447469.29380 0.9017 + 0 .096

2447467.61193 0.9812 + 0 .646 2447467.63218 0.0143 + 0 ,674 2447469.29646 0.9044 + 0 .106
2447467.61227 0.9817 + 0 .636 24^17467.63486 0.0187 + 0 .649 2447469.29680 0.9060 + 0 .109

2447467.61262 0.9823 + 0 .562 2447467.63620 0.0193 + 0 .662 2447469.29615 0.9066 + 0 .114
2447467.51297 0.9829 + 0 .649 2447467.63666 0.0199 + 0 ,649 2447469.29651 0.9062 + 0 .118

2447467.61332 0.9834 + 0 .561 2447467.63690 0.0204 + 0 ,636 2447489.29684 0.9067 + 0 .134

2447467.61366 0.9840 + 0 .5 4 2 2447467.63624 0.0210 + 0 .642 2447469.29719 0.9073 + 0 .127

2447467.61401 0.9846 + 0 .5 5 6 2447467.63669 0.0216 + 0 .638 2447469.29764 0.9078 + 0 .139

2447467.61437 0.9852 + 0 .667 2447469.27113 0.8646 + 0 .006 2447469.29788 0.9084 + 0 .133
2447467.51470 0.9857 + 0 .863 2447469.27147 0.8661 -0 .0 0 2 2447469.29823 0.9090 + 0 .134
2447467.61605 0.9863 + 0 .569 2447469.27182 0.8667 + 0 .004 2447469.29868 0.9096 + 0 .137
2447467.61640 0.9868 + 0 .672 2447469.27217 0.8663 + 0 .011 2447469.29932 0.9108 + 0 .142

2447467,61675 0.9874 + 0 .6 6 4 2447469.27261 0.8668 + 0 .003 2447469.29967 0.9113 + 0 .142

2447467.61609 0.9880 + 0 .6 7 3 2447469.27321 0.8680 + 0 .007 2447469.30001 0.9119 + 0 .140
2447467.51646 0.9886 + 0 .670 2447469.27366 0.8685 + 0 .023 2447469,30036 0.9126 + 0 .146

2447467.61679 0.9891 + 0 .677 2447469.27390 0.8691 + 0 .002 2447469.30071 0.9130 + 0 .144

2447467.51713 0.9897 + 0 .682 2447469.27426 0.8697 + 0 .010 2447469.30106 0.9136 + 0 .149

2447467.51748 0.9903 + 0 .670 2447469.27581 0.8722 + 0 .006 2447469.30140 0.9142 + 0 .168

2447467.61842 0.9918 + 0 .680 2447469.27616 0.8728 + 0 .020 2447469.30175 0.9147 + 0 .164
2447467.61878 0.9924 + 0 .579 2447469.27651 0.8734 + 0 .017 2447469.30210 0.9163 + 0 .160

2447467.61911 0.9929 + 0 .6 7 2 2447469.27686 0.8739 + 0 .032 2447469.30244 0.9169 + 0 .142
4

2447467.61946 0.9936 + 0 .584 2447469.27720 0.8745 + 0 .019 2447469.30395 0.9184 + 0 .164

2447467.61981 0.9941 + 0 .580 2447469.27766 0.8761 + 0 .023 2447469.30430 0.9189 + 0 .172

2447467.62016 0.9946 + 0 .5 6 9 2447469.27790 0.8767 + 0 .022 2447469.30464 0.9196 + 0 .182

2447467.52060 0.9962 + 0 .6 7 7 2447469.27824 0.8762 + 0 .033 2447469.30499 0.9201 + 0 .173

2447467.62085 0.9958 + 0 .5 9 0 2447469.27859 0.8768 + 0 .030 ’ 2447469.30634 0.9206 + 0 .183

2447467.62120 0.9963 + 0 .688 2447469.27894 0.8774 + 0 .037 2447469.30669 0.9212 + 0 .188

2447467.62164 0.9969 + 0 .586 2447469.27966 0.8784 + 0 .026 2447469.30603 0.9218 + 0 .186

2447467.62189 0.9976 + 0 .5 8 2 2447469.27991 0.8789 + 0 .062 2447469.30638 0.9223 + 0 .174
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a se (V -C )

2447469.30673 0.9229 + 0 .192 2447469.34603 0.9873 + 0 .647 2447469.37607 0.0366 + 0 .427

2447469.30707 0.9236 + 0 .189 2447469.34638 0.9879 + 0 .649 2447469.37643 0.0371 + 0 .416
2447469.31306 0.9333 + 0 .2 3 7 2447469,34673 0.9886 + 0 .646 2447469.37676 0.0377 + 0 .423

2447469.31341 0.9339 + 0 .243 2447469.34707 0.9890 + 0 .566 2447469.37712 0.0383 + 0 .410

2447469.31374 0.9344 + 0 .239 2447469.34742 0.9896 + 0 .664 2447469.37746 0.0388 + 0 .411

2447469.31409 0.9360 + 0 .2 6 9 2447469.35199 0.9971 + 0 .666 2447469.37780 0.0394 + 0 .402

2447469.31444 0.9366 + 0 .261 2447469.36234 0.9977 + 0 .663 2447469.37842 0.0404 + 0 .395
2447469.31478 0.9361 + 0 .248 2447469.36304 0.9988 + 0 .560 2447469.37876 0.0410 + 0 .401

2447469.31613 0.9367 + 0 .256 2447469.36338 0.9994 + 0 .661 2447469.37910 0.0416 + 0 .883
2447469.31648 0.9372 + 0 .259 2447469.36373 0.9999 + 0 .6 6 7 2447469.37946 0.0421 + 0 .393

2447469.31684 0.9378 + 0 .263 2447469.35408 0.0005 + 0 .664 2447469.37979 0.0427 + 0 .380

2447469.31617 0.9384 + 0 .256 2447469.36442 0.0011 + 0 .661 2447469.38014 0.0432 + 0 .389

2447469.31761 0.9406 + 0 .289 2447469.36612 0.0022 + 0 .563 2447469.38049 0.0438 + 0 .382

2447469.31786 0.9411 + 0 .2 7 7 2447469.35633 0.0042 + 0 .559 2447469.38084 0.0444 + 0 .382

2447469.31821 0,9417 + 0 .286 2447469.36668 0.0048 + 0 .656 2447469.38118 0.0449 + 0 .360

2447469.31866 0.9423 + 0 .3 0 2 2447469.35738 0.0059 + 0 .656 2447469.38153 0.0465 + 0 .370

2447469.31890 0.9429 + 0 .2 9 7 2447469.35772 0.0065 + 0 .546 2447469.38323 0.0483 + 0 .358

2447469.31926 0.9434 + 0 .2 9 6 2447469.36807 0.0071 + 0 .646 2447469.38368 0.0489 + 0 .346

2447469.31960 0.9440 + 0 .301 2447469.36842 0.0076 + 0 .549 2447469.38393 0.0494 + 0 .356
2447469.31996 0.9446 + 0 .304 2447469.36876 0.0082 + 0 .659 2447469.38427 0.0600 +0.331

2447469.32029 0.9461 + 0 .319 2447469.36911 0.0088 + 0 .654 2447469.38462 0.0606 + 0 .342

2447469.32064 0.9467 + 0 .2 9 7 2447469.35946 0.0093 + 0 .643 2447469.38497 0.0611 + 0 .332

2447469.32119 0.9466 + 0 .322 2447469.36070 0.0114 + 0 .634 2447469.38532 0.0617 + 0 .329

2447469.32164 0.9472 + 0 .323 2447469.36104 0.0119 + 0 .542 2447469.38566 0.0523 + 0 .324

2447469.32189 0.9478 + 0 .3 3 2 2447469.36139 0.0126 + 0 .631 2447469,38601 0.0629 + 0 .322

2447469.32224 0.9483 + 0 .3 3 7 2447469.36174 0.0131 + 0 .636 2447469.38636 0.0534 + 0 .319

2447469.32268 0.9489 + 0 .336 2447469.36209 0.0136 + 0 .633 2447469.38683 0.0642 + 0 .306

2447469.32293 0.9496 + 0 .360 2447469.36243 0.0142 + 0 .528 2447469.38717 0.0548 + 0 .302

2447469.32328 0.9600 + 0 .360 2447469.36278 0.0148 + 0 .634 2447469.38751 0.0563 + 0 .313

2447469.32363 0.9606 + 0 .346 2447469.36313 0.0163 + 0 .624 2447469.38786 0.0659 + 0 .309

2447469.32397 0.9612 + 0 .346 2447469.36347 0.0169 + 0 .639 2447469.38821 0.0665 + 0 .306

2447469.32432 0.9517 + 0 .3 6 0 2447469.36382 0.0165 + 0 .530 2447469.38866 0.0670 + 0 .292

2447469.32560 0.9637 + 0 .3 5 6 2447469.36492 0.0183 + 0 ,617 2447469.38890 0.0576 + 0 .2 8 7

2447469.32686 0.9542 + 0 .376 2447469.36627 0,0189 + 0 .520 2447469.38926 0.0682 + 0 .296

2447469.32619 0.9648 + 0 .380 2447469.36662 0.0194 + 0 .512 2447469.38960 0.0687 + 0 .272

2447469.32654 0.9664 + 0 .376 2447469.36696 0.0200 + 0 .497 2447469.38994 0.0693 + 0 .277
2447469.32689 0.9660 + 0 .3 7 8 2447469.36631 0.0206 + 0 .498 2447469.39785 0.0723 + 0 .201

2447469.32724 0.9566 + 0 .384 2447469.36667 0.0212 + 0 .603 2447469.39820 0.0728 + 0 .199
2447469.32768 0.9571 + 0 .389 2447469.36702 0.0217 + 0 .613 2447469.39864 0.0734 + 0 .191

2447469.32793 0.9677 + 0 .3 8 8 2447469.36736 0.0223 + 0 .493 2447469.39889 0.0740 + 0 .199

2447469.32863 0.9588 + 0 .389 2447469.36770 0.0228 + 0 .603 2447469.39924 0.0746 + 0 .1 8 2
2447469.34022 0.9778 + 0 .604 2447469.36806 0.0234 + 0 .493 2447469.39969 0.0761 + 0 .182
2447469.34067 0.9784 + 0 .6 1 2 2447469.36996 0.0266 + 0 .487 2447469.39993 0.0767 + 0 .179

2447469.34092 0.9789 + 0 .621 2447469.37030 0.0271 + 0 .469 2447469.40028 0.0762 + 0 .178

2447469.34126 0.9796 + 0 .616 2447469.37066 0.0277 + 0 .463 2447469.40063 0.0768 + 0 .176

2447469.34161 0.9801 + 0 .534 2447469.37100 0.0282 + 0 .465 2447469.40097 0.0774 + 0 .168

2447469.34196 0.9807 + 0 .6 1 9 2447469.37135 0.0288 + 0 .475 2447469.40144 0.0781 + 0 .166

2447469.34231 0.9812 + 0 .626 2447469.37169 0.0294 + 0 .462 2447469.40179 0.0787 + 0 .166

2447469.34266 0.9818 + 0 .625 2447469.37204 0.0300 + 0 .464 2447469.40213 0.0793 + 0 .148

2447469.34300 0.9824 + 0 .533 2447469.37239 0.0305 + 0 .467 2447469.40248 0.0798 + 0 .149

2447469.34335 0.9829 + 0 .637 2447469.37273 0.0311 + 0 .467 2447469.40283 0.0804 + 0 .163

2447469.34430 0.9846 + 0 .646 2447469.37308 0.0317 + 0 .461 2447469.40319 0.0810 + 0 .166

2447469.34464 0.9860 + 0 .646 2447469.37468 0.0343 + 0 .430 2447469.40362 0.0815 + 0 .161

2447469.34499 0.9866 + 0 .663 2447469.37503 0.0349 + 0 .446 2447469.40387 0.0821 + 0 .146

2447469.34636 0.9862 + 0 .635 2447469.37537 0.0354 + 0 .414 2447469.40423 0.0827 + 0 .146

2447469.34569 0.9868 + 0 .649 2447469.37572 0.0360 + 0 .416 2447469.40456 0.0833 + 0 .144
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a se (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2447469.40606 0.0867 + 0 .141 2447469.42740 0.1207 + 0 .017 2447469.46349 0.1636 - 0 .0 6 4

2447469.40640 0.0863 + 0 .126 2447469.42776 0.1213 + 0 .021 2447469.45383 0.1640 —0.049
2447469.40675 0.0868 + 0 .140 2447469.42809 0.1218 + 0 .016 2447469.46418 0.1646 - 0 .0 6 3

2447469.40710 0.0874 + 0 .1 2 0 2447469.42844 0.1224 + 0 .006 2447469.46463 0.1652 -0 .0 5 1

2447469.40744 0.0880 + 0 .1 2 5 2447469.42988 0.1248 + 0 .004 2447469.45488 0.1657 - 0 .0 6 2

2447469.40779 0.0886 + 0 .1 1 6 2447469.43022 0.1263 + 0 .011 2447469.45622 0.1663 - 0 .0 6 0

2447469.40814 0.0891 + 0 .117 2447469.43057 0.1259 + 0 .011 2447469.46667 0.1669 —0.059

2447469.40849 0.0897 + 0 .112 2447469.43092 0.1265 + 0 .016 2447469.45692 0.1674 - 0 .0 7 2

2447469.40883 0.0903 + 0 .109 2447469.43126 0.1270 + 0 .001 2447469.46732 0.1697 —0.064
2447469.40918 0.0908 + 0 .116 2447469.43161 0.1276 + 0 .002 2447469.45766 0.1703 - 0 .0 6 8

2447469.40954 0.0914 + 0 .114 2447469.43196 0.1282 + 0 .001 2447469.46801 0.1709 -0 .0 6 4

2447469.40989 0.0920 + 0 .1 0 8 2447469.43231 0.1287 + 0 .007 2447469.46836 0.1714 - 0 .0 6 7

2447469.41022 0.0926 + 0 .110 2447469.43265 0.1293 + 0 .004 2447469.45871 0.1720 -0 .0 7 3

2447469.41067 0.0931 + 0 .101 2447469.43300 0.1299 - 0 .0 0 4 2447469.45905 0.1726 - 0 .0 7 4
2447469.41092 0.0937 + 0 .104 2447469.43336 0.1304 + 0 .006 2447469.45940 0.1731 - 0 .0 6 9

2447469.41126 0.0942 + 0 .1 0 2 2447469.43369 0.1310 + 0 .002 2447469.45975 0,1737 —0.067

2447469.41161 0.0948 + 0 .101 2447469.43404 0.1316 -0 .0 0 1 2447469.46010 0.1743 - 0 .0 6 7

2447469.41196 0.0964 + 0 .102 2447469.43439 0.1321 - 0 .0 1 0 2447469.46044 0.1748 - 0 .0 6 3

2447469.41231 0.0960 + 0 .093 2447469.43474 0.1327 + 0 .000 2447469.46079 0.1754 - 0 .0 6 7

2447469.41266 0.0966 + 0 .086 2447469.43508 0.1333 -0 .0 0 5 2447469.46114 0.1760 - 0 .0 6 7

2447469.41362 0.0979 + 0 .088 2447469.43543 0.1339 - 0 .0 0 3 2447469.46148 0.1766 -0 .0 6 1

2447469.41387 0.0985 + 0 .086 2447469.43578 0.1344 - 0 .0 0 3 2447469.46183 0.1771 —0.068

2447469.41422 0.0991 + 0 .092 2447469.43613 0.1350 - 0 .0 0 7 2447469.46218 0.1777 - 0 .0 6 9

2447469.41466 0.0996 + 0 .0 8 0 2447469.43647 0.1356 -0 .0 0 2 2447469.46263 0.1783 - 0 .0 6 9

2447469.41491 0.1002 + 0 .079 2447469.44036 0.1419 -0 .0 2 4 2447469.46287 0.1788 - 0 .0 7 0

2447469.41626 0.1008 + 0 .0 8 7 2447469.44071 0.1426 - 0 .0 2 0 2447469.46322 0.1794 - 0 .0 6 9

2447469.41660 0.1013 + 0 .0 7 2 2447469.44106 0.1431 -0 .0 2 7 2447469.46367 0.1800 - 0 .0 7 6

2447469.41596 0.1019 + 0 .0 7 0 2447469.44140 0.1436 -0 .0 2 6 2447469.46391 0.1806 - 0 .0 7 8

2447469.41630 0.1026 + 0 .073 2447469.44175 0.1442 -0 .0 2 3 2447469.46626 0.1844 - 0 .0 8 4

2447469.41666 0.1031 + 0 .0 5 7 2447469.44210 0.1448 -0 .0 2 3 2447469.46661 0.1860 - 0 .0 8 6

2447469.41701 0.1037 + 0 .065 2447469.44244 0.1463 -0 .0 3 5 2447469.46697 0.1856 - 0 .0 7 9

2447469.41734 0.1042 + 0 ,065 2447469.44279 0.1459 - 0 .0 2 9 2447469.46732 0.1861 - 0 .0 7 4

2447469.41769 0.1048 + 0 .0 6 7 2447469.44314 0.1466 - 0 .0 3 4 2447469.46766 0.1867 - 0 .0 7 7

2447469.41804 0.1063 + 0 .0 5 7 2447469.44349 0.1471 - 0 .0 2 1 2447469.46801 0.1873 - 0 .0 7 0

2447469.41838 0.1069 + 0 .066 2447469.44383 0.1476 - 0 .0 3 8 2447469.46835 0.1878 - 0 .0 7 8

2447469,41873 0.1066 + 0 .066 2447469.44418 0.1482 -0 .0 2 4 2447469.46869 0.1884 - 0 .0 7 6

2447469.41908 0.1071 + 0 .066 2447469.44463 0.1488 - 0 .0 1 9 2447469.46904 0.1889. - 0 .0 7 7

2447469.41942 0.1076 + 0 .063 2447469.44488 0.1493 - 0 .0 3 3 2447469.46939 0.1895 - 0 .0 7 2

2447469.41977 0.1082 + 0 .058 2447469.44522 0.1499 -0 .0 3 6 2447469.46974 0.1901 - 0 .0 8 0

2447469.42012 0.1088 + 0 .0 6 0 2447469.44667 0.1605 - 0 .0 3 0 2447469.47008 0.1906 - 0 .0 7 6

2447469.42184 0.1116 + 0 .0 3 7 2447469.44592 0.1510 - 0 .0 3 7 2447469.47043 0.1912 - 0 .0 6 9

2447469.42219 0.1122 + 0 .036 2447469.44626 0.1616 —0.030 2447469.47079 0.1918 —0.084

2447469.42264 0.1127 + 0 .038 2447469.44661 0.1622 - 0 .0 3 4 2447469.47114 0.1924 —0.078

2447469.42288 0.1133 + 0 .034 2447469.44696 0.1627 -0 .0 3 7 2447469.47148 0.1929 - 0 .0 7 8

2447469.42323 0.1139 + 0 .0 3 7 2447469.44932 0.1666 —0.046 2447469.47182 0.1936 - 0 .0 7 7

2447469.42368 0.1144 + 0 .028 2447469.44967 0.1672 -0 .0 4 2 2447469.47217 0.1941 -0 .0 8 1

2447469.42393 0.1160 + 0 .0 3 7 2447469.46001 0.1677 - 0 .0 5 2 2447469.47261 0.1946 - 0 .0 7 0

2447469.42427 0.1166 + 0 .041 2447469.46037 0.1683 -0 .0 3 8 2447469.47286 0.1952 -0 .0 8 1

2447469.42462 0.1161 + 0 .033 2447469.45072 0.1689 - 0 .0 4 9 2447469.47470 0.1982 - 0 .0 8 8

2447469.42497 0.1167 + 0 .0 2 2 2447469.45106 0.1696 —0.050 2447469.47605 0.1988 —0.083

2447469.42532 0.1173 + 0 .016 2447469.46140 0.1600 —0.049 2447469.47540 0.1994 - 0 .0 8 0

2447469.42666 0.1178 + 0 .025 2447469.45175 0.1606 -0 .0 6 2 2447469.47674 0.1999 —0.089

2447469.42601 0.1184 + 0 .016 2447469.46210 0.1612 -0 .0 6 4 2447469.47609 0.2006 - 0 .0 9 7

2447469.42636 0.1190 + 0 .021 2447469.45244 0.1617 -0 .0 8 1 2447469.47644 0.2011 —0.096

2447469.42670 0.1195 + 0 .011 2447469.46280 0.1623 -0 ,0 6 4 2447469.47680 0.2017 - 0 .0 9 8

2447469.42706 0.1201 + 0 .0 1 6 2447469.45314 0.1629 -0 .0 5 2 2447469.47713 0.2022 -0 .0 8 9
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) - î
2447469.47748 0.2028 —0.086 2447469.51210 0.2596 -0 .1 2 0 2447469.63782 0.3017 - 0 .0 8 7
2447469.47783 0.2033 —0.091 2447469.61244 0.2601 -0 .1 2 6 2447469.53816 0.3022 - 0 .0 9 0
2447469.47817 0.2039 —0.093 2447469.61279 0.2606 - 0 .1 1 8 2447469.63861 0.3028 —0.092
2447469.47862 0.2045 - 0 .0 8 2 2447469.61314 0.2612 - 0 .1 2 0 2447469.53886 0.3034 —0.094
2447469.47887 0.2061 —0.089 2447469.61349 0.2618 - 0 .1 2 0 2447469.63920 0.3039 —0.096

2447469.47922 0.2056 - 0 .0 8 6 2447469.51383 0.2624 —0.126 2447469.53956 0,3046 -0 .0 7 8
2447469.47966 0.2062 - 0 .0 9 2 2447469.61437 0.2632 - 0 .1 2 8 2447469.63991 0.3061 -0 .0 8 9
2447469.47991 0.2068 - 0 .1 0 3 2447469.51471 0.2638 - 0 .1 1 3 2447469.64026 0.3067 - 0 .0 7 2
2447469.48026 0.2073 - 0 .0 9 8 2447469.51606 0.2644 -0 .1 2 6 2447469.64069 0.3062 - 0 .0 7 9
2447469.48060 0.2079 - 0 .0 9 3 2447469.61641 0.2649 -0 .1 0 8 2447469.64094 0.3068 - 0 .0 7 2
2447469.48096 0.2085 -0 .1 0 5 2447469.61676 0.2665 -0 .1 1 5 2447469.66930 0.3369 - 0 .0 7 6

2447469.48130 0.2090 -0 .1 0 4 2447469.51610 0.2661 - 0 .1 1 9 2447469.65964 0.3374 -0 .0 6 8
2447469.48346 0.2126 - 0 .1 0 2 2447469.51645 0.2666 -0 .1 1 1 2447469.56999 0.3380 —0.072

2447469.48380 0.2131 -0 .1 0 1 2447469.61680 0.2672 -0 .1 1 8 2447469.66034 0.3386 - 0 .0 7 6
2447469.48416 0.2137 - 0 .0 9 6 2447469.61714 0.2678 -0 .1 1 8 2447469.66069 0.3392 - 0 .0 7 3
2447469.48449 0.2143 - 0 .1 0 3 2447469.61749 0.2684 - 0 .1 0 9 2447469.66103 0.3397 - 0 .0 6 9

2447469.48484 0.2148 - 0 .0 9 9 2447469.52059 0.2734 -0 .1 1 7 2447469.56138 0.3403 - 0 .0 7 2

2447469.48619 0.2164 - 0 .0 9 6 2447469.52094 0.2740 —0.102 2447469.66173 0.3409 - 0 .0 5 8

2447469.48564 0.2160 - 0 .0 8 9 2447469.52129 0.2746 -0 .1 1 7 2447469.56207 0.3414 - 0 .0 6 3
2447469.48688 0.2166 -0 .1 0 1 2447469.52163 0.2751 -0 .1 0 7 2447469.66242 0.3420 - 0 .0 6 7 ■ Î
2447469.48623 0.2171 - 0 .1 0 1 2447469.52198 0.2767 -0 .1 1 3 2447469.66293 0.3428 -0 .0 6 5

2447469.48658 0.2177 - 0 .1 1 3 2447469.62233 0.2763 -0 .1 2 0 2447469.66328 0.3434 - 0 .0 7 3

12447469.49180 0.2262 - 0 .0 9 0 2447469.62268 0.2769 - 0 .1 1 7 2447469.56363 0.3440 -0 .0 7 0

2447469.49214 0.2268 - 0 .1 0 7 2447469.62302 0.2774 - 0 .1 0 2 2447469.66397 0.3446 -0 .0 7 3
2447469.49249 0.2274 -0 .1 0 1 2447469.52337 0.2780 -0 .1 1 1 2447469.66432 0.3461 -0 .0 6 8

2447469.49284 0.2279 - 0 .1 0 6 2447469.62372 0.2786 - 0 .1 0 8 2447469.66467 0.3467 - 0 .0 6 5 1
2447469.49319 0.2286 - 0 .0 9 3 2447469.62632 0.2812 -0 .1 0 6 2447469.66501 0.3462 - 0 .0 6 0 i
2447469.49353 0.2291 - 0 .1 1 4 2447469.62666 0.2817 - 0 .1 1 6 2447469.56536 0.3468 - 0 .0 5 6

2447469.49388 0.2297 - 0 .0 9 6 2447469.52601 0.2823 - 0 .1 0 2 2447469.66571 0.3474 - 0 .0 6 2
2447469.49423 0.2302 —0.106 2447469.52636 0.2829 - 0 .0 9 7 2447469.66607 0.3480 - 0 .0 6 7

2447469.49457 0.2308 - 0 .1 1 3 2447469.52670 0.2834 -0 .0 9 8 2447469.66762 0.3506 —0.055
2447469.49492 0.2314 - 0 .1 1 3 2447469.52705 0.2840 - 0 .1 0 7 2447469.66797 0.3511 - 0 .0 6 8 i
2447469.49617 0.2334 - 0 .1 0 6 2447469.82740 0.2846 —0.101 2447469.66831 0.3616 - 0 .0 5 2
2447469.49652 0.2340 - 0 .1 1 6 2447469.62776 0.2862 -0 .0 9 6 2447469.66866 0.3622 -0 .0 6 3

2447469.49687 0.2346 - 0 .1 2 1 2447469.62809 0.2867 - 0 .0 8 8 2447469.66901 0.3528 -0 .0 5 4

2447469.49721 0.2351 - 0 .1 1 0 2447469.62844 0.2863 -0 .0 9 6 2447469.66936 0.3534 -0 .0 6 1 ■.

2447469.49766 0.2367 - 0 .1 1 1 2447469.62895 0.2871 -0 .0 9 9 2447469.66970 0.3639 -0 .0 6 1 '■ H

2447469.49792 0.2363 - 0 .1 1 0 2447469.52930 0.2877 -0 .0 9 4 2447469.67005 0.3646 - 0 .0 4 9
2447469.49826 0.2368 - 0 .1 1 5 2447469.52964 0.2883 -0 .1 0 0 2447469.57040 0.3551 - 0 .0 5 9

2447469.49860 0.2374 - 0 .1 1 8 2447469.62999 0.2888 -0 .0 9 9 2447469.67074 0.3666 - 0 .0 4 1

2447469.49896 0.2380 - 0 .1 0 5 2447469.63034 0.2894 -0 .0 9 3 2447469.67109 0.3562 - 0 .0 5 1 K

2447469.49930 0.2385 - 0 .1 0 8 2447469.63069 0.2900 -0 .0 9 6 2447469.67144 0.3568 —0.054 'i

2447469.60247 0.2437 - 0 .1 0 9 2447469.63104 0.2906 -0 .1 0 1 2447469.67179 0.3674 - 0 .0 4 7 ■

2447469.50282 0.2443 - 0 .1 0 9 2447469.53139 0.2911 —0.086 2447469.67213 0.3579 —0.050

2447469.60316 0.2449 - 0 .1 1 0 2447469.63173 0.2917 -0 .0 8 8 2447469.67248 0.3686 - 0 .0 3 7

2447469.50361 0.2464 - 0 .1 1 2 2447469.63207 0.2922 —0.098 2447469.57283 0.3691 - 0 .0 4 2 ■■fei
2447469.50386 0.2460 - 0 .1 1 9 2447469.53434 0.2960 -0 .0 8 6 2447469.57317 0.3696 - 0 .0 4 6 " 9
2447469.60420 0.2466 —0.122 2447469.63469 0.2966 - 0 .0 8 9 2447469.67352 0.3602 - 0 .0 6 2
2447469.50465 0.2471 - 0 .1 0 3 2447469.63604 0.2971 - 0 .0 8 7 2447469.67387 0.3608 - 0 .0 4 7

2447469.60490 0.2477 - 0 .1 0 4 2447469.53538 0.2977 - 0 .0 9 1 2447469.67422 0.3613 - 0 .0 4 3

2447469.50525 0.2483 - 0 .1 2 9 2447469.63673 0.2982 - 0 .1 0 3 2447469.67791 0.3674 - 0 .0 3 6

2447469.60559 0.2488 -0 .1 0 8 2447469.53608 0.2988 - 0 .0 9 4 2447469.57824 0.3679 - 0 .0 4 0

2447469.51071 0.2672 —0.099 2447469.53643 0.2994 - 0 .0 8 7 2447469.67869 0.3686 - 0 .0 3 4

2447469.61106 0.2678 - 0 .1 1 6 2447469.63677 0.3000 —0.090 2447469.67894 0.3691 -0 .0 2 3

2447469.51140 0.2584 - 0 .1 1 7 2447469.53712 0.3006 —0.093 2447469.57929 0.3696 - 0 .0 3 2

2447469.51176 0.2689 -0 .1 1 6 2447469.63747 0.3011 - 0 .0 8 2 2447469.67963 0.3702 -0 .0 2 5
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Table 5.11: 1988 TPT V  observations — continued.

H .J .D . P h a se (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2447469.67998 0.3708 —0.030 2447469.61043 0.4207 + 0 .055 2447469.64836 0.4829 + 0 .142

2447469.58033 0.3713 -0 .0 3 1 2447469.61078 0.4213 + 0 .060 2447469.64931 0.4844 + 0 .164
2447469.68067 0.3719 —0.023 2447469.61113 0.4218 + 0 .069 2447469.64966 0.4850 + 0 .166
2447469.68102 0.3726 - 0 .0 2 5 2447469.61147 0.4224 + 0 .052 2447469.65000 0.4856 + 0 .168
2447469.68137 0.3731 -0 .0 2 1 2447469.61182 0.4230 + 0 .060 2447469.65035 0.4861 + 0 .155
2447469.68172 0.3736 —0.026 2447469.61217 0.4236 + 0 .062 2447469.66070 0.4867 + 0 .164
2447469.68206 0.3742 - 0 .0 2 6 2447469.61261 0.4241 + 0 .061 2447469,66104 0.4872 + 0 .148
2447469.68241 0.3748 - 0 .0 2 4 2447469.61286 0.4247 + 0 .061 2447469.66139 0.4878 + 0 .160
2447469.68276 0.3763 - 0 .0 2 1 2447469.61322 0.4263 + 0 .061 2447469.65174 0.4884 + 0 .161
2447469.68310 0.37,59 - 0 .0 1 3 2447469.61367 0.4268 + 0 .062 2447469.66209 0.4890 + 0 .166
2447469.68346 0.3766 - 0 .0 2 0 2447469.61391 0.4264 + 0 .066 2447469.65243 0.4896 + 0 .160
2447469.68380 0.3770 - 0 .0 0 7 2447469.61426 0.4270 + 0 .062 2447469.65278 0.4901 + 0 .146
2447469.68416 0.3776 - 0 .0 0 5 2447469.61460 0.4276 + 0 .063 2447469.65313 0.4907 + 0 .161

2447469.68449 0.3782 - 0 .0 1 1 2447469.61494 0.4281 + 0 .0 6 7 2447469.66347 0.4912 + 0 .165
2447469.68880 0.3862 + 0 .013 2447469.61629 0.4286 + 0 .060 2447469.65382 0.4918 + 0 .163

2447469.68916 0.3858 + 0 .003 2447469.61664 0.4292 + 0 .066 2447469.66417 0.4924 + 0 .160

2447469.68949 0.3864 + 0 .0 1 2 2447469.61600 0.4298 + 0 .072 2447469.65486 0.4935 + 0 .166
2447469.68986 0.3870 + 0 .003 2447469.61636 0.4304 + 0 .071 2447469.66521 0.4941 + 0 .162

2447469.69020 0.3875 + 0 .004 2447469.62121 0.4384 + 0 .093 2447469.66556 0.4947 + 0 .164
2447469.69056 0.3881 + 0 .004 2447469.62166 0.4389 + 0 .090 2447469.66691 0.4962 + 0 .149

2447469.69089 0.3887 + 0 .0 0 9 2447469.62190 0.4395 + 0 .093 2447469.65710 0.4972 + 0 .144
2447469.69123 0.3892 + 0 .009 2447469.62260 0.4406 + 0 .089 2447469.65744 0.4977 + 0 .160

2447469.69168 0.3898 + 0 .0 0 0 2447469.62294 0.4412 + 0 .084 2447469.65779 0.4983 + 0 .149

2447469.69192 0.3903 + 0 .0 0 9 2447469.62329 0.4418 + 0 .098 2447469.66814 0.4989 + 0 .164
2447469.69227 0.3909 + 0 .012 2447469.62364 0.4423 + 0 .084 2447469.65849 0.4996 + 0 .1 5 7

2447469.69262 0.3916 + 0 .010 2447469.62398 0.4429 + 0 .091 2447469.66883 0.6000 + 0 .164
2447469.69297 0.3921 + 0 .008 2447469.62433 0.4436 + 0 .096 2447469.66963 0.6012 + 0 .152

2447469.69331 0.3926 + 0 .009 2447469.62468 0.4440 + 0 .100 2447469.65988 0.6017 + 0 .153

2447469.69366 0.3932 + 0 .015 2447469.62503 0.4446 + 0 .093 2447469.66022 0.5023 + 0 .164
2447469.69401 0.3938 + 0 .009 2447469.62637 0.4452 + 0 .084 2447469.66067 0.6029 + 0 .165
2447469.69436 0.3943 + 0 .002 2447469.62572 0.4457 + 0 .096 2447469.66092 0.6034 + 0 .148
2447469.69470 0.3949 + 0 .023 2447469.62608 0.4463 + 0 .094 2447469.66126 0.5040 + 0 .147

2447469.69605 0.3955 + 0 .012 2447469.62641 0.4469 + 0 .089 2447469.66196 0.5061 + 0 .160
2447469.59540 0.3960 + 0 .019 2447469.62676 0.4474 + 0 .093 2447469.66231 0.6067 + 0 .146

2447469.59698 0.3986 + 0 .029 2447469.62711 0.4480 + 0 .1 0 7 2447469.66265 0.5063 + 0 .147

2447469.59733 0.3992 + 0 .012 2447469,62746 0.4486 + 0 .106 2447469.66300 0.5068 + 0 .138
2447469.69768 0.3998 + 0 .022 2447469.62780 0.4492 + 0 .111 2447469.66335 0.5074 + 0 .163

2447469.59802 0.4003 + 0 .031 2447469.64176 0.4720 + 0 .139 2447469.66369 0.6080 + 0 .164
2447469,59837 0.4009 + 0 .032 2447469.64211 0.4726 + 0 .162 2447469.66798 0.6160 + 0 .140

2447469.69872 0.4016 + 0 .020 2447469.64246 0.4732 + 0 .166 2447469.66832 0.6166 + 0 .143

2447469.69907 0.4021 + 0 .027 2447469.64280 0.4737 + 0 .161 2447469.66867 0.6161 + 0 .148
2447469.69941 0,4026 + 0 .0 2 4 2447469.64316 0.4743 + 0 .141 2447469.66902 0.5167 + 0 .163

2447469.69976 0.4032 + 0 .029 2447469.64350 0.4749 + 0 .162 2447469.66937 0.6173 + 0 .136
2447469.60011 0.4038 + 0 .010 2447469.64386 0.4765 + 0 .162 2447469.66971 0.6178 + 0 .148

2447469.60045 0.4043 + 0 .031 2447469.64419 0.4760 + 0 .162 2447469.67006 0.6184 + 0 .148

2447469.60080 0.4049 + 0 .024 2447469.64464 0.4766 + 0 .162 2447469.67041 0.6190 + 0 .140
2447469.60116 0.4066 + 0 .034 2447469.64489 0.4772 + 0 .144 2447469.67076 0.6196 + 0 .151

2447469.60150 0.4060 + 0 .0 2 8 2447469.64623 0.4777 + 0 .148 2447469.67110 0.6201 + 0 .140

2447469.60184 0.4066 + 0 .0 3 6 2447469.64668 0.4783 + 0 .149 2447469.67146 0.6207 + 0 .161

2447469.60219 0.4072 + 0 .034 2447469.64593 0.4789 + 0 .166 2447469.67180 0.6213 + 0 .149

2447469.60264 0.4078 + 0 .032 2447469.64628 0.4794 + 0 .141 2447469.67214 0.6218 + 0 .138

2447469.60288 0.4083 + 0 .033 2447469.64662 0.4800 + 0 .167 2447469.67249 0.6224 + 0 .132

2447469.60323 0.4089 + 0 .0 3 2 2447469.64697 0.4806 + 0 .153 2447469.67284 0.6230 + 0 .163
2447469.60368 0.4096 + 0 .025 2447469.64732 0.4811 + 0 .156 2447469.67319 0.6236 + 0 .134

2447469.60974 0.4196 + 0 .045 2447469.64766 0.4817 + 0 .146 2447469.67363 0.6241 + 0 .132

2447469.61008 0.4201 + 0 .060 2447469.64801 0.4823 + 0 .156 2447469.67388 0.5247 + 0 .134

170



Table 5.11: 1988 TPT V  observations — continued.

1
H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2447469.67423 0.6263 + 0 .144 2447469.68868 0.5489 + 0 .119 2447469.70372 0.6736 + 0 .071
2447469.67467 0.6268 + 0 .136 2447469.68903 0.5496 + 0 .116 2447469.70407 0.5742 + 0 .080

2447469.67670 0.6277 + 0 .144 2447469.68937 0.5601 + 0 .098 2447469.70441 0.6747 + 0 .079
2447469.67603 0.6282 + 0 .126 2447469.68971 0.6606 + 0 .118 2447469.70476 0.6753 + 0 .069
2447469.67638 0.6288 + 0 .123 2447469.69006 0.6612 + 0 .100 2447469.70611 0.5769 + 0 .064

2447469.67673 0.6294 + 0 .130 2447469.69169 0.6637 + 0 .085 2447469.70546 0.6764 + 0 .049
2447469.67707 0.6299 + 0 .142 2447469.69194 0.5643 + 0 .105 2447469.70680 0.5770 + 0 .074

2447469.67742 0.6306 + 0 .139 2447469.69228 0.6548 + 0 .110 2447469.70616 0.6776 + 0 .066
2447469.67777 0.6311 + 0 .132 2447469.69263 0.5664 + 0 .109 2447469.70680 0.6786 + 0 .061

2447469.67813 0.5316 + 0 .144 2447469.69298 0.6660 + 0 .097 2447469.70714 0.6792 + 0 .076
2447469.67846 0.6322 + 0 .145 2447469.69332 0.6566 + 0 .113 2447469.70749 0.6798 + 0 .069
2447469.67882 0.6328 + 0 .1 4 0 2447469.69367 0.5571 + 0 .106 2447469.70784 0.6803 + 0 .069

2447469.67916 0.5333 + 0 .133 2447469.69402 0.6677 + 0 .106 2447469.70819 0.6809 + 0 .066
2447469.67961 0.6339 + 0 .130 2447469.69437 0.6683 + 0 .098 2447469.70853 0.5816 + 0 .066
2447469.67986 0.6346 + 0 .121 2447469.69471 0.6688 + 0 .100 2447469.70888 0.6820 + 0 .067
2447469.68020 0.6350 + 0 .119 2447469.69606 0.6594 + 0 .090 2447469.70923 0.6826 + 0 .071
2447469.68066 0.5356 + 0 .1 3 7 2447469.69641 0.6600 + 0 .091 2447469.70967 0.6832 + 0 .049

2447469.68089 0.6362 + 0 .122 2447469.69676 0.6606 + 0 .109 2447469.70992 0.6838 + 0 .078
2447469.68124 0.6367 + 0 .1 8 6 2447469.69610 0.6611 + 0 .090 2447469.71618 0.6924 + 0 .024
2447469.68169 0.6373 + 0 ,128 2447469.69646 0.6617 + 0 .117 2447469.71562 0.6929 + 0 .036
2447469.68194 0.6379 + 0 .131 2447469.69680 0.6622 + 0 .106 2447469.71687 0.5936 + 0 .033

2447469.68228 0.6384 + 0 .128 2447469.69714 0.6628 + 0 .096 2447469.71622 0.5941 + 0 .0 2 7
2447469.68346 0.5404 + 0 .106 2447469.69749 0.6634 + 0 .098 2447469.71657 0.6947 + 0 .037

2447469.68381 0.6410 + 0 .126 2447469.69784 0.5640 + 0 .102 2447469.71691 0.6962 + 0 .030
2447469.68416 0.6415 + 0 .131 2447469.69819 0.5646 + 0 .084 2447469.71726 0.5968 + 0 .029
2447469.68461 0.6421 + 0 .1 2 2 2447469.69966 0.6668 + 0 .098 2447469.71761 0.6964 + 0 .014

2447469.68486 0.6427 + 0 .098 2447469.69990 0.6673 + 0 .087 2447469.71795 0.5969 + 0 .029
2447469.68620 0.6432 + 0 .124 2447469.70026 0.5679 + 0 .084 2447469.71830 0.6975 + 0 .038
2447469.68666 0.5438 + 0 .124 2447469.70069 0.5686 + 0 .083 2447469.71912 0.5988 + 0 .027

2447469.68589 0.6444 + 0 .1 2 7 2447469.70094 0.5690 + 0 .092 2447469.71983 0.6000 + 0 .032
2447469.68624 0.5449 + 0 .1 1 0 2447469.70129 0.6696 + 0 .094 2447469.72018 0.6006 + 0 .041
2447469.68659 0.6466 + 0 .1 1 0 2447469.70163 0.6702 + 0 .072 2447469.72061 0.6011 + 0 .032
2447469.68694 0.6461 + 0 .116 2447469.70198 0.6707 + 0 .087 2447469.72086 0.6017 + 0 .039
2447469.68728 0.6466 + 0 .1 2 7 2447469.70233 0.6713 + 0 .080 2447469.72121 0.6023 + 0 .027

2447469.68764 0.6472 + 0 .106 2447469.70268 0.6719 + 0 .078 2447469.72155 0.6028 + 0 .016
2447469.68799 0.5478 + 0 .124 2447469.70302 0.6724 + 0 .087 2447469.72190 0.6034 + 0 .044

2447469.68832 0.5483 + 0 .1 2 0 2447469.70337 0.5730 + 0 .070 2447469.72226 0.6040 + 0 .030
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Table 5.12: 1987 TJKIRT J observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )
2447116.78886 0.1301 —0,011 2447117.01913 0.6076 + 0 .196 2447117.85667 0.8803 -0 .0 0 2
2447116.80221 0.1620 —0.062 2447117.03072 0.6266 + 0 .171 2447117.86843 0.8832 - 0 .0 0 2
2447116.80387 0.1647 -0 .0 7 1 2447117.03766 0.8377 + 0 .146 2447117.86631 0.8944 + 0 .041
2447116.81054 0.1666 - 0 .0 7 6 2447117.03931 0.5406 + 0 .136 2447117.87468 0.9098 + 0 .083
2447116.81247 0.1688 - 0 .0 7 5 2447117.04613 0.6618 + 0 ,109 2447117.87641 0.9126 + 0 .094
2447116.82236 0.1860 - 0 .0 9 8 2447117.06626 0.6684 + 0 .068 2447117.88293 0.9233 + 0 .136
2447116.82968 0.1968 - 0 .1 0 4 2447117.05849 0.6720 + 0 .066 2447117.88466 0.9261 + 0 .156
2447116.83129 0.1996 - 0 .0 9 3 2447117.72119 0.6682 -0 .0 8 1 2447117.89460 0.9423 + 0 .239
2447116.83811 0.2108 - 0 .1 1 9 2447117.72290 0.6610 - 0 .0 8 9 2447117.90126 0.9633 + 0 .280
2447116.85164 0.2328 —0,132 2447117.73013 0.6729 - O .lO l 2447117.90301 0.9662 + 0 .300
2447116.86886 0.2448 - 0 .1 3 8 2447117.73193 0.6768 -0 .1 0 0 2447117.90969 0.9670 + 0 .362
2447116.86096 0.2483 - 0 .1 4 7 2447117.74162 0.6917 -0 .1 1 0 2447117.91934 0.9830 + 0 .413
2447116.86778 0.2694 - 0 .1 4 4 2447117.74967 0.7049 -0 .1 1 3 2447117.92110 0.9859 + 0 .423
2447116.88466 0.2871 - 0 .1 3 7 2447117.76164 0.7080 -0 .1 2 1 2447117.92904 0.9989 + 0 .444
2447116.89241 0.2998 - 0 .1 1 4 2447117.76941 0.7209 - 0 .1 1 6 2447117.93092 0.0020 + 0 .434
2447116.89419 0.3027 - 0 .1 1 3 2447117.77133 0.7404 —0.116 2447117.93876 0.0148 + 0 .416
2447116.90116 0.3141 - 0 .1 1 0 2447117.77779 0.7610 - 0 .1 1 2 2447117.94075 0.0181 + 0 .406
2447116.91116 0.3306 - 0 .0 9 7 2447117.77966 0.7640 - 0 .1 2 0 2447117.95473 0.0410 + 0 .296
2447116.91317 0.3338 - 0 .1 1 7 2447117.78911 0.7696 -0 .1 2 4 2447117.96162 0.0623 + 0 .266
2447116.92071 0.3462 - 0 .1 0 4 2447117.79863 0.7860 -0 .0 9 9 2447117.96341 0.0662 + 0 .226
2447116.92246 0.3491 - 0 .0 8 4 2447117.80026 0.7878 —0.088 2447117.97009 0.0662 + 0 ,174
2447116.94311 0.3829 —0.069 2447117.80731 0.7994 —0.084 2447117.98346 0.0881 + 0 .092
2447116.94568 0.3870 - 0 .0 3 9 2447117.80899 0.8021 -0 .0 9 3 2447117.99034 0.0994 + 0 .060
2447116.96439 0.4014 - 0 .0 2 7 2447117.82960 0.8369 -0 .0 6 3 2447117.99233 0.1026 + 0 .040
2447116.96651 0.4049 - 0 .0 2 7 2447117.83130 0.8387 -0 .0 6 2 2447118.00236 0.1191 + 0 .006
2447116.96784 0.4234 + 0 .0 2 4 2447117.83740 0.8487 -0 .0 8 0 2447118.00920 0.1303 -0 .0 2 6
2447117.00832 0.4898 + 0 .1 9 0 2447117.83911 0.8616 -0 .0 6 9 2447118.01101 0.1332 - 0 .0 2 7
2447117.01033

2447117.01718

0.4931

0.6043

+ 0 .1 9 9

+ 0 .1 9 7
2447117.86022 0.8697 -0 .0 2 6 2447118.01777 0.1443 -0 .0 4 1
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Table 5.13: 1987 UKIRT K  observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447116.78446 0.1229 - 0 .2 0 2 2447117.02167 0.6117 + 0 .056 2447117.86081 0.8871 - 0 .1 6 7

2447116.78631 0.1259 -0 .2 1 1 2447117.03319 0.5305 + 0 .023 2447117.86261 0.8900 - 0 .1 6 6

2447116.79974 0.1479 - 0 .2 2 3 2447117.03492 0.6334 + 0 .012 2447117.87216 0.9067 -0 .1 1 3

2447116.80619 0.1685 - 0 .2 3 0 2447117.04166 0.6444 -0 .0 1 2 2447117.87866 0.9163 -0 .0 8 1

2447116.80791 0.1613 - 0 .2 1 9 2447117.04346 0.6474 -0 .0 2 2 2447117.88041 0.9192 - 0 .0 7 0

2447116.81492 0.1728 —0.236 2447117.06336 0.6636 —0.069 2447117.88712 0.9302 - 0 .0 2 8

2447116.82629 0.1898 - 0 .2 7 0 2447117.06173 0.6773 -0 .1 0 6 2447117.89683 0.9461 + 0 .046

2447116.82707 0.1927 - 0 .2 7 0 2447117.71860 0.6640 -0 .2 4 1 2447117.89864 0.9491 + 0 .056

2447116.83370 0.2036 - 0 .2 8 7 2447117.72546 0.6662 -0 .2 4 6 2447117.90628 0.9699 + 0 .107

2447116.83857 0.2066 - 0 .2 9 6 2447117.72748 0.6686 -0 .2 5 3 2447117.90704 0.9628 + 0 .118

2447116.86407 0.2370 - 0 .2 9 8 2447117.73420 0.6796 - 0 .2 6 7 2447117.91659 0.9785 + 0 .190

2447116.86696 0.2401 - 0 .2 9 7 2447117.74438 0.6962 -0 .2 6 9 2447117.92383 0.9903 + 0 .222

2447116.86358 0.2526 - 0 .3 2 5 2447117.74660 0.6999 - 0 .2 7 7 2447117.92650 0.9947 + 0 .222

2447116.86626 0.2563 - 0 .3 2 4 2447117.76387 0.7118 - 0 .2 8 2 2447117.93379 0.0067 + 0 .224

2447116.88729 0.2914 —0.306 2447117.76698 0.7162 -0 .2 7 1 2447117.93690 0.0101 + 0 .214

2447116.88942 0.2949 - 0 .2 9 6 2447117.77372 0.7443 - 0 .2 8 9 2447117.94328 0.0222 + 0 .185

2447116.89649 0.3066 - 0 .3 0 4 2447117.77640 0.7471 - 0 .2 7 8 2447117.94503 0.0261 + 0 .176

2447116.89827 0.3094 - 0 .2 9 3 2447117.78200 0.7579 - 0 .2 8 4 2447117.96724 0.0451 + 0 .087

2447116.90862 0.3262 - 0 .2 6 0 2447117.78391 0.7610 - 0 .2 7 3 2447117.95902 0.0480 + 0 .077

2447116.91696 0.3384 - 0 .2 7 8 2447117.79610 0.7810 -0 .2 7 6 2447117.96674 0.0690 + 0 .028

2447116.91789 0.3416 - 0 .2 7 8 2447117.80271 0.7918 -0 .2 8 2 2447117.96763 0.0620 + 0 .018

2447116.92600 0.3632 - 0 .2 6 6 2447117.80444 0.7947 -0 .2 7 2 2447117.98063 0.0833 - 0 .0 7 2

2447116.94042 0.3785 - 0 .2 2 3 2447117.81119 0.8067 - 0 .2 6 8 2447117.98678 0.0919 -0 .1 0 2

2447116.94798 0.3909 - 0 .2 2 2 2447117.82625 0.8304 -0 .2 6 1 2447117.98758 0.0948 - 0 .1 1 2

2447116.96137 0.3964 - 0 .2 0 1 2447117.83348 0.8423 -0 .2 3 8 2447117.99467 0.1066 - 0 .1 3 2

2447116.97018 0.4273 —0.089 2447117.83618 0.8460 - 0 .2 3 7 2447118.00471 0.1229 - 0 .1 7 3

2447117.00671 0.4856 + 0 .059 2447117.84180 0.8569 -0 .2 3 4 2447118.00649 0.1268 -0 .1 7 4

2447117.01273 0.4970 + 0 .068 2447117.86246 0.8734 -0 .1 9 0 2447118.01338 0.1371 - 0 .1 9 6

2447117.01461 0.4999 + 0 .068 2447117.85416 0.8761 -0 .1 7 9 2447118.01619 0.1401 —'0*196
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C h ap ter  6

T h e B inary  S y stem  SS A rietis

6.1 In tro d u ctio n

The WTJMa-type short-period eclipsing binary SS Ari (BD~f23 279), was discov

ered by Hoffmeister (1934).

Many times of minima for the system have been determined over the last 20 years, 

and a study by Kaluzny & Pojmahski (1984b) showed tha t the 0-C  diagram exhibits 

a sinusoidal variation.

Zhukov (1975) reported the first (70F  light curves of SSAri, with Kaluzny & Po- 

jmanski (1984a) having published the only photoelectric data for the system to date. 

Kaluzny & Pojmadski also reported unpublished photoelectric observations of SS Ari, 

made by Paczyhski (in 1965) and Rucihski (in 1966).

-j

I
The B  and V  light curves of Kaluzny & Pojmaiiski (1984a) indicate a system which 

is in contact, whilst exhibiting a difference between depth of minima (of some 0™08).

The first quadrature is also found to be approximately 0^03 brighter than the second 

quadrature. Although the mass ratio was not known, they analysed the light curves 

using Rucihski’s code to produce the best fit for both the A-type and W-type config- i-

Iurations, concluding tha t the W-type case produced the best solution. This solution %

employed a mass ratio, q = 0.27, with an inclination, i = 74.9 deg, and a fill-out,
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f  = 0.791. A systematic difference between this synthetic fit and the observed light 

curves was found to occur over the phase interval 0^25 to 0?50, which was interpreted 

as indicating the presence of an over-luminous region on one side of the more massive 

component, located near the neck between the two stars.
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6.2  S p ectro sco p y

Radial velocity spectra of SSAri, centred on 4200Â were obtained and reduced 

as detailed in Chapter 2.

Using the F6V radial velocity standard star HD693 for cross-correlation, the radial 

velocity measurements listed in Table 6.1 were obtained. The corresponding orbital 

phasing of these measurements were calculated using the revised ephemeris in Section 

6.3.

Table 6.1: Radial Velocity data for SS Ari

The sine wave fits to the radial velocity data are shown in Figure 6.1. The additional 

primary velocity measurement at phase 0?49 may have been contaminated by the ro

tational velocity of the star, but was in fact found to have no effect on the resulting 

best fit computed for the primary data. The resulting radial velocity semi-amplitudes 

for the primary and secondary components ( /f i and K 2 respectively), and the systemic 

velocity (Vq) are given in Table 6.2, along with the derived mass function, projected 

semi-major axes of the orbits, and their standard errors.
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H.J.D. Phase Vi (O-C) V2 (O-C) '£
km s“ ^ km 8"! kms~^ kms~^ 1

2447108.61260 0.4900 -1 9 -0 .5 — — É5

2447108.67396 0.6411 -8 5 —3.6 4-160 -3 .1

2447108.70540 0.7185 -9 4 4-2.4 4-212 -1 .3 !
1

2447110.40186 0.8971 -6 5 4-1.5 4-130 4-4.9

2447110.51716 0.1811 4-42 —5.2 -245 -7 .5

2447110.54880 0.2590 4-57 4-3.5 -258 4-2.3

2447110.58641 0.3517 4-40 4-2.0 -210 -f-4.7
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Figure 6.1: Radial Velocities of the Primary and Secondary Components of SSAri 

(closed and open circles respectively), plotted together with their Orbital Solutions, 

and corresponding 0-Cs (lower plot).
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Table 6.2: Orbital Elements for SS Ari

t — r.m.s. scatter of a single observation.

K \  (km s~^) = 75.6 db 1.9 i'

/f2 (km s~^) = 239.5 i  3.0

Vbi (k m s“ ^) = -21 .9  ±  1.6 :

Tbg (km s-^ ) = -21 .0  ±  2.6 " i

<Ti (km s~^) t =  3.0

(%2 (km s"^) t =  4.9 ' î

q (m2 /m i) =  0.316 ±  0.01
%
b

e =  0 (adopted)
4

7
ai • sini (R©) =  0.606 ±  0.015 û

i
a2  • sini (R©) =  1.921 ±  0.024

a* sini (R©) =  2.528 ±  0.028

mi • sin^ i (M©) = 1.003 ±  0.026 4
m 2  • sin^ i (M©) =  0.316 ±  0.011
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6.3  E p h em eris

Kaluzny &: Pojmahski (1984a, 1984b) presented a period analysis for SS Ari which 

showed tha t the system exhibited a sine-like period variation, although they could not 

conclude whether this was due to continuous or random, abrupt changes.

From this analysis, Kaluzny & Pojmahski derived the linear ephemeris

HJD 2444469.5060(±17) -{- 0.4059917E(±26)E

This ephemeris was used to calculate the 0-Cs for the period study presented here 

(Table 6.3, and Figures 6.2 & 6.3).

A literature search by the author revealed several new photoelectric times of minima 

for the system, including two determinations derived from the new infrared photometry 

presented here (Section 6.4.2). There is also a large body of mainly visual determina

tions which have been published, mostly by am ateur observers. These data  are listed 

in Table 6.3, and the residuals, calculated with respect to the above ephemeris, are 

shown in Figure 6.2.

Although the visual data exhibit a large scatter, the period behaviour indicated in 

Figure 6.2 clearly shows the sine-like variation.

A least squares analysis of just the photoelectric data yields a revised period for 

SSAri of 0.4059899 ±  0.0000004 day.

In view of the behaviour of the O-C diagram, two different ephemerides were used to 

phase the data examined in this analysis.

The Vlight curve of Kaluzny & Pojmahski re-analysed here (Section 6.4.1), was 

phased using an ephemeris based on the period derived from their period analysis (given 

above), with a minimum taken from their V  and B  observations :-

HJD 2445261.5860(±3) -f 0.4059917(±26)E

The newer INT spectroscopic observations (Section 6.2) and UKIRT photometry (Sec

tion 6.4.2) presented here, both obtained in 1987 November, were phased using the
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Table 6.3: Times of minima for SS Ari.

H.J.D. Cycle Method Reference .‘î, 
■ f

2430948.329 -33304 VIS Odynskaya, 1949 1
2432455.347 -29592 VIS Kramer, 1948 i
2432455.552 -29591.5 VIS Kramer, 1948

2432786.229 -28777 VIS Kramer, 1948 1
2432786.43 -28776.5 VIS Kramer, 1984

2435721.545 -21547 PG Huth, 1964
%

1
2436075.581 -20675 PC Huth, 1964 i
2439028.387 -13402 VIS Braune, 1970 i

••'r

2439029.609 -13399 VIS Braune, 1970 1
2439040.5713 -13372 PE Kaluzny & Pojmaiiski, 1984a

2439053.362 -13340.5 VIS Braune, 1970

2439055.394 -13335.5 VIS Braune, 1970

2439068.396 -13303.5 VIS Braune, 1970

2439184.301 -13018 VIS Braune, 1970

2439389.5261 -12512.5 PE Kaluzny k  Pojmaiiski, 1984a

2439389.535 -12512.5 VIS Braune, 1970

2439391.5552 -12507.5 PE Kaluzny & Pojmahski, 1984a

2439403.536 -12478 VIS Braune, 1970 1
2439407.593 -12468 VIS Braune, 1970 j
2439776.4355 -11559.5 VIS Braune, 1970

2440065.518 -10847.5 VIS Braune, 1970 î
2441249.392 -7931.5 VIS Braune et 1972

1

2441576.422 -7126 VIS Braune k  Mundry, 1973 .1
2441682.376 -6865 VIS Braune k  Mundry, 1972

2441947.4934 -6212 PE Zhukov, 1975

2441951.5542 -6202 PE Zhukov, 1975 H
2441960.4865 -6180 PE Zhukov, 1975 '■■i

2441972.4638 -6150.5 PE Zhukov, 1975 ■ i

2441975.5072 -6143 PE Zhukov, 1975 \
2442036.2053 -5993.5 PE Zhukov, 1975 ■î

2442037.421 -5990.5 PE Zhukov, 1975

2442414.201 -5062.5 VIS Braune et al., 1977

2442664.474 -4446 VIS Braune et al., 1979

2442840.265 -4013 VIS Braune et ah, 1979

180



Table 6.3: Times of minima for S S Ari — continued.

181

H.J.D. Cycle Method Reference 1

2443014.459 -3584 VIS Braune et al., 1979 î
2443833.332 -1567 VIS Braune et al;, 1981
2443455.3482 -2498 PB Kurpihski, 1982 '1
2443790.300 -1673 VIS Locher, 1978 'ï

t
2443795.573 -1660 VIS Locher, 1978

12444146.5425 -795.5 PB Kurpihski, 1982
2444266.318 -500.5 VIS Locher, 1980a
2444469.5070 0 PB Kurpihski, 1982
2444539.326 172 VIS Locher, 1980b

2444602.245 327 VIS Locher, 1981a
2444605.289 334.5 VIS Locher, 1981a

2444605.3104 334.5 PB Kurpihski, 1982
2444629.258 393.5 VIS Locher, 1981a
2444635.319 408.5 VIS Locher, 1981a

2444636.342 411 VIS Locher, 1981a

2444642.2559 425.5 PB Kurpihski, 1982 i

2444649.324 443 VIS Locher, 1981b
2444659.269 467.5 VIS Locher, 1981b

2444821.456 867 VIS Locher, 1981c
2444823.5270 872 PB Kurpihski, 1982
2444831.606 892 VIS Locher, 1981c
2444879.325 1009.5 VIS Locher, 198 Id ,

2444883.380 1019.5 VIS Locher, 198 Id ■ri

2444911.424 1088.5 PB Locher, 1981d

2444917.278 1103 VIS Locher, 1981d ;

2444919.305 1108 VIS Locher, 1981d i
2444926.235 1125 VIS Locher, 1981d J
2444929.269 1132.5 VIS Locher, 1981d

2444985.298 1270.5 VIS Locher, 1982a

2445224.458 1859.5 VIS Locher, 1982b
2445238.450 1894 PG Braune et al., 1983

2445261.3848 1950.5 PB Kaluzny & Pojmahski, 1984a

2445261.5860 1951 PB Kaluzny & Pojmahski, 1984a
2445262.3990 1953 PB Kaluzny k  Pojmahski, 1984a

Si ■ Ç'



Table 6,3: Times of minima for S S Ari — continued.

H.J.D. Cycle Method Reference
12445294.476 2032 PG Braune et al., 1983

2445296.299 2036.5 VIS Locher, 1983a : ;i
2445298.536 2042 PG Braune et al., 1983 -%

2445323.296 2103 PB Pohl et al, 1983 i

2445335.284 2132.5 VIS Locher, 1983a tr

2445345.231 2157 VIS Locher, 1983a
12445346.238 2159.5 VIS Locher, 1983a

2445359.227 2191.5 VIS Locher, 1983a
2445388.259 2263 VIS Locher, 1983b
2445576.445 2726.5 VIS Isles, 1985a
2445577.458 2729 VIS Isles, 1985a
2445587.386 2753.5 VIS Isles, 1985a
2445605.8630 2799 PB Faulkner, 1986
2445621.289 2837 VIS Locher, 1983c
2445623.333 2842 VIS Hûbscher k  Mundry, 1984
2445635.306 2871.5 VIS Isles, 1985a
2445635.294 2871.5 VIS Locher, 1983c
2445641.381 2886.5 VIS Locher, 1983c

2445651.3318 2911 PB Pohl et al, 1985
2445674.268 2967.5 VIS Locher, 1984a

2445681.379 2985 VIS Isles, 1985a ■ '1
2445701.265 3034 VIS Locher, 1984a
2445731.314 3108 VIS Isles, 1985b 1
2445772.306 3209 VIS Locher, 1984b

■'i

i l

.2445943.8485 3631.5 PB Faulkner, 1986

2445988.297 3741 VIS Locher, 1984c
2446001.307 3773 VIS Isles, 1985b

■ï
d

2446005.352 3783 VIS Locher, 1984c

2446021.5914 3823 PB Faulkner, 1986 %
2446059.365 3916 VIS Isles, 1985b d
2446113.360 4049 VIS Isles, 1986

2446114.358 4051.5 VIS Isles, 1986 il

2446321.621 4562 VIS Locher, 1985

2446327.4994 4576.5 PB Pohl et al, 1987
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Table 6.3: Times of minima for S S Ari — continued.

H.J.D. Cycle Method Reference

2446351.478 4635.5 VIS Isles, 1986

2446355.328 4645 VIS Locher, 1985

2446355.307 4645 VIS Hûbscher et al., 1986

2446383.328 4714 VIS Isles, 1986

2446403.411 4763.5 VIS Locher, 1986

2446421.297 4807.5 VIS Locher, 1986

2446422.288 4810 VIS Hûbscher et al., 1986

2446440.5677 4855 PB Faulkner, 1986

2446688.466 5465.5 VIS Isles, 1988

2446760.293 5642.5 VIS Locher, 1987a

2446843.323 5847 VIS Locher, 1987b

2447068.441 6401.5 VIS Hûbscher k  Lichtenknecker, 1988

2447077.366 6423.5 VIS Hûbscher k  Lichtenknecker, 1988

2447088.341 6450.5 VIS Locher, 1988a

2447111.287 6507 VIS Locher, 1988b

2447113.305 6512 VIS Locher, 1988c

2447118.364 6524.5 VIS Locher, 1988a

2447118.7666 6525.5 PB UKIRT — this paper

2447119.7814 6528 PB UKIRT — this paper

2447128.345 6549 VIS Locher, 1988c

2447141.301 6581 VIS Locher, 1988a

2447145.364 6591 VIS Locher, 1988a

2447153.278 6610.5 VIS Locher, 1988a

2447157.354 6620.5 VIS Locher, 1987b

2447206.253 6741 PB Keskin k  Pohl, 1989

2447207.275 6743.5 VIS Hûbscher k  Lichtenknecker, 1988

2447208.292 6746 VIS Locher, 1988c

2447511.3531 7492.5 PB Keskin k  Pohl, 1989

2447523.379 7522 VIS Locher, 1989b

2447523.312 7522 VIS Locher, 1989a

2447524.348 7524.5 VIS Locher, 1989a

2447525.342 7527 VIS Locher, 1989a

2447534.301 7549 VIS Locher, 1989b

2447565.346 7625.5 VIS Locher, 1989b
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Figure 6.2: The Period behaviour of SSAri. (Open Circles represent visual times of 

minima; Open Crosses represent photographic minima; and Filled Circles represent 

photoelectric minima).
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revised period derived above, with a time of minimum taken from the UKIRT da ta  (see 

Table 6.3)

HJD 2447119.7814(±9) +  0.4059899(±4)E

The au thor attem pted to fit the O-C data w ith a sine wave, using only the photoelec

tric determinations, plus the earliest five visual and two photographic determinations 

(between -35000 and -20000 cycles), which were included to provide clearer definition 

of the sinusoidal variation. Although a rigorous analysis cannot be justified due to the 

scatter in the photographic and visual data, this analysis implied a sine wave fit to the 

da ta  w ith a period of approximately 43 years, and an amplitude of around 0.036 day.

This fit is shown plotted with the da ta used for the analysis in Figure 6.3.

If it is assumed tha t the sinusoidal variation is the result of th ird  body motion, 

in an orbit coplanar w ith tha t of SS Ari, then the to tal mass of the system can be 

estimated as approximately 0.132M^. As the total mass of SSAri is approximately 

1.5 M©, this explanation can be rejected, unless the orbit of the th ird  body is nearly 

perpendicular to that of SS Ari.

Thus if the sinusoidal variation is real, this leads to the possibility tha t there is ;

mass transfer in the system which exhibits cyclic behaviour with a period of around 

43 years. This can be compared with a similar sinusoidal variation in the O-C residuals 

observed in the binary system BX And (Chapter 5).
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Figure 6.3: Tlie sinusoidal period beliaviour of SSAri. The fit shown is a sine wave 

with a period of 43yr and amplitude of 0.036 day.

(Open circles represent visual times of minima ; open crosses represent photographic

minima ; and filled circles represent photoelectric minima).
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6 .4  P h o to m e tr ic  A n a ly sis

6 .4 .1  O p tic a l D a ta

A light curve analysis, using the light curve synthesis program LIGHT2 (Chap- -if

ter 2), is presented here of the F-fiiter observations published by Kaluzny Po- 

jmanski (1984a). These da ta  consisted of 318 observations reduced to  a differential 

magnitude, with a probable error in a single observation of approximately 0™015. The 

da ta were phased with the ephemeris given in Section 6.3.

These data consist of two nights of observation, made during 1982 October 18/19 

and 19/20. When examined, it was found that the last 5/6 observations made at the 

end of each night exhibited a much larger scatter than the rest of the data, possibly 

due to the encroaching twilight, an inadequacy at the extremities of the sky fitting al

gorithm used during data reduction, or similar. Hence for the analysis presented here, 

these data  points were removed from the light curve, the overlap of data  ensuring tha t 

this did not degrade the orbital phase coverage in any way.

6 .4 .2  In fr a red  O b se r v a tio n s

Simultaneous infrared and optical photometry of SS Ari was obtained and reduced 

as described in Chapter 2. The J  and K  data were reduced to differential magnitudes 

with an accuracy of 0™02, and phased using the revised ephemeris given in Section 6.3.

The J  and K  observations are listed in the Appendix to this Chapter, and are shown 

plotted in Figures 6.5 & 6.6 respectively.

The overall scatter in the J  light curve is approximately 0™02, whereas tha t for the 

K  light curve is 0™03. Both light curves appear similar in shape to the visual data, 

exhibiting a first quadrature approximately 0^04 and 0?03 brighter than the second 

quadrature in J  and K  respectively. However, the depth of primary and secondary 

minima are virtually equal in J, whilst in K  the secondary minimum is deeper by 

approximately 0^03.



6 .4 .3  S p e c tr a l T y p e

Kholopov et al. (1985) give a spectral type of F8 for the prim ary component of 

SSAri, which implies a primary temperature of some 6100K (Popper 1980).

Kaluzny & Pojmahski (1984a) adopted a primary temperature of 5600K for their light 

curve analysis, on the basis of observed colours.

Their observations gave a value of (B-V)=0.63 at primary minimum. The new 

infrared photometry presented here, although showing some scatter, gives a value of ( J- 

K)c±0.35 at primary minimum. Both of these colours, if unreddened, imply a spectral 

type nearer G2. (Popper 1980 and Koornneef 1983 respectively).

However, the spectroscopy presented here (Section 6.2) was cross-correlated with 

an F6V standard star template, which was found to optimise the cross-correlation 

functions in preference to a G2V standard star also observed (Chapter 2).

Hilditch & Hill (1975) and Rucinski (1983) have both published Stromgren four-colour 

observations of SSAri, which show good agreement. Rucinski’s analysis of the ob

servations, based on the standard relations of Crawford (1975) but allowing for evo

lution away from the zero-age main sequence, gives a reddening for the system of 

=0™035 and a spectral type of F8.

If this reddening is taken into account for the observed colours above, (using the 

relation =  0 . 5 4 for the infrared case), then both also imply a spectral

type around F8 (Popper 1980 and Koornneef 1983 respectively).

Hence for the light curve analysis presented here, a temperature for the primary com

ponent of 6100±200K, and a colour excess for the system of E(̂ b ~v ) =01^035 were 

adopted.

6 .4 .4  L ig h t C u rv e  A n a ly s is

Given the non-symmetric shape of the light curves of SS Ari, each half of the F, 

J, and K  curves were analysed separately using LIGHT2.

Fixing the primary component temperature Ti at 6100K, and the mass ratio a t the
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spectroscopic value, solutions were sought for the “fill-out” factor ( / ) ,  secondary com

ponent temperature (T2 ), and system inclination (i). The bolometric albedo for bo th 

components (0 :1 ,2 ) were fixed a t 0.5, and the gravity darkening exponents (A ,2 ) were 

fixed at the convective value of 0.08.

The two analyses for each light curve thus obtained are given in Tables 6.4, 6.5, and 

6.6, with the fits, reflected around 0^5 and plotted against the complete da ta  set, are 

shown in Figures 6.4, 6.5, and 6.6, along with their respective 0 -C ’s.

D a ta from 0?0 to 0?5 Data from 0^5 to 1?0

Q. 0.316 (fixed) 0.316 (fixed)

T i(K ) 6100 (fixed) 6100 (fixed)

«1)2 0.5 (fixed) 0.5 (fixed)

/̂ 1)2 0.08 (fixed) 0.08 (fixed)

f 0.822 ±  0.038 0.931 ±  0.022

i n 73.61 ±  0.28 74.85 ±  0.17

ri (mean) 0.4953 ±  0.003 0.4891 ±  0.003

7*2 (mean) 0.2956 ±  0.001 0.2885 ±  0.001

T2(K ) 6527 ±  32 6256 ±  17

4.39 XlO-4 1.45 XlO-4

Table 6.4: Solution for each half of the F ligh t curve of SSAri (with standard errors).

Unlike the previous binary systems examined, the light curve of SSAri with unequal 

quadratures, can only be explained by introducing an anomalous luminosity distri

bution in the form of either a hot or a cool spot, depending upon which half of the 

light curve is taken to reflect most accurately the true geometrical configuration of the 

system. Further, any spot must be displaced to one side of the affected component 

star, unlike the spots suggested previously on VW Boo and BX And which were formed 

symmetrically about the neck joining the two stars.

The solutions suggested for the visual and infrared data indicate substantially different 

geometries, particularly in fill-out and secondary temperature. The decreasing sec

ondary temperature between the J  and K  curves, apparently contradicting the W -type
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D ata from 0?0 to 0?5 D ata from 0?5 to 1?0

Q 0.316 (fixed) 0.316 (fixed)

T i(K ) 6100 (fixed) 6100 (fixed)

«1 )2 0.5 (fixed) 0.5 (fixed)

/̂ 1)2 0.08 (fixed) 0.08 (fixed)

/ 0.508 ±  0.032 0.606 ±  0.056

i(° ) 76.01 ±  0.15 75.28 ±  0.26

7*1 (mean) 0.5138 ±  0.004 0.5082 ±  0.004

V2 (mean) 0.3164 ±  0.002 0.3094 ±  0.002

T ^(K ) 6179 ±  49 5972 ±  82

1.47 xlO-4 3.09 XlO-4

Table 6.5: Solution for each half of the J  light curve of SS Ari (with standard errors).

Table 6.6: Solution for each half of the K  light curve of SS Ari (with standard errors).
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D ata from 0^0 to 0?5 D ata from 0?5 to 1?0

Q 0.316 (fixed) 0.316 (fixed)

T i(K ) 6100 (fixed) 6100 (fixed) J

«1)2 0.5 (fixed) 0.5 (fixed)

J l̂)2 0.08 (fixed) 0.08 (fixed) '

/ 0.417 ±  0.049 0.586 ±  0.055

i(° ) 75.72 ±  0.24 74.82 ±  0.27

7*1 (mean) 0.5193 ±  0.004 0.5090 ±  0.004

7*2 (mean) 0.3230 ±  0.002 0.3110 ±  0.002 <
T2(K ) 5544 ±  70 5442 ±  67 .i

2.35 XlO-4 2.19 XlO-4 'Î



in
d

in
d

lO
CM

o

00
d

O)
d

<N

(90 % 8 ' '  ' '

o  o' S>° o
% cjtP

0 O ^‘
0

•  * , % * * •  •
.  '  " , • •

»•  # «  *
* -

^  t •

•» % J

••  •

#

,
» • *

•  • •  • •
•  •  '

» f*

"  . 1

I»*
• • •

•
• • • • •

«
•  •  •

•  •  •
•  •

© '
O O 0 ,

o "  M
^  O "

0 (581: 0 . 4
°  O oo o

0 ( f f

- ° *  O '
3

o o % c -
— o <? 3 _

o o
o o o

o
g  8  o o

« o °

g o *  o

6>o % 9

o  o' <5>° O
% (9*

0 o g ' % °  o
o :

•  •  *
•  •

« »
w  ** '

1 1 1 1 1 1

in

d

in
d

m
CM
d

o

inq
d

1

0U)
a

JZ

I
S
■XJ

I

n3
lO

P."O

O
P."o

Î
a)

I
1
I
I

I

&

r5'Bh

I
0

cé
I
r - i

%

8
03W

a
o
8

i
-xJ

bO

a

m
q
d

( O - A )  9pn;iu6DiAj |op u9 ja^j !Q spriptsaj 0 -0
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Figure 6.6: K  observations of SSAri with LIGHT2 solutions for each half of the light 

curve. The lower plot shows the residuals of the data from each half of the light curve 

and its respective solution.
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nature of the system indicated by the spectroscopy, have however been misleading, 

since it is crucially affected by the 0™03 deepening of the secondary minimum in the K  

light curve, which is within the 0™03 scatter of the data.

On the face of it then the da ta indicate that SS Ari has moved from a marginal contact 

system with unequal tem perature components (visual data), to a system in deep contact 

with thermalised components (infrared data). Although the visual and infrared data 

were obtained in 1983 and 1987 respectively, it is difficult to believe that such a change 

could occur in just four years.

If the solutions to the first half of the light curve data are taken to represent the true 

geometry of the system, then a cool spot must be invoked around second quadrature. If 

the solutions to the second half of the light curve data are taken, then a hot spot around 

first quadrature is invoked, which is also displaced to one side of the star. If this is the 

true scenario, then clearly the deep contact, equal temperature solution suggested by 

the infrared fits cannot be correct, whilst the marginal contact, unequal temperature 

solution to the visual data does give the type of system configuration needed for such 

a hot spot to arise, as seen in VW Boo and BX And. This fit to the second half of the 

visual data (Table 6.4) agrees well with the analysis of Kaluzny & Pojmahski (1984a), 

who also interpreted the discrepancy around first quadrature as indicating the presence 

of an over-luminous region (Section 6.1).

It must be noted however th a t deciding the correct geometry of a system which includes 

some form of spot region from a simple light curve analysis, may well be “contaminated” 

by the presence of the spot itself. The effects a spot could have on light curve analysis 

were investigated by Dr S.A.Bell(1990). LIGHT2 was used to generate a light curve 

at a visual wavelength, with a hot spot around first quadrature. The generated curve 

was then solved, making no allowance for the presence of a spot. The solution to 

the distorted first half of the generated light curve yielded consistently smaller fill-out 

factors (~  0.5), denoting larger stars, and a much greater degree of contact than those 

for the second half of the curve. The inclination and secondary temperature were found 

to be in good agreement with tha t used for the generated curve. The second half of 

the generated curve yielded a fill-out factor and inclination in very good agreement 

with those values used in the generation process, although the secondary temperature
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did show a discrepancy of approximately 300K. Similar tests at infrared wavelengths "A

however suggested tha t the presence of a hot spot had little effect on the solution 

parameters.

6 .4 ,5  M o d e llin g  a  H o t  S p o t

Adopting the solution to the second half of the V  light curve as the most likely 

configuration of SS Ari, LIGHT2 was used to try and solve the data with the inclusion 

of a hot spot around second quadrature on the cooler component. As for previous 

analyses the spot was assumed to be circular and to have a latitude of 0°.

Geometric considerations of this fit on the visual data indicates that such a spot would 4

have a longitude of approximately 20°, with a radius of some 30°. The spot longitude 

being defined as the angle between the sub-stellar point and the spot centre, measured 

anti-clockwise from the sub-stellar point, as seen from the north pole of the star.

Geometric considerations of this fit on the infrared data indicate the spot would have a 

longitude of approximately 90°, with a radius of some 60°. This of course suggests that 

the spot has moved round the primary component between 1983 and 1987, possibly 

indicating tha t the energy transfer between the components is uneven or indeed tha t a 

different phenomenon is responsible for this feature.

Any attem pt to use non-simultaneous, single colour light curves to solve for a unique 

spot radius and temperature wiU fail unless the radius can be constrained by geometrical 

considerations, or the spot tem perature can be estimated from another source. Unlike 

VWBoo and BX And, SS Ari with a spot displaced to one side of the star provides far 

weaker geometrical constraints, and as a result LIGHT2 failed to converge to a solution.

However, it was found tha t reasonable fits to the data could be found by generating 

light curves using the system configuration indicated by the solution to the second half 

of the visual data, with a variety of spot parameters used to find the best fit. Clearly 

though, this analysis cannot be treated as a true solution.

For the system configuration indicated by the visual solution to fit the infrared data, 

with a spot at some 90° longitude, it was found necessary to increase the system
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inclination to 78°. This in turn caused the generated fit to  the visual da ta to become 

too deep around secondary minimum. However, by increasing the radius of the spot 

in the visual case, it becomes visible behind the secondary component at secondary 

minimum (taking the form of an annular eclipse), thus providing the “ex tra” luminosity 

required.

Hence, by generating various light curves, the system parameters listed in Table 6.7 

were obtained, providing reasonable fits to both the visual and infrared da ta using the 

same basic system geometry. These generated fits are shown plotted against the V, 

J ,  and K  light curves, with their corresponding 0 -C ’s, in Figures 6.7, 6.8, and 6.9 

respectively. Figures 6.10 and 6.11 show a schematic diagram of the SSAri system 

configuration, indicating the location and size of the proposed hot spot in the visual 

(1983) and infrared (1987) cases respectively.

Visual Data Infrared D ata

Q 0.316 0.316

T i(K ) 6100 6100

«lî2 0.5 0.5

^lj2 0.08 0.08

/ 0.931 0.931

H °) 78.0 78.0

1-2 (K ) 6260 6260

Spot Parameters

longitude (degrees) 20 90

Vs (degrees) 50 60

Ta (above T2 ) 160 160

Table 6.7: System and spot parameters used to generate the “best fits” to  the visual 

(1983) and infrared (1987) light curves of SS Ari.
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0 .3 1 6  : /  = 0,931 SS ARIETIS

P hase  = 0 .3 3 3 3 i  = 7 8 .0 0 °  : 0 = 120 .00°

Figure 6.10: A schematic diagram of SS Ari at 0^33, based ou the generated ’’best At” 

to the visual data obtained in 1983.

(The location of a hot spot at longitude 20° with a radius of 50°is also shown).
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g = 0 .3 1 6  : /  =  0.931 S S  A R I E T I S

P h ase  = 0 .2 5 0 0 { = 7 8 .OO"" : ÿ  = 9 0 .0 0

Figure 6.11; A schematic diagram of SSAri at 0^25, based on the generated ’’best fit” 

to the infrared data obtained in 1987.

(The system geometry is the same as for the visual case in 1983, but now the location 

of a  hot spot at longitude 90° with a radius of 60°is indicated).
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6.5 D iscu ssio n

The da ta and analysis presented here show the difficulty of interpreting a unique 

spot model for binary systems, particularly those which exliibit light curves with un

equal heights of quadrature. (See also Chapter 7).

The true nature of the luminosity distribution on SS Ari is far from certain, with the 

visual light curve of Kaluzny & Pojmahski (1983a) obtained in 1983 apparently indicat

ing a substantially different geometry from tha t suggested by the infrared light curve 

obtained in 1987 and presented here. It is encouraging, however, that a common system 

geometry, modified by the presence of a hot spot, can be found to fit reasonably well 

both wavelength light curves. This equally, of course, indicates the wide range of solu

tions which can fit such data, higlüighting the problems of obtaining unique solutions. 

If the possible interpretation presented here is correct, the apparent displacement of 

the spot to one side of the star needs to be explained, as does the apparent shift of the 

spot around the star between 1983 and 1987.

The true nature of the system can probably only be resolved by using Doppler Imaging 

techniques to identify the position of any spot phenomena, and simultaneous infrared 

and visual photometry to estimate the spot temperature. Also monitoring of the sys

tem ’s light curve over a long time base may reveal any time dependency of the phenom

ena, and add further photoelectric times of minima which are required to determine 

the true nature of the apparent sinusoidal period variations.

Assuming the marginal contact, unequal temperature configuration adopted in this 

analysis is correct, then the astrophysical data for SS Ari, are as listed in Table 6.8. As 

in previous analyses an error of 200 K has been adopted in the secondary component 

temperature, and the bolometric corrections have been taken from the compilation 

of Popper (1980). The system’s distance was estimated adopting the colour excess of 

E(j3 _v’) =  0^035 (Section 6.4.3).

A comparison of the masses, radii, temperatures, and luminosities of the components 

of SSAri (see Chapter 9), with those of other marginal-contact and contact binaries, 

compiled by Hilditch et al. (1988) indicates tha t the primary and secondary components
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Absolute dimensions Prim ary Secondary

M(M®) 1.07 ±  0.03 0.34 ±  0.01

R(R® ) 1.26 ±  0.02 0.75 ±  0.01

log g{cgs) 4.26 ±  0.02 4.22 db 0.02

T e// (K) 6100 ±  200 6260 ±  200

log L / L® 0.30 ±  0.06 -0 .11 ±  0.06

M()of 4?01 ±  0^14 5?04 ±  0^14

B.C. -0 ^ 0 8 -0 ? 0 5

My 4^09 ±  0^14 5^09 ±  0^14

E(b - v) 0^035

Distance (pc) 181 ±  22

Table 6.8: Astrophysical D ata for S S Ari.

lie close to the corresponding components of VW Boo in the M-R and M-L diagrams, 

occupying the same regions as standard W -type binary systems.

The primary component lies just on the TAMS line of the main-sequence band, 

whilst the secondary component is over-sized and over-luminous compared with a stan

dard low mass, main-sequence star (Patterson 1984).

On the HR diagram the components of SS Ari are also found to occupy the same 

regions as the components of standard W -type binary systems.
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4
6.7  A p p en d ix  - N ew  P h o to e le c tr ic  D a ta

This appendix tabulates the new photoelectric da ta for SS Ari presented in this

study.

These infrared observations were obtained with the United Kingdom Infrared 

Telescope during November 1987 (see Section 6.4.2 and Chapter 2).

Table 6.9 gives the J-filter observations, and Table 6.10 gives the iT-filter obser- 4

vations.



Table 6.9: 1987 UKIRT J  observations.

H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C )

2447118.74233 0.4407 + 9 .276 2447118.90017 0.8294 + 9 .006 2447119.79083 0.0232 + 9 .381

2447118.74864 0.4662 + 9 .3 2 0 2447118.90199 0.8339 + 9 .006 2447119.79696 0.0383 + 9 .332

2447118.76020 0.4600 + 9 .341 2447118.90862 0.8602 + 9 .024 2447119.79870 0.0426 + 9 .313

2447118.75624 0.4749 + 9 .384 2447118.91026 0.8643 + 9 .044 2447119.80472 0.0676 + 9 .2 6 4

2447118.76613 0.4968 + 9 .399 2447118.93480 0.9147 + 9 .168 2447119.81467 0.0819 + 9 .166

2447118.76687 0.6011 + 9 .4 0 9 2447118.98747 0.0446 + 9 .314 2447119.81626 0.0669 + 9 .166

2447118.77320 0.6167 + 9 .392 2447118.99326 0.0687 + 9 .260 2447119.82244 0.1011 + 9 .1 2 7

2447118.77499 0.5211 + 9 .393 2447118.99474 0.0624 + 9 .239 2447119.82406 0.1061 + 9 .097

2447118.78648 0.6494 + 9 .3 1 7 2447119.00092 0.0776 + 9 .183 2447119.83295 0.1270 + 9 .048

2447118.79339 0.6664 + 9 .269 2447119.01101 0.1024 + 9 .114 2447119.83941 0.1429 + 9 .019

2447118.79613 0.6707 + 9 .269 2447119.01261 0.1061 + 9 .092 2447119.84106 0.1469 + 9 .019

2447118.80126 0.6858 + 9 .171 2447119.01830 0.1204 + 9 .066 2447119.84774 0.1634 + 8 .999

2447118.80923 0.6054 + 9 .122 2447119.02026 0.1262 + 9 .044 2447119.86771 0.1879 + 8 .960

2447118.81107 0.6100 + 9 .113 2447119.02879 0.1462 + 9 .002 2447119.86930 0.1919 + 8 .960

2447118.81807 0.6272 + 9 .084 2447119i03496 0.1614 + 8 .982 2447119.86643 0.2070 + 8 .960

2447118.81966 0.6311 + 9 .084 2447119.03681 0.1660 + 8 .980 2447119.86722 0.2114 + 8 .940

2447118.83041 0.6676 + 9 .026 2447119.73061 0.8746 + 9 .122 2447119.87620 0.2336 + 8 .939

2447118.83736 0.6747 + 9 .006 2447119.73207 0.8786 + 9 .133 2447119.88261 0.2493 + 8 .929

2447118.83910 0.6790 + 8 .9 9 7 2447119.73796 0.8930 + 9 .167 2447119.88426 0.2634 + 8 .929

2447118.84607 0.6962 + 8 .977 2447119.73970 0.8973 + 9 .178 2447119.89174 0.2718 + 8 .928

2447118.85474 0.7176 + 8 .9 7 7 2447119.74780 0.9172 + 9 .173 2447119.91216 0.3220 + 8 .966

2447118.86673 0.7224 + 8 .967 2447119.76442 0.9336 + 9 .227 2447119.91870 0.3382 + 8 .984

2447118.86415 0.7407 + 8 .968 2447119.75600 0.9374 + 9 .248 2447119.92036 0.3423 + 8 .993

2447118.86696 0.7452 + 8 .968 2447119.76196 0.9621 + 9.301 2447119.92704 0.3687 + 9 .012

2447118.87661 0.7711 + 8 .9 6 7 2447119.77361 0.9808 + 9 .386 2447119.93689 0.3806 + 9 .039

2447118.88336 0.7880 + 8 .997 2447119.77621 0.9847 + 9 .396 2447119.93758 0.3847 + 9 .069

2447118.88603 0.7921 + 8 .967 2447119.78114 0.9994 + 9 .408 2447119.94411 0.4008 + 9 .096

2447118.89166 0.8086 + 8 .986 2447119.78272 0.0032 + 9 .408 2447119.94616 0.4068 + 9 .106
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Table 6.10: 1987 UKIRT K  observations.

H .J .D . (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )

2447118.74470 0.4466 + 8 .964 2447118.89740 0.8226 + 8 .643 2447119.79289 0.0283 + 8 .992
2447118-74628 0.4604 + 8 .986 2447118.90439 0.8398 + 8 .662 2447119.79446 0.0322 + 8 .992 i ;
2447118.76228 0.4662 + 9 .0 2 7 2447118.90607 0.8440 + 8 .662 2447119.80077 0.0477 + 8 .933
2447118.76389 0.4691 + 9 .0 3 8 2447118.91269 0.8600 + 8 .702 2447119.80237 0.0516 + 8 .913

2447118.76267 0.4908 + 9 .061 2447118.93747 0.9213 + 8 .827 2447119.81232 0.0762 + 8 .846

2447118.76893 0.6062 + 9 .063 2447118.98960 0.0496 + 8 .920 2447119.81832 0.0909 + 8 .776
2447118.77061 0.6101 + 9 .063 2447118.99097 0.0631 + 8 .929 2447119.81994 0.0949 + 8 .775

2447118.77712 0.6263 + 9 .045 2447118.99676 0.0673 + 8 .866 2447119.82662 0.1114 + 8 .726

2447118.78893 0.6664 + 8 .968 2447118.99847 0.0716 + 8 .865 2447119.83622 0.1326 + 8 .6 8 7 s.;

2447118.79073 0.6699 + 8 .938 2447119.00794 0.0949 + 8 .779 2447119.83704 0.1371 + 8 .687

2447118.79737 0.6762 + 8 .849 2447119.01462 0.1111 + 8 .744 2447119.84318 0.1622 + 8 .667

2447118.79894 0.6801 + 8 .849 2447119.01606 0.1148 + 8 .743 2447119.84499 0.1666 + 8 .667

2447118.80670 0.6992 + 8 .781 2447119.02247 0.1307 + 8 .688 2447119.86529 0.1820 + 8 .6 1 7

2447118.81320 0.6162 + 8 .742 2447119.03099 0.1616 + 8 .660 2447119.86143 0.1971 + 8 .607

2447118.81482 0.6192 + 8 .742 2447119.03262 0.1664 + 8 .668 2447119.86306 0.2011 + 8 .607

2447118.82189 0.6366 + 8 .7 4 3 2447119.03911 0.1716 + 8 .640 2447119.86964 0.2171 + 8 .687

2447118.83336 0.6648 + 8 .674 2447119.04067 0.1766 + 8 .628 2447119.87839 0.2389 + 8 .677

2447118.83497 0.6688 + 8 .674 2447119.72807 0.8686 + 8 .760 2447119.88014 0.2432 + 8 .667

2447118.84123 0.6843 + 8 .634 2447119.73666 0.8873 + 8 .794 2447119.88702 0.2601 + 8 .677 4

2447118.84284 0.6882 + 8 .634 2447119.74192 0.9028 + 8 .827 2447119.88914 0.2664 + 8 .676

2447118.86219 0.7113 + 8 .6 1 4 2447119.76004 0.9228 + 8 .830 2447119.91441 0.3276 + 8 .624

2447118.86940 0.7290 + 8 .606 2447119.76176 0.9270 + 8 .840 2447119.91612 0.3318 + 8 .634

2447118.86136 0.7338 + 8 .606 2447119.76802 0.9424 + 8 .903 2447119.92268 0.3480 + 8 .662

2447118.86826 0.7608 + 8 .606 2447119.76963 0.9464 + 8 .913 2447119.92430 0.3620 + 8 .662

2447118.87864 0.7764 + 8 .624 2447119.77130 0.9761 + 8 .9 9 7 2447119.93344 0.3746 + 8 .681 ■ i

2447118.88046 0.7809 + 8 .644 2447119.77726 0.9898 + 9 .018 2447119.93986 0.3903 + 8 .719

2447118.88741 0.7980 + 8 ,634 2447119.77886 0.9937 + 9 .029 2447119.94161 0.3944 + 8 .729

2447118.88926 0.8026 + 8 .634 2447119.78626 0.0096 + 9 .030 2447119.94871 0.4121 + 8 .777
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C h apter 7

T h e B inary  S ystem  A G  V irgin is

7.1 In tro d u ctio n

The eclipsing binary AG Vir (HD 104350, BD+13° 2481) has been the subject of 

several studies during the past sixty years since its discovery by Guthnick & Prager 

(1929). The period of the system was correctly determined by D ugan(1933) and 

two photographic studies were subsequently made by Bodokia(1937) and Gaposchkin 

(1953). Several photoelectric light curves have been presented for this W  Ursae-Majoris 

system by Wood (1946), Szczepanowska(1958), Fliegel (1963), Binnendijk (1969), Blan

co & Catalano (1970) and more recently by Niarchos(1985) and Kaluzny (1986). Low 

dispersion spectroscopic observations (% 79 Â mm~^) have been made by Sanford (1934) 

who measured radial velocities for the brighter component only and by Hill Sz Barnes 

(1972) who obtained similar observations (« 6 3 Â m m “ ^) and also found no evidence 

for the spectrum of the secondary component. They concluded tha t the orbit of AG Vir 

was eccentric and presented orbital elements for the system.

In the majority of published light curves, the bottom  of primary minimum is somewhat 

distorted and shows some evidence for night to night variations (e.g. Michaels 1988). 

Similarly, first quadrature is also considerably brighter than second quadrature by ap

proximately 0™08 and secondary minimum occurs shortly after 0?5. Binnendijk (1969) 

has shown tha t the orbital period of AG Vir abruptly lengthened by 0®4 around 1944.
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Blanco & Catalano (1970) subsequently suggested that the orbital period of the system 

shows a variation in an interval of just under 40 yr. However, times of minima obtained 

since their study suggest tha t this interpretation is probably no longer applicable. The 

period of this system appears to have been constant since 1944 although the residu

als of the photoelectric times of minima from a specific ephemeris show a scatter of 

around 0^005, more than would normally be expected for photoelectric data. These 

variations and the distortions in the light curves have been pu t forward as evidence 

for gas streams and/or spot activity on one or bo th of the components of AG Vir (e.g. 

Kaluznyl986). A subsequent study of chromospheric emission from W UM a systems 

by Eaton (1983) using short wavelength lUE spectra indicated tha t AG Vir showed lit

tle clear evidence of surface activity whereas bo th A - and W -type systems of similar 

spectral type showed considerable activity.

I

212

’  f - L '  J * :  j '  • ■ '  ■■ -■ r - - - - - - - - - - - 1: - - - ! : ! . ' : . : ' . . , : — I r . I



7.2 S p ectro sco p y

Radial velocity spectra of AG V ir, centred on 4200 Â were obtained and reduced 

as detailed in Chapter 2.

The spectra of AG V ir were cross-correlated against the F61V standard star HD 89449, 

and the radial velocity measurements given in Table 7.1 obtained. These observations 

were phased using the ephemeris specified in Section 7.3.

H.J.D. Phase Vi

km s“ ^

(O-C)

kms~^

V2

km s“ ^

(O-C) 

km s~^

2447280.46673 0.6737 +65 -1 .4 -207 -7 .2

2447281.45247 0.2075 -7 4 '—0.2 +238 -8 .2

2447282.38671 0.6612 +61 —2.5 -195 -4 .6

2447282.41375 0.7033 +72 +0.3 -211 +5.6

2447282.42605 0.7225 +74 +0.2 -220 +3.3

2447282.45757 0.7715 +77 +2.7 -221 +3.7

2447282.51917 0.8674 +53 -2 .3 -170 -5 .7

2447282.53419 0.8907 +51 +3.8 -135 +3.8

2447283.39107 0.2241 -7 8 -2 .5 +248 -3 .6

2447283.40571 0.2469 -7 4 +2.5 +251 -3 .7

2447283.42045 0.2698 -7 5 +0.9 +255 +2.1

2447283.44870 0.3138 -7 2 -1 .5 +248 +12.3

2447283.46098 0.3329 —66 +0.4 +225 +2.2

2447283.53190 0.4432 -2 6 +1.2 ------- ------

2447283.59209 0.5369 +15 —1.6 ------ -------

Table 7.1: Radial velocity data for AG Vir.

The sine wave fits to the radial velocity data  are shown in Figure 7.1. The two additional 

primary velocity measurements around 0^5, which may have been contaminated by the 

rotational velocity of the star, have been included in the analysis since they are found 

to have no effect on the resulting best fit computed for the primary data. The radial 

velocity semi-amplitudes for the prim ary and secondary, K \ and IC2 respectively, the
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systemic velocity Vq aéÊ the derived mass functions and projected semi-major axes of 

the orbits and their standard errors are given in Table 7.2.

K i (k m s“ ^) = 75.7 ±  0.6

Ifg (km s"^) = 240.8 ±  1.9 1
Voi (k m s“ ^) = -0 .8  ±  0.5 '

(k m s“^) = +13.9 ±  1.7 1

Vo (k m s“ ^) = -6 .6  ±  1.8

<Ti (km s"^) t = 2.0

(72 (km s"^) t 6.0

q (m 2 /m i) 0.314 ±  0.004

e = 0 (adopted)

ai • sini (R©) 0.961 ±  0.008

& 2 • sini (R©) 3.058 ±  0.024

a-sin i (R©) ~ 4.019 ±  0.025

mi ' sin^ i (M©) 1.611 ±  0.024 1

m2 • sin^ i (M©) — 0.506 ±  0.008

Table 7.2: Orbital elements for AG Vir.

t — r.m.s. scatter of a single observation.

A careful analysis of the limited number of radial velocity da ta for each component 

gives no indication of any orbital eccentricity (e). If spot activity is present in the 

light curve near 0?5, it would be unwise to draw any conclusive evidence for orbital 

eccentricity from the phase delay of secondary minimum. It would appear tha t the 

orbital eccentricity calculated by Hill & Barnes (1972) can be explained in terms of the 

blending of lines from bo th  components of AG Vir caused by the measurement of low 

dispersion spectroscopy.

The small number of spectra obtained for this study make an accurate determination 

of the systemic velocity difficult and probably contribute to the difference between 

the values determined from the primary and secondary component velocity curves. 

However, there is reasonable agreement between the values of Ki  and Vq determined
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Figure 7.1: Radial velocities of the Primary and Secondary components of AG Vir 

(closed and open circles respectively), plotted together with their orbital solutions, and 

corresponding 0-Cs (lower plot).
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in this study and tha t of Hill & Barnes.
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7.3 E p h em eris

Binnendijk (1969) showed tha t the period of AGVir increased abruptly by 0®4 |

around 1944 and noted tha t secondary minimum generally occurs la ter than 0^5. He 

deduced tha t the period had been constant since 1944 and computed the following 

ephemeris: ;f

P ri.m in .(H J.D .) =  2439946.7472 + 0.64265068. E

Blanco & Catalano (1970) concluded tha t the orbital period suffers a slow variation with 

a period of just less than 40 yr. Subsequently, it was suggested by Niarchos (1985) that if 

this variation were real then a tliird body or apsidal motion could be invoked to  explain 

the variation. Michaels (1988) has shown tha t the displacement of secondary minimum 

shows evidence of increasing slowly with time over the past 50 yr and tha t the period 

change around 1944 was 0®11 using times of photoelectric primary minima only. His 

analysis has also cast doubt on the 40 yr variation suggested by Blanco & Catalano.

Kaluzny (1986) has suggested tha t secondary minima may be more appropriate for 

use in period determinations as the phase interval 0?41-0?59 is relatively free from 

distortion. However, determinations of secondary minima are still few in number and f

the photometric data presented here do not support this suggestion. Most observers 

have avoided the distorted section at the bottom  of primary minimum for their time 

of minimum and period determinations and this practice has been continued for this 

study.

One primary and one secondary minimum have been determined from the new op

tical observations presented here (Section 7.4.1), using the method of Kwee and van 

Woerden(1956), and omitting the distorted sections of both minima. A least-squares 

analysis of 31 times of primary minimum since 1950 was made to calculate the period 

of AGVir. This period, adopted for this study, is 0.64265059 db 0.00000007day and the 

residuals for this determination are plotted in Figure 7.2. The ephemeris used to  phase 

the spectroscopic and photometric data presented in this study is:

Pri.m in.(H .J.D .) =  2447593.64729 (±  0.00011) +  0.64265059 (±  0.00000007). E J
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Using this ephemeris, the residuals of 72 visual, photographic and photoelectric times 

of minima summarized in Table 7.3 are plotted in Figure 7.3. The photoelectric da ta 

show a scatter of approximately 0^005, whereas tha t for the visual da ta is some ten 

times higher. Clearly visual observations of the distorted minima of AGVir are of 

limited value and photoelectric determinations offer the only reliable way to evaluate 

the times of minima for this system.
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Table 7.3: Times of minima for AGVir.

H.J.D. Cycle Method Reference

24585.494 -23903.0 PG Prager & Dugan (Wood, 1946)
25002.575 -23254.0 PG Prager & Dugan (Wood, 1946)
25004.520 -23251.0 PG Prager, 1929
25740.325 -22106.0 VIS Kukarkin, 1929.
26117.562 -21519.0 PG Dugan (Wood, 1946)
26119.496 -21516.0 PG Dugan (Wood, 1946)
26124.660 -21508.0 PG Dugan (Wood, 1946)
26418.991 -21050.0 PG Bodokia, 1937
26444.701 -21010.0 PG Dugan (Wood, 1946)
27157.381 -19901.0 VIS Kreiner, 1976
27547.499 -19294.0 VIS Lause, 1937
27888.714 -18763.0 PG Dugan (Wood, 1946)
27891.610 -18758.5 PG Dugan (Wood, 1946)
28297.440 -18127.0 VIS Lause, 1937

28612.341 -17637.0 VIS Lause, 1937
29329.851 -16520.5 PE Wood, 1946
29334.993 -16512.5 PE Wood, 1946

29335.956 -16511.0 PE Wood, 1946

29337.884 -16508.0 PE Wood, 1946
29338.851 -16506.5 PE Wood, 1946

29339.811 -16505.0 PE Wood, 1946

29346.879 -16494.0 PE Wood, 1946
29359.734 -16474.0 PE Wood, 1946
29363.910 -16467.5 PE Wood, 1946

29368.732 -16460.0 PE Wood, 1946

31265.173 -13509.0 VIS Zesse witch, 1944

33387.854 -10206.0 PE Nason & Moore, 1951

34086.41948 -9119.0 PE Kwee, 1958

34120.47868 -9066.0 PE Kwee, 1958

34455.2919 -8545.0 PE Szczepanowska, 1958

34458.5090 -8540.0 PE Szczepanowska, 1958

34487.42968 -8495.0 PE Kwee, 1958

34776.62146 -8045.0 PE Kwee, 1958

35197.5551 -7390.0 PE Szczepanowska, 1958
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Table 7.3: Times of minima for AGVir — continued.

%

1

H.J.D. Cycle Method Reference

35198.5286 -7388.5 PE Szczepanowska, 1958

35219.4146 -7356.0 PE Szczepanowska, 1958

35561.2974 -6824.0 PE Szczepanowska, 1958

35562.2619 -6822.5 PE Szczepanowska, 1958

35848.5649 -6377.0 PE Szczepanowska, 1958

37028.47545 -4541.0 PE Purgathofer & Widorn, 1964

38846.5350 -1712.0 PE Blanco & Catalano, 1970

39587.5065 -559.0 PE Blanco & Catalano, 1970

39596.5040 -545.0 PE Blanco k. Catalano, 1970

39618.3520 -511.0 PE Blanco & Catalano, 1970

39643.4142 -472.0 PE Blanco & Catalano, 1970

39943.8593 ' -4 .5 PE Binnendijk, 1969

39944.8190 -3 .0 PE Binnendijk, 1969

39946.7472 0.0 PE Binnendijk, 1969

39948.6755 3.0 PE Binnendijk, 1969

41391.4270 2248.0 PE Kizilirmak k  Pohl, 1974

42451.4800 3897.5 PE Pohl k  Kizilirmak, 1976

42892.6620 4584.0 PE Mallamae< a/., 1977

44709.4356 7411.0 PE Pohle< a/., 1982

45074.457 7979.0 PE Locher, 1982

45432.4146 8536.0 PE Niarchos, 1985

45433.3851 8537.5 PE Niarchos, 1985

45741.2071 9016.5 PE Kaluzny, 1986

46113.630 9648.5 VIS Isles, 1989

46180.409 9700.0 VIS Locher, 1985

46855.8822 10751.0 PE Michaels, 1988

46859.7378 10757.0 PE Michaels, 1988

46860.7106 10758.5 PE Michaels, 1988

46875.8052 10782.0 PE Michaels, 1988

46892.505 10808.0 VIS Locher, 1987

46903.42 10825.0 VIS Locher, 1987

46911.7924 10838.0 PE Michaels, 1988

47261.3930 11382.0 VIS Hiibscher k  Lichtenknecker, 1988

47262.3659 11383.5 PE Keskin k  Pohl, 1989

47270.3876 11396.0 PE Locher, 1988
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Table 7.3: Times of minima for AGVir — continued.

H.J.D. Cycle Method Reference

47270.404 11396.0 VIS
47593.6473 11899.0 PE
47596.5443 11903.5 PE

Locher, 1988 
TPT — this paper 
TPT — this paper
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Figure 7.2: Observed minus calculated times of minima in fractions of a day based 

on the period determined from 31 photoelectric times of primary minima since 1950. 

Cycle numbers are based on the ephemeris computed by Binnendijk (1969).
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Figure 7.3: Observed minus calculated times of minima in fractions of a  day based on 

the ephemeris computed in Section 7.3 using published data  and those minima obtained 

for this study.
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7 .4  P h o to m e tr ic  A n a ly sis

7 .4 .1  O p tic a l O b se r v a tio n s

New photoelectric photom etry of AGV ir in 1989 March was obtained and reduced 

as outlined in Chapter 2. The Alter employed for these observations was comparable to 

the Johnson V  filter. The typical error in the differential magnitudes is approximately 

0“ 006, and the da ta were phased using the ephemeris given in Section 7.3. The photo

electric data  consisting of 663 observations are listed in the Appendix to this Chapter, 

and are shown plotted in Figures 7.4, 7.5 and 7.6.

Examination of the light curve reveals several interesting features. The most noticeable 

is the fact tha t first quadrature is 0^09 brighter than secondary quadrature. There is 

a well defined anomalous brightening of the system during the egress from primary 

minimum between 0?00 and 0?04. On closer examination, the phase of maximum light 

near first quadrature is displaced by 0?02 towards primary minimum whereas maximum 

light a t second quadrature occurs at 0^75. The middle of the ‘flat’ portion of secondary 

minimum occurs at 0^515 although extrapolation of the ingress to and egress from this 

minimum suggests tha t secondary minimum occurs at 0?5. Finally, the ‘fiat’ portion 

of secondary minimum is not quite fiat -  there appears to be a very slow increase in 

brightness through the bottom  of the eclipse.

7 .4 .2  S p e c tr a l T y p e

In his study of AGVir, Wood (1946) estimated the spectral types of the compo

nents of the system to be A2 -{- A9. Hill & Barnes (1972) were unable to detect the sec

ondary component on their spectra and classified the brighter component to be between 

A7 and A9. This classification has subsequently been confirmed by H illei al. (1975).

Eggen(1967) published (B — V) colour indices for AGVir of 0™31 and 0^29 for phases 

close to  primary and secondary minimum respectively and determined a colour excess 

^ (B -v )  of -f0^03 for the system. The period-colour relation plotted by Eggen shows 

tha t AG Vir lies in an area between regions occupied by detached and contact systems at
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an age of about 5 X 10® yr. More recently, Hilditch & Hill (1975) have published several 

Stromgren colour indices at secondary minimum indicating a mean (b — y) of 0“ 161.

Similarly, Rucinski & Kaluzny (1981) published a mean (b — y) for the system of 0^156.

Using the spectrum-colour relation given by Rucinski & Kaluzny the dereddened (b—y) 

colour index of Hilditch & Hill would indicate a spectral type of A9 whereas tha t of 

Rucinski & Kaluzny indicates AS.

Assuming =  0.74E(j3_y) and the {B  — V) colour excess given by Eggen is correct,

then (6 — y)o =  0™14 at secondary minimum. If the contribution of the secondary 

component to the to tal light of the system is negligible at secondary minimum then a 

temperature for the primary component of 7400 K can be inferred using the (6 — y)o~ 

temperature tabulation given by Popper (1980). This compares favourably with the 

spectral classification of between A7 and A9. Using the (H —U)o~effective temperature 

calibration of Bohm-Vitense (1981), the (B  — V )  colour index given by Eggen suggests a 

temperature for the primary component of 7500 ±  200 K. According to  Bohm-Vitense, 

this estimate places the primary component at the limiting temperature for which 

models incorporating radiative equilibrium are required for single stars. For this study, 

a tem perature estimate for the primary component of 7400 db 200 K has been adopted.

7 ,4 .3  L igh t C u rv e  A n a ly s is

The light curve analysis of AGVir was carried out by Dr. S. A. Bell at St Andrews 

University Observatory, and follows the analytical approach adopted for the light curve 

analysis of SS Ari (Section 6.4.4). A summary of the analysis is presented here.

Like SS Ari, each half of the V  light curve for AGVir was analysed separately using 

the light curve synthesis program LIG H T2. Contact solutions were initiated with an 

inclination i of 80°, a ‘fill-out’ factor /  of 1.0 (denoting marginal contact), and the mass j
ratio q fixed at tha t derived spectroscopically (Section 7.2). Similarly, detached solu- ^

J
tions were started with the primary and secondary mean radii, ¥[  and rg respectively, 1

set to 0.45 and 0.25. Bolometric albedos a i  and 0 :2  for the primary and secondary ^
j

components respectively were both fixed at 0.5 and solutions were attem pted with the j

gravity darkening exponents (3i and /? 2  for both the primary and secondary components > |

225



«

fixed a t their convective values of 0.08 and also their radiative values of 0.25. The pri

mary component temperature Ti was fixed a t 7400 K and solutions were sought for the 

inclination, fill-out factor or mean radii and secondary component temperature T2 .

The preliminary analysis suggested three methods of solution for each half of the light 

curve. Two contact solutions were made, one using /3i,2 =  0.25 and the other using 

/?i,2  =  0.08. A detached solution using /?i =  0.25 and /? 2  =0.08 was also attempted. 

The results for the solutions of the first half of the light curve are given in Table 7.4 

and those for the second half are given in Table 7.5. The convective contact, radiative 

contact and detached solutions for each half of the light curve are shown in Figures 

7.4, 7.5 and 7.6 respectively. The solutions have been reflected around 0?5 and plotted 

against the complete set of data. The residuals for each half of the light curve from 

their respective solutions have also been plotted.

Solution Contact mode Contact mode Detached mode

parameter A ,2 =  0.08 Pi,2 =  0.25 ,01 =  0 .25 ,/?2 =  0.08

T2(K ) 7000 ±11 6683 ±13 6398 ± 28

i(° ) 89.26 ±0.16 88.96 ±0.16 90.00 (t)

/ 0.523 ±0.013 0.712 ±0.013 see f i  & 7=2

n 0.514± 0.001 0.503 ±0.001 0.484 ±0.003

0.315 ±0.001 0.303 ±0.001 0.282 ±0.002

« 1 ,2 0.50 (fixed) 0.50 (fixed) 0.50 (fixed)

1.783 X 10-4 1.577 X 10-4 7.416 X 10-4

O - C  k  s.d. 0.0000 ±0.0122 -0.0001 ±0.0116 -0.0019 ±0.0256

Table 7.4: LIGHT2 solutions for first half of AG Vir light curve, 

t — This quantity was fixed during the solution process.

The solutions obtained for the first half of the light curve indicate a system whose 

inclination is very close to  90°. The detached solution shown in Figure 7.6 is clearly 

inadequate as very little of the curve is fitted properly. The contact solutions do appear 

to be a reasonable fit to the majority of the data with the exception of 0?4 to 0?5 where 

the fit is in error by up to 0“ 03. Both of these contact solutions indicate deep contact
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Figure 7.4: T PT  V  observations of AGVir with two convective contact solutions for 

each half of the light curve.
( T h e  d o t t e d  l i n e  i s  a  s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  0*^0 t o  0*^5 a n d  t h e  s o l i d  l in o  i s  a  

s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  0 ? 5  t o  1 ? 0 .  T h e  l o w e r  p l o t  s h o w s  t h e  r e s i d u a l s  o f  t h e  

d a t a  f r o m  e a c h  h a l f  o f  t h e  l i g h t  c u r v e  a n d  i t s  r e s p e c t i v e  s o l u t i o n .  T h e  o p e n  s y m b o l s  

r e p r e s e n t  t h e  f i r s t  h a l f  o f  t h e  l i g h t  c u r v e  a n d  t h e  f i l l e d  s y m b o l s  t h e  s e c o n d  h a l f  o f  t h e  

l i g h t  c u r v e ) .
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Figure 7.5: T PT  V  observations of AGVir and two radiative contact solutions for each 

half of the light curve.
( T l i e  d o t t e d  l i n e  i s  a  s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  O'^O t o  0 '? 5  a n d  t h e  s o l i d  l i n e  i s  a  

s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  0 ^ 5  t o  1 ^ 0 .  T h e  l o w e r  p l o t  s h o w s  t h e  r e s i d u a l s  o f  t h e  

d a t a  f r o m  e a c h  h a l f  o f  t h e  l i g h t  c u r v e  a n d  i t s  r e s p e c t i v e  s o l u t i o n .  T h e  o p e n  s y m b o l s  

r e p r e s e n t  t h e  f i r s t  h a l f  o f  t h e  l i g h t  c u r v e  a n d  t h e  f i l l e d  s y m b o l s  t h e  s e c o n d  h a l f  o f  t h e  

l i g h t  c u r v e ) .  228
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Figure 7.6: T PT  V  observations of AGVir with two detached solutions for each half of 

the light curve.
( T h e  d o t t e d  l i n e  i s  a  s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  0 '?0  t o  0 ? 5  a n d  t h e  s o l i d  l i n e  i s  a  

s o l u t i o n  t o  t h e  l i g h t  c u r v e  f r o m  0 ^ 5  t o  1 ^ 0 .  T h e  l o w e r  p l o t  s h o w s  t h e  r e s i d u a l s  o f  t h e  

d a t a  f r o m  e a c h  h a l f  o f  t h e  l i g h t  c u r v e  a n d  i t s  r e s p e c t i v e  s o l u t i o n .  T h e  o p e n  s y m b o l s  

r e p r e s e n t  t h e  f i r s t  h a l f  o f  t h e  l i g h t  c u r v e  a n d  t h e  f i l l e d  s y m b o l s  t h e  s e c o n d  h a l f  o f  t h e  

l i g h t  c u r v e ) .  2 2 9

'■L.



Solution Contact mode Contact mode Detached mode

parameter A,2 =  0.08 A ,2 =  0.25 /?i =  0 .25 ,/?2 = 0.08

? 2 ( K ) 6879 ± 19 6576 ±  21 6293 ±21

i(° ) 87.35 ±0.19 89.02 ±0.26 81.04±0.51

/ 0.924 ±0.022 1.000 (t) see T\ h  ¥2

n 0.491 ±  0.002 0.484 ±0.001 0.484 ±0.002

0.289 ±0.001 0.283 ±0.001 0.280 ±0.002

«1,2 0.50 (fixed) 0.50 (fixed) 0.50 (fixed)

3 .704  X 1 0 -4 3.426 X 10-4 2.088  X 1 0 -4

O - C  h  s.d. 0.0005 ±0.0179 ±0.0006 ±0.0171 -0.0003 ±0.0137

Table 7.5: LIGHT2 solutions for second half of AGVir light curve.

t — This quantity was fixed during the solution process.

configurations with a secondary component whose temperature is more than 400 K 

cooler than the primary. As for SS Ari, it is difficult to reconcile these two factors.

The contact solutions to the second half of the light curve are of similar quality. They 

are both 0™02 too deep at secondary minimum and are up to 0™05 too deep at primary 

minimum. The contact solutions indicate a marginal contact system at an inclination 

close to  90° with a temperature difference between the two components of 500 K to 

800 K. The detached solution is the most satisfactory overall fit to the data in the 

second half of the light curve, fitting the depths of the minima better than the contact 

solutions. This solution indicates tha t the system is very close to or just at contact 

with an inclination of 81° and a secondary component HOOK cooler than the primary. 

It would appear tha t the second half of the light curve, like for SS Ari, is probably a 

more accurate reflection of the geometrical configuration of AGVir and that the first 

half of the light curve exhibits varying degrees of excess luminosity.
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7.4 .4  M odelling a H ot Spot

As w ith SS Ari, if the detached solution for the second half of the light curve is 

adopted as the most likely configuration of AGVir, then the assertion can be made that 

a hot spot is responsible for the “excess luminosity” observed in the first half of the light 

curve. Again this spot must be offset to one side of the system, geometric considerations 

suggesting a spot on the primary component at a longitude of approximately 270° 

or on the secondary component at a longitude of approximately 90°. For the same 

reasons outlined in Chapter 6, attem pts to solve for a spot radius and temperature 

using LIG H T2 failed due to the relatively unconstrained model parameters.

However, unpublished BV R  photometry of AGVir obtained at the University of Vic

toria, British Columbia, (Robb 1989) indicates that the {B — R) colour is essentially .j

constant throughout the curve with the exception of a 0“ l  blue peak centred at 0?22 

with a duration of approximately 20% of the orbital cycle. Although the scatter is 

around 0™04, this would support the suggestion of a “hot spot” on one of the compo

nents. As the secondary component is totally eclipsed at secondary minimum however, 

and there is still evidence for some distortion of the light curve at this point from the 

adopted detached solution, it would seem tha t the hot spot is on the hotter primary 

component !

Thus as for SS Ari, light curves were generated using the system configuration indicated 

by the detached solution to the second half of the light curve, and a variety of primary 

component hot spot radii and temperatures at a longitude of 270°. Assuming that 

the blue peak in the {B  — R) curves is related to the size of the “spot” then a radius 

of approximately 20° can be inferred. In this case the best match to the light curve 

can then be obtained with a spot temperature of some 9500 K and this “best fit” is 

shown plotted in Figure 7.7. Like SS Ari, this cannot be treated as a true solution, 

but does seem to suggest tha t this form of “excess luminosity” displaced to one side 

of the system, may be a different phenomena from the simple energy transfer regions 

modelled in VW Boo (Chapter 4) and BX And (Chapter 5). The feature at the bottom 

of primary minimum in AG Vir could also be explained in terms of a spot or stream of 

material between the two stars.
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Figure 7.7: Generated “best fit” w ith hot spot to the T PT  V  observations of AGVir 

with corresponding residuals shown in lower plot.
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7.5 D iscu ssio n

Assuming the detached photometric solution for the second half of the T PT 

da ta  given in Table 7.5 is correct, then the astrophysical da ta for AGV ir are as given 

in Table 7.6. As in previous analysis, an error of 200 K has been adopted in the 

secondary component temperature, and the bolometric corrections have been taken 

from the compilation of Popper (1980). The system’s distance was estimated using the 

colour excess given in Section 7.4.2. Figure 7.8 shows a schematic diagram of the basic 

“unspotted” system geometry of of AGVir.

Table 7.6: Astrophysical data for AGVir.

A comparison of the masses, radii, temperatures and luminosities of the components 

of AGVir (see Chapter 9), with those of other marginal-contact and contact binaries 

compiled by Hilditch ef af. (1988), shows tha t the primary component is close to the 

TAMS relationship of Vandenberg (1985) and has properties similar to the A -type 

contact binaries and the B -type marginal-contact systems. The secondary component 

is approximately 2.5 times larger than expected for its ZAMS mass and occupies the 

same region in the M -R and M-L diagrams as other B-type secondaries. AGVir 

appears to be in a marginal contact state like the W -type contact systems, however,

233

Absolute dimensions Primary Secondary

M(M@) 1.67 ±  0.03 0.53 ±  0,01 %

R(R© ) 1.97 ±  0.02 1.14 dr 0.01 :

/o5fg(cgs) 4.07 ±  0.01 4.05 d: 0.01 Ji

7400 db 200 6300 d: 200
j
4
3

logljJ L© 1.02 ±  0.05 0.27 dr 0.06

Mfoo/ 2“ 21 d: 0“ 12 4^10 dr 0^14 -i

B.C. -0™ 01 -0™ 06

My 2“ 22 ±  0™12 4^16 dr 0"?14

E(s - f ) 4-0™03
v'=

Distance (pc) 175 d: 15 'I

:
\ :......... -  !__t_



1

0 ,3 1 4  ; /  = 1 .000 AG VIR

P h a s e  = 0 .6 7 0 0 2 4 1 .2 0

Figure 7.8: Scliematic diagram at 0?G7 of tiie basic system geometry of AGVir, with 

no spots shown.

2 3 4



the secondary component does not lie to the left of the ZAMS line in the HR diagram 

as it would for the secondaries of the W -type systems. It lies on the ZAMS relation 

which may indicate tha t the luminosity transfer suggested for the W -type systems 

is not complete but has progressed further than systems such as BX And where the 

secondary component lies to the right of the ZAMS line in the H R diagram.
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7.7  A p p en d ix  - N e w  P h o to e le c tr ic  D a ta

This appendix tabulates the new photoelectric da ta for AG Vir presented in this 

study. These F-filter observations were obtained with the St Andrews T PT  during 

March 1989 (see Section 7.4.1 and Chapter 2).
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Table 7.7: TPT F  observations.

240

‘i

H .J .D . P h a se ( V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a se (V -C )

2447693.41060 0.6317 +  1.698 2447693.47414 0.7306 +  1.467 2447693.64136 0.8362 + 1 .6 4 0 1  
, ÿ2447693.41129 0.6328 + 1 .602 2447693.47483 0.7316 + 1 .462 2447693.64206 0.8362 +  1.636

2447593.41198 0.6338 + 1 .591 2447693.47663 0.7327 +  1.474 2447693.54276 0.8373 +  1.644

2447593.41268 0.6349 +  1.588 2447693.47622 0.7338 +  1.477 2447693.54417 ,0.8395 +  1.560 #
2447593.41337 0.6360 + 1 .688 2447693.47797 0.7366 +  1.478 2447693.64487 0.8406 +  1.662 i

2447693.41503 0.6386 +  1.663 2447693.47867 0.7376 +  1.471 2447693.64656 0.8417 +  1.669 ■<

2447693.41672 0.6397 +  1.674 2447693.47936 0.7387 + 1 .466 2447693.64626 0.8428 +  1.660 ■i
2447693.41642 0.6408 +  1.670 2447693.48006 0.7398 + 1 .470 2447693.64696 0.8439 +  1.656

2447593.41711 0.6418 +  1.676 2447593.48076 0.7409 +  1.473 2447693.66578 0.8576 +  1.672 .i

2447693.41782 0.6429 + 1 .566 2447693.48748 0.7613 +  1.466 2447693.66649 0.8687 + 1 .571

2447593.42160 0.6488 +  1.661 2447693.48818 0.7524 + 1 .461 2447693.65717 0.8898 +  1.674

2447593.42230 0.6499 +  1.652 2447693.48887 0.7635 + 1 .466 2447693.65786 0.8608 +  1.589

2447693.42299 0.6610 +  1.561 2447693.48967 0.7646 + 1 .473 2447693.65866 0.8619 +  1.585
.j

2447693.42369 0.6521 +  1.653 2447693.49026 0.7657 + 1 .468 2447693.66128 0.8662 + 1 .591

2447693.42438 0.6631 +  1.657 2447593.49161 0.7678 +  1.473 2447593.56197 0.8672 +  1.600

2447693.42600 0.6557 + 1 .5 3 7 2447693.49231 0.7688 +  1.473 2447693.56267 0.8683 +  1.601

2447593.42670 0.6567 + 1 .646 2447693.49300 0.7699 +  1.468 2447693.66336 0.8694 +  1.614
2447693.42739 0.6578 +  1.544 2447693.49370 0.7610 + 1 .467 2447693.56406 0.8706 +  1.601

2447693.42808 0.6689 +  1.553 2447593.49439 0.7621 + 1 .478 2447693.66618 0.8722 +  1.602 ' ÿ
2447593.42878 0.6600 + 1 .639 2447693.49624 0.7634 + 1 .474 2447593.66687 0.8733 + 1 .614

2447693.43039 0.6626 +  1.641 2447693.49693 0.7646 +  1.484 2447693.66667 0.8744 +  1.612

2447693.43108 0.6636 +  1.638 2447693.49663 0.7666 +  1.473 2447693.66726 0.8766 +  1.611

2447693.48178 0.6647 +  1.638 2447693.49732 0.7666 +  1.482 2447593.66797 0.8766 +  1.607

2447693.43247 0.6687 +  1.636 2447693.49801 0.7677 +  1.474 2447693.67282 0.8841 +  1.626 - %

2447693.43317 0.6668 + 1 .831 2447693.60064 0.7716 +  1.471 2447593.67361 0.8862 +  1.628 i
2447693.43462 0.6691 + 1 .518 2447693.50123 0.7727 +  1.476 2447693.67421 0.8863 +  1.625 %
2447593.43632 0.6702 + 1 .626 2447693.60193 0.7738 + 1 .477 2447693.67490 0.8874 + 1 .639

2447593.43601 0.6712 +  1.630 2447693.60262 0.7749 +  1.476 2447693.67660 0.8884 +  1.637

2447693.43671 0.6723 +  1.529 2447593.60332 0.7760 +  1.476 2447693.67792 0.8921 + 1 .649 •-1

2447693.43740 0.6734 +  1.628 2447693,60642 0.7792 +  1.478 2447693.67862 0.8931 + 1 .647
2447593.43926 0.6763 +  1.620 2447693.60612 0.7803 +  1.482 2447693,67931 0.8942 +  1.666
2447593.43996 0.6774 + 1 .616 2447693.50681 0.7814 + 1 .470 2447693.68001 0.8963 +  1.661

2447593.44064 0.6784 + 1 .610 2447693.60761 0.7826 + 1 .479 2447593.58070 0.8964 + 1 .661
2447693.44134 0.6795 +  1.515 2447693.50820 0.7886 +  1.484 2447693,68317 0.9002 + 1 .670
2447693.44203 0.6806 +  1.608 2447693.61271 0.7906 + 1 .486 2447593.68386 0.9013 + 1 .6 7 7
2447693.44644 0.6876 + 1 .6 0 7 2447693.61341 0.7917 + 1 .478 2447693.58466 0.9024 + 1 .6 7 7
2447593.44714 0.6886 +  1.606 2447693.51410 0.7927 +  1.486 2447693.58625 0.9036 +  1.679 -.g
2447593.44783 0.6896 + 1 .5 1 2 2447693.61480 0.7938 +  1.481 2447693.68694 0.9046 + 1 .686

2447693.44862 0.6907 + 1 .610 2447693.51649 0.7949 +  1.486 2447593.68800 0.9077 +  1.691

2447593.44922 0.6918 + 1 .504 2447593.61704 0.7973 +  1.500 2447693.68870 0.9088 +  1.699

2447693.45049 0.6938 +  1.496 2447693.61774 0.7984 +  1.482 2447693.68939 0.9099 +  1.691
2447693.46119 0.6949 + 1 .487 2447693.61843 0.7995 + 1 .484 2447593.59010 0.9110 + 1 .696

2447693.45187 0.6959 + 1 .499 2447693.51913 0.8006 +  1.492 2447693.69078 0.9121 +  1.706

2447693.46266 0.6970 + 1 .4 9 0 2447693.61982 0.8016 +  1.491 2447693.59276 0.9161 +  1.716

2447693.45326 0.6981 +  1.503 2447593.62829 0.8148 + 1 .608 2447693.69345 0.9162 +  1.715

2447693.46247 0.7124 +  1.481 2447593.62899 0.8159 +  1.612 2447693.59416 0.9173 +  1.731
2447693.46317 0.7136 + 1 .4 8 2 2447593.52968 0.8170 +  1.612 2447693.59484 0.9184 +  1,724

2447593.46386 0.7146 +  1.484 2447693.53038 0.8181 + 1 .612 2447593.69664 0.9196 +  1.736

2447693.46456 0.7166 +  1.487 2447593.53108 0.8192 + 1 .512 2447693.59735 0.9223 +  1.735 »>;

2447693.46626 0.7167 +  1.482 2447693.53276 0.8218 +  1.619 2447593.59805 0.9234 +  1.743

2447593.46648 0.7186 + 1 .486 2447593.53344 0.8228 + 1 .626 2447693.59874 0.9245 +  1.753

2447593.46716 0.7197 +  1.480 2447693.53414 0.8239 +  1.618 2447693.69944 0.9266 +  1.752

2447693.46785 0.7208 +  1.479 2447693.63483 0.8260 +  1.620 2447593.60013 0.9266 +  1.762 ' k

2447593.46866 0.7219 +  1.476 2447593.63653 0.8261 +  1.616 2447593.60433 0.9332 +  1.796

2447593.46924 0.7229 +  1.476 2447593.63997 0.8330 +  1.633 2447693.60603 0.9342 +  1.794

2447593.47344 0.7295 +  1.475 2447693.64067 0.8341 +  1.540 2447693.60572 0.9353 + 1 .801



Table 7.7: TFT V observations — continued.

H .J .D . P h a se (V - C ) H .J .D . P h a se (V -C ) H .J .D . P h a s e (V -C ) -1

2447593.60642 0.9364 +  1.798 2447693.67876 0.0490 + 1 .883 2447696.63791 0.4980 + 1 .876 ?
2447693.60711 0.9376 +  1.797 2447693.67946 0.0600 +  1.870 2447596.63861 0.4991 +  1.876 '■-5
2447693.60902 0.9404 + 1 .803 2447693.68014 0.0611 +  1.868 2447696.64010 0.6014 +  1.873

2447693.60972 0.9416 +  1.827 2447693.68162 0.0533 +  1.863 2447696.64079 0.5026 +  1.870 #

2447693.61041 0.9426 +  1.829 2447693.68222 0.0644 +  1.866 2447596.64149 0.6035 + 1 .871 c
2447693.61110 0.9437 +  1.847 2447693.68291 0.0664 +  1.847 2447696.64218 0.6046 + 1 .874 5

2447593.61180 0.9448 +  1.841 2447693.68360 0.0566 + 1 .837 2447696.64288 0.6057 +  1.872 4
2447693.61333 0.9472 +  1.863 2447693.68430 0.0676 +  1.849 2447696.64434 0.6080 +  1.866

2447693.61402 0.9482 +  1.862 2447693.68670 0.0698 +  1.816 2447596.64603 0.5091 +  1.876 ' -%
2447693.61472 0.9493 +  1.863 2447693.68639 0.0608 +  1.820 2447696.64672 0.6101 +  1.869

2447603.81641 0.9604 +  1.873 2447593.68709 0.0619 +  1.818 2447596.64642 0.6112 + 1 .870

2447693.61610 0.9616 + 1 .883 2447693.68778 0.0630 +  1.809 2447696.64711 0.6123 + 1 .876
2447693.62028 0.9680 + 1 .903 2447693.68848 0.0641 +  1.799 2447696.64893 0.6161 +  1.869

2447693.62098 0.9691 + 1 .920 2447693.69210 0.0697 + 1 .774 2447696.64963 0.5162 +  1.869
2447593.62167 0.9601 +  1.914 2447593.69279 0.0708 +  1.763 2447596.66033 0.5173 +  1.870 f;
2447693.62237 0.9612 +  1.926 2447693.69349 0.0719 +  1.767 2447596.56101 0.6184 +  1.873 ...

2447693.62307 0.9623 +  1,932 2447693.69420 0.0730 +  1.766 2447696.66171 0.6194 +  1.868
2447593.62491 0.9652 +  1.946 2447693.69488 0.0741 + 1 .761 2447596.66312 0.6216 + 1 .876

2447593.62661 0.9663 +  1.966 2447693.69626 0.0762 +  1.724 2447696.66382 0.5227 +  1.868
2447693.62630 0.9673 + 1 .962 2447693.69696 0.0773 + 1 .726 2447696.56461 0.6238 + 1 .868 €
2447693.62700 0.9684 +  1.969 2447593.69764 0.0783 +  1.726 2447696.65620 0.6249 + 1 .864
2447693.62770 0.9695 + 1 .963 2447693.69834 0.0794 +  1.722 2447596.66690 0.6260 +  1.870
2447693.64363 0.9943 + 2 .006 2447693.69903 0.0805 +  1.716 2447696.66738 0.6283 +  1.870
2447693.64431 0.9964 + 2 .004 2447693.70034 0.0826 +  1.709 2447696.65806 0.6293 +  1.867
2447693.64601 0.9966 + 2 .0 0 3 2447693.70104 0.0836 +  1.724 2447696.66876 0.6304 + 1 .8 6 7

2447693.64670 0.9976 + 2 .006 2447693.70173 0.0847 +  1.706 2447696.66946 0.6316 + 1 .869
2447693.64639 0.9986 + 2 .006 2447593.70244 0.0868 + 1 .693 2447696.66016 0.6326 + 1 .8 6 7
2447693.64789 0.0006 +  1.991 2447693.70312 0.0869 +  1.702 2447696.66348 0.6378 + 1 .866 J

2447693.64827 0.0016 + 1 .996 2447696.61694 0.4638 +  1.823 2447696.66417 0.6388 + 1 .864
2447593.66174 0.0069 + 1 .999 2447696.61664 0.4649 +  1.831 2447696.66487 0.6399 + 1 .862

2447603.66244 0.0080 +  1.996 2447696.61733 0.4669 + 1 .829 2447696.66666 0.6410 +  1.867
2447693.66313 0.0091 +  1.981 2447696.61803 0.4670 + 1 .836 2447696.66626 0.6421 +  1.867

2447603.66382 0.0102 +  1.987 2447696.61872 0.4681 + 1 .846 2447696.66763 0.6441 +  1.845 ]

2447693.66462 0.0113 +  1.980 2447696.61976 0.4697 + 1 .843 2447596.66822 0.6451 +  1.857
2447593.66696 0.0160 +  1.971 2447696.62046 0.4708 + 1 .866 2447696.66892 0.5462 + 1 .846 „S

2447693.66764 0.0161 +  1.964 2447696.62114 0.4719 + 1 .847 2447596.66961 0.6473 +  1.849
2447693.66834 0.0172 +  1.963 2447696.62184 0.4730 + 1 .867 2447696.67031 0.6484 +  1.843 %
2447693.66903 0.0183 + 1 .968 2447696.62263 0.4740 + 1 .867 2447696.67166 0.6506 + 1 .830 - i

2447693.66973 0.0194 +  1.968 2447696.62370 0.4769 +  1.861 2447696.67236 0.6516 +  1.828
' t

2447698.66121 0.0217 + 1 .9 6 0 2447696.62439 0.4769 + 1 .871 2447596.67306 0.6627 +  1.832
2447693.66190 0.0227 +  1.964 2447596.62610 0.4780 + 1 .866 2447696.67876 0.6637 + 1 .8 2 7
2447693.66260 0.0238 +  1.960 2447696.62678 0.4791 + 1 .871 2447696.67444 0.6648 +  1.818
2447693.66329 0.0249 + 1 .944 2447696.62648 0.4802 +  1.874 2447696.67694 0.6671 +  1.806 f'j

y
2447693.66400 0.0260 +  1.960 2447696.52766 0.4820 +  1.874 2447696.67664 0.6682 + 1 .8 1 6 i]
2447693.66800 0.0322 +  1.938 2447596.62834 0.4831 + 1 .873 2447596.67733 0.6593 + 1 .804
2447693.66869 0.0333 +  1.942 2447596.62904 0.4842 +  1.871 2447596.67804 0.6604 + 1 .799
2447693.66938 0.0344 + 1 .931 2447596.62973 0.4862 +  1.871 2447696.67872 0.6616 + 1 .7 9 7 %

2447593.67009 0.0365 + 1 .937 2447596.53042 0.4863 + 1 .876 2447696.68762 0.6763 +  1.749 y

2447693.67077 0.0366 +  1.936 2447696.63173 0.4884 +  1.871 2447696.68833 0.6764 +  1.747

2447693.67226 0.0389 + 1 .981 2447696.63243 0.4894 +  1.878 2447696.68901 0.6776 +  1.760
2447693.67296 0.0399 +  1.922 2447696.63312 0.4905 +  1.878 2447696.68971 0.6786 +  1.747

2447593.67365 0.0410 +  1.908 2447696.63382 0.4916 + 1 .873 2447596.69040 0.6796 + 1 .743

2447693.67436 0.0421 +  1.918 2447696.63451 0.4927 +  1.877 2447696.69185 0.6819 +  1.728

2447693.67604 0.0432 +  1.897 2447696.63683 0.4947 + 1 .873 2447596.69264 0.6830 +  1.731

2447693.67737 0.0468 + 1 .894 2447596.53652 0.4968 +  1.872 2447696.69324 0.6841 +  1.737

2447693.67807 0.0479 +  1.883 2447696.63722 0.4969 +  1.876 2447696.69393 0.6861 + 1 .720 ,'i
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Table 7.7; TFT V  observations — continued.

H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C ) >3
2447596.59463 0.6862 + 1 .730 2447596.67340 0.7088 +  1.601 2447601.43641 0.1203 +  1.666
2447596.59839 0.6921 + 1 .699 2447696.67409 0.7099 +  1.497 2447601.43761 0.1222 +  1.643
2447696.59908 0.6932 +  1.686 2447601.36639 0.0114 +  1.969 2447601.43830 0.1233 +  1.639
2447696,89978 0.6942 +  1.689 2447601.36709 0.0126 + 1 .960 2447601.43900 0,1243 + 1 .628
2447696.60047 0.6963 +  1.688 2447601.36778 0.0136 + 1 .968 2447601.43969 0.1254 + 1 .628 1
2447696.60116 0.6964 +  1.686 2447601.36848 0.0146 +  1.962 2447601.44039 0.1266 +  1.622 a-

4-
2447696.60268 0.6988 +  1.673 2447601.36917 0.0167 +  1.967 2447601.44216 0.1293 +  1.626 €
2447696.60338 0.5998 +  1.672 2447601.37130 0.0190 +  1.962 2447601.44284 0.1303 +  1.616 1!
2447696.60407 0.6009 +  1.679 2447601.37198 0.0201 + 1 .956 2447601.44354 0.1314 + 1 .618
2447696.60476 0.6020 + 1 .676 2447601.37268 0.0212 +  1.966 2447601.44423 0.1326 + 1 .614
2447696.60646 0.6031 + 1 .678 2447601.37337 0.0222 +  1.962 2447601.44492 0.1336 + 1 .511 1
2447696.60667 0.6060 + 1 .6 6 6 2447601.37407 0.0233 +  1.949 2447601.44682 0.1365 +  1.808
2447696.60737 0.6061 +  1.668 2447601.37786 0.0292 + 1 .938 2447601.44763 0.1376 + 1 .503 Ï
2447696,60806 0.6071 +  1.661 2447601.37856 0.0303 +  1.944 2447601.44821 0.1387 + 1 .506 1
2447696.60876 0.6082 + 1 .656 2447601.37924 0.0314 +  1.938 2447601.44891 0.1398 + 1 .499 a
2447696.60946 0.6093 +  1.646 2447601.37994 0.0324 + 1 .931 2447601.44960 0.1408 +  1.600 1
2447696.62018 0.6260 + 1 .614 2447601.38063 0.0336 +  1.934 2447601,46342 0.1468 +  1.479 %
2447696.62089 0.6271 + 1 .613 2447601.38186 0.0364 + 1 .938 2447601.46410 0.1478 +  1.484
2447696.62167 0.6282 + 1 .606 2447601.38266 0.0366 +  1.934 2447601.46480 0.1489 +  1.479
2447696.62226 0.6292 +  1.611 2447601.38326 0.0376 + 1 .921 2447601.46649 0.1600 +  1.476
2447696.62296 0.6303 + 1 .601 2447601.38394 0.0387 +  1.928 2447601.46619 0.1611 +  1.476
2447696.62436 0.6326 +  1.606 2447601.38466 0.0398 + 1 .9 1 7 2447601.45769 0.1633 + 1 .473
2447696.62604 0.6336 + 1 .6 0 6 2447601.38601 0.0419 + 1 .913 2447601.46827 0.1643 + 1 .4 6 7
2447696.62674 0.6346 +  1.699 2447601.38670 0.0430 + 1 .906 2447601.46896 0.1664 +  1.467
2447696.62643 0.6367 + 1 .6 8 6 2447601.38739 0.0440 +  1.898 2447601.46966 0.1665 + 1 .466
2447696.62713 0.6368 + 1 .6 0 0 2447601.38808 0.0461 +  1.890 2447601.46035 0.1676 +  1.464
2447696.62817 0.6384 + 1 .691 2447601.38878 0.0462 +  1.890 2447601.46208 0.1603 +  1.462
2447696.62886 0.6396 + 1 .592 2447601.39076 0.0493 + 1 .876 2447601.46276 0.1613 +  1.460

2447696.62964 0.6406 +  1.691 2447601.39144 0.0603 +  1.868 2447601.46346 0.1624 +  1.442
2447696.63024 0.6416 +  1.687 2447601.39214 0.0614 +  1.868 2447601.46416 0.1636 + 1 .461
2447696.63093 0.6427 +  1.687 2447601.39283 0.0626 + 1 .862 2447601.46484 0.1646 +  1.448
2447696.63627 0.6610 +  1.666 2447601.39362 0.0636 +  1.860 2447601.47196 0.1766 +  1.426
2447696.63696 0.6621 + 1 .676 2447601.39792 0.0604 +  1.809 2447601.47266 0.1767 +  1.429
2447696.63766 0.6632 + 1 .669 2447601.39862 0.0616 +  1.800 2447601.47335 0.1778 +  1.428

2447696.63836 0.6643 + 1 .664 2447601.39931 0.0626 +  1.789 2447601.47404 0.1789 +  1.422
2447696.63906 0.6654 +  1.660 2447601.40001 0.0637 +  1.796 2447601.47474 0.1800 + 1 .418
2447696.64042 0.6576 +  1.669 2447601.40070 0.0648 + 1 .781 2447601.47619 0.1822 +  1.423 I
2447696.64112 0.6686 +  1.666 2447601.40216 0.0670 +  1.771 2447601.47688 0.1833 +  1.419 '■i
2447696.64182 0.6697 + 1 .668 2447601.40284 0.0681 +  1.766 2447601.47768 0.1844 + 1 .419
2447596.64261 0.6607 + 1 .666 2447601.40364 0.0692 +  1.769 2447601.47827 0.1866 +  1.418 •i
2447696.64320 0.6618 + 1 .660 2447601.40423 0.0702 + 1 .766 2447601.47896 0.1866 +  1.419
2447696.64473 0.6642 + 1 .661 2447601.40492 0.0713 +  1.744 2447601.48064 0.1890 +  1.416
2447696.64829 0.6697 +  1.628 2447601.42217 0.0982 +  1.619 2447601.48123 0,1901 + 1 .411 ■ ^
2447696.66164 0.6748 +  1.636 2447601.42286 0.0992 +  1.617 2447601.48193 0.1912 + 1 .413 y
2447696.66223 0.6769 + 1 .636 2447601.42366 0.1003 +  1.616 2447601.48262 0.1922 +  1.410 s
2447696.66294 0.6770 +  1.636 2447601.42426 0.1014 + 1 .611 2447601.48332 0.1933 + 1 .409
2447696.66362 0.6780 +  1.629 2447601.42496 0.1026 + 1 .607 2447601.48747 0.1998 +  1.402
2447596.66431 0.6791 +  1.628 2447601.42672 0.1062 +  1.604 2447601.48817 0.2009 +  1.393
2447696.66336 0.6932 + 1 .602 2447601.42742 0.1063 + 1 .601 2447601.48886 0.2019 +  1.401
2447696.66406 0.6943 +  1.607 2447601.42811 0.1074 +  1.598 2447601.48966 0.2030 +  1.396 3
2447696.66476 0.6963 +  1.607 2447601,42880 0.1086 + 1 .686 2447601.49026 0.2041 +  1.398 '  4
2447696.66646 0.6964 +  1.601 2447601.42960 0.1096 + 1 .691 2447601.49189 0.2066 + 1 .393

2447696.66614 0.6976 + 1 .494 2447601.43363 0.1160 + 1 .662 2447601.49269 0.2077 +  1.390
2447696.67132 0.7066 + 1 .493 2447601.43432 0.1171 + 1 .667 2447601.49328 0.2088 + 1 .396

2447696.67201 0.7066 +  1.491 2447601.43602 0.1182 +1.661 2447601.49398 0.2099 + 1 .393

2447696.67270 0.7077 +  1.493 2447601.43671 0.1192 +  1.661 2447601.49738 0.2162 + 1 .389
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Table 7.7: TFT V  observations —- continued.
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H .J .D , P h a s e (V -C ) H .J .D . P h a s e (V -C ) H .J .D . P h a s e (V -C )
2447601.49807 0.2163 +  1.390 2447601.66392 0.3032 +  1.426 2447601.62266 0.4100 +  1.661 4;
2447601.49877 0.2174 +  1.390 2447601.56203 0.3158 +  1.436 2447601.62326 0.4111 +  1.646
2447601.49946 0.2184 + 1 .382 2447601.66273 0.3169 + 1 .442 2447601.62394 0.4121 + 1 .666 ' • : p .

2447601.60016 0.2196 + 1 .386 2447601.56342 0.3180 + 1 .446 2447601.63207 0.4248 + 1 .689
2447601.60663 0.2294 +  1.377 2447601.66411 0.3190 +  1.461 2447601.63276 0.4269 +  1.686 V
2447601.60723 0.2305 +  1.379 2447601.66481 0.3201 +  1.448 2447601.63346 0.4269 + 1 .694
2447601.60792 0.2316 + 1 .374 2447601.66609 0.3221 + 1 .462 2447601.63416 0.4280 + 1 .692 'j
2447601.60862 0.2327 + 1 .378 2447601.66679 0.3232 + 1 .460 2447601.63484 0.4291 + 1 .703 :

2447601.60931 0.2338 + 1 .383 2447601.66748 0.3243 + 1 .460 2447601.63686 0.4307 + 1 .7 0 7

2447601.61060 0.2368 + 1 .3 7 6 2447601.66818 0.3264 +  1.469 2447601.63666 0.4318 + 1 .7 1 7 .1

2447601.61129 0.2368 +  1.380 2447601.66887 0.3264 +  1.460 2447601.63724 0.4328 +  1.714 /

2447601.51198 0.2379 +  1.382 2447601.67619 0.3363 + 1 .482 2447601.63793 0.4339 +  1.719
2447601.81268 0.2390 + 1 .3 8 0 2447601.67689 0.3374 +  1.489 2447601.63863 0.4360 + 1 .719
2447601.61339 0.2401 + 1 .382 2447601.67668 0.3384 +  1.487 2447601.63992 0.4370 +  1.735
2447601.61700 0.2457 + 1 .386 2447601.67727 0.3396 + 1 .489 2447601.64062 0.4381 +  1.729 ■ 4
2447601.61769 0.2468 + 1 .382 2447601.57797 0.3406 + 1 .494 2447601.64133 0.4392 +  1.731
2447601.61839 0.2479 + 1 .390 2447601.68005 0.3438 + 1 .600 2447601.64201 0.4402 +  1.744
2447601.61908 0.2490 + 1 .392 2447601.68076 0.3449 +  1.607 2447601.64270 0.4413 + 1 .7 4 7
2447601.61977 0.2600 + 1 .3 8 7 2447601.68144 0.3460 +  1.504 2447601.66266 0.4666 +  1.793 4
2447601.62126 0.2624 +  1.381 2447601.68214 0.3471 +  1.606 2447601.66326 0.4677 + 1 .7 9 7 ' 2
2447601.62196 0.2634 +  1.384 2447601.68283 0.3482 +  1.608 2447601.66394 0.4688 + 1 .806 vi

2447601.62264 0.2646 +  1.386 2447601.69011 0.3696 +1.621 2447601.66464 0.4699 + 1 .806 4
2447601.62334 0.2666 +  1.386 2447601.69080 0.3606 +  1.626 2447601.66633 0.4610 + 1 .811 4
2447601.62403 0.2667 +  1.387 2447601.69160 0.3616 +  1.626 2447601.66638 0.4626 +  1.817 ï
2447601.62686 0.2696 +  1.389 2447601.59219 0.3627 +  1.826 2447601.66708 0.4637 + 1 .816
2447601.62664 0.2606 + 1 .389 2447601.69289 0.3638 +  1.529 2447601.66777 0.4648 + 1 .826
2447601.62724 0.2617 +  1.388 2447601.69444 0.3662 +  1.533 2447601.66847 0.4669 + 1 .825 "‘1
2447601.62796 0.2628 + 1 .384 2447601.69614 0.3673 + 1 .637 2447601.66916 0.4669 + 1 .828
2447601.62863 0.2638 + 1 .386 2447601.59683 0.3684 + 1 .642 2447601.66040 0.4689 +  1.826
2447601.63129 0.2680 + 1 .392 2447601.69663 0.3696 + 1 .642 2447601.66109 0.4699 +  1.841
2447601.63198 0.2690 +  1.390 2447601.69722 0.3706 +  1.643 2447601.66179 0.4710 +  1.839

2447601.63269 0.2701 +  1.388 2447601.60222 0.3783 +  1.661 2447601.66248 0.4721 +  1.846
2447601.63337 0.2712 +  1.390 2447601.60291 0.3794 +  1.667 2447601.66318 0.4732 +  1.843
2447601.63407 0.2723 +  1.394 2447601.60361 0.3806 +  1.666 2447601.67020 0.4841 + 1 .866 4
2447601.63699 0.2753 + 1 .3 9 6 2447601.60430 0.3816 +  1.667 2447601.67090 0.4862 + 1 .873 1
2447601.63668 0.2763 + 1 .396 2447601.60499 0.3826 + 1 .677 2447601.67169 0.4863 + 1 .874 ..3

2447601.63738 0.2774 + 1 .402 2447601.60841 0.3880 + 1 .686 2447601.67229 0.4874 +  1.872
2447601.53807 0.2786 + 1 .4 0 2 2447601.60911 0.3891 +  1.686 2447601.67298 0.4884 + 1 .873
2447601.53877 0.2796 + 1 .4 0 0 2447601.60980 0.3901 +  1.681 2447601.67426 0.4904 + 1 .863
2447601.64273 0.2868 +  1.404 2447601.61049 0.3912 + 1 .692 2447601.67496 0.4916 +  1.872

2447601.64342 0.2868 + 1 .409 2447601.61119 0.3923 + 1 .692 2447601.67666 0.4926 + 1 .873

2447601.64411 0.2879 +  1.412 2447601.61316 0.3963 + 1 .600 2447601.67636 0.4937 + 1 .870
2447601.64481 0.2890 +  1.407 2447601.61386 0.3964 + 1 .601 2447601.67704 0.4948 + 1 .870
2447601.64560 0.2901 +  1.413 2447601.61464 0.3976 +  1.611 2447601.67832 0.4967 + 1 .866 4
2447601.64687 0.2922 +  1.416 2447601.61624 0.3986 +  1.611 2447601.67901 0.4978 +  1.876
2447601.64766 0.2933 +  1.417 2447601.61693 0.3997 +  1.614 2447601.67970 0.4989 + 1 .873
2447601.64826 0.2944 + 1 .418 2447601.61727 0.4017 +  1.616 2447601.68040 0.6000 +  1.873 V.
2447601.64896 0.2964 + 1 .413 2447601.61797 0.4028 + 1 .622 2447601.68109 0.6011 +  1.870
2447601.64966 0.2966 + 1 .422 2447601.61866 0.4039 + 1 .623 2447601.68209 0.6026 + 1 .871 -y
2447601.66114 0.2988 + 1 .424 2447601.61936 0.4060 +  1.627 2447601.68279 0.6037 +  1.872
2447601.66183 0,2999 + 1 .4 2 7 2447601.62006 0.4061 + 1 .627 2447601.68348 0.6048 +  1.876
2447601.66263 0.3010 + 1 .424 2447601.62116 0.4078 + 1 .639 2447601.68417 0.6068 + 1 .874 1
2447601,66322 0.3021 + 1 .432 2447601.62186 0.4089 + 1 .646 2447601.68487 0.6069 + 1 .878 t



C h apter 8

O ther S p ectroscop ic  

O bservations

8.1 In tro d u ctio n

As detailed in Section 1.5, this chapter contains other spectroscopic observations 

which were made during this project, but which failed to yield sufficient information 

to  enable detailed study. As a result, these observations are briefly noted here for 

completeness, but further analysis is not presented as part of this work.
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8 .2  T h e  W  U M a -ty p e  B in a ry  S y ste m  T Z  B o o tis

The variability of the binary system TZ Boo was discovered by Guthnick &

Prager (1927), and due to its unusual light curve, has been well studied photoelec- 

trically and to some extent spectroscopically.

Carr (1971) showed tha t the system exhibited interchanging depths of primary 

and secondary minima, a phenomenon known only in a very few systems (eg. AC Boo 

and AM Leo). This was confirmed and extensively studied by Hoffmann (1978a,b &

1980), who suggested tha t the repetitive interchanges of the minima depths exhibited 

a period of some 3.5 years, explained as a solar-like activity cycle.

McLean & Hilditch(1983) obtained limited spectroscopic observations of TZBoo 

around first and second quadratures which gave the first, and so far only, spectroscopic 

mass ratio for the system of g =  0.13 ±  0.03. However, no a ttem p t has been made to 

use this mass ratio with a light curve synthesis program to model the basic “unper

turbed” geometry of the system. Clearly the magnitude of distortions observed in the 

light curve, certainly a t visual wavelengths at least, would make this a complex task.

Figure 8.1 shows the B  light curves of TZBoo in 1970 and 1978 (Hoffmann 1978b) 

clearly indicating the interchange of minima depths. It is difiicult to  see how such 

perturbations (which are clearly very different from the regions of “excess luminosity” 

considered so far in this work) can be explained by anything other than large-scale dark 

spot activity in the system.

High dispersion radial velocity spectra of TZBoo, centred on 4200Â, were obtained 

and reduced as detailed in Chapter 2.

The observations were phased using the photoelectric ephemeris given by Hoff

mann (1980), and cross-correlated against a range of radial velocity standard stars of 

spectral type GO to  KO. The best results were produced using the GOV standard star 

HD 140913, and the cross-correlation functions thus obtained for each spectrum are 

shown plotted in order of increasing orbital phase in Figure 8.2.

The cross-correlation functions for TZ Boo show no clear, consistent sign of the 

secondary component. In addition a “bump”-like distortion is present to the varying 

degrees on the left-hand side of each primary correlation peak. This distortion made it 4
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Figure 8.1: .Slight curves of TZBoo (Hoffmann 1978b). Open circles represent normal 

points of 1970 observations, and dots represent 1978 observations.
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Figure 8.2: Cross-correlation functions for 4200 Â spectra of TZ Boo in order of increas

ing orbital phase. (0^02 top left to 0^97 bottom  right).

difficult to obtain measurements for even the primary component velocities from these 

data, and it was not possible to produce a consistent set of results using this analytical 

technique. (The ninth c.c.f. in Figure 8.2 (at 0?38) is contam inated by a cosmic ray 

which can be “windowed ou t” during individual spectrum analysis, bu t not during the 

multiple plotting routine used to produce this figure).
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8.3 T h e  R S C V n -ty p e  B in ary  S y ste m  X Y U r s a e  M ajoris

The short period eclipsing binary XYUMa (SA027143) exhibits erratic light 

curve changes typical of RS CVii stars.

The bulk of the observational work on this system has been done by E.H. Geyer.

The primary component is a G2-G5V star, and the secondary a K5 star (Geyer 1980).

Like TZBoo (Section 8.2), the erratic light curve changes can only be explained by 

invoking dark starspot activity. These distortions appear to show up on three different *

timescales ; from orbit to  orbit, from symmetrical to asymmetrical light curve shape 

over about four years (Geyer 1980), and to tal system brightness variations over about 

30 years (Geyer 1976). No spectroscopic mass ratio for the system is available.

Hall & K reiner(1980) published the most recent period analysis for XYUMa, 

which showed small erratic changes on top of a long-term period change, which was 

attributed to  an enhanced stellar wind flowing isotropically from the active component.

Although several light curves have been published since this study, their analysis has 

concentrated purely on interpreting and modelling the light curve distortions observed vf

in terms of the spot activity on the primary component, and so more recent period 

study has not been possible (eg. Jassur 1986 and Zeilik & Budding 1987).

Recently, EXOSAT observations of the coronal X-ray emission from the primary 

component of XYUMa have been published (Bedford et a l 1990), which support the 

model of great photospheric activity on the primary component.

Radial velocity spectra of XY UMa centred on 4200 Â were obtained and reduced as 

detailed in Chapter 2.

Using the G1 radial velocity standard star HD84441 for cross-correlation, the 

radial velocity measurements listed in Table 8.1 were obtained. Only primary compo

nent velocities were obtained, as the secondary component could not be seen in the 

cross-correlation functions, even when a later type K2 standard star template was used 

to  try  and “bring out” the secondary component cross-correlation peak.

The corresponding orbital phasing of the primary component measurements given 

in Table 8.1 were calculated using the ephemeris :-

HJD 2435216.5011 (±20) ±  0.478994587E(±83)

....a



which was derived in the period study by Hall & Kreiner (1980).

H.J.D. Phase Vi

km s“ ^

(O-C)

kms~^

2447197.49458 0.8049 -f-104 -6 .5

2447197.51636 0.8504 -f97 -3 .4

2447198.69644 0.3140 -124 -0 .4

2447198.72072 0.3647 —110 -0 .3

2447200.42801 0.9291 +68 +5.0

2447200.45323 0.9817 +43 +15.1

2447200.63315 0.3573 -115 -2 .6

2447200.65759 0.4084 -8 5 +4.4

2447201.46989 0.1042 -7 3 -11 .7

2447202.54253 0.3436 -118 -1 .1

2447202.62674 0.5194 -1 1 +3.6

2447202.65090 0.5698 +26 +3.1

2447202.71411 0.7018 +93 —5.2

Table 8.1: Radial Velocity da ta  for the Primary Component of XYUMa.

Assuming circular orbits, the sine wave fit and corresponding residuals to the radial 

velocity da ta for the primary component of XYUMa is shown in Figure 8.3.

This fit gives a radial velocity semi-amplitude for the primary component of K \  =  

(118.3±3.1)km s“  ̂ and a systemic velocity for the system of =  ( —7.2±2.0)km s"^. 

The resultant mass function is then /(m )=0.082M © . If a mass of IM© is adopted for 

the G2V primary, then the secondary must be a t least 0.6 M© (for i=90°) which is 

consistent w ith the classification by Geyer (1980) of K5 for the secondary component, 

given th a t this mass estimate is a lower limit.

Clearly there is a small phase shift in the radial velocity da ta  in Figure 8.3 with 

respect to the ephemeris of Hall & Kreiner (1980) used to derive the orbital phasing. 

This highlights the need for continuing times of minima to be published for new obser

vations of the system, so tha t the period behaviour can be constantly reviewed.
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8.4  T h e  R S C V n -ty p e  B in ary  S y stem  S V  C am elop ard alis

251

1

The short-period RS CVn-type eclipsing binary SV Cam (HD44982), like XY UMa 

(Section 8.3), also exhibits erratic light curve changes (see Figure 1.1), presumably due 

to dark starspot activity (eg. Zeilik et al, 1988). Indeed, observed infrared flux excesses 4

for SV Cam (Cellino et al. 1985) suggest the presence of cool regions, some 1500K cooler 

than the quiet photosphere.

Like XYUMa, the light curve of SV Cam has been well observed in recent years.

Hilditch et al. (1979), showed tha t SV Cam is composed of a G3V primary component 

which is slightly evolved above the main sequence, and a K4V secondary component.

Frieboes-Conde & Herczeg (1973) surveyed the extensive series of published times 

of minima, and concluded tha t the observed variations suggested a light-time effect 

due to  orbital motion about a third body with a period of some 72.8 years. This was 

supported by Hilditch et al. (1979) who calculated a period of some 64 years, and Cellino 

et al. (1985) who calculated a period of some 74.7 years.

Spectroscopic observations of SV Cam were made by Hiltner (1953), and more 

recently analysis by Lucy & Sweeney (1971), yielded a radial velocity semi-amplitude 

for the primary component of K \ =  121.6 km s“  ̂ and a systemic velocity for the system 

of To =  —15.0km 8"^.

Radial velocity spectra of SV Cam centred on 4200 Â were obtained and reduced as 

detailed in Chapter 2.

Using the G1 radial velocity standard star HD84441 for cross-correlation, the 

radial velocity measurements listed in Table 8.2 were obtained. Like XYUM a (Section 

8.3), only primary component velocities could be measured from the cross-correlation 

functions, and even using later type standard star templates, the secondary component 

could not be seen in the cross-correlation peaks.

The corresponding orbital phasing of the primary component measurements given 

in Table 8.2 were calculated using the ephemeris

HJD 2447258.5326 (±17) +  0.59307121 (±5) E

This ephemeris (Pollard 1988a) was derived by Dr.C.Pollard and the author following photo

electric observations of several primary minima of SV Cam made in October 1987 and |

.a



February 1988, using the T PT  and James Gregory telescopes a t St Andrews, as part of 

the commissioning of a new 8-channel photometer built at St Andrews (Pollard 1988b).

Assuming circular orbits, the sine wave fit and corresponding residuals to the radial 

velocity data for the primary component of SV Cam is shown in Figure 8.4.

This fit gives a radial velocity semi-amplitude for the primary component of JsTi =  

(122.7 ±  2.0) km s”  ̂ and a systemic velocity for the system of Vb =  (—9.7 ±  1.5) km s“ ^. 

The primary component semi-amplitude shows good agreement with the value obtained 

by Lucy & Sweeney (1971), and the clearly changing value of systemic velocity supports 

the suggestions from period studies of orbit about a third body.

-

a
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Table 8.2: Radial Velocity da ta  for the Primary Component of SV Cam.

253

H.J.D. Phase Vi (O-C)

km s“ ^ km s“ ^ J:

2447107.75733 0.7721 -f-113 +1.3 ’.j;

2447108.73657 0.4232 -6 9 —2.6

2447109.55225 0.7986 ±103 -4 .1

2447109.58345 0.8512 +90 +1.3

2447109.62343 0.9186 +42 —8.0 1
1

2447109.65283 0.9686 +36 +21.7

2447109.71235 0.0685 -7 1 -9 .7 h

2447109.75929 0.1476 -112 -3 .9 \

2447109.77371 0.1720 -118 +0.1 ■i:

2447110.66357 0.6724 +96 -2 .8

2447196.57477 0.5305 +12 -2 .0 I
2447197.59132 0.2445 -132 +0.4 3
2447197.61714 0.2881 -129 -0 .2 'j
2447197.64096 0.3283 -117 +0.7

2447198.36402 0.5475 +38 +11.4

2447198.39341 0.5970 +58 -2 .8 'j
2447198,46834 0.7234 +108 —3.3

2447198.49299 0.7649 +108 -4 .3
j

2447200.53073 0.2008 -123 +3.7 ■■i
2447200.55914 0.2487 -130 +2.4 }
2447201.37219 0.6197 +89 +14.7

2447201.40231 0.6704 +92 —6.1
■

2447202.43560 0.4127 -7 9 -5 .6

2447202.45903 0.4522 -4 8 —2.3 J
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8.5 H -ol L ine P ro files  w ith  O rbita l P h a se  for 7 B in ary  

S y stem s.

Spectra centred on 6563 Â were obtained and reduced as outlined and discussed 

in Chapter 2.

The attem pts to analyse these line profiles are also detailed in Chapter 2, but 

here the data are simply presented as a compilation of the E-alpha line profiles with 

orbital phase for each binary system.

Each spectrum is shown in its rectified “R-file” format, plotted over the wave

length range 6510 Â to 6630 Â and place in order of increasing orbital phase. The 

orbital phasing of these observations for each binary system were calculated using the 

appropriate ephemerides already discussed in this work, and summarised in Table 8.3 

(no errors quoted).

Figures 8.5 to 8.11 show the 6563 Â data for the binary systems TY Boo, VW Boo, 

BX And, SS Ari, AG Vir, TZBoo and SV Cam respectively. Only the RS CVn-type sys

tem XYUMa was not observed at 6563Â since it was the only object solely observed 

with the JKT.

Object Ephemeris

TYBoo 

VW Boo 

BXAiid 

SSAri 

AG Vir 

TZBoo 

SVCam

HJD 2446589.7906 J- 0.31714964E 

HJD 2441091.8840 -j- 0.34219634E 

HJD 2447117.9279 -f 0.61011258E 

HJD 2447119.7814 -f 0.4059899E 

HJD 2447593.6473 -f 0.64265059E 

HJD 2439632.8418 4- 0.2971620E 

HJD 2447258.5326 -f 0.59307121E

Table 8.3: Summary of ephemerides used to phase the 6563Â data (no errors quoted 

see appropriate proceeding Section).
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Figure 8.5: 6563 Â spectra of TY Boo showing the H-alpha line profile against increasing

orbital phase.
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Figure 8.6: 6563 Â spectra of VW Boo showing the H-alpha line profile against increas

ing orbital phase.
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Figure 8.7: 6563 Â spectra of BX And showing the H-alpha line profile against
iiig orbital phase.
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Figure 8.8: 6563 Â spectra of SS Ari showing the H-alpha line profile against increasing

orbital phase.
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Figure 8.9: 6563 Â spectra of AG Vir showing the H-alpha line profile against increasing

orbital phase.
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Figure 8.10: 6563Â spectra of TZBoo showing the H-alpha line profile against increas

ing orbital phase.
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Figure 8.11: 6563 Â spectra of SV Cam showing the H-alpha line profile against in

creasing orbital phase.
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C h apter 9

C onclusions

9,1 S um m ary

In this study, a detailed analysis of five low-mass, interacting binary systems has 

been presented, with spectroscopic mass ratios for these systems derived for the first 

time.

TY Boo appears to be a straight forward, shallow contact, W-type contact binary, whose 

light curve shows no signs of distortions due to anomalous luminosity distributions. 

Like other W -type systems, the primary and secondary components of TYBoo occupy 

regions in the M-R, M-L, and H-R diagrams (Figures 9.1, 9.2 and 9.3 respectively) 

tha t indicate the primary component lies within the main-sequence band, whilst the 

secondary component is over-sized and over-luminous (Hilditch et al. 1988).

The physical parameters of VWBoo are similar to those for TYBoo, with only some 

lOOK additional temperature difference between the components of VWBoo. (Also 

VWBoo is an “A-type” in terms of eclipsed components). However, light curve analysis 

of VWBoo suggests a region of excess luminosity around the neck joining the two 

components. Again the primary component of VWBoo lies on the main-sequence band, 

whilst the secondary component is over-sized and over-luminous on the M-R and M-L 

diagrams, occupying similar regions as the secondary components of other marginal
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4

contact “B-type” binaries. However, on the E-R diagram, the secondary component is 

found to  lie in the main-sequence band, between other B-type secondary components, 

and the secondary components of the W-type systems.

The binary system BX And, whilst being in marginal contact, exhibits a substantial 

temperature difference between the components. Like VW Boo, light curve analysis of 

BX And suggests a region of excess luminosity around the neck joining the two compo- |

nents. The components show similar properties to other B-type binary components, the 

primary lying close to  the TAMS relationship (Vandenberg 1985) in the main-sequence 

band, and the secondary being over-sized and over-luminous.

Although there is only a small temperature difference of some 150K between the com

ponents of the marginal contact system SS Ari, an anomalous luminosity distribution is 

immediately evident from the unequal heights of quadrature observed in the light curve.

However, with this type of distortion, geometric considerations suggest tha t the distort

ing feature in this case must reside on the side of the affected component rather than 

around the neck joining the system. Like TYBoo, the components of SS Ari are found #

to occupy the same regions on the M-R, M-L and H-R diagrams as the components of 

standard W -type binary systems.

AG Vir has a similar light curve to tha t of SS Ari (but with a much greater temperature 

difference between the components), suggesting a similar distorting anomalous lumi

nosity distribution. Like BX And, the components of AG Vir show similar properties 

to other B-type binary components. However, in the H-R diagram the secondary com

ponent of AG Vir is found to  lie on the ZAMS relationship of the main-sequence band, 

rather than to  the left or right of it, as do the secondary components of the W-type 

and B-type systems respectively (compare with VW Boo).
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9.2 Spot M odels

This study represents the first attem p ts at a quan titative analysis of the regions of 

excess luminosity observed in some binary systems. Until now, the basic contact binary 

light curve generating model has been used to provide the best fit to the observed light 

curves, the presence of spots inferred from the regions of anomalous luminosity (Figure 

1.6), and in some cases, the use of the secondary albedo as a free parameter employed 

to  synthesize a better fit (eg. McFarlane et al. 1986 and Kaluzny 1983). A quantitative 

analysis is now possible as the “next generation” of light curve synthesis routines begin 

to include the ability to add spots to the basic binary model. However, the problems 

of obtaining unique solutions must always be borne in mind with any attem p ts at 

modelling spots.

It now seems increasingly clear tha t the variety of different distortions observed in 

binary light curves are due not to a single phenomenon, bu t rather a variety of different 

phenomena.

The semi-detached RS CVn-type binaries, briefly discussed in Chapter 8, and contact 

systems like TZBoo (also Chapter 8), show strong and convincing evidence for erratic 

light curve distortions produced by dark starspots on one of the components. Such 

starspots also have a strong theoretical base, being analogous to Sunspots, but magni

fied by the “spinning up” of components in a close binary system.

The rather different regions of “excess luminosity” investigated in this study appear to 

fall into two groups, VW Boo and BX And exhibiting a different type of phenomenon 

from SS Ari and AG Vir.

The excess luminosity observed in VW Boo and BX And around the ingress and egress 

to secondary minima is only really revealed when a basic light curve analysis is applied, 

since the light curves at first glance appear similar to those of standard contact sys

tems like TY Boo. Since geometric considerations suggest that these regions of excess 

luminosity must reside around the neck joining the two components, and such systems 

also exliibit a temperature difference between components, it seems natural to conclude 

that these systems are in poor thermal contact, and the excess luminosity is due to the
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expected energy transfer from the hotter to the cooler component. In this case, the 

term “hot spot” could be misleading, since the region is more of a “warm puddle” at 

a temperature between tha t of the two components as the two components thermalize 

out. The analysis of such systems therefore provides an immediate test on the theory, 

since the modelled spot temperature cannot be hotter than the temperature of the 

ho ttest component in the system. Both VW Boo and BX And analysed here fulfill tliis 

constraint.

The anomalous luminosity distribution in SS Ari and AG Vir is immediately obvious in 

the shape of the light curve. The analysis presented here of these two systems attem pts 

to apply the same energy transfer scenario seen in VW Boo and BX And to model a hot 

spot in these systems. However, this form of distortion causes several problems for this 

model. Firstly why should the energy transfer be “shifted” from the neck to one side 

of the component ? Secondly, in the more extreme light curve distortion of AG Vir, 

there is some evidence tha t the distorting phenomenon actually resides on the hotter 

component ! Alternatively it could be argued that dark starspots on the opposite 

hemisphere are responsible for this distortion, but neither scenario really provides a 

convincing model for these systems. It is possible therefore that this form of distortion 

is due to a third type of phenomenon, like for example Faculae (Rucinski 1985), which 

like starspots are analogous to the solar examples, but magnified due to the “spinning 

up” of components in a  close binary system.
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9.3 Evolutionary Status

As detailed in Chapter 1, an im portant reason for studying marginal contact 

systems in poor thermal contact is the lack of observed systems in the “broken con

tact state” predicted by the TRO Theory. As a result of evolution through angular 

momentum loss, it is reasonable to expect those binaries which are undergoing TRO- 

like oscillations to exhibit lower specific orbital angular momentum than those systems 

which are reaching contact for the first time.

Hilditch et ai. (1988) complied the first evolutionary da ta base for late-type contact 

and near contact binaries, using the masses, radii, and luminosities for the 31 well 

studied systems available (Section 1.4.2). Angular momentum considerations, and other 

properties of the three B-type systems in this compilation, suggested that these systems 

were reaching contact for the first time rather than being in the broken contact state 

of the TRO process.

Since the compilation of Hilditch et a l good photoelectric and spectroscopic data have 

been published for two more of systems (AB And and OOAql) and improved data 

published for the system VW Cep, already in the data base. These new and revised 

data are presented in Table 9.1, along with the data for the five new systems analysed 

in this study. This brings the evolutionary data base up to 38 well observed systems, 

the work presented here providing 13% of the data, and more im portantly adds four 

more B-type systems to the sample.

O b je c t T y p e P (d » y « ) lo g M (p ri) (eec) lo g R (p rî) (sec ) lo g T (p ri) (sec ) lo g L (p ri) ( sec ) R efe ren ce
AB A nd W 0.332 + 0 .0 0 - 0 .3 1 + 0 .0 2 - 0 .1 2 + 3 .74 + 3 .7 7 - 0 .0 6 —0.23 H riv n e k  1988
GO Aql A 0.507 + 0 .0 2 —0.06 + 0 .14 + 0 .11 + 3 .76 + 3 .7 6 + 0 .2 6 + 0 .1 7 H rivn& k 1989
V W C e p W 0.278 —0.05 - 0 .6 1 —0.03 - 0 .3 0 + 3 .69 +  3.72 - 0 .3 4 - 0 .7 8 H ill 1989
T Y B o o W 0.317 - 0 .0 4 - 0 .4 0 + 0 .0 0 -0 .1 6 + 3 .76 + 3 .79 + 0 .01 - 0 .2 1 C h a p te r  3
V W B o o B 0.342 - 0 .0 1 —0.38 + 0 .0 3 - 0 .1 3 + 3 .76 +  3.71 + 0 .0 5 —0.45 C h a p te r  4
BX A nd B 0.610 + 0 .1 8 - 0 .1 2 + 0 .2 5 + 0 .11 + 3 .8 3 + 3 .6 6 + 0 .79 - 0 .2 0 C h a p te r  5

SS A n B 0.406 + 0 .0 3 —0.47 + 0 .1 0 - 0 .1 2 + 3 .79 + 3 .8 0 + 0 .3 0 - 0 .1 1 C h a p te r  6
AG V ir B 0.643 + 0 .2 2 - 0 .2 8 + 0 .29 + 0 .0 6 + 3 .78 + 3 .8 0 +  1.02 + 0 .2 7 C h a p te r  7

Table 9.1: New mass, radii and luminosity data for 8 contact binaries, updating the 

compilation of Hilditch et a l  (1988).

The data in Table 9.1 were added to the original compilation of Hilditch et a l and
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evolutionary M-R, M-L and H-R diagrams produced for the 38 system da ta  base. These 

are shown plotted in Figures 9.1, 9.2 and 9.3 respectively. A discussion of the results 

for each system studied here is given in the corresponding Chapter, and summarized 

in Section 9.1.

Finally, Figure 9.4 shows a plot of q verse log(g(l 4- where q is the mass ratio

and P  the orbital period (in days) of the system, for the 38 system data base. This 

provides a relative easy measure of the specific orbital angular momentum of each well 

observed system, since :-

where Jorh is the orbital angular momentum, and Miot is the total mass of the binary.

Of the four B-type systems presented in this work, the angular momentum considera

tions shown in Figure 9.4, and the other properties of these systems, tend to suggest 

tha t these systems too could well be reaching contact for the first time rather than 

being in the broken contact phase of the TRO process.

Both BX And and AG Vir exhibit greater specific orbital angular momentum than 

W-type contact binaries of the same mass ratios.

SS Ari is much closer to the W-type systems, with a lower angular momentum 

than AG Vir, but not sufficiently low for conclusive conclusions to be reached. Since 

the temperature difference between the components of SS Ari is only small it may be 

tha t in this case therm al contact is almost complete after having come into contact for 

.the first time. On the other hand, the period behaviour of SS Ari suggests past cyclic 

periods of mass transfer. (However it should be noted tha t the period behaviour of 

BX And, which does seem to be coming into contact for the first time also suggests 

past cyclic activity !). Hence the evolutionary position of SS Ari is far from certain, 

and clearly warrants further study.

Like SS Ari, the position of VWBoo is not entirely clear, and warrants further 

study. VWBoo does have a specific orbital angular momentum close to the W-type 

systems, but again no firm conclusions can be drawn. VWBoo further raises curiosity 

because its secondary component lies, in the H-R diagram, between the B-types and 

W -types, suggesting it is in transition between the two, either for the first time or
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Figure 9.1: Location of primary and secondary components of 38 well observed con

tact / near-contact binary stars in the mass-radius plane. Also shown are the ZAMS and

TAMS lines from VandenBerg (1985), and error bars typical for the sample.
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Figure 9.2: Location of primary and secondary components of 38 well observed con

tact/near-con tact binary stars in the mass-luminosity plane. Also shown are the ZAMS 

and TAMS lines from VandenBerg(1985), and error bars typical for the sample.
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Figure 9.3: Location of primary and secondary components of 38 well observed con

tact / near-contact binary stars in the H-R diagram. Also shown are the ZAMS and 

TAMS lines from VandeiiBerg (1985), and error bars typical for the sample.
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Figure 9.4: Relative orbital angular momenta of 38 well observed contact/near-contact 

binary stars. The dashed lines indicate the dependence of the ordinate on mass ratio 

a t constant orbital period.
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cyclically. However, again a note of caution should be sounded, since the secondary 

component of AG Vir, which does seem to  be coming into contact for the first time, also 

occupies a similar position in the main-sequence band on the H-R diagram. Further, 

the orbital period of VW Boo is the least certain of the systems studied in this work, 

and a “shift” in position on the H-R diagram can be caused by uncertainty in assigning 

an effective temperature to the primary component.
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9 .4  C on clu d in g  R em ark s

Clearly then the TRO Theory, unless critically “dampened” by angular momen

tum  loss via magnetic braking, still suffers from a lack of systems in the broken state of 

contact. This work has made a significant improvement to  the size of the evolutionary 

da ta  base, particularly by adding four more B-type systems. Although the trend for 

such systems to be reaching contact for the first time continues, the uncertainty sur

rounding the evolutionary status of SS Ari and VWBoo is a clear marker for further 

study. In this regard however, it must be questioned whether theoretically the loss 

of angular momentum with time expected from a system undergoing TRO-like oscilla

tions, would be significant enough to distinguish it observationally from a system which 

is just reaching contact for the first time.

The position surrounding some of the distortions seen in binary light curves due to 

anomalous surface luminosity distributions, seems to suggest tha t different distortions 

are produced by different phenomena. In particular the model of a hot spot around 

the neck in some systems, due to energy transfer between components has been quan

titatively modelled for the first time, proving that such “warm” spots due to energy 

transfer can be responsible for the magnitude of distortions observed. Equally the lack 

of success of dark and “warm” spots to  explain the distortions in systems like SS Ari 

and AG Vir, where the light curve quadrature heights are unequal, suggests tha t a third 

distorting mechanism may be active in such systems.

Finally it is gratifying to note tha t this work is already being followed up by the St 

Andrews group, in collaboration with others, and that further observations of some of 

these objects (and others) are planned to provide further quantitative analysis of the 

“spot” phenomena. Clearly simultaneous observations over a wide wavelength range, as 

attem pted in this work but sunk by instrument malfunction, are still likely to be a useful 

tool in determining spot temperatures, and to some extent positions, thus reducing the 

number of free parameters in the model. But most of all, the extension of “Doppler 

Imaging” techniques (Section 1.5.3.2) to contact binaries will clearly provide a powerful 

tool in accurately analysing all types of spot phenomena. Whilst it is disappointing that 

the 6563 Â observations in this work were not quite of high enough resolution and signal
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to noise to reveal such features, the St Andrews group have been able to use the bench 

mark laid down by these observations, along with the magnitude of spot phenomena 

now expected from this quantitative analysis, to  plan new observations with the “new 

generation” of larger optical telescopes and detectors. Such observations and analysis 

will hopefully go a long way towards finally unravelling the true nature of distorting 

phenomena which are active in these late-type contact binaries.

;
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