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Abstract In this paper we present two mathematical models related to differ-
ent aspects and scales of cancer growth. The first model is a stochastic spatio-
temporal model of both a synthetic gene-regulatory network (the example of
a three-gene repressilator is given) and an actual gene-regulatory network, the
NF-κB pathway. The second model is a force-based individual-based model of
the development of a solid avascular tumour with specific application to tu-
mour cords, i.e. a mass of cancer cells growing around a central blood vessel.
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In each case we compare our computational simulation results with experi-
mental data. In the final discussion section we outline how to take the work
forward through the development of a multiscale model focussed at the cell
level. This would incorporate key intracellular signalling pathways associated
with cancer within each cell (e.g. p53-Mdm2, NF-κB) and through the use
of high performance computing be capable of simulating up to 109 cells, i.e.
the tissue scale. In this way mathematical models at multiple scales would be
combined to formulate a multiscale computational model.

Keywords Multiscale cancer modelling · Gene regulatory network · Spatial
stochastic model · Individual based model · Computational simulations

Mathematics Subject Classification (2000) 35Q92 · 92C05 · 92C40 ·
92C42 · 92C50

1 Introduction

Cancer is a complex, dynamic disease with underlying processes occurring
over the full range of biological scales from genetic, through proteomic, cellu-
lar, tissue, organ, to organism and sometimes even the whole population level.
The first detectable (palpable) symptoms are almost always macroscopic, but
mechanisms are also present a priori at the cellular level and these in turn
originate from changes in the individual’s DNA. Perhaps one of the most dif-
ficult questions of modern medicine is how to intervene and manipulate the
complex system of the patient’s body to affect changes in dynamics which can
bring it back from a state of disease to either full remission or stabilisation.
Given the complexity of the system a chance to answer that question should
be sought by complementing the traditional clinical methods with mathemat-
ical and computational modelling and simulations. However, while developing
“good” predictive models one should remember a few important aspects. The
most crucial seems to be the consideration of one of the key features of the
disease, if not the key feature, i.e. its multi-scale character.

In one of the most influential papers of recent years, summarizing our
knowledge of the pathogenesis of cancer disease, Hanahan and Weinberg (2000)
defined what they termed to be the six hallmarks of cancer: i) sustaining pro-
liferative signalling; ii) evading growth suppressors; iii) activating invasion and
metastasis; iv) enabling replicative immortality; v) inducing angiogenesis; vi)
resisting cell death. More recently the authors updated this list to also include
two emerging hallmarks: i) deregulating cellular energetics; ii) avoiding im-
mune destruction and two enabling characteristics: i) genome instability and
mutation; and ii) tumour promoting inflammation (Hanahan and Weinberg,
2011). These hallmarks are linked with phenotypic traits that give cancer cells
an evolutionary advantage over healthy cells. Furthermore in their more recent
paper, Hanahan and Weinberg (2011) provided a graphical representation of
four main circuits regulating the operation of cells: i) proliferation circuits;
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ii) viability circuits; iii) motility circuits; and iv) cytostasis and differentia-
tion circuits (see Figure 1). The failure or dysregulation of these four circuits
jointly make up the characteristic phenotype of cancer cells, corresponding di-
rectly with four of the hallmarks given above. In contrast to healthy cells that
carefully control the production of specific growth and proliferative signals,
cancer cells have an abnormal progression through the cell cycle and divide
rapidly. Equally they have much higher viability compared to normal cells;
resisting cell death, avoiding immune destruction, genome instability and mu-
tation make cancer cells somewhat “immortal”. The outcome is the formation
of macroscopic structures such as solid tumours that can be observed clinically.
Despite enormous progress full understanding of these processes is difficult be-
cause we are dealing with a complex interplay between various subprocesses
occurring with different dynamics at different spatial scales.

One of the most dangerous properties of malignant tumours is their ability
to invade surrounding tissues and to metastasize. The invasion or infiltration
of surrounding tissue by cancer cells can impair the tissue or organ function.
However, a more dangerous aspect of invasion is the infiltration of blood and
lymph vessels. When cancer cells penetrate the vessel lumen they may migrate
with blood or lymph to distant sites in the body to form new tumours, i.e.
metastases. It is worth mentioning that angiogenesis also contributes; through
the formation of new blood vessels within the tumour it facilitates the mi-
gration of tumour cells. Metastasis of cancer makes patient’s treatment very
difficult. It prevents the effective resection of the primary tumour, as new
outbreaks cause recurrence of the disease. There are many mechanisms that
enable cancer cells invasion and metastasis, together making the motility cir-
cuit. One can mention here the frequently occurring over-expression of genes
encoding extracellular matrix-degrading enzymes such as matrix metallopro-
teinases (MMPs). However, perhaps the most characteristic change is the loss
of the functionality of the protein E-cadherin, which is the main molecule
responsible for binding between epithelial cells.

While it is clear that there are many different, inter-connected temporal
and spatial scales that are important during the development of any tumour,
within these there are three clearly demarcated “fundamental scales” linked
to each other which, when considered together, go to make up understanding
the complex phenomenon that is cancer: the intra-cellular scale, the cellu-
lar scale and the tissue scale. At the level of intracellular processes we must
include within the description complicated but essential phenomena such as
signal transduction cascades, gene regulatory networks or cell cycle regulation.
Doing so aids our understanding of the differences at the intracellular level be-
tween normal and transformed cells and therefore improves the efficiency of
anti-cancer cell-cycle-dependent drugs. Another challenge while modelling in-
tracellular processes is to understand how the three-dimensional structure of
DNA and chromatin affects gene expression within signalling pathways crucial
for the disease development. Although it is known that cancer is most often
caused by the accumulation of mutations in genes involved in cell cycle regu-
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Fig. 1 Key intracellular signalling pathways and the cell functions they are connected with,
illustrating the connection between the intracellular scale and the cellular scale. Reprinted
from Cell, 144(5), Hanahan, D., Weinberg, R.A., Hallmarks of Cancer: The Next Generation,
646-674, Copyright (2011), with permission from Elsevier.

lation and apoptosis, another important issue is how the disease progression
is influenced by structural or epigenetic changes within the cell nucleus.

At the level of cellular colonies and tissue there are two main approaches
towards modelling complex biological processes like cancer: continuum and
discrete. Continuum methods, that are derived from principles of continuum
mechanics, have proved to be very useful in modelling phenomena at the tis-
sue scale such as general tumour growth. However, one of the main draw-
backs of continuum modelling is the difficulty in representing individual cell
properties. Including these and intracellular processes in multi-scale phenom-
ena such as cancer is becoming more and more important as experimental
data across multiple scales becomes available. Alternative approaches rely on
an individual-based description of a single cell. The main advantage of such
methods is related to the relative simplicity of transmitting detailed biological
processes into dynamics and development of cell populations and tissue. The
main disadvantage is the computational cost which increases rapidly with the
number of simulated cells. However the problem of high computational com-
plexity can be addressed by selecting appropriate algorithms and by efficient
implementation on high performance computing (HPC) systems.
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Further milestones related to cancer modelling will be adapting the models
for specific cancer types and specific patients. The latter means not only the
acquisition of biochemical parameters but also the acquisition of medical image
data for individual patients. This will be a definite step towards personalised
medicine, which has a chance to completely reform our approach to the patient
and his treatment. Already today imaging studies are of great importance in
diagnosis and planning surgical procedures. However, especially for treatment
of non-resectable tumours, such imaging studies could also be important in
selecting the appropriate treatment or monitoring the disease dynamics.

In this paper we intend to promote two specific avenues of cancer modelling
which consider processes at different scales. In Section 2 we discuss the mod-
elling of intracellular dynamics, specifically gene regulatory networks (GRNs),
using a spatial stochastic approach. Firstly we apply this approach to so-called
synthetic GRNs: repressilators and explore the role of molecular movement in
such systems. Secondly, we apply this approach to the NF-κB pathway, which
is important in diseases such as cancer and the inflammatory response. In Sec-
tion 3 we focus on the cell scale, in particular investigating cell-cell/cell-matrix
dynamics using a force based model. Specifically we apply this to modelling
avascular tumour chords around blood vessels. In Section 4 we remark on the
importance of these two modelling approaches individually and discuss how
coupling these techniques together to form a multi-scale framework offers a
new horizon for cancer modelling. In particular using high performance com-
puting (HPC) it would be possible to combine these two techniques whilst at
the same time modelling 106− 109 cells, thereby enabling one to model at the
tissue scale.

2 Intracellular dynamics - GRNs

At the heart of cellular function and communication lies segments of DNA
(genes) and their associated gene regulatory networks (GRNs). A GRN can
be defined as a collection of genes in a cell which interact with each other indi-
rectly through their RNA and protein products. GRNs are vital to intracellular
signal transduction and indirectly control many important cellular functions
such as cell division, apoptosis and adhesion. One specific class of GRN in-
volves proteins called transcription factors, which alter the transcription rate
of genes in response to intra- or extracellular cues. Transcription factors may
reduce or increase the transcription rate of a given gene, respectively inhibit-
ing or promoting its production. If the inhibition (or promotion) is directed
towards the transcription factor’s own gene, either directly or indirectly, there
is negative (or positive) feedback. Negative feedback loops are an important
component of many gene networks and are found within a wide range of bi-
ological processes e.g. inflammation, meiosis, apoptosis and the heat shock
response (Lahav et al., 2004). Mechanically speaking, systems which contain
negative feedback should (and in fact are known to) exhibit oscillations in the
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levels of the molecules involved. Furthermore, in many biological processes, it
is the oscillatory expression which is of particular importance.

Mathematical modelling of GRNs began with the papers of Goodwin (1965)
and Griffith (1968), in which a negative feedback model for a simple, sin-
gle mRNA-protein feedback system was proposed. However, while GRNs are
known to exhibit periodic fluctuations in mRNA and protein concentrations
(e.g. the results for the Hes1 system, cf. Hirata et al. (2002)), these early
models, which were restricted to purely temporal ODEs, could not derive os-
cillatory behaviour. Since the late 1990s there has been interest in the study
of delay-differential equation models for GRNs (e.g. Smolen et al., 1999, 2001,
2002; Tiana et al., 2002; Jensen et al., 2003; Lewis, 2003; Monk, 2003; Bernard
et al., 2006), following on from Mackey and Glass (1977) who introduced the
idea of incorporating delays into differential equations two decades years ear-
lier. The inclusion of a delay in ODE models of GRNs (e.g. the Hes1 system,
the p53-Mdm2 system and the NF-κB system) has been shown to produce
the required oscillatory behaviour (e.g. Tiana et al., 2002; Jensen et al., 2003;
Lewis, 2003; Monk, 2003; Bernard et al., 2006).

An alternate approach has been to model GRNs with reaction-diffusion
PDEs rather than ODEs, to incorporate spatial aspects. The first such spatial
models (for theoretical intracellular systems) were proposed in the 1970s by
Glass and co-workers (Glass and Kauffman, 1970; Shymko and Glass, 1974)
and similarly in the 1980s by Mahaffy and co-workers (Busenberg and Mahaffy,
1985; Mahaffy, 1988; Mahaffy and Pao, 1984). The inclusion of spatial terms
rather than a delay equally leads to the necessary oscillations (e.g. Sturrock
et al., 2011, 2012; Szymańska et al., 2014; Lachowicz et al., 2016; Macnamara
and Chaplain, 2016). Furthermore, Chaplain et al. (2015) rigorously proved,
for the Hes1 system, that molecular diffusion causes oscillations. It is worth
noting that a few models incorporate both spatial aspects and delays (e.g.
Momiji and Monk, 2008). At a time when biologists are developing techniques
to tag and monitor the movement of molecules in single cells (e.g. Betzig et al.,
2006; Manley et al., 2008; Spiller et al., 2010; van de Linde et al., 2011; Won
et al., 2011; Bar-On et al., 2012; Hiersemenzel et al., 2013) it is important to
have appropriate mathematical models that have the ability to analyse the
spatial data that arises from such experiments.

The study of GRNs also plays both a theoretical and practical role in the
field of synthetic biology. Since the pioneering work of Becskei and Serrano
(2000) and Elowitz and Leibler (2000) on E. coli, there has been renewed in-
terest in synthetic GRNs as a method of designing and constructing predictable
biological systems (Balagadde et al., 2008; Chen et al., 2012; Yordanov et al.,
2014) with concomitant studies of a more theoretical nature (Purcell et al.,
2010; O’Brien et al., 2012; Macnamara and Chaplain, 2016). Such activities
could in future lead to the development of better drug design, more efficient
crop yields and enhanced bioenergy production (Yordanov et al., 2014).

While previous work modelling GRNs has offered great insight (showing,
for example, that spatial aspects are of key importance, e.g. Chaplain et al.
(2015)), biological systems are fundamentally noisy and as such it makes sense
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to consider them stochastically. While GRNs are observed to exhibit peri-
odic fluctuations (e.g. Hirata et al., 2002; Nelson et al., 2004; Geva-Zatorsky
et al., 2006), results from intracellular imaging show inherent stochasticity
(e.g. Spiller et al. (2010)). The noise may be caused by a combination of the
underlying randomness of necessary events (such as the binding/unbinding
of protein and promoter) and the natural variation of production and degra-
dation rates (since transcription and translation occur in bursts rather than
continually). Adding to that the fact that the molecular species involved are
present in low numbers, continuum models are unlikely to provide an accurate
description of the real life situation. Burrage and co-workers (e.g. Barrio et al.,
2006; Tian et al., 2007; Marquez-Lago et al., 2010) were amongst the first to
seek oscillatory behaviour of GRNs using a stochastic approach. They used a
delay SSA method, SSA being the stochastic simulation algorithm developed
by Gillespie (1976) and discussed how a time-delay could account for spatial
aspects (Marquez-Lago et al., 2010), without the need to incorporate them
explicitly. However, prompted to further investigate the importance of spatial
aspects, Sturrock et al. (2013) designed a model of GRNs (specifically the
Hes1 system) which accounts for the importance of both space and stochastic-
ity. They used a continuous-time discrete-space Markov process to model the
reaction-diffusion kinetics. Since cell populations are naturally heterogenous,
a stochastic description with spatial aspects built in allows us to incorporate
a variety of differences and to look for emergent behaviour. The approach
of Sturrock et al. (2013) can be applied to model other natural pathways or
synthetic GRNs and we give two such applications here.

At the heart of any model for GRNs lies a system of chemical/molecular
reactions, which describe how different species interact. Within a continuum
setting we are able to extrapolate from these a set of differential equations. A
discrete approach by contrast relies on a chemical master equation; the spatial
stochastic models we discuss here are continuous time, discrete space Markov
processes governed by a reaction diffusion master equation (RDME). Model
reactions (modelled with simple mass action kinetics) are localised at specific
sites or regions within the cell. In the following section we give some selected
results from the simulations of specific RDMEs (see Appendix A for more
details of the basic model set-up).

2.1 GRN Simulation Results

Synthetic GRNs - n-gene repressilators

For a basic spatial stochastic model we start with a single (or chain of) feed-
back(s) between mRNA(s) and protein(s). We consider a single stochastic
reaction-diffusion model, which is developed from that of Sturrock et al. (2013),
who modelled the single negative feedback Hes1 system. The model can be ex-
tended to one containing n-genes, i.e. n mRNAs and n proteins, connected in a
cyclical arrangement in which a gene may activate or inhibit its following gene.
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Table 1 List of the i-th molecular reactions in an n-gene repressilator system (adapted
from the Hes1 system of Sturrock et al. (2013))

Cytoplasmic Reaction Description

mRNAi
αpi−−→ mRNAi + proteini Translation of proteini

Reactions at the ith gene site Description

fpi + proteini−1

b1−−⇀↽−−
b2

opi Binding/unbinding of proteini−1

to the ith free promoter

fpi
αmi−−−→ fpi +mRNAi Basal transcription of mRNAi

opi
αmi/γi−−−−−→ opi +mRNAi Modified transcription of mRNAi

Global Reactions Description

mRNAi
µm−−→ ∅ Degradation of mRNAi

proteini
µp−−→ ∅ Degradation of proteini

Sli

qlijxli−−−−→ Slj Molecular diffusion

Our model reactions are given in Table 1, for i = {1, 2, ...n}. Consider a gene i,
its mRNA is translated producing protein, within the cytoplasm, at a rate αpi.
The (i−1)-th protein is then available to bind with (and then unbind from) its
i-th promoter at a specific gene site, with binding and unbinding rates b1 and
b2, respectively. Depending on whether the protein is bound with its promoter
or not determines the rate of mRNA production for the following gene in the
chain. A free (or unbound) promoter transcribes mRNA at the basal rate αmi,
while an occupied (or bound) promoter either enhances or diminishes mRNA
production depending on the value of γi. We assume that both species degrade
(at rates µm and µp, respectively) and diffuse throughout the domain.

This single description may be used to model a variety of synthetic GRNs,
with the nuances of each captured by changes to specific parameters. In partic-
ular, we are able to model repression or activation of an mRNA by a preceding
protein through changes to the parameter γi (Sturrock et al., 2013). If γi < 1
the basal rate of mRNA transcription is enhanced when the preceding protein
is bound to its promoter (there is positive feedback), whereas the basal rate
of mRNA transcription is reduced when the preceding protein is bound to its
promoter for γi > 1 (there is negative feedback).

For this model with n = 1, the system contains a single mRNA and protein
pair. With γ1 = 30 > 1 they are coupled by a simple negative feedback loop;
this appropriately models the Hes1 system and was considered as such by
Sturrock et al. (2013). Here we give here simulation results for a three-gene
represssilator by taking n = 3 and γi = 25 > 1. Following Macnamara and
Chaplain (2016) we consider a repressilator to be a loop of n-genes where
each protein inhibits the production of the subsequent mRNA. We solve the
system for a spherical domain, Ω, see Figure 2. We approximate the cell as two
concentric spheres centred on (0, 0) with radii 3µm and 7.5µm, respectively; the
inner sphere being the nucleus and the remainder of the domain the cytoplasm.
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Fig. 2 Computational 3D cellular domain used in the stochastic spatial simulations con-
sisting of a cytoplasm (green), a nucleus (blue) and gene binding sites within the nucleus
(red). The nucleus has radius 3µm and the cell has radius 7.5µm. See text for full details.

Key to this modelling approach is the position of promoter sites, where the
binding/unbinding and transcription reactions take place. How variations in
the spatial location of the gene site (and also the protein production site)
affect the levels of the molecules in GRNs has been explored in Sturrock et al.
(2012); Macnamara and Chaplain (2016, 2017). This aspect remains to be
explored more fully in a spatial stochastic setting. For our simulations of the
three-gene repressilator, the three promoter sites are located at single voxels
tightly clustered together within the nucleus. In Table 2 we give the parameter
values used in the simulations.

Simulation results are given in Figure 3 where we depict the concentrations
of mRNA and protein as they vary with time along with figures which indicate
when each of the promoters are occupied. The individual gene/promoter sites
are located in the x−y plane equidistant on a circle of radius 0.5µm as follows:
promoter 1 site - (0µm, gyµm); promoter 2 site - (gy cos(π/6)µm,−gy sin(π/6)µm);
promoter 3 site - (−gy cos(π/6)µm,−gy sin(π/6)µm) where gy = 0.5. We ob-
serve periodic fluctuations in mRNA and protein concentrations.
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Fig. 3 Plots showing the copy numbers of mRNA and proteins obtained from a simulation
of the three-gene repressilator system with individual gene sites (promoter sites) clustered
together at the origin. The molecular species are colour coded as follows: mRNA1, protein1
- red; mRNA2, protein2 - blue; mRNA3, protein3 - green. Top figure: mRNA copy numbers;
middle figure: protein copy numbers; bottom figure: the three promoters in either occupied
(1) or free (0) state.
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Table 2 List of parameter values used in the computational simulations (all parameters
are within ranges reported by Sturrock et al. (2013))

Parameter Description Value

αpi Translation rate of protein 10 min−1

b1 Rate of protein binding to promoter 5× 108 M−1min−1

b2 Rate of protein unbinding from promoter 0.05 min−1

αmi Basal transcription rate of mRNA 0.5 min−1

γi Scale of transcriptional repression 25

µm Degradation rate of mRNA 0.08 min−1

µp Degradation rate of protein 0.02 min−1

D Diffusion coefficient 0.60 5× 10−12 m2min−1

Natural GRNs - the NF-κB pathway

While a generic model of GRNs with simple feedback incorporated offers gen-
eral insight into mRNA-protein dynamics, a spatial stochastic approach can
easily be applied to more complex pathways which contain a variety of molec-
ular interactions. Here we give a few selected simulation results for a spatial
stochastic model of the NF-κB pathway, which when it works correctly is re-
sponsible for coordinating processes such as adaptive and innate immunity,
development and cell survival but if dysregulated may lead to chronic in-
flammatory diseases, autoimmune diseases and the initiation and progression
of cancer. Nuclear factor κB (NF-κB) was discovered in 1986 as a nuclear
factor in B lymphocytes responsible for regulating the gene encoding the im-
munoglobulin κ light polypeptide chain. It is found to be present in almost all
mammalian cell types and is activated in response to many different stimuli,
including environmental cues such as hypoxia and ultraviolet radiation; infec-
tious agents, such as bacteria and viruses; and extra- and intracellular stress,
such as inflammatory cytokines and DNA damage. Due to the diversity of the
means to NF-κB activation, it is not surprising that NF-κB has been found to
have the potential to control the transcriptional activity of over three hundred
genes and to thus play a role in many different processes.

Nuclear-cytoplasmic oscillations of NF-κB have been observed in experi-
ments (e.g. Nelson et al., 2004; Ashall et al., 2009; Lee et al., 2014), see for
example, Figure 4, and have also been the subject of mathematical models
(Hoffmann et al., 2002; Lipniacki and Kimmel, 2007; Cheong et al., 2008;
Pekalski et al., 2013). They are produced due to negative feedback from gene
products such as its inhibitor IκBa and the IKK deactivator A20 (Skaug et al.,
2011). In the canonical NF-κB signalling pathway, NF-κB, (predominantly
experimentally observed to be RelA-NF-κB1 heterodimer) is held inactive in
the cytoplasm of unstimulated cells by the family of inhibitor IκB proteins,
(predominantly IκBa). The binding of IκB to NF-κB masks NF-κB’s nuclear
localisation sequence (NLS), which in turn prevents the binding of NF-κB
to nuclear pore complexes and hence nuclear translocation (O’Dea and Hoff-
mann, 2010). IκB further spatially regulates NF-κB by actively translocating
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to the nucleus, binding to nuclear NF-κB and transporting it back to the cyto-
plasm (Arenzana-Seisdedos et al., 1997). Particular examples of extracellular
stimuli that activate the canonical NF-κB signalling pathway are the pro-
inflammatory cytokine, tumour necrosis factor α (TNFα), and the bacterial
product, lipopolysaccharide (LPS). Upon ligand binding to a specific cellular
membrane receptor, such as tumour necrosis factor α receptor 1 (TNFR1)
or Toll like receptor 4 (TLR4), adaptor molecules, kinases and ubiquitin lig-
ases are recruited, leading to the activation of the TAK–TAB complex (TGF
[transforming growth factor] β activated kinase–TAK associated binding pro-
tein). TAK is essential for the activation of the trimeric complex, IKK (the
inhibitor of IκB kinase), which in mammalian cells is composed by IKKα,
IKKβ and IKKγ. IKK activation leads to phosphorylation of the IκBα within
an IκB/NF-κB complex at amino acid residue serine 32 and serine 36. This
phosphorylation of IκB is a marker for it to be tagged for ubiquitination.
Once ubiquitinated it is degraded by the proteasome, thus releasing NF-κB to
translocate to the nucleus, where it binds to κB sites in the promoters and en-
hancers of its target genes. The full set of reactions/interactions for the NF-κB
pathway are given in Tables 6-8 in Appendix B.

Here we give simulation results of the RDME for the NF-κB pathway. A
single realisation of the experiment is shown in Figure 5. Again, in this case
the computational domain consists of two concentric spheres (the outer sphere
representing the cytoplasm - radius 9.5µm - and the inner sphere representing
the nucleus - radius 5µm) and three individual gene/promoter sites for NF-κB,
IκB and A20 localised within the nucleus (specifically, the NF-κB gene site is
located at the origin, and the IκB and A20 gene sites have displacements of
2.5µm and −2.5µm respectively along the x Cartesian axis from the origin).
The plots given in Figure 5 show periodic fluctuations in the copy numbers of
NF-κB, IκB (and the complex of the two) along with A20 as well as indicating
periodicity in the NF-κB nuclear-cytoplasmic ratio which suggests nuclear-
cytoplasmic oscillations.

Figure 6 indicates the cross-section through the middle of the cell from
the full 3D simulation. We show the spatial distribution of NF-κB molecules
inside a cell for discrete values of time. We note changes to the concentration
over time both in general and with regards to location. Specifically we note
that the concentration of NF-κB alternates between being predominantly in
the nucleus with being predominantly in the cytoplasm. These numerical sim-
ulations shown in Figures 5 and 6 can be directly compared to experimental
data, such as those given in Figure 4. One way to achieve this in an objective
manner is to estimate the underlying (mean) period of the oscillations. Figure
7 shows the mean period of total NF-κB for 100 different simulations of the
spatial stochastic model. The (time-dependent) periods were estimated using
a Morlet continuous time wavelet transform as implemented in WAVOS, with
Gaussian edge elimination used to minimize artefacts in the approximation
of the period (cf. Harang et al., 2012; Sturrock et al., 2013). As can be seen
from the plot, the period varies between 100 and 180 minutes, which is com-
parable to that observed by Nelson et al. (2004). Thus, our spatial stochastic
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Fig. 4 Top panel: temporal oscillations of key molecular species in the NF-κB system.
Bottom panel: experimental observation of spatio-temporal oscillations in NF-κB localisa-
tion in individual cells. This figure shows time-lapse confocal images of NF-κB-containing
species fused to a red fluorescent protein and of IκBa-containing species fused to a green
fluorescent protein in SK-N-AS cells after stimulation with TNFa. The arrow marks one
oscillating cell. Nuclear-cytoplasmic translocation of NF-κB-containing species is apparent.
Time is shown in minutes and the scale bar represents 50µm. From Nelson, D. E., Ihekwaba,
A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., Nelson, G., See, V.,
Horton, C. A., Spiller, D. G., Edwards, S. W., McDowell, H. P., Unitt, J. F., Sullivan, E.,
Grimley, R., Benson, N., Broomhead, D., Kell, D. B., White, M. R. H., 2004. Oscillations in
NF-κB signaling control the dynamics of gene expression. Science 306, 704-708. Reprinted
with permission from AAAS.

model (SSM) is capable of capturing both the spatial-temporal experimental
data within a single cell and the temporal data of molecular concentrations.
As such our SSM provides a very accurate in silico description of complex
intracellular signalling pathways.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Plots showing temporal oscillations of key molecular species in the NF-κB system
obtained from simulations of the spatial stochastic model. From top left to bottom left: time
series (spanning 1600 minutes) for the copy number of (a) total NF-κB (b) total IκB–NF-κB
complex, (c) free NF-κB, (d) free IκB, (e) total A20, respectively. In the bottom right plot,
(f), we give the NF-κB nuclear-cytoplasmic ratio. Where applicable (in figures (1)-(d)) the
total number of cytoplasmic species is indicated in red and the total number of nuclear
species is indicated in blue. Parameter values given in Appendix B in Tables 6-8.

3 A Multiscale Individual-based Model of Cancer Growth

While the model of the previous section focussed on (stochastic) spatio-temporal
models of intracellular pathways, both synthetic and actual, as noted in the
Introduction, these intracellular pathways control cell-level activities. There-
fore, in this section, we will focus on a model of cancer growth at the individual
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Fig. 6 Plots of the spatial distribution of NF-κB molecules inside a cell at times t=0, 42,
84, 128, 196, 292, 356, 400, 464 minutes. Cross-section through the middle of the cell from
the full 3D simulation. Parameter values given in Appendix B in Tables 6-8.

cell level. There are now a number of different individual-based modelling ap-
proaches that one can adopt cf. cellular automata, Cellular Potts Model, hybrid
discrete-continuum (Anderson and Chaplain, 1998; Alarcon et al., 2003; An-
dasari et al., 2012; D’Antonio et al., 2013). Here we adopt an individual-based,
force-based model of cell growth which is driven by forces acting upon the cell,
and is based upon the model of Ramis-Conde et al. (2008). More recently this
approach has been extended and implemented on a massively parallel system
(IBM Blue Gene/Q system) allowing hybrid high performance simulations to
describe, for example, tumour growth in its early clinical stage. Details of the
implementation can be found in Cytowski and Szymańska (2014, 2015b,a).
Adopting this approach, we model each cell as an isotropic elastic object ca-
pable of migration and division and parameterise it by cell-kinetic, biophysical
and cell-biological parameters that can be experimentally measured, from both
in vitro and in vivo experiments (Chu et al., 2004; Gumbiner, 2005; Jagiella
et al., 2016; Miron-Mendoza et al., 2013; Näthke et al., 1995; Schlüter et al.,
2012, 2015; Ritchie et al., 2001; Zaman et al., 2006). We assume that an in-
dividual cell ci in isolation is spherical and characterise the cell shape by its
radius R. The position of the cell in 3D space is described by the Cartesian
coordinates (xci , yci , zci) of its centre.
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Fig. 7 Plot showing the mean period (in minutes) of total NF-κB for 100 simulations of
the spatial stochastic model. The periods were calculated using a Morlet continuous wavelet
transform with Gaussian edge elimination. Parameter values given in Appendix B in Tables
6-8.

Regarding cell kinetics, we assume that the cell-cycle is divided into four
phases, i.e. mitosis - M-phase, followed by G1-, S-, and G2-phases, after which
mitosis occurs again. During a complete cell-cycle, the cell must accurately
duplicate its DNA once during S-phase and distribute an identical set of chro-
mosomes equally to two progeny cells during M-phase. M-phase consists of
two major events: the division of the nucleus called mitosis and subsequent
cytoplasmic division called cytokinesis. G1-phase is an interval between mito-
sis and the initiation of nuclear DNA replication. It provides additional time
for a cell to grow and to replicate its cytoplasmic organelles. G2-phase is again
an interval between the completion of nuclear DNA replication and mitosis.
Over the course of both the G1- and G2-phases, the cell checks the internal and
external environment to ensure that the conditions are suitable and complete
preparation for entry into either S-phase or M-phase. When DNA is damaged
cell cycle is arrested in G1 or G2 so that the cell can repair DNA damages
prior to its duplication or before cell division.

Cell cycle events must occur in a precise order, which should be maintained,
even when one of the steps takes longer than usual. For instance, this means
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Fig. 8 Schematic diagram showing the cell cycle and cell dependency upon availability of
nutrients used in the individual-based model.

that cell division cannot start before DNA replication is complete. Similarly,
when DNA is damaged the cell cycle is arrested so that the cell can repair the
damage. This is possible because the cell is equipped with molecular mecha-
nisms that can stop the cycle at various checkpoints. Two main checkpoints
are located within the G1- and G2-phases. The G1 checkpoint allows the cell
to check whether its environment is conducive to divisions and whether its
DNA is damaged. If environmental conditions make cell division impossible,
instead of entering S-phase a cell can enter a resting state - G0-phase, where it
remains until conditions improve and it continues the cell cycle. The G2 check-
point ensures that the cell has no DNA damage, and DNA replication will be
completed before the beginning of mitosis (Alberts et al., 2010). A simplified
schematic of the cell-cycle model and cell interactions with the environment
used in our computational simulations is given in Figure 8.

Interactions between cells are modelled by taking into account the repulsive
and attractive forces between cells. Upon compression, i.e. with decreasing
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distance dcicj between the centres of two adjacent cells, ci and cj , of radii, rci
and rcj , both their surface contact area and the number of adhesive contacts
increase, resulting in an attractive interaction. We assume that adhesive forces
are proportional to ρm, which is the density of the surface adhesion molecules
in the contact zone (which we assume is given for particular cell type), kB ,
which is the Boltzmann constant, T , which denotes temperature and Dcicj ,
which measures the contact between cells ci and cj and is calculated as the
volume of the common area of intersecting spheres representing those cells.
Experiments suggest that cells only have a small compressibility - the Poisson
numbers are close to 0.5, (Mahaffy et al., 2000; Alcaraz et al., 2003). In this
instance, both the limited deformability and the limited compressibility give
rise to a repulsive interaction. Repulsive forces are inversely proportional to
the term Eci,cj , which is calculated form Young moduli, Eci and Ecj , and
Poisson ratios, νci and νcj . The precise formula is given by:

Eci,cj =
3

4

(1− ν2ci
Eci

+
1− ν2cj
Ecj

)
(1)

We model the combination of the repulsive and attractive energy contributions
by a modified Hertz-model (Galle et al., 2005; Schaller and Meyer-Hermann,
2005) which has the advantage that both the interaction energy and the force
can be represented as an analytical expression (Drasdo and Höhme, 2005).
Inertia terms are neglected due to the high friction of cells with their envi-
ronment, and we also do not consider the existence of any memory term as in
Galle et al. (2005).

Vcicj = (rci + rcj − dcicj )
5
2

1

5Ecicj

√
rcircj
rci + rcj︸ ︷︷ ︸

repulsive interactions

+ ρmDcicj25kBT︸ ︷︷ ︸
adhesion

(2)

Cells require access to oxygen from the circulatory system in order to grow
and survive. It is well known that cancer cells grow preferentially around blood
vessels. Those tumour cells that are located more than about 0.2 mm away
from blood vessels were found to be quiescent, while others even farther away
were found to be necrotic. This threshold of approximately 0.2 mm represents
the distance that oxygen can effectively diffuse through living tissue (Weinberg,
2007). Because of the low redox potential and high activation energy that
occurs in living organisms, reactions involving molecular oxygen occur only
in mitochondria. Therefore, we assume that the loss of oxygen in the tissue
takes place only due to its consumption by the cells. The general equation
governing the external oxygen concentration Q(x, t) in the cells’ environment
may be written:

∂

∂t
Q(x, t) = DQ∇2Q(x, t)−G(x, t) +H(x, t). (3)

where DQ, is the oxygen diffusion coefficient. The function G(x, t) models
the oxygen uptake by cells and the function H(x, t) models the production
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of oxygen by vessels. Both of these functions are computed in each time step
of the simulation from the current spatial organisation of cells and vessels
through interpolation. The force associated with a given cell, ci, is then given
by the expression:

Fci = ∇Vci︸ ︷︷ ︸
inter-cellular interactions

+λ∇Q(x, t)︸ ︷︷ ︸
chemotaxis

(4)

where λ is a measure of a cell’s chemotactic sensitivity to the oxygen concen-
tration and Vci is given by

Vci =
∑

cj∈Bεci (ci)

Vcicj (5)

with Bεci (ci) a sphere (i.e. a ball in R3) centred on (xci , yci , zci), radius εci ,
denoting the maximum inter-cellular interaction region.

Summing all the forces between the cells and assuming a frictional force/drag
force proportional to a cell’s velocity and then applying Newton’s Second Law
of motion allows us to integrate a Langevin-type equation to give the spatial
location of the cells over time. The direct use of equations of motion for the
cells permits one to include more easily the limiting case of very small (or no)
noise and is more intuitive. In this approach cells move under the influence
of forces and a random contribution to the locomotion which results from the
local exploration of space.

Solving the oxygen concentration (which is a global field) together with the
individual-based particle system of up to 109 cells is a challenging task in the
context of parallel processing. First of all, it requires the use of appropriate
data structures to optimize the computations of interactions between lattice-
free cells. In our approach, the main data structure that stores information
about cells is an octal tree. We assume that the domain of simulation is a 3D
cube. The cells are arranged in a tree based on the position of their centers.
The tree is built recursively starting from the whole domain of simulation,
which corresponds to the root of the tree. Subsequently, the cubes are divided
recursively into 8 equal cubes with edges reduced by a factor of a half. This
procedure is repeated until in the cube under consideration there is only one
cell centre.

In order to perform large scale simulations and to minimize the execution
time and enable good parallel scalability on massively parallel systems we need
to perform an appropriate data partitioning across available processes. In our
approach we use two different domain decompositions. Firstly, we need to
distribute the cells between the available processors. The solution we adopted
is based on Peano-Hilbert space filling curves and consists in the following
algorithm: for each cell in a 3D box we look for its corresponding value in the
interval [0, 1]; then, the interval [0, 1] is divided into equal parts according to
a given specific measure. Such a measure may be, for example, the number of
cells contained in a given part. In our case, the measure is based on computed
cell density. The particular parts are assigned to different processors. Such a
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Fig. 9 A 2D example of domain decomposition assigning cells to different processors. Local
cells of each process are denoted by the same colour. Our aim was to minimize the execution
time and enable good parallel scalability on massively parallel systems. Our decomposition
algorithm is based on Peano-Hilbert space filling curves. Such a method ensures the property
of geometrical locality which is very important when computing cell-cell interactions in a
given neighbourhood.

load-balancing method (e.g. geometrical load-balancing method) has the very
nice property of geometrical locality which is very important when computing
cell-cell interactions in a given neighbourhood, see Figure 9.

The equation governing the external oxygen concentration is equipped with
Dirichlet boundary conditions and is discretised with an implicit in time finite
difference scheme. The resulting linear system is then defined in the ParCSR
parallel format and solved with the Conjugate Gradient method precondi-
tioned by the BoomerAMG algebraic multigrid method (both available in the
Hypre library, cf. Baker et al. (2012)). The domain decomposition scheme used
for the finite-difference numerical scheme is different from the one used for a
particle system. For data modelled in a continuous manner the data decom-
position is achieved by assigning 3D grid blocks to different processes.

The system is updated repeatedly as the program runs through a loop.
During one time step, for each cell it’s cell-cycle phase is computed i.e. its
phase is checked and, if necessary, updated. The level of oxygen and nutrients
available to a cell determines whether or not it dies (i.e. the probability of
cell death increases as the oxygen and glucose concentrations decrease). A cell
divides if it has sufficient space around it to place its daughter cell. Scheme
1 presents the computational algorithm followed during the simulation. Each
iteration of the simulation begins with domain decomposition and a construc-
tion of an optimal data structure (i.e. an oct-tree) for storing the cells, then
follows the steps of the algorithm and ends with cells being moved to new
spatial positions.
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Scheme 1 Pseudo-code outlining the algorithm followed in the HPC simula-
tion of the individual-based model
iter ← 0
while iter ≤ max iter do

Step 1: Perform domain decomposition;
Step 2: Build tree;
Step 3a: Find exchange regions and initiate data exchange;
for all local cells do

Step 4a: Find cell’s neighbours ← local data;
Step 5a: Compute potential and density functions ← local data;

end for
Step 3b: Wait until data exchange is finished;
for all local cells do

Step 4b: Find cell’s neighbours ← remote data;
Step 5b: Compute potential and density functions ← remote data;

end for
Step 6: Interpolate cells to global fields grid;
Step 7: Compute global fields;
Step 8: Interpolate global fields to cells;
for all local cells do

Step 9: Update cells’ cycle;
Step 10: Compute forces and move cells to their new positions;

end for
iter ++;

end while

3.1 Application to tumour cords

In this section we present the results of computational simulations carried
out on our individual-based model. Previous work applying the individual-
based model to cancer growth has already focussed on avascular multicell
(multicellular) spheroids (Shirinifard et al., 2009; Cytowski and Szymańska,
2014, 2015b,a), cancer invasion (Ramis-Conde et al., 2008) and metastasis
(Ramis-Conde et al., 2009). However, here we choose to focus on a less-well
studied solid tumour “structure” observed in vivo, that of “tumour cords”
or “tumour cuffs”. In this case, tumour cells grow around a central blood
vessel with those cells further away from the blood vessel experiencing lower
nutrient levels. Since nutrient concentration (e.g. oxygen, glucose) decreases
with increasing distance from the blood vessel, there is a region of viable cells
close to the blood vessel, with necrosis appearing at a certain distance from
the vessel. For example, in the Dunning rat model of prostate carcinoma, this
is observed to be around 110µm, see Figure 10 (Hlatky et al., 2002). Previous
modelling work in this area has adopted a continuum approach Bertuzzi and
Gandolfi (2000); Bertuzzi et al. (2005). This is the first time (to our knowledge)
that an individual-based approach has been adopted for tumour cords.
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Fig. 10 Tumour cells surrounding a central blood vessel from a Dunning rat prostate
carcinoma xenograft Hlatky et al. (2002). Regions of viable tumour cells (cuffs) are formed
around the central vessel. The dashed black line indicates the boundary of the region. Cuff
size is roughly indicative of the metabolic burden of the carcinoma cells. Tumour cells within
approximately 110 µm of the vasculature are viable. Beyond this zone oxygen and nutrient
levels drop below a critical threshold and an area of necrosis is observed. From Hlatky,
L., Hahnfeldt, P., Folkman, J., Clinical application of anti-angiogenic therapy: microvessel
density, what it does and doesnt tell us. J. Natl. Canc. Inst. 2002, 94(12), 883-893, by
permission of Oxford University Press.

Parameter estimation

Whenever possible parameter values are estimated from available experimen-
tal data. Most of the parameters used in the simulations concern mouse breast
cancer - EMT6 cell line. Given that the length of phases of the cell cycle are for
cultivation of cells in favourable conditions, i.e., assuming adequate amounts
of nutrients and space for development. We also assume that proliferating cells
that lack oxygen stop at the G1 checkpoint and become quiescent. Quiescent
cells which are in G0 need less oxygen than proliferating cells, see Table 3. If
the level of oxygen available to the cells falls below the level needed to survive,
the cells become necrotic. Because of the high permeability of cell membrane to
oxygen (Alberts et al., 2010) we also assume that oxygen concentration inside
the cell is equal to the extracellular concentration (Bertuzzi et al., 2010). The
volume of a living EMT6 cell is about 4.975 · 10−9 cm3 (Casciari et al., 1992)
giving the cell diameter as approximately 10.6 µm. A list of all the baseline
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parameters used in the individual-based model is given in Table 3.

Table 3 Description of the parameters used in the individual-based model and their values
along with the relevant reference.

Description Value Reference

Average cell diameter (EMT6
tumour cell line)

10µm Casciari et al. (1992)

G1 phase length (EMT6 tu-
mour cell line)

11h Zacharaki et al. (2004)

S phase length (EMT6 tumour
cell line)

8h Zacharaki et al. (2004)

G2 phase length (EMT6 tu-
mour cell line)

4h Zacharaki et al. (2004)

M phase length (EMT6 tu-
mour cell line)

1h Zacharaki et al. (2004)

Oxygen diffusion coefficient in
multicellular spheroids

[1.65−1.9]×10−5cm2s−1 Mueller-Klieser and
Sutherland (1984)

Oxygen consumption rate of
proliferating cells (EMT6 tu-
mour cell line)

16.9 × 10−17mol s−1

cell−1
Walenta and Mueller-
Klieser (1987)

Oxygen consumption rate of
quiescent cells (EMT6 tumour
cell line)

9.6×10−17mol s−1 cell−1 Walenta and Mueller-
Klieser (1987)

3.2 Computational simulation results

In Figures 11 and 12 we show computational simulation results for a tumour
cord growing around a blood vessel for the baseline parameter case, as detailed
in Table 3. Specifically the simulation is of an avascular cancer; the cancer
cells are initiated around a central small blood vessel which secretes oxygen.
The oxygen concentration is held constant on the vessel boundary and then
diffuses to zero over a distance of around 200µm. We observe that as the mass
of tumour cells grows, cells become hypoxic and then subsequently necrotic at
which point they are coloured black. The numbers of viable and necrotic cells
at various times from the computational simulation are given in Table 4. This
mirrors the experimental findings of Hlatky et al. (2002), see Figure 10.

In Figures 13 and 14 we repeat the simulation but this time with a reduced
oxygen consumption rate for both quiescent and proliferating cells. Once again
we observe that a mass of tumour cells develops around the blood vessel; again
cells which are coloured black have become necrotic. In this case the necrotic
zone is of a smaller size and the overall diameter of the tumour cord is larger,
as is to be expected from the reduction in O2 consumption. At the level of
the whole tumour cord we see the evolution of a shorter but fatter structure
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Table 4 Numbers of viable and necrotic cells at various times from the computational
simulation shown in Figures 11 and 12.

Time (hours) # viable cancer cells # necrotic cells
332 739 54
443 1287 377
776 2443 2204
1332 3801 6478

Fig. 11 Plot showing the growing tumour cord around a central blood vessel at times 332,
443, 776 and 1332 hours. As the tumour cord grows, cells further away from the vessel
become necrotic (black). At the final time of 1332 hours, there is a total of 10279 cells
comprising 3801 viable cancer cells and 6478 necrotic cells. See text for details.

around the central vessel. The numbers of viable and necrotic cells at various
times from the computational simulation are given in Table 5.

In Figure 15 we show the computational simulation results for the final
structure of a tumour mass which has grown around two vessels - “double
cuff”. This shows the ability of the code to simulate tumour growth around
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Fig. 12 Plot showing cross-sections of the growing tumour cord around a central blood
vessel at times 332, 443, 776 and 1332 hours.. As the tumour cord grows, cells further away
from the vessel become necrotic (black). At the final time of 1332 hours, there is a total of
10279 cells comprising 3801 viable cancer cells and 6478 necrotic cells. See text for details.

Table 5 Numbers of viable and necrotic cells at various times from the computational
simulation shown in Figures 13 and 14.

Time (hours) # viable cancer cells # necrotic cells
332 815 1
443 2033 67
776 5469 1569
1332 9271 7452

multiple vessels. This more closely aligns with a realistic tissue environment
which is perfused with many capillaries in close proximity with each other.

The Figures shown in this section give an indication of the potential for
this type of modelling. It offers the capability to determine how a tumour mass
would grow and take shape in a given environment. This prospect is something
we will discuss in more detail in the following discussion section.
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Fig. 13 Plot showing the growth of a tumour cord around a central blood vessel under
reduced oxygen consumption at times 332, 443, 776 and 1332 hours. As the tumour cord
grows, cells further away from the vessel become necrotic (black). At the final time of 1332
hours, there is a total of 16723 cells comprising 9271 viable cancer cells and 7452 necrotic
cells.. See text for details.
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Fig. 14 Plot showing cross-sections of the growing tumour cord around a central blood
vessel under reduced oxygen consumption at times 332, 443, 776 and 1332 hours. As the
tumour cord grows, cells further away from the vessel become necrotic (black). At the final
time of 1332 hours, there is a total of 16723 cells comprising 9271 viable cancer cells and
7452 necrotic cells. See text for details.

4 Discussion and Conclusions

As noted in the Introduction, the development of cancer is a true multiscale
process connecting many scales through time and across space (cf. Hanahan
and Weinberg (2000, 2011)). In this paper, we have presented models for as-
pects of cancer growth at two of the “fundamental scales”; the intracellular
level and the cellular level.

In Section 2 we considered spatial stochastic models of gene regulatory net-
works which permit the study of intracellular dynamics. In particular through
numerical simulations of reaction-diffusion master equations we showed that
it is possible to investigate time-dependent changes to concentration levels of
genes and gene products, such as mRNA and proteins. The simulation results
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(a) (b)

(c) (d)

Fig. 15 Plots showing the computational simulation results of a tumour cord interacting
with two blood vessels. Top Row: (a) Tumour cord growing around two vessels. (b) Tumour
cord growing around two vessels later time. Bottom Row: (c) Oxygen profile levels in the
tumour cord. (d) Cross section showing corresponding development of tumour cells.

demonstrated the periodic fluctuations of these concentrations as well as cap-
turing their noisy nature, offering a better match to experimental results than
non-stochastic models. We have shown that this technique can be applied to
relatively simple intracellular signalling systems (such as n-gene repressilators)
and yet insight is not lost nor computational difficulty increased when we ex-
tend the approach to more complex systems of specific GRNs associates with
cancer such as the NF-κB pathway. We would encourage researchers work-
ing on GRN models to consider adopting such a modelling approach since it
provides quantitative as well as qualitative connection to experimental data.
Furthermore, we believe that coupling a model of intracellular behaviour with
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one based at the cell level, as we discuss next, would further strengthen our
understanding of cancer dynamics.

In Section 3 we discussed a multi-scale computational framework which
focussed on the cell scale. At the heart of the framework is an individual-
based, force-based model of cancer cell growth. The model was originally de-
veloped by Ramis-Conde et al. (2008) who in turn developed earlier work by
Drasdo and Höhme (2005). By taking advantage of recent developments in
high-performance computing techniques, we have carried out our simulations
of the model on a massively parallel computer. This has enabled us to simu-
late up to the level of tens of thousands of cells in an acceptable timeframe.
We have shown some simple proof of concept simulations to show how the
model can replicate solid tumour growth. In particular we have considered the
proliferation of cancer cells around blood vessels - so called tumour cords.

The use of HPC will allow our computational framework for the individual-
based model to reach the tissue scale (109 individual, interacting cells which
translates into a volume of approximately 1cm3, i.e. a sizeable volume at the
tissue scale) and as such it can be used to simulate tissue-level phenomena.
The feasibility of such an approach in terms of computational time has been
explored by Cytowski et al. (2017) where the growth of a solid tumour de-
veloping in healthy tissue was simulated. A single tumour cell was placed
in the centre of an initial mass of 194,100,035 (≈ 1.9 × 108) healthy cells
and allowed to grow in response to an external oxygen field. The final tissue
configuration consisted of 245,890,017 healthy cells (≈ 2.5 × 108) and 73,836
cancer cells, with the simulation taking a single day using 128 cores of the
IBM Power 775 system Cytowski et al. (2017). The results of this study con-
cluded that a single time step of the simulation, corresponding to 1 hour in
real time, took 100s of computational time. Therefore, for example, to sim-
ulate a (real time) three-month growth period of a solid tumour would take
100s× (24h× 30days× 3) = 216000s = 60hours = 2.5days.

More importantly since the model itself considers cell-cell/cell-matrix in-
teractions and can also incorporate intracellular data, coupling it with models
of intracellular signalling pathways, as detailed above, allows a true multi-scale
investigation of tumour development. Specifically, we have formulated a mul-
tiscale mathematical model of cancer capable of simulating to a level at which
solid tumours are distinctly palpable and so such a model has the potential to
enable quantitative predictions of cancer growth and treatment. While in isola-
tion the two models discussed in this paper offer insight into aspects of cancer
progression i.e. modelling at multiple scales, their incorporation into a multi-
scale model is the natural next stage in this type of cancer modelling. Such a
multiscale model will need to combine events occurring at the different spatial
and temporal scales, from intracellular molecular interactions through to tissue
scale phenomena, a challenging task from a modelling perspective with impli-
cations also for the time taken computationally. From a modelling perspective,
there is a need to incorporate the interactions between the cancer cells and the
micro-environment, i.e. the tissue/stroma surrounding the cancer cells (extra-
cellular matrix and other cells e.g. fibroblasts), explicitly (currently accounted



30 Zuzanna Szymańska et al.

for in the model implicitly through the external frictional/drag force). This
could be done in several ways - model the tissue/stroma as a different cell type
(Cytowski et al., 2017), model the tissue/stroma as a collection of individual
fibres (Schlüter et al., 2015), model the tissue/stroma as another cell type and
a collection of individual fibres, model the tissue/stroma as another external
field satisfying a PDE similar to the external oxygen (Jagiella et al., 2016).
Any one of these approaches would be more akin to modelling the cells mov-
ing through a porous medium. The approaches of Cytowski et al. (2017) and
Jagiella et al. (2016) would have minimal increase in computational time but
the approach of Schlüter et al. (2015) is computationally more expensive. The
computational cost of simulating large numbers of cells interacting with indi-
vidual fibres in 3D would have to be explored, although initial estimates in 2D
for small numbers of cells can be found in Schlüter et al. (2015). Incorporating
intracellular signalling pathways into the multi-scale model will also increase
the computational simulation time. Indeed, embedding a system of stochastic
PDEs within each cancer cell would be computationally prohibitive. However,
it is also not necessary since many of the key gene regulatory networks associ-
ated with cancer (e.g. p53-Mdm2, NF-κB) are not operative continually, but
begin to function and upregulate the molecules when there is some external
stimulus - in the case of p53, when DNA damage occurs or a cell experi-
ences hypoxia. The oscillations in the levels of the molecules in such systems
are normally on the order of a few hours which is shorter than the growth
timescale of a solid tumour. One approach which would be computationally
feasible would be to exploit the difference in timescales i.e. stop the growth of
the cancer cells when an external stimulus was applied, carry out simulations
of the intracellular GRNs modelling a period of several hours at which point
the effect of the GRNs at a cell/phenotypic level could be determined. Key
cell-level parameters connected to the activity of the GRNs, e.g. cell cycle ar-
rest, cell proliferation rate, apoptosis, could then be modified in a number of
the cancer cells. Modelling the intracellular activity would then be halted and
the modelling of the growth of the cells would then continue. A similar com-
putational strategy has been successfully adopted by (McDougall et al., 2006)
in modelling the growth of blood vessel networks - the different time-scales
between blood flow dynamics and endothelial cell growth have been exploited
to model a so-called dynamic-adaptive blood vessel network.

Further developments of the multi-scale model presented in this paper
could follow any one of several directions. The computational approach of
the proposed multiscale model, coupled with developments in visualisation
software, also enables the simulation of initial data and tissue structures (e.g.
blood vessels) which have been imported from actual medical images and is
therefore a significant milestone towards developing a system of personalised
medicine. Clinical imaging data acquisition requires the use of sophisticated
visualisation methods giving detailed insight into the anatomy of tissues and
organs. The next step is to carry out a three-dimensional reconstruction of the
relevant anatomical structures, such as blood vessels. For this purpose it will
be possible to use VisNow (http://visnow.icm.edu.pl), which is an open access
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software developed at the Interdisciplinary Centre for Mathematical and Com-
putational Modelling (ICM, Warsaw), allowing complex visual analysis and
segmentation of the geometry to be studied. On the basis of the chosen geom-
etry we can develop digitised input data for our computational model. Figure
16 shows an example of a blood vessel geometry imported from heart microto-
mography. First, the relevant clinical/medical structures are segmented. Then,
on the basis of the geometry obtained, again applying the VisNow package,
we create a mesh that after some smoothing and filtering procedures is used
as the input for the generation of the actual initial data. At each point of the
mesh we locate a cell. The final step consists of removing unnecessary cells
i.e. those that are too close to others. As imagining techniques develop fur-
ther, they will be able to provide even finer detail, higher resolution and image
smaller structures, and it should be possible to create “computational capil-
laries” at the correct spatial scale around which cancer is initiated. The model
of solid tumour growth and interaction with blood vessels can also be further
developed to explicitly include blood flow through the vessels and the impact
that flow has on the vessel network structure through dynamic adaptation
(cf. McDougall et al. (2006); Macklin et al. (2009)). This in turn could lead
to a multiscale model of chemotherapy treatment of cancer. In more general
terms, the modelling approach can be applied to many other important pro-
cesses such as wound healing, embryogenesis, tissue engineering and cardiac
tissue modelling where tissue level phenomena depend upon, and also in turn
influence, interactions and phenomena at both the cell and intracellular levels.

Finally, given the timing of this special issue, it is perhaps apposite to
end with a quotation from Professor Sir D’Arcy Wentworth Thompson, whose
seminal book “On Growth and Form” was published exactly one century ago:

“...numerical precision is the very soul of science, and its attainment af-
fords the best, perhaps the only criterion of the truth of theories and the cor-
rectness of experiments ...I know that in the study of material things number,
order, and position are the threefold clue to exact knowledge: and that these
three, in the mathematician’s hands, furnish the first outlines for a sketch of
the Universe.” (Thompson, 1917).

While “sketching the universe” is on yet another completely different scale,
the essence of the above quotation, that mathematical modelling can provide
quantitative insight to biomedical systems, is still relevant and even more
timely today. Echoing the words of D’Arcy Thompson, one century on, we
may say that computational multiscale mathematical modelling furnishes not
only the first outlines for a sketch of cancer growth but provides the basis
for the development of a virtual solid tumour. Cura ex macchina – in silico
oncology has arrived.
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Fig. 16 Figure showing the three main steps in creating a “computational blood vessel” (in-
put data) from an actual clinical image. (a) - actual vessel geometry from micro-tomography
after segmentation procedure with VisNow software; (b) the mesh obtained after the seg-
mentation procedure, and finally (c) the vessel structure with individual (spherical) cells
overlaid on the underlying mesh forming a “computational blood vessel”.



Multiscale cancer modelling 33

Appendices

A The Reaction-Diffusion Master Equation

Here we described in the set-up for the spatial stochastic model for intracellular GRN dy-
namics. We describe the computational domain and how reaction and diffusion events are
incorporated into the reaction diffusion master equation (RDME). We also provide some
notes on how simulations are produced. For a more detailed description see the supplemen-
tary material of Sturrock et al. (2013).

A.1 The Computational Domain

The computational domain (see Figure 2, for example) is set-up using COMSOL and a mesh
is imposed. In general the domain Ω is meshed into V tetrahedra shaped subvolumes, voxels,
Ωk, k ∈ {1, .., V } such that,

Ω =
V⋃
k=1

Ωk, and Ωi ∩Ωj = ∅,∀i 6= j, i, j ∈ {1, .., V }.

At any given time the state of the system is described by the number of each chemical
species within the domain. Changes to the state will either be by the chemical reactions
at the voxel level or the movement (diffusion jumps) of a molecule between neighbouring
voxels.

A.2 Chemical Reactions

We consider reactions that occur due to molecular contact. We assume that the species of
our system, within each subvolume, are uniformly distributed and in thermal equilibrium,
such that the motion of each molecule is random. We consider the probability of a collision
occurring between two reactant molecules. The likelihood of a reaction occurring, changing
the state of the system from x to x + Nr is determined by its reaction rate, described by
the reaction propensity function ωr(x). As such reactions can be described by

x
ωr(x)−−−−→ x + Nr,

where Nr ∈ ZS is the transition step, defined by the rth column of the stoichiometric matrix
M and ωr(x) is the probability that the reaction occurs during a infinitesimal time interval,
i.e.

ωr(x) = lim
dt→0

P (x+Nr, t+ dt)− P (x, t)

dt

A.3 Molecular Diffusion

The movement of a chemical species Sl from a voxel ψi to a randomly selected adjacent
voxel ψj describes the molecular diffusion and is modelled as a first-order event. As such we
treat the diffusive process in a similar way to a reactive process and consider the probability
of a transition taking place i.e. the probability for one of the lth species to make a jump
from the ith subvolume to an adjacent jth subvolume. Hence, we consider the following,

Sli

qlijxli−−−−→ Slj,
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where xli is number of species l located in voxel i and qlij is the diffusion rate constant
which depends on the macroscopic diffusion coefficient of species l (Dl) and the mesh of the
domain, specifically the shape and size of voxels ψi and ψj . Note each qlij is only non zero
for connected mesh elements and of the types of species we model only mRNAs and proteins
diffuse, the free and occupied promoters remain permanently within the voxel assigned as
the promoter site.

A.4 Solving the System

The temporal evolution of the probability distribution of each state in the statespace is
governed by the reaction diffusion master equation (RDME). We complete the model set-
up with zero-flux boundary conditions at the cell membrane, while we impose continuity
of flux on the nuclear membrane. For initialisation we suppose that there is only a single
free promoter within each promoter site. All simulations found in this paper are produced
using the URDME (Unstructured Reaction Diffusion Master Equation) software framework
(Drawert et al., 2012), which implements the next subvolume method (NSM) (Gibson and
Bruck, 2000); the NSM being far more computationally efficient than the classical SSA for a
3D domain such as ours. URDME uses unstructured tetrahedral and triangular meshes (such
as shown in Figure 2) for which diffusion rate constants qlij are automatically computed
(Engblom et al., 2009; Drawert et al., 2012).

B NF-κB Reactions

Here we give the reactions for the NF-κB pathway.
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Table 6 Cytoplasmic reactions

Cytoplasmic Reaction Description Parameter value

Stimulus
α−−→ IKKa Activation of IKKa via

interaction with stimu-
lus

α = 0.0015M min−1

IKKa + IκBNF−κB
A1−−→ IKKaIκBNF−κB Formation of IKKa and

IκBNF-κB complex
A1 = 9× 1010M−1min−1

IKKaIκBNF−κB
C1−−→ IKKa + NF−κB Catalytic degrada-

tion of IκB in the
IKKaIκBNF-κB com-
plex

C1 = 1M−1min−1

IκBtran
SI−−→ IκBtran + IκB Translation of IκB pro-

tein
SI = 1.5min−1

A20tran
SA−−→ A20tran + A20 Translation of A20 pro-

tein
SA = 1.25min−1

A20 + IKKa
AD−−→ A20 + IKKn Deactivation of IKKa

via interaction with
A20

AD = 7× 108M−1min−1

IKKa
dk−−→ IKKn Spontaneous deactiva-

tion of IKKa
dk = 0.055min−1

A20
dp−−→ ∅ Degradation of A20 dp = 0.07min−1

NF−κBtran
SN−−→ NF−κBtran + NF−κB NF-κB synthesis SN = 1min−1

NF−κB
Nσon−−−−−⇀↽−−−−−
Nσoff

NF−κBmic NF-κB bind-
ing/unbinding to
microtubule

Nσon = 1× 109min−1

Nσoff = 10min−1

IκB
Iσon−−−−⇀↽−−−−
Iσoff

IκBmic Binding/unbinding of
IκB to microtubule

Iσon = 1× 109M−1min−1

Iσoff = 10min−1

Nσi
v−−→ Nσj Radially directed ac-

tive transport of NF-
κB between connected
voxels

v = 3× 10−5m min−1

Iσi
v−−→ Iσj Radially directed ac-

tive transport of IκB
between connected
voxels

v = 3× 10−5m min−1

Sij

djik−−−→ Sik Molecular diffusion D = 5× 10−11m2min−1
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Table 7 Reactions at gene sites

IκB gene site reactions Description Parameter value

IκBpf + NF−κB
b1−−⇀↽−−
b2

IκBpo Binding/unbinding of NF-
κB to the free IκB pro-
moter

b1 = 1× 108 M−1 min−1

b2 = 0.1min−1

IκBpo
αI−−→ IκBpo + IκBtran Induced transcription of

IκB mRNA
αI = 2.1min−1

IκBpf
αI/γ−−−−→ Ipf + IκBtran Basal transcription of IκB

mRNA
αI = 2.1min−1, γ = 80

IκB + IκBpo
binI−−−→ IpoI IκB binding to NF-κB oc-

cupied IκB promoter
binI = 1× 109M−1 min−1

IpoI
catI−−−→ IκB + IκBpf IκB induced NF-κB degra-

dation from Iκ promoter
catI = 1× 109M−1min−1

IpoI
sqI−−→ IκBNF−κB + IκBpf IκB sequesters NF-κB

from Iκ promoter
sqI = 1× 109M−1min−1

NF-κB gene site reaction Description Parameter value

NF−κBpf
αN/γ−−−−→ NF−κBtran NF-κB mRNA transcrip-

tion
αN = 0.5min−1, γ = 80

A20 gene site reactions Description Parameter value

A20pf + NF−κB
k1−−⇀↽−−
k2

A20po Binding/unbinding of NF-
κB to the free A20 pro-
moter

k1 = 1× 108M−1min−1

k2 = 0.1min−1

A20po
αA−−→ Apo +A20tran Induced transcription of

A20 mRNA
αA = 2min−1

A20pf
αA/γ−−−−→ A20pf +A20tran Basal transcription of A20

mRNA
αA = 2min−1, γ = 80

IκB +A20po
P−−→ IpoA IκB binding to the NF-κB

occupied A20 promoter
P = 1× 109M−1min−1

IpoA
catA−−−→ IκB +A20pf IκB induced NF-κB degra-

dation from Iκ promoter
catA = 1× 109M−1min−1

IpoA
sqA−−−→ IκBNF−κB +A20pf IκB sequesters NF-κB

from A20 promoter
sqA = 1× 109M−1min−1
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Table 8 Global reactions

Global Reactions Description Parameter value

IκB + NF−κB
A2−−→ IκBNF−κB Formation of IκB and

NF-κB complex
A2 = 9× 1011M−1min−1

IκBNF−κB
IDC−−−→ NF−κB Natural degradation of

IκB within IκBNF-κB
IDC = 0.000055min−1

IκBNF−κB
NDC−−−→ IκB Natural degradation of

NF-κB within IκBNF-
κB

NDC = 0.000025min−1

IκBtran
dm−−→ ∅ Degradation of

IκBtran
dm = 0.02min−1

IκB
dp−−→ ∅ Degradation of IκB dp = 0.07min−1

A20tran
dm−−→ ∅ Degradation of

A20tran
dm = 0.02min−1

Nuclear reactions Description Parameter value used

Sij

djik−−−→ Sik Molecular diffusion of
species not containing
IKKa

D = 5× 10−11m2min−1
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Schlüter, D. K., Ramis-Conde, I., Chaplain, M. A. J., 2015. Multi-scale mod-
elling of the dynamics of cell colonies: insights into cell-adhesion forces and
cancer invasion from in silico simulations. J. R. Soc. Interface 12, 20141080.

Shirinifard, A., Gens, J., Zaitlen, B., Poplawski, N., Swat, M., Glazier, J.,
2009. 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE
4(10), e7190.

Shymko, R. M., Glass, L., 1974. Spatial switching in chemical reactions with
heterogeneous catalysis. J. Chem. Phys. 60, 835–841.

Skaug, B., Chen, J., Du, F., He, J., Ma, A., Chen, Z. J., 2011. Direct, noncat-
alytic mechanism of IKK inhibition by A20. Mol. Cell 44 (4), 559–571.

Smolen, P., Baxter, D. A., Byrne, J. H., 1999. Effects of macromolecular trans-
port and stochastic fluctuations on the dynamics of genetic regulatory sys-
tems. Am. J. Physiol. 277, C777–C790.

Smolen, P., Baxter, D. A., Byrne, J. H., 2001. Modeling circadian oscillations
with interlocking positive and negative feedback loops. J. Neurosci. 21, 6644–
6656.

Smolen, P., Baxter, D. A., Byrne, J. H., 2002. A reduced model clarifies the
role of feedback loops and time delays in the drosophila circadian oscillator.
Biophys. J. 83, 2349–2359.

Spiller, D. G., Wood, C. D., Rand, D. A., White, M. R. H., 2010. Measurement
of single-cell dynamics. Nature 465 (7299), 736–45.

Sturrock, M., Hellander, A., Matzavinos, A., Chaplain, M. A. J., 2013. Spatial
stochastic modelling of the hes1 gene regulatory network: intrinsic noise
can explain heterogeneity in embryonic stem cell differentiation. J. R. Soc.
Interface 10, 20120988.

Sturrock, M., Terry, A. J., Xirodimas, D. P., Thompson, A. M., Chaplain, M.
A. J., 2011. Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracel-
lular signalling pathways. J. Theor. Biol. 273, 15–31.

Sturrock, M., Terry, A. J., Xirodimas, D. P., Thompson, A. M., Chaplain, M.
A. J., 2012. Influence of the nuclear membrane, active transport, and cell
shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal
modelling. Bull. Math. Biol. 74, 1531–1579.
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