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Abstract

HRV14 3C acts as a protease and has a role in RNA replication in vivo, interacting with a 
cloverleaf stmcture in picornaviral genomic RNA. Picornaviral 3C proteases are able 
to cleave both N- and C-terminally producing 3CDPro, or, 3CPro and 3DPoP, respectively. 
In order to investigate the mechanisms whereby these alternative processing pathways are 
adopted an artificial polyprotein system was constructed, composed of viral sequences 
from the P3 region of the viral polyprotein flanked by reporter genes.

Two antibiotic resistance genes (KanR, TetR) were cloned to act as reporter genes 
flanking the viral region of interest. Analysis of the cleavage products in a coupled 
TnT system showed whether N- or C-terminal cleavage had occurred. 3CP*® cleaved 
preferentially at its N-terminus in [KanR3CPr°TetR] with a lesser degree of cleavage at its 
C-terminus. When 3ABC was used as the viral component of the system cleavage at the 
N-terminus of 3CPr° was also observed.

The use of 3CDPro as the viral component also had a regulatory effect on the site (N- or 
C-terminal) of cleavage by 3CP1'0. With 3CDPro as the viral component of the artificial 
reporter polyprotein cleavage occurred at both the N-and C-termini of 3CP1’0 as well as at 
the C-terminus of 3DP°k This surprising result has led to comparisons with the 
proteolytic action of viral proteases in the caliciviruses and some plant viruses and the 
proposal of possible evolutionary links between these viruses.

The use of the antibiotic resistance genes as reporters allowed investigation into the use of 
antibiotic resistance phenotypes in E.coli for monitoring cleavage of the artificial 
polyprotein. Preliminary results indicated that the system may be useful as a genetic 
screen to quantify large numbers of mutants.
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1. Introduction

1.1 Picornaviruses
Picornaviruses are small, positive strand RNA viruses which are of great medical 

and economic importance. Poliovirus is one of the most well-known members of the 

family and has been documented to afflict man for many hundreds of years. Other 

members of the family infect animals, such as foot-and-mouth disease virus (FMDV) and 

the bovine enteroviruses. Phylogenetically the picornaviruses can be divided into five 

groups; Group I containing the aphthoviruses, Group II containing the cardioviruses, 

Group III containing the hepatitis A viruses, Group IV containing the rhino- and 

enteroviruses and Group V containing the parechoviruses. The parechoviruses were 

formerly ECHO22 (now parechovirus 1; Stanway et al., 1994) and ECHO 23 (now 

parechovirus 2). Three new genera have also been proposed which contain previously 

unclassified viruses (see Table 1.1).

The genome organisation of the prototype strain for each class is similar (Figure 

1.1) and the capsid structure is also common to all classes. The capsid is a 60 subunit 

protein shell 20-30 nm in diameter with 5-, 3- and 2-fold axes of symmetry. The particle 

is composed of 4 non-identical polypeptide chains; VP1 (ID), VP2 (IB), VP3 (1C) and 

VP4 (1A). The 'VPX' nomenclature is according to the descending molecular weight of 

the proteins on polyacrylamide gels and the 1A-1D nomenclature signifies the genome 

order. Each subunit of the capsid (protomer) is made up of one copy of each of the capsid 

proteins, assembled into pentamers. Twelve pentamers then make up the dodecahedral 

capsid.

No lipid envelope surrounds the capsid and its infectivity is therefore relatively 

unaffected by exposure to organic solvents such as ether. A single copy of positive 

strand RNA is surrounded by the capsid and is released into the cytoplasm of target cells 

to initiate replication.

The vRNA has a single long open reading frame (ORF) which encodes a single 

polypeptide known as the polyprotein. This is processed by various proteolytic activities
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Table 1.1 Classification of the picornaviruses

Genus No. of
serotypes

Examples

A nb tli nviri i c 7 Foot and mouth disease vims (FMDV) 1-7
(serotypes A, C, O, SAT-1, 2, 3, Asia-1)

1 equine rhinitis A vims (ERAV)
(formerly equine rhinovirus 1)

Cardiovirus 1 encephalomyocarditis virus (EMCV)
1 Theiler's Murine encephalitis virus

(TMEV)
Vilyuisk human encephalitis virus 
(VHEV)

Enterovirus 3 Human poliovimses (PV) 1, 2, 3
23 Human coxsackievimses (CV) A1-22, 24
6

28
Human coxsackievimses Bl-6
Human echoviruses (E)l-7, 9, 11-21, 24­
27, 29-34

4 Human enteroviruses (EV) 68-71
18 Simian enteroviruses (SEV) 1-18
2 Bovine enterovimses (BEV) 1, 2
7 Porcine enteroviruses (PEV) 1-8
1 Ovine enterovims (OEV)

Hepatovirus 1 Human hepatitis A virus (HHAV)
1 Simian hepatitis vims (SHAV)
1 Avian encephalitis virus(AEV) (proposed)

Rhinovirus 102 Human Rhinovirus lA-100, IB, Hanks
3 Bovine Rhinovirus 1, 2, 3.

Parechovims 2 Human Parechovims 1 (HPeV-1)
(formerly Echovirus-22)
Human Parechovims 2 (HPeV-2)
( formerly Echovirus-23)

Unassigned Equine rhinovirus 3
cricket paralysis virus 
Drosophila C virus

Proposed Genus

Erbovirus 1 Equine rhinitis B virus (ERBV) 
(formerly equine rhinovirus 2)

Aichi-like virus 1 Aichi vims (AiV)
Teschovirus 1 porcine teschovirus 1 (PTV-1) 

(formerly porcine enterovims 1)
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to yield ’mature proteins'. The exceptions to this scheme are ; encephalomyocaodtttt virus 

(EMCV), foot-and-mouth disease virus (FMDV) and human hepatitis A virus (HHAV) - 

all having an additional translation start site separate from the polyprotein initiation 

codon. This second initiation codon may initiate translation in vitrc (EMCV and 

hepatitis A) and in vitrc and in vivc (FMDV). The two polyproteins produced in these 

cases are of slightly different lengths but in the same ORF. The DA strain of Theiler's 

murine encephalitis virus (TMEV) produces a 17 kDa protein (L*) out of frame with the 

po^rotem (Kong and Roos, 1991). This is initiated from an AUG 13 nucleotides 

downstream from the polyprotein AUG. This protein plays a role in TO subgroup 

induced demyelinating disease (Chen et aO., 1995) .

The length of this genomic RNA varies. 7102 bases in rhinovn,us type 2 (HRV 2) is 

one of the shortest and 8282 bases in FMDV OIK is one of the longest. This is excluding 

the polyA tail which varies in length from 50 to 150 bases. The polyprotein accounts for 

85-90% of the theoretical coding capacity of the genome. The other 10-15% of the 

genome is distributed between the 5' and 3' non-coding regions (NCR) of the genome.

Initiation of translation in picornavioutes is mediated by the 5' NCR, which contains 

an internal ribosome entry site (1RES; Alsaadi et aO, 1989). A viral coded genome linked 

protein (VPg) is linked to the 5' terminal pUpUp of the RNA through the phenolic OP 

hydroxyl group of a tyrosine residue (Wimmer, 1982). The function of the VPg is 

unknown but it is thought to be involved in RNA synthesis (Rothberg et aO., 1978). The 

3' end of the genome has a polyA tail.

All picoonaviouses have a heterogeneous 3' terminal polyA tail whose length is on 

average from 40 to 60 nucleotides. It forms part of the 3’ NCR of the positive strand viral

(genomic) RNA. A role has been proposed for the 3' NCR and the polyA tail in 

replication.
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Figure 1.1 Genome organisation of picornaviruses. The proteolytic enzymes 
encoded by the polyproteins are shown in colour. Green indicates a 2Aprotease and 
pink a 3C protease. Arrows indicate the primary cleavages of the viral polyprotein.
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1.1.2 Replication cycle of picornaviruses

Replication of picornaviruses occurs entirely in the cytoplasm of the infected cell 

(Figure 1.2). This process has been reviewed by Rueckert (1996) and is summarised here. 

The initial event in the replication process is the attachment of the virus particle to the 

host cell. This occurs via receptors on the cell surface. These molecules have been 

identified for many picornaviruses. For instance, the major group of ohinoviruses utilises 

intercellular adhesion molecule-1 (ICAM-1). The ICAM-1 binds to the viral "canyon" 

which surrounds the five-fold vertex of the virus capsid. The gene for this molecule maps 

to human chromosome 19, as does that of the poliovirus receptor (PVR). The role of the 

viral receptor is two-fold. It positions the virion near to the host cell membrane and 

triggers a change in the virion. This involves the loss of a protein (VP4) located in the 

virion and the delivery of the viral RNA across the host cell membrane into the cytosol.

The process of entry into cells differs among groups of ptcornaviruses. FMDV and 

the minor receptor group rhinoviruses are internalised by their receptors into endosomes 

(Zeichhardt et al., 1985). Virus-induced pores are opened in the vesicular membrane in 

response to the low pH and it is likely that this allows the RNA to leave the endosome..
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The major receptor group rhinoviruses, such as HRV14, enter cells by a different method. 

Infection with the virus results in endosome rupture which releases subviral particles into 

the cytoplasm (Schober et al, 1998). The viral receptor, ICAM-1, is internalised either as 

a result of clustering around the virus capsid or natural turnover. After the virus has been 

transported into endosomes it becomes modified by the uncoating activity of ICAM-1 and 

the increase in hydrophobicity causes the endosome to rupture. The subviral particles are 

transferred to the cytosol ,however, rather than the vRNA which happens in the minor 

receptor group. This may not be the only infection pathway in these viruses.

The next stage of replication is translation of the input vRNA. This is crucial as 

RNA synthesising machinery encoded by the virus needs to be produced before 

replication of the RNA can begin. The virus utilises ribosomes and other protein 

synthesising components of the host cell to produce proteins. The RNA is translated to 

produce a polyprotein which undergoes self cleavage whilst protein synthesis is still 

occurring. Translation can be carried out by many ribosomes at once. Polysomes have 

been observed in poliovirus with up to 40 ribosomes present at one time on a single 

vRNA.

The first domain to be released from the polyprotein is PI, the coat precursor 

protein. The P2 domain is then released and finally P3. These fragments are all released 

by protease activity encoded by the virus in the polyprotein (see section 1.3.5). P3 can be 

cleaved either in cis, in a monomolecular reaction, or in trans.

RNA is transcribed by copying the incoming viral RNA (Figure 1.2) producing a 

negative strand RNA which, in turn, is used as a template for new positive strands. The 

synthesis of positive strand RNA occurs on the smooth endoplasmic reticulum and 

generates multi-stranded replicative intermediates composed of one strand of negative 

sense RNA and several positive strands. In the early stages of replication the positive 

strands are recycled as replication centres until the number is so great that they are 

packaged into virions.

Virion assembly is controlled by the cleavage of PI which generates the coat 

proteins VPO, VPl and VP3 which constitute protomers (Figure 1.3). Cleavage of Pl is
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slow in the early stages of replication because of low concentrations of Pl and the virus 

encoded proteases 3CPro and 3CDPro. Later in the replication cycle rising concentrations 

trigger assembly into pentamers. These package the positive strand VPg-RNA into

provirions.

The provirions are not infectious and the formation of infectious particles requires 

the cleavage of the capsid protein precursor VPO to VP2 and VP4. After maturation new

virus particles are released by the infection-mediated disintegration of the host cell. The 

time required for the replication cycle from infection to completion of assembly is from 5

to 10 hours depending on several factors such as pH, the virus and the host cell.

Figure 1,3 Picornavirus capsid assembly.

7



1.2. Rhinoviruses
1.2.1 Overview

Rhinoviruses are responsible for approximately 50% of cases of the common cold 

in humans (Sperber and Hayden, 1988). They account for a significant amount of lost 

man-hours in Western countries and so are of great economic importance. Rhinovirus

infection is widespread throughout the world (Brown and Taylor-Robinson, 1966). Many 

different serotypes (-102) have been identified in humans (Hamparian et al, 1987). 

These have been classified in two "species", HRV-A and HRV-B. Some serotypes have 

yet to be assigned to species. Bovine rhinoviruses, of which there are 3 serotypes, are 

also included in the rhinovirus group. Equine rhinoviruses, however, have been assigned 

to different genera (see Table 1.1). The rhinovirus group was first described in 1963 by 

Tyrrell and Channock. The name refers to the primary site of infection in the human 

airway epithelial cells. They can be distinguished from the enteroviruses by their acid 

lability (Newman et al, 1973) and their more extreme species specificity. All members 

of the genus are inactive below pH6 and most rhinoviruses are thermostable, although the 

extent of this property varies between serotypes.

Although there are many serotypes of human rhinovirus studies show that a limited 

number are prevalent in communities (Fox et al, 1985;Monto and Cavallaro, 1972). The 

prevalent serotypes in circulation appeal', however, to change from year to year. A small 

number of the serotypes cause illness in each outbreak. All known serotypes seem to be 

circulating but some are more often found to cause illness. A change in distribution was 

seen in a seven year study carried out in Virginia with untypable strains increasing with 

time (Calhoun at al,, 1974).

1.2.2 Symptoms and illness

The primary illness caused by rhinoviruses is the common cold, symptoms of which 

normally last for two to three days. Complications can result in lower respiratory tract

disease and chronic bronchitis. There are no symptoms specific to rhinovirus infection
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and it is therefore difficult to diagnose. Transmission of the virus is from person to 

person via virus contaminated respiratory secretions.

Respiratory viruses have been associated with an increase in the severity of asthma. 

Rhinovirus has been proven to be the virus most often involved (Minor et al,, 1974). In 

this study carried out by Minor and co-workers 14 out of 15 rhinovirus infections resulted 

in symptomatic respiratory infections and precipitated asthma attacks. The association 

has been illustrated dramatically in children but asthma patients of all ages can be 

affected. The mechanisms by which rhinoviruses enhance the severity of asthma have 

begun to be elucidated. Infection with rhinovirus has been shown to enhance airway 

responsiveness and late allergic reaction and to promote mast cell release of histamine 

and eosinophils to the airways. Asthma has also been shown to increase susceptibility to 

rhinovirus infection (Bianco and Spiteri, 1998).

1.2.3 Classiffcatton

There have been many attempts to classify rhinoviruses and some are detailed in the 

following sections. Today, however, grouping on the basis of sequence similarities 

between aligned sequences seems to be the most widely used. Conserved regions 

amongst sequences can predict many features of interest such as binding sites and may be 

used to predict, e.g. protease cleavage sites.

1.2.3.1 Receptor groups

Rhinoviruses have historically been grouped in several ways. There are two groups 

in the genus according to their cellular receptors. The major group uses ICAM-1 as its 

receptor (Greve et al., 1989; Staunton et al, 1989; Tomassini et al, 1989) and the other 

smaller group uses the low density lipoprotein (ldl) receptor (Hofer et al, 1994). ICAM- 

1 is a cytokine-inducible cell surface receptor which contains five immunoglobulin 

superfamily (IgSF) domains, a short transmembrane region and a small carboxyl-terminal 

cytoplasmic domain (Figure 1.4). The binding site for rhinovirus is at the tip of domain 1 

and extends about half way down (Bella etal, 1998; Casasnovas etal, 1998; McClelland
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McClellands al., 1991; Register et al., 1991; Staunton et al., 1989). Soluble ICAM-1 

inhibits infection by rhinovirus acting as a competitive inhibitor and initiating irreversible 

disruption of the capsid with release of the viral RNA (Casasnovas and Springer, 1994; 

Greve et al, 1991; Marlin et al, 1990; Martin et al, 1993). The two N-terminal domains, 

D1 and D2, bind to HRV3 with the same affinity as the entire extracellular domain 

(Casasnovas et al, 1998). It interacts with a deep depression (canyon) on the surface of 

HRV (Figure 1.5).

The position of the receptor binding site in the canyon prevents it from being 

blocked by antibodies and the virus is therefore more able to avoid antibody 

neutralisation (Rossmann and Palmenberg, 1988; Rossmann et al, 1985). The major 

receptor group includes 90 of the 102 known human rhinovirus serotypes and the minor 

receptor group has 10 members.

One serotype, HRV-87, uses neither the major or minor receptor and may represent 

a third receptor group (Uncapher et al, 1991). It displays cell binding tropisms similar to 

those of the minor group viruses but does not use the Idl receptor for binding. The 

receptor for this virus has yet to be identified but it has been found to require sialic acid 

for attachment. A similar observation has also been made for encephalomyocarditis virus 

binding to human erythrocytes (Allaway and Burness, 1986).

Figure 1.4 Diagram of an ICAM-1 molecule showing sites of glycosylation 
(lollipop shaped structures).
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Figure 1.5 Model of Human Rhinovirus 16 complexed with its cellular receptor 
ICAM-1. The structure was solved by cryo-electron microscopy and image 
reconstruction (Baker, 1992). The orange areas show the receptor molecules (ICAM- 
1) which arebbuud intheviralcannyn.
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1.2.3.2 86118^^7 to antt'diaa aaentt

Subgroups have also been predicted according to the sensitivity of the virus to antiviral 

agents, such as WIN compounds (see below). These interact with the capsid and interfere 

with uncoating or receptor binding (Andries et al, 1990). Two groups have been 

designated: Group A contains 33% of the known serotypes and Group B 67%. This 

indicates that the antiviral binding site is dimorphic. Binding of antiviral agents 

correlates highly with sequence similarities in the antiviral binding site and in VPl. The 

viruses which are designated as Group B cause twice as many infections as those in 

Group A. All of the viruses in the minor receptor binding group are found in antiviral 

binding Group B.

1.2.3.3 Antigenic relationships

Rabbit antisera were raised to 90 known rhinovirus serotypes and neutralisation 

tests showed that there were significant numbers of cross-reactions between the different 

rhinovirus serotypes. Sixteen groups have been defined which include 50 serotypes 

(Cooney et al., 1982). There are a number of antigenically related virus pairs including 

serotypes 12 and 78 and 36 and 58. HRV67 is related to both serotypes 9 and 52.

1.2.3.4 Sequence groups

Nucleotide and predicted amino acid sequences have also allowed classification. 

The majority of HRVs appear to be closely related by this method, with HRV 14 being 

more distinct (Stanway, 1990). Genetic groups have also been defined by polymerase 

chain reaction (PCR) of a 112 amino acid region corresponding to neutralising 

immunogenic site II (NIm-II), a major immunogenic site in HRV s. Two groups, 

designated GGl and GG2, were identified. All of Group A from the antiviral grouping is 

in GGl and GG2 contains all of Group B (Horsnell et al, 1995). Some correlation was 

also seen with groupings according to antiviral drug sensitivity which suggests that there 

is a fundamental division in HRVs. No correlation was seen with receptor groups as the 

larger group contains members of both receptor groupings.
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1.2.4 Prevention and control

The development of therapeutic agents for the common cold has been hindered by the 

diversity of rhinovirus serotypes and by the fact that exposure to one serotype affords no 

immunological protection from other different serotypes. Peptide immunogens have been 

suggested as possible therapeutic agents for other picornaviruses (Parry et al., 1989). 

Other antiviral compounds have also been tested (McKinlay et al, 1992) such as 

inhibitors of attachment and uncoating.

1.2.4.1

Antiviral compounds function by inhibiting different parts of the viral replication 

cycle. The compound WIN 54954 is an antipicornaviral compound which binds in the 

hydrophobic pocket of the capsid protein VPl. It induces a conformational change which 

stabilises the virus and prevents uncoating as well as inhibiting attack of the host cell by 

binding in the canyon, the receptor binding site. The floor of the canyon is raised by the 

compound binding in the pocket beneath and displacing the pocket factor. In plaque 

reduction assays WIN54954 reduced plaque formation in 50 out of 52 rhinovirus 

serotypes and inhibited 15 enterovirus serotypes (Woods et al., 1989). In humans 

effectiveness has been low. Although the drug was well absorbed after oral 

administration, beneficial effect on infection and illness was lacking (Turner et al., 1993). 

The lack of efficacy was thought to be due to an inability to deliver the drug to the site of 

infection. The binding site of WIN compounds in relation to the viral protomer can be 

seen in Figure 1.6.

Crystallographic analysis of poliovirus showed the presence of an area of 

unidentified electron density in the drug binding pocket of serotypes 1 and 3, this was 

termed the pocket factor. Its structure was found to be that of a long sphingosine-like 

molecule but it has yet to be chemically characterised (Hogle et al., 1987). In HRVIA 

and HRV 16 the structure resembles a fatty acid eight or more carbons long (Oliveira et 

al, 1993). This is shorter than that found in poliovirus but this has also yet to be
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Figure 1.6 Rhinovirus protomer with a WIN compound bound in the hydrophobic pocket of VPl. The WIN compound is 

shown in yellow and the capsid proteins are shown as follows: VPl-blue, VP2-green and VP3-red.



characterised. The role of the pocket factor is thought to be in stabilising the virion on 

transit from cell to cell (Mosser and Rueckert, 1993).

Other antiviral compounds with different modes of action, such as the 

benzimidazide derivative enviroxime (Philpotts et al, 1983), have been identified but 

they have exhibited similar problems with their use. A reduction in clinical evidence of 

infection was seen after therapy but in a trial on volunteers who did not have symptoms 

when trials commenced, no enhancement of effects of enviroxime could be demonstrated.

One of the most recent antiviral compounds to be developed is one which inhibits 

the action of the 3C protease by binding to it and rendering it inactive (Guterman, 1998). 

AG7088 has been developed by Agouron Pharmaceuticals. It has been tested in vitro on 

46 serotypes of rhinovirus and appears to be effective in preventing 90% of infected cells 

from dying. It also produces a significant decrease in levels of interleukin^ (IL-6) and 

IL-8 in cells infected with rhinovirus indicating a potential to diminish the clinical 

symptoms of infection. It is now in phase 1 clinical trials in England (Press release- 

Agouron Pharmaceuticals, 1998). AG7088 is also effective in inhibiting replication in 

other viruses such as some coxsackieviruses, enterovirus 70 and echov^s 11.

1.2.4.2 Zinc

Zinc ions have been shown to be effective in reducing the length of a common cold 

infection significantly (Alnakib et al, 1987; Farr et al, 1987; Farr and Gwaltney, 1987). 

Zinc is thought to complex with the ICAM-1 binding sites on the virus surface. This 

hampers cell binding by the virus and interrupts infection of the cell (Novickef al., 1996). 

The effect of zinc on the replication of rrinovieuses was first obseiwed in 1974 (Korant et 

al, 1974). The most dramatic effect was in the inhibition of cleavages of the 

polypeptides in HRV1A.
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1.2.4.3 Vaccines

Monovalent and multivalent vaccines have been evaluated against artificial 

rhinovirus challenge in volunteers. Reduction in virus shedding and severity of illness 

was seen but illness and infection were not prevented. Live attenuated vaccine would 

require the use of multivalent preparations and dual infection has been induced 

experimentally. A live virus vaccine approach has not been pursued.

The problem with the vaccine approach for rhinovirus is that immunity to one 

serotype does not afford protection to other serotypes and there are over 100 different 

rhinovirus serotypes known at the moment. Most of these have epidemiologic 

significance so all are equally valid candidates for a vaccine approach and several 

vaccines would be required to provide immunity for all serotypes. In studies of 

communities it was found that a limited number of serotypes were prevalent at any one 

time. However the prevalent serotypes did change from year to year. A small number of 

serotypes cause most illness but all known serotypes are circulating.

1.2.4.4 Inktr'eron

Interferon has been proposed as the primary mediator of recovery from rhinovirus 

infection and its use in prevention or treatment of infection has been investigated. The 

production of large quantities of interferon by recombinant DNA technology has allowed 

the use of higher doses for therapy. A high degree of effectiveness has been seen in 

prevention of illness. Volunteers were given alpha-2 interferon for 5 days and then 

challenged with virus (Hayden and Gwaltney, 1984; Samo et al, 1983). Side effects are 

seen if the therapy is continued for long periods. Interferon a is more effective than 

interferon P in preventing natural rhinovirus colds but trials in vitro have shown 

comparable activity (Sperber et al, 1989). Therapy of established infection has not been 

successful even with high doses of interferon.
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1.2.4.5 ICAM-1

Soluble ICAM-1 has also been proposed as an alternative therapy. The virus 

attaches to the soluble ICAM-1 molecules rather than attaching to ICAM-1 molecules on 

the cell surface. This means that replication cannot continue and the spread of infection is 

slowed. Trials have been out in chimpanzees which appear to have been

successful (Huguenel et al, 1997).
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1.2.5 Human Rhinovirus 14

Human Rhinovirus 14 (HRV 14) is a member of the rhinovims group but does not 

have much sequence similarity with the other members of the group. A phylogenetic 

analysis of the group shows the distinct nature of this virus (Figure 1.7). It has been 

classified in species HRV-B with serotypes 3 and 72. Classification of all serotypes has 

not yet been completed. The complete sequence of HRV 14 was derived by two groups, 

Callahan and co-workers in 1985 and Stanway and co-workers (1984). It was shown to 

have 44-65% nucleotide homology with poliovirus and is adenosine rich. It favours A or 

U at the third position of its codons. It has an open reading frame of 6537 nucleotides 

and two non-coding regions. The 5' NCR is 624 nucleotides in length and the 3' NCR is 

much shorter (47 nucleotides). HRV 14 uses ICAM-1 as its cellular receptor and this puts 

it in the major receptor group of rhinoviruses.

Translation of genome length HRV14 in HeLa cell extract-supplemented rabbit 

reticulocyte lysate systems is poor but if the 5' NCR is replaced with that of poliovirus, 

translation efficiency improves (Todd et al, 1997). The recombinant virus retains the 

growth characteristics of the parental wild type but IRES-mediated translation increases. 

The inefficiency of the HRV 1RES is not a rate-limiting step in rhinovirus assembly but 

packaging of the viral genome or capsid assembly seems to be limiting.

HRV proteins involved in replication recognise the poliovirus 1RES and translation 

is more efficient but this may be due to the HeLa cell extract being optimised for 

poliovirus. Poliovirus does not recognise the HRV 1RES. The lack of increase in 

efficiency when the cloverieaf is substituted alone suggests that there are other cw-acting 

signals which affect efficiency. If the whole 5' NCR is substituted these long range 

interactions ate preserved allowing an increase in efficiency.

The secondary structure of the 3' NCR of rhinoviruses was predicted by Filipenko 

and colleagues in 1990. It has been shown to have a single stem-loop structural motif 

(Todd and Semler, 1996) which is conserved amongst all rhinoviruses. The stem-loop 

structure is not required for infectivity and not absolutely required for RNA replication
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Figure 1.7 Phylogenetic analysis of members of the rhinovirus group. The distinct 
nature of HRV 14 can be seen by its position on a separate branch from the rest of the 
HRVs analysed. Unrooted aladngram of rhinnvieuses from aligned genomic RNAs.
11 x 7290 bases. Mininum tree length : 10045. Constructed via PAUP program 
package. Adapted from A^^enberg, Inst. Mol. Virology, UW-Madison, Madison,
w.i .
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Efficient replication does, however require the 3'NCR in a cw-active function. Deletion 

of all but the first 7 nucleotides of the 3'NCR results in debilitated RNA but does not 

completely abolish its function. In poliovirus pseudoknots and RNA-RNA interactions 

are seen in this region (Jacobson et al., 1993) but these do not occur in rhinovirus.

Substitution of most of the Pl region of rhinovirus with reporter genes resulted in 

replication deficient viruses despite efficient primary cleavage of the polyprotein. 

Constructs which had deletions involving the 5’ nucleotides replicated efficiently but 

those involving the 3' end did not. Residues 2121-2724 of the virus are required for 

replication (McKnight and Lemon, 1996). This region has been identified as a cis—acting 

replication element {ere). The minimal sequence in this region required for replication is 

83-96 nucleotides in length and located between nucleotides 2318-2413 of the genome 

(McKnight and Lemon, 1998) Translation of the ere sequence is not required for 

replication as it functions as an RNA entity. Analysis of mutant RNAs has shown that 

only the predicted positive strand structure is essential for replication. The lack of 

negative strand synthesis from RNAs without the ere suggests that it is required for 

initiation of negative strand synthesis and is able to participate in the long range 

interactions required for this.

1.2.5.1 Atomic Structure

The first atomic resolution of the structure of the HRV 14 capsid was reported in 

1985 by Rossmann and co-workers. The structure of VPl, VP2 and VP3 is very similar, 

all comprising 8-stranded, anti-parallel P-barrels. The major differences in their 

conformations are in the external loops that connect the p-strands. Protrusions on VPl, 2 

and 3 create a cleft or canyon on the surface of the viral particle. VPl contributes most of 

the hydrophobic residues which line the canyon. The canyon is 25 A deep and between 

12 and 30 A wide. A computer reconstruction of the capsid structure can be seen in 

Figure 1.8.
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Figure 1.8 HRV14 capsid structure coloured by its proteins. Solved by cryo­
electron microscopy and image reconstruction. The image is coloured to show the 
capsid proteins, VPl (blue), VP2 (green) and VP3 ( red). Taken from 
www.bocklabs.wisc.edu
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Several lines of evidence have supported the idea that the canyon is involved in 

receptor binding. Site directed mutagenesis of residues forming the canyon floor revealed 

several sites which were important for receptor binding (Colonno et al., 1988). 

Deformations in the canyon floor caused by antiviral drugs were also shown to eliminate 

cell receptor attachment (Pevear et al, 1989), further implicating the canyon in receptor 

binding. Eventually cryomicroscopy of HRV 16 with the amino-terminal 

immunoglobulin-like domains of its receptor ICAM-1 provided direct proof for the role 

of the canyon (Olson et al, 1993; Olson et al, 1992). A road map analysis of the HRV 14 

viral protomer (Figure 1.9) shows the position of the canyon on the surface.

Unlike other picornaviruses HRV 14 does not have an area of unidentified electron 

density in the hydrophobic pocket below its receptor binding site, l.e. it does not appear to 

have a pocket factor. The empty pocket allows binding of antiviral compounds which 

deform the roof of the pocket, which is also the floor of the receptor binding site (the 

canyon) and prevent receptor attachment. Another member of the antiviral binding group 

A, HRV3, has also been shown to have an empty pocket (Zhao et al, 1996). These 

viruses are similar in their amino acid sequence and structure and this suggests that 

rhinnvimses in the same antiviral group have similar amino acid sequences and stmctures. 

Two viruses from antiviral group B, HRV 16 and HRVIA, both have pocket factors (see 

section 1.2.4.1) and the similar amino acid compostition in the pocket region of all other 

group B viruses suggests that all members of the group have pocket factors.

1.2.5.2 Immunogenic sites

Experiments by Sherry and Rueckert (1985) and Sherry and co-workers (1986) identified 

four major neutralisation immunogens on the viral surface. Mouse hybridoma cell lines 

which secreted monoclonal antibodies that neutralised HRV 14 were isolated and used to 

select mutants resistant to neutralisation by that antibody. As the viruses have a high 

error rate in replicating, every population has a relatively large number of mutants which 

can escape antibody neutralisation. Every antibody was then assayed for its ability to 

neutralise the mutants. The results revealed four major immunogenic neutralisation sites

22



(NIm sites). When the electron density map of the protein became available it was clear 

that the substitutions that conferred resistance to neutralisation localised into four distinct 

areas. These were designated NIm-IA, NIm-IB, NIm-II and NIm-III. Most of these sites 

surround the large depressions that encircle each five-fold axis.

It appears that residues which line the canyon are more conserved amongst 

rhinoviruses than the residues which occur on the rim. The narrowness of the canyon 

inhibits antibodies from binding to the canyon floor and this is thought to play a role in 

the recognition of the cell receptor binding protein.
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1.3 Polyprotein processing
1.3.1 Overview

The 'one gene, one protein' hypothesis of Beadle and Tatum (1941) is still

recognised as being correct in most cases. However, there are instances where multiple 

gene products can be produced from a single mRNA. At a translational level there are 

several methods in which this is the case:

1) in-phase translation of overlapping genes with read through of termination 

codons or use of internal in-phase translation start sites.

2) Ribosomal frameshifting.

3) Pnlyprntein processing.

4) Alternative splicing.

5) Protein splicing

Polyprotein processing allows controlled limited proteolysis to occur in many 

systems. Encoding proteins in the form of polyproteins is by no means unique to viruses. 

Examples in eukaryotes include the conversion of zymogens to enzymes and 

prohormones to hormones. Other examples are the assembly of cytoskeletal components, 

the control of cellular differentiation, the initiation of cascade mechanisms, such as blood 

clotting, the removal of signal peptides and recycling of cellular proteins. Pnlyprnterns 

also occur in prokaryotes although they are not as common as they are in viruses and 

eukaryotes.

1.3.2 Prokaryotic polyproteins

The first prokaryote polyprotein to be discovered was the E.coli penicillin G acylase 

(Bock et al, 1983). This is composed of two dissimllrr subunits, a and p, of 23kDa and 

69 kDa respectively. The protein is only functional as a heterodimer but it is encoded by 

a single gene (pac; Mayer et al, 1979). There is an open reading frame of 840 amino 

acids which encodes the pnlyprotern. This is proteolytically processed in the course of 

maturation. The first step is the removal of the signal peptide and then an N-terminal 

cleavage of the P subunit. The removal of the spacer peptide generates a free a subunit.
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Cleavage is processed by proteases found in the cell or autocatalytically. This was 

demonstrated by growth in Gram-negative bacterial strains which do not contain the pac 

gene where cleavage still occurred. Similar polyproteins have been found in other 

bacteria such as Kluyvem citrophila (Barbero et al., 1986) where the processing sites are 

identical, indicating a common ancestor for the pac genes. Pseudomonas sp. also has a 

similar system (Matsuda and Komatsu, 1985).

Brady rhizobium japonicum cytochromes b and C[ are encoded by the 5' and 3' 

halves of a single gpnn,fbcH (Thony-Meyer et al., 1991). The two sections are linked by 

a spacer region of DNA encoding a signal peptide for translocation across the cytoplasmic 

membrane. Processing of the polyprotein occurs at a typical signal peptidase recognition 

site (Ala-Arg-Ala).

1.3.3 Eukaryotic polyproteins

In eukaryotes polyproteins are usually in the form of single proteins which require 

cleavage of a precursor before they are mature. Some polyproteins are found which 

produce a number of mature proteins from one polyprotein.

Bioactive peptides can be synthesised in the form of precursors which may be the 

source of more than one peptide. However these polyproteins do not self-process. One of 

the first large precursors to be discovered was proopiomelanocortin (POMC; Nakanishi et 

al, 1977). It is more than 6 times the size of any of the bioactive peptides that it contains 

and is a precursor for adrenocorticotrophic hormone (ACTH), p-endorphin and at-, P- and 

y-melanocyte stimulating hormones (MSH). Cleavage of the polyprotein is thought to be 

carried out by a trypsin-like enzyme in a distinct order (Figure 1.10).

Polyproteins are also present in many other species including Neurospora crassa 

(Gessert et al., 1994) , Dictyocaulus viviparus (a nematode) (Kennedy et al., 1995) and 

Bombyx mori (S^to et al, 1993).

Prepro-a mating factor found in yeast gives another example of multiple 

polypeptide products from a single polyprotein (Kurjan and Herskowitz, 1982). The 

yeast a-factor gene has four direct repeats of closely homologous 63 bp sequence. The
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gene codes for 13 amino acids with an 8 amino acid spacer region in between, which are 

a-factors and the a-factor decapeptide. The arrangement may have evolved from the 

duplication of a unique a-factor and spacer regions. This arrangement is conserved in all 

species of Saccharomyces but there are polymorphisms in length due to differences in the 

number of spacer units in the coding sequence of the a factor precursor gene. There may 

be between 3 and 5 copies.

Prepro-opiomelanocortin Mr 31 000

ACTH 1-39 
Mr 4 500

pLPH 1-93 Bovine
1-91 Sheep, pig

Mr 11 700
Mr 22 000

J

Y MSH a MSH CLIP 
1-13 18-39

pEnd 63-93 = 1-31 
Mr 3 500

Y LPH 1-60

p MSH
43-60
41-58

Enk
63-67
61-65

Figure 1.10 Cleavage of prepro-opiomelanocortin (POMC).

1.3.4 Virus polyproteins

The use of polyproteins by viruses is widespread especially among the smaller RNA 

viruses. Their small capsids need to contain a great deal of genetic material and 

polyproteins are a convenient way of producing several functional proteins from the 

minimum of genetic information. This has the disadvantage that all proteins are produced 

in equimolar amounts. A polyprotein only requires one site of initiation and eliminates 

the need for intergenic sequences, such as promoters for each gene, which take up 

valuable space. Polyproteins can encode their own protease eliminating the need for 

cellular enzymes or separate proteases. Polyproteins are also useful for regulating 

cleavage if it needs to be performed at a particular site or stage of virion morphogenesis.

27



1.3.4.1 Polyrroiein processing in plant viruses

Picornaviruses have several relatives in the plant virus kingdom. Two of the most 

widely studied are cowpea mosaic virus (CPMV) and tobacco etch virus (TEV; Figure 

1.11) belonging to the comoviruses and potyviruses respectively. There are several 

similarities between the genomes of these viruses. All genome sequences have a polyA 

tail at the 3’ end. Poliovirus and the potyviruses have a VPg at the 5’ end and no cap. 

They have the same order of non-structural domains - putative helicase, VPg, protease 

and polymerase. The capsid proteins of poty- and picornaviruses have no sequence 

similarity. The structures of the capsid proteins of four picornaviruses and two 

comoviruses (CPMV and bean pod mottle virus) are, however, very similar with all 

having an 8-stranded antiparallel p-barrel motif (Chen et al, 1989). Although, the capsid 

of the picornaviruses has three principal proteins and that of the comoviruses two, their 

virions have the same geometry.

HC-PRO
VPg CZZ

NIa Nib 
PRO POL CP

An

□ZZI

cis processing events

i trans processing 
all by 49kDa protease

proteolytic
agent I

Figure 1.11 Processing in TEV

The primary cleavage between encapsidative and replicative domains of 

picornaviruses is mimicked in the como- and nepoviruses by the division of the genome
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separating these two functions. The potyviruses have a rapid self-cleavage on the C- 

terminal side of the HC proteinase which performs the same function. The division 

occurs co-translationally and by an intramolecular mechanism. Subsequent steps in the 

polyprotein processing pathway are carried out by enzymes with homology to the 

picornavirus 3C proteinase. There are cleavage events in both como- and potyviruses for 

which no proteolytic activity has been defined. These are similar to the maturation 

cleavage of lAB in poliovirus.

The 24 kDa proteinase in CPMV is the major proteolytic enzyme but in order to 

process the capsid precursor it has to act as the 32 kDa precursor protein. This is similar 

to the action of 3CDPro in the processing of the capsid proteins in poliovirus. 

Comoviruses have a bipartite positive strand RNA genome, each strand encoding 1 long 

open reading frame. One of these encodes for the capsid proteins and the other for the 

non-structural proteins. The cleavage sites are similar to those in picornaviruses, with 

residues at the P4 and Pl positions having particular influence (see Figure 1.12 for 

nomenclature). The potyviruses have a monopartite genome with one long open reading 

frame which encodes 8 mature proteins (Dougherty et al, 1988).

Figure 1.12 Substrate cleavage site nomenclature after (Schechter and Berger, 1967).

1.3.4.2 Polyprotein proccssinn i n rrtrooirusss

Retroviruses are a class of viruses that replicate via an obligatory DNA

intermediate. All have the same gene order, 5'-gag-pol-env~ 3'. The gag ( group specific

antigen) region encodes up to 6 structural proteins. The pol region encodes the viral

replication enzymes. The protease cleaves at the gag-pol junction. This separates the 
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structurai and non-structural proteins as does the primary cleavage in picornaviruses. 

Protein processing is necessary for a productive infectious cycle. This was demonstrated 

in an avian retrovirus (Hayman et al, 1979). Viruses which were lacking the viral 

protease (PR) did not have any processing of gag. The protease is an aspartyl protease

(see section 1.4.2.1).

Polyprotein processing in Rous sarcoma virus (RSV; Figure 1.13) involves a single

frameshift for the expression of gag and pol from a single reading frame.

pro and pol from a single gag -pro -pol translational unit. The bold lines represent the 

primary translation products which are further processed to give the products indicated.

1.3.4.3 Polyyrotem proocssmn in DNA vinises

It was shown that some proteins (pl50, p37 and p34) in African Swine Fever Virus 

(ASFV) are synthesised as precursors of high mokcnam- weight (Lopez-Otin et al., 1989). 

The proteins are mature after proteolytic processing. Cleavage occurs at a consensus Gly- 

Gly-X site with cleavage occurring after the second glycine residue. This site is also seen 

in adenovirus structural proteins and some cellular proteins such as polyubiquitin. There 

are 16 other Gly-Gly-X sites besides those that are cleaved. There is an ordered cleavage 

cascade (Fig 1.14). All the mature proteins are structural and their production may be
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linked to virion morphogenesis. The polyprotein (pp220) is encoded by a single ORF of 

2475 amino acids (Simon-Mateo et al, 1993).

Another polyprotein has also been identified in ASFV (Simon-Mateo et al, 1997). 

pp62 is cleaved to give the structural proteins p35 and pl5. The cleavage occurs at the 

same Gly-Gly-X site as in pp220 and there is an ordered cascade. As in pp220 only some 

of the Gly-Gly-X sites are cleaved suggesting that other residues may have an effect on 

the conformation of the cleavage site. However, there is no homology between the 

surrounding sequences of the cleavage sites in pp220 and pp62.

Production of structural proteins by processing of a polyprotein may be a way of 

ensuring a 1:1 ratio of structural proteins. Equimolar amounts of the proteins from pp220 

are required in the virus particle and they all occupy similar locations in the virus shell 

(Simon-Mateo etal, 1997).

w
pp220

▼▼ W wr w w ▼

MYH [

* * * *

pp90 pl50
| |-----------------  ^//////////////////////^

p34 pp55

pl4 p37

Figure 1.14 Cleavage of ASFV polyprotein pp220. Triangles indicate the position 

of Gly-Gly-X sites and cleavage sites are marked with an asterisk. Myristoylation is 

denoted by the region marked MYR. Precursor proteins are denoted by open boxes and 

mature proteins by shaded boxes.
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1.3.5 Picornaviruses

In order to produce mature viral proteins the polyprotein in picornaviruses is 

cleaved autoproteolytically (Figure L15). The full length polyprotein is not seen 

because of cleavage beginning before translation of the polyprotein is complete. In 

rhinoviruses three different proteolytic activities are seen in the processing pathway. 

These are: cleavage by 3CPro, cleavage by 2APro and the maturation cleavage. These 

events take place both cotranslationally and posttranslationally. They result in the 

production of both structural and non-structural mature virus proteins.

1.3.5.1 Primary proccesing

The primary cleavages in the polyprotein yield protein precursors PI, P2 and P3. 

Cleavage between PI and P2 in rhino- and enteroviruses is carried out by 2APro (Figure 

1.15; Sommergruber et al., 1989; Toyoda et al., 1986). The 2A protease does not need 

to be released from the polyprotein to carry out this cleavage since it is acting in cis. 

The reaction takes place before 3CPro has been translated and it is therefore impossible 

for 2APro to be released as this is a cleavage performed by 3CPro. The 2A protease is 

also responsible for the alternative cleavage pathway that yields 3C and 3D' (Toyoda et 

al, 1986). It has similarity with the small, bacterial, serine-type proteases e.g. subtilisin 

(Bazan and Fletterick, 1988). Apart from effecting the P1/P2 cleavage it has been 

implicated in host-cell shut-off. Infection by HRV 14 results in cleavage of the p220 

subunit of the cap binding protein complex (CBC; Etchison and Font, 1985), a protein 

that is involved in the recognition of capped mRNAs during the initiation of protein 

biosynthesis. This correlates with inhibition of host cell protein synthesis by HRV 14 

infection and the inability of initiation factors to function on capped globin mRNA in

vitro.
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Leader proteins which precede the Pl region are found in some picornaviruses 

including the aphtho- and cardioviruses. In EMCV and TMEV (cardioviruses) cleavage 

between the L protein and Pl is mediated by 3CPro as the first step in L-P1-2A 

processing (Parkser al., 1989;Rooser al., 1989). In FMDV (an aphthovirus) the L 

protease (LPro) carries out its own cleavage from Pl in an undefined reaction.

Primary cleavage in aphtho- and cardioviruses occurs at a different location to that 

in rhino- and enteroviruses (see sections 1.5.2.1. and 1.5.2.2). Cleavage is still 

mediated by 2A but there are a number of significant differences, 2A in aphthoviruses is 

a great deal smaller than in other picornaviruses. The remaining 18 amino acids of the 

aphthoviral 2A show similarity to the carboxyl portions of cardiovirus 2APro but there is 

no similarity to the catalytic triad of rhino and entero 2APros. The primary cleavage 

occurs between 2A and 2B generating a larger primary cleavage product, P1-2A. In 

FMDV this cleavage occurs at a glycyl -prolyl (G-P) amino acid pair.

1.3.5.2 Sesondaro pi'cneesing

Cleavage between P2 and P3 is mediated by 3CPro. All subsequent cleavages 

(except the maturation cleavage) are also carried out by 3CP^. 3CPra has been 

characterised as a cysteine protease with a serine protease type fold (Allaire et al., 

1994). Cleavages process P3 to smaller products which are more stable and are the 

non-structural proteins of the virus. These reactions are dilution insensitive 

(Palmenberg and Rueckert, 1982) which implies a monomolecular mechanism. 

Cleavage may also take place in tram with exogenous 3CP® if the cleavage sites have 

been destroyed in a binary system (Parks et al, 1986; Ypma-Wong and Semler, 1987).

Cleavage between 3A and 3B is not observed in vitro unless all other processing 

routes are blocked (Parks et al, 1986). This occurs in both mono- and bimolecular 

assays. It is thought that these reactions take place with the addition of VPg to the 5' 

end of the RNA during the initiation of replication. The reaction may therefore be 

facilitated by the presence of other proteins such as 3DP°r or configurations of reaction 

components.
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Pl is also processed by 3CPro. In EMCV all P3 3C-containing proteins can 

process Pl (Parks et al., 1986). Pl cleavage sites are processed sequentially in the 

order; L-VP1, VP1-2A, VP3-VP1 and VP0-VP3. In rhino- and enteroviruses different 

parts of P3 have different enzyme specificities. VP3-VP1 may be processed by 3CPro 

but VP0-VP3 requires 3CDPro (Jore etal., 1988; Ypma-Wong etal., 1988).

Cleavage by 3CPro only occurs at specific points in the polyprotein of the wild 

type poliovirus. It was originally thought that cleavage occurred only at glutamine - 

glycine (Q-G) pairs in the polyprotein (Hanecak et al., 1984; Kitamura et al., 1980). 

However as more vims sequences were discovered it became clear that this was not 

always the case. Most cleavage sites for 3CPro are now known to be of the pattern (E, 

Q), (G,S, A) but there are exceptions to this. There are influences from the surrounding 

sequences and the structural conformation of the cleavage site is also important. A 

minimum substrate length of 6 amino acids has been determined (Cordingley et al., 

1990) for peptides designed to mimic the 2C-3A cleavage site in HRV 14. It was found 

that residues at positions P4, Pl' and P2' could not be substituted but the residue at 

position P5 was not critical. Small peptides made to mimic the 3A-3B cleavage site 

made poor substrates. This suggested that surrounding sequences were important for 

susceptibility to cleavage but as the 3AB cleavage is rarely seen in vitro (Parks et al.,) 

the low level of cleavage may be the level seen in vitro. HRV 14 3CPro was also 

capable of cleaving peptides representing cleavage sites of coxsackie B vims and 

poliovirus (Cordingley etal., 1990).

1.3.5.3 Products of polyprotein processing

The mature protein products of the cleavage cascade are either stmctural or non- 

structural proteins. Proteins 1A-1D are the capsid proteins VP1-VP4. 2APro is 

responsible for the P1/P2 cleavage and host cell shut-off, 2C is a putative NTPase. 

Enterovims protein 2B has recently been found to enhance membrane permeability in 

bacterial and mammalian cells when transiently expressed as well as blocking the 

protein secretory traffic (Doedens and Kirkegaard, 1995; Lama and Carrasco, 1992; van
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Kuppeveld et al, 1997a, 1997b) and localising to the outer surface of vesicles derived 

from endoplasmic reticulum which are sites of viral genome replication (Bienz et al, 

1987; Schlegel et al, 1996; van Kuppeveld et al, 1997a). 3B is the VPg, 3CPro is the, 

protease, 3D®1 is the polymerase and 3CDP® is a protease. 3CDP® is also the viral 

component of the RNP complex formed with the 5' end of positive strand RNA 

(Colonno et al., 1988) This may act in trans to catalyse the initiation of synthesis of 

new positive strand RNA. 3CDPro has also been shown to be involved in the cleavage 

of the Pl capsid precursor in poliovirus (Ypma-Wong and Semler, 1987).

3AB has been shown to have multiple functions in the replication of poliovirus. It 

was shown to have a dual function as both the precursor for VPg and a co-factor for 3D®* 

(Lama et at, 1994). The soluble form of 3AB was found to stimulate poly(U) RNA 

synthesis catalysed by 3D®1. Amino acid changes in the hydrophobic region of 3A result 

in poliovirus mutants with an impaired RNA replication phenotype (Giachetti 1991).

The action of 3AB may be in vivo by binding to the 3D®1 part of 3CDPro which is 

bound to the initiation complex at the 5' end of the poliovirus genomic RNA (Andino et 

al, 1993; Harris et al., 1994). It enhances the binding of 3D®1 to RNA and this is 

supported by experiments showing the binding of SCDP® and 3D®l to the pseudoknot at 

the 3' end of the genomic RNA which requires 3AB.

When in the initiation complex at the 5' end of the genome 3CDPra may be able to 

catalyse the uridylation of 3AB or VPg. Therefore the primer for transcription by 3D®1 

will be generated either by autocleavage of 3CDPr° or may be present in trans.
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1.4 Proteases
Proteases are of four main types categorised by their nucleophilic residue: serine, 

cysteine (or thiol), acid (or aspartyl) and metallo-proteases. A fifth type has also been

identified with a threonine residue as the nucleophile but little has been elucidated about 

them.

All proteases share the property of going through an intermediate or transition 

state. In serine and cysteine proteases the trigonal carbon of the peptide bond becomes 

tetrahedral due to the (temporary) covalent bond formed between the enzyme and the 

subtstrate. In serine and cysteine proteases the nucleophile is the hydroxyl group of the 

serine or the thiol group of the cysteine respectively. In the other groups the 

nucleophile is a water molecule. Hydrolysis of the bond occurs in two steps in the 

serine and cysteine proteases whereas in the other classes it is a single step process.

1.4.1 Cellular

Both endo- and exo-proteases are found in cells. Exo-proteases remove residues 

from either the N- or C-terminus of the protein and usually continue in a progressive 

fashion. Endo-proteases cleave peptide bonds between residues internal to the substrate 

sequence. Examples of the five classes of cellular proteases are shown below.

Table 1.2. Classes of proteases
Class Examples Inhibitor
Aspartic pepsin, gastricin, renin, 

cathepsin D, cathepsin E pepstatin

Cysteine papain, cathepsin L E-64, cystatins
cathepsin B leupeptin
cathepsin H p-chloromercuribenzoate

Metallo- collagenases, meprin EDTA, phrenanthroline

thermolysin, EC24.11 phosphoramidon

Serine trypsin-like DFP, leupeptin
chymotrypsin-like DFP, chymostatin
elastase-like DFP, elastinal

Threonine Thermoplamsma 
acidophilum 20S proteasome
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1.4.1.1 Serine proteases

Serine proteases may be divided into two sub-groups. The members of the' large ' 

sub-group are similar to trypsin and the members of the ' small ' sub-group have 

similarities to subtilisin. The serine residue, from which the group derives its name, is 

unreactive with the hydroxyl group at the end of a catalytic "triad". The catalytic triad 

of these proteases is usually composed of a histidine, a serine and an aspartate residue 

(Figure 1.16). The order of the residues (from the N- to the C-terminus) in the catalytic 

triad is dependent on which sub-group the protease belongs to.

In the ' large ' sub-group the order of residues in the primary sequence is His, Asp,

Ser as opposed to Asp, His, Ser in the ' small ' sub-group. This makes it unlikely that 

they are derived from a common ancestor. The two classes also differ in their
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preference for amino acids at the Pi position. Trypsin cleaves only after lysine or 

arginine residues but chymotrypsin cleaves after large hydrophobic residues.

The oxyanion hole is a site containing dipoles which complement the changes in 

charge distribution during catalysis. In trypsin the dipoles are formed by the serine and 

glycine residues. The substrate binding pocket is composed of substrate sites which 

bind other residues. These can be up to four residues on either side of the scissile bond.

These proteases have been reviewed by Lesk and Fordham (1996). The catalytic 

mechanism was elucidated by Steitz and Schulman in 1982 and is common to all serine 

proteases in both sub-groups (Waishel et al, 1989).

1.4.1.2 Cysteine (Thiol) proteases

Papain and actinidin are cysteine proteases whose structure is known in detail. 

Their catalytic mechanism is similar to that of the serine proteases; formation of a 

tetrahedral intermediate and an acylenzyme complex. The enzymes have two structural 

domains with approximately 210 residues in each. These each form half of the 

polypeptide chain. The active site is in the cleft between the two domains and consists 

of seven sub-sites, S4, S3, S2, Si, Si', S2' and S3'. The substrate specificity arises from 

interactions at Si and Si'. The catalytic activity is pH dependent.

The sulphydryl group of the active site nucleophile of these proteases plays an 

important part in catalysis. The sulphur atom forms a complex with the histidine 

residue at neutral pH to give a thiolate/imidazolium ion.

In papain the amide group of the Asnl75 side chain is hydrogen bonded to the 

histidine forming an Asn, His, Cys catalytic triad. There is some rotation of the residue 

without disturbing the bond. It has been suggested that the function of the Asn residue 

(sometimes suggested as the third member of the catalytic triad) is to limit rotation.

The oxyanion hole has less effect than in the serine proteases (Menardgf al, 

1995). Dipoles are formed from the Cys 25 and Gln^.
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1.4.1.3 Aspartyl (acid) proteases

Some acid proteases such as pepsin and gastricin are involved in digestion and 

only have limited substrate specificities. Others cleave at single sites. Renin, for 

example, removes the decapeptide angiotensin 1 (which regulates blood pressure) from 

the amino terminus of angiotensinogen.

The structures of known acid proteases are similar, having a polypeptide chain of 

approximately 330 residues. This is folded into a bi-lobed structure with two domains 

of similar structure. This suggests that an ancestral protein was a dimer with two 

identical chains. The two domains in the protease are related by two-fold rotational 

symmetry. These proteases have a catalytic diad formed from two aspartate residues 

(Figure 1.17). Catalysis is of the basic acid-base mechanism. A water molecule attacks 

the carbonyl group of the peptide bond and aspartate side chains assist in the 

protonation of the carbonyl oxygen and the protonation of the amine leaving group to 

form cleaved products. At no stage is the substrate covalently bound to the enzyme.

Figure 1.17 Mechanism of action of an aspartyl protease.
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1.4.1.4 Metallo -proteases

Most of these proteases are thought to rely on zinc bound in their active sites, but

in some cases they are still active when the zinc is replaced with cobalt. This class 

includes some medically important enzymes including angiotensin-converting enzyme, 

enkephalinase and collagenase.

Carboxypeptidases A and B are the most well studied of the class. They catalyse 

the removal of single residues from the carboxyl terminus of polypeptide substrates 

making them exopeptidases. They show specificity for the Pi' residue. In 

Carboxypeptidase A the zinc ion is complexed to two histidine residues and a glutamate 

residue (Figure 1.18). A water molecule is also present. The nucleophilic attack of the 

Znr+ bound water molecule on the carbonyl bond causes cleavage. The positively 

charged arginine residue stabilises the oxyanion hole and the glutamate residue 

deprotonates the zinc bound water. At no stage is the substrate covalently bound to the 

enzyme.

Thermolysin is another member of the class which acts as an endopeptidase. It 

catalyses the hydrolysis of non-terminal hydrophobic Pi' residues. It has an active site 

similar to that of the carboxypeptidases which indicates convergent evolution. The 

Znr+ ion is bound in both types by interactions with the imidazole side chains of two 

histidine residues and the carboxyl side chain of a glutamate residue. The water 

molecule in a co-ordination position for the zinc residue is crucial in the catalytic action 

of the enzyme.

The enzymes in both groups have similar functions and sequence similarities. The 

glutamate residue at position 127 in carboxypeptidase corresponds to the glutamate at 

position 143 in thermolysin and Argl27 in carboxypeptidase corresponds to Hisrrl in 

thermolysin. They also have similar electrostatic interactions with the zinc residue.
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1.4.1.5 Thrsoeies rrotsatst

Study of the 20S proteasome, found in both eukaryotes and the archaebacterium 

Thermoplasma acidophilum, has revealed proteolytic activity. The 20S proteasome 

forms the core of the 26S proteasome which is part of the non-lysosomal degradation 

pathway. Inhibitor studies indicated that the protease may be an unusual type of serine 

or cysteine protease. Mutagenesis of the cysteine residue, the two histidine residues and 

the conserved aspartate residues has shown this not to be the case (Seemuller et al, 

1995). The structure of the (3 subunit showed that the proteasome had the activity of a 

threonine protease (Wlodawer, 1995) and has 14 active sites. The catalytic mechanism 

was analysed by site-directed mutagenesis and inhibitor studies. Deletion of the N- 

terminal threonine resulted in inactivation of the protease as did substitution with an 

alanine. Substitution with a serine residue resulted in a fully active enzyme
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(Seemullerer al, 1995). A crystal structure of the enzyme complexed to an inhibitor

that showed that proteolytic attack is mediated by the N-terminal threonine of processed

p subunits.

Further studies indicate that autocatalytic processing takes place in the proteasome 

and the action is intermolecular (Seemiilleref a/., 1996)

1.4.2 Viral p roteases

Viral enzymes tend to be smaller than the polypeptides of their cellular

counterparts. They have a lower turnover number and an unusually high degree of

specificity.

Table 1.3. Examples of viral proteases

Virus
Genetic

material Name/protein Protease type

Adeno- dsDNA Adeno 22K cysteine

Alpha- +ss RNA Sindbis nsP2 cysteine

Picorna- +ssRNA Polio 2A and 3C cysteine

+ssRNA Rhino 2A and 3C cysteine

Flavi- +ssRNA Hep C NS3 serine

Retro- +ssRNA HIV-1 PR aspartic

+ssRNA RSV PR aspartic

Caulimo- dsDNA Cauliflower mosaic aspartic?

Hepadna- dsDNA Hepatitis B aspartic?

1.4.2.1 RR^i^trov^^lpprotasies

Retroviral proteases may be encoded in different regions of the genome. In Rous

Sarcoma virus (RSV) and myeloblastosis associated virus (MAV) the protease is encoded

wholly in the gag gene but in HIV-1 it is encoded by the pol gene. The catalytic site of

the retroviral protease is homologous to that of the aspartic protease (Toh et al, 1985) 
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with the residues Asp, Thr (Ser) and Gly forming the site. These must be preceded by 

two hydrophobic residues. Another region 60 residues downstream from the catalytic 

site, with a Ile-Ile-Gly motif, has also been shown to have an effect on catalytic activity 

(Pearl and Taylor, 1987). The protease has been shown to be a dimer with a fold similar 

to that of the aspartic acid proteases. The connecting loops in the (-sheet that forms the 

core of the protease are shorter so the molecules are smaller than cellular aspartate 

proteases (Pearl and Taylor, 1987). In HIV the protease is composed of two chains of 99 

residues in length. The active site is between the two domains. The two aspartate 

residues in the two domains are connected by a network of hydrogen bonds. Substrates 

bind with the C=O bond to be cleaved in between catalytic carboxyl groups. The oxygen 

group is close to the position of the displaced water molecule which normally bridges the

gap.

Retroviral proteases are highly substrate specific but there is no consistent pattern to 

their cleavage sites. The residues that form the cleavage sites may determine the order of 

the cleavage cascade as a variety of bonds must be cleaved by the same enzyme.

1.4.2.2 Adenoviral cysteine proteases

Proteolysis in adenoviruses occurs in a limited fashion. The six virus stmctural 

proteins are proteolytically cleaved to facilitate the production of mature virus particles. 

The L3 23K protein has been identified as the protease responsible for the cleavages by 

mapping of mutations in a temperature sensitive mutant which was defective in protease 

activity at certain temperatures (Yeh-Kai et al, 1983). It has been shown to be a 

cysteine protease but not of the conventional papain-like type. It has also been shown 

that the protease is activated by a disulphide linked peptide (WebstereP al, 1993).

1.4.2.3 Flaviviral serine proteases

Flaviviruses include the flavi-, pesti- and hepatitis C viruses. For a review of the 

proteinases of the Flaviviridae see (Ryan et al, 1998) and references therein. All three 

classes have been shown to have virus encoded trypsin-like serine proteases. This was
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first shown by alignment and then by experimentation. Hepatitis C virus (HCV) has 

two identified virus-encoded proteases. One of these has been characterised as a zinc- 

containing serine protease and the other is a trypsin-like serine protease, NS3Pro. The 

crystal structure of the NS3 protease has been determined and this reveals a tiypsm-like 

fold and a structural zinc binding site (Lovegf al., 1996). NS3 had previously been 

found to have the catalytic domain of a trypsin-like serine protease (Miller and Purcell, 

1990). The protease is 180 amino acids in length and the catalytic triad of His-57, Asp- 

75 and Ser-135 is strictly conserved in all HCV sequences. Two six-stranded (3- barrels 

were also identified which make up the chymotrypsin fold. Novel features include a 

long N-terminus that interacts with neighbouring molecules and a structural zinc 

binding site. The protease activity is encoded by the N-terminal one third of the protein 

and the remaining C-terminal two thirds encode a helicase activity.

NS3 is multifunctional and forms a heterodimer with NS4A. It cleaves at the 

NS3/NS4A junction in cis and at the 5A/B junction in trans. NS3 requires an accessory 

viral protein and a structural zinc ion to function. The zinc binding site is on the 

opposite side of the protein to the active site and it is composed of residues Cys-97, 

Cys-99, Cys-145 and His-149. The zinc is thought to maintain the stmctural stability of 

the enzyme and guide the folding of the NS3 domain. The sequence of the metal 

binding site of NS3 is more conserved than that of the catalytic site.

NS3 and NS4 form a stable complex. It anchors NS3 to membranes and stabilises 

NS3 in vitro. The N-terminal 28 amino acids of NS3 are required for formation of a 

stable complex.

1.4.2.4 FlaaivirrS metaDoproteaaes ?

Some experiments have indicated that HCV NS2/3 protease may be a zinc 

dependent enzyme which performs a single cleavage to release the N-terminus of NS3 

REF. The zinc residue bound to NS3 has no role in the serine protease activity of the 

enzyme. The zinc residue is bound by thiee cysteine residues and an activated water as
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in proteins which act as catalysts. This releases the structural protein core and the 

envelope glycoproteins.
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1.5. Polyprotein processing in picornaviruses
For a review of the virus-encoded proteinases of the picornaviruses see (Ryan and 

Flint, 1997) and references therein.

1.5.1 L protease

The L protease is found at the N-terminus of the aphtho- and Equine rhinoviral 

(ERV 1 and 2) polyproteins. It cleaves co-translationally at its own C-terminus (Strebel 

and Beck, 1986). Two forms of the protease, LabPro and LbP1'0, are found due to 

initiation at either of two AUG codons 84 nucleotides apart (Clarke et al, 1985; 

Sangarer al, 1987). Lbrro (and possibly LabP1'0) undergoes posttranslational 

modification by a carboxypeptidase B-like activity which gives rise to Lb' or Lab' 

(Sangar et al, 1988). LabPro and LbPro cleave at the L/Pl junction in cis or in trans. 

(Devaney etal, 1988).

The L proteinase has been shown to have similarities to thiol proteases 

(Schneemann et al., 1994). The active site was shown to be composed of Cysll and 

Hisl48 (Piccone et al., 1995; Roberts and Belsham, 1995). Modelling the sequence 

onto the 3-dimensional structure of papain showed that Gin71 and Aspr74 were also part 

of the catalytic site. CysH is shown to be conserved in FMDV and ERVl and 2. 

His 148 is not conserved in ERV2. The only candidate histidine (Hisll) is misaligned by 

9 residues.

The L proteinase also has a role in cleaving eIF-4G in trans , the same role 

fulfilled by 2APro in entero- and rhinoviruses. However LP™ is a thiol protease and 

2APro is thought to belong to the ' small ' sub-group of serine proteases. The cleavage 

site differs between LPro, which cleaves at the junction between Gly479 and Arg4805 and 

2APro which cleaves between Arg486 and Gly487 (Kirchweger et al, 1994).
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1.5.2 2A protease

1.5.2.12APro activity in entero and rhinoviruses

In entero- and rhinoviruses 2APro mediates the primary cleavage between Pl and 

P2P3, this occurs at a tyrosine-glycine (Y-G) pair in poliovirus (Hanecak et al, 1984). 

The 2A proteinase, which has a molecular weight of 17kDa, cleaves at its own N- 

terminus (Sommergruber et al, 1989; Toyoda et al, 1986). It may also have a role in 

cleaving the P3 precursor to give 3C' and 3D' at a tyrosine-glycine pair in 3D, as 

demonstrated in poliovirus (Hanecak et al, 1982; McLean et al, 1976). This cleavage 

is strain specific and the significance of the cleavage is not clear. The Y-G pair is 

conserved in all entero- and rhinoviruses sequenced to date but in aphtho- and 

cardioviruses the 2APro sequence and function is different (see below). Mutation in the 

sequence of 2APr° in polioviruses does not affect growth of the virus in tissue culture 

and produces a parental phenotype.

1.5.2.2 Classification of the 2A protease

The 2A protease has been found to be a zinc containing enzyme (Sommergruber 

et al, 1994) and the zinc ion to play a structural role in the enzyme (Voss et al., 1995). 

The catalytic triad was thought to consist of HisO®, AspO8 and CysOOO, with Cys1®9 as 

the active site nucleophile (Bazan and Fletterick, 1988). Inhibitor studies have shown 

2APr° to be sensitive to the thiol protease inhibitors iodoacetamide and N- 

ethylmaleamide (Chen et al, 1996). The active site and other properties were 

confirmed by site-directed mutant analysis (Dinakarpandian et al, 1997; James, 1994; 

Lumry, 1997; Sommergruber et al, 1989). It has preferred requirements for the 

residues near to the cleavage site but no absolute requirements.

1.5.2.3 Other functions of 2A

The 2A proteinase also inhibits host-cell protein synthesis in trans (Markland et 

al, 1997). This correlates with inhibition mediated by cleavage of the 220kDa 

polypeptide associated with the cap binding protein (Olson et al, 1994). Cleavage of
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eIF-4G directed by 2A (Sommergruber et al., 1994) inhibits cap-dependent translation 

by the host cell but does not affect cap-independent translation. This results in host-cell 

' shut-off ' and selective viral RNA translation.

The 2A proteinase is the transactivator of translation by the poliovirus internal 

ribosome entry site (IRES) when host-cell (cap-dependent) translation is not inhibited 

(Qiu etal, 1997).

It was found that mutations in the 5' non-coding region of viral RNA could be 

compensated by second site mutations in the 2APro region (Macadam et al, 1994). 

Point mutations in 2AP1’0 show loss of cleavage in trans but not in cis and RNA 

replication is inhibited (Yu and Lloyd, 1991).

1.5.2.4 2A protease aativiiy ire aphitii- and caadiroiruset

The 2A protease in aphtho- and cardioviruses cleaves at its own C-terminus 

between 2APro and 2B, releasing LP12A in cardioviruses and P1-2A in aphthoviruses. 

Precursors to 2A/2B are not detected in vitro. The 2A protease shows no known 

protease motifs and no similarities with the 2APro region of entero-and rhinoviruses but 

is comparable in size. The 2A protease region is conserved among the TME and EMC 

viruses. Only the C-terminus of the region is conserved in cardioviruses but it is similar 

to the 2A region in FMDV. The final three residues at the C-terminus (NPG) are 

conserved in cardio-and aphthovirus 2As and the N-terminus of the 2B region is 

completely conserved.

The cleavage at the 2AB junction in FMDV and TMEV does not require LPr° or 

3CPro. The 18 residues of 2APr® and the 2 residues of 2B mediate co-translational 

cleavage (Ryan and Drew, 1994).
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1,5.3 3<C protease

The 3C protease in picornaviruses has been shown to have homology with the 

’large' serine proteases such as trypsin and chymotrypsin. The protease is inhibited by

chymostatin indicating its similarity to chymotrypsin (Orr et al, 1989). It has a 

catalytic triad composed of Cys 17, Hisio and Glu7l. The active site nucleophile is a 

cysteine residue instead of the serine normally found in this type of protease. The 

active site nucleophile is conserved in all rhinoviruses. Au alignment of the 3CPro 

amino acid sequences from two polio serotypes (PVl Mahoney and PVl Sabin) and 

HRV 14 shows that there is a great deal of similarity between the two proteases (Figure 

1.19).

34
PVl-MAH. 3C ----------GPGFD-- YAVA-MAKRNIVTATTSKGEFTM—LGVHDNV
PVl-SAB .3C ----------GPGFD-- YAVA-MAKRNIVTATTSKGEFTM—LGVHDNV
HRV-14. , 3C ----------GPNTE-- FALS-LLRKNIMTITTSKGEFTG—LGIHDRV

PV1-MAH.3C
PV1-SAB.3C
HRV-14..3C

PV1-MAH.3C
PV1-SAB.3C
HRV-14..3C

PV1-MAH.3C
PV1-SAB.3C
HRV-14..3C

PV1-MAH.3C 
PV1-SAB.3C 
HRV-14. .3C

68
AILPTHA--------------- SPGESIVIDGKEVEILD-jKKALEDQAGT
AILPTHA--------------- SPGESIVIDGKEVEILD-AKALEDQAGT
CVIPTHA--------------- QPGDDVLVNGQKIRVKD-KYKLVDPENI

102
NLEITIITLKRN—EKFRDIRPHIPTQITETNDGVLIVNTSK—YPNMYV 
NLEITIITLKRN—EKFRDIRPHIPTQITETNDGVLIVNTSK—YPNMYV 
NLELTVLTLDRN—EKFRDIRGFISEDLEG-VDATTLVHSNN--FTNTIL

13G
PVGAVTEQGYLNLGGRQTARTL--- MYNFPTRAGQCGGVITCTG----
PVGAVTEQGYLNLGGRQTARTL--- MYNFPTRAGQCGGVITCTG-----
EVGPVTMAGLINLSSTPTNRMI--- RYDYATKTGQCGGVLCATG-----

170
PVGAVTEQGYLNLGGRQTARTL--- MYNFPTRAGQCGGVITCTG----
KVIGMHVGGNGSHGFTTALKRSYFTQS--------- Q
KIFGIHVGGNGRQGFSAQLKKQYFVEK--------- Q

Figure 1.19 Alignment of HRV14 3CP1® and polio 3CPro sequences. The residues 
forming the catalytic triad are shown in red. These are conserved in the polio virus and 
rhinovirus sequences

The three dimensional structure of HRV 14 3CPra (Figure 1.20) has been shown to 

consist of two topologically equivalent 6 stranded j3--barrels with a long shallow groove
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for binding between the two (Matthews et al, 1994). Secondary cleavages are carried 

out by the viral protease 3CP®.

In HRV 14 3CPr® was originally thought to cleave only at Q-G pairs. It has now 

been shown that cleavage occurs mostly at (E,Q), (G,S,A) pairs, however, there are 

exceptions. Specificity appears to depend on the surrounding sequences (Palmenberg, 

1990).

Figure 1.20 Structure of HRV14 3CPro Matthews et al.., (1994).
The two six-stranded 6 -barrels can be seen in blue numbered Al-Fl and A2- 
F2. The helical parts of the structure are shown in yellow. The residues of 
the catalytic triad are also marked on the diagram; His-40 (blue), Glu-71 
(red) and Cys-146 (yellow).
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1.5.3.1 Claavaga by 3CPro in trans

3CPi'° has also been shown to cleave cellular sequences. Poliovirus 3CPro has 

been shown to cleave active transcription factor IIIC (TFIIIC) to its inactive form 

(Clarker a/., 1991). It proteolyses TFIIIC in vivo and in vitro to give complex III. If a 

point mutation is inserted in 3CP® then no complex formation is observed. TFIIIC 

complexes I and II are cleaved to give complex III. This accounts for the inhibition of 

transcription in poliovirus infected cells. 3CDP® is known to enter the nucleus after 

infection and 3CP® is small enough, at 20 kDa, to enter the nucleus by diffusion. 

FMDV 3CP1'0 does not have the same effect on TFIIC and the same effect is not seen in

FMDV-infected cells.

Inhibition of host cell RNA polymerase II (Pol II) by poliovirus is correlated to a 

decrease in activity of a fraction containing transcription factor TFIID. Analysis of a 

component of TFIID, the TATA-binding protein (TBP), shows that direct cleavage by 

3CP® occurs in vitro and in vivo (Clark et al, 1993). As cleavage of TBP occurs at 

the same time as Pol II transcription is inhibited 3CP® is, therefore, seen to have a role 

in host cell Pol Il-mediated transcription shutoff.

Another cellular sequence which is cleaved by both poliovirus and HRV 14 3CP® 

is microtubule-associated protein 4 (MAP-4; Joachims et al, 1995). No cleavage is 

seen with the other viral protease from poliovirus, 2AP®. Cleavage with 3CP® results 

in cleavage products which aie identical to those seen in vivo. No cleavage is seen with 

a mutant 3CP®. Cleavage also occurs with 3CDPr° and has been correlated with 

microtubule collapse.
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1.5.3.2 RNA biedieg by 3CP™

Mutations in poliovirus 3CP1® have been shown to suppress mutations in the 5' 

end of the genome (Andino et al., 1990). A four base insertion in loop d of the 5' NCR 

rendered the virus deficient in RNA synthesis but revertants showed a partial recoveiy 

of wild type synthesis. Analysis of these showed point mutations in the 3CPr° region of 

the genome which were cw-active and implied that 3CPro interacted with the 5' end of 

the genome.

Further studies showed that the cloverleaf structure at the 5' end of the poliovirus 

genome was able to bind 3CP1® and 3DP®1 (Andino et al., 1990). This forms part of a 

ribonucleoprotein (RNP) complex which is cmcial to the virus life cycle. The 5' most 

90 nucleotides of the genome were shown to fold into a cloverleaf structure bound by 

3CPro and 3DPo1. This interaction was detected by immunological methods (Andino et 

al., 1990). A cellular component was also found in the RNP complex, p36 (Andino et 

al., 1993). 3CPro was found to bind RNA on its own but with much lower affinity than 

3CDPro. Mutants in 3CPro were identified which affected the formation of the RNP 

complex. They were found to localise to a region on the opposite face of the protein 

from those which affect proteolytic processing.

Experiments by Leong and co-workers (1993) show that rhinovirus 14 3CP® 

binds to the 5' 126 nucleotides of the genome. Point mutations in 3CPr° indicated 

amino acids which are important for this non-proteolytic function of 3CP1® (Figure 

1.21). Conservative amino acid substitutions at Asp85 destroyed the ability of the 

protein to bind RNA showing that this is required for specific binding to the 5' 126 

nucleotides of the genomic RNA. Amino acid substitutions at the residues of the 

catalytic triad (His40, Glu71 and Cys 146) resulted in proteolytically inactive mutants 

which were, however, able to bind RNA. It was also shown that substitution of Asprr 

with a serine residue results in a loss of P1-3CD interaction (Hammerle et al., 1992). 

This may be due to distortion of the structure of the loop or entire structure of 3CDPro. 

The size of the residue at position 85 is probably an important factor in this interaction.
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Figure 1.21 Residues involved in RNA binding in HRV14. Modelled on the 
structure of HAV 3C protease. The residues shown in green are those which bind 
RNA. The residues of the catalytic triad of HRV 14 are also shown: His-40 (pale 
blue), Glu-71 (red) and Cys-146 (yellow). The N-terminus is shown in purple and 
the C-terminus in orange.

RNA binding

RNA binding
COOH

Glu-71

Cys-146
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1.5.4 3CD

In an alternative cleavage pathway in P3 the cleavage between 3CPro and 3DP°1 

does not take place. The resulting polyprotein 3CDPr° has protease activity but not the

polymerase activity found in 3DP°L The lack of detectable polymerase activity in 

poliovirus 3CDP°o was demonstrated by analysis of a bacterially expressed protein 

(Harris et al,, 1992). The 3C/D cleavage site had been mutated to prevent proteolysis. 

The resulting protein was, however, capable of cleaving PI and peptides mimicking the 

2B/C cleavage site. It is responsible for the cleavage of PI into the capsid proteins, an 

activity which can be carried out by 3CP° but not as efficiently (Jore et aL, 1988; 

Ypma-Wong et al., 1988), It has been shown that 3AB interacts with 3CD°ro in this 

role to perform an RNA binding function at the 5' end of the genome (Xiang et al., 

1995). It has been implicated in RNA replication by genetic analysis (Harris et al., 

1994). The 3CD protease also stimulates the cleavage of 3AB to 3A and VPg (Lama et 

al., 1994). 3AB also stimulates cleavage of 3CDP°° to 3CP°° and 3DP°° (Molla et al., 

1994).

In an alternative cleavage pathway, mediated by 2AP°°, 3CDP°° is cleaved, at a 

Tyr-Gly pair, to produce 3C and 3D'. These proteins are not required for replication 

(Lee and Wimmer, 1988). The cleavage site can be mutated and cleavage will still 

occur (Tyr-Gly to Phe-Gly). Mutations in the surrounding sequence affect the cleavage 

with threonine in the P2 position of the cleavage site being particularly important.

1.5.4.1 Alternative roles of 3D : polymerase and protease.

In vivo in poliovirus the 3C/D cleavage is seen to be less efficient than most other 

Q-G cleavages. The 3C protease and 3DMl are present in much smaller molar 

quantities than other viral processing products (Dewalt and Sender, 1987). This may 

possibly maintain a pool of 3CDPro which is thought to be responsible for all the Q-G 

cleavages in the viral genome and especially those in PL It has been shown that 

purified recombinant 3AB interacts with 3CD°°° and accelerates processing. This 

yields the products 3CP°° and 3DP°° (see above). Initiation of replication by 3DP°° has
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been shown to be both template and primer dependent poly-U synthesis. VPg is 

uridylated by 3DP°l to VPgpU(pU), the primer for 3DP°l (Paul et al, 1998). 3AB also 

inhibits the processing of Pl by 3CDPr°.

The structure of poliovims BDPrl has been determined by X-ray crystallography 

(Hansenef al, 1997) and it is the first RNA dependent RNA polymerase to have its 

structure determined in this way. It has the same shape as other polymerases with 

differences in the structure of the subdomains. The core sequence of the polymerase is 

similar to that of other polymerases and has four of the sequence motifs that have been 

described for RNA-dependent polymerases.

1.5.5 Maturatioe claavaga

The final cleavage of picornaviral processing is observed in vivo during the final 

stages of virion morphogenesis. The cleavage occurs concomitantly with RNA 

association with the large capsid assembly structures (12S-14S pentameric assembly 

unit; Jacobson and Baltimore, 1968). The mechanism has not yet been determined. 

One possible mechanism is similar to that of the viral proteases, but involving bases of 

the encapsidated RNA. This RNA may act in place of the histidine and accept protons. 

This would then catalyse the VPO cleavage (Rossmann et al, 1985). Conservation of 

the serine residue at the carboxyl end of VP4 and the amino end of VP2 suggests that 

the serine is the nucleophile for the cleavage of VPO to VP4 and VP2. The reaction also 

requires a proton abstracting base to activate the nucleophile and this role may be filled 

by an RNA base or by polyamines (Altman, 1984; Font et al, 1984).

1.5.6 Othar products of P3

3AB has been shown to have multiple functions in the replication of poliovirus. It 

was shown to have a dual function as both the precursor for VPg and a co-factor for 3DPq1 

(Lama et al, 1994). The soluble form of 3AB was found to stimulate poly(U) RNA 

synthesis catalysed by 3DPo1. Amino acid changes in the hydrophobic region of 3A result
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in polio mutants with an impaired RNA replication phenotype (Giachetti and Sender,

1991).

The action of 3AB in vivo may be stimulated by binding to the 3DPo1 part of 

3CDPro which is bound to the initiation complex at the 5' end of the poliovirus genomic 

RNA (Colonno et al, 1988; Harris et al., 1994) . It enhances the binding of 3DP°1 to 

RNA and this is supported by experiments showing the binding of 3CDPr° and 3DP°1 to 

the pseudoknot at the 3' end of the genomic RNA which requires 3AB.

When in the initiation complex at the 5' end of the genome 3CDPr® may be able to 

catalyse the uridylation of 3AB or VPg. Therefore the primer for transcription by 3DPo1 

will be generated either by autocleavage of 3CDPr° or may be present in trans.

1.5.7 Proteolytic activitiesin picornnviruses (cis and trans )

Processing occurs both in cis and in trans in the polyprotein processing cascade 

of picornaviruses. In the early stages of RNA replication processing is carried out by 

proteases acting in cis as this is more kinetically favourable when there are few RNA 

molecules to be processed. In the later stages of replication there are more protease 

molecules and more polyproteins to be processed so trans processing also occurs. 

Reactions performed in trans are, by their nature, slower than those in cis and also 

more sensitive to the sequences surrounding their cleavage sites.

Polyprotein processing eliminates the need for genetic regulation of RNA 

replication. Utilisation of both cis and trans processing activities allows an ordered 

cascade and the production of mature products when they are required. Reactions in 

trans cannot take place until the protease has been released from the polyprotein, 

meaning that they occur later in the processing cascade. Primary cleavages of the 

polyprotein occur in cis as they are performed rapidly and whilst translation of the 

polyprotein is still occurring. The structural proteins are processed in trans by 3CDPro 

later in the replication cycles, they are not required for capsid formation until later in the 

replication cycle
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1.6 Mutaaion of 3CPr°
Work has been done on the effects of substitution mutations on the residues of the 

catalytic triad of 3C*ro in poliovirus (Kean et al, 1993). Substitutions at the G1u71 and 

Cysl47 sites of the poliovirus 3CPro did not abolish cleavage altogether in vitro. A 

hierarchy of activity was found, with the double mutation G71Y, C147S resulting in a 

complete lack of processing by 3CPr°. Cleavage was affected more easily at some sites 

than others. In infectivity and RNA synthesis assays after transfection all 3CP™ mutants 

gave negative results. This indicates that mutation of these two residues almost 

abolishes viral replication.

Studies have also been carried out which result in "overcleaving" at the C-terminus 

of 3CPro (Kean et al., 1988). Replacement of the isoleucine residue at position 74 of 

poliovirus 3CPr° with a threonine results in impaired cleavage at the -COOH terminus. 

The low level of 3DP°1 indicated that the processing was impaired rather than the stability 

of 3CP1’0. Insertion of a serine residue at position -3 relative to 3CPr® also impaired 

cleavage at the -COOH terminus (Semler et al, 1987).

The substitution of the valine residue at position 54 in the polio 3CPr° sequence for 

an alanine residue resulted in defective processing at the 3B/C junction (Dewalt and 

Semler, 1987). Low levels of 3CP1'0 and 3DP°1 were seen but normal levels of 3C and 3D' 

were found, indicating that processing by 2AP*o was not affected. This mutation was also 

characterised by secondary effects on the replication of the mutant virus (Dewalt et aL, 

1989).

It was also found that substitution of the lysine residue at position 60 in wild type 

poliovirus with an isoleucine residue resulted in overproduction of 3DP°h The increase in 

processing at the carboxy terminus was three to five times that of the wild type virus

(Dewalt etal, 1990).

A summary of residues which have been mutated to study their role in cleavage 

activity can be seen in Figure 1.22.
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Figure 1.22 Alignment of HRV14 and poliovirus 3C protease sequences 
showing residues which have been mutated to elucidate their role in cleavage 
activity. Residues shown above the wild type sequence aremutant forms. The 
arrow indicates that an amino acid was inserted at this position in the sequence. 
Numbers at ends of lines are residue numbers for the poliovirus sequence.
I = overproduction of 3DM
S,T = Cleavage at COOH impaired
Q, K, N, A, S = No RNA binding activity
H, E, C = residues of catalytic triad
K, F, R, D, I, T, G, K = residues involved in RNA binding

s

PVI —---- GPGFD--- YAVA-MAKRNIVTATTSKGEFTM—-LGVHDNV
HRV —--- GPNTE—-FALS-LLRKNIMTITTSKGEPTG---LG1HDRV
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PVI NLEITIITLKRN—EKFRDIRPHIPTQITETNDGVLIVNTSK—YPNMYV
HRV NLELTVLTLDRN—EKFRDIRGFISEDLEG-VDATTWHSNN—FTNTIL
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196
PVI KVIGMHVGGNGSHGFAAALKRSYFTQS--------- Q
HRV KIFGIHVGGNGRQGFSAQLKKQYFVEK--------- Q
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1.7 Reg^adon of deavage of 3CD
The regulation of cleavage by 3CPr° in HRV 14 has yet to be determined. There 

are several possible viral components which act with 3CDPr° or 3CP1'0 which may be 

responsible for determining the cleavage pathway. The virus requires both 3CPro and 

3CDPm in its replication cycle so there must be some mechanism for determining which 

protein is produced. 3AB is known to act with 3CDPr° in the formation of a 

ribonucleoprotein complex at the 5' end of the genome but is also known to catalyse 

cleavage of 3CDPr° to 3CPr° and 3DP0°. The 5' end of the genome binds to 3CDPr° so 

this may also have a role in determining the cleavage. The 3C protease has been 

determined to act as an RNA binding protein which may mean that RNA has a role in 

determining the cleavage site.

The mutations mentioned above (section 1.6) which cause disruption to the 

cleavage sites may also indicate residues which have a role in directing cleavage of 

3Crro.
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1.8 Aims of this profect
In vivo Human Rhinovirus 14 3CPr° acts in two different forms. Cleavage can 

either generate 3CPro (which is the viral protease) and 3DP°1 (the viral polymerase) or 

SCDPi'o which is the protease. The virus requires all of these activities for efficient 

replication. The method by which the vims switches from one to the other has yet to be 

determined. This project was therefore designed to try and determine the regulatory 

switch.

A reporter gene system was designed using antibiotic resistance genes to flank the 

viral sequence of interest. Several 3C-containing genes were cloned between the genes to 

study the action of 3CP8° away from other viral components and with other parts of P3. 

Other viral components and RNA were then added in trans to see whether they had an 

effect on processing by 3C in the reporter gene system. Cleavage in the reporter system 

was studied in cis and in trans. Mutations in the nucleotide sequence of 3CPr° in 

poliovirus have been reported which affect cleavage at the N- and C-termini of the 

protease (see section 1.6). Mutations in HRV 14 3C?ro will also be studied to see if they 

have an effect on cleavage in the reporter gene system
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2. Expsnimsntal

2.1 Materials

T4 DNA ligase, T4 DNA polymerase, Taq polymerase, lkb DNA ladder, restriction

enzymes and their buffer solutions were obtained from Promega. Protein size markers 

were obtained from Sigma and BDH. Oligonucleotides were synthesised using 

phosphoramidite chemistry on an Applied Biosystems 381A by I. Armitt or obtained 

from Oswel Ltd. DNA sequencing was carried out by Alex Houston on a Perkin-Elmer 

ABI Prism™ 377 DNA sequencer using multicolor ABI dRhodamine 'BigDye' 

terminators. Transformations, mini-preparations and maxi-preparations were carried out 

using the E. coli strains JM109 or SURE.

Solutions:
TE lO mM Tris.HCl

1 mM EDTA (pH 8.0)

TAB 0.04 M Tris-acetate
0.001 M EDTA

TBE: 0.9 M Tris-borate,
0.002 M EDTA.

Agarose gel loading buffer 2xTAE
50 % [v/v] glycerol
0.005 % [w/v] bromophenol blue 
0.004 % [v/v] ethidium bromide

fmol Sequencing buffer (5 x): 250 mM Tris.HCl (pH 9.0),
10 mM MgCl2.

Destain: 20 % [v/v] methanol,
10 % [v/v] glacial acetic acid.

Tris glycine buffer: 0.1 % [w/v] SDS,
25 mM Tris,
250 mM glycine.

2 x SDS-PAGE loading buffer: 
(containing p-mercaptoethanol)

124 mM Tris.HCl (pH 6.8),

4 % SDS,
0.2 % bromophenol blue,
20 % glycerol,
10 % p-mercaptoethanol.
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LB 1 % [w/v] bacto tryptone
0.5 % [w/v] bacto-yeast extract
1 % [w/v] NaCl pH 7.0.

SOB 2 % [w/v] bacto-tryptone,
0.5 % [w/v] bacto-yeast extract
0.05 % [w/v] NaCl
0.25 M KCl
10 mM MgCl2

Phenol/chloroform 50 % phenol
50 % chloroform 
overlaid with 0.01 M Tris.Cl

TFB 10 mM MES (2-[/V-morpholino]ethansulfonic 
acid)
45 mM MnCl2.4H20
10 mM CaCl2.2H20
100 mM KCl

KMES 1MMES
pH to 6.3 with 5 M potassium hydroxide

Solutions for minipreparation of DNA by alkaline lysis

Solution 1 50 mM glucose
25 mM Tris.Cl (pH 8.0)
10 mM EDTA

Solution 2 1 % SDS
0.2 M NaOH

Solution 3 3MKAc
5 M acetic acid

Solutions for immunoprecipitation

NET/GEL 0.15 M NaCl
0.05 M Tris.HCl (pH 7.4)
0.005 M EDTA
0.02 % NaNs
0.05 % NP-40
0.25 % gelatin

NET/GEL/BSA NET/GEL with 0.2 % BSA

NET/GEL/NaCl NET/GEL with a final concentration of 0.5 M
NaCl.

NET/GEL/SDS NET/GEL with a final concentration of 0.1 %
SDS.
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2.2 Mathods

2.2.1 Cloeieg tacheiquas

Rastrictioe aezyma digastioes. All plasmid DNA restriction enzyme digestions were 

carried out under the conditions specified by the supplier. In general, 1 pg of DNA was 

digested with 1 unit of enzyme in a total volume of 20 |xl, containing 2 pl of lOX 

restriction buffer at 37 °C unless otherwise specified.

Agarosa-ga) elactrophorasis. Flat bed agarose gels, of concentration 0.7 - 2 % w/v, were 

prepared with 1 x TAB which contained ethidium bromide at a final concentration of 

0.5 pg/ml. DNA samples were applied to the gel in agarose gel loading buffer. 

Electrophoresis was carried out at 100 - 180 V in 1 x TAB containing 0.5 pg/ ml ethidium 

bromide. Following electrophoresis the DNA bands were visualised by illumination from 

a UV transilluminator (UVP).

Agarosa Gal Purificatioe of DNA fragmaets. DNA was isolated from low melting 

point agarose using one of the two following methods:

(i) Phenollacetate method. The DNA band was run into 1 % low melting point 

agarose (LMP) from where it was excised and placed in a 1.5 ml microcentrifuge 

tube. This was heated to 70 °C to melt the agarose, then filled with phenol/acetate 

(phenol equilibrated with 0.3 M sodium acetate), vortexed and incubated on ice 

for 10 minutes before being spun in a microfuge at 13000 rpm for 5 minutes . The 

top aqueous layer was removed to a fresh tube. The extraction was repeated and 

400 pi of the top layer removed to a fresh tube. To precipitate the DNA, 1 ml of 

ethanol and 20 pi of 2 M sodium acetate were added and mixed. The tube was 

kept at -20 °C overnight, spun at 14000 rpm at 4 °C in a microcentrifuge for 20 

minutes and the supernatant discarded. The DNA was resuspended in sterile 

distilled water.
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(ii) Wizard method. DNA was excised from LMP agarose as above and isolated 

using the Wizard Prtp DNA Purification system (Promega), rccsodina to the

mrnuracturtr's instructions.

Ligations. Ligation reactions were routinely carried out in a final volume of 20 pi. The 

ligation reaction mic generally consisted of 1 pi (4 Weiss units) of T4 DNA ligase , 0.5 

pg of vector DNA, and insert concentrations at 2 fold, 5 fold or 10 fold molar ratios in T4 

DNA ligase buffer (30 mM Tris.HCl (pH 7.8), 10 mM MgCla, 10 mM DTT, 0.5 mM 

ATP). The reaction mixes were incubated overnight at 16 0C .

Transformation of E. coli. Competent E. coli were prepared and transformed with 

plasmid DNA by one of the following methods:

(i) Calcium chloride method. For transformation of ligation reactions, where a 

medium efficiency of transformation was required the calcium chloride method 

was used. 10 ml of LB were inoculated with 1 ml from an overnight culture of LB 

inoculated with E. coli, and incubated on a shaker until exponential phase (OD^n 

= 0.4) was reached, then the cells were cooled to 0 0C for 10 minutes in centrifuge 

tubes, pelleted at 4 °C and the supernatant discarded. Each pellet was resuspended 

in 10 ml of ice cold 0.1 M calcium chloride and stored on ice for 15 minutes. The 

cells were pelleted, the supernatant discarded and then each pellet resuspended in 

1 ml ice cold 0.1 M calcium chloride and stored on ice for 15 minutes (or until 

required). The transformation efficiency of cells prepared by this method is at an 

optimum between 12 and 24 hours after prepasation. To 200 pi of cells 0.5 pg of 

DNA, or a ligation reaction, is added and incubated on ice for 30 minutes. The 

cells were then heat shocked by heating to 42 °C for 90 seconds and rapidly 

transferring them to an ice bath for 2 minutes, before plating out on LB agar plates 

containing the appropriate antibiotics.

(iii)Modified Hanahan method. MgCl2 (5 mM) and MgS04 (5 mM) were added 

to 25 ml SOB and this was inoculated with 250 pi bacterial culture (SURE or
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JM109). This was incubated on a shaker at 37 0C overnight. SOB (25 ml) plus 5 

mM MgCl2 and 5 mM MgSO4 was inoculated with 250 pi of the overnight culture 

and incubated at 37 °C until in log phase. The cells were cooled to 0 °C for 10 

minutes and then pelleted at 4 °C and the supernatant discarded. The cells were 

resuspended in 2 ml cold TFB and incubated on ice for 30 minutes. Cells were 

pelleted at 4 °C and the supernatant discarded. Cells were resuspended in 2 ml 

cold TFB and incubated on ice for 5 minutes. Dimethylformamide (DMF; 70 pi) 

was added and incubated on ice for 5 minutes. A mixture of P-mercaptoethanol 

and KMES (70 pi) was added, mixed by swirling and incubated on ice for 10 

minutes. DMF was added (70 pi), the cells were mixed by swirling and incubated 

on ice for 5 minutes. The DNA to be transformed was put into pre-cooled tubes 

and 200 pi of cells were added. The cells were incubated on ice for 30 minutes . 

The cells were heat shocked at 42 °C for 2 minutes. The whole mix was then 

plated onto LB agar plates containing appropriate antibiotics.

DNA Preparations. Mini-, midi-, and maxi-preparations of plasmid DNA were used 

depending on the quantity and quality of DNA required. Midi- or maxi-preparations were 

required for transcription and translation.

(a) Mini-preparation of plasmid DNA. Minipreparation of DNA was carried out via 2 

different methods; the latter being used for preparation of DNA for automated 

sequencing.

(i)Alkaline lysis method. LB broth (10 ml) containing ampicillin (150 pg/ml final 

concentration) was inoculated with a single colony and incubated in an orbital 

incubator overnight. The cells were pelleted, the supernatant removed, and the 

cells resuspended in 200 pi of solution 1. Solution 2 was added (400 pi) and 

mixed, followed by 300 pi of solution 3. The sample was mixed and incubated on 

ice for 20 minutes, the solution was centrifuged and the supernatant transferred to 

a fresh eppendorf. The sample was then extracted by adding an equal volume of 

phenol/chloroform, vortexing, centrifuging and removing the upper aqueous layer
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to a fresh eppendorf. Two volumes of cold ethanol and 1/20 volumes of 2 M 

sodium acetate were then added, mixed, and the sample incubated at -20 °C for 1 

hour. The sample was centrifuged and the DNA precipitate was washed with 70 

% (v/v) ethanol, dried, and then resuspended in 50 pi of distilled water with 2 pi 

RNaseA (1 mg/ml).

(ii)Promega Wizard SV DNA miniprep kit. Minipreparation of DNA for 

automated sequencing was carried out according to the manufacturers instructions.

(b) Maxi-preparation and Midi-preparation of plasmid DNA. Maxi-preparation of 

plasmid DNA was carried out via two different methods; the latter of these two methods 

was also used for midi-preparation of plasmid DNA:

(i) Caesium d^li^ori^^ gradie^ mediod. LIB brooti (200 ml. 001^^^ 100 pg/ml 

ampi^Hm was inoculated with a single colony and incubated in an orbital 

incubator overnight. The cells were pelleted and the supernatant decanted. The 

cells were then resuspended in 10 ml of solution 1. Solution 2 was added (20 ml) 

and mixed. Solution 3 was added (15 ml) and mixed. The mixture was then kept 

at 0 °C for 5 minutes, centrifuged for 15 minutes and the supernatant poured 

through muslin into fresh Sorval tubes. Isopropanol (0.6 volumes) was added, left 

at room temperature for 30 minutes and then centrifuged for 5 minutes. The 

supernatant was pipetted off and the nucleic acid resuspended in 8.5 ml of TE. 10 

g of caesium chloride and 1 ml of 5 mg/ml ethidium bromide were added to the 

DNA solution and the sample was centrifuged for 20 hours at 55Krpm at 20 °C. 

The plasmid DNA bands were visualised under UV light and the lower band, 

containing closed circular supercoiled DNA, was removed. The gradient fraction 

was extracted with 1 ml of caesium chloride saturated isopropanol, the sample 

vortexed and the upper phase removed. This was repeated until all ethidium 

bromide was removed. Distilled water (2 ml), 300 pi of 2 M sodium acetate and 

7.5 ml of e^anoo were then added and the sample incubateci aa room t^^lm^^l'r^tt^^lrl 

for 30 minutes to precipitate the DNA. This was then pelleted by centrifugation 

for 10 minutes, washed with 70 % ethanol and resuspended in 150 pi of TE.
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(ii) Qiagen method. Maxi-preparations and rei^^i-^xPLr^t^^1^^a^ii^^ns of plasmid DNA 

were carried out according to the Qiagen Plasmid Maci or Midi Kit protocol, as 

per manufacturer's instructions (Qiagen).

Polymerase chain reaction (PCR). The PCR amplification of DNA was used to amplify 

genes for cloning purposes and for the production of gene fragments with site directed 

mutation within the HRV 14 3CPro region. A typical PCR reaction was carried out using 

20 ng of template DNA with 200 pmol of each primer, 0.25 mmol of each dNTP, 10 pi of 

Taq DNA polymerase buffer (50 mM KCl, 10 mM Tris.HCl (pH 9.0), 0.1 % (e/e) Triton 

X-100, 1.5 mM MgCla) and 2.5mM MgC% in a total volume of 100 pi. The reactions 

were overlaid with mineral oil to prevent evaporation of the reaction mixture during 

thermal cycling. Reactions were heated to 94 °C for 5 minutes then held at 85 °C whilst 2 

units of Taq DNA polymerase (Promega) were added to the aqueous phase of each 

reaction. Amplification was carried out on a thermal cycler using the following 

parameters: 94 °C for 2 minutes, to denature the DNA; 50 "C for 1 minute, to allow 

primers to anneal to the DNA template; 72 °C for 1 minute for every thousand base pairs 

to be amplified to allow Taq DNA polymerase to extend from each primer. The 

amplification was carried out for 25 or 30 cycles, with the final 72 °C step being increased 

to 5 minutes, to ensure that the majority of final product was full length double stranded 

DNA. The annealing temperature was varied according to the base composition and, 

therefore, annealing temperature of the primer. Oligonucleotide primer sequences can be 

seen in Tables 2.1a and b.

Site directed mutagenesis by overlap PCR. PCR was caiTied out as above and products 

of the primary reactions were purified using Wizard PCR Preps (Pi-omega). The purified 

products were then used as templates in the secondary reactions at a concentration of
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Table 2.1a Oligonucleotide primers for construction of control plasmids,

OB4; 30mer. HRV14 3C M
CGCGCGGACGTCATGCGCCCAGTTGTTGTGCAA

Forward Primer. Aatll
OB6; 30mer. HRV14 3C

*
GCGCGCCTGCAGTCATCTAGCTATTACTTGGCC

Reverse Primer. PstI
OB21; 30 mer HRV14 3D

*
TTTTTTCTGCAGTCACTAAAAGAGGTCCAACCA

reverse primer PstI
OB23; 30 mer. HRV 14 3B 
reverse primer

*
TTTTITCTGCAGTCATTGCACcAACGGCTGGGCG

PstI
OB30; 30 mer. HRV 14 3D 
forward primer

M
TTTTITGACGTCATGTATTTrGTAGAGAAA

Aatll
OB31; 30 mer HRV 14 3A 
forward primer

M
TTTTTTGACGTCATGCTAGAAACACTGTTT

Aatll
Z1554; 33mer HRV 14 5'NCR CGCGCGGGA^TCCT^^AAAACAGCGG^TGG^TATC
forward primer BamHI
Z1555; 33mer HRV14 5'NCR CGCGCGCTGCAGCCATGATCACAGTATATGTAT
reverse primer PstI
KAN 10; 31 mer. M

CCCGCGGGCCCCATGAGCCATATTCAACCGG
KAN forward primer Apal
OB8; 30mer.

*
CCCCCGGACGTCTCAGAAAAACTCATCGAGCAT

KAN Reverse Primer. Aatll
OB9; 42mer.
TET forward Primer.

M
CGCGCGCTCCAGATGAAATCTAACAATGCG

PstI
OB1O; 30mer.
TET Reverse Primer.

*
CGCGCGGAGCTCTCAGGTCGAGGTGGCCCGGCT

Sacl
OB14 ; 36 mer
3C forward primer

AAATTTGGTACCAAGGACCAAACACAGAATTTG
Kpnl

OB 15 ; 36 mer
3C reverse primer

CGCGCGAAGCTTCTATTGTTTCTCTACAAAATA
Hindlll

OB16; 33mer.
3D reverse primer.

CCCGCGAAGCTTCTAAAAGACGTCCAACCAGCG
Hindlll

OB 12; 35mer.
Pl Forward.

GGGGGTACCGCCGCCACCATGGGCGCTCAGGTT
Kpnl

OB13; 33mer.
Pl Reverse.

CGACTGTAATTTAGGATAATCTGATCACCCCCC
Spel
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5Ong and the conditions and DNA concentrations were as above. Oligonucleotide primer

sequences for the primary reaction may be seen in Table 2.2.

TABLE 2.1b Oligonucleotide primers for the construction of artificial reporter
plasmids.

KAN 10; 31 mer.
KAN forward primer

M
CCCGGGGGGCCCATGAGCCATATTCAACGGG

Apal
OB8.1; 30mer. CGCGCGGACGTCGAAAAACTCATCGAGCAT
KAN Reverse Primer. AatII
OB4.1; 30mer.
HRV 14 3C Forward Primer.

CGCGCGGACGTCCGCCCAGTTGTTGTGCAA
AatII

OB6.1; 30mer.
HRV 14 3C Reverse Primer.

GCGCGCCTGCAGTCTAGCTATTACTTGGCC
Pstl

OB9.1; 42mer.
TET forward Primer.

CGCGCGCTGCAGAAATCTAACAATGCG
Pstl

OB1O.; 30mer.
TET Reverse Primer.

*
CGCGCGGAGCTCTCAGGTCGAGGTGGCCCGGCT

Sacl
OB31.1; 30 mer HRV 14 3A 
forward primer

TTTTTTGACGTCGGACCAGTGTATAAA
AatII

OB21.1; 30 mer HRV14 3D 
reverse primer

TTTTTTCTGCAGCTAAAAGAGGTCCAACCA
Pstl

Table 2.2 Oligonucleotide primers for overlap PCR

OB19; 21mer. HRV14 3C 
Cysl46_>Ala Forward

ACTGGGCAGGCTGGAGGTGTG

OB20.2; 21mer. HRV14 3C 
Cysl46_>Ala Reverse

CACACCTCCTGCCTGCCCAGT

OB4; 30mer.
HRV 14 3C Forward Primer.

CGCGCGGACGTCCGCCCAGTTGTTGTGCAA
AatII

OB6; 30mer.
HRV 14 3C Reverse Primer.

GCGCGCCTGCAGTCTAGCTATTACTTGGCC
Pstl
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Purification of PCR products. PCR products were purified using the Wizard PCR preps

(Promega). Either the direct purification method was used or products were run into 1 % 

LMP agarose and purified from there.

2.2.2 Nucleotide dideoxy sequencing of recombinant DNA clones

Cycle sequencing with [32P]-end-labelled primer. Nucleotide dideoxy sequencing was 

carried out via a method based on the fmol protocol (Promega), using cycle sequencing 

with a [32P]-end-labelled primer. Plasmids pEBl, pEB2 and pEB3 were sequenced using

this method.

Automated sequencing. Automated sequencing was carried out by Alex Houston on a 

Perkin Elmer ABI Prism™ DNA sequencer. Sequencing primers were designed to the T7 

and SP6 polymerase promoters and a region within the kanamycin resistance gene (Table 

2.3). Data was viewed using EditView software from Applied Biosystems. Plasmid 

DNA (500 ng)was submitted for sequencing with 3-5 pmol of the appropriate 

oligonucleotide primer.

T7 promoter primer 20 mer 5'-d(TAATACGACTCACTATAGGG)-3'

SP6 promoter primer 19 mer 5'-d(TATTTAGGTGACACTATAG)-3'

Kan sequencing primer 18 mer 5'-d(ATCGCAGACCGATACCAG)-3'

Table 2.3 Nucleotide sequences of oligonucleotide primers used for automated
sequencing.

2.2.3 Translation in vitro

Coupled transcription/translation (TnT) reactions. Proteins were expressed in vitro 

using coupled transcription/translation kits, for either wheatgerm extract (WGE) or rabbit 

reticulocyte lysate (RRL) systems, according to the manufacturers instmctions (Promega).
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Proteins were radiolabelled with [35S]-methionine unless otherwise stated. Reactions 

were incubated at 30 OC for 90 minutes, unless otherwise stated, then stopped by the 

addition of SDS-PAGE loading buffer. Aliquots of translation reactions (3 jtl) were 

analysed by denaturing PAGE, or 10 pi aliquots were immunoprecipitated.

Processing in trans. To monitor processing in trans in the reporter polyprotein system 

TnT reactions were carried out as detailed above. The rabbit reticulocyte lysate (RRL) 

system was used for these reactions. Reactions were incubated at 30 °C for 90 minutes. 

The reactions were stopped by the addition of RNaseA (to a final concentration of 

0.5pg/ml) and cycloheximide (to a final concentration of 0.8pg/ml), overlaid with mineral 

oil and incubated overnight at 30 °C. The results were analysed by SDS-PAGE.

To monitor processing in trans by 2APro, 3CDPro and 3CD' the protease source was 

synthesised in the TnT wheatgerm extract system without radiolabelling. A mixture of 

amino acids minus leucine (1 mM) was used to provide a source of methionine in the 

unlabelled reactions. Labelled substrate was synthesised as detailed above. Both 

reactions were stopped by the addition of RNaseA and cycloheximide. Unlabelled 

protease (5pl) and 5 pi of the labelled substrate were then mixed together, overlaid with 

mineral oil and incubated together overnight at 30 °C.

The trans processing reaction was also carried out with 7.5 pi of the labelled 

substrate and 5 pi of the unlabelled protease source to try and create conditions which 

were more favourable for trans processing.

Co-translation. Equal amounts of two plasmid DNAs were used to program a TnT 

reaction, one acting as a substrate and the other as a protease source. They were co­

expressed in the TnT system for 90 minutes at 30 °C. The reaction was then stopped by 

the addition of RNaseA and cycloheximide, overlaid with mineral oil and incubated 

overnight at 30 °C.
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Addition of DTT. DTT was added to the trans processing reactions to enhance the

efficiency of trans processing. It was added when the substrate and protease were mixed,

before the overnight incubations, to a final concentration of 2 mM.

2.2.4 Protein expression in E. coli

Luria Broth with 150 pg/ml of ampicillin was inoculated with E. coli strain BL21(DE3) 

and grown overnight on an orbital incubator at 37 °C. Overnight bacterial culture (1 ml) 

was added to 9 ml of LB with 150 pg/ml of ampicillin and grown , with shaking at 37 "C 

for 3 hours. The culture was divided into 2 x 5 ml and to one of these IPTG was added to 

a final concentration of 1 mM, to induce expression of the fusion protein. Incubation 

was continued for a further 3 hours. The cells were then pelleted by spinning for 5 

minutes at 3000 rpm, the supernatant discarded, and the cells resuspended in 250 ml of 

ice-cold PBS. The cells were then lysed using a probe sonicator for 3 x 10 seconds with 

10 seconds on ice between sonicating. From each sample of whole sonicate, induced and 

uninduced, 100 ml was removed and spun in a microfuge. The supernatant was removed 

and the pellet resuspended in 100 ml. For both the induced and uninduced samples, 10 ml 

of supernatant and insoluble material were analysed by SDS-PAGE.

2.2.5 Expression of antibiotic resistance in E.coli

The genes coding for the artificial polyprotein [KanR3CProTetR] were released from 

pEB4 by restriction digest with Apal and Sacl and ligated into pBSIIKS+. This was to 

allow expression of antibiotic resistance by the reporter genes. Control plasmids were 

also made. The ligation reactions were transformed into E.coli and plated onto LB agar 

plates. Transformants were screened by restriction digest and those found to be correct 

were used for a large scale plasmid preparation.

The plasmid DNA was then transformed and plated onto LB agar plates containing 

combinations of antibiotics (see Table 2.4). When expression of the tetracycline
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resistance gene product was being monitored the cultures were incubated at 37 °C for 1 

hour before plating to allow expression of antibiotic resistance by TetR. TetR encodes a 

399 amino acid membrane associated protein which prevents tetracycline from entering 

the cell. The bacteria need time to accumulate this protein product before they show 

resistance to tetracycline, hence the 1 hour incubation. This was not necessary with 

ampicillin and kanamycin as these work by different mechanisms. Ampicillin inhibits 

enzymes in the bacterial membrane that are involved in cell wall synthesis and kanamycin 

binds to ribosomal components and inhibits protein synthesis. The resistance gene 

products act on these antibiotics work by breaking down the drugs and therefore do not 

need to accumulate before they can be active.

Ampicillin
lOOjtg/ml

Kanamycin
10pg/ml

Tetracycline
25|lg/ml

1 V X X
2 V V X
3 V X V

4 V V V

5 X
V i

Table 2.4 Antibiotic components of LB agar plates used to monitor expression of
antibiotic resistance.

2.2.6 Immunoprecipitation reactions

The products of in vitro transcription/translation reactions were immunoprecipitated with 

an antibody to neomycin phosphotransferase (NPTII) (5Prime->3Prime). Neomycin is an 

analogue of kanamycin and the antibody should detect the translation products of the

kanamycin resistance gene.

Preparation of immunoprecipitin. Immunoprecipitin (Gibco-BRL), i.e heat-killed, 

formalin-fixed Staphylococcus aureus cells, 1 g in 10 ml PBS, was centrifuged for 20 

minutes at 3000 rpm and the supernatant discarded. The cell pellet was resuspended in
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PBS containing 10 % P-mercaptoethanol and 3 % SDS, and the sample incubated at 95 “C

for 30 minutes. The cells were centrifuged at 3000 rpm for 20 minutes, the supernatant

discarded and the cells resuspended in 900jlt1 of NET/GEL/BSA.

Pre-clearing the sample. This removed proteins which would have bound non­

specifically directly {i.e. not via the antibody) to the immunoprecipitin. 50pl of 

NET/BSA was added to 10 fLl of coupled TnT reaction in a 0.5 ml microcentrifuge tube. 

1.5 |nl oo i mmunooreeipitin scoution was added and 1 ncut>ated at room temperature fen 11 

minutes, then spun in a microcedirifuge at 13000 rpm for 2 minutes and the pellet 

eiscsrdee.

Immunoprecipitation reaction. 5 pi of the anii-NPTll antibody was added to 50 pi of 

the supernatant of the pre-cledree sample and incnbaiee overnight at 4 °C. 6 pi of 

lmmunopreclpiild were added and incubated for 15 minutes at room temperature, spun in 

a microcenioifuge for 2 minutes at 13000 rpm, and the supernatant discarded. The pellet 

was resuspended in 100 pi of NET/GEL/NaCl, spun in a micrneuge for 2 minutes at 

13000 rpm, and the supernatant discarded. The pellet was suspended in 100 pi of 

NET/GEL/SDS, spun in a microfuge for 2 minutes at 13000 rpm, and the supernatant 

discarded. The pellet was resuspended in 100 pi of 10 mM Tris.HCl (pH 7.5) and 0.1 % 

NP-40, spun in a microfuge for 2 minutes at 13000 rpm, and the supernatant discarded. 

The pellet was resuspended in lx SDS-PAGE loading buffer cnnidinlng 100 mM DTT, 

and the sample boiled for 2 minutes and spun in a microfnge for 2 mrnniec at 13000 rpm. 

The results were analysed by SDS-PAGE.
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2.2.7 Protein analysis

Denaturing Polyacrylamide gel electrophoresis (SDS-PAGE). The discontinuous 

buffer gel system based on that of Laemmli (1970) was used for denaturing 

polyacrylamide gel electrophoresis (SDS-PAGE). Unless otherwise noted all gels were 

constructed with a 4 % polyacrylamide stacking gel and a 10 % polyacrylamide resolving- 

gel. Typically electrophoresis of each gel was carried out at a constant current of 15 - 20 

mA throughout the stacking gel and 30 - 40 mA through the resolving gel.
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3. Cloning and molecular characterisation of the cornponciits of 
a ’Reporter’ polyprotein system.

In order to observe the cleavage activity of 3CPr° without the influence of other viral 

sequences a reporter system, was constructed. HRV 14 3CP1'0 was cloned into a

transcription vector, with two flanking reporter genes to create a single ORF. Two 

antibiotic resistance genes were chosen as the non-viral components of the reporter 

system to investigate the possibility of selection of cleavage products by antibiotic 

resistance in E.coli, in addition to the identification of translation products in cell-free 

translation systems. The antibiotic resistance genes were ligated into a transcription 

vector flanking the viral sequence of interest. The system was also designed to allow the 

substitution of components by digestion with the appropriate restriction enzymes at sites 

which flank each gene.

The predicted molecular weights of the components of the reporter polyprotein 

system were calculated (Figure 3). This was to ensure that they were of significantly 

different sizes to allow reasonable separation on an SDS-PAGE gel. Similarly the 

molecular weights of the predicted primary cleavage products were calculated. It can be 

seen from Figure 3 that the products all have at least a 10 kDa difference in size which is 

sufficient to separate them on a 10% SDS-PAGE gel. Once it had been established that 

the size differences were substantial enough to allow identification of products on an 

SDS-PAGE gel plasmid construction was started.

The values shown in Figure 3 are for the construct encoding the artificial 

polyprotein [KanR3CPr°TetR]. Other artificial polyproteins were also to be constructed 

but they would utilise the same reporter genes and have 3C-containing sequences as the 

viral component. Therefore, molecular weights of products would be almost the same as 

in this construct with a few additional viral protein cleavage products.
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Figure 3 Predicted molecular weights of the components of the reporter polyprotein
system [KanR3CProTetR] and the possible cleavage products.

3.1 Additiod ofrestriction enzyme sites to gene sequencesby they 
PCR

In order to facilitate ligation of the artificial polyprotein components into a 

transcription vector restriction enzyme cleavage sites were added to the ends of the PCR 

products. Oligonucleotide primers were designed to the 5' and 3' sequences of each gene. 

The restriction enzyme site nucleotide sequence was incorporated upstream of the start 

codon in the forward (5' ) primer. It was followed by the initiation codon (ATG) in 

primers for the control plasmids and then by codons from the 5' end of the gene which 

would anneal to the template (Figure 3.1).

The reverse primer was designed in a similar way. The appropriate restriction site 

was used but the sequence was reversed and complemented. A stop codon (TGA) 

followed the restriction site sequence in primers for the genes for the control plasmids. 

The reverse complement of the six codons from the 3' end of the gene made up the 

remainder of the primer sequence. Primer sequences can be seen in tables 2.1a and b and 

2.2 in seetion 2.
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Figure 3.1 Addition of restriction sites to genes by the PCR. The oligonucleotide 
primers shown are for the dmelifrcaiinn of 3CPro from the full length HRV 14 cDNA.
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3.2 Construction of control plasmid pEBl.
The tetracycline resistance gene (TetR) was amplified by the PCR for use as a 

reporter gene in the system. Oligonucleotide primers were designed to the 5' and 3' ends 

of the gene (see Table 2.1). Restriction enzyme sites were incorporated into the sequence 

of the primers so that they would be added to the ends of the PCR products. These were 

to allow ligation into the transcription vector pGEM5zf(+).

The plasmid pEBl was constructed as a control for the size of the translation 

product of the tetracycline resistance gene which would be one of the reporter genes in 

the artificial polyprotein system (Figure 3.2). TetR has its own initiation codon which 

will allow transcription in the TnT system. This will not be strictly necessary in the 

reporter system as the polyprotein will be translated as a polypeptide from the initiation 

codon at the 5' end of the KanR gene so different primers were used to amplify the 

sequence for inclusion in the reporter system.

In order to construct a control plasmid for the translation of the TetR gene the gene 

was amplified using the PCR from the plasmid pBR328. Unique PstI and Sacl restriction 

sites were added to the 5' and 3' ends of the gene respectively using the PCR to facilitate 

ligation into pGEM5zf(+) which had been similarly restricted. For convenience the PCR 

product was cloned into pGEM-T (a vector which utilises the adenine added to the ends 

of amplified products by the PCR) for easy cloning. Small scale DNA preparation 

(miniprep) was carried out on putative clones and restriction digests were performed to 

identify clones where the insert had been ligated into the vector. The clone was digested 

with PstI and Sacl and a 1200 bp fragment was released corresponding to the TetR gene. 

The plasmid was sequenced using a T7 promoter primer on an ABI Prism™ automated 

sequencer. This gave the correct nucleotide sequence and the construct was used to 

program a wheatgerm extract coupled transcription translation system.

On translation the plasmid did not give a product of the expected size and any 

translation products which were produced were at very low levels. The plasmid was re­

sequenced using T7 and SP6 promoter primers. The sequences from both ends of the 

TetR gene were the same leading to the conclusion that ligation into the pGEM-T vector
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(A)

Figure 3.2 Construction of pEBl. The TetR coding sequences were amplified by 
the PCR using oligos OB9.1 and OB 10.1 (A). The purified PCR product (B) was 
ligated into the vector pGEM-T to form plasmid pEBl (C).

Amplification of the tetracycline resistance gene by the PCR 
and addition of unique restriction sites at 5’ and 3’ ends.
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had allowed two copies of the PCR product to be cloned into the vector end-to-end. On 

transcription both positive and negative strand RNA was produced, which then paired and 

prevented any translation. Therefore no translation product was seen in the TnT reaction 

(Figure 3.2.1),

PstI Sacl PstI
TetR ! TetR

T7 . [Transcription SP6

+ -

+
RNA

No translation therefore no protein produced

Figure 3.2.1 Product of transcription and translation of pEBl [TetRpGEM-T].

In order to produce a control plasmid which would translate effectively, the tetracycline 

resistance gene PCR product was excised from the pGEM-T vector using the unique 

restriction sites added at either end and ligated into pGEM5zf(+). pGEM5zf(+) had been 

restricted with the same enzymes, PstI and Sacl (Figure 3.2.2). This plasmid was then 

used to program a WGE TnT reaction and produced a translation product of the predicted 

size (Figure 3.2.3).
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Figure 3.2.2 Construction of pEBl.l. The TetR coding sequence was released from 
the plasmid pEBl A (A) by orstriciiod digest with PstI and Sad (B). The fragment 
was then ligated idio pGEM5zf(+) which had been similarly digested to form the 
elasmre pEE 1. l (C).

(A)

TetR gene released from vector by digestion with PstI and Sacl.

PstI Sacl

L(B) ■■■■■ HH■H

TetR [1-1203]
(1203 bp)

TetR gene ligated mto pGEM5zf(+) resioruire with PstI scI Ss^I.

(C)
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Figure 3.2.3 Translation product of pEBl.l. Two putative clones (Lanes 3 &4) 
were translated to see whether they produced translation products of the correct size 
for TetR (41 kDa). Using SDS-PAGE to analyse the products of the TnT reaction the 
clone in Lane 3 was found to produce the correct product and named pEB 1.1. Sizes 
of molecular weight standards are shown in kDa.

.160
■ 105 
■75

■50

■ 35 
■30

TetR 
Mr = 41 kDa 
KanR 
Mr = 31 kDa

3Cpro 
Mr=21kDa

Lane 1 pEB2 KanR in pGEM5zf(+) 

Lane 2 pEB3 3CPr° in pGEM5zf(+) 

Lane 3 pTet.l TetR in pGEM5zf(+) 

Lane 4 pTet.2 TetR in pGEM5zf(+)
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3.3 of the plasmid pER2
The kanamycin resistance gene (KanR) was amplified by the PCR from the plasmid 

pGEX2AKAN (constructed previously by Dr Martin Ryan). Oligonucleotide primers 

were designed to anneal to the 5' and 3' ends of the gene and to add restriction enzyme 

sites to the termini of the PCR product. An Apal site was added to the 5' end and an Aatll 

site to the 3' end (for strategy see section 3.1). Both these sites are unique in the multiple 

cloning site of the chosen transcription vector, pGEM5zf(+) and are not present in the 

wild type sequence of the kanamycin resistance gene.

The PCR product was digested with Aatll and Apal to remove any extraneous 5' 

bases added by the PCR and to prepare for ligation into pGEM5zf(+) similariy restricted.. 

The PCR product was then purified by agarose gel extraction to remove any 

contaminants. pGEM5zf(+) was digested with Apal and Aatll and purified. The purified, 

restricted, PCR product (KanR) was then ligated into the plasmid as described in the 

methods section (Figure 3.3). This plasmid was constructed as a control for the reporter 

polyprotein system and also a precursor in the construction of the reporter system.

The gene has its own methionine codon at the 5' end for the initiation of translation. 

These bases were retained in the amplified gene as these will function as the initiation 

codon for the reporter system polyprotein (see below).
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(A)

Figure 3.3 Construction of p£B2. The Kscr coding sequence was amelifrre 
from pGEX2AKAN by the FCr using primers KAN1O and OB8 (A). The PCR 
product was oesirrcire withApdI and AsUU (B) and ligated into pGEM5zf(+), 
which had been similarly oesioiutee, to form the plasmid pEB2 (C).

KanR
OB8

Amplification of the kanamycin resistance gene by the 
PCR adding unique resirrcirnc sites io the 5’ and 3’ ends.

Ligation of PCR product into pGEM5zf(+) which had 
been resii-icied with Apal and Aaill.

▼
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3.4 Construction of the control plasmid pEB3.
The HRV14 3C protease coding sequence was amplified by the PCR. The template 

used was the full length HRV 14 cDNA coding sequence cloned into a Bluescript vector 

under the control of T7 polymerase promoter sequence. The sequences of the 

oligonucleotide primers designed for the PCR can be seen below. The region which 

anneals to the HRV14 template is shown in red (Figure 3.4). The oligos shown below do 

not include a methionine start codon or a stop codon since this PCR product will be used 

in the reporter system and the reporter genes flanking the protease sequence will have 

these codons.

5' oligonucleotide PCR primer

Oligo sequence Aatll M 3B->
OB4 CGCGCGGACGTCATGCGCCCAGTTGTTGTGCAA

3C->
Nucleotide sequence CGCCCAGTTGTTGTGCAAGGACCAAAC
of HRV 14 3C cleavage site

Nucleotide sequence GACGTCATGCGCCCAGTTGTGCAAGGACCAAAC ->
of PCR product

3' oligonucleotide PCR primer

Oligo sequence Pstl 3D->
OB6 GCGCGC CTGC AGTCT AGCTATTACTTGGCC

3C->
Reverse complement TCTAGCTATTACTTG GCCTTGTTTCT
of nucleotide sequence 3C cleavage site

Nucleotide sequence CTGCAGTCTAGCTATTACTTGGCCTTGTTTCT ->
of PCR product

Figure 3.4 Sequences of region of HRV14 template annealed to by 3CPro PCR 
primers OB4 and OB6. Regions in red are those of the primer and template which 
anneal to each other. All other sequences are shown in black.

Six amino acids of the C-terminal end of HRV 14 3B were included at the 5' end of

the 3CPro gene construct in order to maintain the Glu-Gly 3CPro 3B/C cleavage site. The

3C/D cleavage site at the 3' end of the gene was maintained by the inclusion of the first 6

amino acids of 3DP°* (see Figure 3.4.1). This will create some discrepancy in the sizes of 
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translation products from restriction enzyme cleaved plasmids and protease cleaved 

polyprotein products but the differences will be very small. The protease cleavage sites 

and the restriction enzyme sites are separated by 6 amino acids at either end of the gene.

The PCR product was digested with appropriate restriction enzymes (Aatll and PstI) 

to prepare for ligation and then purified to remove any contaminants. Ligation into 

pGEM5zf(+), digested with Aatll and PstI, was carried out as described in the methods 

section (Figure 3.4.2). The putative clones resulting from transformation of E.coli with 

the ligation reactions were analysed by restriction digest and found to be correct.

3B 3C
Aatll RPVVVQGPNT EF 

GACGTCCGCCCAGTTGTTGTGCAACKACCAAACCACAQAATTT

TATTTTGTAGAGAAACAAGGCCAAGTAATAGCTAGACTGCAG 
YFVEKQGQVIAR PstI

3D3C

Figure 3.4.1 Diagram to show the discrepancy between the restriction enzyme 
cleavage sites and 3CPro proteolytic cleavage sites.

Slightly different oligos were used to amplify the 3CPro sequence for the control plasmid. 

These included a start codon in the 5' primer and a stop codon in the 3' primer.
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Figure 3.4.2 Construction of pEB3. The HRV 14 3CPro coding sequence was 
amplified by the PCR using primers OB4 and OB6 (A). The PCR product was 
digested with Aatll and PstI (B) and ligated into pGEM5zf(+), which had been 
similarly restricted, to form the plasmid pEB3 (C).

(A)

3CPro
OB4

Amplification of HRV 14 3CPro gene by the PCR 
adding unique restriction sites to the 5’ and 3’ ends.

PstI

PstI

Aatll

Aatll

3C
(546 bp)

Restriction of PCR product with Aatll and PstI

Ligation of PCR product into pGEM5zf(+) which has 
been restricted with Aatl and PstI.

I
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3.5 of the pEB20
HRV 14 3CDPro was amplified using the PCR from a HRV 14 cDNA clone, ligated 

into a transcription vector similarly restricted. The PCR product was designed with 

restriction sites at the 5' and 3' ends so that it could be substituted into the reporter 

polyprotein system (see section 3.1). An Aatll site was added to the 5' end and a Pstl site 

to the 3' end. These are the same as the restriction sites on the 3CPro PCR product so that 

these viral components of the reporter system could be swapped easily and the effect of 

the different 3CPro containing sequences could be observed.

After digestion with Aatll and Pstl, the PCR product was ligated into pGEM5zf(+) 

to provide a control for the reporter polyprotein system. Slightly different oligos were 

used to amplify the gene for substitution into the reporter polyprotein system to replace 

3CPr° (see section 4.1.3; Figure 3.5).

In order to maintain the 3CPr° cleavage sites in the gene, additional sequences were 

included in the PCR product. The six amino acids at the 3' end of 3B were included at the

5' end of the PCR product. This is the same strategy as employed in pEB3 to maintain the 

cleavage sites in 3CPm. It was not necessary to include additional sequences at the 3' end 

of the gene as there is no 3CPr° cleavage site to be maintained.
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Figure 3.5 Construction of pEB20. The coding sequence for HRV 14 3CDPro was 
amplified by the PCR using oligos OB4 and OB21 (A). The PCR product was 
restricted with Aatll and PstI (B) and then ligated into pGEM5zf(+) which had been 
similarly restricted. This formed plasmid pEB20 (C).

PCR product ligated into pGEM5zf(+) restricted 
with Aatll and PstI.

▼
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3.6 of control plasmid pEB:27
In order to provide a control for the cleavage of 3CDPro, both in the reporter system 

pEB25 and in pEB20, 3DPo1 was amplified from HRV 14 by the PCR. Six amino acids 

from the 3' end of 3CPr° were incorporated in the PCR product. The additional amino 

acids were not strictly necessary as there was no need to maintain the 3CPro 3C/D 

cleavage site in this plasmid. This gene was intended only as a control and not as part of 

the reporter system and it was therefore not necessary to make an alternative PCR product 

without the initiation and termination sequences. The same primer used for the 

amplification of 3CDPro was used at the 3' end and therefore a PstI site was incorporated.

The 5' primer was designed with an Aatll site at the 5' end of the gene to allow 

ligation into pGEM5zf(+) (Figure 3.6) and an initiation codon was included. The enzyme 

sites were the same as those on the viral components of the reporter system for 

convenience. A stop codon was also included at the 3' end. The PCR product was then 

restricted and ligated into pGEM5zf(+) which had been restricted with the same enzymes.

Putative clones were checked by restriction digest after transformation in E.coli and 

nucleotide sequences of those which appeared to be correct were confirmed by DNA 

sequencing. The plasmid DNA of one correct clone was amplified with a Qiagen 

maxiprep kit to provide DNA of pure quality for translation and also to increase the 

quantity to allow for repeated translation reactions.
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Figure 3.6 Construction of p£B27. The HRV 14 3DP01 coding sequence was 
amplified by the PCR using oligos OB30 and OB31 (A). The PCR product was 
restricted with AatH and Pstl (B) and ligated into pGEM5zf(+) which had been 
similarly restricted. The resulting plasmid was named pEB27 (C).

Amplification of HRV 14 3DP°! by the PCR from HRV 14 cDNA 
clone. Addition of restriction enzyme sites at both termini for

▼

93



3.7 Construction of pEB 19

HRV 14 3ABC was amplified by the PCR from the HRV 14 full length cDNA clone . 

Restriction enzyme sites were added to the 5' and 3' ends of the gene by incorporation of 

the sequences in the oligonucleotide primers designed for the PCR (see section 3.1). An 

Aatll site was added to the 5' end and a PstI site to the 3' end. These would allow easy 

substitution of the genes into the reporter gene system to replace 30”*°. As in the other 

viral components of the reporter system additional amino acids were incorporated in the 

PCR product to maintain the 3CP1'0 cleavage sites. The six amino acids at the 3' end of 2C 

were incorporated at the 5' end of 3ABC and the six amino acids at the 5' end of 3DPo1 

were included at the C-terminus.

The PCR product was restricted with Aatll and PstI and then purified. It was 

ligated into pGEM5zf(+), which had been restricted with Aatll and PstI, for use as a 

control for the reporter polyprotein system (Figure 3.7). An alternative PCR product was 

also made without the initiation and termination sequences for use in the reporter system.

After transformation into E.coli putative clones were screened by restriction digest 

and of those found to be correct one was selected and a large scale DNA preparation was 

carried out, providing DNA for subsequent translation analysis.
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Figure 3.7 Construction of pEB19. The coding sequence for HRV 14 3ABC was 
amplified by the PCR using oligos OB31 and OB6 (A). The PCR product was 
digested with Aatll and PstI (B) and ligated into pGEM5zf(+) which had ben 
similarly restricted. The resulting plasmid was pEB19 (C).

S-
OB31

I
3ABC amplified from HRV 14 by PCR and unique 
restriction sites added to the 5’ and 3’ ends.

3ABC PCR product ligated into pGEM5zf(+) which 
had been restricted with Aatll and PstI.

1

95



3.8 Construction of pEB16
In order to provide a control for the cleavage of 3ABC and cleavage within the 

reporter system HRV 1*4 3AB was amplified from. HRV 1*4 cDNA cloned into a 

transcription vector . Oligonucleotide primers were designed to anneal to the 5' and 3' 

ends of the gene and also to include restriction enzyme sites at either end of the gene for 

easy ligation into a transcription vector (Figure 3.8). Additional amino acids were not 

included at the C-terminus of the gene as it was only to be used as a control and was not 

subject to cleavage by 3CPro. The same 5' oligonucleotide primer was used to amplify 

both 3ABC and 3AB so 6 amino acids of the 3' end of 2C were included at the 5 end of 

3AB. These were not strictly necessary as the plasmid would not be subject to cleavage 

by 3C0ro but since they will not be detrimental the same primer could be used. The 

additional six amino acids incorporated at the termini of the viral components of the 

reporter system do not make a significant difference to their molecular weight on 

translation. Therefore the addition of amino acids at the C-terminus of 3AB was not 

necessary and this would still provide a reliable control for the cleavage products of 

3ABC and the reporter polyprotein system.

A summary diagram of the constructs made is shown in Figure 3.12 on page 108.
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Figure 3.8 Construction of pEB16. The coding sequence of HRV 1-4 3AB was 
amplified by the PCR using oligos OB23 and CB31 (A). The PCR product was 
restricted with Aatll and Pstl (B) and ligated into pGEM5zf(+), which had been 
similarly restricted, to form the plasmid pEB16 (C).

(A)

OB31
Amplification of the coding sequence of HRV 1-4 3AB by 
the PCR from HRV 1-4 cDNA and addition of unique 
restriction sites at the 5’ and 3’ ends of the gene.

Ligation of 3AB PCR product into pGEM5zf(+) which 
has been restricted with Aatll and Pstl.

(C)

i
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3.9 Translatitn of cfntrfS pfasmids in a svheatgerm extract 
transcription translation coupled system.

All control plasmids were used to program WGE TnT reactions to check that the 

products were of the correct size. All plasmids were translated and the translation 

products can be seen in figure 3.9.1. pEB20 did not produce any translation products and 

despite repeated attempts to produce a successful transcript, including re-cloning of the 

PCR product, no product was obtained. However HRV 14 3CDPro was also cloned into 

the vector pRSETA (see section 5.1.2) and this plasmid, pEB7, was used to proved a 

control for 3CDP1'0.

In the case of plasmids pEB7 [3CDPo°] and pEB21 [3ABC] these reactions were 

also used to observe endogenous processing (see sections 3.10 and 3.11).
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Figure 3.9 Translation of control plasmids in WGE TnT systems. Control plasmids were used to program TnT reactions to 
see whether the translation products were of the correct size.

$

1 2

Lane 1 pEB2 KanR in pGEM5zf(+)

3 4

Lane 5 pEB2 KanR in pGEM5zf(+)Lane 3 pEB3 3CPro in pGEM5zf(+)

Lane 2 pEB3 3CPro in pGEM5zf(+) Lane 4 pEB 16 3 AB in pGEM5zf(+) Lane 6 pEB27 3DP«I in pGEM5zf(+)

Lane 7 pEB 19 3ABC in pGEM5zf(+)



3.10 Endogenous processing of HRV14 3CIMro.
Translation of a plasmid containing the gene for HRV 14 3CDPro, pEB20, showed 

no translation products. Therefore a plasmid encoding 3CDPro in pRSETA was used 

(Figure 3.10). The use of molecular weight markers allowed the identification of the 

largest translation product as 3CDPro and the presence of 3CPro (Figure 3.10.1) confirmed 

this. The other bands are therefore probably internal initiation products and not self­

cleavage products. A densitometric analysis of a phosphorimage of the translation 

products of pEB7 with Mac Bas version 2 software shows that internal initiation products 

are produced with very high efficiency in pEB7. The percentage initiation has been 

calculated for different methionine codons in the 3CDPro coding sequence (Table 3.1).

Translation of the plasmid in a rabbit reticulocyte lysate TnT reaction shows the 

internal initiation products even more clearly (Figure 3.10.1). The kozak consensus 

sequences for all of the in-frame methionine codons are shown below (Figure 3.10.2) and 

the molecular weights have been assigned to the bands on the gel using molecular weight 

markers (not shown). Some internal initiation products have co-migrated in figure 3.10 

and percentage initiation has been calculated taking this into account. Mean percentage 

initiation is as follows:

3CDMet-l +A3CDMet-17 73.0

A3CDMet-121 + A3CDMet-135 6.6 %

A3CDMet-324 18.2 %

The kozak consensus sequences for the methionines shown to initiate internally are 

quite strong and this further confirms that they would give visible translation products. 

Due to time constraints densitometric analysis of 3CDPro translation products in figure

3.10.1 was not possible. This would allow more accurate calculation of percentage 

initiation as there is better separation of the bands.

The plasmid pEB7 translated well giving discrete bands which were able to be 

identified as 3CDPr° and internal initiation products. No self-cleavage was observed in
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Figure 3.10 Translation of pEB20 in a rabbit reticulocyte lysate coupled system.
Translation of a plasmid containing the 3CDPro gene from HRV 14 in a coupled 
transcription translation rabbit reticulocyte lysate reaction. Some of the internal 
initiation products of BCDpro can be seen clearly . Densitometric analysis was 
carried out to calculate the percentage initiation at each methionine.

—3CDpro Mr = 72 kDa*
—Internal initiation product A

Internal initiation product B

Unincorporated 35 g-Met at bottom of gel

* also includes internal initiation product from Met-17 with a predicted 
molecular weight of 70.5 kDa.

Internal initiation product A = A 3CDMet-121 (Mr = 59 kDa) 
+A3CDMet-135 ( Mr= 57.5 kDa.

Internal initiation product B = A 3CDMet-324 (Mr = 36.7 kDa)
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Figure 3.10.1 Endogenous processing of 3CDPro. In order to clarify the
identification of the internal initiation products of 3CDPro the samples were analysed 
on a larger SDS-PAGE gel. The other two plasmids were used to provide some size 
controls.

1 2 3

3Cpro — 
Mr = 21 kDa

■Pl Mr = 94 kDa

3CDpro Mr = 72 kDa* 
Internal initiation product A

■Internal initiation product B

Lane 1 pEB3 3Cpro pGEM5zf(+)

Lane 2 pEB20 3CDpro in pGEM5zf(+)

Lane 3 Pl in pBSKSll+

*also includes A3CDMet-17 (Mr = 70.2 kDa)

Internal initiation product A = A 3CDMet-121 (Mr = 59 kDa) 
+A3CDMet-135 ( Mr= 57.5 kDa.

Internal initiation product B = A 3CDMet-324 (Mr = 36.7 kDa)
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the system, i.e. in cis.. Self-cleavage in trans was also not observed in this system (see 

section 5.2).

Kozak consensus GCC GCC A/GCC AUG £ Predicted Molecular weight
MET 1 TGG TAC CAA AUG £ Mr = 72.3 kDa
MET 17 AAA AAC ATA AUG A Mr = 70.5 kDa
MET 121 CCT GTA ACA AUG £ Mr = 59.0 kDa
MET 135 ACT AAC AGA AUG A Mr = 57.5 kDa
MET 257 ACT GAA AAT AUG C Mr = 43.9 kDa
MET 324 ACA GAA AAG AUG A Mr = 36.7 kDa
MET 370 TCT GTT AAC AUG A Mr = 31.4 kDa
MET 372 AAC ATG AGA AUG A Mr = 31.0 kDa
MET 1328 CCT TGT TTA AUG £ Mr = 27.2 kDa
MET 1233 GGG CAC CTG AUG £ Mr = 26.6 kDa
MET 1398 GAA GGT £GC AUG C Mr = 20.6 kDa
MET 1441 TTC AAT TCC AUG A Mr = 19.3 kDa
MET 1648 TTT ACA AAA AUG A Mr= 11.8 kDa
MET 1714 CAC CCA £TT AUG C Mr = 8.5 kDa
MET 1716 GTT ATG CCC AUG A Mr = 8.3 kDa
MET 1801 TCA TTA TGC AUG T Mr = 5.3 kDa

Figure 3.10.2 Kozak consensus sequences and predicted molecular weights for 
internal initiation products of the 3CDPTO gene. The residues which are underlined in 
each sequence are very important for recognition. Residues shown in red in each 
sequence are those which occur in the kozak consensus sequence.
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Band
Lane 1 2 3 4
No. of 
Mets

PSL-BG PSL-BG
No. of 
mets

%
initiation

PSL-BG PSL-BG
No. of 
mets

%
initiation

PSL-BG PSL-BG
No. of 
mets

%
initiation

PSL-BG PSL-BG
No. of 
mets

%
initiation

Mean
value%

3CDMet-l + 
3CDMet 17

16+15
=31

6052.0 195.2 73.5 5731.0 184.9 74.3 4726.0 152.5 75.8 4164 134.3 68.8 73.1

3CD Met 121 
+Met 135

14+13
=27

504.9 18.7 7.0 523.0 19.4 7.8 461.8 17.1 8.5 586.5 21.7 11.1 6.6

3CD Met 135 11 570.7 51.8 19.5 489.0 44.5 17.9 349.1 31.7 15.4 432.4 39.3 20.1 18.2

Total 265.7 248.8 201.3 195.3

Table 3.1 Calculation of percentage internal initiation from methionine codons in 3CDPro in a TnT system.

10
4

In order to determine the percentage initiation of 3CDPro at each of the methionines when incubated in a coupled transcription translation system the 
SDS-PAGE gel was visualised by phosphorimaging and then quantified using Mac Bas version 2 software. PSL values were calculated and a 
background measurement subtracted. These values were corrected for the number of methionines in each protein to give a figure which is 
proportional to the number of moles of each protein product. Percentage initiation was calculated for four translations of the plasmid (results not 
shown) and an average value calculated.



3.11 Endogenous processing of HRV14 3 ABC.
Translation of the plasmid pEB19 in a coupled TnT system shows that HRV14 

3ABC processes to give the products 3AB and 3CPro (Figure 3.11). Cleavage is occurring 

at the glutamine-glycine cleavage site between 3AB and 3CPro which is seen in the virus 

when 3(PPr° cleaves N-terminally. This cleavage is fairly rapid in the virus polyprotein.

The production of the cleavage products indicates that the protease is able to cleave N- 

terminally in the WGE TnT system and at the same sites as in the virus. Molecular 

weight markers indicate the sizes of the cleavage products and allow preliminary 

identification. Control plasmids pEB3, encoding HRV14 3CPro, and pEB16, encoding 

HRV14 3AB, provide confirmation of the identity of the cleavage products ( data not 

shown). Time constraints prevented densitometric analysis of the cleavage products.

The production of the cleavage product 3BC shows that cleavage is also occuring at 

a Q-G cleavage site at the N-terminus of 3B. This is not usually utilised in the virus as 

the cleavage between 3A and 3B occurs during the final stages of virion morphogenesis. r 

The mechanism of this cleavage in the capsid is not known and it is referred to as the 

maturation cleavage. Previous work has demonstrated that cleavage between 3A and 3B 

is rarely seen in vitro unless all other processing routes are blocked (Parks et al, 1986). 

3CPro is utilising sites which are not usually cleaved in the virus evenfhough they have 

the correct amino acid sequence at Pi and P%.
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Figure 3.11 Transcription and translation of a plasmid containing HRV14 
3ABC. A plasmid containing the coding sequence for HRV 14 3ABC was 
transcribed and translated in a coupled WGE system. The cleavage of 3ABC 
can be seen, yelding 3AB and 3CPro as the cleavage products. There is also a 
small amount of 3BC present. Cleavage seems to be complete and densitometric 
analysis was carried out to confirm this.
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3.12 Conclusions

The individual components of the artificial reporter polyprotein system have all 

been amplified from plasmids and ligated into transcription vectors to act as controls in 

translation systems and show the endogenous processing by 3CPro in regions of HRV 14 

P3. When used to program coupled wheatgerm extract transcription translation systems 

products of the expected sizes were produced except in the case of pEB20 [3CDP®]. This 

was compensated for by the use of plasmid pEB7 [3CDPro in pRSETA].

• Translation of pEB7 to show endogenous jro^(^essn^g in 3^CDPPo° yields3CDPro and 

very strong internal initiation products. There was no observed processing of 3CDP® to

3CPro and3DP0,

• 3ABC procesees to give 3AB , 3CP°O and 3BC. Qeavage is occumng aS the Ns

terminus of 3CPro at a glutamine-glycine cleavage site and at a glutamine glycine site at 

the N-terminus of 3B not utilised in the viral polyprotein processing pathway.

It can therefore be concluded that HRV 14 3CPro will process both N and C- 

terminally in the WGE coupled transcription translation system and this system can be 

used to monitor cleavage by HRV 1-4 3CP® in artificial reporter polyproteins. 3CPr° is 

also utilising cleavage sites which are not part of the viral polyprotein processng 

pathway. The lack of cleavage in 3CDP® is consistent with previous findings (see 

section 3.13) and does not indicate that 3CP® will not cleave C-terminally in this system.
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Summary

• Components of a reporter polyprotein system have been cloned into transcription 

vectors for use as controls and as precursors to the reporter system.

• 3CPro will cleave at both its N-terminus in the coupled WGE TnT system with 

reporter proteins flanking the protease sequence.

Figure 3.12 Summary diagram to show the plasmids constructed as controls and 

precursor for the reporter polyprotein system
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3.13 Discussion.

Plasmids have been constructed which will allow the construction of artificial 

reporter gene systems. These will be translated to produce artificial polyproteins which 

will allow cleavage by HRV 14 3CPro to be monitored. The potential use of the antibiotic 

resistance genes as phenotypic "reporters" will allow expression of antibiotic resistance in 

E.coli to be used to indicate the site of cleavage by 3CP® in such reporter polyprotein 

systems.

The construction of control plasmids for the translation of the reporter gene systems 

has also allowed endogenous cleavage of some viral protein precursors to be monitored. 

3CPro processes N-terminally in 3ABC.

Endogenous processing of 3CDP® shown by translation of the plasmid pEB7 shows 

that 3CDPro does not cleave to 3CPP and 3DP°P in this system. This result is consistent 

with previous findings in vitro (Harris et al., 1992) and in vivo (Porter et al, 1993). 

Cleavage at the 3C/D junction appears to occur more slowly than at other 3CPr<° cleavage 

sites in the polyprotein (Harris et al., 1992) which indicates that 3CDP® has a distinct role 

in the proteolytic pathway rather than just being a precursor for 3CP® and 3DP01.

Endogenous processing of 3ABC shows cleavage to yield 3AB and 3CP®. 3ABC 

has no known distinct function and so cleavage to yield these products is its major 

function. Cleavage of 3AB is rarely seen in vitro unless other processing pathways are 

blocked (Parks et al., 1989) but in this system 3CPro is utilising a glutamine-glycine 

cleavage site at the N-teminus of 3B which is not used in viral polyprotein processing.
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4. Proteolytic activity of HRV14 proteases in an artificial 
reporter polyprotein system.

In vivo, HRV 14 3CPr° can cleave within the viral polyprotein either N-terminally or 

C-terminally. C-terminal cleavage results in the production of 3ABC, 3Cpr° and the 

polymerase 3DP°h Cleavage N-terminally results in the production of 3AB and the 

protease 3CDPro. Cleavage at a combination of these sites may produce 3AB, 3CP*o, 

3DPo1, 3CDPro and 3ABC. The 3CD protease processes Pl, the capsid precursor, in trans. 

It was shown in chapter 3 that this protease is a stable product of P3 cleavage and had 

been shown previously that processing to yield 3CPr° and 3DP°1 occurs very slowly 

(Harris et al, 1992). This indicates that 3CDP1® has a role as the uncleaved product. 

Stability of 3CDPro has been demonstrated both in vitro (Harris et al, 1992) and in vivo 

(Porter et al, 1993), and that 3CDP“ lacks polymerase activity (Harris et al, 1992).

The method of control of 3CPr° cleavage has not yet been determined but the virus 

must have some means of determining whether cleavage occurs N- or C-terminally or at 

both sites. Both 3CP1® and 3CDP1® are required in the processing pathway of the virus but 

at different locations and, quite possibly, at different points in time. Both these pathways 

result in the production of proteins which are essential for the replication of the virus. 

The 3C protease is also responsible for the primary cleavage of the polyprotein between 

P2 and P3 and most of the secondary cleavages in the processing pathway.

In order to observe the cleavage activity of 3CPra without the influence of other viral 

sequences an artificial reporter polyprotein system was constructed. HRV 14 3CPr° was 

cloned into a transcription vector with two flanking reporter genes. Two antibiotic 

resistance genes were chosen as the non-viral components of the reporter system to allow 

possible selection of cleavage products by antibiotic resistance in E.coli (see section 

4.1.5) as well as the identification of translation products in cell-free translation systems. 

The antibiotic resistance genes were ligated into a transcription vector flanking the viral 

sequence of interest. The system was also designed to allow the substitution of
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components by digestion with the appropriate restriction enzymes at sites which flank

each gene.

In the reporter polyprotein system the action of 3CPro can be observed without the 

presence of other viral or cellular factors. A 'default' pathway may then be established for 

the autocatalytic action of 3CP1-°. The absence of other viral sequences and other factors, 

such as viral RNA, will allow 3 CP1® to fold and then cleave without any constraints thus 

establishing a "default" pathway. Additional factors could then be added to the system to 

try and change the cleavage pattern and establish a possible mechanism(s) used in the 

virus to control the alternative processing of P3.

Viral proteins could be added to the reporter system in cis to observe their effect on 

the pattern of cleavage by 3CPr°. Other putative switches, such as vRNA ( shown to bind 

to the protease), may be added to the system in trans to observe their effect on the 

cleavage pattern. The virus must have some means of regulating the autoproteolytic 

cleavage of 3CPro as both the N- and C-terminal cleavage products are required during 

replication, but at different times and in different regions of the polyprotein. This reporter 

polyprotein system provides a way of monitoring proteolytic cleavage activity in a cell- 

free system and observing the effects of addition of different factors, such as RNA and 

other viral proteins, on proteolytic cleavage both in cis and in trans.

In order to observe the effect of viral sequences on 3CPr° cleavage in cis, other P3 

cleavage products were ligated into the reporter polyprotein system between the two 

reporter genes. pEB15 contains the viral protease sequence 3CDPro and pEB25 contains 

3ABC. The in vitro endogenous processing properties of 3CDPo° and 3ABC were 

demonstrated in chapter 3.
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4.1 Assembly of artificial reporter polyprotein systems

4.1.1 Construction of pEB4 and pEB13.

The reporter plasmid pEB4 was constructed from the control plasmids shown in 

chapter 3. pEB13 [KanR3CP10] was constructed from pEB2.1 and pEB3.1 to provide both 

a control for the reporter system and a precursor form (Figure 4.1.1). The plasmid was 

also designed to reveal the endogenous processing properties of [KanR3CPro], 3CPro 

processing, in this case, with a non-viral N-terminal sequence. The second reporter gene 

,TetR, was then added to the plasmid pEB13 to complete the reporter gene system (Figure 

4.1.2).

The 3CPR° gene has additional sequences added at the 5' and 3' ends to maintain the 

proteolytic cleavage sites. The 6 amino acids from the 5' end of the 3B sequence have 

been included in the 3CPro gene and the 3' end of 3CPRo has six additional amino acids 

from the 5' end of the 3DPoR gene (see section 3.3).

The KanR gene has an initiation codon at its 5' end which will allow the translation 

of the three genes, (KanR, 3CPr° and TetR), as a polyprotein, a termination codon being 

provided at the 3' end. of the TetR gene.
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Figure 4.1.1 Construction of plasmid pEB13.
Plasmid pEB3.1 was restricted with Aatll and Pstl (A) to release 3Cpro (B). pEB2.1 
was restricted with Aatll and Pstl (C) and the 3Cpto squence was ligated in to form 
plasmid pEB13 (D).

pEB3 restrictedwith Aatll and
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Figure 4.1.2 Construction of pEB4. Plasmid pEB13 was restricted with PstI 
and Sacl (A). Plasmid pEBl.2 was restricted with PstI and Sacl (B) to release 
TetR (C). TheTetP fragment was ligated into restricted pEB13 to form pEB4 
(D).

pEBI.2 restricted with PstI 
and Sacl to release TetP gene.
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4.1.1.2 Sequencing of pEB4 and control plasmids.

DNA was prepared with a QIagen maxiprep kit and used for DNA sequencing. 

Control plasmids pEBl, pEB2 and pEB3 were sequenced using the cycle sequencing 

protocol detailed in the methods section. The plasmid pEB4 was sequenced on an ABI 

Prism™ automated sequencer using T7 and SP6 polymerase promoter primers and a

primer designed to anneal to a sequence within the kanamycin resistance gene (see 

section 2.2.2).
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4,1.2 Construction of pEB4.2

The catalytic nucleophile of poliovirus 3CPro has been mutated previously to 

destroy the catalytic action of the protease. One of the mutations made to destroy this

activity was the mutation of the cysteine residue at position 146 to an alanine (Lawson 

and Sender, 1991), the mutant protease being completely inactive. In order to confirm 

that the cleavage seen in pEB4 was carried out by 3CPro the catalytic nucleophile was 

mutated by overlap PCR. Oligonucleotide primers were designed to introduce this 

mutation into the SCPr° PCR product. Figure 4.1.3 shows the mutation which will be 

made in the 3CPr° sequence.

HRV 14 3CPP° sequences

Wild type 
Amino acid 
Nucleotide

140 150
ATK T G Qc GGVL 

GCA ACA AAA ACT GGG GAG TGT GOA GGT GTG CTG
Mutant
Nucleotide GCA ACA AAA ACT GGG CAG GCT GGA GGT GTG CTG
Amino acid ATKTG Q AGGVL

Figure 4.1.3 To show the mutation of the catalytic nucleophile in HRV14 3CPro.

Oligonucleotide primers were designed such that the same restriction enzyme sites 

were incorporated at the 5' and 3' ends as in the original 3CPro PCR product, Le, Aatll and 

Pstl, The PCR product was digested with Aatll and Pstl (the enzymes whose sites had 

been engineered at the ends of the mutant PCR product) and then ligated into pEB4 which 

had been cut with Aatll and Pstl to release the wild type 3CPro sequence (Figure 4.1.4).

As there was only one amino acid difference between the sequences of the mutant 

and the wild type 3CPro, the putative clones were checked with restriction enzyme digests 

and then by nucleotide sequencing. One of the putative clones was found to have the 

Cys->Ala mutation in the 3CPro sequence at the correct position and this was used to 

program the TnT system (Figure 4.1.4.1).
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Figure 4.1.4 Construction of p£B4.2. pEB4 was restricted with Aatll and Pstl 
(A) tooeleaseS 3Pro o B). Mutant 33^pro(<(M4A) wasamplifiedfrom m HRR14 
cDNA clone by overlap PCR. The PCR product was restricted with Aatll and Pstl 
(C) and ligated into pEB4, similarly restricted, to form pEB4.2 (D).

Aatll PstI
(B) I
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Figure 4.1.4.1 Translation of pEB4.2. Plasmids were used to program 
WGE coupled TnT reactions and the results analysed by SDS-PAGE.

1 2 3 4 5 6 7

Lane Plasmid Insert
Linearised by 
restriction with

1 pEB4 [KanRBCproTetR]
2 pEB4 [KanRBCproTetR] x Aatll 1
3 pEB4 [KanRBCproTetR] x PstI 2
4 pEB2 [KanR]
5 pEB3 HRVMBCpro]
6 pEB5 [B^proTetR]
7 pEB4.2 [KanRBCproCl46ATetR]

1. Aatll linearises pEB4 between the 3’ end of the KanR gene and the 
5’ end of the 3CPro gene.
2. PstI linearises pEB4 between the 3’ end of the 3Cpro gene and the 5’ 
end of the TetR gene.
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4.1.3 Construction of plasmids pEBl5 and pEB15.2.

3CDPi'° was amplified from HRV 14 cDNA by the PCR using the oligonucleotide 

primers shown in Table 2.1. Restriction sites were added to the 5' and 3' ends of the 

genes in order to allow ligation into the plasmids encoding the reporter polyprotein 

system. In order to maintain the 3CPm cleavage sites, as in pEB4, six amino acids from 

the viral sequence flanking the sequence of interest was included in the PCR products. 

Products were then digested with restriction enzymes and cloned into pEB4 which had 

been digested to release 3CPr° (Figure 4.1.5). All the HRV 14 components have the same 

restriction sites at the 5' and 3' ends (i.e. Aatll and Pstl) for ease of ligation. Plasmid 

pEB15.2 was constructed to show the action of 3CPro between two entities and can be 

compared more easily with pEB4 (Figure 4.1.6) Plasmid pEB15 shows the action of 

3CPro in the presence of other viral components as well as the two reporter genes.

As there is no 3CPro cleavage site at the C-terminus of 3DP°0 in the viral polyprotein 

no additional sequences were included in the artificial system.
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Figure 4.1.5 Construction of pEB15. pEB20.2 was restricted with Aatll and Pstl (A) 
to release 3CDpro (B). pEB4 was restricted with Aatll and Pstl (C) to release 3Cpro (D). 
The restricted 3CDpro fragment was ligated into pEB4, similarly restricted, to form the 
plasmid pEB15 (E).

(D) Aatll PstI
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Figure 4.1.6 Construction of pEB15.2. The plasmid pEB20.1 was restricted with 
Aatll and Pstl (A) releasing 3CDpro (B). pEB2.1 was restricted with Aatll and Pstl 
(C). The 3CDpro fragment was ligated into pEB2.1, similarly restricted, to form the 
plasmid pEB15.2 (D)

pEB20.1 restricted with Aatll and
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4.1.4 Construction of pEB25.

HRV 14 3ABC was released from plasmid pEB19.1 by restriction with Aatll and 

PstI. The purified restriction fragment was then ligated into pEB4 which had also been 

digested with Aatll and PstI releasing 3CPro (Figure 4.1.7).

The final plasmid pEB25 [KanR3ABCTetR] will be used to show the influence of

u p s t r e a m viral sequences on cleavage by 3 CPr0.
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Figure 4.1.7 Construction of pEB25. pEB4 was restricted with Aatll and PstI (A) to 
release 3CPro (B). pEB19.1 was restricted with Aatll and PstI (C) to release 3ABC (D). 
The 3ABC fragment was ligated into pEB4, similarly restricted, to form the plasmid 
pEB25 (E).

restricted with Aatll and PstI

▼

pEB4 restricted with Aatll and 
PstI to release 3Cpro.

(B)
Aatll PstI

3CPro
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4.1.5 Expression of self-processing antibiotic resistance polyproteins in E. coli

The reporter system was designed to allow investigation into the analysis of 

cleavage products by their antibiotic resistance. The two reporter genes, KanR and TetR, 

confer resistance to kanamycin and tetracycline respectively. lt was intended that cleaved 

products would express resistance to different combinations of the two antibiotics.

lt was known from previous observations that the kanamycin resistance gene 

product used would not confer resistance with substantial C-terminal extensions.. 

Therefore cleavage at the N-terminus of 3CP™ could give kanamycin resistant clones 

whereas cleavage at the C-terminus of 3CPro could give kanamycin sensitive clones 

(Figure 4.1.8). lt was not known whether the TetR gene product would show sensitivity 

to additional sequences at its N- or C-termini.

Figure 4.1.8 Predicted antibiotic resistance of pEB4 and its cleavage products.

4.1.5.1 Consttuction of expression vvetors

ln order to express antibiotic resistance the genes coding for the artificial reporter 

polyproteins had to be removed from the transcription vector by restriction digest and 

ligated into a suitable expression vector. To utilise the unique restriction sites added to 

the polyproteins the vector pBSllKS+ was used. Cut fragments were gel purified and 

ligated into cut pBSllKS+ overnight at 1A °C with T4 DNA ligase. Putative clones were
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checked by restriction digest and a large scale DNA preparation was made of correct

clones.

4.1.5.2 Expression of a ntibioticresistanceintE ccZZ

To monitor expression of antibiotic resistance, reporter gene plasmids were 

transformed into E.coli using the calcium chloride method or the modified Hanahan 

method. The E.coli strain XL 1-BLUE was used initially but was found to have an 

endogenous tetracycline resistance phenotype so the strain JM109 was used. 

Transformed E.coli were plated onto LB agar plates containing appropriate antibiotics. 

All plates contained ampicillin (at a final concentration of 100 pg/ml) as the expression 

vector used encoded ampicillin resistance.

When pEB21 and the appropriate control plasmids were grown on LB agar 

containing antibiotics the results shown in Table 4.1 were obtained. All plasmids were 

resistant to ampicillin as expected due to the expression vector containing the ampicillin 

resistance sequences.

Antibiotic used
Plasmid Insert Amp Amp + Kan Amp + Tet Amp + Kan

+ Tet
pEB21 [KanR3CProTetR] X V X
pEB22 TetR V X X X

pEB23 3Cpro V X X X
pEB24 KanR V V X X

Tnbls 4.1 Results nf nctibintie expression it E.coli. A tick ind icates growth
bacterial colonies after 16 hours incubation at 37 0C and a cross indicates no colonies 
after the same growth period. Ampicillin was used at lOOpg/ml, kanamycin at 10 pg/ml 
and tetracycline at 25 pg/ml.

The control plasmid for kanamycin resistance, pEB24, conferred ampicillin

resistance and also conferred kanamycin resistance. It did not express tetracycline

resistance. The 3CPro control plasmid, pEB23, conferred ampicillin resistance but neither

tetracycline resistance nor a kanamycin resistant phenotype. The TetR control plasmid,

pEB22, conferred ampicillin resistance but failed to confer neither kanamycin resistance 
125



(as expected) nor tetracycline resistance, which was unexpected. The plasmid was 

sequenced and the nucleotide sequence of the insert was found to be correct. Several 

attempts were made to rectify the lack of tetracycline resistance in the control plasmid. 

The tetracycline concentration of the agar plates was varied between 1 fg/ml and 20 

//g/ml but this did not affect the lack of tetracycline resistance conferred. The gene was 

amplified again by the PCR and cloned but this did not result in a plasmid which 

conferred a tetracycline resistant phenotype. The template used for the PCR amplification 

of the TetR gene, pBR328, was tested for tetracycline resistance and found to be resistant 

at 10 //g/ml. It was concluded therefore that the gene template was functional and the 

fault may have been due to the additional sequences added by the PCR or the extraneous 

sequences in the vector. In pBSIIKS+ the TetR gene was cloned as a fusion with p-Gal. 

This required the addition of IPTG to induce the promoter. The experiment was carried 

out with IPTG on the agar plates and the induction should have taken place. It therefore 

seems likely that the lack of function was due to the extraneous p-Gal sequences at the N- 

terminus. Due to time constraints it was not possible to continue this investigation into 

the non-functional gene.

pEB21 conferred ampicillin resistance and tetracycline resistance. There are three 

possible explanations for this. Since it was known that the kanamycin resistance gene 

will not confer resistance with an C-terminal extension in the coding sequence it was 

possible that 3CPro had cleaved C-terminally in the artificial polyprotein. It may also be 

that there was no cleavage and the tetracycline resistance gene will function with an N- 

terminal addition. The third possibility is that additional sequences had inhibited the 

action of the kanamycin gene product.

Further work will allow this system to be analysed more fully but the expression of 

tetracycline resistance by pEB21 looks promising. The system may be able to be used for 

indicating the site (N- or C-terminal) of cleavage.

The coding sequences of the other reporter plasmids (pEB15 and pEB25) were not 

transferred into the expression vector as the inconclusive results from the expression of 

pEB21 did not seem to warrant the additional work. Once the problems with the
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tetracycline expression have been overcome it may be useful to put [KanR3CDProTetR]

and [KanR3ABCTetR] into expression vectors to test the system further.
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4.2 of translation in rabbit reticulocyte lysate and wheatgerm extract

transcription, translation coupled systems.

In order to determine which system would be best for the transcription of the 

reporter system, plasmid DNAs were used to program reactions from each TnT system. 

Equal amounts of the plasmid DNAs (500 ng) were used in each reaction and they were 

incubated for equal amounts of time (90 minutes). Reactions were stopped by the 

addition of SDS-PAGE loading buffer and equal volumes were loaded onto 10% SDS- 

PAGE gels (Figure 4.2.1). As can be seen from the PAGE analysis the distribution of 

radiolabel is the same in both rabbit reticulocyte lysate (RRL) and wheatgerm extract 

(WGE) reactions.

Further reactions were carried out using the WGE system as this is more efficient 

for translating linearised constructs. The linearised reporter constructs provided controls 

for the system and so the translation of these was important in all subsequent experiments

to aid the identification of translation products.

128



Figure 4.2.1 Comparison of translation in rabbit reticulocyte lysate (RRL) and 
wheatgerm extract (WGE) TnT systems. Equal amounts of plasmid DNAs were 
used to program RRL or WGE reactions to compare processing in each system. Results 
were analysed by 3D3-PAGE.

1 2 3 4 5 6

—97 kDa 
-----66 kDa

---- 46 kDa

---- 30 kDa

---- 14.3 kDa

Lane Plasmid TnT system used
1 pEB4 WGE
2 pEB15 WGE
3 pEB25 WGE
4 pEB4 RRL
5 pEB15 RRL
6 pEB25 RRL
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4.3 Tir^usl^tic^n in vitro of pEJE54.

Translation of the plasmid pEB4, encoding [KanR3CProTetRl, in a wheatgerm 

extract coupled transcription translation system showed the major translation products to 

be [3CPttTetR] and KanC (Figure 4.P a). The identity of the band representing 

[3CproTetR] was identified by comparison with the product of plasmid pEB5 and the use 

of size standards. This indicated that PCPt° cleaved preferentially at its N-terminus in this 

system. A band representing the translation product of the kanamycin gene in pEB4 was 

also observed which represents the other portion of the processed polyprotein. No 

uncleaved polyprotein is detected amongst the translation products. The uncleaved 

polyprotein has a predicted molecular weight of 9P kDa and the largest protein observed 

by SDS-PAGE analysis had a molecular weight of approximately 60 kDa (Figure 4.P.1). 

This implied that it was the cleavage product [3CProTetC] which migrated to the same 

position as the translation product of the plasmid pEB5, [PCProTetR], which has a 

predicted molecular weight of 62 kDa. The absence of a band migrating at -9P kDa on 

the gel indicated that PCPt° cleaves the polyprotein entirely (at one site or another).

Some other cleavage products are seen apart from [PCProTetC] and [KanC] which 

implies that cleavage was also taking place at the C-terminus of PCPt° but at lower levels. 

These products were produced in much smaller quantities than the N-terminal cleavage 

products so PCPto appeared to cleave preferentially at its own N-terminus in the artificial 

polyprotein system used here.
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Figure 4.3 a Transcription and translation of reporter plasmid pEB4. WGE TnT
reactions were programmed with the plasmid DNAs indicated . Samples of reactions 

were analysed by SDS-PAGE. Gels were exposed to X-ray film overnight.

1 2 3456789

3CPr°TetR __
KanR 3Cpr«— 
Mr = 52kDa

3Cpr«TetR 
Mr = 62kDa

KanR
Mr = 31 kDa

—KanR 
Mr = 31 kDa

—3CPro 
Mr = 21 kDa

Lane Plasmid Insert.
Linearised by 
restriction with

1 pEB4 [KanR3CproTetR]
9 pEB4 [KanR3^proTetR]
2 pEB4 |KanR3CproTetR| x Aatll 1 2
3 pEB4 [KanR3CproTel^R] X PstI 2
4 pEB2 |KanR|
5 pEB3 HRV14[3Cpn]
6 pEBl [TetR]
7 pEB5 [3CproTetR]
8 pEB14 [KanR3Cpro]

1. Aatll linearises pEB4 between the 3’ end of the KanR gene and the 5' end of 
the 3Cpro gene.
2. PstI linearises pEB4 between the 3’ end of the 3Cpro gene and the 5’ end of 
the TetR gene.
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Kan 3C Tet
26

[KanSCTet] Mr = 93 kDa

18
11 [3CT't]Mr = 62kDa

[Kan3C] Mr = 52kDa

A 15
Mr = 31kDa Mr = 21kDa Mr = 41kDa

Figure 4.3.1 Molecular weights of predicted translation products of pEB4. Numbers 
in red show the number of methionine codons in each protein.

There are slight size discrepancies between the control plasmids and the sizes of the 

translation products from pEB4, due to the strategy used to maintain the 3CPr° cleavage 

sites in the reporter polyprotein system (Figure 4.33).

3B 3C

Aatll RPVVVQGPNT EF

TATTTTGTAGAGAAACAAGGCCAAGTAATAGCTAGACTGCAG 
YFVEKQGQVIAR PstI

3C 3D

Figure 4.3.2 Diagram to show the discrepancy between the enzyme cleavage sites 
and 3CPro proteolytic cleavage sites.
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4.3.1 analysis of the degeadatson of the cleavage products of pEB4.

Inspection of the gel revealed the band representing KanR to be of low intensity 

compared to that of [3CProTetR]. Initially this was thought to be due to the degradation of 

the translation product by proteases within the translation system. In order to clarify this 

point, the stability of the translation products was monitored over a period of time. The 

reaction was incubated at 30°C for 45 minutes and protein synthesis stopped by the 

addition of cycloheximide to a final concentration of 0.8 pg/ml and mRNA degraded by 

the addition of RNaseA (added to a final concentration of 0.6 pg/ml). Incubation was 

continued at 30 0C and samples were taken at regular intervals. Samples were added to an 

equal volume of SDS-PAGE loading buffer to stop any further degradation. The results 

are shown in Figure 4.3.3. It can be seen that the intensity of the kanamycin band 

appeared to be constant throughout the reaction period and no significant degradation 

occurred. In confirmation densitometric analysis was carried out on the SDS-PAGE gel 

(Table 4.2).

The number of methionines in the kanamycin resistance gene (8) is much lower than 

that of [3CProTetR] (18) and therefore the level of incorporation of 35S-Met is much 

lower. Densitometric analysis was carried out using Mac-Bas version 2 software on an 

image generated by phosphorimaging. Each lane was analysed by searching for peaks 

within the band and the intensity measured in PSL units. A value was also obtained for 

the intensity of the bands with the background count subtracted. These values were then 

corrected for the number of methionines in the protein and a ratio calculated of 

[3C^!’r<^rr^tR] : [KanR]. The results of the analysis can be seen in Table 4.2.

The corrected values for the KanR bands in each lane did not show a decrease indicating 

that there was little or no degradation of [KanR]. The ratio of [3CProTetR] to KanR varied 

between 0.58 and 1.05 but there was no trend seen in the data. This indicates that any 

degradation of the KanR band is not occurring until 90 minutes after protein production 

has been stopped and the lower intensity of the KanR band is due to the lower number of 

methionines not degradation. It should also be noted that the KanR product migrates in a 

very diffuse manner in this system which may account for the low intensity observed.
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Ftecre 4.3.3 Degradation of pEB4. A TnT reaction was programmed with pEB4 
and incubated for 45 minutes at 30°C. The reaction was stopped by the addition of 
cycloheximide and RNaseA and subsequently incubated at 30°C for varying 
periods of timeas shown. Translation reactions were stopped by the addition of 
loading buffer and aliquots were then loaded onto an SDS-PAGE gel.

Minutes after translation reaction stopped
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The amount of the kanamycin resistance gene produced from the control plasmid 

pEB 1 was, however, a great deal higher as the translation product is a lot shorter than the 

polyprotein in pEB4. Both of the KanR genes were cloned in the same context, i.e. they 

have the same additional sequences and initiation codon so the difference in observed 

intensity is surprising. The KanR product derived by processing of pEB4 migrates in a 

much more diffuse manner than that of the discrete gene product from pEBl. The 

incorporation level of methionine would be the same as for the [KanR] band in pEB4 but 

the number of protein molecules produced may be greater due to the smaller protein 

product being translated more rapidly due to its size.

Lane Band PSL PSL-BG No. of 
mets

PSL-BG/ 
no. of mets

Ratio of 
3CTet : 

Kan
1 3CProTetR 1216.0 789.2 18 43.8 0.66

KanR 1060.0 525.6 8 65.7
2 SCPr°T<3tR 1153.0 1153 18 64.05 0.91

KanR 561.4 561.4 8 65.7
3 3CProTetR 1061.0 1061 18 58.9 0.88

KanR 534.9 534.9 8 66.9
4 3CPr«TetR 1059.0 1059 18 58.8 0.96

KanR 492.0 492 8 61.5
5 3CProTetR 1123.0 1123 18 62.4 1.05

KanR 476.8 476.8 8 59.6
6 3CPr°TetR 1061.0 1061 18 58.9 0.96

KanR 488.6 488.6 8 61.05
7 3CPr«TetR 1129.0 1129 18 62.7 0.65

KanR 762.2 762.2 8 95.2
8 3CproTetR 851.2 851.2 18 47.3 0.58

KanR 654.1 654.1 8 81.7

Table 4.2 Results of densitometric analysis of degradation of pEB4. The PSL- BG 
(background) figures were divided by the number of methionines in each protein 
product to give a figure proportional to the number of moles of protein within each 
protein band. These figures were then used to calculate a ratio for the amount of 
[3CproTetR] compared to that of KanR.
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4.3.2 Identification of translation products of the KanR gene in pEB4 by

immunoprecipitation.

Despite the results of the densitometric analysis on the translation products 

confirming that there was no degradation of KanR further proof of the identity of these 

band was felt to be necessary. An immunoprecipitation reaction was carried out on the 

translation products of pEB4 (Figure 4.3.4). No antibodies were available for the 

identification of the TetR products or HRV14 3CPro. The antibody used was supplied by 

5Prime ->3Prime and is an antibody to the neomycin phosphotransferase gene NPTII, 

recognising the kanamycin resistance gene product. In order to clarify the identification 

of the KanR translation product of pEB4 it was immunoprecipitated with this antibody. 

The translation reaction was carried out with pEB4, digested with Aatll to give the 

kanamycin resistance gene translation product. The antibody identified two translation 

products from pEB4. These were thought to be the product of the kanamycin resistance 

gene and a product from internal initiation within the gene.

Protein synthesis begins when the ribosome scanning along the mRNA finds the 

first AUG start codon. Sequences flanking the AUG start codon influence its recognition 

by eukaryotic ribosomes. Optimal initiation is found when the AUG is surrounded by a 

consensus sequence known as the Kozak consensus sequence (Kozak, 1986). The 

consensus sequence, GCCGCC A/G C C AUG G, also has within it nucleotides 

which are very important for recognition (shown in bold). Some ribosomes may therefore 

scan along the mRNA and through the first AUG to initiate at another AUG downstream 

producing internal initiation products.

The nucleotide sequence of the kanamycin resistance gene was scanned for internal 

initiation sites and their Kozak consensus sequences checked. The full length translation 

product of the kanamycin gene has a relative molecular weight of 31 kDa and there are 

seven other methionine codons which are in frame with the initiation codon for the full 

length product. The immunoprecipitation reaction seen in Figure 4.3.4 precipitated two 

proteins, which were identified as the kanamycin protein from the initial methionine and 

an internal initiation product from Met-19 with a relative molecular weight of 29 kDa.
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Figure 4.3.4 Identification of translation products of the KanR gene in pEB4 by 
immunoprecipitation. The plasmid pEB4 was digested with Aatll and then used 

to program a WGE TnT reaction. The products of this were immunoprecipitated 
with NPTII and the resulting products analysed by SDS-PAGE.
The two bands in Lane 2 are the full length translation product of the kanamycin 
resistance gene (MW = 31 kDa) and an internal initaition product with a molecular 
weight of 29 kDa.

1 2 3

3CproTetR- 
Mr = 62 kDa

3Cpro 
Mr = 21 kDa

KanR Mr = 31 kDa 
29 kDa

-22 kDa

— 13, 10 kDa

Lane 1 pEB4

Lane 2 Immunoprecipitation of [pEB4 x Aatll] 

Lane 3 pEB4 x Aatll
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Kozak consensus sequences and predicted molecular weights for all of the methionine 

codons which are in frame can be seen below (Figure 4.3.5).

Kozak consensus GCC GCC A/GCC AUG G Predicted Molecular 
weight

MET 1 GGG ccc AUG G Mr = 31 kDa
MET 19 AAT TCC AAC AUG G Mr = 29 kDa
MET 69 ACA GAT GAG AUG G Mr = 23.5 kDa
MET 79 ACG GAA TTT AUG C Mr = 22 kDa
MET 156 CAA TCA CGA AUG A Mfr = 13 kDa
MET 182 TGG AAA GAA AUG C Mr = 10 kDa
MET 258 AAT CCT GAT AUG A Mr = 2 kDa
MIET 266 TTT CAT TTG AUG C Mh = 0.5 kDa

Figure 4.3.5 Kozak consensus sequences and predicted molecular weights for 
internal initiation products of the kanamycin resistance gene.

The consensus sequence for Met-19 is stronger than that for the wild type initiation 

codon which may explain the higher observed intensity of the band for this product. 

Densitometric analysis of this indicates that initiation is greater from Met-19 than from 

Met-1. The insertion of a restriction site at the 5' end of the gene has changed the kozak 

sequence and this has probably led to the lesser degree of initiation. The optimisation of 

the consensus initiation sequence during the construct design process would have 

eliminated the problem of low levels of initiation at the initial methionine and aided the 

interpretation of results by giving better translation products from this codon.

As all TnT reactions were carried out in the wheatgerm extract TnT system the 

context sequence for translation initiation has been found to be slightly different from that 

of vertebrates. The context for monocot mRNAs is c(a/c)(A/G)(A/C)c AUG GCG (Joshi 

et al., 1997) which exhibits overall similarity to the vertebrate consensus GCC GCC 

A/GCC AUQ G.
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4.3.3 Effect of C-terminal sequence on cleavage activity of 3CPro.

Translation of the plasmid pEB4 [KanR3CProTetR] shows that 3CPro cleaves both 

N- and C-terminally in the reporter polyprotein system. When only an upstream 

sequence was present (as seen with [KanR3CPr®]; Figure 4.3 a Lane 3) N-terminal 

cleavage does not seem to be very efficient, with [KanR3CPr°] being the major translation 

product. Low levels of KanR and 3CPro were, however, observed. The effect of the C- 

terminal sequence is apparent when there are both N- and C-terminal sequences present in 

the reporter system. The presence of TetR seems to greatly enhance cleavage at the N- 

terminus of 3CPro giving rise to cleavage products of KanR and [3CProTetR]. If 3CP® has 

C-terminal extension, only, (as in [3CPr°TetR]; Figure 4.3.a Lane 7), then cleavage 

seemed to be at very low levels.

Comparison between these two constructs is purely qualitative as the difference 

between translation products derived from enzyme restriction of plasmids and 

proteolytically cleaved polyproteins does not allow quantitative analysis. The same 

applies to comparison of cleavage in 3CDPr° with cleavage in [SCCoTet#-]. The cleavage 

in 3CDP® occurs in the virus but not in this system. Cleavage of [3CPo°TetR] is not an 

"artificial" cleavage in the sense that the SCP*0 Q-G cleavage site has been maintained.

The effect of a C-terminal sequence on cleavage by 3CPr° seemed to be the 

enhancement of cleavage at the N-terminus and not the C-terminus of 3CP1'0. The nature 

of the sequence beyond the cleavage site did not seem to be important. Both 3DPo1 and 

TetR produced the same enhancing effect.
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Figure 4.3.6 Effect of C-terminal sequence on cleavage activity by 3CPro. These 
tracks (taken from different gels) show the different cleavage patterns of 3CPro with 
C-terminal sequences. It can be seen from Lane 1 that [3CProTetR ] is a stable 
product when derived from the plasmid pEB5. (NOTE: The same occured in 
translation of pEB4 [KanR3CproTetR]).
Lane 2 shows translation of 3CDpro which similarly did not cleave to give 3Cpro and 
3DPol.

Lane 1 pEB5 [3CproTetR] in pGEM5zf(+) 
Lane 2 pEB7 [3CDPro] in pRSETA

*also includes the internal initiation product A3CDMet-17 (Mr = 70.2 kDa 
Internal initiation product A = A3CD Met-121 (Mr = 59 kDa)

+A3CD Met-135 (Mr = 57.5 kDa)
Internal initiation product B = A3CDMet-324 (Mr = 36.7 kDa)
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4.3.4 Cfceleetfce

The summary diagram below (Figure 4.3.7) shows the cleavage patterns of 3CF’n° jn 

a polyprotein system flanked by two reporter proteins. 3CPro processes efficiently with 

both N- and C-terminal extensions. In order to cleave efficiently at its N-terminus 3CP"o 

needs a C-terminal extension whether this is viral (3D®1) or non-viral (TetR) in origin 

does not seem to be important. This can be seen by the different processing patterns in 

pEB4 and pEB4 when digested with Pstl prior to translation. N-terminal cleavage is very 

efficient when 3C®o has a C-terminal extension of TetR but when this is removed by 

restriction digest prior to translation cleavage is much less efficient.

The sequence C-terminal to 3CPr® did not have an effect on the efficiency of 

cleavage at the C-terminus of 3CPro. pEB5 [3CPr°TetR] did not cleave at all in this form 

or as a product of pEB4 translation. 3CDPr° did not cleave to give 3CCro and 3D®1 which 

was consistent with previous work (see section 3.10). The effect of the identity of the C- 

terminal sequence on C-terminal cleavage did not, therefore, seem to be important.

Antibiotic resistance studies (section 4.1.5), although inconclusive in their own 

right, appeared to contradict results from the TnT experiments. The major cleavage seen 

in pEB4 is at the N-terminus of 3CPro yielding KanR and [3CPraTetR]. Antibiotic 

resistance was observed to tetracycline but not to kanamycin. As it is known that the 

kanamycin resistance gene will not function with an N-terminal extension, 3CPro must 

either be cleaving C-terminally or not cleaving at all. However, the greater amount of 

trans cleavage found to occur in vitally infected cells may explain the discrepancy 

between the results. In the in vitro system used small quantities of protein are being 

produced and even with long incubation periods trans processing is rarely seen. The 

larger amounts of protein produced in cells allow trans processing to occur more 

frequently and this may be the reason why the C-terminal cleavage seems to be occuring 

preferentially in the bacterial system rather than the N-terminal cleavage which is seen in 

the in vitro system.

The TnT results show cleavage at both N and C-termini of 3C®0 although it does 

not appear to be equal. The preferential cleavage is at the N-terminus to give KanR and
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[3CProTetR] which would be expected to give resistance to kanamycin and possibly to 

tetracycline as well in the antibiotic expression system. The antibiotic resistance 

experiments could infer that cleavage is occurring at the C-terminus but there are other 

possible explanations for this (see section 4.1.5).

Figure 4.3.7 Summary diagram of cleavages in pEB4. Regions shaded with vertical 
lines are the C-terminal. sequences from 3B and regions shaded with horizontal lines are 
the N-terminal sequences from 3D.

Translation of the plasmid pEB4.2 [KanR3CProCr^ATetR] resulted in a single band 

(Figure 4.1.4.1), however, this appears to be of approximately the same size as the 

translation product of pEB5 [3CPr<OTetR], 62 kDa. The mutation in the protease sequence 

should destroy the proteolytic activity of the enzyme resulting in translation of the whole 

polyprotein [KanR3CProTetR], 93 kDa. Due to time constraints this was not investigated 

further. The discrepancy may be due to inadequate migration on the SDS-PAGE gel. If 

migration was allowed for a longer period of time a size difference may be seen. The 

sequence of the mutant protease was correct when sequenced.
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Summary

• A reporter polyprotein system has been produced which allows cleavage by HRV 14 

3CPro in vitro without the influence of other viral gene sequences.

• 3CPr° will cleave both N-and C-terminally inthe presence of reporter proteins.

• In this system cleavage occurs ^^<3d^^^^<3niiailly at the N-terminus of 3CPro t^i^t there is

some C-terminal cleavage.

• The presence of a C-ierm.i.nal sequence is required for eificient N-terminal

• The identity of the C-tenninal sequence is not imports. Cleavage is not more 

efficient with 3DP°r than TetR
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4.4 In vitro translation of pEB 15 and pEB15.2.

Incubation of the constructs pEB15 [KanR3CDProTetR] and pEB15.2 

[KanR3CDPro] in a coupled transcription /translation system gave an indication of the 

cleavage activity of 3CPo° when other viral sequences (3AB, 3DP°0) were present. pEB15 

shows the proteolytic activity of 3CPr° in the Kan/Tet reporter system 

when 3D®* is also present (Fig 4.4.a). pEB15 was used to program a WGE TnT reaction 

and translation products were analysed by SDS-PAGE. Products observed were KanO, 

3CP*o, 3DP°O, [KanO3CPro] and surprisingly TetO. Cleavage occurs at both the N-and C- 

termini of 3CPro to give the products KanO, 3CPro and 3D®O and TetO. Cleavage at the C- 

terminus of 3CPro yields [KanR3CPr® and the remaining portion of the polyprotein is 

cleaved at the C-terminus of 3D®* to yield 3D®* and TetO. No [3DP°TetP] is observed 

in the PAGE analysis indicating that cleavage at the C-terminus of 3D®* is very efficient. 

The predicted molecular weights for these cleavage products can be seen below (Figure

4.4.1).

Figure 4.4.1 Molecular weights of predicted cleavage products of pEB 15. The

numbers in red are the number of methionine codons in each protein.
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Figure 4.4 a Translation of pEB15. Plasmid DNA was incubated in a WGE 
TnT reaction for 90 minutes at 30 °C. Samples of the reaction were then 
analysed by SDS-PAGE.

Lane Plasmid Insert

1 pEB15 [KanR3CDpro TetR]
2 pEB2 [KanR]
3 pEB3 [3CPro]

4 pEB7 [3CDpro]

5 pEB27 [3DP0l]

NOTE: There is a size discrepancy between the 3DPo1 gene product in Lanes 1 
and 5. The identity of the 3DPo1 band in the translation of pEB15 (Lane 1) is 
confirmed by comparison with pEB15 x PstI (Figure 4.4b). The plasmid 
pEB27 needs to have the identity of the insert conformed by DNA sequencing.
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Figure 4.4 b Longer exposure of translation of pEB15. Samples of translation 
products of pEB 15 and pEB 15 x Pstl (the plasmid was digested prior to 
incubation in the TnT sytem) were analysed by SDS-PAGE. The digested 
plasmid was used to provide a size control for the translation products of the 
reporter plasmid. The gel was exposed to X-ray film for 48 hours.

1 2

3Dpol
TetR
KanR

— 3DPol Mr = 51 kDa

-KanR Mr = 31 kDa

3Cpro 3Cpro Mr = 21 kDa

Lane 1pEB 15 [KanR3CDprcTerR] 

Lane 2 pEB 15x Pstl

146



Cleavage is seen at the C-terminus of 3DP°l which releases TetR, this is not a 

cleavage seen in the virus. The plasmid was digested at the restriction site at the 3' end of 

3CDPro prior to translation to provide a control for the size of [KanR-3CDP®] and its 

cleavage products (Fig 4.4 a). This produced bands corresponding to KanR, 3CPr° and 

3Dpol . There was no uncleaved [KanR3CDPro] or [3CDP1®] seen. 3CPr° cleaves the 

polyprotein totally in this situation.

With 3CDPr° present in the reporter system 3CPO° processes at all available sites 

within the polyprotein. The analysis showed there to be equal processing N- and C- 

terminally to give all products in equimolar amounts. In PstI digested pEB15 

[KanR3CDPro] (Figure 4.4 b) there is also equal processing at both N- and C-termini. 

This confirms the conclusion made earlier that 3DP°O has an enhancing effect on the 

cleavages made by 3CP1'0.

This can be compared with processing in pBB4 (Figure 4.4.2). The plasmid 

pEB15.2 [KanR3CDPro] was translated in vitro in a wheatgerm extract coupled 

transcription translation system to observe the action of 3CP1'® between two genes as a 

comparison with pEB4. Comparison is more reliable between these two constructs as 

both artificial polyproteins have been cloned into transcription vectors. The constructs 

have not been digested with enzymes at sites within the polyprotein to produce these 

products.

pBB4 yields KanR and [3CPO°TetR] as its major cleavage products. This is due to 

cleavage at the N-terminus of 3CPro. Cleavage at the C-terminus of 3CP"° is not as strong 

and the products of this are only seen in small amounts. Processing in pBB15.2 yields 

KanR, 3CP1® and 3DP°O ap in approximately equal amounts. Cleavage is occurring at both 

ends of 3CP1® with equal efficiency. This ties in with the observation made in the 

previous section that 3CPO° cleaves more efficiently at its C-terminus if it has 3DPor 

downstream.

Some internal initiation products from the KanR gene can be seen in the translation 

of pEB 15. The sizes of these are shown in Figure 4.3.4.
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Figure 4.4.2 Comparison of cleavage in pEB4[KanR3CTetR] and pEB15.2 
[KanR3CDPro]. To compare cleavage when 3Cpro has both N- and C-terminal 
extensions these two lanes can be compared. They are taken from different gels but 
can still be compared qualitatively.

Lane 1 pEB4 [KanR3CprcTetR] in pGEM5zf(+) 

Lane 2 pEB15.2 [KanR3CDpro] in pGEM5zf(+)
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4.4.1 Densitometric of products of

The cleavage of pEB15 and pEB15.2 yields the products [KanR3CPro] and 3DP®1, 

3CPro, KanR and TetR. In pEB4 it was observed that the KanR band migrated in a diffuse 

manner and as of low intensity. This was initially thought to be due to degradation. In 

order to determine whether this was the case in pEB15 the course of the translation 

reaction was monitored. The reaction was incubated at 30 °C for 45 minutes and then 

protein synthesis was stopped by the addition of cycloheximide (to a final concentration 

of O.8pg/ml) and RNaseA was added (to a final concentration of 0.6jxg/ml) to degrade 

any mRNA present. The reaction was then incubated at 30 °C and samples taken at 

regular intervals. The results of this can be seen in Figure 4.4.3.

Densitometric analysis was carried out on the products of the degradation reaction. 

The SDS-PAGE gel was visualised by phosphorimaging and the bands were quantified 

using Mac Bas version 2 software. PSL values were obtained and gave a value for the 

intensity of the bands. A background level was subtracted from the PSL values (PSL- 

BG) and the values were corrected for the number of methionines in each protein product. 

As labelling in the reaction is by 35S-Met the number of methionines available in the 

protein for labelling has an effect on the intensity of the band. PSL values must therefore 

be corrected for this before they can be compared with each other. Division of PSL-BG 

by the number of methionines in the protein gives a value which is proportional to the 

number of moles of each protein product present on the gel. A ratio of the products to 

each other was also calculated (Table 4.3).

The corrected PSL value for the KanR band shows that it is not degraded over the 

time course monitored in this reaction. The ratio of the protein products to each other 

indicates that there is significantly more 3DPo1 produced than the other products 

measured.

The KanR band does not migrate in such a diffuse manner when produced as a 

cleavage product of the polyprotein [KanR3CDProTetR] encoded by pEB15.. The reason 

for the contrast with the KanR product of pEB4 is not known. The upstream sequences of 

the two genes are the same but the downstream sequences are different. The downstream
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Figure 4.4.3 Degradation of pEB15. pEB 15 was usedto program a wheatgerm 
extract TnT reaction and incubated at 30 °C for 45 minutes. The reaction was then 
stopped by the addition of cycloheximide and RNase A. In order to study 
degradation of the products the reaction was incubated at 30° C and samples taken at 
15 minute intervals. Degradation was stopped by the addition of loading buffer and 
samples were analysed on an SDS-PAGE gel.

Minutes after 45 minute incubation 

0 15 30 45 60 75 90 105

3Dpol 
Mr = 51

KanR 
Mr = 31

41 kDa
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sequences may have an effect on the protein produced and cause the disparity in the 

migration of the protein.

Lane Band PSL PSL-BG No. of 
mets

PSL/No. 
of mets

Ratio

1 3D 771.3 674.3 13 51.8
1 : 3.35 : 0.531 Tet 192 128.6 15 8.24

1 Kan 167.2 123.6 8 15.45
2 3D 1852.0 1654.0 13 127.2

1 : 3.47 : 0.532 Tet 399.3 277.3 15 19.56
2 Kan 387.8 293.4 8 36.68
3 3D 2151 1857.0 13 142.8

1 : 2.95 : 0.533 Tet 452.2 322.5 15 25.82
3 Kan 499.0 387.3 8 48.41
4 3D 1590 1468.0 13 112.9

1 : 2.96 : 0.534 Tet 397.4 288.4 15 20.34
4 Kan 389.4 305.1 8 38.14
5 3D 1801 1674.0 13 128.8

1 : 3.12: 0.535 Tet 443 325.3 15 22.0
5 Kan 433.0 330.1 8 41.3
6 3D 1770 1646.0 13 126.6

1 : 3.12 : 0.536 Tet 438.4 315.0 15 21.6
6 Kan 421.2 324.5 8 40.56
7 3D 1307 1160.0 13 89.2

1 : 4.38 : 0.537 Tet 249.3 169.8 15 10.85
7 Kan 222.9 162.8 8 20.35
8 3D 1962 1447.0 13 111.3

1 : 3.05 : 0.538 Tet 465.2 277.2 15 19.5
8 Kan 376.8 292.4 8 36.55

Table 4.3 Results of densitometric analysis of degradation of pEBl5. The PSL- BG 
(background) figures were divided by the number of methionines in each protein product 
to give a figure proportional to the number of moles of protein within each protein band.
These figures were then used to calculate a ratio for the amount of Tet° compared to that
of KanR and 3DP°l.

As the predicted molecular weight of the 3DP°° product, 51 kDa, is of approximately 

the same as that of the Kan3CPro product, 52 kDa, this band may represent both these 

cleavage products and the value given for 3DP°° is, in all probability, a combined figure 

for both 3DPol and [KanR3CP°o]. If the values are corrected using the number of
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methionines in both the 3CPo1 and [KanR3CPro] protein products there is a reduction in 

the ratio of 3D+Kan3C : Tet: Kan but the ratio is still a long way from 1:1 (Table 4.4).

Lane Band PSL-BG No. of 
mets

PSL-BG/no. of 
mets

Ratio

1 3D+Kan3C 674.3 24 28.09 1 : 1.82:0.53
2 3D+Kan3C 1654 24 56.40 1 : 1.54:0.53
3 3D+Kan3C 1857 24 77.38 1 : 1.60:0.53
4 3D+Kan3C 1468 24 61.16 1 : 1.60 : 0.53
5 3D+Kan3C 1674 24 69.75 1 : 1.69:0.53
6 3D+Kan3C 1646 24 68.58 1 : 1.69:0.53
7 3D+Kan3C 1160 24 48.33 1 : 2.37 : 0.53
8 3D+Kan3C 1447 24 60.29 1 : 1.65 : 0.53

Table 4.4 Densitometric analysis of degradation of pEB15 corrected for presence of 
KanR3CPro in 3DP®1 band. The PSL-BG value for the 3DPo1 band was divided by the 
number of methionines in [KanR3CPro] as this is approximately the same size as 3DPo1.

152



4.4.2 Conclusions

All processing in pEB15 is highly probably in cis as processing in trans is slower

than cis processing and the reactions were not incubated for a sufficient length of time. In 

order to try and enhance trans processing pEB15 was incubated overnight in a TnT 

reaction but there was still no further processing seen (see chapter 5). The processing 

event at the 3D/Tet junction does not mimic a cleavage performed in the virus as there is 

no sequence in the viral genome C-terminal to 3DPo1. However, there are possible 

cleavage sites in the 3DP°° sequence which may allow for this cleavage in the context of 

the reporter polyprotein system. For possible sites see Figure 6.3. It may be possible that 

3CPro could perform cleavages downstream of 3DP°° if cleavage sites were present. In 

the case of [KanR3CD°roTetR] 3CP°° could scan along the nascent protein to find any 

possible cleavage sites and then cleave at any possible sites. It may also be that 3CPr° 

will cleave to rid itself of any sequences whether they are viral or not but this doesn't 

seem to fit in with the non-cleavage of [3CProTetR].

Speculation can be made as to the order of cleavages performed by 3CP°0 in pEB15. 

The cleavage between 3CP°° and 3DP°° must be the last to be performed if it is to occur in 

cis. The first cleavage to be performed would be either between Kan° and 3CP°O or 

between 3DP°l and Tet°, The second cleavage would be one of the two above which has 

not been performed first. A summary of the order of cleavages can be seen below (Figure 

4.4.5).

Figure 4.4.4 Summary diagram, of cleavages in pEBlS. The regions shaded with 
horizontal lines indicate the C-terminal region of 3B which is included to maintain the 
3Cpi‘° 3B/C cleavage site..
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Summary

• With 3CDPro in the reporter polyprotein system 3CPro processes at all available sites 

to yield KanR, 3CPro, 3DP°P and TetR.

• There is equal processingboth N- and C-terminally.

• The presence of the reporter proteins does not inhibit cleavage by 3CPro either N- or 

C-terminally.

• From densitometric analysis of the cleavage products it appears that there may be 

some [KanR3CPro] present.

• In comparison with pEB4 [KanR3CProTetR] pEB15.2 [KanR3CDPr0] shows stronger 

processing at the C-terminus of 3CPro indicating that 3DP®1 has a positive effect in 

regulating cleavage at the C-terminus of 3CPro.

• Processing occurs in pEB15 tit the C-terminus of 3DPPl indicating that 3CP1'0 is 

capable of cleaving at sites which are not present in the viral sequence.

1 or 2
TlffV

1 or 2

pEB15 Kan Uj 3C 3D Tet

Figure 4.4.5 Proposed order of cleavages in pEBlS. Shaded region indicates 3B

sequences included to maintain 3B/C cleavage site.
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4.5 Translation in vitro of pEB25.

The plasmid pEB25 [KanR3ABCTetR] was designed to determine whether the 

sequence upstream of 3CP‘° in the virus had any effect on cleavage in the reporter 

polyprotein system. Translation products correspond to [3GP"RetR], KanR and 3AB 

(Figure 4.5 a&b), indicating that cleavage occurs at the N-terminus of 3CPro and also at 

the N-terminus of 3AB. There is a band at approximately 20 kDa which is the same size 

as 3CP‘° but as there is no corresponding TetR band it seems more likely that this is one of 

the internal initiation products of KanR. The molecular weights of the predicted cleavage 

products of pEB25 can be seen in Figure 4.5.1.

The cleavage products were identified by digesting the polyprotein construct before 

translation to give defined translation products and by the use of control plasmids (Figure

4.5 a). Digestion by PstI prior to translation would linearise the plasmid at the C- 

terminus of 3CPro and the products of translation of the resulting linearised plasmid 

[KanR3ABC] are [KanR3AB] and 3CIR° (Figure 4.5 b). This indicates that the translation 

products of pEB25 are KanR, (3CPro) and 3AB. There appears to be no band representing 

TetR. Sequencing of the plasmid confirmed that the sequence was correct.

Kan 3A 3B 3C Tet

8 ,3 3 15
Mr=31kDa Mr = 13kDa Mr = 21kDa

29
Mr = 41kDa

[Kan3ABCTet] Mr = 106 kDa 

21

11
[3ABCTet] Mr = 75kDa

18
[Kan3AB] Mr = 44 kDa

[3BC] Mr = 23.6 kDa

14
[Kan3ABC] Mr = 65 kDa

[3CTet] Mr = 62kDa

Figure 4.5.1 Molecular weights of predicted cleavage products of pEB25. The
numbers in red are the number of methionine codons in each protein.
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Figure 4.5 a Translation of pEB25. Plasmid DNAs were used to program a WGE 
TnT reaction and incubated for 90 minutes at 30 °C. Samples of the reaction products 
were analysed by SDS-PAGE. pEB19 (Lane 4) did not produce any translation 
products. The bands seen are artifacts of the TnT system.

Lane Plasmid Insert

1 pEB 25 [KanR3ABCTetR]
2 pEB2 [KanR]
3 pEB 16 [HRV14 3AB]
4 pEB 19 [HRV14 3ABC]
5 pEB 3 [HRV14 3Cpro]
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Figure 4.5 b Translation products of pEB25 and pEB25 x Pstl (the plasmid was 
digested prior to incubation in the TnT reaction). The gel was exposed to film for 48 
hours to obtain a clearer image.

Lane 1 pEB25 

Lane 2 pEB25 x Pstl
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The cleavage at the N-terminus of 3AB is at a glutamine-glycine pair, the primary 

cleavage which releases P3 from P2. If the order of cleavage in the reporter polyprotein 

system is the same as in vivo, [KanR3ABC] would be cleaved to KanR and 3ABC. 3CPro 

will then cleave at its N-terminus to give 3AB and 3CPr°. As there is no evidence of a 

band for 3CPro this does not seem to be the case. The presence of 3AB seems to 

positively regulate the cleavage of 3ABC at the N-terminus of 3CPr°. Cleavage of 

[KanR3CPro] is not as efficient as cleavage of 3ABC (Figure 4.5.2). It appears that a 

downstream sequence is required for cleavage between KanR and 3ABC. This can be 

seen by comparing cleavage in pEB25 and pEB25 restricted with PstI. TetR positively 

regulates cleavage in all constructs, pEB4, pEB15 and pEB25.
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Figure 4.5.2 Comparison of cleavage in pEB13 and pEB19. In order to 
compare cleavage by 3Cprowith different N-terminal extensions the translation 
products of these two plasmids were compared. The lanes are from different gels 
but can be compared qualitatively.

2

3BC Mr = 23.6 kDa 

3Cpro Mr = 21 kDa 
■3AB Mr= 12.2 kDa

Lane 1 pEB14 [KanR3Cpro] in pGEM5zf(+) 

Lane 2 pEB19 [HRV14 3ABC] in pGEM5zf(+)
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4.5.1 Conclusions

The replacement of 3CP°° in the reporter system with 3ABC allows the influence of 

upstream viral sequences to be studied. The cleavage products of pEB25 [KanR 

3ABCTetR] are (SCP^etR], KanR , 3BC and 3AB (Figure 4.5). Cleavage occurs at the 

N-terminus of 3AB which is equivalent to the primary cleavage by 3CP°o between P2 and 

P3in the viral polyprotein. The production of [3CPr°TetR] indicates that cleavage also 

occurs at the N-terminus of 3CP°o. There is no cleavage observed at the C-terminus of 

3CPro in this system which is indicated by the lack of a band representing TetR. This 

compares with the lack of cleavage seen in pEB5 [3CPfoTetR].

Comparing cleavage of 3ABC with cleavage of [KanR3CPro] shows that cleavage of 

3ABC is more efficient. This may be due to the action of 3AB in enhancing cleavage at 

the N-terminus of 3CP°O or it may be due to the fact that 3AB is a viral sequence whereas 

KanR is a foreign sequence. 3AB does not seem to enhance cleavage at the C-terminus 

of 3CPro as there is not any cleavage seen at this site in this system.

When pEB25 is digested with Pstl before incubation in the TnT system the cleavage 

products are [KanR3ABC] and 3BC. There is no evidence of [KanR3A] however as the 

remaining portion of the cleaved polyprotein. There is a 3CP° Q-G cleavage site between 

3A and 3B but in the viral polyprotein this site is rarely utilised. Cleavage still occurs at 

the N-terminus of 3C°ro but there is no cleavage at the N-terminus of 3A. This implies 

that a C-terminal extension may be required for 3CPro to process at its N-terminus. The 

analysis of the construct [KanR3ABCD] would be useful to establish whether the 

inclusion of a viral sequence downstream of 3CP°° has the same effect as the presence of 

TetR.
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Figure 4.5.3 Summary of cleavages in pEB25. The regions shaded with dots are the C- 
terminal region of 2C and the regions shaded with vertical lines are the N-terminal region 
of 3D,

Summary

• When the HRV14 P3 cleavage product 3ABC is used as the viral sequence in the 

reporter polyprotein system cleavage occurs at the N-terminus of 3CPro to give 

[3CProTetR].

• Cleavage also occurs at the N-terminus of 3AB giving KanR and 3AB as cleavage 

products.

• Cleavage occurs at the N-terminus of 3B toyield 3BC as a cleavage product

• 3 AB has apossible function enhancing the N-terminal cleavage of 3CPro.

• 3 AB does not have any enhancing effect onC-terminalcleavage by 3CPro.

• 3CPro seems to require a C-terminal sequence in order to process at the N-temiinus of

3AB.
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4.6 Discussion

• The 3C protease favours cleavage at its N-terminus in the artificial reporter

polyprotein system. In this polyprotein reporter system 3CP°° will cleave with both 

N- and C-terminal extensions. The degree of processing appears to be dependent on 

which extensions are present and, in some circumstances, the nature of the extension

(i.e. viral or non-viral). Between the two non-viral reporter proteins 3CP°° cleaves 

both N- and C-terminally but favours cleavage at its N-terminus. If the C-terminal 

extension is removed from 3CPro N-terminal processing still occurs but at a lower 

level than with the C-terminal extension present. By comparing [KanlBCPriTetl and 

[KanR3CDP°o] the effect of viral versus non-viral sequences can be observed. 

[KarRBCDP®] cleaves to give KanR, 3CP°o and 3DP®1 whereas [KanR3CPr°TetR] 

cleaves to give [KanRBCP®] and [3CP*°TetR] which are not cleaved to give further 

products. Cleavage in [Kan^CPnfetR] is less complete than in [KanRBCDP®]. The 

cleavage products of [KarRBCDP®] are produced in equal amounts and there is a 

large amount of uncleaved polyprotein present.

• Effect of N-terminal extension on cleavage by 3CPro. If the N-terminal 

extension is not present then differences in cleavage may also be seen depending on 

the nature of the C-terminal sequence. [3CP°°TetR] does not cleave to give 3CP® and 

TetR either as a polyprotein or when it is a product of processing from 

[KanR3CP°oTetR]. 3CDP°0 does not cleave to give BCP® and 3DPo° which ties in with 

earlier observations made in v/v< and in vitro.

The nature of the N-terminal extension of 3CP°O has an effect on cleavage. Cleavage 

occurs with any N-terminal extension whether viral or non-viral. If 3AB is present 

upstream of 3CP°o then cleavage occurs more efficiently at the N-terminus of 3CP™. 

This can be seen by comparing cleavage in [KanR3CProTetR] with cleavage in 

[KanRB^BCTetR].

Cleavage of [KanRBABCTetR] is however also dependent on the presence of a

downstream sequence. [KanRBABC] only cleaves once at the N-terminus of 3CP™ to 
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release KanR3AB and 3CPro. When TetR is present at the C-terminus of 

[KanR3ABC] cleavage also occurs between KanR and 3AB. This agrees with the

results seen in pEB4 and pEB 15 that presence of a C-terminal extension regulates N- 

terminal cleavage.

• Cleavage in pEB15 shows unexpected cleavages by 3CPro downstream of 3DPok 

Cleavage in pEB15 yields KanR, 3CP™, 3DP°r, TetR and possibly [KanRBCP™]. The 

cleavage between 3DP°1 and TetR is unexpected as 3CP™ does not perform a cleavage 

downstream of 3DP°r in the virus. The viral polyprotein does not have any coding 

sequences C-terminal to 3DP°! and it was not thought that 3CP™ would cleave any 

sequence downstream of 3DP°l. Cleavage by 3CP™ downstream of 3DP°r is discussed 

further in chapter 6.
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5. Human Rhinovirus 3C proteolytic processing in trans

Cleavages performed in the processing pathway of picornaviruses occur izn cis (an 

intramolecular reaction) or in trans (an intermolecular reaction). There is one exception to 

this in the maturation cleavage whose mechanism has yet to be determined (see section

1.5.5). In cis cleavages the protease is acting at a cleavage site whilst still part of the 

same polyprotein. These cleavages are often rapid and occur co-translationally. They are 

frequently referred to as autocatalytic and follow zero order kinetics, and, therefore are 

insensitive to dilution. Cleavages performed in trans are exemplified by a protein 

containing proteolytic activity cleaving another peptide or protein at a substrate cleavage 

site. This type of reaction follows second order kinetics and is sensitive to dilution. 

Cleavages which are performed by the protease in trans occur more slowly than those in 

cis.

In poliovirus the primary cleavage product PI is cleaved in trans to yield the capsid 

proteins (Hanecak et al., 1982). The protease responsible was identified as 3 CP™ 

however, additional sequences from either 3B and/or 3DP°r were also thought to be 

required (Hanecak et al., 1982;Ypma-Wong and Semler, 1987). Surprisingly PI was 

found to be processed in trans by 3CDP™, rather than 3CP™, to give the structural 

proteins lAB, 1C and ID (Jore etal, 1988;Ypma-Wong et at., 1988). The final cleavage 

of lAB to lA and IB, known as the maturation cleavage, is mediated by an unknown 

entity. In some other picornaviruses, such as EMCV, PI is processed by 3CP™ alone 

(Parks et al, 1986).

In an alternative cleavage pathway in poliovirus 3CDP™ is processed to yield 3C 

and 3D' (Hanecak ef a/., 1982;Pallanschef «/., 1984;Rueckert?r a/., 1979). This cleavage 

is catalysed by 2AP™ (Toyoda et al, 1986) acting in trans. Cleavage occurs at a 

conserved tyr-gly pair in the 3DP°r sequence (Figure 5). It gives a product, 3C, which is 

larger than 3CP™ but not as large as 3CDP™ and another (3D')which is smaller than 3DP°L 

This cleavage had also been observed previously in the P3 region of human rhinovirus la 

(HRV-la; McLean et al, 1976). No function has been found for the alternative cleavage
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products and they have been shown not be essential for poliovirus replication in tissue 

culture (Lee and Wimmer, 1988). The Y-G site is completely conserved in the entero- 

and rhinovirus group with the exception of HRV 16 where a single base change results in 

an aspartic acid residue instead of the tyrosine (see figure 6.4)

in cis by 3CPro or cleavage in trans by 2APro.

It was hypothesised that the alternative cleavage product 3C' may be able to act in 

the same way as 3CDPro and process Pl in trans. Previous experiments, however, have 

shown that the whole 3CDP10 sequence is required for Pl processing in poliovirus (Jore et 

al., 1988;Ypma-Wong et al., 1988). Deletions of 3DPo1 resulted in a lack of processing 

(Jore et al., 1988) and some transcripts containing up to 75% of 3DPo1 will not process Pl 

in poliovirus (Ypma-Wong etal., 1988).

In HRV14 Pl is processed in trans by 3CDPro to produce the capsid proteins. As no 

function has yet been ascribed to 3C' it was decided to see whether the alternative 

cleavage product had the same ability to cleave Pl in trans in HRV 14.

5.X Construction of plasmids.
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5.1.1 pGEM7zf(+)GFP-2A.

A plasmid containing the coding sequences for green fluorescent protein (GFP) and 

HRV14 2AP™ was constructed by Vanessa Cowton in the laboratory. GFP was amplified 

by the PCR from a plasmid containing the wild type GFP sequence donated by Simon 

Santa Cruz at the Scottish Crop Research Institute. The 2A protease was amplified by 

PCR from a plasmid containing the complete HRV14 sequence using oligonucleotide 

primers designed to the 5' and 3' ends of the gene. The genes were then ligated into the 

multiple cloning site of pGEM7zf(+) (Figure 5.1.1) to form an artificial polyprotein and 

provide a control for the N-terminal cleavage by 2APr°. If cleavage occurs at the N- 

terminus of 2APr° then two cleavage products will be seen, GFP and 2APro» in the TnT 

reaction. If cleavage has not occurred then one product will be seen representing the 

polyprotein precursor GFP-2A.

5.1.2 pGEM-T 3C’.

The product of the alternative cleavage in 3CDPro, 3C, was amplified by the PCR 

from a plasmid containing the full length sequence of HRY14. The 3Cpro 5' primer 

employed previously was used and a new primer was designed to complement reverse 

sequence of the 3' end of the nucleotide sequence. The restriction sites added were Aatll 

at the 5' end and PstI at the 3' end. The PCR product was cloned into pGEM-T, a 

transcription vector which utilises the additional adenine left by PCR at the ends of the 

products. The resulting plasmid (pGEM-T 3C) was analysed by restriction digest and 

then sequenced with T7 and SP6 polymerase promoter oligonucleotide primers to confirm 

that it was correct. It is important to confirm orientation of the insert so that the correct 

polymerase may be used in the TnT reaction. The insert was found to be under the 

control of the T7 polymerase promoter and this polymerase was used in the TnT reactions 

(Figure 5.1.2).
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Figure 5.1.1 pGEM7zf(+) GFP-2A. Constructed by Vanessa Cowton. 
GFP and HRV 14 2Ap°o were amplified by the PCR and then ligated 
into pGEM7zf(+) to form an artificial polyprotein.

Figure 5.1.2 3C' pGEM-T. Constructed by Vanessa Cowton. 3C’ 
was amplified by the PCR from a plasmid containing the full length 
HRV 1-4 coding sequence. It was ligated into pGEM-T and 
sequenced to confirm the orientation of the insert.
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5.1.3 pEB7.

The 3CD protease gene was amplified by the PCR from a plasmid containing the 

full length coding sequence for HRV 14 using primers designed to the 5' and 3' ends of the 

gene (see table 2.1). Restriction sites were incorporated into the primer sequence to add 

sites to the ends of the PCR product for easy ligation into the chosen vector. A Hindlll 

site was added to the 5' end and a Kpnl site to the 3' end. The PCR product was restricted 

with these enzymes and ligated into pRSETA which had been similarly restricted. The 

resulting plasmid (pEB7; Figure 5.1.3) was used to program TnT systems and to express 

the protein in E.coli.

5.1.4 pEB8.

HRV 14 Pl was amplified from a plasmid containing the complete coding sequence of 

HRV 14 by the PCR. Restriction sites were added to the 5' and 3' ends to facilitate 

ligation into a transcription vector. An Spel site was added to the 5' end and a Kpnl site 

to the 3' end. In order to make it easier to see whether the vector had been digested prior 

to ligation a plasmid containing an insert was used to provide the vector. The chosen 

vector, pBluescript IIKS+, had previously been used by Mike Flint in the laboratory to 

make a plasmid containing FMDV 3CDPro (pMF16c). The insert was released from the 

plasmid using Kpnl and Spel leaving the vector with the correct sticky ends for ligation 

with the cut Pl PCR product (Figure 5.1.4) to produce the plasmid pEB8.

All these constructs were used to program reticulocyte lysate systems as controls.
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Figure 5.1.3 Construction of pEB7. The 3CDPro coding sequence was amplified 
by the PCR from a plasmid containing the full length HRV 1-4 coding sequence, 
using primers OB 1-4 and OB16 (A). The PCR product was restricted with Kpnl and 
Hindlll and ligated into pRSETA which had been similarly restricted. The plasmid 
created, pEB7, was designed to program RRL and WGE TnT reactions and to 
express 3CDPro in E.coll.

(C)

3CDPro
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(A)

Figure 5.1.4 Construction of pEB8. The coding sequence for HRV 14 Pl was 
amplified by the PCR from a plasmid encoding the full length HRV14 sequence, 
using oligos OB 12 and OB 13 (A). The PCR product was then restricted with Kpnl 
and Spel (B) and ligated into pBSIIKS+ which had been similarly restricted. The 
resulting plasmid pEB8 was used to program RRL TnT reactions.

Restriction of Pl PCR product and ligation into pBSIIKS+

Spel
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5.2 Processing of HRV14 3CDPro by 2AProin trans.

The control plasmids for this experiment were translated to check whether they gave 

translation and cleavage products of the expected sizes (Figure 5.2.2). The plasmid DNA 

was used to program a rabbit reticulocyte lysate (RRL) TnT reaction, incorporating 35S- 

methionine as the radiolabel. After incubation for 90 minutes at 30 °C translation was 

stopped by the addition of SDS-PAGE loading buffer and samples were loaded onto 

polyacrylamide gels (Figure 5.2.1). 10% and 15% running gels were used to assess 

which would be best for visualising the small products of cleavage. The rabbit 

reticulocyte lysate system was used in these experiments as it had already been 

determined, in previous experiments carried out by Vanessa Cowton in the laboratory, 

that the cleavage products of GFP-2A are more easily visualised in this system than in the 

wheatgerm extract system.

The tracks on both the 10% and 15% gels were clear and it was decided to use a 

10% gel for all further experiments. GFP-2A cleaves to give GFP and 2APr°° (Figure

5.2.1 a &b Lane 2). The 2A protease cleaves in cis at iis own Cleavage is

total in this instance as no band representing GFP-2A is seen on the gel. The predicted 

molecular weight of GFP-2A is 44 kDa. GFP has a predicted molecular weight of 27 kDa 

and 2APro 17 kDa.

GFP 2A

GFP-2A Mr = 44 kDa

GFP Mr = 27 kDa

2Apro Mr =17 kDa

Figure 5.2.2 Diagram to show the predicted molecular weights of the cleavage 

products of GFP-2A
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Figure 5.2.1 Translation of control plasmids. Control plasmids were used to 
program RRL TnT reactions labelled with 35 s-methionine. Translation products 
were analysed by SDS-PAGE.

1 2 3

Pl 94kDa ■

■3CDpro 72 kDa

GFP 27 kDa

■2Apro 17 kDa

A. 10 % polyacrylamide gel

1 2 3

-SB

Pl 94 kDa

-3CDpro 72 kDa

-GFP 27 kDa

-2Apro 17 kDa

B. 15 % polyacrylamide gel

Lane 1 pEB8 HRV 14 Pl in pBBSKS+

Lane 2 pGEM7zf(+)GFP-2A

Lane 3 pEB7 HRV 14 3CDpro in pRSETA
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Translation of pEB7 gave three prominent bands. These were identified as the full 

length 3CDP1'0 translation product (72kDa) and two internal initiation products (discussed 

in chapter 3). Figure 5.2.3 shows the predicted molecular weights for the expected 

translation products. These were identified and the percentage initiation from each 

calculated (see section 3.10). This indicates that 3CDPro is stable in this system which is 

consistent with results from in vivo work.

Translation of pEB8 gave the expected Pl translation product with a predicted 

molecular weight of 94 kDa.

pEB8.
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5.3 Cleavage in trans of 3CDPro by 2APro.

In order to observe the cleavage of HRV 14 3CDPro by HRV 14 2APro in trans, 

unlabelled 2APro was synthesised in a rabbit reticulocyte lysate (RRL) system. An amino 

acids minus leucine mix was substituted for the radiolabelled rrs-methionine to provide 

methionine for the reaction. The reaction was incubated at 30 °C for 90 minutes and then 

stopped. The reaction was stopped by the addition of cycloheximide (to a final 

concentration of 0.8 jig/ml), to stop protein synthesis, and RNaseA (to a final 

concentration of 0.6 |tg/ml), to degrade any mRNA. Labelled substrate, i.e. 3CDPr° was 

synthesised in a reaction with 35S-methionine as the radiolabel in the same way. An 

aliquot (7.5 pd) of the unlabelled GFP-2A reaction was then mixed with 5.0 pi of the 

labelled 3CDPr° reaction, overlaid with mineral oil and incubated overnight at 30 °C.

The 3C coding sequence was amplified by the PCR and cloned into a transcription 

vector to use as a control. It was known that 2APro was active in cis (GFP-2A cleaved to 

yield GFP and 2APr°) in the TnT reaction. A reaction was therefore set up to determine 

whether 2APr° would be active in trans and cleave 3CDP)ro to yield the alternative 

cleavage products 3C and 3D'.

A sample of the overnight reaction was analysed on an SDS-PAGE gel with control 

reactions to provide size standards (Figure 5.3.1). It can be seen from the gel that there 

may be a low level of cleavage in 3CDPra to give the alternative cleavage product 3C. 

The predicted molecular weight of the 3C cleavage product is 31 kDa. The plasmid 

containing the 3C sequence did not produce any translation products. The DNA had 

been cleaned by phenol chloroform extraction, ethanol precipitation and spun column 

chromatography with G-50 sepharose. The plasmid was sequenced and the nucleotide 

sequence of the insert was found to be correct. The lack of translation product may be 

due to an error in the promoter sequence of the transcription vector used so the insert 

needs to be ligated into another vector for further experiments.
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Figure 5.3.1 Cleavage of HRV14 3CDPro in trans. Plasmid DNA was used to 
program RRL TnT reactions. Control reactions were carried out to provide size 
markers for thctrans processing reaction between 2APro and 3CDPro (Lane 4).

Lane 1 3CD+ GFP-2A 
Lane 2 GFP-2A 
Lane 3 3CD 
Lane 4 3C’

The reaction in Lane 1 was carried to monitor processing of 
3CDpro by 2Apro zn trans. 3CDPro was synthesised in an RRL reaction

with 35S-methionine as a radiolabel. 2APro was synthesised in an 
unlabelled reaction. 7.5 jil of the unlabelled protease was added to 
5.0 pi of the labelled substrate and incubated overnight at 30 °C.
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5.4 Processing of Pl in trans.

5.4.1 Proccssing of Pl in trans.

In order to see whether the alternative cleavage product 3C is capable of performing

the Pl processing events, an experiment was devised to monitor these trans reactions. 

The substrate, PI, was synthesised in a 35S-labelled RRL TnT reaction and the protease 

source, either 3CDP™ or 3C, was synthesised in an unlabelled RRL reaction. Both 

reactions were stopped after 90 minutes at 30 0C by the addition of cycloheximide and 

RNaseA (see section 5.3). Unlabelled protease (7.5jtl) was added to 5|il of the labelled 

substrate. The mixture was overlaid with mineral oil and incubated at 30 °C overnight. 

Samples from the reactions were then analysed on SDS-PAGE gels with samples of the 

reaction components as controls (Figure 5.4.1).

Figure 5.4.2 Predicted molecular weights of cleavage products of Pl.

If cleavage occurred in trans then translation products representing the capsid 

proteins lAB, 1C and ID would be seen on the gel. Lane 1 has bands representing the 

uncleaved PI polyprotein and 3CDPro which can be identified by comparison with the
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Figure 5.4.1 Processing in trans of HRV14 Pl. The reactions in Lanes 1 and 
2 were incubated overnight at 30 °C. The reaction consisted of 7.5|xl of an 
unlabelled protease source and 5.0 |Xl of a labelled substrate. These were 
synthesised separately in RRL reactions incubated at 30 0C for 90 minutes.

Lane 1 3CD + Pl 
Lane 2 3C’ --Pl 
Lane 3 P1 
Lane 4 3CD 
Lane 5 3C’
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control lanes. The protease source was labelled in error so the translation products of this 

can also be seen. There are extra bands in lane 1 which may be processing products of PI 

but it is unlikely that processing has occurred in trans due to the failure of 2APro to 

process 3CDPro. If the extra bands are processing products then they are not very distinct 

and processing is at a very low level. Previous experiments have indicated that PI is 

processed to VPl (ID) but no VPO (lAB) or VP3 (1C) is seen (lore et al., 1988). The 

predicted molecular weight for HRV 14 1C is 26 kDa as shown in Figure 5.4.2 above. 

These extra bands are not present in the 3C + PI lane (Lane 2) indicating that there was 

no trans processing with 3C as the protease source in the reaction.

The discrepancy between the intensity of the PI bands in lanes 1 and 3 is due to 

unequal loading between these lanes. The amount of PI loaded in the control lane (Lane 

3) is approximately five times that loaded in Lane 1.

To create conditions that may favour trans processing DTT was added to the 

reactions and co-translation reactions were also tried.

5.4.2 Additioo to DTT and adjussment erf reaation comppnnntt.

The reactions were repeated in much the same way as before with labelled and 

unlabelled components being synthesised separately and then incubated together 

overnight. The volumes of reactants were changed so that equal volumes (5 pi) of the 

substrate and protease were added to the overnight incubation. A second set of reactions 

was also carried out with the same volumes of reactants (5 pi) and the addition of DTT 

(2mM final concentration) to the overnight reaction. DTT is a reducing agent which 

stops the oxidation of the protease by protection of the thiol groups. This allows the 

protease to be active over a longer period of time which would be favourable for trans 

processing. Samples of the reactions were analysed by SDS-PAGE (Figure 5.4.3).

It can be seen from figure 5.4.3 that no trans processing occured in the overnight 

reactions between 3CDPro and PI or 3C and PL The only translation product seen is that 

of uncleaved PI which is the same as that in the control lane. If trans processing had 

taken place PI would have been expected to be processed into the capsid proteins 1C and
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ID and the precursor lAB. The predicted molecular weights of these proteins can be 

seen in figure 5.4.2. The addition of 2mM DTT (lanes 1 and 3) did not have any effect on 

the lack of trans processing.

The 3CD protease does not seem to have undergone any trans processing on 

incubation with GFP-2A. The bands present in both the lane with DTT and the one 

without show the same bands as the control 3CDPro lane. GFP-2A was expected to 

cleave 3CDPr° at the alternative tyr-gly cleavage site in 3DP°i to produce 3C'. The 2AP*o

in this artificial polyprotein is known to be active in cis as it cleaves itself away from 

GFP but it does not seem to be active in trans..
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Figure 5.4.3 Addition of DTT to trans processing reactions. Reactions in Lanes 1 
- 6 were synthesised separately (the protease source unlabelled and the substrate 
labelled with 35S-methionine) and then combined and incubated overnight at 30 °C.

123456789

Lane 1P1+ 3C with 2 mM DTT
Lane 2 Pl + 3C’ no DTT
Lane 3 P1+ 3CD with 2mM DTT
Lane 4 PI + 3CD no DTT
Lane 5 3CD + GFP-2A with 2mM DTT
Lane 6 3CD + GFP-2A no DTT
Lane 7 3C’
Lane 8 3CD
Lane 9 P l
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5.4.3 Co-translations.

To enhance trans processing between 2APr° and 3CDPO and 3C and Pl co­

translation reactions were carried out. Equal amounts (500ng) of the two constituent 

DNAs were added to a 20/d RRL TnT reaction and incubated at 30 °C for 90 minutes. 

Reactions were then stopped by the addition of cycloheximide and RNaseA (see section 

5.3). The reactions were overlaid with mineral oil and incubated overnight at 30 °C.

Samples of all the reactions were analysed by SDS-PAGE on a 10% polyacrylamide 

gel (Figure 5.4.4).

Incubation of 3CDPro with Pl failed to result in trans cleavage to produce any 

capsid proteins. The translation products seen on the polyacrylamide gel (figure 5.4.4 

lane 2) are the same as those of Pl and 3CDPO° in the control reactions showing that no 

processing of Pl had occurred. The protease source in this experiment was labelled due 

to the nature of the co-translation reaction and therefore shows up on the autoradiograph 

of the SDS-PAGE gel. The incubation of 3C' with Pl also failed to show any processing 

but this is not necessarily due to the non-proteolytic nature of 3C’. The fact that 3CDPoo 

also fails to show any processing of Pl indicates that the whole system is unsuitable and 

conclusions cannot be drawn about the processing activity of 3C*.

lncubation of 3CDPro with GFP-2A does not show any cleavage at the alternative 

cleavage site. Both components were labelled with OOS-methionine and so there are 

bands from both 3CDPro and GFP-2A. There are not any extra bands indicating that if 

any cleavage products are present they are of a similar size to the original components. 

The product of cleavage at the tyr-gly pair has a predicted molecular weight of 31 kDa 

which is around the same size as GFP. As no cleavage has been seen in previous 

incubations it seems unlikely that there is a 3C' cleavage product being masked by the 

GFP band in this translation.

As even the control reactions failed to show any signs of trans processing it was 

concluded that the system is unsuitable for this type of analysis. lt may be that separate 

transcription and translation reactions would enable trans processing to proceed. The
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Figure 5.4.4 Co-translation reactions. Co-translations of the pairs of plasmids were 
carried out in an RRL TnT system. Equal amounts of each plasmid DNA were used to 
program a 20 til reaction and then incubated at 30 °C for 90 minutes. Reactions were 
then stopped by the addition of cycloheximide and RNaseA and the reactions were 
overlaid with mineral oil. To allow trans processing to take place the reacstions were 
incubated at 30 °C overnight.

Lane 1P1 + 3C’
Lane 2 PI + 3CD 
Lane 3 GFP-2A + 3CD 
Lane 4 3C’
Lane 5 3CD 
Lane 6 P1 
Lane 7 GFP-2A
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length of incubation should have been sufficient to observe trans processing. lf the 

reactions are left for any longer degradation starts to occur and all products are destroyed.

The control reaction for GFP-2A on this gel (Figure 5.4.3) shows some uncleaved 

GFP-2A. This is different to other translations of this plasmid. The ratios of GFP to 

2APi'o are not constant in other translations (Table 5.1) but this is the only experiment 

which shows uncleaved GFP. Densitometric analysis shows the percentage of uncleaved 

GFP-2A to be approximately 18%.
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5.5 Processing in trans of reporter gene constructs.

In order to study the effect of processing in trans the coupled transcription 

translation reactions were incubated overnight at 30°C. Reactions were carried out as 

described in the protocol provided by the manufacturer and then the reaction was stopped 

by the addition of RNaseA (to a final concentration of 0.8 pg/ml) and cycloheximide (to a 

final concentration of 0.6 pg/ml). The reaction mixture was overlaid with mineral oil and 

incubated overnight at 30 °C. SDS-PAGE loading buffer was added to the reaction after 

the overnight incubation to stop any further degradation. The products were then 

analysed by SDS-PAGE. The first 90 minute incubation allows cis processing to take 

place and the overnight incubation gives time for trans processing reactions to take place 

between the products of the cis processing reactions.

It can be seen from the translation products in figure 5.5.1 that no further processing 

occured in the overnight reactions. There appears to have been some degradation of 

products especially in the overnight incubation of pEB4. Further experiments were not 

carried out to try and improve the quality of the overnight reactions as the system was 

found to be unsuitable for this type of analysis from other experiments.

The addition of a reducing agent was not tried and the incubation times and 

concentrations of reactants were not varied. It may be more successful if tried in the RRL 

system rather than the WGE.
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Figure 5.5.1 Processing of reporter polyprotein constructs in trans,. TnT
wheatgerm extract systems were programmed with plasmid DNA and 
incubated at 30°C for 90 minutes. The reaction was then stopped and 
overlaid with mineral oil. The reactions were then incubated overnight to 
allow trans processing to occur.

1 2 3 4 5 6

Lane 1 pEB4
Lane 2 pEB4 overnight
Lane 3 pEB 15
Lane 4 pEBl 5 overnight
Lane 5 pEB25
Lane 6 pEB25 overnight
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5.6 Conclusions,

The plasmids constructed to perform the trans processing experiments were all 

translated separately and gave products of the expected sizes with the exception of 3C 

pGEM-T.

• GFP-2A cleaves in cis but not in trans. The artificial polyprotein GFF-2A 

cleaves in cis to produce GFP and 2APro. The ratio of products is not constant and there 

is also some uncleaved GFP-2A in some cases. The reason for the difference in the 

processing ability of 2APro is not known and may be a result of the system used. 

However, the artificial polyprotein does produce significant amounts of the cleaved 

products in all cases and the amount of uncleaved polyprotein is less than 10% when it is 

seen. The 2A protease is capable of cleaving itself from the GFP fairly efficiently in cis. 

This provides evidence that a functional 2APro is present and is capable of cleaving itself 

in the RRL TnT system. The 2A protease from HRV 14 cleaves itself at its N-terminus in 

the virus and it does the same in the artificial polyprotein GFP-2A.

• 2AP™ does not cleave 3CDP*° in trans in the RRL TnT system. The use of

GFP-2A to provide the 2APo° for trans processing meant that a functional GFP was 

known to be in the reaction. However, even though 2APo° was known to be active in cis 

it did not process HRV14 3CDPo° in trans. This is a reaction known to occur in human 

rhinovirus lA and the non-occurrence in this experiment seems to be more likely to be 

due to the system used than the lack of processing of this type in HRV 14. The original 

strategy of translating the plasmids separately was designed to allow the accumulation of 

protease and substrate before trans processing to mimic the situation in the virus. This 

also allowed the protease to be synthesised in an unlabelled reaction which meant that the 

cleavage products visualised on the gel would only be those resulting from cleavage of 

the substrate and the products would be more easily identifiable.
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• Varying the amounts of substrate and protease does not affect trans processing 

in this system. The variation of the amounts of protease and substrate in the 

overnight incubations was intended to abolish any inhibitory effects that an excess of 

one component may have. Initially an excess of the unlabelled protease was added to 

ensure that processing would take place but when this was unsuccessful equal 

volumes of protease and substrate were used. Lowering the amount of protease 

present did not have any effect on the processing of the substrate.

• Addition of a reducing agent did not affect the lack of trans processing in this 

system. The addition of DTT as a reducing agent did have any effect on the trans 

processing reaction but again the system was not ideal for this type of processing

reaction.

• Co-translation of plasmids did not stimulate trans processing in this system. The

two plasmids were also co-translated to see if this would allow trans cleavage. This 

strategy is not as close to the strategy employed by the virus but may allow trans 

processing to occur when lower levels of protein are present. As the translation 

products of both reactions are labelled in this case it is more difficult to distinguish 

cleavage products of the substrate.

• 3CD and 3C' do not Pl in trans, in RRL TnT system. The c^t^s^e^:^v^ctio^ns

made above about the trans processing of 3CDPro by 2APro also apply to the 

processing of P1 by 3CDPro and 3C. Processing did not occur when the separate 

synthesis strategy was applied or when the plasmids were co-translated. The addition 

of DTT as a reducing agent was also unsuccessful. Again the fault was thought to be 

with the system used not the plasmid DNA used to program the system.

The lack of translation product from the plasmid encoding 3C was thought to be due 

to an error in the promoter sequence of the vector used. The nucleotide sequence of
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the 3C insert was checked after ligation into the vector and found to be correct so the 

lack of translation products were not due to any mutations in the nucleotide sequence.

• The reporter polyprotein system does not show any signs of trans processing

products after an overnight incubation. The incubation of the reporter polyprotein 

constructs overnight to allow trans processing reactions to occur was not successful. 

The translation products were the same as in the sample from the initial incubation 

which was to allow cis processing to occur. The only difference is that overnight 

incubations appear to have been degraded to some degree. This is probably due to the 

prolonged incubation which would allow the accumulation of proteases from the 

reaction components.

In general, the incubation of the plasmids in pairs to observe trans processing was 

not very successful. As all the plasmids had been translated successfully separately the 

fault was thought to be with the system used rather than with the quality of the DNA used

to program the reactions.

Summary.

• HIRV14 2A0ro cleaves GFP-2A in cis to give GFP ^nd 2A0ro.
• NtterminaS deavageby HRV 14 2APro.
• deavage is total rn moss cases bus ta is evidence of some undeaved GFP-2A in 

some reactions. In this case cleavage has been calculated to be 91%.
• Whether the protease ss m excess or as the same volume as the substrate trans 

processing does not occur.
• Addtdon off DTT does nos improve deavage n ms.
• Co-translation does not allow trans cleavage.
• Trans processing of 3CDPr° to give the alternative deavage 3C product does not

work in this system.
• This system is not suitable for monitoring trans processing between parts of the 

HRV 14 genome.
• Trans processing is not seen in any of the reporter gene constructs. This is probably 

due to the unsuitability of the system for this type of analysis as stated earlier.
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5.7 Discussion.

The lack of trans processing observed in the above experiments leads to the 

conclusion that the coupled RRL system is unsuitable for this type of analysis. Even with 

the addition of a reducing agent to maintain the oxidation of the protease no trans 

processing was seen. Using separate transcription and translation systems may be more 

successful.

The protease genes used in these experiments will be cloned into bacterial 

expression vectors to allow higher concentrations of the proteolytic enzymes to be added 

to the system. The TnT system produces very small amounts of protein and it may be the 

case that this is not enough to process the substrates Zn trans. The substrates produced are 

in these experiments should be suitable for processing if the enzymes are present in 

higher concentrations. As there are no positive controls working the conclusions drawn 

from these experiments are minimal and merely serve to highlight the unsuitability of the 

system for this kind of analysis.
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6. Discussion

The replication of a virus requires proteins to be produced in different amounts and 

at different times in the replication cycle. There are various strategies which viruses use to 

accomplish this. Some produce subgenomic RNAs which encode proteins required at a

certain point. For example, the capsid proteins are usually required at a later stage in 

replication to package the genome and encoding these in a subgenomic RNA means that 

they will be produced when required.

In picornaviruses the single polyprotein strategy means that all proteins should be 

produced in a 1:1 ratio and at approximately the same time. The regulation of the 

proteolytic enzymes means that some sort of differential control of processing is present. 

The capsid proteins in rhinovirus and poliovirus are know to be processed by 3CDPro in 

trans. This requires the release of 3CDpro, as opposed to alternative processing products, 

from the polyprotein before PI processing can begin, and, therefore some sort of 

regulation is operating. The viral polyprotein has one processing pathway which yields 

3Cpro and 3DP°r and an alternative pathway to give 3CDPro .

The in vitro system used in these experiments is limited by the lack of viral and, 

perhaps, cellular factors which will not allow the same regulation mechanisms to operate 

as in the virus. At this stage, therefore, direct comparisons with virus-infected cells are 

not possible. The reporter polyprotein system has been designed to allow the addition of 

other factors back into it which will allow more direct comparisons. Certain inferences 

can, however, still be made as to the implications of these results for processing of the 

viral polyprotein.

6.1 3CPr° in si reporter |^<0^jp^cO^<^iii system.
The aim of this project was to construct artificial reporter polyproteins which would 

allow cleavage by HRVI4 3CPro to be monitored without the influence of viral and 

cellular factors. The reporter genes used would also allow investigation into the 

monitoring of cleavage by antibiotic resistance.
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cellular factors. The reporter genes used would also allow investigation into the 

monitoring of cleavage by antibiotic resistance.

In the reporter polyprotein [KanR3CProTetR] cleavage by 3CPro was monitored to 

establish a "default" 3CPro processing pathway. That is to say that the reporter 

polyprotein system will show how 3CPr® cleaves when it is not under the influence of any 

viral or cellular factors, i.e. a "default" pathway. Results showed that 3CPr° cleaves 

preferentially at its N-terminus in this system to yield [KanR] and [3CPr°TetR] (Figure 

6.1). There is a lesser degree of cleavage at the C-terminus of 3CPr° to yield [KanR3CPr°] 

and [TetR]. If this state of affairs was directly applied to the virus polyprotein situation 

then N-terminal cleavage to yield 3CDPro would be preferential to C-terminal cleavage to 

ultimately yield 3CPro. However, there are likely to be other factors affecting cleavage by 

3CPro in virus polyprotein processing. These results indicate which cleavage pathway 

3Cpro would follow if it was not influenced by other viral and cellular factors - exactly 

what the artificial polyprotein [KanI33CrroTetR] was designed to show. Further 

experiments with addition of viral and cellular factors will show whether these have an 

influence on cleavage by 3CP1® and may be used by the virus to 'switch' production from 

3Cpi’° to 3CDPp° or vice versa.

Figure 6.1 Summary of cleavages in pEB4. The bold arrow indicates the major 
(preferential) cleavage and the other minor cleavage. The shaded areas indicate 
additional sequences included to maintain 3CPp° cleavage sites.
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6.1.1 Expression of self-processing antibiotic resistance polyproteins in E. coli.

Expression of antibiotic resistance in E. coli was investigated as a possible means

for monitoring cleavage in the reporter polyprotein system. It was known that the 

kanamycin resistance gene would not function with a C-terminal extension (M. Ryan, 

pers comm) and it was hoped that the tetracycline resistance gene product would not 

function with an N-terminal extension so that cleavage at either end of 3CPo° would allow 

expression of antibiotic resistance to one or other of the antibiotics used. This did not 

seem to be the case, with all constructs showing tetracycline resistance phenotype (see 

section 4.1.5). This may imply that the polyprotein is either; not cleaving at all in this 

system, the alterations made to the C-terminus of the kanamycin resistance gene having 

rendered it inactive, or, cleavage is occurring preferentially at the C-terminus of 3CPo°. If 

the latter is true then these results conflict with those from the TnT system.

Further work needs to be carried out to ascertain whether this strategy is suitable for 

determining the site, (N- or C-terminal), of cleavage . The lack of a positive control for 

tetracycline resistance needs to be remedied and more constructs need to be assessed in 

the system to see whether the results are conclusive. If this can be achieved then the 

system could be used to monitor cleavage by proteases in artificial polyproteins rather 

than the TnT system. The genetic screening system would also be useful in the analysis 

of large numbers of mutations. Screening of mutations using the TnT system is a 

laborious process and screening using antibiotic resistance of polyproteins would be less 

time consuming and less expensive.

6.1.2 Endogenous processing of 3CDPro and 3ABC

Plasmids containing 3CDP1'0 and 3ABC were constructed as controls for the reporter 

system but were also used to monitor endogenous processing. 3CDPo° seems to be stable 

in the TnT reaction and does not cleave to give 3C0*o and 3DP°h The comparison of the 

translation products with the appropriate controls led to the identification of the other 

translation products from the plasmid encoding 3CDPr° as internal initiation products. 

This lack of endogenous processing is consistent with results seen previously in vitro

193



(Harris et al., I992) and in vivo (Porter, I993), In the systems studied previously 

proteolysis of 3CDPro to 3CPro and 3DP°I is slow compared to processing at other Q-G 

sites in the polyprotein but does occur, indicating that 3CDPro has a role distinct from that 

of its cleavage products. This did not seem to be the case in this system studied here. 

Previous studies have been made in virus-infected cells where a higher degree of trans 

processing is seen. This may explain the lack of endogenous 3CDPr° cleavage in TnT 

systems.

There is quite a high degree of internal initiation within 3CDPr° on translation but 

altering the kozak consensus sequence of the methionine codon or the full length 

transcript may alter this. The salt concentration of the TnT system is known to affect 

initiation. A higher salt concentration (Mg2+ and K+) and lower concentration of RNA is 

known to improve translation efficiency from the initial methionine and should reduce 

level of internal initiation products.

Intramolecular (in cis) processing in 3ABC results in 3AB and 3CPr°, -3CPr° 

cleaving at its N-terminus. 3ABC is seen as a product of processing in the virus but it is 

not particularly stable and does not have any known function apart from that of a protein 

precursor . 3AB however, is more stable and cleavage to 3A and 3B is rarely seen in in 

vitro systems unless all other processing routes are blocked (Parks et al., 1989). This 

cleavage is performed by an unknown mechanism in the virus which is obviously not 

active in in vitro systems. There is a small amount of processing to yield 3BC and 3A.

6.1.2.1Further work

In order to investigate the possibility that the nature of the reporter sequences used 

affects cleavage, construction of a plasmid encoding [TetR3CPr°KanR] would be 

necessary. This would, of course, not be suitable for using in the E. coli antibiotic 

expression system as there would be no possible C-terminal extension for KanR. 

However use of this plasmid may indicate whether TetR will be disabled by the addition 

of sequences to its C-terminus.
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The introduction of mutations into the 3CPra sequence would allow their effect on 

cleavage to be studied. Some mutations have been made in the 3CPr° of poliovirus which 

cause 'over-cleavage', Le. cleavage occurs at either the N- or the C-terminus of 3CPr° 

preferentially. Such mutations could be introduced into 3CP*° within the reporter 

polyprotein system either as 3CPr° mutants or 3CDP"° mutants and the cleavage products 

analysed by SDS-PAGE. The addition of bacterially expressed 3CPr° or 3CDPr° to these 

mutant reporter systems would show whether the bacterially expressed protease could 

rescue the mutant and process the reporter polyprotein.
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6.2 Processing with 3CthPr° hi rhe r eporter ootyproteinleads to an 
unexpected cleavage downstream.

6.2.1 Ps'Ofessing in downntream of 3Di®l by 3Ciro

The artificial polyprotein [Kan^CDProTdtO], encoded by the plasmid pEB15, has 

been shown to cleave to produce the products Kan0, 3CPo°, 3DP°i and Tet0 (Figure 6.2) 

and possibly [KanR3CPo°]. There is no product representing [3DP°0TetR] which is 

consistent with cleavage at the C-terminus of 3DPo1. The cleavage between 3DP-0 and 

TetO was unexpected as it does not mimic a cleavage which occurs in the virus. There is 

no coding sequence downstream of 3DPo1 in the rhinoviral polyprotein and therefore there 

are no 3CPo°-mediated cleavage events downstream of 3DPo1. The cleavage of 3DPo1 

from TetO in the reporter polyprotein is therefore a novel event and it is surprising that 

3CP*o will cleave at this junction. Inspection of the 3DP®! amino acid sequence has 

shown that there is a putative 3CP1® cleavage site near the C-terminus of 3DP®1 (Figure 

6.3). Alignment of other picornavirus 3DP®1 amino acid sequences has shown that this 

site is conserved (Figure 6.4).

Figure 6.2 Summary of cleavages in pEBl5. The shaded region indicates 3B 
sequences which have been incorporated to maintain the 3CP1® 3B/C cleavage site.
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Figure 6.3 Amino acid sequence of HRV14 3CDPro. The residues shown in blue
are the 3C/D cleavage site, those shown in green are the alternative 3C73D’ cleavage 
site and those shown in red are possible cleavage sites at the C-terminus of 3DF® and
in the TetR sequence.

->3CPro
GPNTEFALSL LRKNIWTITT SKGEFTGLGI HDRVCVIPTH AQPGDDVLVN

GQKIRVKDKY KLVDPETNINL ELTVLTLDRN EKFRDIRGFI SEDLEGVDAT

LWHSNNFTN TILEVGPVTW AGLINLSSTP TNRWIRYDYA TKTGQCGGVI 
->3DP°1

CATGKIFGIH VGGNGRQGFS AQLKKQYFVB KQGQVIARHK VREFNINPVN

TATKSKLHPS VFYDVFPGDK EPAVLSDNDP RLEVKLTESL FSKYKGNVNT

EPTENWLVAV DHYAGQLLSL DIPTSELTLK EALYGVDGLE PIDITTSAGF

PYVSLGIKKR DILNKETQDT EKWKFYLDKY GIDLPLVTYI KDELRSVDKV

RLGKSIRjIEA SSLNDSVNWR WKLGNLYKAF hqnpgvltgs avgcdpdvfw

SVIPCLMDGH LWAFDYSNFD ASLSPVWFVC LEKVLTKLGF AGSSLIQSIC

NTHHIPRDEI YWEGGWPSG CSGTSIFNSM INNIIIRTLI LDAYKGIDLD

KLKILAYGDD LIVSYPYELD PQVLATLGKN YGLTITPPDK SETFTKMTWE

NLTFLKRYFK PDQQFPFLVH PVWPWKDIHE SIRWTKDPKN TQDHVRSLCW 
3D<—>TET

LAWHSGEKEY NEFIQKIRTT DIGKCLILPE YSVLRRRWLD LFLQKSNNAL

IVILGTVTLD AVGIGLVWPV LPGLLRDIVH SDSIASHYGV LLALYALWQF
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Figure 6.4 CLUSTAL X (1.5b) multiple sequence alignment of Rhino virus 3DP°* 
amino acid sequences. Conserved residues are shown in red and the putative 3 CP1® 
cleavage site in blue

hrvfIb
HRV-16
HRV-2
HRV-85
HRV-9
hrv-89
HRV-14

SSIKISKHAPECGFPTIHTPSKGKGQPSVFYDVFSCSKEPAVVRDNPPRGKVNFKEAIIS 
SSIQISKHVKDVGEPSIHTPTKTKGQPSVFYDIFSCSKEPAVGTEKDPRGKVDFDSAEFS 
CSITGSKKTVECPGPSIHTPCKTKGSPSV]YrDVIS>«5KEPAVGSEKDARGSVDFNEAIFS 
GQHSTKSTTECNYPSVHTPSKTKLQPSVFYDVFPGNKEPAVLSEHDPRLKVDFKEALFS 
SSIINSIPV/KDGGYPTIHTPS YTKGHPSVFHPVFKCTKEPA’VGSEKDPRGEVDFYTSGFS 
CGITKEGPVSVKPGPSVIVSSKTRGQPSVFIPVFSGTKEPAMGSSNDPRGEGDFDSAGFS 
CQVIARHKVIRSFIPIPPVNTATKSKLHPSVFYPVFPCDKEPAVGSDNDPRIEVIKLTESGFS
P • •• ★••★•★★*★•★•★****** • P P P• • »PPP • • • ••••• • • • •• ••• • • • • •

HRV-IB
HRV-16
HRV-2
HRV-85
HRV-9
HRV-89
HRV-14
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^Yi^(^lNT^I^C^S^]^^^l^^^^^^^^^J^i^^]I^^]^^;iDPQP;[AMED£^^I^^DGI^AI^^NTSAGYPY 
KYKGGPIPIINDHIRIAVSHYAIQGITGDIDPKPITGEDSVFGTDGGCQGPGNESAGFSY 
KYYGNGCPCEMPPIYKVISHYSAQGGMEGPDSNPISGEDSVFCMEGGEAGDEPTSACFPY 
KYKGSN/DPTGNEHIMRVIAQHYAQQGMEGPNPDNITMEESVFCTDCGEAIPENTSACFSY 
KYKGNPACQVTEPIKIAQAQHAAQLSTELINPQQLILEESVFGIEGLCALDLNTSAGFPY 
KYKGSPVPEETECPMGVAVPHAGQEESGDIPPESETEKKCAjGYCVDCGEPBITTSACFPY 
***** e •• •* **._** {***,,;••!!5!!* .PPP,.P..PPPP.PP

HRV-1B
HRV-16
HRV-2
HRV-85
HRV-9
HRV-89
HRV-14

VTLGIKKKDLINNKTKEISKLKLALOKYDVDLPMITFLKDELEJCKDKIA^GKTRVIEASjS
iTM(GVKYRPEii'mYEYDiSYEKEAiPRYGVPEPEVGFEYDEEFCKHEYViRGKTRViEA3s

VSMGIKKRDLINNNTKDISKLIUUULDKYGVDLPMVTFLKDELRKKEKISSGKTRVTEA3S
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HRVfIB
HRV-16
HRV-2
HRV-85
HRV-9
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HRV-14

IPDTIEFRTTCG^GLFKKHGENCGSrECGQVGCDSEEFSWSYSF'MIEIGSDCI^AkFPYTPY'P>C 
IPDTIERTWYG1IGFKFIGGSG<STG[’CAVGCDSEEFSSKYSGMGDCDDCIMADYYN]YCX3 
VPPEGGFRTTFGPGFSKFHGNPGIVTGQAVGCPPEVSSKSQMGLODKCIMQFDYTPYPC 
VPPEVGFRTTFCPGFSKFHGPPCIVGGSAVGCDPEGISSKIP'MGPGECIMFDYTPYDC 
I PDEVTFIMTYCNLFACFHKPPCIVTCSAVGCDPETFSSKIPVMGDGECIMAFDYTPYDG 
VPDEVGFRSVFGPGFSAFHKPPCIVEGSAVGCPPEVESSGPGMMGBGECGMAFDYSPYPG 
gpdsvnmrmkkgspgyaffiqpssvgtsavvccpspifsvipcgmips-hgim^fpyspfda
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HRVfIB
HRV-16
HRV-2
HRV-85
HRV-9
HRV-89
hrv-14

si hpfsfqalkkvllcpl FQ-SNLIDRLCYSKHLFKSTYYCFAGGVPSGCSGTS IFNTMl
SIHPISFKAGG1MIGGPPGIFJ-STLINRGCPSKHIFKSTYYEVEGGVPSGCSGESIFPSMI
sihpisfealkqflvdlsfn-ptlpdillcaskhifkptyyevcgcvpsccsgesifptmi
sihpswfqa.gkevgspggfd-sngiprikykyhikynmyyeveg<cvpsccsgesifptmi
SIHPVWFEAGYEIGKEEYFII-HRGIDRGCPSRHIFKDSYYEVCCGVPSGCSGTSIFPEM1
SGHPVSFFKCGIMGGEPGCFsSQGIPQICNSKHIYKSKYYEVEGGPSVCCACSIFIPII
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HRVfIB
HRV-16
HRV-2
HRV-85
HRV-9
HRV-8 9 
HRV-14

^NJIPIREEVDDYKPNIGDKGKYIIAYGDFVIFSYKYTPPMQAIPNCKYYYGGTIEQAOYS 
PPIIIIRTLVDQYKHHIGDKLKKIIAYGDFVIYSYKKGDMMEAIKKC<S)YYGGTIGPADYS 
NPIIIRGVGDQYKKNIGDKKEYIIYCDDPVIVYYIEGPDMEAIACCVKKYGETITQAPYS 
P^P^Zl I IRTVGDQYKPNIGDKLKKIIAYGDDVIYSYKSGPDMEAIKKCGIK:YYGGTITPADKS 
NPVIITGVGPQYKKHIGDKYEKIIYCDDFVIFSYYYPGDMQAIMECGYYYGGTITPAPYS 
PPtllIRTEVEDYKPNIEEKKKKIEACDDFVIFS’FNFKPMAVGAAEEGEKYGLTITPADRS 
PP4IIIRTPD FDAYCGIGFKGKKIPACDDLGIVYYYILDPSIGAEGCGYNYCLTITPPDKS 
**.*****»***** ********.*****.* ** ** •* * .******* ***
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HRV-1B TEFKKLDYNNVTFLKRGFKQDEKHTFLIHPTFiVEEIESSIRWTKKSSQMQEHVLSLCHL
HRV-16 SEFKELDYGNVrT^JTRGEDQDDTYKFLIHSWFPVF2EIFSSIRWTTPSSQMQEIVLlSLCHL
HRV-2 NT]VTLDYS^VT^FLKRGFKQDEKYNFLIHPTFPEDEIESSIRWKKKSSQMHEHVLlSLCHL
HRV-85 SETKQLNY1NVTFLKRGFKQDDKYQFLIHPTFPIEESEESIRTTKKSSQMQEIVLSSLCHL
HRV-9 DTFTTLDYDSVTFLKDGFTQDSKYPFLIHPTFP,NSELFSSIRWTKKSSQMQEIVLJSLCHL
HRV-89 DVFQELTYKNVTFLKRGFRADERHSFLIHPTFVVjE1IDSSIRTTNNSCQMQEIVLJSLCHL
HRV-14 ETF■’TTQTRENLTFLTRYFTPDQQFPFLVHP^QPQKDTHESIRWTKDTKNTQDHVRSSCCML

* • • • •***★* *• * • * *•* * • * »* •★*★*** * . • * * * ** *• •••• • ••• • •• • • •• ••

hrv-ib
HRV-16
HRV-2
HRV-85
HRV-9
HRV-89
HRV-14

QRHNGRRVVYEDFSK K^-RSV^S^A^^RA^r.^IPIDLLKH^l^VYrE^^F 
QRHNGGEIYTDFETKIRSVSAG^ALJY1PYELLRRERVIE^TF 
QWHNGID)AYYTKVUF KIR3VSAGRALYI PPYDLLHHEVYfEKF 
QRHNGKDD VYK SFEQ KRSVSAGRALYIPP YELLLHE VYEKF 
QRHNGGDDVYKEFSGIR5VS-GRAL YPPYELLLLER VYEKF 
QRHNGRHAYYSFIKGIRSVSAGRALYIPAYEVEHHEVYEKF 
ARHSGEKEUEFIQTIRTTDIGKCLIPFISSVDDDR^L^DLF

• • •• • • • •• • •• • • •
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The cleavage between 3D® and TetR suggests that 3CPro in some way surveys the C- 

terminal region of 3DP°h The fact that it does not normally perform a cleavage at this 

position does not seem to matter. The gln-lys site in the C-terminal region of 3DF°i 

(HQKTR) is probably not the site used in the 3D/TetR cleavage since this site is present 

in the virus seqeunces. There are other possible sites at the C-terminus of 3DP°i such as 

the Q-K site created at the 3DP°iTetR junction. Cis cleavage sites are very resistant to 

mutagenesis whereas trans sites are much more susceptible. This explains the deviation 

of the sequence of this site from the pre-determined (E, Q), (G, S, A). The artificial 

polyprotein provides a situation for the protease to cleave at these sites, not usually 

utilised in the virus, by incorporating a coding sequence downstream of 3D®. This is 

similar to the genome organisation found in another virus family, the caliciviruses.

6.2.2 Caliciviruses

There are two different genome structures present in the caliciviridae (Figure 6.5). 

Rabbit haemorrhagic disease virus (RHD7) has one long ORF (7 kb) encoding both 

structural and non-structural proteins and a second short ORF (35I nucleotides) encoding 

a single protein of unknown function. The other type of virus has two ORFs of 

approximately 5 kb and 2.2 kb which encode the putative non-structural proteins and 

capsid proteins respectively. They also have a third ORF in the 3' part of the genome 

which is analogous to ORF2 in RHD7. Feline calicivirus (FCV) and two human 

caliciviruses, Norwalk virus and Southampton virus (S7), have this type of genome 

organisation. Both types have a 3C-like cysteine protease which cleaves at various sites 

throughout the polyprotein to release the mature protein products. Unlike picornaviruses 

there is a single proteolytic entity in the caliciviruses which cleaves at all proteolytic sites 

in the polyprotein. Due to their similarity to picornaviruses and related viruses 

(potyviruses, nepoviruses and comoviruses) caliciviruses have been proposed as 

members of the picornavirus superfamily (Goldbach and Wellink, I988) but this has 

recently been revised.
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The calicivirus protease has similarities to both the 2A and 3C proteases of 

picornaviruses. The position of the protease in the genome, i.e. upstream of the viral 

polymerase is similar to that of 3CPr° in picornaviruses and major determinants of 3CPr° 

cleavage specificity are conserved in the protease sequence. However, amino acid 

sequence comparisons show the calicivirus protease to be shorter than the picornavirus 

3CPr° and closer in size to the picornavirus 2APr°. The protease in caliciviruses acts at 

sites which are C-terminal to it to cleave the capsid protein precursor in both genome 

organisations. Cleavage occurs at a range of sites but the preferred dipeptide in S7 is Q- 

G which is the same as in picornaviruses. In RHD7 cleavage of the protease occurs at a 

Q-G site at its N-terminus and at a Q-T site at its C-terminus. Cleavage is dependent on 

the amino acid residue at position I. Only glutamate, aspartate and glutamine are 

tolerated at this position. ORFl is processed by the protease at seven cleavage sites to 

give eight final protein products (Wirblichef al., I996). ORF2 was found to encode a 

structural protein of IO kDa. Other cleavage sites recognised by 3C in RHD7 include E­

G and E-T.

„ __ 5314 7329
FCV

I 20 Capsid 671 aa 7690
Polyprotein 1763 aa 106 aa 1

5308 7326 7646

RHD7
i 10 7044
L Polyprotein 2344 aa Capsid 579aa 7437

5305 |t17 asT-J

7025 7378

Figure 6.5 Diagrammatic representation of the two genome organisations 
found in caliciviruses. Boxes indicate regions translated from each ORF.

The cleavage between 3CPr° and TetR in the polyprotein [KanR3CPr°TetR] is similar

to that carried out by the caliciviral 3C protease to separate the structural and non­

structural proteins.

The caliciviral protease cleaves between the viral polymerase and the capsid protein

precursor at a glutamic acid-glycine (E-G) site (Figure 6.6). It has been shown to be 
20I



cysteine protease and to have similarities with the picornaviral proteases (see section

6.2.2).

RHDV Non-structural proteins 3C Polymerase Capsid

fEG 1EE tEG
pEB15 KanR “PC" I Polymerase TetR

QG fQG fQK?
Figure 6.6 Comparison of cleavages downstream of 3CPro in RHDV, a calicivirus, 
and pEB15 [KanR3CD*roTetR]. Arrows indicate cleavage sites and the amino acid 
sequence of these sites is shown below.

6.2.3 Comparted of calicivirus ggnomee.

The genome organisation of the caliciviruses and picornaviruses is similar in many 

ways, as can be seen from the diagram below (Figure 6.7). The organisation of the part of 

the genome coding for the non-structural protein is similar; putative helicase, protease, 

polymerase. There is only one proteolytic entity in caliciviruses compared to the two, 

2A.Pro and 3CPro, in picornaviruses. The caliciviral protease does cleave at sites similar in 

nature to those of the 3CP1® and has been categorised as a cysteine protease. It is similar 

in size though to the 2AP1®. The position of the structural proteins is one of the major 

differences between the genomes of the two classes but it would appear from results of 

the artificial polyprotein studies that the picornaviral 3CP1® could be capable of cleaving 

proteins from the C-terminus of the polyprotein as the caliciviral protease does.

The comparison shown in the diagram below is only to one type of calicivirus but 

the organisation of the non-structural proteins in two types of calrcrvirus genomes are 

similar. The major difference is in the encoding of the structural proteins (Figure 6.7). In 

the type of calicivirus not shown in comparison with poliovirus, exemplified by FCV,
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there is a frameshift between the termination codon for the first ORF encoding the non­

structural and the initiation codon of the second ORF encoding the structural proteins. 

The structural proteins are however, still downstream of the structural proteins in the 

genome.

In both picornaviruses and caliciviruses there are possible SCPro cleavage sites 

which remain uncleaved during processing of the viral polyprotein. This is also the case 

in the artificial reporter polyprotein. This implies that there are other factors influencing 

cleavage by the proteolytic enzyme rather than just the amino acid sequence of the 

cleavage site. It has been demonstrated that sequences distal to the cleavage sites have an 

effect on cleavage and this is probably due to the conformation of the protein due to these 

residues. There must be a preferred structure at which the protease will cleave.

RHPV

★ ■An
VP1O

Ppliovims

1 ★ —
Capsid proteins

I "

Helicase VPg Pro Polymerase

• • ;
____

nucleotide binding motif I •"* I capsid proteins |H polymerase domain

E region of 7P60 homologous to 1C (7P3) of poliovirus 

□ cysteine protease

Figure 6.7 Comparison of genome structure of RHDV and poliovirus. The open 
reading frames are shown by boxes. The two genomes are not to scale.
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6.2.4 Implications of the cleavage by 3CPr® jn the downstream region of the

polyprotein.

The downstream cleavage between 3DP°! and TetR in the polyprotein carried out by 

3CP1® may have implications for virus evolution. The similarity to the cleavage 

performed by the caliciviral protease may point to a common ancestry between these two 

groups of viruses. The similarity in their genome organisation has already been discussed 

and this cleavage seen in the reporter polyprotein indicates that the picornavirus genome 

could encode the (structural) protein(s) downstream of the non-structural proteins. 

Perhaps an ancestral form evolved to have its structural proteins upstream of the non­

structural proteins but the protease has still retained its ability to cleave at suitable sites in 

coding sequences downstream of 3DPo1.

If 3(PPr° is capable of cleaving at sites downstream of itself regardless of whether 

they are situated in the same position in the virus there may be implications for 

biotechnological uses of 3CP"° in the production of multiple proteins from artificial 

polyproteins. Current strategies allow for the production of two proteins from the same 

polyprotein but 3CPr° may be capable of cleaving at multiple sites to release multiple 

'mature' proteins. One of the advantages of using polyproteins for expression of in 

biotechnology is that proteins are produced in equal amounts, as in the virus. This is a 

problem with the use of separate promoters for each gene especially where the 

introduction of a trait relies on the expression of two or more independent genes.

It would appear that 3CPr° does not need to have viral sequences to cleave as long 

as the cleavage site is one which is recognises, Le. of the pattern (E, Q), (G, S, A). 3CP'° 

will cleave itself away from the proteins at its C-terminus but also process at subsequent 

sites downstream to release proteins. The number of downstream sites which the protease 

will process is not known and needs to be investigated.

The problem with this, if it is found to be applicable to biotechnological uses, is that 

3 CPr° is known to target cellular sequences which may be a problem. Processing, is 

however, in cis so it will be quick and efficient if can be used.
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6.2.5 Further work

In order to see if this strategy works in vivo sequences could be engineered between 

the end of 3Dpol and the 3'NCR and then the recombinant could be transfected into cells 

to observe whether viable virus is obtained. Insertions which have previously been made 

in the 3' NCR have been unstable and recent work has shown that poliovirus is capable of 

replicating (at low levels) without the 3' NCR . To further establish the link between 

picornaviruses and caliciviruses the structural proteins could be moved to the 3' end of the 

genome to see if they are cleaved and produce viable virus particles. This may not be 

possible as there are still unidentified packaging signals which may be interrupted by this 

process. It has been demonstrated that recombinant genomes lacking PI can be packaged 

by helper viruses which supply Pl in trans so the position of the capsid precursor in the 

genome may not be important as long as the proteins are processed correctly.

6.2.6 Processing in pEB25

In order to monitor the effect of upstream sequences on cleavage by 3CPro the viral 

precursor protein 3ABC was ligated between the reporter genes. On translation the 

resulting artificial polyprotein [KanR3ABCTetR] gave rise to [KanR3AB], KanR, 3AB 

and [3CPi°TetR] (Figure 6.8). This indicates that 3CP1'0 is cleaving at its N-terminus and 

at the N-terminus of 3AB. The cleavage at the N-terminus of 3AB mimics the primary 

cleavage in the virus between P2 and P3. The cleavage at the N-terminus of 3CPr0 and 

lack of cleavage at the C-terminus imply that 3AB has a function in up-regulating 

cleavage at the N-terminus of 3CPR°. jn [KanR3CPTOTetR] the N-teiminal cleavage 

predominated over cleavage at the C-terminus, as is the case when 3AB is present. The 

presence of any extension at its N-terminus regulates N-terminal cleavage by 3CPro but 

3AB seems to have an even greater effect than KanR.
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pEB25 1113B | 3c q- Tet
3A

Figure 6.8 Summary of cleavages in pEB25. Shaded regions indicate additional viral 

sequences incorporated in the polyprotein to maintain cleavage sites

6.2.7 Efff et oON- oo C-teeminnl extension oncleeavggby 3CPro.

Inclusion of the proteins 3AB and 3DP°l had a regulatory effect on cleavage by 

3CPro. The position of these regulatory sequences relative to 3CPro may be important and 

their position in the viral part of the reporter polyprotein should be investigated. It may 

be that 3DP°1 would also function upstream of 3Crr® and 3AB would also function 

downstream but this has not yet been investigated.

Cleavage at the C-terminus of 3CPR° seems to function very efficiently without any 

influence from viral sequences but cleavage at the N-terminus is more reliant on the 

influence of other factors. The construction of an artificial polyprotein encoding 

[KanR3ABCDTetRl would be useful to observe the effect of both putative regulatory 

sequences together. It would also show if 3AB has any effect on the additional 

downstream cleavages by 3CPro observed in [KanR3CDProTetR].

The addition of 3AB and/or 3DP°R in trans to [KanR 3CProTetR] would be an 

experiment which would provide further insight into the role of these sequences in up- 

regulating cleavage by 3CPR°.
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6.3 Processi.nc^ Cn trans

The coupled transcription translation system proved to be unsuitable for monitoring 

processing in trans in these experiments. Previous work has shown the system to 

function adequately but this was not the case here. It may be improved if separate 

transcription and translation experiments are carried out using an uncoupled system. 

There are known to be variations in the efficiency of the systems, both coupled and 

uncoupled, from batch to batch. This may account for the lack of activity in this set of 

experiments as opposed to previous successful ones. The addition of DTT to the trans 

reactions was not successful in enhancing the processing but this may have been as 

processing was not taking place at all due to the general unsuitability of the system. DTT 

prevents formation of disulphide bridges in proteins and this alteration in structure may 

affect active site of protein so that it becomes inactive. This may be another factor which 

affects the usefulness of DTT in this situation.

The improvement of this system would allow a great deal more to be elucidated 

about the interaction of SCP"° with other viral and cellular factors and their effect on 

cleavage. It has been seen from reporter protein experiments that 3AB and 3DP°! appear 

to have some kind of regulatovy function on cleavage by 3CPR°. It would be useful to see 

if these viral factors could be added in trans to observe their effects and see if they still 

have the same up-regulatory effect.

The interaction of the 5' NCR with PI and 3CDPR° is also one which could be 

investigated when the trans processing system is functional. As mentioned in the section 

above, the addition of other viral sequences in trans to the reporter polyprotein would 

also be informative.

The low levels of protease produced in the TnT system are not sufficient to allow 

trans processing to occur. The levels of substrate are good and can be used with 

proteases produced by an alternative method. The production of bacterially expressed 

enzymes will allow greater concentrations of the enzymes to be added to the system and 

cleavage can be monitored by synthesis of radiolabelled substrate.
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A summary diagram of cleavages in the artificial reporter polyproteins constructed

during this work is shown below (Figure 6,9).

pEB4

pEB25

3C 3D

3AB 3C COMPLETE

A

n Major (preferential) cleavage

Minor cleavage 

No cleavage

Figure 6.9 Summary diagram to show cleavages by 30Pr® in artificial reporter
polyproteins

208



6.4 Conducting e’<^i^^s^irlksi

The construction of a reporter polyprotein system has been achieved and a default 

pathway for SCrr® cleavage has been established. It appears that 3AB and 3DP®1 have a 

regulatory effect on the "choicer of SCP'® terminus to be cleaved.

The unexpected cleavage by 3CPro at the C-terminus of 3 DP®1 in the reporter system 

has led to the postulation of possible evolutionary links with caliciviruses and plant 

viruses, may indicate another site which could be used in the construction of recombinant 

picornavirus genomes and could lead to possible uses for 3CPra in artificial polyproteins 

in biotechnology.

Several new avenues have been opened from this preliminary study of cleavage by 

3CPra which will hopefully provide further information about cleavage by 3CP*o and 

elements which have an influence on this process.
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Appendix

Table of plasmids constructed

Plasmid Insert Vector AUG STOP

pEBl TetR pGEM-T V V
pEBl.l TetR pGEM5zf(+) V V

pEBl.2 TetR pGEM5zf(+) X V

pEB2 KanR pGEM5zf(+) V V

pEB2.1 KanR pGEM5zf(+) V X
pEB3 HRV14 3CPo pGEM5zf(+) V V

pEB3.1 HRV14-3CPr° pGEM5zf(+) X X
pEB4 [KanR3CProTetR] pGEM5zf(+) V V

pEB4.2 [KanR3CProC146A TerR pGEM5zf(+) V V

pEB5 [3CProTetR] pGEM5zf(+) V V

pEB6 HRV14 3CPro pRSETA V V

pEB7 HRV14 3CDPfo pRSETA V a/

pEB8 HRV14 P1 pMF16c V V

pEB13 [KanR3CPro] pGEM5zf(+) V X

PEB13.1 [KanR3CPro] pGEM5zf(+) V V

pEB14 [KanR3CPfo] pGEM5zf(+) V V

pEB15 [KanR3CDProTetR] pGEM5zf(+) V V

pEB15.2 [KanR3CDPro] pGEM5zf(+) V V

pEB16 HRV14 3AB pGEM5zf(+) V V

pEB19 HRV14 3ABC pGEM5zf(+) V V

PEB19.1 HRV14 3ABC pGEM5zf(+) X X

pEB20 HRV14 3CDP:o pGEM5zf(+) V V

PEB20.1 HRV143CDPro pGEM5zf(+) X V

PEB20.2 HRV14 3CDPro pGEM5zf(+) X X

pEB21 [KanR3CPTOTetR] pBSIIKS+ V V

pEB22 TetR PBSIIKS+ V V

pEB23 3CPro PBSIIKS+ V V

pEB24 KanR pbsccks+ V V

pBB25 [KanR3ABCTetR] pGEM5zf(+) V V

pEB27 HRV14 3DPol pGEM5zf(+) V V
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