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A bstract

This thesis investigates the ducting of magnetoacoustic waves in coronal structures. The propagation 
of waves in current sheets and coronal loops has been examined in order to understand wave ducting 
in structured plasmas, and to provide an explanation of the observed oscillatory behaviour in the 

solar corona.
Firstly a comprehensive review of the observations of loops and oscillations in the corona 

is given. An investigation into how the curvature of the loop alters the ducting of magnetoacoustic 
waves is then presented by studying the effect of the length, width and the density enhancement of 

the loop and also the frequency of oscillation. The effect of the curvature is to generate wave leakage 
from the loop.

The guiding of magnetoacoustic waves by a current sheet is also considered. An investi­
gation into the type of modes which may propagate and the time scales of oscillation is performed. 

Impulsively generated waves exhibit similar temporal signatures to observations of X-ray and radio 
emission. Periods of oscillation for all the ducted wave models are in good agreement with reported 
observations.

The effect of a random boundary motion on a magnetospheric cavity is examined through 

numerical simulations. A broadband driving spectrum excites the quasi-monochromatic fast modes 
whose frequencies lie within the driving spectrum. These fast modes couple to an Alfven mode if the 
frequency lies within the Alfven continuum. The position of the resonant field lines and the Alfven 
mode eigenfunction may be accurately calculated by assuming a periodic boundary motion.

To conclude the work in this thesis the three-dimensional magnetic topologies surrounding 

neutral points are studied. The local linear magnetic structure about the null is found to depend 
only on a 3 X 3 matrix containing four parameters. The type of topology is dependent upon the 

nature of the eigenvalues and eigenvectors of this matrix.
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Introduction

“Nature has a great simplicity and therefore a great beauty.”
Richard Feynman

1,1 Introduction  to  th e Sun

The Sun, our nearest star, is situated 1.5 x 10® km away from the Earth. It is 4.5 x 10® 

years old, with a mass (Mq) of 1.99 x 10®° kg (330 000 times greater than the mass of the Earth). 
The Sun is composed mainly of hydrogen (90 %), with a helium abundance of 10 % and also traces 

of heavier elements. The solar radius (R©) is 696 000 km, 109 times larger than the E arth’s radius. 
The Sun is a plasma held together by gravitational forces. The Sun does not rotate uniformly, the 

equator and poles revolving once about every 25 and 30 days respectively. The total electromagnetic 
energy radiated per unit time from the Sun (the “luminosity”) is 3.86 x 10̂ ® W. The mean density 
of the Sun is 1.4 x 10® kg m~® (compared with 5.5 x 10® kg m “ ® for the Earth). The gravitational 
acceleration at the solar surface is 274 m s~® (compared with 9.81 m s“ ® for the Earth).

We give a brief description of the different regions of the Sun. We begin with an overview 
of the solar interior (Section 1.1.1) and then proceed to the three layers that make up the solar at­

mosphere, namely the photosphere (Section 1.1.2), the chromosphere (Section 1.1.3) and the corona 
(Section 1.1.4). Each of these regions is characterised by different physical properties, such as tem­
perature and density. Comprehensive reviews of the observations may be found in Zirin (1988). 
Observations and theory are discussed in Priest (1982) and Phillips (1992). In our review we con­
centrate mainly on the corona, since the work contained in this thesis is predominately concerned 
with this region.



CHAPTER 1. INTRODUCTION

I
I
f

H e ig h t a b o v e  v is ib le  l im b  <10^ km )

to

Figure 1.1: The variation of the electron density (Ng) and temperature [Tg] from the convection 

zone to the corona. Note the dramatic rise in temperature in the transition region (Mason 1994).

1.1.1 The Solar Interior

The interior of the Sun cannot be observed. However the study of helioseismology (the 

global oscillations of the Sun) has recently begun to give important information about the solar 

interior. The solar core produces 99 % of the Sun’s energy. The temperature within this region 

is 1.6 X 10^ K, with a density of 1.6 x 10  ̂ kg m ” .̂ The core, which extends over a region of 
0.3Rq , is a fusion reactor where hydrogen is burned to generate energy. Approximately half of the 
Sun’s mass is contained within the core. The area surrounding the core, between 0.3 and O.TR©, 

is called the radiative zone] the primary energy transport mechanism is radiation. The density and 
temperature decrease rapidly as we move away from the Sun’s centre. At a radius R  = 0.3R@ the 
temperature has fallen to half its value at the centre of the core, whilst the density has decreased 
to 10 % of its maximum value. The density and temperature continue to decrease throughout the 

radiative zone, until at R =  0.7Rq the temperature is 2 x 10® K, with the density reaching a value of 

200 kg m “ .̂ This is the beginning of the convective zone where, as the name suggests, the dominant 
energy transfer process is convection. The convection is generated by the steep temperature gradient 
(the temperature decreases from 2 x 10® K to 6400 K across this zone). The density also decreases 
dramatically in this region, declining from 200 kg m “  ̂at R  = 0.7R© to 3 x 10“  ̂kg m “  ̂at R — R©. 

On top of this zone is the solar atmosphere which may be split into three layers. A sketch of the 
electron temperature and density profiles from the convection zone to the corona is depicted in 

Figure 1.1.
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1.1.2 T he P hotosphere

The photosphere is a thin layer, 0,5 Mm (1 Mm = 1 Megametre ~  10® m) thick, which emits 
most of the Sun’s light. The density and temperature decrease with increasing height throughout 

the photosphere. The temperature at the base of the photosphere is 6400 K, falling to a minimum 

value of 4400 K at the top of the layer. The density declines from 3 x 10“  ̂ kg m “  ̂ at the top of 

the convective zone to 8 x 10“ ® kg m “  ̂ at the temperature minimum.
The top of the convective cells are observed in the photosphere as granules. The granule 

cells typically have diameters of between 0.7 and 1.5 Mm, with lifetimes of 8 minutes. The average 

distance between the cell centres is 1.8 Mm, An upflow of 0.4 to 0.8 km s“  ̂ is observed in the 
centre of each granule, with a flow of 0.25 km s”  ̂ towards the boundary. Supergranules are cells 
with diameters 20 to 54 Mm (mean diameter 32 Mm). Material rises at the centre of the cell with a 

velocity of 0.1 km s“  ̂ and moves outwards at 0.3 to 0.4 km s~^. The lifetime of a supergranule is a 

day. The boundaries of the supergranule cells are associated with intense magnetic flux tubes with 
field strengths of 1000 to 2000 G (1 G =  1 Gauss =  10“ ^̂ Tesla).

The largest magnetic field strengths in the photosphere occur in sunspots and may reach 

4000 G. Sunspots consist of two main components. The inner part is the umbra, with diameters of 
10 to 20 Mm and field strengths of several thousand gauss. The surrounding outer region is called 
the penumbra, with widths lying between 15 and 30 Mm and a field strength lower than that found 
in the umbra (typically 1000 G).

1.1.3 The Chrom osphere

The chromosphere is the region situated between the temperature minimum and the corona. 

An interesting characteristic of the chromosphere is the increase of temperature with height. The 

temperature increases from 4400 K at the base of the chromosphere to 50 000 K at a height of 
2 Mm above the photospheric base. The temperature increase in the transition region is much more 

dramatic, rising from 50 000 K to 500 000 K in a narrow region of just 0.5 Mm (Figure 1,1).
It is natural to believe that the temperature of the solar atmosphere should decrease away 

from the core. Evidently this is not the case. The physical processes underlying an explanation of this 
interesting phenomenon continues to be an active area of research in solar physics (see Section 1.5). 
The density falls from several times 10“ ® kg m “  ̂ in the low chromosphere to 10“ ®̂ kg m “  ̂ in the 
high chromosphere.

At the granular boundaries plasma jets called spicules are observed at the limb. These have 

a diameter of 0.5 to 1.2 Mm and a lifetime of 15 minutes. The spicule temperature is 1-2 xlO"  ̂ K, 

with a velocity of 20-30 km s“ ^. Spicules attain a height of 9 Mm before fading away.
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1.1.4 T he Corona  

B rief O verview o f the Corona

The solar corona is the hot, tenuous, magnetically dominated, outermost region of the 
Sun’s atmosphere. The temperature of the corona is several million degrees kelvin, with a density of 

several times 10“ ^̂  kg m “ .̂ In this region hydrogen is fully ionised and therefore the corona may 
be observed in a wide range of wavelengths.

The X-ray and Extreme Ultraviolet (EUV) images made by the Skylab mission in 1973 have 
shown that the corona is highly structured and dominated by the magnetic field. This has been 

confirmed by recent Yohkoh observations (Acton et al. 1992) and by white light images taken during 
the 1991 eclipse (November and Koutchmy 1996). Instruments onboard the recently launched SoHO 
(Solar and Heliospheric Observatory) satellite have, once more, revealed the complex nature of this 
region by using a variety of emission lines; see also Section 1.6. An X-ray image of the corona is 

shown in Figure 1.2 during a peak in the activity cycle. The image, taken on the 12 November 1991 
by the Yohkoh satellite, reveals the corona at a temperature of 2 x 10® K. It is dominated by loops, 
revealing the complexity and inhomogeneity present in the active region corona. The EUV image of 

the Sun, taken using the EIT instrument onboard SoHO during a quieter part of the cycle, shows 

loop structures on the limb (Figure 1,3). Finally, the white light images recorded by November and 

Koutchmy (1996), shown in Figure 1.4, again clearly illustrate the inhomogeneities present in the 
coronal plasma.

Many different structures are found in the solar corona. These include prominences which 
are large, almost vertical sheets of dense cool plasma located in the much hotter and more rarefied 
corona. The prominence temperature is 100 times less than coronal values and the density is 100 

times greater. On the disc these structures are called filaments, forming along polarity inversion 
lines.

There are two types of prominence; quiescent and active (Priest 1982). Quiescent promi­
nences are stable and they may exist for several months. Typical electron densities are 10^  ̂ cm“ ,̂ 

with a temperature of 7000 K and a field strength of between 5 and 10 G. Spatial dimensions for the 
length, height and width are typically 200 Mm, 50 Mm and 6 Mm respectively. Active region promi­
nences are usually associated with flares and have lifetimes of only minutes or hours. They are three 
or four times smaller than quiescent prominences, with larger densities and similar temperatures, 
and their height is at most 20 Mm.
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Figure 1.2: The X-ray corona on 12 November 1991 taken by the Yohkoh satellite.
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Figure 1.3: The solar corona at 1 x 10® K. The image was taken with the Extreme ultraviolet 

Imaging Telescope (EIT) onboard SoHO in the Fe IX/X emission lines at 171 Â on 22 August at 
20:15. Notice an active region (enhanced emission) on the east limb containing coronal loops, and 
coronal holes (reduced emission) at the poles.

X-ray bright points are also observed in the corona. Diameters are typically 22 Mm, with 
a bright, core ranging from 4 to 7 Mm in size. They consist of several loops, with a characteristic 
width and length of 2.5 Mm and 12 Mm respectively. Approximately 1500 bright points appear 

every day and they have a mean lifetime of 8 hours. Bright points are formed from bipolar areas of 
emerging flux. A review of the observations of bright points may be found in Parnell (1994).

Other important structures in the corona are holes and loops, corresponding to regions of 
open and closed magnetic field respectively.

In coronal holes the plasma flows outward, giving rise to the solar wind. In X-ray and EUV 
images (Figures 1.2 and 1.3 respectively) coronal holes appear as dark regions representing very low 
emission. The density of a coronal hole is depleted by a factor of approximately 3 compared with
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Figure 1.4: White light images of the solar corona taken during the eclipse of 11 July 1991 (November 

and Koutchmy 1996). An arcade of dense loops is present, clearly showing the importance of the 
density inhomogeneity and the curvature of the structures in this region of the solar atmosphere. 
The loops have a density twice that of the ambient corona.
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quiet regions. The lifetime of a coronal hole is several months, with a temperature of 1-1.5x10® K 
and a magnetic field strength of 1 to 10 G . Inside coronal holes bright points and plumes may be 

found. Coronal plumes are observed in white light images as rays of enhanced density; the density 

being 3 to 5 times greater than the background value (Koutchmy 1977). In EUV images they appear 

as shorter spikes on the solar limb and have a characteristic lifetime of several hours. The width 

of a plume at the limb is typically 60-70 Mm. Electron densities are characteristically between 10® 

and 10® cm~®, with a temperature of 10® K.

Coronal Loops and A ctive R egions

The active region corona consists mainly of coronal loops. In this section we review in detail 

the observations of the structure and physical characteristics of loops. A comprehensive review of 
coronal loops and prominences is given in Bray, Cram, Durrant and Loughhead (1991). Observations 

are obtained by examining a range of wavelengths such as the green and red coronal lines, EUV 
lines. X-ray emission, radio emission and white light.

(i) Spatial Sizes o f Coronal Loops

We begin by reviewing the observations of the spatial parameters (width, height and dis­
tance between footpoints) associated with loops. We summarise the typical observations of coronal 
loops. A comprehensive listing of the observations of coronal loops is presented in Appendix A.

Kleczek (1963), using the green coronal line, reports that the typical height of a small 
coronal loop lies between 50 and 100 Mm. The width of a loop lies between 3 and 8 Mm, although 

values between 5 and 6 Mm are more typical. The aspect ratio (a/L  =  ratio of radius a to length 

L) is approximately 0.05. Large loops, however, may extend over substantial distances, connecting 
different active regions. They may reach heights of half a solar radius (348 Mm). The width of these 
larger loops is typically between 8 and 12 Mm, but may be as low as 3 Mm. Sheeley et al. (1975) 

show that loops observed in EUV lines may arch across the disk for distances of the order of 100 Mm 
to link two or more active regions and form large magnetic complexes. Such loops are not confined 
to active regions lying in the same hemisphere but may involve regions lying on both sides of the 
equator. Upon restoring the three-dimensional shape of coronal loops from Skylab EUV images, 
Berton and Sakurai (1985) studied two loops. The maximum heights of the two loops were 120 and 

130 Mm respectively, with the inclination to the vertical being 25 and 7 degrees. The shape of the 
loop was asymmetric, but the authors illustrated that the observed asymmetry was consistent with 
a potential magnetic field between two active regions.

X-ray loops may be classified into three types (see, for example, Davis and Krieger 1982; 

Bray, Cram, Durrant and Loughhead 1991). Class I loops are those which occur in the core of an 
active region, joining areas of opposite polarity either side of a neutral line. Loops of Class II are 
larger in size than those of Class I and occupy the area surrounding the core of the active region.
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Parameter Class I Class II Class III
Width (Mm) 0.7-5 5-15 10-30
Length (Mm) 7-20 10-100 50-500
Aspect ratio 0.2 0.18 0.09

Table 1.1: Classification of X-ray loop sizes from Davis and Krieger (1982).

Loops of Class III may link adjacent active regions or just terminate outside an active region. Davis 

and Krieger (1982), observing loops in the X-ray spectral region, give values for the lengths, widths 

and aspect ratios for the various types of loop (Table 1.1).

Additional Class II observations have been undertaken by Howard and Svestka (1977). 
Their X-ray observations showed loop heights of 200 Mm, with one particular loop reaching 260 Mm. 
For Class HI loops Krieger, de Freiter and Vaiana (1976), using Skylab measurements, observed X- 
ray loops up to heights of 100 Mm, although a value of 50 Mm is more typical. Haisch, Strong, 

Harrison and Gary (1988), studying two prominent X-ray loops in an active region, found the length 
of a loop was 130 Mm, with heights of 40 and 60 Mm and an aspect ratio of 0.1. From the Yohkoh 
satellite Acton et al. (1992) observe X-ray loops. In particular, one small loop has width 4 Mm, 

height 10 Mm and length 18 Mm. A larger loop was also observed which was 27 Mm wide, 190 Mm 
long and 82 Mm high. A large X-ray loop (height 350 Mm, length 400 Mm) was also reported.

McConnell and Kundu (1983), observing 20 cm radio emission (1.4 GHz), report a loop 
with length 70 Mm, whereas Lang, Willson and Rayrole (1982) find lengths ranging from 40 to 

400 Mm. Studying the microwave structure of the quiet Sun at 8.5 GHz, Gary, Zirin and Wang 
(1990) reported a loop length of 22 Mm. Widths of 10 Mm and 30 Mm have been quoted by Kundu, 
Schmahl and Gerassimenko (1980). Finally, using white light observations during a solar eclipse 

Koutchmy, Bouchard, Mouette and Koutchmy (1993) and November and Koutchmy (1996) studied 

coronal loops with sub-arcsecond resolution. Their results show coronal loops that are thin and 
irregular with widths lying between 1 and 2 arcseconds (0.726-1.452 Mm) and with an aspect ratio 
of 0.01 (Figure 1.4).

The width of a coronal loop is approximately constant along its length. Golub (1991), 

analysing results from the Normal Incidence X-ray Telescope (NIXT), gives lengths of loops from
1.5 Mm to 90 Mm. The loop widths were several megametres and Golub gives an aspect ratio of 
between 0.025 and 0.25. The loops were found to maintain a relatively uniform cross-section for 
most of their length, with a sharp decrease at the footpoints. This is in agreement with Klimchuk, 
Lemen, Feldman, Tsuneta and Uchida (1992) who conclude, from Yohkoh X-ray measurements, that 

loops have an almost uniform width along their length; the loop width decreased near the footpoints. 
A loop of length 82 Mm was observed with a mean half width lying between 7.26 and 9.1 Mm. This 
was also found by Porter and Klimchuk (1995) who measured the lengths of 47 non-flaring loops. 
Loops with lengths from 4.7 to 33 Mm were observed and the loop width was constant (to within 7
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%) along the length.
Typically the widths of loops lie between 3 and 10 Mm. However observers suggest that 

due to relatively poor spatial resolution there is a difficulty in distinguishing between individual 
loops (see, for example, Foukal 1975; Kilmchuk et al. 1992). Aschwanden (1994), in a review article, 
suggests the inhomogeneity in the solar corona is evident in the highest resolution images (one 
arcsecond). Therefore it is likely that active region loops consist of unresolved fine structures.

(ii) D ensity  and Tem perature o f A ctive R egions

We now give an overview of the observations of the electron density and temperature 
found in active regions. A detailed listing is given in Appendix B. Temperatures in active region 

coronal loops lie in the range 1-6x10® K, with a characteristic value of 2 x 10® K. These values 
are observed in a range of wavelengths. In particular Krucker, Benz, Aschwanden and Bastian 

(1995) report temperatures of 2.1 dr 0.1 x 10® K using X-rays. Using the green and red coronal lines 

temperatures of 2-3x10® K are observed by Hanaoka, Kurokawa and Saito (1988). In the EUV 
regime temperatures of 2.0-2.2x10® K are routinely observed (Cheng 1980). Electron densities lie 
between 1 x 10® cm"® and 1 x 10̂ ® cm"®. Specifically, in X-rays, Parkinson (1973) reports electron 

densities ranging from 2 to 10 x 10® cm"®. Electron densities inferred from radio observations range 

from 1 to 10 X 10® cm"® (Kundu and Lang 1985). Hanaoka, Kurokawa and Saito (1988), using the 
red and green coronal lines, give values between 0.4 and 7.2 xlO® cm"®.

There are conflicting reports that cool loops may exist in much hotter loops. Hanaoka, 

Kurokawa and Saito (1988), using the green and red coronal lines, examined the density and tem­

perature in a loop during an eclipse. Comparing the position of the cool loop (red line, T  =  1 x 10® K) 
with that of the hot loop (green line, T  =  2 x 10® K) they concluded that the two loops were coaxial. 
The average density in the hot loop was 1.2 x 10® cm"®, whereas the cool loop was at least five 

times denser. The authors suggested that the cool loops may consist of many small “threads” of 
diameter 1 Mm which are unresolved in the observations. Hanaoka et al. (1988) suggested that cool 
dense threads of material exist in hot coronal loops. The fact that hot loops may have a cool core 
was observed from Skylab measurements (see, for example, Foukal et al. 1974; Foukal 1975, 1976; 

Levine and Withbroe 1977). However other observations suggest that hot and cool loops may exist 

independently (Cheng 1980; Cheng, Smith and Tandberg-Hanssen 1980; Sheeley 1980; Dere 1982). 
Koutchmy et al. (1993) and November and Koutchmy (1996), using high resolution (sub-arcsecond) 
white light observations, suggest that a coronal loop with a cool core and hot surroundings is too 

simple a model. They observe coronal loops with temperature and density inhomogeneities along the 
loop. Recent Yohkoh observations (Matthews 1997, private communication) have shown cool loops 
(Oxygen V, T =  2 x 10® K) are co-spatial with X-ray loops (T =  3 x 10® K). This is in agreement 
with recent SoHO observations. Recent results from the SoHO CDS instrument have once again 

shown the existence of 10® K plasma next to 10® K plasma (Phillips 1997, private communication).
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(iii) D ensity  Enhancem ents in th e Solar Corona

An important observational result is that active regions (including loops) are denser than 
the surrounding plasma. This simple fact is of paramount importance when investigating the guiding 

of magnetoacoustic waves in the corona. Until now, no thorough review has been given on the density 
enhancements in the corona. Therefore in Table 1.2 we give a comprehensive summary of measured 
density enhancements (the ratio of the plasma density in an active region to the density in the 
background plasma). Table 1.2 gives the paper where the results were published, the reported 

density enhancement and the wavelength used in the measurement. We summarise the main results, 
which have been confirmed in a range of wavelengths. We begin by examining the observations that 
use the green coronal line and the continuum. Fisher (1971a) quotes a density enhancement of 2 by 
calculating the density at the loop summit and in the surrounding plasma. The electron density was 

7.8x10® cm"® at the top of the loop and 3.9x10® cm"® outside. A slightly lower density excess of
1.8 was measured at the sides of the loop. In addition Fisher (1971b), measuring the density inside 
a loop and just below using the green line and the continuum, gives density enhancements of 4.8 

and 3 respectively. Using a white light coronagraph on Skylab, Pick, Trottet and MacQueen (1979) 

found an electron density 10 times that of the background corona. The density varied by a factor 
of 2 over several hours.

The magnitude of the density enhancement has also been measured using the EUV emission 

lines. Observations of active regions by Noyes, Withbroe and Kirshner (1970) and Noyes (1971) in 
the temperature range 10^ to 3.5x10® K have shown a density enhancement between two and six 

times the background value. Fisher (1971b), using the FeXV line, measures a density excess 6.5 
times that of the surrounding plasma. These results were obtained from 26 measurements across 
14 loops in 4 active regions during the Skylab mission. Stewart and Vorpahl (1977), using the soft 

X-ray telescope onboard Skylab, suggest the density ratio of an active region over a quiet region lies 

between 4 and 16. Using X-ray measurements Davis and Krieger (1982) find the material outside 

the loop to be ten times less dense; the density outside the loop was 1x10® cm"® and that inside 
was 1x10® cm"®.

We conclude our review by looking at the radio observations. Malitson and Erickson 

(1966), using a compilation of several results, found that the electron density in coronal streamers 
over active regions was ten times that of the surrounding plasma. The results were obtained from 
radio observations in the range 1.5 to 200 MHz. Also, using radio observations at 169 MHz, Leblanc 
(1970) found the electron density of an active region was three times that of the background corona.

Aschwanden (1996, private communication), analysing Yohkoh, EUV and radio data, sug­
gests for flare loops that the density lies in the range from a few times 10̂ ® cm "® to several times 
10̂ ® cm "® (see also Doschek, Strong and Tsuneta 1995). Aschwanden (1994) quotes density en­
hancements of greater than 100 for flare loops. A similar figure of between 30 and 150 is given by 

Svestka (1995) using X-ray measurements.
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Paper Year Density Enhancement Observations
Malitson and Erickson 1966 10 Radio
Newkirk 1967 2-5 Radio
Leblanc 1970 3 Radio
Noyes et al. 
Noyes

1970
1971

2-6 EUV lines

Fisher 1971a 1.8-2 Green Line
Fisher 1971b 6.5

4.8
3.0

EUV line 
Green line 
Continuum

Dupree et al. 1973 7 EUV line
Parkinson 1973 10 X-Ray
Mercier and Rosenberg 1974 10.5 Radio
Stewart 1974 4 Radio
Reeves et al. 1974 A: 10 EUV
Allen 1975 5 EUV
Foukal 1975 4 EUV
Stewart 1976 8-10 Radio
Stewart and Vorpahl 1977 4-16 Soft X-ray
Foukal 1978 1.4-12 EUV
Pick et al. 1979 10 White light
Cheng 1980 1.5 EUV
Davis and Krieger 1982 10 X-ray
Stewart et al. 1986 % 10 EUV
Hanaoka et al. 1988 2 Green Line
Svestka et al. 1995 30-150 X-Ray 

(Flare Loop)
Brosius et al. 1996 2-8 EUV
Brosius et al. 1997 2 EUV /  X-ray
November and Koutchmy 1997* 2 White light

Table 1.2; A comprehensive summary of density enhancements (the ratio of the density in the 
active region corona to the surrounding plasma) in the solar corona. The asterisk denotes a private 
communication.
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Paper Year Magnetic Field (G) Plasma Beta Wavelength
Fisher 1971a,b 5 Green Line
Parkinson 1973 5.5-16 - X-ray
Neupert et al. 1975 100 - X-ray /  EUV
Kundu et al. 1980 300 0.01 X-ray /  EUV
McConnell and Kundu 1983 130-170 3x10” ^ Radio
Dulk and Gary 1983 20-70 - X-ray
Hiei 1994 10-100 - X-ray
McKenzie 1997 - 0.001-0.045 X-ray

Table 1.3: Summary of the observations of the magnetic field and plasma beta in coronal loops and 
active regions.

In general, these results show that the active region corona is 3 to 10 times denser than 
the background plasma.

(iv) M agnetic F ield  S trength  and P lasm a B eta

Table 1.3 summarises the measurements of the magnetic field and plasma beta (the ratio 
of plasma pressure p to the magnetic pressure B^/2po; /? =  2poP/B^) in active regions. Here B  is 
the magnetic field strength and po is the permeability of free space. We find that typical magnetic 

field strengths lie in the range 5 to 100 G, with a plasma beta much less than unity. Therefore the 
corona is magnetically dominated and the effects of plasma pressure are generally negligible.

(v) L ifetim es o f Coronal Loops

Picat, Fort, Dantel and Leroy (1973), analysing loops in both the green and red coronal 

lines, show that smaller loops may only appear for periods of a few hours, whereas larger loops 

may exist for several days. This is in agreement with Kleczek (1963) who, using the green line, 

suggested larger loops are more stable. Stewart, Brueckner and Dere (1986), examining EUV and 

soft X-ray loops, found the lifetime to be about a day. Loops which existed for longer than 31 days 
(the observation time) were reported by Berton and Sakurai (1985). The lifetime of loops has also 

been studied by Sheeley (1980). For cool loops (NeVH, T  =  0.5 x 10® K) the lifetime of the loop 

was only 30 minutes. Hotter loops (MglX, T  =  1.0 x 10® K and FeXV, T  =  2.0 x 10® K) existed 
for 1.5 hours (MglX) and 6 hours (FeXV). Acton et al. (1992) give the lifetime of an X-ray loop 
as days to weeks. Cheng, Smith and Tandberg-Hanssen (1980) find that the lifetime of the loop is 

dependent upon the aspect ratio of the loop. From EUV observations they find a small aspect ratio 
{a/L) loop changes more rapidly than a loop with a large aspect ratio.
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(vi) C haracteristic Speeds

Consider a typical coronal magnetic field strength of R =  50 G and a plasma density of 

p = 4 X  10"^® kg m"®. The Alfven speed va (=  B /^p o p )  equals 2230 km s " \  A characteristic 

sound speed in the corona, assuming a temperature of 1.5 x 10® K, is 204 km s"^. In

our work we adopt typical values for the Alfven and sound speeds of several thousand and several 

hundred kilometres per second respectively. A typical tube speed ct CsVa /  (c® +  with
Cg =  200 km s“  ̂ and va =  2000 km s"^ is ct = 199 km s~^. Therefore in the corona the sound 

speed and tube speed attain similar values.

Typical coronal loop parameters are summarised in Table 1.4. The very recent X-ray obser­

vations from Yohkoh (McKenzie 1997) confirm these values. McKenzie finds loops with lengths rang­

ing from 42 to 150 Mm, whilst the electron temperature and density are found to be 2.3-4.7x10® K 

and 1.6-5.6x10^® cm"® respectively. The plasma beta inferred from the measurements lies between 
0.001 and 0.045. Finally, the average Alfven and sound speeds are estimated to be 4000 km s"^ 
and 240 km s"^ respectively. A summary of X-ray loops has also been given by Beaufume, Coppi 
and Golub (1992), with conclusions in agreement with our review. Using results from Skylab, 

SMM (Solar Maximum Mission) and NIXT (Normal Incidence X-ray Telescope) observations, typ­

ical parameters for X-ray loops are presented. Beaufume et al. (1992) state that the characteristic 
parameters for coronal loops may take a wide range of values. The aspect ratio is quoted to lie 
between 0.01 and 0.04. A typical coronal loop has a half-width of 0.5 to 4 Mm and a length of 20 to 

200 Mm. The loops are mainly isothermal with a characteristic temperature of 2-3x10® K. Loops 

with temperatures in excess of 2 x 10® K were reported to have a lifetime of several days. Cooler 
loops were found to be thinner and less stable, with shorter lifetimes than hotter loops. Typical 

coronal magnetic fields, obtained by extrapolating from the photosphere, lie in the range from 30 to 

200 G. Electron densities were given as 1-10x10® cm"®.

1.2 O scillations in th e  C orona

1.2.1 Introduction

Observations suggest that periodic and quasi-periodic oscillations commonly occur in the 

corona. Oscillations are detected by measuring the temporal variation in intensity, line width and 

Doppler velocity of coronal emission lines. A summary, together with prominence oscillations, is 
given by Tsubaki (1988). Further information about oscillations of the coronal plasma comes from 
radio and X-ray emission, with periods ranging from sub-second to several minutes. Short (one 
second) periods of oscillation are frequently reported. These observations are reviewed by Edwin 

(1984) and Aschwanden (1987). In this section we comprehensively review the observations, updating 
earlier work. We begin in Section 1.2.2 by briefly describing the oscillations reported throughout the
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Parameter Value
Footpoint Separation 1.5-500 Mm (100)
Width 0.7-30 Mm (3-10)
Height 40-560 Mm (50-100)
Densities 0.2-20x10^ cm -^ (2)
Density Enhancement 1.5-16 (3-10)
Temperature 1.4-6 xlÔ  ̂ K (2)
Magnetic Field 5-300 G (100)
Aspect Ratio 0.01-0.25
Plasma Beta 0.003-0.01
Alfven Speed 2000 km s“ ^
Sound Speed 200 km s“ ^

Table 1.4; Summary of observed coronal loops parameters. Figures in brackets denote "typical" 
values.

Sun. Coronal oscillations are then summarised in detail. In Section 1.2.3 we review the oscillations 

detected in coronal emission lines, and then proceed to oscillations in radio and X-ray emission in 
Section 1.2.4.

1,2.2 Solar O scillations

The Sun can sustain oscillations. Wave-like motions have been detected throughout the 
different regions of the Sun. Here we give a brief summary of the reported oscillations, concentrating 
on the corona; see Roberts (1991a) for a review of observations and theory.

We begin our review by briefly summarising the reported oscillations in the solar interior. 
Leighton, Noyes and Simon (1962) reported oscillations in the photosphere with a 5 minute period. 

These oscillations are now known to be acoustic waves trapped within a cavity formed by the 
increasing sound speed in the solar interior (see, for example, Ulrich 1970). The investigation of 
these oscillations has led to the subject of helioseismology. The properties of the solar interior, such 
as the density and temperature, are inferred from such a study.

Sunspot oscillations have also been reported. The umbra oscillates with 3 and 5 minute 
periods (Moore and Rabin 1985). The region surrounding the umbra, the penumbra, oscillates with 
periods of 4 to 5 minutes; see Roberts (1991a, 1992) for a review.

Wave motions in the chromosphere, with periods lying between 40 seconds and several 
minutes have been reported. Specifically, Endler and Deubner (1983) and White and Athay (1979) 
have reported oscillations between 40 and 140 seconds and from 170 to 500 seconds respectively.

Prominence oscillations are reviewed in Tsubaki (1988), with typical periods lying in the 

range from 5 to 90 minutes; see also Joarder and Roberts (1992, 1993), Roberts and Joarder (1994) 

and Joarder, Nakariakov and Roberts (1997).
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1.2.3 Coronal E m ission Line O bservations

A comprehensive summary of the reported coronal oscillations obtained from emission lines 
is given in Table 1.5. This table has been adapted and updated from Tsubaki (1988), incorporat­

ing the latest observations. The table shows the paper where the results were published and the 
wavelength of the observations. The period of oscillation is given and also the physical parameter 
measured. We now summarise the main results.

The first report of a coronal oscillation was made in 1959 by Billings. Using the FeXIV, 

5303 Â green coronal line, Billings found an oscillatory pattern in the half-width of the line. However 
the period of oscillation was undetermined. Periods from 2 to 6 minutes have been routinely observed 
in coronal emission lines. However in recent years, short period oscillations (of the order of a 
few seconds) have also been reported. In particular, during the 1983 total eclipse Pasachoff and 

Landman (1984) and Pasachoff and Ladd (1987) reported periodic oscillations in the intensity of 
the green coronal line between 0.5 and 4 seconds. Periods of this order have also been observed by 
Rusin and Minorovjech (1991, 1994) in both the green and red (6374 Â) lines.

We note that there are also examples of observations where oscillations have not been 

detected (see, for example, Schmidt, Wagner and Newkirk 1972; Koutchmy 1975; Vernazza et al. 
1975).

1.2 .4  Radio and X-ray O bservations

There are many reported examples of coronal oscillations using observations of both radio 
and X-ray emission. The source of these oscillations is likely to be impulsive, for example a solar flare 

(see Tables 1.6 and 1.7). However, Tapping (1978) and Gaizauskas and Tapping (1980) have reported 
oscillations without any flare association. The observations are summarised comprehensively in 

Tables 1.6 and 1.7, which have been updated from Edwin (1984). The information depicted in 
these tables shows whether the period is constant in time (periodic) or irregular (quasi-periodic). In 

addition the period of oscillation is given and also the observing wavelength. Finally, the source of 
the oscillations is given in the final column of each table. We now summarise the main results from 
Tables 1.6 and 1.7.

Many of the periods are of the order of a few seconds. These periods have been confirmed in 
a range of wavelengths. For example, following a solar burst, Kaufmann, Rizzo Piazza and Rafaelli 
(1977) detected periodic oscillations of 4.7 seconds in microwaves. In addition, measuring X-ray 
emission, Desai et al. (1986) reported a 1.64 second oscillation with constant amplitude. In radio 

emission Mangeney and Pick (1989) observe quasi-periodic oscillations with periods between 2 and 
3 seconds. In addition sub-second oscillations are frequently reported. For example, Li, Messerotti 
and Zlobec (1987) and Correia and Kaufmann (1987) both report a 0.3 second fast pulsation in 
X-rays.

Recently McKenzie (1997), using soft X-ray observations from the Yohkoh mission, has
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Author Year Spectral Region Intensity 
Period (s)

Line width 
Period (s)

Doppler Velocity 
Period (s)

Billings 1959 5303 À None Wave pattern None
Noxon 1966 5303 À 

6374 Â
480

None
None
None

None
None

Lilliequist 1966 5303 À 
6374 Â

490
300,150

490
300,150

Curtis et al. 1971 5303 À 500,270
185

Chapman et al. 1972 EUV 262 — —
Schmidt et al. 1972 White light None — —
Liebenberg and 

Hoffman
1974 5303 À 360660

Koutchmy 1975 White light None — —

Vernazza et al. 1975 EUV None — —
Tsubaki 1977 5303 À None 280,326

(Weak)
280, 315

Eg an and 
Schneeberger

1979 5303 À 366 366 None

Koutchmy et al. 1981 5303 À None None 43, 80, 300
Antonucci et al. 1984 EUV 117, 141 — —
Pasachoff and 

Landman
1984 5303 À 0.5-2

Tsubaki et al. 1986 5303 À 23562.5 None None
Pasachoff and 

Ladd
1987 5303 À 0.5-4

Rusin and 
Minorovjech

1991 5303 À 

6374 Â

7.5, 12, 30-60, 
67-95, 222, 312 

74, 99, 120 
222, 296

— —

Dermendjiev et al. 1992 5303 À 64, 83, 130 
(not significant)

Rusin and 
Minorovjech

1994 5303 A, 6374 À 5.5-5.7, 7.0-7.5, 
10, 12, 30-43, 

83,328
Singh et al. 1997 Continuum 5.3, 6.1, 8.0, 

13.5, 19.5, 56.5

Table 1.5: Summary of oscillations in coronal emission lines. The table has been adapted and 

updated from Tsubaki (1988).
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Author Year P/Q Period E.M. Designation Nature of Source
Young et al. 1961 Q <  0.3s UHF —
Janssens and White 1969 P Train > 9 puises of %16s 

preFlare puise train of «23s
UHF trains during 

and after Flare
Fi’ost 1969 Q 35s Hard X-ray, /i Eruptive prominence
Parks and Winckler 1969 P 16s X-ray, fi, UHF Flare related
Cribbens and Matthews 1969 Q 6—>60s 

180^600s
UHF

Abrami 1970 Q 1.7->3.1s VHF Subflare, Type IV
Rosenberg 1970 P,Q « I s ,  subharmonic « 3 s VIIF Type IV
McLean et al. 1971 Q « I s ,  2.5—>2.7s between 

puises in train of a minute
VHF Flare 25min 

earlier. Type IV
Abrami 1972 Q train of sub-second pulses VHF Type IV
Elgaroy and Lyngstad 1972 Q 2—t’3s VHF, UHF Type III
Gotwols 1972 Q «0 .5s UHF Flare 6-lOmin earlier 

Type IV
Janssens et al. 1973 P,Q 4,5,6 Spikes 

separated by 10-+20s
X-ray

E U V ,m
Some Flare 

association Type III
Kai and 

Takayanagi
1973 Q « 2 —»5s VHF Flare related 

Type II, IV
McLean and Sheridan 1973 p 4.28±0.1s VIIF Subflare 7min earlier
Maxwell and 
Fitzwilllam

1973 Q l-^200s
7—>15 min durations

Type IV

Achong 1974 Q « 4 s , 12s subharmonic HF ■

Anderson and Mahoney 1974 Q 2->20s Hard X-ray Flare related
Jakimiec and Jakimiec 1974 Q 200->900s X-ray Flare lhr40 earlier
Oliver et al. 1976 Q 9->74s

130->480s
UHF Flare related

Kaufmann et al. 1977 p 4.74:0.9s for > 1 hr Simultaneous solar 
great burst

Pick and Trottet 1978 Q 0.37s, trains recurring 
after 1.7 4:0.4s

VHF Flare related 
Type IV

Tapping 1978 Q Trains of <  20 pulses 
frequency 0.2s“  ̂ —> 15s“ ^

VHF No Flare

Teuber et al. 1978 Q 85s, 256s, X-ray Flare related
Praéa and Karlickÿ 1979 Q Bursts of 0.1s UHF 2-ribbon Flare 

«4hr earlier
Trottet et al. 1979 Q 1 minute VHF, fi Eruptive prominence 

Type IV

Table 1.6: Oscillations reported in X-ray and radio emission, updated from Edwin (1984). In the ta­
ble we give the paper and the year in which it was published. Next we denote whether the oscillations 

were periodic (P) or quasi-periodic (Q). The period of oscillation is given in the next column. The 
observational wavelength and the likely source of the oscillations are given in the final two columns. 
The electromagnetic designation is as follows: HP : 3 MHz-30 MHz; VHP : 30 MHz-300 MHz; 
UHF : 300 MHz-3 GHz; : 3 GHz-30 GHz; EHF : 30 GHz-300 GHz.
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Author Year P/Q Period E.M. Designation Nature of Source
Gaizauskas and 

Tapping
1980 Q «2.5s, trains of pulsations 

over 5 hours
It No Flare

Wiohl and Matzler 1980 Q 5s fi, Hard X-ray —
Dennis ct al. 1981 Q > 8  peaks «Is  

separated by 1—»2 s
Hard X-ray Flare related

Orwig et al. 1981 Q groups of spikes 
7—*lls between peaks

X-ray 
Hard X-ray

Flare related

Trottet et al. 1981 Q 1.7±0.5s VIIF Type IV
Sastry et al. 1981 Q 2 —>6 s HF, VIIF —
Svestka et al. 1982 Q 13 pulses 20min X-ray, VIIF Flare 6.5hrs before
Kano ct al. 1983 Q 7 peaks with 8 s 

separation
X-ray, /.« 

VIIF
Flare related

Kiplinger et al. 1983a Q < Is Hard X-ray Flare related
Kiplinger et al. 1983b Q recurrent train of 8 .2 s 

pulse interval
Hard X-ray, ft 

7 -ray
Flare related

Takakura et al. 1983 Q 3s" ‘ -V 4s" ‘ X-ray, fi Subflare earlier
Benz
(See Edwin 1984)

1984 Q 1.1s for «29s UIIF —

Benz
(See Roberts ct al. 1984)

1984 Q «40s UHF

Zodi Vaz and Kaufmann 1984 Q 1.5s over lOmin It Solar Burst
Wichl et al. 1986 Q l->2 s UIIF Type IV
Elgaroy 1986 Q 0.75s over 2hrs UHF Flare related
Aschwanden and Benz 1986 Q 0.4—>1.4s UIIF Flare related
Desal ct al. 1986 p 1.64s constant amplitude Hard X-ray Flare related
Kosugi and Kiplinger 1986 Q 8 s and 16s /i. Hard X-ray, 7 Flare related
Thomas et al. 1986 P 1 .6 s amplitude decreasing Soft X-ray Flare related
Wells et al. 1986 Q 2-^lOs VHF, UIIF, /i, X-ray Flare related
Zodi Vaz et al. 1986 Q 0.29—0.5S Hard X-ray, UHF, /i, EHF Flare related
Aurass et al. 1987 Q 0.3->0.4 VIIF Type IV
Wright and Nelson 1987 Q 3min initially, 5min after 

large flare, 4min towards end
UIIF Flare related

Li ct al. 1987 Q 0.3s UHF Type IV
Correia and Kaufmann 1987 Q 0.2—> 0.3s ;t, EHF —
Harrison 1987 Q 24 minutes over 6  hours Soft X-ray Flare related
Mangeney and Pick 1989 Q Range 1^6s 

2—»3s common
VHF, UHF Type III

Svestka et at. 1989 Q 19min Hard X-ray, fi Flare related
Zhao et al. 1990 Q 1.4->1.6s It —
Pu et al. 1990 Q 4s It —
Kurths et al. 1991 Q 2.7s, 4.3s UHF Flare Related
Zhao et al. 1991 Q 1—»6s VHF, UHF Type III
Zlobec ct al. 1992 Q 11.4s UHF Flare 2hrs before 

Type IV
Aschwanden et al. 1992 Q 8 .8  seconds VIIF, UHF Flare related
Aschwanden ct al. 1993 Q 45 pulses 1.6±0.6s VHF, UHF, Hard X-ray —
Aschwanden et al. 1994 Q l-^2 s UIIF Flare related
Svestka 1994 Q 20min 50s X-ray Flare related
Correia ct al. 1995 Q Sub-second pulses 

superimposed onto fast Is pulse
EHF Flare related

Karlickÿ and Jiricka 1995 Q 0.1—̂ 0.5s, 0.7—+1.Os 
2.8-»3.9s, 75-^170s

UHF Subflare

Qin et al. 1996 Q 1.5s superimposed 
onto 40s oscillation

It Flare related

McKenzie 1997 Q 9-»62s
average 36 seconds

X-ray Flare related

Table 1.7: Oscillations reported in X-ray and radio emission, updated from Edwin (1984). The table 
gives the paper and the year of publication. We also denote whether the oscillations were periodic 
(P) or quasi-periodic (Q). The period of oscillation is given in the next column. The wavelength 

observed and the source of the oscillations are given in the final two columns. The electromagnetic 
designation is as follows: HF : 3 MHz-30 MHz; VHF : 30 MHz-300 MHz; UHF : 300 MHz-3 GHz; 
fi : 3 GHz-30 GHz; EHF : 30 GHz-300 GHz.
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performed a systematic search for periodic modulations (of the order of 1 %) in the X-ray brightness 
of coronal loops. The smallest detectable period in this study is 8 seconds. The short (one second) 

period oscillations reported (see Tables 1.6 and 1.7) are therefore beyond the resolution of this work. 

McKenzie finds periods lying in the range from 9 to 62 seconds, with an average of 35 seconds. 
This is in good agreement with models of ducted magnetoacoustic waves in either coronal loops (see 
Chapter 2 ) or current sheets (see Chapters 3 and 4), and may be attributable to the fundamental 

kink mode. Periods of oscillation r  are found to be consistent with t ^ ‘I L / v a , where va is the Alfven 
speed and L  the loop length. No evidence for longer periods (> 15 minutes) — which would relate 
to slow magnetoacoustic waves — is found. In addition, no periodic variations were found in either 
the density or temperature. McKenzie (1997) suggests the wave motion may not be compressive 

(Alfven waves), or the density variation may be below the threshold of the observations.
As shown in Table 1.5 for coronal emission lines, oscillations with longer periods are also 

found. These periods are detected in observations of both radio and X-ray emission. For example 
the X-ray measurements of Teuber, Wilson and Henze (1978) showed quasi-periodic oscillations with 

periods of 85 and 256 seconds. Following the eruption of a prominence, Trottet, Pick and Heyvaerts 

(1979) detected periods of 1 minute in radio emission. Even longer periods, around 20 minutes, have 
been reported. In particular, Harrison (1987) reports a 24 minute period over a duration of 6 hours 
in X-rays. A series of papers by Svestka et al. (1982), Svestka, Farnik, Fontenla and Martin (1989) 
and Svestka (1994) have found 20  minute modulations, again in the X-ray regime.

Many of the oscillations only last for a few cycles (see, for example, Aschwanden, Benz, 
Dennis and Gaizauskas 1993; Correia and Kaufmann 1987) whilst other reported oscillations may last 
for several hours. In particular, Gaizauskas and Tapping (1980) reported the existence of 2.5 second 
pulsations over a period of 5 hours. Furthermore, Kaufmann, Rizzo Piazza and Rafaelli (1977) 

detected a periodic modulation of 4.7 seconds lasting for over an hour.

Observational evidence for magnetoacoustic waves in coronal loops is limited. Loughhead, 

Bray and Wang (1985) investigated the fractional variation (deviation from the mean) of the plasma 
density, pressure and temperature at eight positions along a coronal loop. The temperature of the 
loop was found to be approximately constant along its length. Evidence of a wave-like variation in 

the plasma density and pressure was suggested. The wavelength was approximately half the loop 
length, some 50 to 60 Mm. Furthermore, the authors suggest the presence of a node at the loop 
summit.

From this review we conclude that the coronal plasma is able to support oscillations. The 

periods are diverse ranging from sub-second through to 24 minutes. It is the objective of this thesis 
to investigate the guiding of magnetoacoustic waves in structured media, and thereby provide a 
possible explanation for these observations. In the next section we present the governing equations 

used in this thesis; the equations of magnetohydrodynamics (MHD) are discussed, together with 

definitions of the important parameters used in our study.
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1.3 T he M H D  E quations

In this section we introduce the fundamental equations which are used to investigate ducted 

magnetoacoustic waves in the solar corona. We use the m agnetohy drody namic (MHD) equations 

which are discussed in considerable detail by P.H. Roberts (1967); see also Priest (1982). MHD 

describes the interaction between the magnetic field and the plasma. In using these equations we 
have made several assumptions which limit the range of validity of our results. In our work we treat 

the plasma as a continuum, ignoring the effects of particles. In addition the velocity of the plasma 

is considered to be non-relativistic. We also assume that the collisions between the particles occur 
frequently enough to ensure an isotropic plasma pressure. Consequently the temporal and spatial 
scales of interest must be much larger than the characteristic plasma parameters, such as particle 

collision times and the mean free path length. In the solar corona, a typical mean free path is 50 km 

and a characteristic particle collision time is 0.01 seconds. Spitzer (1962) gives the mean free path 

as 5 X 10~^T^/ne km, where T  is the temperature in kelvin and Ue is the electron density in cm“ .̂ 
Typical coronal values of T  =  10® K and Ue = 10  ̂ cm“  ̂determine a mean free path of 50 km. The 

electron-ion collision time is calculated from 0.266T^'^^/nelnA where InA =  19.3 for T  = 10® K and 
He — 10  ̂ cm“  ̂ (Priest 1982).

The governing equations are Maxwell’s equations and Ohm’s law, along with a momentum 
equation, an equation of state and the conservation of energy and mass. Here we give a brief outline 

of the equations, illustrating the approximations which are relevant to our area of study.
We begin by stating Maxwell’s laws, which may be written in the form: 

the Maxwell-Ampère law,

V  x B = p o 3  +  ^ ^ ;  ( 1 .1)

Gauss ’ law for magnetism (no magnetic monopoles — the solenoidal constraint),

V B  =  0; (1.2)

Faraday’s law of induction

V x E  =  - ^ ;  (1.3)

and Gauss ’ law for electricity,

V - E = ^ .  (1.4)
fo

In Equations (1.1)-(1.4) B is the magnetic (induction) field, j  is the current density, c is the speed
of light, E is the electric field, Q is the charge density, and p,Q and eo are the permeability and

permittivity of free space respectively. Note that Maxwell’s equations are all linear] however the 
equations of MHD are non-linear because of Ohm’s law and the equations of fluid mechanics.
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In Equation (1.1) we may neglect the term 1/c^ {dE/dt) in the non-relativistic approxi­
mation. The argument is as follows. Consider a characteristic plasma length, velocity and time 

scale given by L q, Vq and Tq respectively; Vo = L q/T q. Equation (1.3) determines the magnitude of 
the electric field as E q % B oVq. The left-hand side of Equation (1.1) has magnitude B q/ L q whilst 

the second term on the right-hand side has magnitude B qVo/T qĉ . The ratio of the term on the 
right-hand side to the left-hand side is proportional to Vb/c^. Therefore, in the non-relativistic 

approximation (Vb <C c) the term involving the electric field may be ignored. Equation (1.1) may 
then be written

V X B =  /Uoj , (1.5)

which determines the current density j  from the magnetic induction B. This is Ampère’s law in 
pre-Maxwellian form.

Ohm’s law states that the current density is proportional to the sum of the background 

electric field (E) and the electric field (v x B) induced by the plasma motion (v),

j  -  o-(E 4-V X B) , (1.6)

where cr is the electrical conductivity. Substituting Equation (1.6) into Equation (1.5) yields the 
induction equation,

~  =  V X (v X B) 4-uV^B , (1.7)

where we have used the solenoidal constraint V • B =  0 and assumed that the magnetic diffusivity 
7} = Ifpocr is constant. The induction equation is a fundamental equation of MHD, determining the 
temporal evolution of the magnetic field. The first term on the right-hand side of Equation (1.7) 

describes the tendency of the magnetic field to be advected with the plasma motion. The second 

term describes the decay of the magnetic field due to the diffusivity r}. In the solar atmosphere we 
may generally neglect the rfV’̂ B term. The ratio

Rm —
V X (v X B)

( 1 ,8)

is defined as the magnetic Reynolds number. When Rm 1 the temporal behaviour of the field is 
dominated by diffusion, whereas if Rm 1 advective effects are important. In the limit Rm - i  oo 
the fluid is perfectly conducting. In the large magnetic Reynolds number limit, the frozen-flux 
theorem states that in a perfectly conducting plasma the magnetic field lines behave as if they move 
with the plasma (see Priest 1982 for a proof). The magnetic Reynolds number is much greater 
than unity in most astrophysical applications, since the characteristic length and velocity scales are 

large. In particular, considering a sunspot, with typical values rj =  10  ̂ m^ s~^, Lq =  10^ km and 
Vb =  1 km s" i, we obtain Rm = 10^. For Rm 1 the induction equation may be written in the 
reduced form

®  =  V X (v X B) , (1,9)
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The equation of continuity of mass is given by

| £  +  V-(/)v) =  0 ,  (1.10)

and describes the temporal evolution of the plasma mass density due to the plasma motion.
The momentum equation is given by

d'v
dt

This equation of motion determines the time evolution of the plasma velocity in terms of the forces 

on the right-hand side of the equation, namely the plasma pressure gradient (—Vp), the Lorentz 

force (j X B) and the gravitational force (pg). The gravitational force is neglected in our treatment. 
The adiabatic energy equation is given by

A + v v ) p = ^ ( ^ + v . v ) p .  (1 .12 )

Finally, the plasma is assumed to satisfy the ideal gas law, which states that

P = y p T ,  (1.13)
r

where p, p and T  are the plasma pressure, density and temperature respectively. Here p is the mean 
atomic weight in terms of the proton mass and R  is the gas constant. The parameter 7  (= 5/3) 
denotes the ratio of specific heats.

We now introduce some quantities which will prove useful in our work. We firstly define 
the sound (c,) and Alfven (uyi) speeds,

Fyp B
—  and Va  = —= =  . (1.14)

Here B  is the magnitude of the magnetic field. It is convenient to introduce the plasma beta (/3), 
which is proportional to the ratio of these speeds. The plasma beta is defined as the ratio of plasma 

pressure (p) to magnetic pressure (S ^ /2po),

The plasma beta determines whether magnetic effects are dominant (/? <K 1) or weak ()d )§> 1). For 

example, in the solar corona with 7  =  5/3, Cg — 200 km s“  ̂ and va =  2000 km s"^, we obtain 
P = 0.012. Therefore in this region of the solar atmosphere the plasma pressure is much less 
im portant than the magnetic pressure. It is usually a good approximation to neglect the effects of 

plasma pressure; the low-(3 approximation (/5 =  0). In photospheric flux tubes, typical values for the 
sound and Alfven speeds are 8 and 10 km s“  ̂ respectively, giving ^  — 0.77. In the photosphere the 
plasma pressure plays a more im portant role than in the corona.
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Theoretically we may expect the magnetic field to support oscillatory behaviour. To see
this we substitute Equation (1.5) into the Lorentz force (j x B) to obtain

j  X B =  —  (V X B) xB  . (1.16)
Po

Then, using a vector identity, we obtain

j x B  =  l ( B . V ) B - v ( £ )  . (1,17)

Therefore the momentum equation (Equation 1.11) has a term of the form

T ( B . V ) B - v ( p + g )  . (1.18)

We see that the j  x B force introduces a magnetic pressure (B^/2po) which augments the plasma
pressure (p). In addition, the (B • V )B /po term corresponds to a magnetic tension. Since each flux 
tube is frozen into the fluid (when Rm 1) magnetic field lines are analogous to a loaded string 

under tension. If the field lines are displaced, we may expect them to oscillate in a similar way to 
an elastic string.

1.4 M H D  W ave P ropagation  in th e Solar A tm osp here

Having seen that the magnetic field may support oscillations, we now briefly review the 
work on MHD wave propagation in the solar atmosphere. For a discussion on magnetoacoustic wave 

propagation in a structured plasma see Roberts (1985, 1991a, 1992) and Edwin (1991, 1992); see 
also Chapters 2, 3 and 4.

In the absence of a magnetic field acoustic waves are present. These sound waves are 

isotropic, propagating equally in all directions, driven by the gradient of the gas pressure. A prefer­

ential direction of propagation occurs in the presence of a magnetic field. To illustrate this consider 
the driving forces on the right-hand side of the momentum equation (Equation 1.18), assuming 

gravitational effects are negligible. The first term of Equation (1.18) represents the tension, which 
is anisotropic. The second term denotes the pressure, which is isotropic.

Consider a magnetic field B =  J3o (æ) êz. We now apply a perturbation to the ideal MHD 
equations [p — po + pi) etc., assuming that the equilibrium state is static (% =  0). In addition, 

we take the perturbations to be small { p i  -C p o ) ,  ignoring squares of perturbed quantities. The 
linearised MHD equations take the form

6  poA =  0 , (1 19)

P o ~ ^  =  —V  (p i  H   -1  4----- (Bo ■ V) b i  4------ (b j • V) Bq , (1.20)
o t  \  Po /  P o Po
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V • b i  =  0 , 

a b i
dt

V X (v X Bo) ,

dpi
dt

( 1 .21)

( 1 .22 )

(1.23)TPo d p i

Po dt

In Equations (1.19)-(1.23) the subscripts 0 and 1 denote the equilibrium and perturbed quantities 
respectively. We have defined A =  V • v. The linearised induction equation (Equation 1.22) reduces 

to

dhi  <9v
~KT —  .dt dz (1.24)

Now, differentiating the linearised momentum equation (Equation 1.20) with respect to 
time yields, after some algebra.

po
d' '̂v
W

V [/?o (c  ̂+  A -  pov\T] +  v \ Po
d ’̂ v

GzpO dz (1.25)

where F =  dvzjdz.  We have taken po,Cg and va to be dependent only upon æ. Now writing 
Equation (1.25) in terms of the velocity components yields

V„ =

d^Vz

[poA (c; +  v \ )  -  vI poT] , 

^  [poA (c^ +  v \ )  -  v\ pqT] ,

, a A

(1.26)

(1.27)

(1.28)a f  ' a ,  '
Note that the ^-component is independent of the equilibrium magnetic field B q .  This is not surprising 
since j  x B  becomes j  x B o  in the linear regime. This is perpendicular to the magnetic field B q ,  and 
so does not directly influence the plasma motion in the direction of B q .

Now consider Fourier components, such that

Vx =  ^x (æ) exp i {u>t + kyp + kzz) , (1.29)

and similarly for the other parameters. Following some algebra, we obtain the second order ordi­
nary differential equation governing wave propagation in a structured media, where the equilibrium 
quantities depend only upon the direction perpendicular to the magnetic field (Roberts 1981a),

dæ
po { k z V A  -  d t).

(1.30)(m2 6  A?2) dæ

Here t), is the velocity component normal to the magnetic field, w is the frequency and kz 
is the longitudinal wavenumber. In addition

(1.31)
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where ct is the tube speed. The velocity parallel to the magnetic field is given by

26

{u>̂ — dæ ‘ (1-32)

More specifically, setting fey =  0 so that the propagation vector is in the æz-plane, Equa­

tion (1.30) reduces to (Roberts 1981a)

Po (c , +  v \ )  {u>̂  -  fe^ 4 ) d%
dæ (W2 _fe2c2) dæ

+  po (w  ̂ -  k'^v\) îla;~0. (1.33)

On setting fey =  0 in Equation (1.30) there is an implicit cancellation of a factor of (u>̂  — fe^u^). 
Effectively the Alfven wave is removed from our governing equation (Equation 1.33). This may also 

be seen from the original wave equations; see Equations (1.26)-(1.28).
We note briefly that in the incompressible regime (7  -4- 0 0 , Cg -> 0 0 ) the governing equation 

(Equation 1.30) reduces to

dæ Po {kW A  ^  -  Po { k l  +  k l )  { k l v \  -  01^) e ,  =  0 . (1 .34)

In obtaining Equation (1.30) we have derived equations which determine the plasma pres­
sure perturbation (pi), the magnetic pressure perturbation (p i^) and the total pressure (plasma 
plus magnetic) perturbation (p it ) i

— Pi 
Po

dVa; Vx dp
(w  ̂— fefc^) dæ Po dæ

ÎW
po

~Plm
B  f d B \  .d%

dæ PPG \  dæ y
_  (c^ + v \ )  -  fê 4 ) d%

po^^^ (o;2 -  fe2c2) dæ

The magnetic tension force T i takes the form

. . 2lU!
T i =  - v \ k l % ê x  + -  fe^cj)

where

f a  =  —  (Bo • V) b i  +  —  (h i  • V ) Bo
Po Po \ /

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

and b i  is the perturbed magnetic field.

It also proves convenient for our study to write the governing wave equation in terms of 

the driving forces, namely — Vpi, —Vpim and Ti.  In component form we obtain

(1.40)

(1.41)

— w Va.
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where the subscripts x and z denote the projections normal and parallel to the applied magnetic 

field.
To gain an insight into the properties of waves in the solar atmosphere we now consider a 

uniform medium (the equilibrium does not depend upon x). Talcing the divergence of Equation (1.25) 

yields

n2 /\
=  W  +  v ^ A - v i v r ,  (1.42)

and also taking d /d z  of Equation (1.28) gives

(143)

Equations (1.42) and (1.43) are two coupled equations for the unknown parameters A (=  V - v )  
and r  (=  dvz/dz).

Upon twice differentiating Equation (1.42) with respect to time, and then applying Equa­
tion (1.43) we obtain,

( ^  -  «  +  4 )  A =  0 , (1.44)

with the same equation being obtained for F. Assuming harmonic time dependence

A(æ, ï / , 0 ,t) =  A o e x p i ( w i - k - r )  , (1.45)

Equation (1.44) reduces to

-  (cg +  v \ )  -f c ^ v \k ^ P }  Ao =  0 , (1.46)

where kz = k cos i9, k  =  [k^, ky,kz)  and k — [k^ + ky + kf) ^ . Here 6 is the angle that the direction 
of propagation k  makes with the equilibrium magnetic field Bq. Equation (1.46) may be satisfied in 
one of two ways. Firstly we consider the case when Aq is zero, before progressing to the case when 
the term inside {} is zero.

When Ao is zero we may make the following deductions from the linearised MHD equations. 
There are no plasma density (p) or pressure (p) variations; the plasma motion is incompressible. 
Furthermore the .^-components of the velocity {vz) and magnetic field {bz) perturbations are zero; 

the magnetic pressure vanishes. In this case the wave equation (Equation 1.25) reduces to

W  = ’'^ 1 ^  (14^)

which is the one-dimensional wave equation for the Alfvén mode, driven by the magnetic tension. The 
equation is analogous to that governing waves on an elastic string. In Fourier space Equation (1.47) 
reduces to

=  k lv^  • (1.48)
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0=0

Figure 1.5; The polar diagram for Alfvén wave propagation in a uniform medium (see text). The 
Alfven wave is unable to propagate perpendicularly to the magnetic field.

This is the Alfvén wave dispersion relation. The properties of the Alfvén wave may be clearly seen 

by considering polar coordinates {r,9) if we identify r ~  Vph (= oj/k) =  Vph {Ô), where Vph is the 
phase speed. From Equation (1.48) we obtain r = va c o s û ,  giving r = va at 9 = 0, r = (l/V%) va 
at 9 = 7r /4 , and ?’ =  0 when 9 = tt/2. More specifically, we have the equation of a circle, centre at 

(r =  dz'UA/S, ^ =  0). See Figure 1.5. Note that perpendicular to the magnetic field (9 =  tt/2, kz =  0) 
the Alfvén wave is unable to propagate.

We now consider the case A q ^  0. Fourier transforming we obtain

^  ^  +  4 )  ±  ^  [W  +  cos^ 0] " . (1.49)

The positive and negative square roots denote the fast and slow magnetoacoustic waves respectively. 

These two waves are characterised by different physical properties, which we now summarise.
To illustrate the characteristics of both the fast and slow magnetoacoustic modes we again 

consider a uniform medium. Therefore, the equations for the perturbed magnetic pressure and 
plasma pressure simplify because there is no x-dependence in the equilibrium. Furthermore, in a 

uniform medium we may set dwaî/dæ =  ikxV^. In this case the x and z-components of the driving 
forces are given by

,2„2,.,2
- V  ( — pi 

\Po

- V  Pi 
\Po

-V ( — Am
\P0

(w2 -  A;2c2)

k^kzclLo"^
(w2 - t 2c2) Pa:

- V  —Plm

(1.50)

(1.61)

(1.52)

(1.53)
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with the tension force determined by

— T i  =  ~ V ^ k ^ V a ; ê x  +  V ^ k i p k z V x ê z  , (1.54)
Po

and the total pressure perturbation by Equation (1.37).
Firstly consider the case when the phase speed is greater than the tube speed (ui/kz > ct)- 

This is the fast magnetoacoustic mode. The characteristics of this mode are illustrated in Figure 1.6. 

The X and ^-components of velocity are in phase, with A  > A (see Figure 1.6a). The total pressure 
(solid line), plasma pressure (dotted line) and magnetic pressure (dashed line) are all in phase 
(Figure 1.6b). In Figure 1.6c the x-components of the driving forces act in phase. The tension 

(solid line) is in phase with both the negative gradients of the plasma pressure (dotted line) and 

the magnetic pressure (dashed line). The z-component of the driving forces show the tension (solid 

line) acting out of phase with both the negative gradient of the plasma pressure and the magnetic 
pressure (dotted and dashed lines respectively). See Figure 1.6d.

Next we examine the case when u>/kz < ct (Figure 1.7); this is the slow magnetoacoustic 
wave. The x and z-components of velocity are out of phase, with A > A  (see Figure 1.7a). In

Figure 1.7b the total pressure perturbation is in phase with the plasma pressure, but out of phase
with the magnetic pressure. In addition, the x-component of the tension (solid line) is in phase with 
the negative gradient of the magnetic pressure (dashed line), but out of phase with the negative 

gradient of the plasma pressure (dotted line). See Figure 1.7c. In Figure 1.7d the z-component of 

the tension (solid line) is in phase with the negative gradient of the plasma pressure (dotted line), 
but it acts out of phase with the negative gradient of the magnetic pressure (dashed line).

We can also plot the phase speed of the fast and slow magnetoacoustic waves in a polar 
diagram (Figure 1.8), We set r = u>fk and then plot r as a function of 9, determined from the 

dispersion relation (Equation 1.49). The fast magnetoacoustic wave (solid curve) is able to propagate 
at all angles to the magnetic field. The maximum phase speed c/ (c^ +  occurs when the

wave propagates at right angles to the magnetic field (0  =  tt/ 2 ) ,  whereas the minimum phase speed 

is for parallel propagation (0 =  0). This speed is either va or Cj depending on whether va > c, or 
Cg >  Va respectively. See Figures 1.8a and 1.8b. The slow magnetoacoustic mode (dotted line) is 
unable to propagate perpendicularly to the magnetic field (zero phase speed). The maximum phase 

speed occurs for parallel propagation, attaining Cg if va > Cg or va if Cg > va-

1.5 C orona l H ea ting

One of the most puzzling aspects of the Sun is the presence of the hot corona. The coronal 
plasma is in excess of 10® K, 100 times larger than the temperature in the photosphere. The literature 

on this subject is vast, and here we give only a brief outline of the main theories. Comprehensive 
reviews may be found in Narain and Ulmschneider (1990, 1996), Hollweg (1990), Browning (1991), 
Zirker (1993) and Laing (1996).
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U niform  m e d iu m  —  F ast m ode
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Figure 1.6: The fast magnetoacoustic mode in a uniform, unstructured medium. In (a) we see the 
.'c-component of velocity (solid line) is larger in amplitude than the z-component (dashed line), and 

in phase. The diamonds and asterisks show the sum of the driving forces. In (b) the fast mode is 

characterised by the total pressure perturbation (solid line) acting in phase with both the plasma 
(dotted line) and magnetic (dashed line) pressure perturbations. Panel (c) shows the ^-components 
of the driving forces acting in phase; the tension (solid line) is in phase with both the negative 

gradients of the plasma pressure (dotted line) and magnetic pressure (dashed line). Finally, in 
(d), the ^-component of the driving forces show the tension (solid line) acting out of phase with 
the negative gradient of both the plasma pressure and magnetic pressure (dotted and dashed lines 

respectively).
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U niform  m e d iu m  —  Slow  m ode
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Figure 1.7: The slow magnetoacoustic mode in a uniform medium. In (a) we see that the 

æ-component of velocity (solid line) is smaller in amplitude than the z-component (dashed line), 
and out of phase. The diamonds and asterisks show the sum of the driving forces. The slow mode is 

characterised by the total pressure perturbation (solid line) acting in phase with the plasma pressure 
perturbation (dotted line), but out of phase with the magnetic pressure perturbation (dashed line) ; 
see (b). In (c) the æ-component of the tension (solid line) is in phase with the negative gradient 
of the magnetic pressure (dashed line), and out of phase with the negative gradient of the plasma 
pressure (dotted line). Finally, in (d), the z-component of the tension (solid line) is in phase with 
the negative gradient of the plasma pressure (dotted line), but it acts out of phase with the negative 
gradient of the magnetic pressure (dashed line).
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(a )  VJ^>Cs e=7T/2 A

0=0

(b )  0 = 7t/2^

0=0

Figure 1.8: The polar diagram for fast and slow magnetoacoustic waves in a uniform medium. In 
(a) we have the case va > c ;̂ specifically we have taken va = 3cg. The slow wave (dotted line) 
is unable to propagate perpendicularly to the field. The fast wave (solid line) has its lowest phase 

speed (f^) when propagating parallel to the field (0 =  0). The fastest phase speed cy =  (c, +  v \ )   ̂
occurs when the wave is propagating at right angles to the field (0 =  tt/2 ). In (b) we illustrate the 
case Va < Csi where we have taken Cg — l.bvA- Similar results are obtained as in (a), except the 

roles of the sound and Alfven speeds are interchanged.
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It is natural to believe that the magnetic field plays a role in the heating of the corona. The 
energy source for heating the coronal plasma originates from the kinetic energy of the photospheric 

plasma, caused by convective motions. The kinetic energy of the convection is transferred to the 
coronal field by the footpoint motions. lonson (1984) and Browning (1991) classify the heating 
mechanisms on two time scales, namely the photospheric field (f^) and the Alfvén transit time (r^i) 

across the structure.
Consider first the case when the footpoint motions are slow compared with the Alfven 

transit time. The magnetic field becomes twisted and braided and currents are generated because 
of Ampere’s law. These currents can be dissipated and the magnetic energy can be converted into 

heat. Such heating mechanisms are classified as Direct Current (DC). Another DC mechanism is 

magnetic reconnection, which involves the topological change of the magnetic field and subsequent 
release of energy.

Suppose, however, that the footpoint motions are fast. In this case both Alfven and 

magnetoacoustic waves may be generated. These MHD waves may dissipate their energy and heat 

the corona. We now give a brief description of two of the main candidates, namely phase mixing 

and resonant absorption. Narain and Ulmschneider (1990, 1996) indicate that these dissipation 
mechanisms are the most likely ways in which an Alfven wave may convert its energy into heat. 
These heating mechanisms are denoted by AC [Alternating CurrenI).

Alfven waves that are excited in phase on different magnetic field lines will move out of phase 
as time increases, since each magnetic surface oscillates with its natural frequency. Consequently 
large gradients develop across the field lines, generating small length scales and wave damping. This 
process is called phase mixing (see, for example, Heyvaerts and Priest 1983; Hood, Ireland and Priest 
1997).

Resonant absorption involves the excitation of resonant Alfvén waves by magnetoacoustic 
waves. The condition that resonance occurs is that the frequency of the resonant field line is equal to 
the frequency of the driver (see, however. Chapter 5). At the resonant field line energy is transferred 
from the large scale magnetoacoustic wave to the Alfvénic resonance, which is localised along a field 

line. Small length scales are generated and dissipation is enhanced (Goossens 1994).

In addition, the energy carried by guided magnetoacoustic waves in coronal loops may be 
converted into heat. For a review and detailed investigation see Laing (1996).

At present, observations are unable to provide information about which mechanism occurs. 

However the recently launched SoHO mission will hopefully provide some insight.

1.6 T he SoHO M ission

The SoHO (Solar and Heliospheric Observatory) satellite, launched on 2 December 1995, 
is beginning to provide exciting new observations of dramatic events occurring on the Sun. The 
spacecraft is located at the Lagrangian L\ point, where the gravitational attraction of the Sun and
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the Earth are balanced. Therefore SoHO is able to monitor the Sun continuously. A summary of 
the latest results from the twelve onboard instruments may be found in Lang (1997). For a more 
detailed description of the instruments see Domingo, Fleck and Poland (1995) and Volume 162 of the 
Solar Physics Journal. Here we give a brief outline of each of the experiments, together with some 

of the highlights obtained so far (Lang 1997). The latest images from the spacecraft may be found 
on the SoHO home page on the World Wide Web located at http://sohowww.nascom.nasa.gov.

Three of the instruments are related to helioseismology. Oscillations of the solar surface are 
detected to a resolution of one millimetre per second with the Michelson Doppler Imager (MDI) and 

GOLF (Global Oscillations at Low Frequencies). In addition VIRGO (Variability of solar IRradiance 
and Gravity Oscillation) measures intensity changes on the solar surface down to a tiny fraction of 

the Sun’s brightness. An important objective for the GOLF experiment is to detect g modes. These 
are oscillations where the restoring force is gravity. These experiments will soon have taken enough 
data to provide important information regarding the density and temperature of the solar interior.

It is a well established result that the photosphere rotates faster at the equator than at 

higher latitudes. Recently, data taken with the MDI on SoHO has shown that differential rotation 

occurs throughout the convection zone as well. Furthermore, the differential rotation was found to 
be zero in the radiative zone (the rotation speed was uniform from pole to pole). Therefore the 

rotation velocity changes dramatically between the radiative and convective zones. A shear layer 

in rotation velocity between the two regions exists, which is thought be the source of the magnetic 

field.

The MDI experiment has also been used in a technique called “time distance helioseis­
mology” . Results are obtained which show the motion of the plasma just below the photosphere. 
Scientists working on this instrument can obtain the three-dimensional interior structure of the 
Sun. Furthermore, results have shown that concentrated regions of magnetic field arise where the 
sub-surface plasma flows converge.

The ultraviolet and extreme ultraviolet emission from the Sun is measured by four instru­
ments, namely FIT (Extreme ultraviolet Imaging Telescope), SUMER (Solar Ultraviolet Measure­
ment of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and the UVCS (UltraViolet 
Coronagraph Spectrometer). Preliminary results show enhanced nltraviolet emission in localised 

bright spots, even at times of low solar activity. The UVCS instrument has examined the spectral 
emission of hydrogen and the heavily charged oxygen ions. In polar coronal holes the oxygen ions 
were found to have sixty times the energy of the hydrogen ions. This is in contrast to the equato­

rial region, where the hydrogen moves faster than the oxygen. This is potentially interesting since 

oxygen is heavier than hydrogen. A thorough understanding of these results will provide im portant 
information about the physical processes occurring.

To examine the higher levels in the solar atmosphere the LASCO (Large Angle Spectro­
scopic COronagraph) is used. This instrument has provided startling new information regarding 
coronal mass ejections. These are dynamic events which eject large amounts of plasma into the solar

http://sohowww.nascom.nasa.gov
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system. Results show that mass ejections occur within hours of each other on the west and east 
sides of the Sun; see Figure 1.9. It has been suggested that mass ejection may occur all around the 

Sun simultaneously.
The Solar Wind ANisotropies (SWAN) instrument measures interstellar hydrogen. The 

main objective of the instrument is to determine the large scale solar wind proton flux distribution. 

The CELIAS (Charge, ELement and Isotope Analysis System) instrument measures the abundance 

of elements and isotopes. This is the first time such observations have been undertaken. The other 

instruments COSTEP (Comprehensive SupraThermal Energetic Particle) and ERNE (Energetic and 
Relativistic Nuclei and Electron) have begun to take in-situ measurements of energetic electrons, 
protons and helium nuclei approaching the Earth. The source of these particles are violent explosions 
which have been detected with the EIT experiment.

This brief review has shown that SoHO is taking results which will increase our under­
standing of the processes occurring on the Sun. However, SoHO may not be able to increase our 
knowledge of short period coronal oscillations. In particular, for the CDS instrument the tempo­

ral and spatial resolutions are theoretically 1 second and 2 arcseconds respectively. However, for 

practical purposes the temporal resolution is of the order 10 seconds. Therefore the high frequency 
oscillations (of the order of 1 second) are beyond the scope of the experiment. However, long period 
oscillations may be detected, and some evidence for 15 minute modulations in the coronal plasma 
has been given by Ireland, Walsh, Harrison and Priest (1997). The EUV and UV instruments may 

be able to improve greatly our knowledge of the solar corona, and in particular coronal loops.

1.7 O utline o f T hes is

As seen from the discussion in this introductory chapter, there are many reported ex­
amples of oscillations in the coronal plasma. In this thesis we are concerned with the ducting of 
magnetoacoustic waves in the solar corona, to provide an explanation for these observations.

This introductory chapter has presented an overview of the properties of the Sun, paying 

particular attention to the solar corona. The basic equations of ideal magnetohydrodynamics have 
been given. A review of the oscillatory behaviour observed on the Sun has been presented, and a 

summary of wave theory in plcismas has been given. Details of the instruments onboard the SoHO 
spacecraft and the latest results obtained have been summarised.

In Chapter 2 we investigate the guiding of fast magnetoacoustic waves in curved coronal 
loops. Much of the previous work focussed upon magnetic slabs or cylinders, with curvature effects 

neglected for mathematical simplicity. In this chapter we relax this assumption.
In Chapters 3 and 4 we examine the ducting of magnetoacoustic waves in a current sheet. 

Initially in Chapter 3, we determine the dispersion relations and the nature of the modes which 
may propagate in a current sheet. A comparison with the observations is also made. In Chapter 4 
numerical simulations of impulsively generated waves are examined.



CHAPTER I. INTRODUCTION 36

Figure 1.9: Sequence of images recorded by the LASCO c2 coronagraph showing the large coronal 
mass ejection of 7 April 1997. The first frame shows the corona at time 14:27, just before the 

eruption. The first stage of the eruption is seen in the upper right-hand corner, at time 14:59. In 

the fourth image (15:52) one can see a brightening around the entire Sun, instead of just in one 

direction. Material ejected in this event reached the Earth during the night of 10-11 April. A 
significant amount of geomagnetic activity was observed in northern regions of the world, reaching 

as far south as New Hampshire and Montana. Caption and image taken from the I^ASCO home 

page on the World Wide Web (http://sohowww.nascom.nasa.gov/gallery/LASCO/index.html).

http://sohowww.nascom.nasa.gov/gallery/LASCO/index.html
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In Chapter 5 a brief investigation is made into the effect of a random driver in a two- 
dimensional inhomogeneous cavity. Previous workers have often examined monochromatic driving 

sources. In this chapter we explore the differences between the random and periodic driving mech­
anisms.

Chapter 6 is a preliminary investigation into three-dimensional reconnection. In this chap­
ter we are concerned with the three-dimensional magnetic topologies surrounding neutral points. 

This work is an extension of the two-dimensional cases studied previously.
Finally, in Chapter 7 our conclusions are drawn, and suggestions for further work made.
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C h ap ter  2

D ucted  W aves in Coronal Loops: 

Curvature Effects

2.1 Introduction

Periodic and quasi-periodic oscillations commonly occur in the solar corona with time scales 

ranging from sub-second to many minutes. Reviews of the observations may be found in Aschwanden 

(1987) and Tsubaki (1988); see also Tables 1.5, 1.6 and 1.7. Various theoretical models have been 
proposed to explain these observations and these are reviewed in Aschwanden (1987).

It has been suggested that the detected coronal pulsations may be magnetoacoustic waves 
trapped in coronal loops (Roberts, Edwin and Benz 1983, 1984) or oscillations within coronal ar­
cades (Oliver, Ballester. Hood and Priest 1994; Oliver, Hood and Priest 1996). Theoretical models 
for studying magnetoacoustic wave propagation in coronal loops have focussed upon (for physical 

insight and mathematical simplicity) magnetic slabs or cylinders, ignoring the curvature of a loop. 
Whilst these models have been successful in explaining the time scales of the pulsations in the solar 
corona recent observations of X-ray emission, obtained by the Yohkoh satellite (Acton et al. 1992), 

have emphasised the complex, highly structured nature of the corona. The active region corona 

consists mainly of dense, curved loops, the transverse dimensions of which are much shorter than 
the longitudinal ones (Golub 1991). It is natural to believe the curvature of the loops will affect 
the propagation of the magnetoacoustic modes. It is the purpose of this chapter to investigate 

the efficiency of wave ducting in curved coronal loops and to investigate how curvature alters wave 

propagation in such structures.
The format of this chapter is as follows. In Section 2.2 we review the slab or cylinder ducted 

wave model of Roberts, Edwin and Benz (1983, 1984). In Section 2.3 a comprehensive review of 
the work undertaken in curved dielectric waveguides is presented and in Section 2.4 a review of 

the previous work on leaky waves in the solar atmosphere is conducted. Our model is described
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in Section 2.5 and the results for the kink and sausage modes are given in Sections 2.6 and 2.7 

respectively. Our results are discussed and physical explanations given in Section 2.8. Finally our 

results are summarised in Section 2.9.

2.2 D u cted  W ave M odel o f  R ob erts, Edw in and B enz (1983, 

1984)

In Chapter 1 we noted that periods of a few seconds are commonly reported in the solar 
corona. Considering a loop of length 2 x 10® km and a typical coronal Alfven speed of 2000 km s~^ 

gives a characteristic Alfven time scale of 100 seconds, which is two orders of magnitude greater than 
the reported time scales in certain observations. Roberts, Edwin and Benz (1983, 1984) suggested 

this puzzle may be resolved by considering magnetoacoustic wave propagation in a structured media. 
Their analysis showed that fast magnetoacoustic waves are trapped in regions of low Alfven speed, 

typically corresponding to regions of high plasma density. Therefore coronal loops, which typically 
have a density 3 to 10 times greater than the surrounding plasma (see Table 1.2) may act as 
waveguides. To illustrate this consider a coronal loop modelled as a  dense slab of width 2a with 

plasma density po, embedded in an environment of density pe (< po). The magnetic field is taken to 

be uniform and straight B =  Boê^, ignoring the effect of curvature (Figure 2.1). The cold plasma 
approximation is employed (plasma beta equal to zero). The linearised MHD equations lead to the 
governing wave equation for transverse oscillations v^èx'.

=  (2 .1)

where va (æ) is the Alfven speed within the medium and takes the value vao in the dense slab and 

VAe{> Vao) in the environment. Equation (2.1) describes fast magnetoacoustic modes; the slow 
mode is absent in the zero-/? approximation. We also take =  0 so the Alfven wave is removed 
and set d /dy  = Q. Assuming v^ takes the form

Vg; {x,z^t) = U {x)exp[i{wt — kgz)] , (2.2)

the partial differential equation (Equation 2.1) reduces to an ordinary differential equation for the 
amplitude function U (æ).

Here u  and kz are the frequency and longitudinal wavenumber respectively.
Inside the dense slab Equation (2.3) possesses a solution of the form,

U (æ) =  «ocosnoæ - f /?osinnoæ |æ| < a , (2.4)
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A e v4e

Figure 2.1: The equilibrium for the ducted wave model of Roberts, Edwin and Benz (1983). A slab 

of width 2a and plasma density po is embedded in a region of uniform density Pe{< Po). Regions of 
high density (low Alfven speed) act as waveguides.
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where Uq =  “  ^1' The arbitrary constants «o and /?o may be constrained by the boundary
conditions at æ =  0. The sausage mode describes waves which disturb the slab symmetrically about 

X = 0, so that U {x = 0) =  0; this corresponds to the case «o =  0 so that U (æ) =  /?osinnoæ for 
|æ| <  a. The k i n k  mode involves disturbing the axis of the slab and corresponds to the case /3q = 0 

and so U (x) =  «ocosnox for |x| <  a.

Outside the slab (|x[ > a) we assume that the velocity decreases exponentially to zero as 
|x| —> CO. Therefore

U (x) =  tte exp [—7Tie (x — a)] x > a , (2.5)

U {x) =  tte exp [mg (x +  a)] x < - a  , (2.6)

where m l — k^ — To satisfy the boundary condition at infinity we require m l > 0, i.e.

To obtain the dispersion relations we apply the condition that the velocity and the total 

pressure perturbation are continuous across the boundaries (x =  ± a). The resulting dispersion 
relations are given by

tanno« =  —  (2.7)
no

for the kink modes (dff/dx =  0 at x =  0 ) and

tannoa =  ——  (2.8)
me

for the sausage modes [U = 0 at x =  0). Roberts et al. (1983, 1984) note the similarity of these 
dispersion relations with those arising in seismology, oceanography and fibre optics.

A solution of these dispersion relations may be obtained only when vao < (i.e. when
the slab is denser than the surroundings) and then the phase speed co / k^  must lie in the range 

u>
Vao < 7T < '^Ae , (2.9)

since we must also have n^ >  0. We have assumed that and kz are positive. The dispersion curves 

for a density enhancement of po/pe = 5 are illustrated in Figure 2.2, with kink and sausage modes 

denoted by dashed and solid lines respectively.
The fundamental kink mode exists for all values of the wavenumber kz -  The period of 

oscillation of this mode in a slab of length L  may be estimated by setting kz =  rnr/L and taking 

w / k z  : ^ V A e ,  yielding 

2L
‘T'kink —  i ( 2 .1 0 )

nVAe

where (n — 1) is the number of nodes along the structure. This is the period of a kink standing wave 

in a slab. Taking L — 10  ̂ km and va& = 3000 km s~^ with n =  1 (since this is the easiest mode to 
excite) we obtain a period of about 60 seconds. This is in agreement with the recent observations 
of Rusin and Minorovjech (1991, 1994); see also Tables 1.5, 1.6 and 1.7.
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Figure 2.2: The dispersion curves for fast magnetoacoustic body waves in the slab model of Roberts, 
Edwin and Benz (1983). The density of the loop is five times that of the surrounding medium 

{po/Pe =  5). No slow body modes exist in this case since we have used the cold plasma approxi­

mation. The phase speeds (w/fe^) of the fast magnetoacoustic body modes lie between the interior 

( v a q )  and exterior (ü^e) Alfven speeds; equilibrium pressure balance in a zevo-/3 plasma requires 
that Pqv\ q =  Pe'^Ae' Sausage modes are shown as full curves, kink modes as dashed curves. The 
fundamental kink mode exists for all values of whereas the sausage mode exists only above a 
wavenumber threshold. Kink and sausage overtones exist only above wavenumber thresholds.
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On the other hand, the fundamental sausage mode only occurs above a wavenumber thresh­

old kg > 6^"*, where

=  f  ( ^ )  '  • (2 1 1 )

The period of oscillation at the onset of this mode, Tsaus, may be estimated by setting u:/kg =  VAe 
at kg = so that

1 - — y  . (2.12)
Vao \  PoJ

Considering typical coronal values of po/pe =  3, a =  1000 km and v a o  =  2 x 10^ km s“  ̂ a period 
of 1.6 seconds is obtained at the onset of the sausage mode. This compares well with observations 

by Aschwanden, Benz, Dennis and Gaizauskas (1993), Thomas, Neupert and Thompson (1986) and 
Desai et al. (1986) amongst others (see Tables 1.6 and 1.7). Roberts, Edwin and Benz (1983, 1984) 
argue that short period oscillations may be due to loops oscillating in the sausage mode. The short 
period oscillations in microwaves reported by Zhao, Jin, Fu and Li (1990) have been attributed 
to propagating waves in a coronal loop. Their results are in good agreement with the theory of 

impulsively generated waves proposed by Roberts et al. (1983, 1984); see Edwin (1984) for a full 
discussion of propagating waves. We return to impulsively generated waves in Chapter 4.

The main effect of relaxing the zero-;d assumption is to introduce slow body waves, absent 

when f3 = 0. Their phase speed lies between the sound speed and the tube speed of the slab. When 
P is small these two speeds are close together. To estimate the period of oscillation of a slow mode 
we may set tjo/kg % ĉ o and kg — utî/L  to give

2U
' ŝiow — ) (2.13)

ncso

where Cso is the sound speed in the coronal slab or loop. For L = 10  ̂ km, Cgo = 200 km s“  ̂ and 
n =  1 a period of 16.7 minutes is obtained. This is in reasonable agreement with the observations 

of Svestka et al. (1982, 1989) and Svestka (1994). These authors have suggested that the 20 minute 
periods may be due to slow mode oscillations of a coronal loop. Harrison (1987) reports periods 
of 24 ±  2 minutes over a 6 hour period using soft X-ray measurements and gives the loop length 
as 2 X 10® km. Using a reasonable value for c,o of 280 km s“  ̂ Equation (2.13) gives this observed 

period. These long period oscillations may be due to slow standing waves in a coronal loop.
We extend the model of Roberts, Edwin and Benz (1983, 1984) by considering the more 

realistic situation of ducted waves in curved loops, in a potential coronal arcade. To gain an insight 
into this problem we firstly review the work on wave propagation in curved waveguides. By analogy 

with the work on trapped waves in curved waveguides (see, for example, Gloge 1972) we gain an 
insight into magnetoacoustic wave propagation in curved coronal loops (see also Edwin 1984).
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2.3 P rev ious work on curved dielectric w aveguides

Wave propagation in curved waveguides has been extensively investigated (see, for example, 

Marcatili and Miller 1969; Marcatili 1969; Marcatili 1970; Gloge 1972; Snyder and Love 1983; Young 
1986). It is found that for dielectric waveguides leaky waves arise due to curvature and power is 
radiated away from the guide. If the radius of curvature is large (so the straight guide is a good 

approximation to the curved structure) losses due to the curvature are found to be negligible. As the 

radius of curvature decreases (so the effect of curvature increases) power is lost rapidly. The energy 
loss is reduced by increasing the ratio of the refractive index of the guide to that of the surrounding 
medium. This is equivalent to increasing the density enhancement between a coronal loop and its 
environment. Also wide guides are found to be more efficient ducts than narrow guides. Waveguides 

with smoother profiles of refractive index are less efficient and greater energy losses occur than for 
a step profile. Gloge (1972) and Olshansky (1979) showed that the energy loss in a parabolic profile 

is twice that of a slab. For smooth profiles part of the wave travels near the edge of the guide where 

the refractive index is close to the value in the surrounding medium. Wave guiding is therefore less 

efficient. Considering the propagation of light in optical waveguides Olshansky (1979) and Young 

(1986) find the radiation loss is dependent upon the mode of oscillation. For modes above a critical 
mode number all power is immediately lost. Lower order modes are represented by rays inclined 

with angles much greater than the critical angle (see Section 2.4.3). They correspond to rays that 
travel along the guide at near grazing incidence. These modes will not suffer significant energy loss 
unless the bend is sharp (Young 1986). However higher order modes (rays which are incident at 

angles near the critical angle) will invariably become lossy. Therefore higher harmonics suffer greater 

energy loss than lower order modes. Young (1986) also suggests that modes which have more power 

in the outer part of the waveguide will suffer greater loss than modes whose power lies along the axis 

of the guide. This suggests the sausage mode of a coronal structure will be guided less effectively 
than the kink mode.

Assuming a coronal loop is analogous to a waveguide, we expect the most efficient guiding 
of waves in a curved loop to occur under the following conditions:

• low order modes,

• high density enhancements,
• large radius of curvature,

• wide loops.
One effect of curvature is to reduce the angle of incidence. In Section 2.4.3 we shall see that 

a decrease in the angle of incidence results in an increased leakage. Figure 2.3 shows a ray incident 
at an angle 6i just before a bend in a waveguide. After traversing the bend the angle of incidence 
is less than 6j; the transmission of wave energy from the guide then increases.

When light is incident upon a curved surface the usual laws of geometrical optics break 
down. Rays that strike the curved interfaces are partly transmitted and partly reflected even if the
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Figure 2.3; A sketch showing how the angle of incidence $z decreases due to the effect of curvature. 
The dashed line represents the normal to the waveguide wall (modified from Young 1986).

angle of incidence exceeds the critical angle. W hat is the mechanism which causes this? Young 
(1986) suggests how energy loss may arise in a curved waveguide. The amplitude of the evanescent 

wave in the environment of the guide decreases with distance. The oscillatory wave within the guide 

propagates with a certain speed and the evanescent wave must keep pace with this propagating 
wave. As we move further away from the curved guide the evanescent wave’s speed must attain 
higher values, since it travels a longer distance in the same time. Eventually the speed of the 

evanescent wave will reach the velocity of light (equivalent to the exterior Alfven speed in the 

coronal loop case). At this point the evanescent wave becomes a propagating wave and therefore 

energy is radiated. Note that in a straight guide the oscillatory and evanescent waves propagate at 
the same speed.

We may estimate the energy loss in a coronal loop by analogy with the dielectric results 
of Gloge (1972). Following Edwin (1984) we consider a coronal loop with major radius R, uniform 
density po and Alfven speed vao embedded in an environment of density and Alfven speed vac 
(Figure 2.4). The stretching of the loop at the outside of the bend leads to a decrease of the 
wavenumber k^. The effective wavenumber is a function of x (the transverse distance into a loop’s 
exterior, measured from its axis). Therefore

1
kz (®) =  kz (0 )

l + H  ’
(2.14)
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Figure 2.4: A schematic sketch of the curved coronal loop (modified from Gloge 1972). A dense 
curved coronal loop (po) is embedded in an environment of density p^ (< po). By analogy with 
dielectric waveguides we may expect waves to leak from coronal loops.
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and as R  oo , kz (x) kz (0). For a straight loop velocities in the exterior of the loop decrease as

exp [-m e (0) (x -  a)] , (2.15)

where in the cold plasma approximation m l  (0) =  kl  (0) — For a curved loop, where the
wavenumber kz and 77ie are now æ-dependent, the exterior velocity decreases as

exp j:îne(o;)dæ (2.16)

Here m l  (æ) =  k^ (0) /  (1 + x / R Ÿ  — (w^/u^g). To make analytical progress we use the following 
approximate form of m l  (æ).

(2. IT)

obtained by using a binomial expansion. The validity of this approximation requires x R.
At a point where x ~  x r , m@ ( x r )  = 0. At this location the evanescent wave transforms 

into an oscillatory wave and energy passing through this point is radiated away. The resulting loss 
in energy is proportional to the square of the velocity. The constant of proportionality is given by 
Gloge (1972) as 2m^ (0) /kz  (0). The energy loss coefficient is therefore given by 

,m i( 0 ) r f ' .
a = 2

A;. (0 )
exp 1̂—2 J  me(æ)dæ (2.18)

Performing the integral in Equation (2.18) yields

a ~
6, ( 0) 6 ^ 0 ) exp

2R
36X0)

6 X 0 )

upon noting that me{xR) =  0. Now assuming 6^(0) a 
p = v\ ^ / v\ q =  po/pe^ Equation (2.19) reduces to

ocR =  2/2* 1 - 1
P

exp 1 R*

(2.19)

1 , a; % kz (O)u^o, and then writing

( 2 .20 )

where R* =  R/a .  The quantity a R  is the dimensionless energy loss coefficient.
To estimate oeR we use values from Table 1.4. Considering /2/a =  25 and p =  3 we obtain 

ocR = 0.0186. The effect of curvature is to introduce an energy loss from the guide. Figure 2.5a shows 
how the energy loss depends upon the radius of curvature for a typical density enhancement of 3 . 

For small R* leakage is important (a/2 10“ ^). As R* increases the energy loss rapidly decreases

and for R* = 100 we calculate a R  «  10” ^ .̂ Therefore guides with a small radius of curvature 
will be less efficient at guiding waves than waveguides with a large radius; as /2* —)■ oo, a R  -4 0. 
Figure 2.5b illustrates how the energy leakage depends upon the density enhancement for a fixed 

value of R* =  20. For low density enhancements leakage is considerable (when /> =  3, a R  «  0.1). As 

p increases the energy loss decreases and tends to a constant value for 1 of

=  2 / 2*exp - I - (2 .21 )
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Figure 2.5: The energy loss of a curved coronal loop determined using the waveguide approach of 
Gloge (1972). In (a) the energy loss is plotted as a function of dimensionless radius of curvature 

R* = R /a  for a density enhancement of p — po/pe =  3. Notice that a low radius of curvature is 
much more leaky than a high radius, (b) shows that loops with higher density enhancements are 
more efficient guides. In (b) we have used a fixed value of R* = 20.
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This simple estimate, derived from a waveguide approach, has shown that curvature may 
be an im portant effect under certain circumstances. We may expect highly curved loops with low 

density enhancements to be inefficient waveguides. Having seen that the effect of curvature in 

waveguides is to cause the waves to become leaky we review the previous work examining leaky 
waves in the solar atmosphere. This gives a vital insight into some of the parameters that affect the 
efficiency of wave ducting in coronal loops.

2.4  P rev ious work on leaky w aves in th e  so lar a tm osphere

Roberts et al. (1984) considered modes that were solely evanescent in the exterior of a loop. 

For such modes, in a zevo~P plasma, the effective transverse wavenumber for a wave of frequency 
w and longitudinal wavenumber kz is — {k\ —u P - , Modes that are evanescent in the 
environment of a tube (or slab) are such that uP < k1v\^, for which rrie is real and positive; no 

energy leakage from the structure occurs. It is possible also for disturbances to arise that leak into 

the environment; for such modes m l  is no longer positive. In this section we review the previous 
work that has been undertaken on leaky waves in the solar atmosphere. In Sections 2.4.1 and 2.4.2 
we comprehensively review the work on photospheric flux tubes and coronal loops respectively. The 

leaky waveguide model of Davila (1985) is reviewed in 2.4.3.

2.4.1 P hotospher ic F lux Tubes

The numerical simulations of the Huntsville Group (Xiao 1988; Huang 1995; Wu, Xiao, 

Musielak and Suess 1996) have investigated wave propagation in magnetic slabs and interfaces 
embedded in both field-free and magnetic environments. These works provide a quantitative investi­
gation into the efficiency of wave ducting. Results show that, under typical conditions, waves which 

propagate along magnetic structures interact effectively with the environment (i.e. leak energy) and 

generate acoustic or magnetoacoustic waves. The confinement of waves to the magnetic region was 

found to be more efficient for a high plasma beta. For /? =  1 , 30 % of the total energy leaks from 

the magnetic region to the surroundings. In addition wider slabs were found to be more effective 
waveguides than thinner slabs. The authors conclude that energy leakage is always present with up 
to 62 % of energy lost within 2 wave periods. Therefore for photospheric flux tubes the amount of 
energy that can be transferred from the photosphere to the chromosphere is reduced. Similar results 
were reported by Wilson (1981) who examined the leakage of waves from a magnetic tube embedded 
in a field-free region, through the introduction of complex frequency and wavenumber.

The recent investigation by Ziegler and Ulmschneider (1996) considered the efficiency of 

wave leakage from a cylindrical flux tube embedded in a field-free environment. For a tube with a 

plasma beta of 10, it was found that only 7 % of the initial energy leaks into the surrounding medium 
to create acoustic waves. Lower values of the plasma beta yield greater energy loss. For example
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with /3 = 0.1 only 57 % of the wave energy is contained within the flux tube. Thin flux tubes were 
found to be more leaky with up to 80 % of the wave energy leaking into the surrounding plasma. 

The results of this three-dimensional simulation were found to be in general agreement with the 
numerical simulations of wave propagation in magnetic slabs embedded in a field-free environment 

(see Xiao 1988; Huang 1995 and Wu et al. 1996). A comparison between the results of slab and 
cylindrical geometries suggests that energy leakage from a magnetic slab is greater than from a 

cylinder. Ziegler and Ulmschneider (1996) conclude that energy leakage is an important process, 
particularly in low-,d plasmas, and therefore should not be ignored.

2.4,2 Coronal Loops

A numerical investigation into magnetoacoustic wave propagation in coronal loops has 

been undertaken in a series of papers by Murawski and Roberts (1993a-d, 1994). Both standing 
and propagating, linear and non-linear waves were studied in smoothed slabs of enhanced plasma 
density, in the cold plasma approximation. The efficiency of wave ducting for different parameters 

was examined, the leakage arising through the smooth density profile and also the wave adjusting 

to the loop. Murawski and Roberts (1993a-d) found that the kink mode was more robust than 
the sausage mode; leakage is small for the asymmetric (kink) oscillations but much larger for the 
symmetrical (sausage) modes. More energy was lost for loops with smoother profiles of density, 

lower density enhancements and higher frequencies of oscillation. In addition wave guiding was 
found to be less efficient for narrow slabs and for modes which are more oscillatory across the loop. 
The non-linear studies undertaken revealed that small amplitude waves are better guided than large 
amplitude waves (Murawski and Roberts 1993c).

Considering standing sausage waves (within a loop modelled by a steep profile in plasma 
density) it was found that 60 % of the initial wave energy was lost from the loop for a density 

enhancement of 2. For a smoother density profile the energy loss increased up to 80 % within a few 

Alfven transit times. For impulsively generated kink waves half of the initial energy was lost for a 
plasma density enhancement of 5. Decreasing the enhancement to 2 results in a increased leakage 
of 75 %.

Further simulations by Murawski (1993) and Murawski and Roberts (1994) investigated 
the wave interaction between two slabs in close proximity (cross-talk). The energy leakage from 

one slab means that oscillations can enter the second slab and wave trapping can occur. In this 

case wave propagation is much more complicated. For periodic kink waves oscillating in both slabs 

there is negligible interaction due to the small leakage of this mode. However for a sausage and kink 
periodic mode in adjacent slabs the interaction is much stronger (due to the increased leakage of the 
sausage mode).

The efficiency of the guiding of sausage waves in a dense, cylindrical tube has been numer­
ically investigated by Berghmans, De Bruyne and Goossens (1996). For an impulsive event located
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outside the tube only 1 % of the energy of the disturbance was trapped. The coronal loop was 
unable to capture a significant amount of energy. By contrast, for an impulsive event inside the tube 

94 % of the wave energy is trapped for a comparatively low density enhancement of 4. This leakage 
is significantly smaller than found for the simulations undertaken for coronal slabs (Murawski and 
Roberts 1993a-d) and photospheric flux tubes (Xiao 1988; Haung 1995 and Wu et al. 1996). The 
discontinuity in density, the wide tube and the rigid wall boundary conditions may have affected the 

results. The case of a periodic driver at the base (photosphere) of the loop was also examined. To 

sustain symmetrical (sausage) oscillations the driving frequency must be greater than a threshold 
(see Roberts, Edwin and Benz 1983, 1984) otherwise considerable leakage results (Gaily 1986).

A comprehensive analytical investigation of non-leaky and leaky oscillations in magnetic 

flux tubes has been conducted by Gaily (1986). Modes of oscillation were found to possess a complex 
frequency. This corresponds to the wave amplitude decaying in time and radiating energy into the 
surrounding medium. In particular, for a coronal loop Gaily found that the body modes transform 
into leaky modes below the wavenumber cut-off since the phase speed is in excess of the exterior 

Alfven speed. Roberts, Edwin and Benz (1983, 1984) considered only real frequencies and therefore 
no leaky modes were found.

The investigation of the damping of magnetohydrodynamic waves in flux tubes has also 
been considered by Meerson, Sasorov and Stepanov (1978). The mechanism that generates the 
energy loss was the emission of plasma waves into the surrounding medium. In this model sustained 

oscillations may only occur when this emission is compensated through a resonance effect. The free 
modes of oscillation, later studied by Edwin and Roberts (1982, 1983) and Roberts, Edwin and Benz 
(1983, 1984), were ignored. Meerson et al. (1978) found complex frequencies, corresponding to wave 
energy being emitted by the tube.

Cadez and Okretic (1989) considered the propagation of surface waves along a magnetic 
slab. Results show the occurrence of surface wave leakage which causes the amplitude of the prop­
agating surface waves to decrease in time.

2.4.3 Leaky wave m ode l of D av ila  (1985)

Davila (1985) examined the reflection and transmission of MHD waves in both coronal 

holes and coronal loops. Applying well known results from geometrical optics, the reflection and 
transmission coefficients can be calculated. This approach provides an insight into some of the 
parameters which control the efficiency of wave ducting. We now repeat Davila's calculation.

Gonsider a plane wave, with eigenfunction W, incident from the left on a boundary at 
æ =  0 which separates two regions of differing density and Alfven speed. Regions 1 and 2 are 

characterised by densities pi and pz, with the Alfven speeds given by vai and va 2 respectively. The 
unperturbed magnetic field is given by B =  Boê^. See Figure 2.6. Taking the waves to have a 
temporal variation exp {iwt) we may write the incident and reflected wavefunctions as (suppressing
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Z /T \

'^Af P i

Figure 2,6: A sketch of a wave incident upon a boundary separating two regions of differing density 

and Alfven speed in a uniform field. Part of the incident wave is transm itted whilst the remaining 
wave is reflected.

the common temporal term)

'^i — A  exp [iki {z sin Qj +  x cos ̂ /)]

and

=  i?exp [ikj {z sin dj ~  x cos dj)]

(2 .22)

(2.23)

respectively. The angle of reflection equals the angle of incidence (Snell’s Law). Here A  is the 
amplitude of the wave and R  is the reflection coefficient. The angle of incidence to the normal is 9j 
and the wavenumber in region 1 is kj.  The wavefunction of the transm itted wave is given by

'^T =  T  exp [ikT (z sin +  x cos ^y)] , (2.24)

where T  is the transmission coefficient, fcy is the wavenumber in region 2 and <f)T is the angle of 
the transm itted wave. This transmitted wave corresponds to a leaky wave whilst the reflected wave 
denotes a trapped (ducted) mode. To obtain the reflected and transmitted coefficients we impose
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that the velocity and total pressure must be continuous across the boundary at æ =  0 ,

+  ^'R = , (2.25)

Substituting Equations (2.22)-(2.24) into Equation (2.25) gives

A-h R  = T  exp (iz [fey sin — kj  sin $j]) . (2.27)

On the left-hand side of Equation (2.27) there is no ^-dependence which means that we must have

kT sin (f)T — kj sin 9i; Snell’s Law from optics. Therefore from Equation (2.27) we have A + R  = T.
Now on setting w =  kjVAi and w =  kTVA2 we obtain the relations 

kT _  va\ _  sin 91

T i ~  “ ■ (2.28)va2 V sin
On substituting Equations (2.22)-(2.24) into Equation (2.26) and using the fact that A -f 72 =  T  we 
obtain

kl  cos 91  A-\- R
kT cos <j)T A  — R '

Now inserting Equation (2.28) into (2.29) gives

R
A

^  cos 9j — cos (^T

^  C O S  9j -f cos ^TP2

(2.29)

(2.30)

Eliminating the angle <f>T in Equation (2.30) by using the fact that cos (pT = [l — (pi/pz) sin^ 
the reflected energy R ^ ^  (=  R"^fA^) is then given by (Davila 1985)

1 -, 2
cos 9i — — sin^ 9j^

cos 9[ 4- — sin^ 9jj
(2.31)

and the transmitted energy is given by T ^ ^  =  1 — R ^ ^ . Note that in our calculation the “sin” 

and “cos” functions are interchanged with Davila’s result; this arises from Davila’s definition of the 
incident angle as 7t / 2  —0/. There are two cases to consider. Firstly we examine a coronal loop where 
we take pi > p2 and secondly we model a coronal hole by taking pi < p2 -

Corona l Loop: p\ > p2

Figure 2.7a shows the reflected intensity R ^ ^  plotted against the angle of incidence Oj for 
various values of the density enhancement (pi/ps) of the loop. For incident angles above a critical 
value 9c, where 9c is given by

Pi n 2
(2.32)
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the reflection coefficient is equal to one = l) and no wave is transm itted =  O); this
represents the fully guided modes of a coronal loop. When 6j <  9c the wave is only partially reflected, 

the remaining wave energy being transmitted. The mode has become leaky. As 9j decreases the 
reflection coefficient decreases rapidly, reaching a minimum value of

2

p E N
^min (2.33)

at 9j =  0. From Equation (2.33) we see that for high density enhancements (i.e. large p \jp i)  the 
minimum value for the reflected energy attains greater values. Thus coronal loops with high density 

enhancements are more efficient in guiding the wave energy than loops with lower density enhance­

ments. As the density of the loop and the exterior become equal [p\ -> P2) reflection only occurs for 
grazing incidence; otherwise for smaller angles all energy is lost from the loop. To summarise, greater 
losses are expected to occur at smaller angles of incidence. There is no transm itted wave above a 

critical angle. In addition we may also expect low order modes to suffer less energy loss than higher 
modes. Lower order modes have larger angles of incidence. That is, they correspond to rays that 
travel along the guide at nearly grazing incidence and, from Figure 2.7a, energy losses will be small. 
On the other hand higher order modes have small incident angles and they will be less effectively 
guided. Therefore higher harmonics (shorter periods) will be selectively lost from waveguides whilst 

lower order modes are able to propagate more efficiently. High density enhancements are expected 
to be more effective guides than low density enhancements.

Coronal Hole: p\ < p2

For Pi < p2 the situation resembles a wave propagating in a coronal hole. The reflected 
energy R ^ ^  as a function of the angle of incidence 9i is shown in Figure 2.7b. As the angle of 
incidence approaches 7t / 2  all wave energy is reflected. Thus a coronal hole may guide waves which 

propagate at grazing angles of incidence. However for a coronal hole it is not possible to obtain total 
reflection, as within a coronal loop. The maximum transmission occurs for waves which impinge 

the boundary head on. As the angle of incidence increases the reflected energy rises (Figure 2.7b). 

A coronal hole will therefore act as a leaky waveguide. Part of the wave energy will be guided 
whilst the remaining energy is lost to the surrounding plasma. The numerical treatment of wave 
propagation in a coronal hole was investigated by Ofman and Davila (1995). A significant proportion 
of the fast wave energy was found to leak out of the coronal hole. When the fast wave interacts 
with the boundary the waves undergo partial reflection, the remaining wave energy being lost to the 
surrounding medium. The results were found to be in good agreement with the analytical treatment 
of Davila (1985).

In this section we have reviewed the work reported on leaky waves in the solar atmosphere. 
We now study the leakage from loops arising from the curved geometry of an arcade.
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Figure 2.7: The reflected power for (a) a coronal loop and (b) a coronal hole. The numbers 
next to each curve denote the ratio p i/p 2 - For case (a) total reflection [ R ^ ^  =  l)  can occur above 
a critical angle dc. For (b) no total reflection occurs. A coronal hole acts as a leaky waveguide.
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2.5 W ave P rop agation  in an A rcade

Having seen that the effect of curvature in dielectric waveguides is to lead to waves which 

radiate energy away from the guide, we now turn our attention to coronal loops. We investigate 
how the leakage depends upon the parameters identified in the waveguide work.

2.5.1 T he W ave Equation

We consider a two-dimensional (x, z)  coronal arcade, which is invariant in the ^-direction 
{d/dy  =  0 ), modelled as a potential magnetic field satisfying

V X B =  0 . (2.34)

In using Equation (2.34) we have neglected the plasma pressure and gravity. In the solar 

corona the sound speed is typically an order of magnitude smaller than the Alfven speed. The 
plasma beta is proportional to the squares of these speeds and is therefore much less than one 
(see Table 1.4). The corona is thus magnetically dominated and it is a reasonable approximation 
to neglect the plasma pressure term. The magnetic structures that we consider are much smaller 

than A /^ ,  where A and are the pressure scale height and the plasma beta respectively. We may 
therefore neglect gravity. This makes the problem more tractable.

From the solenoidal constraint V ■ B =  0 the equilibrium magnetic field B can be written

as

B = V A ( x , z ) x é y : ^ ( - ^ , 0 , ^ ^  , (2.35)

where the magnetic flux function A{ x , z )  satisfies = 0. The solution for A  is obtained by 

separation of variables, with the condition that A  is zero at infinite height and the ^-component of 

the magnetic field is zero at the centre of the arcade. In this configuration the field lines are aligned 
with the z-axis at æ =  ±T, with 2L being the width of the arcade. The flux function A{x , z ) ,  which 
is constant along a field line, is given by

A {x, z) =  BqAb c o s  exp , (2.36)

where B q is the magnetic field strength at the base {z ~  0) of the corona and Ab  =  2 L /7t is the 
magnetic scale height. The field components are

B .  = B „ c o s ( ^ ) e x p ( - ^ )

B , = - B < , s i n ( ^ ) e x p ( - ^ )  .

The field strength B =  |B | =  Bo exp (—z/A g). The form of the potential coronal arcade is shown 

in Figure 2.8.
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Figure 2.8: The form of the potential arcade in Cartesian coordinates (æ, z). The arcade is physically 
isolated from its surroundings by vertical planes located at æ =  ±L.
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Magnetic
Surface
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Field Line

Figure 2.9: The coordinate system used in our model. Vectors ên, êj_ and ê|| are unit vectors in the 
directions normal, perpendicular and parallel to the magnetic field respectively. The ^/-direction is 
invariant.

Consider the linearised equations of magnetohydrodynamics assuming tha t the plasma-/? 

is zero (cold plasma) and gravity is negligible. The wave equation for plasma motions v  is

/’O { V X [V X (v X B)]} X B , (2.38)dt^ liQ
where po (æ, z) is the equilibrium plasma density. Equation (2.38) governs the velocity perturbations 

of fast and Alfven modes. In the zero-/? approximation (the corona is magnetically dominated) there 
are no motions along the equilibrium magnetic field B because the only driving force is the j  x B 
force, and the slow mode is absent because we have set the plasma pressure to zero. We ignore the 

Alfven mode by setting Vy = By = 0 so only Vn, the velocity component normal to B, remains. 

Then, for motions of frequency u>, the wave equation (Equation 2.38) reduces to

—pow^v =  — (v • VA) VA , 
fJ’O

(2.39)

where we have used Equation (2.35). Following Oliver et al. (1993) we consider a local orthogonal 
coordinate system defined by

VA  ̂  ̂ ^
" -  IB I|VA| ’ “  |B f ’

where ên, êj_ and ê|j are unit vectors in the directions normal, perpendicular and parallel to the 
magnetic field respectively. The coordinate system is illustrated in Figure 2.9. Thus the normal 
component of Equation (2.39), which governs the propagation of fast magnetoacoustic waves, is 

given by
d 2

-POŴ V • VA =  — V^ (v . VA) 
1̂ 0

(2.41)
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Introducing the Alfven speed va (æ, z) through =  B^/popo,  Equation (2.41) becomes

(v • VA) +  ^  (v • VA) =  0 . (2.42)
VA

Now Vn =  V • ên, and from Equation (2.40) we obtain

and so Equation (2.42) reduces to

V^ (Bvfi) 4— ~  ^ • (2.44)

This equation governs the propagation of fast magnetoacoustic waves in our potential arcade. We 
note tha t the parallel component of Equation (2.39) yields —pu^v  B =  0, showing the absence of 
a slow mode in the low-/? approximation.

Since we are neglecting the pressure and gravity terms in the momentum equation we are 

able to choose the density or Alfven speed profiles arbitrarily. From the analytical work of Roberts et 

al. (1983, 1984) it is known tha t ducted waves occur in regions of low Alfven speed (high density). A 

loop is thus modelled as a region contained between two field lines in which a depression in the Alfven 
speed occurs. However special care must be taken when defining va- Oliver et al. (1993) investigated 
the normal modes of oscillation of the present magnetic structure for a variety of density profiles and 

found tha t whenever the Alfven speed decreases or remains constant with height the solutions for 

Vn diverge as z — oo. We find this property undesirable because it makes the interpretation of the 
results difficult. To avoid this feature we choose a profile in Alfven speed v a  { x , z )  tha t exponentially 
increases with height z both inside and outside the coronal loop; specifically we take

(2.45)
y VAe exp > otherwise .

Here A \  and Ag (< Ai) are chosen constant values of the flux function; ti^o denotes the Alfven 

speed a t the base {z =  0) of a loop within the arcade and VAe is the Alfven speed of the surrounding 
medium at the base of the loop.

We introduce the parameter p =  which gives the density enhancement of the loop

compared to the surrounding plasma; p must be greater than unity in order to have ducted waves 

in the loop. The Alfven speed profile for p =  9 is shown in Figure 2.10. Outside the dense loop the 
Alfven speed increases exponentially to ensure a rapidly decreasing velocity for waves outside the 
loop (Oliver et al. 1993). W ith this profile any increase in velocity outside the loop must originate 
from the loop and thus is considered a signature of leaky waves.

2.5,2 N um er ical Code and B oundary C onditions

Due to the complexity of the problem the governing wave equation has been solved numer­
ically. The numerical code we employ was developed by Oliver, Hood and Priest (1996) to solve the
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Figure 2.10: The Alfven speed profile va (æ =  0,z)  for p — v\ ^ / v\ q =  9. The dense loop (corre­

sponding to a depression in Alfven speed) is situated between z jL  ~  0.5 and z jL  =  0.7.

fast and slow mode equations in a two-dimensional equilibrium with no gravity (Appendix C ). Oliver 
et al. (1996) cast these equations as two coupled partial differential equations with non-constant co­
efficients in which the velocity components normal and parallel to the equilibrium magnetic field 

(vn and t;j|) are the unknowns. The equations were discretised using a finite difference scheme and 

the resulting algebraic eigenvalue problem was solved by inverse vector iteration, yielding individual 
eigenvalues together with v„ on a rectangular grid of points. The eigenvalue is the dimen­

sionless frequency squared: =  (wX/dao)^- The eigenvalue takes only real values, so any energy
leakage observed is attributable to the magnetic geometry. In all our numerical computations we 

use 60 X 60 points in our simulation region.

The code provides the capability to modify the coordinate system using a pair of gen­
eralised coordinates. For example these coordinates can be the Cartesian coordinates (z, z) with 
— 1 < æ/X < 1 and Q < z jL  < H . The main drawback of this coordinate system is tha t it is not 
possible to consider the full height of the arcade, although one suspects tha t ducted modes, with 

exponentially decreasing velocity amplitudes outside the loop, will be obtained with good precision 
using a reasonable value of H. However in order to investigate the effects of curvature it is conve­
nient to use a flux coordinate system covering the whole arcade (Oliver et al. 1996). In the (%, ^)
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Figure 2.11: A potential coronal arcade in flux coordinates Field lines are horizontal, given

by V* =  constant. The photosphere is modelled by % =  —1 (z < 0) and % — 1 (æ > 0). All field lines 
have length 2 .

coordinates the curved loop becomes horizontal. The flux coordinates are given by 

X =  (1 -  f  sin exp ,
(2.46)

with 0 < *0 < 1 and —1 < % < 1. Note tha t 0  is proportional to the flux function A. The 
potential arcade illustrated in Figure 2.8 in Cartesian coordinates is shown again in Figure 2.11 in 
flux coordinates. Field lines are now horizontal, given by 0  =  constant. The field lines in the (%, 0) 

system all have a length of 2 , which is achieved through the normalisation factor ( l  — 0 ^) in 
Equation (2.46).

The line 0  =  0 is the field line in the {x,z) system tha t originates at (—L,0), extending 
up to infinity, and terminating at (T,0). The photosphere is modelled by % =  —1 (æ < 0) and 

X =  1 (æ > 0). The line 0  =  1 is the point æ =  z =  0. We have assumed tha t the velocity v vanishes 
at the coronal base z =  0 (x =  dbl and 0  =  1), modelling the line-tying boundary condition at the 
photosphere (see, for example. Van der Linden, Hood and Goedbloed 1994). The arcade under 
consideration is taken to be isolated in the sense tha t no plasma traverses the boundaries at z =  ±L  

(0 =  0). The trapped waves are unaffected by the boundary condition imposed at 0  =  0 . However 
the behaviour of the leaky waves is influenced by the rigid wall. Taking the velocity to be zero 
at means any leaky waves are contained within the arcade. Leaky waves will therefore oscillate 
in a similar manner to the modes studied by Oliver et al. (1993). Of course in practice, no rigid 

walls exist a t the edges of the arcade. Therefore we may expect these waves to propagate away 
from the loop and possibly to be observable at large heights in the corona. In the optical waveguide 
context Snyder and Love (1983) suggest tha t a varying degree of leakage along a waveguide results
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in a similar spatial variation of velocity perpendicular to the guide (at a fixed location along the 
waveguide).

To examine the effects of curvature we focus attention on different loops within our arcade. 
These loops have different lengths and hence the effect of curvature in each loop is different. For 
“long” loops the length is much greater than the horizontal distance between the footpoints, whereas 

for “short” loops the length of the loop is comparable to the distance between the footpoints. 

Curvature effects are expected to be more important in short loops. Taking L = 1.5 x 10® km 
gives the distance between the footpoints of the loops considered to be of the order 2 x 10® km. In 
addition, we take v ^ o  = 1.5 X 10® km s~^ in order to estimate periods of oscillation.

Before investigating the propagation of magnetoacoustic waves in curved coronal loops it is 

of great importance to examine the accuracy of the code. In the next section we test the numerical 
code by comparing the numerical results of some simple physical problems with known analytical 
or numerical solutions.

2*5.3 Checks on th e num erical code

Extensive checks on the accuracy of the code have been made, including a comparison with 
the analytical work of Roberts et al. (1983, 1984) for a straight slab. Excellent agreement has 

been found. Here we show some examples of the checks undertaken which illustrate the excellent 
performance of the code.

U niform  field, constant density

The simplest equilibrium we can consider is tha t of a uniform magnetic field (B =  Hoêg) 
with constant density (Figure 2.12). We take the plasma beta equal to zero and neglect grav­
ity. The equation governing the perturbations of the fast magnetoacoustic waves is then simply 
d^Vxfdt^ — where vao is the constant Alfven speed. This simple model may be thought
of as a coronal arcade with length L  and height H.  We impose tha t the fast mode velocity is 
zero on all four sides of the arcade. Since we have neglected curvature the coronal base is located at 

z =  0 and z = H . Such an equilibrium is equivalent to standing waves in an elastic membrane with 
fixed boundaries (Oliver et al. 1993). The plasma is equivalent to the mass of the membrane whilst 
the elasticity is given by the magnetic field lines. The frequency of oscillation is given by (see, for 

example, Rayleigh 1945; see also Roberts 1991b),

= ” ^0 [(% )  + ( ^ )  ] '

where n® and are integers describing the mode of oscillation in the x and z-directions respectively.

To check the accuracy of the code we take H  = L and 60 grid points in each spatial 
direction. The comparison between the analytical and numerical results is illustrated in Figure 2.13. 
We have varied between 1 and 10, whilst fixing n̂ , to be 1 or 3. The agreement between the
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0
0 X

Figure 2.12: The simple equilibrium used to check the accuracy of the code. A uniform field with 

constant density is used with a plasma beta of zero. The fast mode velocity is zero on all four 
boundaries. The arcade has length L and height H.

analytical and numerical results is excellent. For low the numerical and analytical results are 
indistinguishable. As increases the numerical results are slightly less accurate. Increasing the 
number of grid points for higher order modes improves the accuracy.

This simple model has shown tha t the numerical code is accurate. We now continue our 

investigation into the accuracy of the code by considering a more complicated equilibrium.

Un iform  field, tw o-d im ensiona l density  profile

A further check on the numerical code is conducted by considering a uniform magnetic field 

(B =  Boêz) and a two-dimensional Alfven speed profile given by

Va (x, z ) = X  (z) Z  (z) , (2.48)

where
X

X  {x) =  1 -
XqL 3/0 — 1.3 , (2.49)
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Figure 2.13: A comparison of the numerical and analytical frequencies in a uniform field with 
constant density. We have fixed nx and varied . The analytical and numerical frequencies are in 
excellent agreement.
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and

^ [3 -  cos (7 t|-)]  , (2.50)

with 0 < x / L  < 1 and —l < z / L < l ,  where L  is the width of the cavity. The fast mode velocity is 
taken to be zero on all four boundaries.

The problem of finding the fast mode eigenfrequencies has recently been considered by 
Wright and Rickard (1996, private communication) using a different numerical scheme. Wright and 

Rickard's code excites all the modes of a cavity which lie within the frequency range of a broadband 
driver. The eigenfrequencies may be found by obtaining a temporal signature of the fast mode 
velocity in the cavity and then Fourier transforming. Figure 2.14 illustrates the eigenfrequencies 
calculated by Wright and Rickard; cases (a) and (b) illustrate the symmetric and asymmetric modes 

respectively. In Figure 2.14c our calculated eigenfrequencies for the lowest 10 modes of oscillation 
are shown, where we have used 60 grid points in each direction. A comparison of the frequencies 
determined by the two codes shows an excellent agreement. This shows the code we employ in our 
work is able to calculate frequencies to a high precision in a two-dimensional density profile. This is 

an im portant requirement for our simulations.

Com parison w ith  th e slab ducted  wave m odel

Since our work is concerned with trapped waves in curved coronal loops it is of critical 
importance tha t the code is able to reproduce the results for the simple slab (Roberts, Edwin and 

Benz 1983); see also Section 2.2. We consider a uniform magnetic field (B =  SqCz) in a computa­

tional domain 0 < x / L  < I and 0 < z / L  < 1, where L is the length of the loop. We take the plasma 
beta to be zero. The density and Alfven speed in the region outside the loop (æ > a) are taken to 

be pe. and vac respectively. In the region 0 < æ < a we take the plasma density and Alfven speed 

to be po (> Pe) and (< Â@) respectively. Here a is the half width of the loop. The fast mode 
velocity Vj; is taken to be zero on all boundaries, except along the line æ =  0 where we set either 
Va; or dua;/dæ equal to zero depending upon whether we are interested in sausage or kink modes. 
In all calculations we use 100 x 100 grid points. It is important to note tha t since L  is finite the 
wavenumber along the loop kz may attain discrete values only: kg =  mt/L^  n =  1 , 2 , . . .  .

We firstly examine the principal (n = 1) kink mode with a density enhancement of 9. To 

check the accuracy we consider a ratio of the length to the half-width of the loop of L /a  = 50. A 
comparison between the numerical results and the exact solution of the dispersion relation (Equa­
tion 2.7) is shown in Figure 2.15. The agreement between the two approaches is excellent. Roberts 

et al. (1983) show tha t the principal kink mode occurs for all values of the wavenumber kz. This 
has also been found numerically; no wavenumber threshold exists for the kink mode.

We now consider the sausage mode with a/L  ~  0.06 and a density enhancement of 9. From 
the analytical work of Roberts et al. (1983) the sausage mode only occurs above a wavenumber
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Figure 2.14: A comparison of the results obtained from the numerical code used in our calculations 

and those from Wright and Rickard’s (1996, private communication) code, (a) shows the frequencies 
obtained by Wright and Rickard for symmetric modes and (b) is for asymmetric modes. The 
frequencies are in dimensionless units; ojL / v a q . Symmetric and asymmetric modes are defined by 

an anti-node and node along z = 0 respectively, (c) The table shows the frequencies obtained by 
our code. The frequencies obtained by the two codes are in very good agreement.
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threshold given by Equation (2.11). In this case we require k^a > 0.555, with kg = mrjL;  this 
means tha t the first ducted mode occurs a t n =  3 (n must be an integer). The analytical and 

numerical results are compared in Figure 2.15.
Once again our numerical results are in accordance with the exact solution of the dispersion 

relation. In addition the code has been able to locate the wavenumber threshold to high precision. 
The results are less accurate as kg increases, but it has been found tha t increasing the number of 

grid points results in an improvement in accuracy. We are therefore confident tha t the numerical 
code is able to solve the simple slab model to high precision.

Finally we investigate the accuracy of the code for a curved magnetic field.

P oten tia l curved arcade w ith  constant A lfven speed

We now compare the results obtained from the numerical code with the analytical results 

of Oliver, Ballester, Hood and Priest (1993), who considered the fast magnetoacoustic modes of a 
curved magnetic field. The magnetic field is given by Equation (2.37) and is illustrated in Figure 2.8. 
We take the fast mode velocity to be zero on all four boundaries. The height of the arcade is taken 
to be equal to its length: H = L. Oliver et al. (1993) show tha t for the case of constant Alfven 

speed the eigenfrequencies are given by Equation (2.47); the frequencies in the curved and horizontal 

field geometries are the same. We use 60 grid points in each spatial direction. We fix n̂ ; to be 1 

or 4 and vary Ug between 1 and 10. The numerical results are shown in Figure 2.16 along with the 
analytical results. Once again the agreement between analytical theory and numerical results using 
our code is excellent.

Sum m ary

To summarise, the main features of the analytical results of the ducted wave slab model 

of Roberts et al. (1993, 1994) have been confirmed by the code. The code has also been checked 

against other analytical results for different equilibria and excellent agreement has been found in all 
cases. Therefore we are confident tha t the code can accurately solve the problem of ducted waves 
in curved loops.

We now present our results for magnetoacoustic wave propagation in curved coronal loops. 
We begin our investigation by examining the kink mode in Section 2.6, proceeding to the sausage 

mode in Section 2.7.

2.6 T he K ink M ode

Equation (2.44) is solved for various lengths, densities and widths of loops. Ducted modes 
can be of kink or sausage type. Kink modes produce oscillations of the loop about its central
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Figure 2.15; A comparison between the results obtained from the numerical code (+) and those 
obtained from solving the dispersion relations (Equations 2.7 and 2.8) exactly (solid line) for the 

ducted wave model of Roberts, Edwin and Benz (1983). A density enhancement of 9 has been 
used. The top and bottom figures illustrate the results for the kink and sausage modes respectively, 
showing excellent agreement between the code and the dispersion relations.
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Figure 2.16; A comparison of the numerical and analytical results for a curved potential coronal 
arcade. The mode number varies between 1 and 10, with fixed to be 1 or 4. Once again the 
analytical and numerical results are in good agreement.
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axis, while the sausage modes give rise to loop motions resembling “heart beats” with the plasma 
alternately moving away and towards the loop axis; see Figure 2.17.

In the following, the results will be presented as contour plots of Vn{x^'4’) in the flux 
coordinate system. The signature of a mode ducted by the loop will then be a normal velocity 

component tha t is maximum in the loop region and decays rapidly to zero outside the loop. Wave 
leakage from the loop is shown by large oscillatory amplitudes, comparable to the velocity within 

the loop, occurring outside the loop.

2.6.1 Effect o f Frequency

We start by looking a t how wave leakage is influenced by the mode frequency. As with the 

finite slab or cylinder (Roberts et al, 1983, 1984) the line-tied loop has discrete modes because not 
all values of the wavelength along the loop are allowed. Kink modes present two types of geometry, 
either even or odd about the loop summit, characterised by a maximum or vanishing Vn at the 
top of the loop. When ordered by increasing frequency kink modes are alternately even and odd, 

the fundamental mode being even, the first harmonic odd, and so on. The geometry of the kink 
mode is of importance in the ducting of perturbations. To show this we select a loop with conditions 

appropriate for leakage: a short loop with a moderate density enhancement [p = 5). Such conditions 
tend to reduce the ducting of the fast mode.

The velocity of odd modes (zero velocity at the summit of the loop), shown in Fig­
ures 2.18b and 2.18d, displays high values inside the loop with a rapid decrease in the surrounding 

corona, similar to tha t found in the slab geometry. The wave energy is thus clearly ducted by the 
high density loop. The results for the even modes (derivative of velocity zero at the top of the 
loop) are significantly different. Figures 2.18a and 2.18c show high velocity amplitudes in the loop, 

although a dramatic increase in velocity outside the loop indicates the large leakage associated with 

these modes. In particular for the second harmonic (Figure 2.18c) we see the wave is clearly ducted 
a t (±0.5,0.4) whilst the velocity at (0,0) has leaked from the loop. These results are repeated for 

higher harmonics although odd modes become more leaky at higher frequencies. Ultimately for 

very high frequencies the ducted mode is destroyed. The modes described above correspond to the 
principal kink mode, i.e. with no change in the sign of Vn across the loop. Overtones of this mode 
have not been considered as they possess very high frequencies and are therefore less likely to be 

excited.

2.6.2 Length of Loop

To examine the effect of the length of the loop on the trapping of waves by a density 

enhancement we consider p = A and the third harmonic. Such a small density enhancement makes 
the loop a poor waveguide for the kink mode, as can be appreciated from Figure 2.19a in which 
a short loop has been considered. In Figure 2.19a we see wave ducting occurring at (±0.7,0.55),
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Figure 2.17: Schematic diagram of the fast mode velocity field associated with a kink mode (top 
panel) and a sausage mode (bottom panel) in curved geometry. The spatial distribution of the 
velocity needs to be multiplied by a term of the form coswt to obtain the full temporal evolution. 

Kink modes give rise to lateral displacements of the loop about its central axis, while sausage modes 
are characterised by leaving the loop’s axis undisturbed and producing converging and diverging 
plasma motions about the axis.
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Figure 2.18: Kink mode — The effect of the frequency of oscillation for a short loop, given by 

0.36 < tp < 0.46, with a moderate density enhancement (p =  5). Frequencies are measured in units 

of vao/L\  uid = ujLfvAo- The motions (in arbitrary units) in the flux coordinate system are 
displayed as contour plots for the four lowest frequency modes, with (a) ojd = 6 .9 9  the lowest 
frequency mode, (b) cod = 9.82 is the first harmonic (c) wj =  11.29 is the second harmonic and (d) 

ujd =  14.88 the third harmonic. The thin solid and dashed lines show contours of constant positive 

and negative velocity respectively. The two thick horizontal lines show the position of the dense 
loop. Note the odd modes (cases (b) and (d)) are efficient waveguides with centred in the loop. 

The even modes (cases (a) and (c)) show increasing velocity outside the loop suggesting leakage. In 

(c) we see the wave is trapped at (±0.5, 0.4) whilst the velocity peak at (0,0) has leaked from the 
loop. Even modes are more leaky than odd modes. Estimated periods T  (=  2Trfui) of oscillation are 
given above each figure, taking L = 1.5 x 10  ̂ km and vao =  1-5 x 10  ̂ km s“ .̂
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whilst the two central peaks at (±0.25,0.1) have clearly leaked from the dense loop. However for a 
long loop (Figure 2.19b) the mode is ducted. A clear peak in Vn exists within the loop, flanked by 

two regions of strong velocity decrease suggesting leakage is minimal. These results show tha t long 
loops are a more efficient wave trap than short loops.

2.6 .3  D en sity  o f Loop

We now examine the effect of changing the plasma density ratio on wave leakage. We 
consider the third harmonic in a short loop for which curvature effects should be most pronounced. 

The results are illustrated in Figure 2.20. For a density enhancement of p =  5 (Figure 2.20a) the 
mode can be considered to be effectively ducted by the loop, with a clear peak in Vn in the loop and 

an evanescent velocity outside. Decreasing the plasma density ratio to 4.25 (Figure 2.20b) shows the 

two velocity peaks located at (±0.5,0.3) have leaked from the loop and the leakage is much larger 
than in Figure 2.20a. Decreasing the density enhancement further to 4.09 (Figure 2.20c) shows the 
two central velocity peaks in the loop becoming leaky. Indeed for p =  4.05 (Figure 2.20d) we see 

only a small velocity in the loop with a much larger leakage velocity outside. In fact decreasing the 
density ratio further (not shown) results in the destruction of the mode. These results show tha t 

leakage is more significant for low density enhancements (weak slabs) and decreases for high plasma 
density ratios (strong slabs).

As one can see from the results described in Section 2.6.1 the first and third harmonics 
are more strongly guided than the second harmonic. The fundamental mode is more leaky than the 

second harmonic and longer loops or higher densities are needed to achieve efficient guiding of the 
oscillations.

2.6 .4  W id th  of Loop

To finish our study of the kink mode we look at how the width of the loop changes the nature 
of the ducted wave. We consider a loop and fix its lower field line (the solid line in Figure 2.21a) but 

vary the upper field line (to one of the dashed lines in Figure 2.21a). Again, adverse conditions for 

the guiding of waves are considered. Results are obtained for a density enhancement of 6 and the 
second harmonic. For the narrowest loop (Figure 2.21b) a ducted wave is observed at (±0.5,0.4) 
although leakage is large, especially the central peak. Increasing the width (Figure 2.21b) shows 
the velocity in the loop is much more pronounced although the central velocity peak is still very 
leaky. However for the widest loop wave ducting is much more efficient with higher velocities inside 
the loop region, including the central peak, although leakage is still observed. Increasing the width 
(Figures 2.21c,d), results in a decrease in leakage. Therefore wide coronal loops are more effective 
wave traps than narrow ones.
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Figure 2.19: Kink mode — The effect of the length of the loop for a density enhancement p = A. 
A flux coordinate contour plot of the normal velocity component Vn for the third harmonic and in 

(a) a short loop given by 0.49 < tp < 0.62 with frequency Wj =  15.31, (b) a long loop given by
0.30 < Ip < 0.39 with u>d =  11.15. The ratio of the total length of the loop to the distance between 
its footpoints is 1.22 in (a) and 1.42 in (b). The longer the loop, the smaller the effect of curvature 

and the more efficient the wave trapping. Periods of oscillation T  for the two cases are given above 
the figures.
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Figure 2.20: Kink mode — The effect of changing the density enhancement of the loop
0.49 < Ip < 0.62 for the third harmonic. Contour plots of Vn are shown for (a) p = 5.0, uJd = 15.76, 

(b) p = 4.25, tjOd = 15.35, (c) p = 4.09, uJd =  15.37 and (d) p = 4.05, u>d — 15.37. Weak slabs with 
low plasma density (cases (b), (c) and (d)) are much more leaky than strong, high plasma density 
slabs (case (a)). Periods of oscillation are given above each figure.



CHAPTER 2. DUCTED WAVES IN CORONAL LOOPS: CURVATURE EFFECTS 76

T=38s
(a)

0.8

0.6_j

0.4

0.2

0.0
1.0 -0 .5  0.0 0.5 1.0

(b)

0.8

0.6

0.4

0.2

0.0
1.0 -0 .5  0.0 0.5 1.0

x /L

T=50s T=60s
( c ) ( d )

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

m0.0 0.0
1.0 -0 .5  0.0 0.5 1.0 1 .0 -0 .5  0.0 0.5 1.0

Figure 2.21: Kink mode — The effect of the width of the loop on leakage of the second harmonic in a 
loop with a density enhancement p =  6 . (a) The three loops considered, shown in (z, z) coordinates, 

have their boundaries on a fixed field line (lower solid line of loop, V =  0.42) and one of the three 
dashed lines. Contour plots of Vn in flux coordinates are shown for (b) a narrow loop ^  =  0.39, 
Ud = 14.11, (c) an intermediate width loop ip = 0.36, Ud = 12.39 and (d) a wide loop ip = 0.33, 
Wj =  10.27. Wave guiding is much more efficient in wide loops.
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2.7  Sausage M ode

The results for the kink and sausage modes turn out to be similar; accordingly we only 

summarise the main results of the sausage mode.
Whereas in Section 2.6 pure kink waves were found, the sausage mode exists only in a 

hybrid form: the loops are found to oscillate symmetrically at the top, where the loop is widest, but 
the lower, narrower parts oscillate asymmetrically.

In agreement with the infinite slab or cylinder cases (Edwin and Roberts 1982, 1983) the 
sausage mode exists only for wavenumbers above a critical value; in the infinite slab case this is the 
f^crit Equation (2.11). We refer to the minimum frequency sausage mode as the critical mode.

Sausage modes tend to be more leaky than kink modes (sometimes even in long loops or 

for relatively large values of the density ratio p) although the two modes have some features in 

common. In a similar manner to kink modes, sausage modes have a velocity Vn tha t is alternately 
even and odd about the loop summit and, as found in Section 2.6.1, the odd modes appear to 
be more confined than the even modes. Moreover increasing the frequency tends to produce an 

increase in leakage. The critical mode produces similar results to the slab geometry and in the loops 

considered is ducted with minimal leakage. The leakage in other modes depends on their frequency 
and on whether the normal velocity component is even or odd about the loop summit. As for the 
kink mode short loops are more leaky than long loops. Also the higher the density ratio the smaller 

the leakage from the loop. This implies there is a greater energy loss associated with weak loops. We 
find wave ducting is more efficient in wide loops. This has important consequences since in the slab 
geometry it is possible to use arbitrarily small values of the slab width 2a to obtain short periods 
(see Equation 2.12). However in a curved geometry this is not possible since leakage increases and 

ultimately the mode is destroyed.

2.8 D iscussion

Our numerical investigation into ducted waves in curved coronal loops has shown tha t, as in 
curved waveguides, leaky waves arise in curved magnetic structures. These waves will propagate away 
from any density enhancement and may be responsible for some of the reported coronal oscillations.

The critical sausage mode exhibits minimal leakage in all the loops considered. Using 

typical coronal values of 2a =  2 x 10® km for the width of the loop and an Alfven speed of 
VAO =  1.5 X 10® km s “  ̂ within a loop, we find sausage mode periods of a few seconds, in agree­

ment with the straight slab and cylinder work of Roberts et al. (1983, 1984). Hence the abundantly 

reported short period oscillations (see Chapter 1) may indeed be due to the critical sausage mode 
and its low harmonics. Higher sausage harmonics are not likely to be observed in coronal loops 
because of the large leakage. The fundamental kink mode is found to have periods in the range 
40 to 60 seconds, also in agreement with the analytical work of Roberts et al. For shorter loops
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(e.g. 2 X 10  ̂ km) periods are between 4 and 6 seconds, typical of observed periods. Since the kink 
mode is less prone to leakage higher harmonics may account for some of the observations. However 

it is likely tha t some of the reported periods are not due to oscillations specifically within a loop but 
to the waves tha t leak from it.

The extent of the leakage depends upon the length, width and density enhancement of the 
loop, as well as the mode and frequency of oscillation. Increasing the length, width or plasma density 

ratio reduces leakage, whilst higher harmonics result in an increase in energy leakage. In addition 
even harmonics are less confined than odd harmonics and the sausage mode is more affected by the 
loop curvature than the kink mode and is thus more leaky.

We may offer some physical explanations for these results. Firstly it is worth recalling the 
numerical results of Murawski and Roberts (1993a-d) who considered ducted waves in a smoothed 
slab geometry embedded in a uniform field. They found for the sausage mode tha t waves with low 
frequency or in wide slabs leak less energy. Additionally the energy leakage is lower for stronger 
slabs (higher density ratio). Also the kink wave was much more robust than the sausage mode and 

consequently the sausage mode was more prone to leakage. The energy leakage in a spatially smooth 
density profile for the kink mode was negligibly small, even for weak slabs. The effectiveness of wave 

guidance depends upon the Alfven speed profile — the smoother the profile, the higher the leakage. 
These results for a straight slab in a uniform field are in good agreement with the results in the 
curved structure presented here.

For long loops the geometry is less significant and the situation is similar to the slab case. 

Hence the leakage is less from these loops. Long loops have a length which is much greater than 
the horizontal distance between the two footpoints. In such loops the effect of curvature is small. 
In short loops, with length comparable to the horizontal distance between footpoints, curvature is a 

much more important factor. Short loops have greater curvature and so, by analogy with waveguide 
theory (Gloge 1972), the larger the effect of curvature the greater the leakage. Hence the smaller 
the loop the greater the energy loss.

Loops with high plasma density ratio (i.e. strong slabs) act as effective waveguides and 

leakage from these loops is small. Low density enhancements (i.e. weak slabs) are inefficient wave 

traps and waves are able to leak more readily. Therefore for high density active regions and flare 
loops {p > 10) we may expect leakage to be negligible. For lower density active region loops, say 
/? < 1 0 , wave ducting will be less efficient.

For high modes of oscillation the waves “feel” the curvature more than lower modes. Hence 
higher frequencies lead to increased leakage. Therefore it is not possible to consider an arbitrarily 
high harmonic to explain certain observations. This is a familiar result from waveguide theory where 

higher harmonics leak more strongly due to the angle of incidence of the wave on the boundary 

(e.g. Young 1986). In waveguide theory there is a critical mode above which ducted waves will not 
propagate. This has been considered in curved waveguides by Gloge (1972) and agrees with our 
numerical results. In addition odd modes with a node at the summit of the loop have a wavelength
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which minimises the effect of curvature, thus reducing the leakage.
The sausage mode has its kinetic energy density located near the loop edges, whereas for 

the kink mode the energy is located in the centre of the loop. Therefore the kink mode is much 

more robust to curvature and waves are more confined. In addition the sausage mode has a nodal 
line (zero Vn) in the centre of the loop. Hence curvature effects are stronger since part of the curve 
is stationary. For the kink mode the entire loop oscillates so curvature is not as strongly felt. Also 

the velocity is greater at the interface for the sausage mode and it will tend to lose more energy 
(since energy loss is proportional to the velocity squared).

A similar argument applies for the results concerning the width of the loop. Wide loops have 
a relatively smaller velocity at the loop interface and thus are less leaky. Narrow loops emphasise 

the curvature which increases the leakage. The sausage mode was found to guide waves only for 
sufficiently large loop widths, which puts a lower bound on the period of this mode.

The hybrid nature of the sausage mode can be explained by the non-uniform width of the 
curved loop. The loops considered have a maximum width at the summit of the loop. From the slab 

case (Roberts et al. 1983) the sausage mode occurs only above a threshold (Equation 2.11). Hence 
for a fixed mode (i.e. fixed k^) this condition may be satisfied where the loop is wide, but not in the 
narrowest parts of the loop. Where Equation (2.11) is satisfied the loop will oscillate symmetrically; 
asymmetric oscillations will be observed elsewhere.

Finally it is worth mentioning tha t photospheric line-tying of field lines has little effect on 

the ducting properties of loops and only gives rise to discrete modes (as opposed to the continuous 
dependence of w on k^ in the case of an infinite slab; see Edwin and Roberts 1982). Therefore the 

fast mode leakage in the present geometry must be ascribed solely to the curvature of the loop and 
not to its length.

2.9 Sum m ary

We now summarise the main results of this chapter. We have examined the effect of 
curvature on fast magnetoacoustic waves in dense coronal loops situated in a potential coronal 

arcade. The wave equation governing velocity perturbations has been solved numerically ignoring 

gravity. Due to the curvature of the structure leaky waves arise. The extent of the leakage depends 
upon the length, width and density enhancement of the loop, as well as the frequency of oscillation 

and its geometrical nature. The sausage mode is more affected by curvature and is more leaky 

than the kink mode. An increase in length, width or plasma density reduces the leakage, whilst 
higher frequencies result in greater energy leakage. Odd modes of oscillation (zero velocity at the 

loop summit) are more strongly confined than even modes. Modes of oscillation may be destroyed 

by curvature and above a critical frequency ducted waves cease to exist. The results from our 
investigation have shown tha t a curved geometry does play an important role, with magnetoacoustic 
waves leaking from the loop into the environment. However we have also found tha t the main results
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reported by Roberts, Edwin and Benz (1983, 1984) for a straight slab or cylinder are relevant to the 
more complicated geometry of a magnetic arcade.
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C h a p ter  3

D ucted  W aves in Current Sheets

3.1 Introduction

The investigation in the previous chapter focussed upon ducted waves in curved coronal 

loops. However current sheets may also act as a guide for waves. This chapter examines in detail 

the properties of ducted magnetoacoustic waves in a current sheet. The equilibrium magnetic field 

strength, Alfven speed and plasma density vary continuously across the structure. The results are 
applied to sheets both in the solar corona and the Earth’s magnetosphere.

The formal definition of a current sheet is given by Priest (1982) as the non-propagating 

boundary between two plasmas, with the dominant magnetic field tangential to the boundary. The 
special case where the magnetic field reverses in direction from one side of the sheet to the other, 
becoming zero in the centre, is called a neutral sheet. This chapter investigates the magnetoacoustic 
modes of a neutral sheet.

Ducted waves occur in regions of low Alfven speed (Edwin and Roberts 1982; Roberts, 

Edwin and Benz 1984; Murawski and Roberts 1993a,b; Nakariakov and Roberts 1995; Smith, Roberts 
and Oliver 1997a; Chapter 2). Therefore we may expect wave energy to be localised where the 
magnetic field is weak, as in a neutral sheet, or where plasma density is high, as within a coronal 

loop. Hence coronal streamers, which contain both closed dense loops and current sheets, are 
expected to provide effective wave ducts. The investigation of magnetoacoustic wave propagation in 
inhomogeneous photospheric flux tubes and coronal loops has been comprehensively studied (see the 
reviews by Roberts 1985, 1991a, 1992 and Edwin 1991, 1992). A variety of waves may be present in 

the solar atmosphere — body or surface, fast or slow — their existence and properties depending 

upon the relative orderings of the Alfven and sound speeds.
Direct observations of current sheets in the solar atmosphere are not common. Eddy 

(1973), analysing results from the 1922 solar eclipse, suggests the existence of a coronal neutral 

sheet which separates regions of opposite magnetic polarity. The width and length of the sheet were
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found to be 9 arcseconds (w 6.5 Mm) and 4 solar radii (2784 Mm) respectively. Neutral sheets are 
expected to be present above the helmet structures in coronal streamers and between coronal loop 

systems of opposite polarity. Current sheets may be formed in one of three ways (Priest 1982): the 
interaction of topologically distinct regions, the loss of equilibrium of a force-free field, or X-point 
collapse. In addition, within the E arth’s magnetosphere, the nightside central plasma sheet and 
dayside magnetopause both contain current sheets. We show here tha t such sheets may support 

magnetoacoustic waves.

Current sheets are important structures which may guide waves; the damping of these waves 
may be an im portant mechanism for coronal heating (see, for example, Cramer 1994; Tirry, Cadez, 

and Coossens 1997). The study of magnetoacoustic waves in current sheets may also provide valuable 

insight into the origin of the frequently reported oscillations in the corona (see Chapter 1) and the 
Earth’s magnetosphere (see Anderson 1994 and references therein). Evidence of wave-like motions 
in solar current sheets is limited, although Aurass and Kliem (1992) associate a Type IV radio burst 

with activity in a large sheet. These authors suggest tha t the formation of current filaments by the 

tearing mode instability may create propagating magnetoacoustic waves. In addition, there have 
been many recent observations of short period coronal oscillations (Correia and Kaufmann 1987; 
Zhao et al. 1990; Rusin and Minarovjech 1994; Zlobec et al. 1992), with periods ranging from 0.3 to 
12 seconds, which may be associated with oscillating current sheets. There have also been reports 

of current sheet oscillations in the Earth’s magnetotail. Periodicities in the range 3.5 to 5 minutes 

in the electron flux were reported by Montgomery (1968). Mihalov, Sonett and Colburn (1970) 

found periods ranging from 0.5 to 15 minutes with peaks at 100 seconds, 4.5 minutes and 8  minutes. 
Recently, Bauer, Baumjohann and Treumann (1995a) and Bauer, Baumjohann, Treumann, Sckopke 
and Liihr (1995b) have reported 1-2 minute oscillations in the vicinity of a current sheet where the 

perturbed plasma and magnetic pressures were out of phase.

In this chapter we investigate in detail the eigenmodes supported by a current sheet. Such 
an investigation may provide important seismic information about the corona and magnetosphere. 
We show tha t a current sheet supports both kink and sausage oscillations. In the sausage mode 

the current sheet pulsates like a blood vessel with the central axis remaining undisturbed. In the 
kink mode the central axis moves back and forth during the wave motion. In a simple slab trapped 
modes may also be characterised as either body (oscillatory in the interior) or surface (hyperbolic 
in the interior); see Roberts (1981a,b, 1985, 1991a, 1992), Edwin and Roberts (1982) and Edwin 

(1991, 1992) for a full discussion. We show here tha t in a continuously structured medium, three 
types of trapped mode can exist: body, surface, and hybrid. The nature of the mode is governed by 

the phase speed and wavenumber. Hybrid modes contain elements of both body and surface waves. 

We restrict attention to modes which are evanescent outside the current sheet and therefore ignore 

any wave leakage; Zea% modes have been discussed by Cally (1986) and in Chapter 2.
The component of velocity transverse to the sheet can have nodes in two spatial directions, 

across the sheet width or along the sheet length. Modes with the least number of nodes across
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the sheet are referred to as principal modes. Traversing the sheet from one boundary to the other 
the velocity in the principal kink mode does not change sign, whereas the principal sausage mode 

changes sign once (at the central axis). Overtones of the kink and sausage modes have a greater 
number of nodes in the direction perpendicular to the current sheet axis.

For the neutral sheet in the E arth’s magnetotail, widths of 3-6 Earth radii ( I R e  =  6400 km) 
have been used by Patel (1968), McKenzie (1970) and Edwin, Roberts and Hughes (1986) in theo­

retical models. Hopcraft and Sm ith (1985) used a range from 1000 km to 50 000 km, whilst Seboldt 

(1990) used a sheet thickness of 30 000 km. For our calculations we use current sheet widths of 
2a =  1000 km for solar applications and 2a =  Re for the Earth’s magnetotail. The constant Alfven 

speed in the corona is taken to be 1000 km s“ ^, whilst in the magnetosphere a value of 500 km s“  ̂ is 

considered (Mihalov et al. 1970). In this chapter we use the standard ideal magnetohydrodynam ic 
(MHD) equations. The mean free path in the solar corona (for temperatures 10® K and number 
densities 10  ̂ cm"®) is of the order of 50 km whereas the electron gyro-radius is 20 cm for a field 

of a gauss (Spitzer 1962). Using these values the effective electron collision time is 0.014 seconds. 

Hence we consider only current sheets with widths greatly in excess of 50 km and time scales much 
greater than 0.014 seconds to ensure the applicability of MHD. Ideal MHD may only be applied 

w ith caution in the E arth’s magnetosphere. A discussion on the validity of the use of MHD in the 
magnetosphere may be found in Schindler and Birn (1978, 1986) and Birn, Hesse and Schindler 
(1996). The authors suggest that a MHD approach may be justified because the plasma pressure is 

approximately isotropic within the plasma sheet. In addition, Birn et al. (1996) compare the results 
of simulations of the magnetotail using MHD, hybrid and particle codes. The results are qualitively 
similar in each case, suggesting that MHD is a good approximation to the more rigourous particle 

treatment.

The format of the chapter is as follows. In Section 3.2 we review the previous work un­
dertaken on wave propagation in current sheets, whilst in Section 3.3 the equilibrium and governing 
wave equation for our model are discussed. In Section 3.4 the numerical procedure for solving the 
governing equation is described and in Section 3.5 we explain the properties of magnetoacoustic 

waves in current sheets. Finally, in Section 3.6 our results are summarised and conclusions are 
drawn.

3.2 P rev ious work

Several authors have investigated wave propagation in neutral sheets. Here we review this 
work, firstly examining the special case of an incompressible plasma (Section 3.2.1) and then turning 
to a compressible plasma (Section 3.2.2). A general review of waves in compressible current sheets 

has been given recently by Cramer (1995). Our review is similar to that of Cramer, although we 
have included details of the additional work reported in this field and also of incompressible sheet 
models.
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3.2.1 Incom pressible P lasm a  

T he M odel o f Lau (1979)

The incompressible case is studied by letting 7  —> oo (c® —>■ 0 0 ) in Equation (1.31) which 

gives m? % k^. For >  0 the modes of oscillation are surface waves (see Edwin and Roberts 

1982). Body modes require m® (æ) to be negative which is not possible in this case since k^ is 
always positive. For an incompressible plasma with constant density and a magnetic held prohle 

D = B  {x) êz, with held B  (æ) given by

B  (x) =  <
Be , x > a
Be {x/a) , |æ| < a

—Be ) X <  —a ,

(3.1)

the governing wave equation (Equation 1,34) becomes (after taking ky = 0 and —10  ̂ — d'^fdt'^]

1

In Equation (3.2) the dimensionless space X  and time r  variables are dehned by 

V A tX  = kzX

(3.2)

(3.3)

where VAe = Be/y/pop is the Alfven speed in the environment of the sheet. 

Following Lau (1979), we now Fourier transform in X  such that

/oo
u ( s , r )  e“ *^M s ,

-00
with inverse

u
1 7®°

(a, T) =  —  y  {X, t ) e '^ 'd X  .

Then, after some algebra (Appendix D), Equation (3.2) reduces to

d'^u _  1 d \ .du  
d ^ ~ A d ^

(3.4)

(3.5)

(3.6)

with A =  1 +  . This transformed governing wave equation is identical to that determ ining the
propagation of sound waves in a diverging tube of cross sectional area A  (see, for example, Kinsler 
and Prey 1962; Fletcher and Rossing 1991).

Transient B ehaviour

To investigate the transient behaviour of an impulsive event in a current sheet we seek a 
solution to Equation (3.6) of the form (Lau 1979),

(s,T) -  f  (s) 6 {s -  So + t ) , (3.7)
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so that the initial impulse is centred on s =  Se,. Here 6 (s, r) is the Dirac delta function. Substitution 

of Equation (3.7) into the wave equation (Equation 3.6) yields the approximate solution

u {s, r) =
21

(s — «0 +  7') • (3.8)
1 -{ -  «2

This solution does not satisfy the governing equation exactly. There is an error proportional to 
1/ (l +  which is small for large s. A numerical solution of Equation (3.6) has been obtained by
Lau, Davidson and Hui (1980), with similar results to the approximate analytical solution presented 

here. Substituting Equation (3.8) into (3.4), and using the following property of the delta function.

f { x ) 6 { x ) d x  =  /(O) , 

we obtain the velocity of propagating waves in the negative s-direction as 

1 +
1 +  {So -  t Ÿ  

We have used the initial condition (Lau 1979)

Vg, =  Vo exp [i {kt;X d- kzZ + ,

exp [i {k^x + kzZ d- k^xso)] exp [—ik^xr]

(3.9)

(3.10)

(3.11)

where Vo is constant and Sp represents the initial inclination of the impulse in the æz-plane. The 

initial condition, according to Equation (3.11), is u (s, 0) =  6 (s — &<,) which describes a sound pulse 
at a distance s along the tube.

Consider the transient behaviour of the wave. Suppose first that Sp is positive. The initial 
pulse splits into two, generating two pulses which propagate in opposite directions. The pulse which 
travels in the negative s-direction grows in amplitude as (% 1/ s  for large s), so from s =  20

to s =  10 we expect an amplitude increase of about 2. The numerical results of Lau et al. (1980) 

show that reflections (scattering) occur in the region about s =  0 , with the reflected pulse returning 
to s —> oo, with diminishing amplitude. The transmitted pulse also declines. Equation (3.10) shows 

that the pulse will grow in amplitude from Vo to a maximum V o y / 1  d-  a® in a time r  — Sp .

In Figure 3 .1a the amplitude A  of the pulse,

A  — Vp (3.12)
1 +  (^0 — T)'

versus (dimensionless) time is shown for various inclinations (so =  10,20,30) of the initial impulse. 

As the wave propagates towards s =  0 the amplitude of the wave increases, reaching a maximum at 

r  = So, i.e. at a time

t =
VAe

(3.13)

For large distances away from Sp the amplitude of the wave tends towards zero. Therefore, impul­
sively generated surface waves in current sheets show a transient growth up to r  =  Sp and then a
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subsequent decrease in amplitude. After a time 2 r the amplitude of the wave has returned to its 
initial value. The magnitude of the amplitude enhancement is of order Sp.

For an impulse with initial position < 0 and wave propagation in the negative s-direction, 
the wave shows no amplification and the amplitude simply decreases in time (Figure 3.1b). If an 
initial impulse splits into two, one pulse will show a transient growth and then decay, whilst the other 
just decays. An impulse in an incompressible plasma current sheet will grow rapidly over a scale of 

a few Alfven times. Small amplitude impulses, which may otherwise go undetected, may become 

large enough to be observable due to this process. Any current carrying incompressible plasma may 
support the growth and subsequent decay of surface waves. A similar model was presented by Uberoi 

(1988) to explain oscillations in the Earth’s magnetosphere. However the incompressible assumption 

means that this application is suspect until it is extended into the compressible regime.

Lau (1979) provides the following physical explanation of the transient growth of the pulse. 
The magnetic perturbations on different field lines will propagate at the local Alfven speed (which 
takes different values inside the current sheet). If the magnetic perturbation on one field line ap­

proaches the perturbation on another field line, the current associated w ith the perturbations are 

aligned in phase. This leads to an amplification of the perturbation.

We extend the work of Lau (1979) by transforming Equation (3.6) into an equation of the 
Klein-Gordon type. Using the substitution

Q (s ,r )  =  A ^ s ) u ( s , r )  , (3.14)

Equation (3.6) becomes

where

A ' _ y  . / W y  1
”  -  ( m )  +  ( 2l j  =  ( T T l i f  (3-15)

and the dash denotes the derivative with respect to s.
Assuming the following form for Q,

(2== <)(a)e<"'f , (3.17)

we may write Equation (3.15) in the form

Q =  0 , (3.18)

where ojd =  wa/vAe- For oscillatory solutions we require the frequency of oscillation, Wrf, to be 

greater than the local cut-off frequency, O. For example, at s =  0 where =  1 we require Wd> I 
for oscillatory Q. Assuming a current sheet half-width of a =  500 km and an environment Alfven

speed of 1000 km s“ ,̂ a minimum period of oscillation of 3.14 seconds is obtained (cf. Chapter 1).
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Figure 3.1: (a) A surface wave propagating in an incompressible current sheet undergoes an increase 

in amplitude (Equation 3.12) (so >  0 with wave propagation in the negative s-direction). The 
enhancement in amplitude is approximately given by Sq. (b) The amplitude of a surface wave 
propagating in the negative s-direction, with So < 0 , decreases with time.
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Waves with longer periods will be unable to propagate. Waves are either propagating or evanescent 
according to whether the frequency of oscillation is greater or less than the local cut-off frequency. 

Note that if s )$> 1 —> 0) the solution of the wave equation reduces to that of wave propagation in
an unstructured medium. A current sheet, especially near the throat (s =  0), only allows low period 
waves to propagate. The sheet acts as a high band pass filter; only high frequency waves are able 
to propagate and low frequency modes are evanescent.

M odel o f B ertin and Coppi (1985)

We now briefly describe the results of Bertin and Coppi (1985). In this work a dispersion 
relation for long wavelength perturbations in an incompressible current sheet was derived. Results 
show that surface waves may exist in a current sheet. The effect of a current sheet with a finite width 
is to cause the waves to be dispersive. However, the expansion method for solving the governing 

wave equation and the lack of consideration of the singularity means the results are suspect.

3.2.2 C om pressib le P lasm a

Infinitely thin current sheets, where the magnetic field has a discontinuous change of direc­

tion, have been investigated. Hollweg (1982) examined the case of low frequency oscillations in a low 
plasma beta equilibrium. Surface waves were found for all angles of rotation of the magnetic field 
and angles of wave propagation relative to the field. Wessen and Cramer (1991) expanded this work 
with the inclusion of a finite ion-cyclotron frequency in a low plasma beta equilibrium. They found 

the surface wave dispersion relation was significantly altered from the low frequency result. The 
dispersive curves separate into branches through the introduction of the Alfven resonance and prop­

agation cut-ofis. Solutions with frequencies less than, and greater than, the ion-cyclotron frequency 
were found. The effect of non-zero pressure was investigated by Cramer (1994). Two surface waves 

(see also Roberts 1981a) were found for some angles of wave propagation relative to the field. In 
addition stop bands (cut-offs) existed for other angles of propagation. Uberoi and Satya Narayanan 
(1986) examined the effect of changing the magnetic field direction on surface waves, which existed 
on a surface separating two plasmas of differing density. They found, for certain angles of rotation 

of field, no wave propagation occurred. A finite width current sheet was also investigated by Cramer 

(1994). The sheet was modelled as a field with an arbitrary change of direction through a narrow 
transition region. The results show that perturbations will be damped through the Alfven and slow 

resonances.

Magnetoacoustic waves in a current sheet, where the equilibrium magnetic field changes 
sign and direction, have been investigated by Hopcraft and Smith (1985, 1986), Seboldt (1990), 
Tirry, Cadez and Coossens (1997) and Smith, Roberts and Oliver (1997). The equilibrium magnetic 
field does not ro tate but reverses sign in the centre of the sheet. For equilibrium the plasma pressure 
is a maximum in the centre of the sheet. Hopcraft and Smith (1985) solved the governing wave
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equation for a Harris sheet analytically through a small parameter expansion. Although dispersion 
curves for fast magnetoacoustic waves were presented, the validity of the expansion near the edge 

of the sheet is uncertain. Further work by Hopcraft and Smith (1986) solved the governing wave 

equation numerically although no dispersion curves were given. The magnetic field and pressure 
profiles used by Hopcraft and Smith (1986) were discontinuous at the sheet boundary. Although the 
sheet was in equilibrium an additional current at the edge of the sheet was generated which may have 

affected the results. Using the Harris sheet model, Seboldt (1990) investigated the singular solutions 

of the governing wave equation. This analysis showed that perturbations may be subject to phase 
mixing. Discrete eigenmodes were also briefly discussed although no detailed analysis of the modes 
was given. The recent investigation by Tirry, Cadez, and Coossens (1997) explored the damping of 

surface waves in a Harris profile through the Alfven resonance; they found only two surface modes 
existed (the kink and sausage) with the sausage mode undergoing more damping than the kink.

In addition, models of current sheets where the equilibrium magnetic field rotates have 

been considered by Musielak and Suess (1988, 1989). For a current sheet with finite width they 

find no normal modes exist. The singularities arising in the governing wave equation suggest the 
perturbations will be subject to phase mixing. For a sheet of zero width a ducted mode may be 
supported.

C u rre n t S h eet M odel o f E dw in , R o b e rts  a n d  H ughes (1986)

A slab model of a current sheet was analysed by Edwin, Roberts and Hughes (1986) and 
Edwin (1992) to explain the generation of Pi2 pulsations in the Earth’s plasma sheet. Pi2 pulsations 

are quasi-periodic oscillations with periods ranging between 40 and 150 seconds, typically lasting 

for a few cycles (Southwood and Stuart 1980; Singer et al. 1985). The sheet was modelled as an 
unbounded hot plasma slab, with a narrow field-free region between the anti-parallel fields of the 
E arth’s magnetotail (Figure 3.2). In the magnetic region the cold plasma approximation was used.

The governing wave equation for linear perturbations about an equilibrium, with magnetic 

field B =  J5(æ)êz, plasma density p[x)  and plasma pressure p{x)  constant in each region under 
consideration, is (Roberts 1981a)

Sf--'
where

0 , (3.19)

Here the subscript i becomes 0 in the field-free region and e in the magnetic region. The frequency 
and longitudinal wavenumber are u> and kz respectively, whilst the sound and Alfven speeds are 

denoted by Csi and vaî- The velocity component normal to the magnetic field is v^. In this chapter 
we drop the hat notation used in Chapter 1. However all the quantities such as Uj, and the perturbed 
pressures have a exp[i (wt — k^z)] dependence.
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Figure 3.2: The current sheet model of Edwin, Roberts and Hughes (1986). A narrow field-free 
region of width 2 a exists between the oppositely directed field of the magnetotail.

For the slab model of Edwin et al. (1986) we have vaq =  0, c,g =  0, vab 9̂  0 and Cso 9̂  0. 
Therefore Equation (3.20) reduces to

m l  =  - n l  ^ k l ~
ŝO

(3.21)

and

Wg — 2 • (3.22)
^Ae

The general solution of Equation (3.19) for surface waves in the field-free region (|æ| < a) is

Va; = 0 (0  cosh mox + (3o sinh mox ; (3.23)

and for body waves the solution is

Va; = « 0  COS nox +  /?o sin uqx . (3.24)

Body and surface modes are characterised by > 0 and mg > 0 respectively. Here ao and
/?o are arbitrary constants; otq =  0 and /?q =  0 give sausage (% =  0 at x = 0 ) and kink modes
(dvx/dx  =  0 a t æ =  0) respectively. Assuming that Ua; —>■ 0 as [æ| —> oo, the velocity in the magnetic
region (|æ| >  a) takes the form,

Va; = ae exp [—me {x — a)] x > a ,

Vic = /?e exp [me {x + a)] x < —a .

(3.25)

(3.26)
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In. order to satisfy the boundary condition at jæ| —>• oo we require mg > 0. From Equation (3.22) 
this requires that the phase speed {u>/kz) is less than the Alfven speed in the magnetic region (uac)- 

Moreover, for the body modes we need no > 0. Thus trapped body modes lie in the phase speed 
range

Cso <C vab ) (3.27)
Kz

i.e. between the interior sound speed and the exterior Alfven speed. Similarly, for the surface modes 

we find the phase speeds must satisfy

0 < -— < Cso • (3.28)

To obtain the dispersion relation we match the solutions for the regions |æ| < a and |æ| > a 
at the sheet boundaries, x =  ± a. Taking the velocity component normal to the equilibrium magnetic 
field, Ux, and the to tal pressure perturbation, py,

to be continuous across the sheet boundaries, leads to the dispersion relation (Edwin et al. 1986; 
Edwin 1992)

I 1 mo a =  w^mg (3.30)
‘V^Ae y coth J

for the surface (mg > O) modes, and

^0 I  noa = ijo' r̂rie (3.31)
T^Ae ( cot

for the body {uq — —m l  > O) waves. The “tan” and “tanh” solutions refer to the sausage modes, 
whereas the “cot” and “coth” terms relate to kink modes; j  is the ratio of specific heats. In deriving 

the dispersion relation, the calculated density ratio between the magnetic region and field-free region 

is constrained by the pressure balance condition pg -f S g /2p o  =  Po, such that

— =  . (3.32)

Both principal kink body and sausage surface modes were found. In the slender sheet 

approximation [kza 1) their phase speeds tended towards the exterior Alfven and tube speeds 
respectively. The principal kink body mode transforms to a surface wave when its phase speed falls 

below the constant sound speed within the sheet. The dimensionless phase speed, Vph = Lo/kzVAa of 
both the sausage and kink surface waves tends towards the same limiting value at short wavelengths 

{kzO 1 , tanh mo a, coth mg a 1), given by

2A^
'Oph

(1 d- A2) d- V 1 +  5A 4-2A 2.
(3.33)
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Figure 3.3: The dispersion curves for magnetoacoustic waves in the current sheet model of Edwin et 
al. (1986), with =  7 / 2  and 7  =  5/3. The modes are classified as body when their phase speed 
{(jj/kz) lies between ĉ o and vab- Two surface modes arise (a kink and sausage). For long wavelength 

oscillations, the phase speed of the principal kink body and sausage surface modes tend to v^e and 

zero respectively. For short wavelengths the phase speeds of both surface modes tend to the same 

value. Kink and sausage body modes above wavenumber cut-offs also exist, their phase speeds lying 
between the interior sound speed and exterior Alfven speed. Notice that here, in the slab model, 

there is a clear distinction between body and surface modes (cf. Figure 3.7).
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where A =  yvAel'^Cso (see Appendix E). In addition sausage and kink body modes were found above 
wavenumber cut-offs, occurring at

MTT
' Y

m -

(3.34)

with n an integer. If A j / 2  (i.e. when the interior sound speed approaches the exterior Alfven 
speed) the critical wavenumber tends to infinity, in which case only two surface modes will be able 

to propagate. The phase speed of the body waves lie between the interior sound speed (cgo) and the 
exterior Alfven speed (u^e)- Edwin et al. (1986) and Edwin (1992) suggested that the long period 
magnetospheric oscillations (see, for example, Anderson 1994) may be due to surface waves, whereas 
the shorter period Pi2 pulsations may be body waves (see also McKenzie 1970 for a similar model).

Impulsively generated waves in a plasma sheet were found to consist of a well defined wave 

packet consisting of a periodic phase, followed by quasi-periodic phase and then a decay phase, in 

good agreement with observations. However an important aspect neglected in this model was the 
field reversal region. We consider this aspect in detail in this chapter and in Chapter 4, where we 
discuss propagation in a structured current sheet.

The dispersion diagram resulting from the solution of Equations (3.30) and (3.31) is shown 
in Figure 3.3 for A  ̂ =  y/2.  Kink and sausage modes are denoted by dashed and solid lines re­
spectively. The adiabatic index is 7  =  5/3. Although the dispersive curves are identical to those 
obtained by Edwin et al. (1986) and Edwin (1992), this figure has been calculated by ourselves 

using numerical solutions of the dispersion relations.

3.3 Equ ilibrium  and G overn ing Equations

Having seen the results that arise in the empty slab model of Edwin et al. (1986) we turn 

now to a detailed investigation of a structured current sheet. We suppose that the current sheet has 

a magnetic field modelled by the Harris (1962) profile. The one-dimensional equilibrium magnetic 
field H = B  (z) ég is given by

B =  tanh êz , (3.35)

which represents a continuous change of the field strength from Be at large positive x/a,  to —Be 

at large negative x/ a  and passing through zero at x /a  — 0. Equilibrium demands that the total 
pressure (plasma plus magnetic) is uniform 

J52 u )
P (®) 4— a — constant , (3.36)

2fJ,Q

yielding a plasma pressure p{x)  of

p (z) =  posech^ Q )  , Po =  ^  , (3.37)
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given that p -y Q (cold plasma) as |z |/a  —>• oo. The plasma density is arbitrary; we assume a density 
profile p (z) of the form (cf. Epstein 1930)

p (z) =  posech^ 4- petanh^ , (3.38)

declining from po at z /a  =  0 to pe (< po) as |z |/a  -> oo. Through the ideal gas law (p oc pT) the 

temperature T  (z) is not constant. The implied sound speed c, (z) (Tp/p)^^^^ varies from Cg (0)
at the centre of the current sheet to zero in the far environment of the sheet, consistent with our 

assumption of a cold plasma as |z| — oo. Specifically, the square of the sound speed (z) is given

by

^2 , , ^  c;(0)8ech^ ( f )
^ s e c h ^ ( f ) + t a n h ^ ( f )  ■

The square of the Alfven speed (z) (=  S^/pop) is given by

where =  Be^/poPe =  2 c  ̂(0 ) / 7 . Thus the Alfven speed, va (%), declines from vab in the far 
environment of the current sheet ( |z |/a  -4- oo) to zero at the centre of the sheet. Figure 3.4 gives 
plots of these two speeds, together with the tube speed c t  (z) (= CsVa / { cI +  and the fast
speed Cf (z) (=  (c  ̂V v \ Y I

Consider the linearised equations of ideal magnetohydrodynamics assuming gravity is neg­
ligible. The wave equation for two-dimensional plasma motions,

V =  (p.c,0 ,u^)exp i(w t -  fc^z) , (3.41)

in a non-uniform magnetic field B =  B (z) êg, where the equilibrium parameters (density and 
pressure) are dependent upon z, is given by (Roberts 1981a)

dz +  p (w  ̂ -  k l v \ )  =  0 , (3.42)

where

p c ] ( u , ^ - p , 4 )

Here is the velocity component normal to the magnetic field, w is the frequency and k^ is the 
longitudinal wavenumber along the sheet. The velocity parallel to the magnetic field is given by

(w  ̂— k^c^) dz ‘ (3.44)

We only consider motions that are independent of the p-coordinate so that propagation is in the 
zz-plane.
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Figure 3.4; A plot of the Alfven v a , sound c*, fast c/ and tube ct speeds (normalised against va )̂ 

in a neutral current sheet with uniform density and 7  =  5 / 8 . The region of low Alfven speed about 
æ/a =  0 acts as a duct for magnetoacoustic waves. Note that the fast speed is approximately constant 

throughout the whole domain. The sound and tube speeds have maxima of 0.9129vAe and 0.4771u^e 
respectively. These speeds are important in determ ining the nature of the magnetoacoustic waves 
in a current sheet.
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The perturbed plasma (px), magnetic (pim =  B.hi /no)  and to tal (p t =  Pi +  Pim) pressure 
perturbations are given by

7 -  =

whilst the magnetic tension force T i  takes the form

— T i =  ~ v \ k l v A  +  -  klc]) , (3.48)
P

where b i  is the perturbed magnetic field and

T i  =  -i- (B . V) b i  +  —  (b i • V) B . (3.49)
Po Po

To investigate the nature of the modes we reduce Equation (3.42) to the canonical form 

(where the coefficient of the first derivative is equal to zero). Setting Vx ~  <f> (x) F  (x) reduces the 
governing wave equation to

(x) ^ =  0 , =  ’ (3.50)

with m? given by Equation (3.20) and F '/ F = ( - l / 2 )  f / f ,  with /  given by Equation (3.43). Here 
the dash denotes a derivative with respect to x. For a uniform medium is constant (—m?); body 
and surface modes are determ ined by positive and negative respectively. However for a medium 
which is continuously structured, we define body and surface modes when attains positive or 

negative values respectively, across the whole sheet (—a < x < a). In addition hybrid modes occur 
when 0  (æ) possess both positive and negative across the width of the sheet.

3,4  N um er ical P rocedure and Boundary C onditions

We solve Equation (3.42) numerically subject to boundary conditions at the centre of the 

sheet, so that we have control over the parity of the solution (kink or sausage). At æ =  Xma.v we take 

Vx to be zero; the integration range is therefore [0, .'Cmoæ]- Lengths and speeds are normalised against 
the half-width a of the sheet and the Alfven speed v^e in the exterior; frequencies are measured in 
units of VAela- The second order ordinary differential equation (Equation 3.42) is written in terms 
of two first order equations in the new functions yi and pg,

yi = f  (æ) ^  , V2 = Vx , (3.51)

such that
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The boundary conditions at x / a  = 0 for the kink mode are given by pi =  0, p2 =  c; for the sausage 
mode by pi =  c f  (0) and P2 =  0. The constant c is arbitrary. We impose that is zero at x = Xmax 

for both modes.
To obtain a solution of Equation (3.42) we use a fixed value of kz and integrate the two 

first order equations (Equation 3.52) using the NAG routine D02BEF. The integration is performed 

between æ =  0 , where proper initial conditions for pi and p2 are available, and Xmax, where the 
condition =  0 must be satisfied. A Newton iteration, with NAG routine C05AXF, is done by 

changing ua/vAe and integrating from æ =  0 to æ =  x^ax until the boundary condition at the 
second point is satisfied. To ensure convergence and high accuracy Xmax is reselected for each 
wavenumber. For long (short) wavelengths the integration range is wide (narrow), in such a way 

that the frequencies and eigenfunctions are not affected by the boundaries. We do not impose 

an exponentially decreasing solution. Instead we seek solutions that decay away naturally. This 

has been found to work well and is more natural than imposing the velocity in a certain range. 
Hopcraft and Smith (1986) imposed an evanescent solution in the exterior of the sheet by assuming 

the medium is uniform for \x\/a > 1.5. However inspection of Figure 3.4 shows the various speeds 
varying for larger \x\/a than this value.

To investigate the effect of Xmax on the dispersion curves we re-examine the slab model of 
Edwin et al. (1986) discussed in Section 3.2.2. Here we impose that the transversal velocity is zero 
a t æ =  Xmax = H  {H is at infinity in the model discussed by Edwin et ah). Taking the velocity in 
the magnetic region to be of the form

fa, (æ) =  o i exp (-m e® )-f cv2 exp (me®) , |z | > a , (3.53)

with Vx {H) = 0 and a i ,  cx2 constants, means the left-hand side of the dispersion relations (Equa­
tions 3.30 and 3.31) are multiplied by a factor

1 +  exp {—2meH)  exp (2 meCt)
(3.54)

_1 — exp (—2mei7) exp (2 mea) J 

Specifically, the dispersion relations for the slab model embedded with rigid walls at |®| =  H  (> a)

2F  /, 2 2 2\ ) tanh i g(Æ^flg—w ) m o <  >moa =  w m e  (3.55)

for the surface (mg > O) modes, and

(iCz'^Ae -  ^ 0 1 J” noa = (3.56)

for the body (ug > O) modes. Note that as 7/ oo the dispersion relations reduce to the empty 
slab model previously discussed.
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Figure 3.5: The effect of imposing % {H) = 0 for 7f =  5a compared with an unbounded domain 
(where H  is at infinity). Modes with long wavelengths (low kzo) are most altered. For short 
wavelengths the two cases are virtually identical.

Solving the modified dispersion relations (Equations 3.55 and 3.56) shows that by imposing 
Vx (H)  = 0  the frequencies and wavenumbers can be significantly altered compared with the infinite 
domain. In particular, cases with small H  and modes with low kza are most affected. The dispersion 

curves for the surface sausage and fundamental kink (body and surface) modes are illustrated in 
Figure 3.5 for H = 5a, allowing a comparison with the results for an unbounded medium (where 

H  is at infinity). Note that only long wavelength modes are affected; above Ar̂ -a =  1 (i.e. shorter 
wavelengths) the dispersion curves between the two values of H  are indistinguishable.

The fundamental kink mode, which exists above all wavenumbers in the infinite domain, 
may only propagate above a certain threshold in the finite region. For example for H  = 2a the 
kink mode has a critical wavenumber of a =  0.97. As H  increases the threshold decreases and 
ultimately as H  approaches oo we regain the results of Edwin et al. (1986). Table 3.1 summarises 

our results. For short wavelengths, regardless of the value of H,  the phase speeds attain the same 

value (since mg is proportional to kz and this implies that exp [—2meH)  is small for large kz). This 
threshold arises from the frequency increase that low kza modes encounter when imposing f^ =  0 at
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(a) kink &f*^a saus w / k z V A e  

{kztt —> 0 )
2 0.97 0.67
5 0.50 0.41

10 0.34 0.31
25 0 .21 0 .20

100 0 .11 0 .10
1000 0 .01 0.03
oo 0 .0 0 0 .00

Table 3.1: The effect of finite domain H.

H . If the resulting increase in phase speed is in excess of VAe no solution to the dispersion relation 
with positive mg exists. The surface sausage mode exists for all wavenumbers in both the infinite 

and finite H  cases. However the limiting phase speed as k^a approaches zero is significantly altered 

by the presence of the boundary at \x\ = H  (see Table 3.1). The limiting phase speed in the infinite 
domain is zero as kza tends to zero. Imposing (H) =  0, however, raises this phase speed. Indeed 
for H  = 2a the phase speed is approximately constant for all wavenumbers. For short wavelength 

perturbations the dispersion curves for various H  are virtually identical.
The body modes, which only occur above a threshold, are affected only slightly by imposing 

that Vx be zero at H . For example, we find that the fundamental sausage mode has k^ '̂^^a =  0.35 
{H a t infinity) and kf^^a =  0.38 {H — 2a). Also, the first harmonic kink mode has critical values of 

0.70 and 0.72 for H  at infinity and H = 2a respectively. In both cases as kza increases the dispersion 
curves for H  at infinity and H = ba quickly coalesce.

When calculating the dispersion curves for the Harris current sheet Xmax is selected so that 
the effects described with finite H  are negligible. For modes with 7^a 1, Xmax was set at 100a. As

the wavelengths become shorter the effect of the boundaries are less important and Xmax is reduced. 
It is important to note that the introduction of this boundary does not affect the classification of the 
modes; surface and body modes still exist as distinct entities for both fundamental and harmonic 
modes.

3.5 R esu lts  for a S tructured  Current Sheet

We turn now to a detailed investigation of the magnetoacoustic modes of a structured 
current sheet, modelled as a tanh profile (Equation 3.35). We consider two choices of density profile 
(Equation 3.38), considering first the case of a uniform density (Section 3.5.1). A non-uniform 
density profile yields similar results which are presented in Section 3.5.2.
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3.5.1 U n iform  dens ity

The density profile (Equation 3.38) becomes uniform, p{x)  =  constant, in the special 
case when po =  p^. We begin by looking at the various modes which may propagate in a current 

sheet. The function arising in Equation (3.50) is strongly dependent upon the mode of oscillation 
(wavenumber and phase speed) and the location along the sheet. We find that three types of 
mode may exist in a continuously structured sheet, compared with two in a simple slab. Modes of 

oscillation may have (®) >  0 or (®) < 0 across the entire sheet; these modes are classified as 

body or s«r/ace respectively. We note, however, that these modes are different from those in a uniform 
medium where is constant. We also find modes where ( x ) takes both positive and negative 

values across the sheet; we call these hybrid modes. Figure 3.6 shows an example of k? (®) for a 
fundamental sausage hybrid mode (solid line) along with the ^-component of velocity (dashed line). 

Firstly, k? varies across the whole domain, being positive in some regions and negative in others. 
Also, the velocity has maxima where «:̂  > 0, whereas wave motions are smaller where < 0. 

The eigenfunction is characterised by the regions of different signs of a hybrid mode exists. For 

harmonics the wave motions are more oscillatory across the sheet, in which case oscillations can 

occur in regions of both positive and negative k^. For all modes we find < 0 for \x\/a %$> 1 and 
solutions are evanescent outside the current sheet.

Figure 3.7 shows the dispersion curves obtained for the case of constant density, po = p^. 
Kink and sausage modes are shown as dashed and solid lines respectively. The horizontal dotted 

line shows the position of the maximum sound speed, (=  Cg (0)). Above this line only body 
and hybrid modes are found. For phase speeds close to the maximum Alfven speed body modes 
arise {k  ̂ > 0 for all jæ|/a in the structured region). As the phase speeds decrease the body modes 
transform into hybrid modes {k  ̂ attains both positive and negative values). The dot-dashed line 

shows the maximum value of the tube speed cy . Below this value only continuum solutions exist 

(Rae and Roberts 1982 and references therein; see also Seboldt 1990; Poedts and Goossens 1991; 
Cramer 1994). Between these two lines both surface and hybrid waves arise. Trapped modes exist 
only in the phase speed range

f̂ Z

The fundamental sausage surface wave (the curve of lowest phase speed in Figure 3.7) is the only 
mode which exists as a surface wave (rê  < 0 for all |®|/a) at all wavenumbers. At long wavelengths 

{kztt <C 1) its phase speed falls to the maximum tube speed in the current sheet, uf/kz —)■ cÇ?®® as 

kzCL —)■ 0. As kztt increases the phase speed increases, tending to a constant value {u//kzVAe — 0.675) 
for short wavelengths. It is interesting to note that this limiting value at short wavelengths is close 
to the value given by the slab model of Edwin et al. (1986). If we set A^ =  2 / j  with 7  =  5/3 
in Equation (3.33), as the ratio of maximum Alfven speed to maximum sound speed, we obtain a 
phase velocity of 0.689 which compares favourably with the numerical results for the Harris sheet.
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Figure 3.6; The variation of the function across the uniform density current sheet for the 

fundamental sausage hybrid mode with wavenumber k^a =  5 and phase speed Lo/kz — 0.92vAe (solid 
line). The corresponding æ-component of velocity (dashed line), scaled so that its maximum value is 
Va, = 6 0 , is also shown. Note that regions of both positive (body type) and negative (surface type) 

exist; the mode is hybrid.
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Figure 3.7: The dispersion curves for magnetoacoustic waves in a tanh profile current sheet (Harris 
neutral sheet) with uniform plasma density. The modes are classified as body when their their 

phase speed u^/kz approaches VAe- A kink and a sausage surface mode arises. For long wavelength 

oscillations, the phase speed of the principal kink body and sausage surface modes tend to vag and 
Cy®® respectively. For short wavelengths the phase speeds of both surface modes tend to the same 
value. Kink and sausage modes above wavenumber cut-offs also exist; these are body or hybrid 
depending upon the phase speed. The overtones exist in pairs, their phase speeds merging after the 
phase speed falls below the maximum sound speed.
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Figure 3.8: A comparison of the fundamental kink and sausage surface modes for the Harris and 
slab models of a current sheet with uniform plasma density. The agreement between the two models 
for the kink mode is excellent.

It proves useful to compare the surface sausage and fundamental kink modes for the slab and Harris 
models (Figure 3.8). The agreement between the dispersive curves for the kink modes is striking. 
For kza < 3  the frequencies predicted by the two models are in excellent agreement. The difference 
between the two curves occurs for large kza: their limiting (Ar̂ a —)■ oo) values are different, with 

uj/kz = 0.675ü^e for the Harris profile and u/kz  = 0.689i»yie for the slab model. The dispersion 
curves for the sausage surface modes differ more strongly, particularly for kza -C 1. This arises 
because the maximum tube speed in the Harris model is non-zero.

The fundamental kink wave exists for all wavenumbers, although it is a surface wave only 

for kz above a threshold. Figure 3.9 illustrates the eigenfunction Vx for the fundamental kink mode. 
For low kza (when uj/kz % VAe) the kink wave starts off as a body wave and most of the velocity 
amplitude is concentrated at the centre of the sheet (see Figure 3.9a). As the phase speed decreases 
the kink mode transforms to a hybrid mode (with attaining both positive and negative values). 

As the phase speed falls below the maximum value of the sound speed the mode transforms into 
a surface wave, where < 0 across the entire sheet (see Figure 3.9b, where a small “dip” can be 
observed in the eigenfunction in the centre of the sheet). For larger kza this dip becomes more 
pronounced (Figure 3.9c) and ultimately, for very short wavelengths, there are two peaks in the 

velocity concentrated near the edge [x/a % ±0.9) of the sheet (Figure 3.9d). The phase speeds
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of the kink and sausage waves approach the same limiting value for short wavelengths. For short 
wavelength perturbations we see that the velocity is concentrated about the sheet boundary, whereas 

for longer wavelengths, oscillations across the entire sheet may be expected.
In a similar way to the work by Edwin and Roberts (1982), magnetoacoustic modes also 

exist above wavenumber thresholds (Figure 3.7). At the wavenumber threshold [kg = k^^^^ the 

phase velocity equals the exterior Alfven speed VAe- As their phase speeds decrease attains both 

positive and negative values and a hybrid mode forms. The dispersion curve for the fundamental 
sausage mode, occurring at a critical wavenumber of kf^^a =  2 .1 2 , interleaves with the first harmonic 
kink mode =  3.06) when the phase speed falls below the maximum sound speed in the sheet.
In addition, the first harmonic sausage mode {k^^^a — 4.94) interleaves with the second harmonic 

kink mode =  5.50), and so on. Notice that each merging pair contains a higher overtone kink
mode than the sausage. When the “dip” appears in the eigenfunction for the kink mode (Figure 3.9) 
the number of maxima is the same across the sheet for both kink and sausage modes (although the 

parity about æ/a =  0 is different).

Due to the continuous structuring of the sound and Alfven speed profiles in the current 
sheet, the phase speeds of these modes do not tend to the maximum value of the sound speed, as in 

the case studied by Edwin et al. (1986). Instead the phase speeds fall below Cs (0); notice how the 
phase speeds (and therefore frequencies) of these pairs tend to the same value in Figure 3.7, after 

passing through the maximum value of the sound speed. The phase speed tends to an asymptote 

which is slightly different for each pair of modes. Each pair tends to a slightly higher phase velocity 
than the previous pair; for the first pair this \q u)/kg — 0.69'yyie. The value of this asymptote is 
approximately given by the slab model of Edwin et al. (1986) in the short wavelength limit; see 

Equation (3.33).
The X and z-components of the velocity are shown in Figure 3.10 for a first harmonic kink 

hybrid wave. This mode is characterised by two large peaks in at x / a  % ±0.9 with > 0 

(body modes) plus two smaller peaks at x/ a  «  ±0.6 with < 0 (surface modes) (cf. Figure 3.9). 
The ^-component of velocity shows similar characteristics to but is of opposite parity about 

x / a  =  0. The velocity in the inner part of the sheet (|æ |/a < 0.3) is approximately zero with wave 
motions concentrated near the edge of the sheet. The amplitudes of the velocity components attain 
approximately the same value; this is to be expected since the maximum values of the sound and 
Alfven speeds are similar. The eigenfunction of the associated sausage hybrid wave (the mode that 
transformed from the fundamental sausage body) is very similar, the main difference being the parity 

of the two solutions about the current sheet centre. The oscillation frequencies approach the same 

value as kga increases (Figure 3.7).
It is interesting to note that the coupling between the x and z-components of velocity 

are different in slab structures and continuously structured media. Consider firstly the slab case. 
Equation (3.44) shows that when dv^/dx  equals zero then ivg is always zero. However for the 
Harris profile, we find that when dv^j/dæ =  0 and w / t ,  < Cg (0), iVg can take both zero and non-
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Figure 3.9: The transition from body to surface waves for the principal kink mode with

(a) =  0.39, w =  0.37uAe/a (body), (b) k^a = 1.57, w =  1.177v^e/a, (c) =  3.14,

w =  2.167t)Ae/a and (d) kza — 27.5, w =  18.537'yAe/a (surface modes). Notice that as the mode 
transforms from being body/hybrid (oscillatory in the sheet) to surface a “dip” appears in the eigen­
function around æ =  0. As kza increases the oscillations become more localised about the edge of 
the sheet.



CHAPTER 3. DUCTED WAVES IN  CURRENT SHEETS 106

0.0 

—0 . ^
H

0.6

1 0 1
x / a

0.5

0.0

0 1
x / a

Figure 3.10: An example of a first harmonic kink hybrid mode {kza — 27.5, w =  21.727i;Ae/a) 
showing the Vx and ivg components of velocity. Two large peaks in the velocity Vx are observed at 

x /a  «  ±0.9 (with > 0). In addition two smaller peaks (of opposite parity to the larger peaks) 
are seen at x/ a  % ±0.6 (with < 0). Between —0.3 < x/ a  < 0.3 the velocity is almost zero; 
wave motions are localised in the exterior of the sheet. The situation for ivz is similar. Two large 
peaks (of opposite sign) at x/ a  «  ±0.65 are observed, whereas two smaller peaks are present at 

x / a  fn ±1.1. The amplitudes of Vx and ivz are approximately the same.
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zero values. This arises from the fact that the phase speed u)/kz can equal the local sound speed 

Cs (z) at different locations across the current sheet, since when uj/kg — Cg the denominator of 

Equation (3.44) becomes zero. This poses the question; what happens to the numerator? Consider 

the mode in Figure 3.10. The phase speed equals the sound speed when x = ±0.55a. We find that 
at these locations dv^/dx  = 0 (i.e. attains a local maximum). Therefore iv^ attains a non-zero 
value; see Equations (3.42) and (3.44). Hence, peaks in are found at those points where the phase 

speed equals the local sound speed. At other positions along the sheet where düa,/dæ =  0 we find 
ivz =  0 (since co/kg ^  c, (æ)). Therefore iVz =  0 if dv^/dx — 0 provided zfz k^c^. For phase 

speeds u)/kz > c, (0 ), dv^/dx  = 0 implies that ivz ~  0 .
We now examine the driving forces (tension and gradients of plasma and magnetic pressure) 

and the perturbed pressures. This gives some insight into which forces are important in driving wave 

motions and it affords a comparison with the results of a uniform field, giving us an indication of 
whether the modes are essentially fast or slow. The linearised MHD equations, leading to the 
governing wave equation (Equation 3.42), may be written in the form

' •»
- w V  =  +  (3-59)

where p\  and pim are the plasma and magnetic pressure perturbations, p>r (=  pi + pim) is the total 
pressure perturbation, and Tix and Tiz are the components of the tension. We first recall the results 

for a uniform medium, i.e. one in which B, p, p (and therefore va and Cs) have no x-variation in the 

region under consideration (see Figures 1.6 and 1.7). From Equations (3.45)-(3.47) we see that if 
uj/kz < Ct  the magnetic pressure pirn is out of phase with both the plasma pi and to tal pT pressure 
perturbation: pimPi < 0 and pimPT < 0; this is a feature of the slow mode. Moreover for this mode 
the x-projections of the tension force and the velocity are out of phase whereas the ^-components 
are in phase. For ui/kz > ct the to tal pressure perturbation, plasma pressure and magnetic pressure 

are all in phase: pimPi > 0 and pimPr > 0; this is a property of the fast mode. In addition, for a 
fast mode in a uniform medium, Tix is out of phase with whilst Vz and Tiz are in phase.

The formulae for the to tal pressure perturbation pr  and the tension force T i  are the 
same in both uniform and non-uniform media (dp/dx -f B/po{dB/dx)  — 0). However the perturbed 
plasma and magnetic pressures are altered by the non-uniformity in pressure and magnetic field; see 

Equations (3.45) and (3.46). The results show that the magnetoacoustic modes of a Harris current 
sheet are more difficult to classify than those of a uniform medium, w ith the non-uniformity playing 

an im portant role.
The results for the non-uniform current sheet are illustrated in Figure 3.11 for the principal 

kink mode of frequency w=0.67 VAe/a and wavenumber kg = 0.79/a. Figure 3.11a shows the driving 

forces in the x-direction (Tiæ, —dp i/dx , —dp i^ /d x ).
Firstly we consider the x-projection of the driving forces (Figure 3.11a). In the centre
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Figure 3.11: (a) The æ-component of the driving forces, Tia;, —dp i/dæ and —àpim/àx,  for the 
fundamental kink mode with frequency w = 0.67vyie/a and wavenumber =  0.79/a. The tension 
forces are very small in the inner part of the sheet {\x\/a < 1) and the gradients of plasma and 
magnetic pressure are in anti-phase. In the outer part of the sheet the gradient of the plasma 

pressure decays rapidly and the magnetic pressure is the greater force. This mode of oscillation 
therefore possesses characteristics of both fast and slow modes, (b) The perturbed pressures for 

the same mode. In the central part of the sheet the magnetic pressure (pim) is out of phase with 
both the plasma pressure (pi) and the to tal pressure (p t) perturbations; this is a feature of the slow 
mode. In the outer part of the current sheet the magnetic and to tal pressure perturbations are in 
phase — a fast mode feature.
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of the current sheet the gradients of plasma and magnetic pressures are clearly out of phase with 
|dp i/dæ| > |dpim/dæ|; this is a characteristic of a slow mode. Notice also the gradients of plasma 

and magnetic pressures are in anti-phase at \x\/a ^  1 , where the amplitudes of the driving forces are 
approximately the same. In the outer part of the current sheet {\x\ja > 1) the gradient of plasma 
pressure tends to zero rapidly. In addition, within this region the gradient of magnetic pressure is 

greater than the gradient of plasma pressure; this is a signature of a fast mode. Thus, as we move 

away from the centre of the sheet, the mode changes from being slow in character to being fast. 

This is not surprising since the plasma pressure is maximum (magnetic field minimum) at æ/a =  0 
whereas the situation reverses as we increase \x\/a. In other words we are moving from a high plasma 
beta regime, where we expect slow waves to dominate, to a low beta region, where fast waves are 

likely to propagate. Therefore it is not possible to classify the mode as globally slow or fast; the 

mode is locally slow in the inner region and fast in the outer parts of the structure. Furthermore, 
unlike the uniform case, the non-uniformity in Alfven speed means the æ-projection of tension is not 
out of phase with the velocity. The Alfven speed is low in the vicinity of the centre of the sheet and 

therefore tension forces are small. Similar results are also found for the z-component. The gradients 
of plasma and magnetic pressures are out of phase around the centre of the sheet. As we move away 
from the centre the plasma pressure perturbations become less dominant than magnetic pressure 
perturbations. In the outer part of the configuration the magnetic pressure becomes greater than 
the plasma pressure.

These points are reinforced by examining the plasma pressure, the magnetic pressure and 
the to tal perturbed pressure (Figure 3.11b). Notice that the plasma and to tal pressures are out of 
phase with the magnetic pressure around \x\/a % 1. However, as we increase \x\ja the perturbed 

plasma pressure decays rapidly and the magnetic pressure and the to tal pressure are in phase for 

\x\/a > 2. Thus for the principal modes the oscillations within the sheet are essentially slow, whereas 
the evanescent decaying velocity is predominantly fast.

By contrast, for the overtones of the modes we find that the oscillations within the sheet 
may possess both fast and slow mode properties. To illustrate this we show the perturbed forces in 
Figure 3.12 for the first overtone sausage hybrid mode with to =  6.12wyie/a and kza =  6.28. Notice 
that in the inner part of the current sheet the perturbed magnetic pressure is small (since B  is 

small). Consequently the plasma and total pressure perturbations are almost equal for |æ |/a < 0.5. 
This suggests that the mode is slow. However the perturbations in the outer part of the sheet are 

different in character. At \ x \ / a ^  1.0 the total, plasma and magnetic pressures are almost in phase. 
Thus both slow and fast type oscillations occur simultaneously in the sheet for the same velocity 
component. For \x\/a > 2 the pressure term is small and the evanescent decaying velocity has the 

character of the fast mode.
Similar results are found for all modes of oscillation. The tension force in the central part 

of the sheet is very small, and tension plays an important role only as the Alfven speed approaches 
its maximum value. We always see that in the high plasma beta part of the sheet the plasma and
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Figure 3.12; A plot of the perturbed pressures for the first harmonic sausage hybrid mode with 

w =  6.12vAe/a and k^a =  6.28. In the central part of the current sheet [\x\/a < 0.5) the plasma 

pressure perturbation pi dominates over the magnetic pressure perturbation pim (a slow mode). 
At \x\/a — 1 the plasma and magnetic pressure perturbations are almost in phase with the to tal 
pressure perturbation. This is similar to a fast mode. Thus for higher overtones we may expect fast 

and slow modes to exist simultaneously. For \x\fa >  2 the mode is fast since the plasma beta is low 

in this region.
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magnetic pressures are in anti-phase, with the plasma pressure dominating. In the exterior of the 

sheet the magnetic pressure is greater than the plasma pressure. For all modes considered we see 

both slow and fast mode characteristics.
It is interesting to note that in the observations of neutral sheet oscillations by Bauer et al. 

(1995a,b) the plasma and magnetic pressures were in anti-phase, in agreement with our theoretical 

results.

3.5.2 E pste in density  profile

When the plasma density inside the current sheet is no longer equal to the density in the 

far environment of the sheet, so that po ^  Pe, the profile (Equation 3.38) is the Epstein one. The 
results for the Epstein profile are similar to those in the uniform density case and so we summarise 
the main results and illustrate the main differences. We take the plasma density at the centre of 

the current sheet to be five times larger than the constant density away from the current sheet: 

po/pe =  5.
The curves in the dispersion diagram are similar to the uniform density case; see Figure 3.13. 

Both kink and sausage, body, surface and hybrid modes may exist. A current sheet therefore supports 
a rich spectrum of modes. The sausage surface mode, which again exists for all k^a, has a phase 
speed equal to the tube speed in the slender current sheet approximation. In the short wavelength 

limit the phase speed tends to a constant value u>/kz 0.38t;^e for k^a ^  1. An application of 

Equation (3.33) gives a phase speed of OAOvac- The principal kink mode originates as a body mode 
{üü/kz w VAe)‘ As the phase speed decreases the body mode transforms into a hybrid mode. When 
the phase speed passes through the maximum value of the sound speed the mode changes character 
and becomes a surface wave. The phase velocity of this mode tends to the same value as the sausage 

surface wave. In addition, body and hybrid waves exist above wavenumber cut-offs: the fundamental 

sausage mode has a threshold of kza = 0.63, first kink overtone 1.10, first sausage overtone 1,65, and 
the second kink's threshold is at kza = 1.96. These cut-offs are lower than in the case of uniform 

density. These body modes, as in the uniform density case, transform into hybrid waves when their 

phase speed decreases. Again, a sausage and a kink mode interleave when their phase speed falls 
below the maximum sound speed within the current sheet. Each kink and sausage mode pair tends 
to a slightly higher value than the previous pair. We see, however, that for the Epstein density 
profile the phase speed only falls below the maximum sound speed level for much higher values of 

the wavenumber than in the case of uniform density. For example, for the fundamental body sausage 
mode the transition occurs at ss 25, whilst for the uniform density case it is at a «  5.

The driving forces show a similar form to the uniform density case.
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Figure 3.13; The dispersion curves for magnetoacoustic wave propagation in a current sheet with 

an Epstein density profile (Equation 3.38) with an enhancement of po/p^ = 5; =  0.408i;/ie,
^max _  o.290t>yie- We have only plotted the phase speed over a narrow range. Body and hybrid 

waves exist in the range < ui/kz < whilst surface and hybrid waves exist below and 

above . Continuum solutions only exist below c Ç ? . Modes are classified as either body, surface 
or hybrid depending upon their phase speed and wavenumber. The modes occur in pairs, the phase 
speed of each pair merging after they pass through the level .
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3.6 A pp lications and C onclusion

3.6.1 A pplication  to  observations

We now apply our results to some observations. For convenience we use the case of uniform 
density. For solar applications we consider a constant Alfven speed in the exterior of the sheet of 

VAe ~  1000 km s“  ̂ and a sheet width 2a equal to 1000 km. For magnetospheric applications an 

Alfven speed of 500 km s“  ̂ is used with a sheet width of 2a =  Rb (= 6400 km). The periods 
determ ined using our model are given in Table 3.2. The fundamental surface mode periods are 
estimated using a value of Ar̂ a =  0.5, whilst the periods for the other modes are estimated at the 
onset of the modes (i.e. at the cut-off value of k^a). For the coronal case periods lie in the range 0.5

Mode Corona Magnetosphere
Surface Sausage 
Fundamental Kink 
Fundamental Sausage 
First Harmonic Kink 
First Harmonic Sausage

12 sec
3.5 sec
1.5 sec 
1.0  sec 
0.5 sec

2.5 min 
1.45 min 

19 sec 
13 sec 
8 sec

Table 3.2: Estimated periods of ducted waves in current sheets.

to 12 seconds. Interestingly, periods of this order are frequently reported (see Aschwanden 1987 and 

Section 1.2 for a review of radio and X-ray observations). In particular Zlobec et al. (1992) report 

a 11.4 second oscillation two hours after a solar flare; we suggest this may be due to surface waves 

in a current sheet. There are many recent reports of short period oscillations which may also be 
due to magnetoacoustic waves in current sheets. Pasachoff and Landman (1984) and Fasachoif and 
Ladd (1987) detected intensity variations of the green coronal line with periods between 0.5 and 4 
seconds. Short oscillations are also abundantly reported in radio and X-ray emission. For example, 

Correia and Kauffman (1987) report oscillations of 0.3 seconds in hard X-rays whilst Zhao et al. 

(1990) give periods of 1.4 and 1.6 seconds in microwaves; Aschwanden (1994) and Karlicky & Jiricka 

(1995) give further examples of short period coronal oscillations.

For the Earth’s magnetosphere our calculations give periods in the range 8 seconds to
2.5 minutes, for the various modes. Therefore the 1-2 minute magnetic field fluctuations of the 
neutral sheet observed by Bauer et al. (1995a,b) may indeed be due to magnetoacoustic waves 

propagating in a neutral sheet. Magnetic variations and boundary motions on time scales from a 
few m inutes to several hours have been explained as “flapping” motions of the tail (Mihalov et al. 

1970; Hruska and Hruskova 1970; Hones et al. 1971; Russell 1972). Longer periods may be due to 
surface waves with kza < 0.5, or for circumstances with lower Alfven speeds and/or wider sheets.
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3.6 .2  Sum m ary of resu lts

We have seen that a current sheet may support guided magnetoacoustic waves. The waves 
are trapped by the inhomogeneity in the magnetic field. Modes may be excited by, say, solar flares, 

magnetospheric substorms or reconnection events. Once excited the waves may propagate along 
a current sheet and be the source of reported oscillations in the solar corona and in the E arth’s 

magnetosphere.
A current sheet supports waves which may be body, surface or hybrid. An exam ination 

of the driving forces and perturbed pressures shows that no purely fast or slow modes exist in the 
structure. Observed oscillations have properties of both types of mode. A fundamental sausage 
surface wave exists for all values of the wavenumber; in the long wavelength limit the phase speed 

approaches the maximum value of the tube speed in the current sheet. A fundamental kink wave 

also exists in a current sheet. For long wavelengths (with phase speeds approaching the maximum 

value of the Alfven speed in the sheet) the wave is characterised as a body mode {k  ̂ > 0 for all 
\x\/a in the structured region). As the phase speed decreases attains both positive and negative 

solutions; this is a hybrid mode. For lower phase speeds {uj/kz < c^ ““’) the mode changes nature 

and becomes a surface wave (/ĉ  < 0 for all |æ |/a in the inhomogeneous region). For short wavelength 
oscillations the phase speed of the fundamental kink and sausage surface waves is constant, tending 
to approximately the value given in the simple slab model of Edwin et al. (1986); see Equation 3.33. 

Harmonics also exist above wavenumber cut-offs; these may be body or hybrid depending upon 

the phase speed. The dispersion curves of a pair of kink and sausage modes merge when their 
phase speeds fall below the maximum sound speed within the sheet (the fundamental sausage mode 
interleaves with the first overtone kink mode, the first overtone sausage mode with the second kink 

mode, and so on). The phase speeds of each pair merge after the phase speed passes through the 

maximum sound speed. The results are similar to those obtained by Edwin et al. (1986) for an 
unstructured slab. The main difference is that, due to the continuous structuring, body modes 

transform into hybrid modes for all harmonics. In the slab model of Edwin et al. (1986) body 

modes were trapped in the phase speed range between the sound speed in the field-free region and 
the exterior sound speed. In addition the fundamental sausage mode, which in our case tends to 
^max £qj, ^  approaches zero as —>• 0 ; in the slab model the tube speed in the field-free

region is zero.
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C h a p ter  4

Im pu lsively G enerated W aves in 

Current Sheets

4.1 Introduction

Having seen the dispersive form of the magnetoacoustic waves in a current sheet in Chap­
ter 3 it is of interest to examine the group velocity. The group velocity of a mode with dispersion 
relation u) = u} {kz) is dui/dkz in the ^-direction. Of particular interest is the possible occurrence of 

a minimum in the group velocity, since this plays a significant role in the behaviour of impulsively 
generated waves (Roberts, Edwin and Benz 1983, 1984). This chapter investigates the temporal evo­

lution of impulsively generated waves in a structured current sheet through numerical simulations. 
A comparison with observations both in the solar corona and the E arth’s magnetosphere is made.

The format of this chapter is as follows. In Section 4.2 we briefly explain the theory of 
impulsively generated waves. In Section 4.3 we apply this theory to the current sheets examined in 
Chapter 3, whilst the results of the numerical simulations are reported in Section 4.4. A compar­
ison with observations of pulsations in the solar corona and the Earth’s magnetosphere is made in 

Section 4.5. Finally our results are summarised, and conclusions drawn, in Section 4.6.

4.2 Im pulsively G enerated  W aves: T heory

Suppose that at a time t =  0 an impulse (such as due to a reconnection event or a MHD 
instability) occurs at a location z =  0. This impulse is composed of all frequencies. The wave 
observable at large distances z = h from the initial impulse evolves on the basis of the group 

velocity curve, as described in the following (Roberts, Edwin and Benz 1983, 1984); an example 
of a group velocity curve is shown in Figure 4.1. The event begins with a periodic phase starting 

at a time t = hfvAe and consists of low frequency, low amplitude waves; this corresponds to the
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Figure 4.1: The dimensionless group velocity CgjvAe plotted as a function of the dimensionless fre­
quency ujalvAe for the principal kink mode in a tanh profile current sheet with uniform density. A 
m inimum in the group velocity occurs =  0.617v>ie) for frequency u> =  1.166?;yie/a. Impul­
sively generated kink waves will therefore show a wavepacket behaviour similar to that described by 

Roberts, Edwin and Benz (1983, 1984), Group velocity m inima do not exist for the other modes.

left-hand branch of the group velocity curve. The frequency and amplitude of the waves in the 
periodic phase grow until a time t  = where is the constant group velocity at high
frequency. This time marks the onset of the quasi-periodic phase. A train of high frequency waves 
(from the right-hand branch of the group velocity curve) are superimposed on low frequency waves 

(from the left-hand side). The amplitude of this phase, in an impulsively excited disturbance, is 

strongly enhanced due to the superposition of the high and low frequency waves (Pekeris 1948; see 
also Ewing, Jardetzky and Press 1957). The oscillations are quasi-periodic; the amplitude varying 
inversely proportionally with the slope of the group velocity curve. During this phase the frequency 
of the high frequency waves continues to decrease, whilst those of the low frequency waves continue 

to increase. This occurs up to a time t — where is the m inimum group velocity, when
the two frequencies take the same value. This marks the onset of the decay phase. The disturbance 

then consists of a single frequency w""*" and the plasma continues to oscillate with this frequency, 

although its amplitude decays rapidly. The durations of the periodic and quasi-periodic phases are
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Figure 4.2: The temporal signature of impulsively generated waves in a coronal loop (reproduced 

from Roberts, Edwin and Benz 1983, 1984). Notice the existence of three distinct phases in the time 
evolution. In our calculation vaq =

given by (Roberts et al. 1983, 1984)

^dur h r 1 1 1 r Q P  -  h 1 1 1
^const V Ae.

> dur ^ m in f,consi 
^9  -1

(4.1)

Figure 4.2 reproduces the theoretical prediction of the temporal signature of impulsively generated 

waves in coronal loops (Roberts, Edwin and Benz 1983, 1984). The authors argue that such a 
signature is evident in temporal variations of radio, X-ray and coronal emission lines.

4.3  A pplication  o f theory  to  current sh eets

The group velocity curve for the principal kink mode is shown in Figure 4.1 for the case of 
uniform density (Section 3.5.1). Notice the existence of a minimum in the group velocity suggesting 
that impulsively generated waves in current sheets will possess a temporal signature similar to that 

displayed in Figure 4.2. The minimum group velocity is =  0.617u^e, occurring at a frequency 
_  i , i 6 6 ü^e/a- These values are of importance in the theory of impulsively generated waves 

(see Roberts, Edwin and Benz 1983, 1984 and Section 4.2). However no minimum in the group 

velocity exists for the other modes in the uniform density current sheet. For an Epstein density 
profile we find the group velocities possess minima for all modes except the sausage surface. The 
value of is approximately the same for all cases considered; namely 0.316t;yie for the surface 

kink and approximately 0.356t;^e for all the other modes examined. The m inimum frequency equals 
0.462u^e/a and 2.TlAvAe/o. for the principal and first harmonic kink modes and 1.672t;^e/a and 
3.846ü^e/a for the principal and first harmonic body sausage modes. To summarise, impulsively
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generated waves in a structured current sheet are expected to show a similar temporal form to that 
analysed by Roberts et al. (1993, 1984). The absence of a minimum in the group velocity also arises 
in the work of Nakariakov and Roberts (1995). Considering coronal loops modelled by different 
density profiles, they found that the Epstein profile was a special case: it had no minimum, whereas 
other density profiles possessed minima.

As a numerical example consider the principal kink mode for the case of constant density, 

w ith the results displayed in Figure 4.1. The minimum group velocity is =  0.617v^e occurring 

at a minimum frequency of =  1.166vAe/0“ At high frequency the group velocity approaches 
^const _  o.675v^e- For solar applications we assume an observational height h — 10® km above 

the impulse and an Alfven speed of 1000 km s~^; then the periodic phase starts 100 seconds after 

the impulse and lasts for 48 seconds. The quasi-periodic phase has a duration of 13.9 seconds 
with a m inimum period of 2.7 seconds at the end of the phase. For the magnetosphere consider 

h =  50 Re (=  3 .2  x 10® km) and an Alfven speed of 500 km s"^. The periodic phase begins about
10.5 minutes after the impulse and lasts for 5 minutes. The quasi-periodic phase has a duration of 

89 seconds with a minimum period of 34 seconds. The decay phase then follows.

The periodic phase is relatively low in amplitude and so may not be observable because of 
noise or poor resolution. In which case our illustration gives a wavepacket of about 14 seconds dura­
tion with a minimum period 2.7 seconds observable in a coronal current sheet. In the magnetospheric 
sheet the observable quasi-periodic phase would last for about 89 seconds, with a m inimum period 

of 34 seconds. Of course this illustration is for a single pulse initiated at the centre of the sheet. 
More complicated time signatures may be expected for multiple impulses or pulses that occur away 

from the centre of the sheet (see the numerical simulations by Murawski and Roberts (1993a,b) for 

the case of a coronal loop). In our equilibrium a pulse will generate the disturbances described plus 

a z-component of velocity (% and Vg are coupled). Therefore more complicated temporal signatures 
may result from this coupling.

4 .4  N um er ical S im ulations

A localised impulsive energy source such as a solar flare, a reconnection event, an instability 

or a magnetic substorm, may generate magnetoacoustic waves within a current sheet. It is the 

purpose of this section to investigate this phenomenon numerically. The equilibrium magnetic field 
and plasma pressure profiles are given by Equations (3.35) and (3.37) respectively. The plasma 
density is taken to be uniform. We again consider the case d/dy  = 0 and take Vy — 0; this removes 
the Alfven wave from our simulations.

Small amplitude perturbations of the equilibrium obey the linearised MHD equations
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(Roberts 1981a) 
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(4.2)

(4.3)

2 c o s h M f ) ’ ( f  ) , (4.4)

and Cy =  c^ + v \ .  The ratio of specific heats 7  is taken to be 5/3. Equations (4.2) and (4.3) describe 
the motions of the x and z-components of velocity, which are coupled. Lengths and speeds are 

normalised against the half width of the slab (a) and the exterior Alfven speed [vab] respectively.

The time evolution of impulsively generated waves is investigated using a flux corrected 

transport (FCT) algorithm (Murawski and Goossens 1994). The aim of the algorithm is to minimise 
numerical errors. For finite difference schemes there are three errors which affect the accuracy of 
simulations. The first error is numerical diffusion and results from the fact that material which has 
just entered a cell, and is still near one boundary, becomes smeared over the whole cell. This error 

is larger for short wavelengths and thus very short wavelengths are removed from the simulations. 
The second error is dispersive in nature, which means that a wavepacket will disperse in time. The 
third error is related to the G ibb’s phenomenon in Fourier analysis and small ripples appear in the 

solution. This effect is pronounced near steep gradients and appears because of the truncation of 
the Fourier spectrum.

The numerical algorithm consists of three stages: transport, diffusion and anti-diffusion. 
The transport stage (advancing from time t to time t 4- At)  introduces ripples in the solution 

through numerical errors. In the diffusion stage a strong numerical diffusion is applied to the 

transported solution to remove these spurious oscillations from it. This transported and diffused 
solution contains an excess amount of numerical diffusion. This is subsequently compensated for by 
introducing anti-diffusive fluxes. For full details of the algorithm see Murawski and Goossens (1994).

The boundaries of the simulation box are located at x/ a  =  ±4 and z ja  — ±10. The 

computational box is divided into a non-uniform grid of 300 cells in the æ-direction and 200 in the 

z-direction. For all simulations we use free boundary conditions which represent a natural extension 

of the region outside the computational domain. The proper treatment of the boundary conditions 
a t the edges of the region is a complex aspect of time-dependent numerical simulations. It is not an 
easy m atter to avoid unwanted reflections at the boundaries. To minimise these we stretch the grid 

near the outflow boundaries and apply damping to the velocity components of the 12 grid points 
nearest the boundary. This has been found to work well.

Initially, at f =  0, we apply an impulse (to excite kink waves) given by

~  =  0 ) =  ( ï ^ ) 'c o s h “  ( ^ )  ’ ( '̂ S)
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where (%o, zq) determines the location of the pulse; Equation (4.5) describes a pulse that is strongly 
concentrated about x = xq, z  ~  z q . We consider only small amplitude perturbations and take 

%o =  0.005tiyie for all simulations. Waves which are trapped by, and leak from, the current sheet 
are measured at fixed locations {x/a, z/a) = (0.5, 7) and (—2,0) respectively to obtain the temporal 

signatures.

4.4.1 In itial R esponse after Im pu lse

We consider a single impulse with x q  z q  =  0. Initially the pulse disperses in the æz-plane. 

Some of the wave energy leaks from the current sheet whilst the remaining wave is trapped by the 

inhomogeneity in the magnetic field. The wave ducting is a consequence of the impulse being re­

flected by the inhomogeneity in Alfven speed. The spatial variation of the energy density for the 
æ-component of velocity, l /2pv^,  is illustrated in Figure 4.3 at time t = lOa/vAe- Outwardly prop­
agating (leaky) waves can be seen travelling away from the current sheet. These may be observable 
wave phenomena in coronal or magnetospheric current sheets. The remaining wave energy is located 

within the current sheet (|æ |/a < 2). The impulse generates a pair of surface waves which propagate 
in opposite directions. The waves have maximum velocity near the edge of the sheet with a dip in 
the centre. From the dispersive curves (Figure 3.7) we expect the generation of body, hybrid and 

surface waves. The body and hybrid waves are likely to be observed in the periodic phase, whereas 

surface waves are probably present in the quasi-periodic phase (see the discussion in Section 4.2).
In addition, due to the coupling of the x and z-components of velocity (see Equations 4.2 

and 4.3), the initial impulse in also generates a z-component with comparable amplitudes to 
This wave also propagates along the sheet and may be observable. Outside the current sheet region 
the plasma beta is small and consequently Vz will attain low values in this region. The highest 

values of Vz will be in the vicinity of the centre of the sheet since the plasma pressure (and also 

sound speed) is highest there. Therefore a localised energy source, such as a flare or reconnection 
event, will create propagating waves in a current sheet and also waves which propagate away from 
the inhomogeneity (leaky waves). Both sets of waves may be observable.

4.4.2 Tem poral Signatures

We consider two idealised cases: a single impulse centred on {xo/a =  0, Zo/u =  0) and two 
impulses located at {x/a, z/a) ~  (2,0) and (-4,0). The velocity produced in the time signatures is nor­

malised against the amplitude of the initial impulse To estimate the periods we take a = 500 km 
and VAe = 1000 km s“ ,̂ values representative of the solar corona. The Lomb-Scargle periodogram, 
in a desired frequency range, is computed using the algorithm of Carbonell and Ballester (1991). The 

Lomb-Scargle periodogram is a powerful algorithm for the time series analysis of unevenly sampled 
data. The algorithm of Carbonell and Ballester (1991) allows the search of periodicities in data 
within a specified time interval (see also Scargle 1982).
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Figure 4.3: A surface plot of the z-component of kinetic energy density ( l /2pvl )  at t = lOa/vAe 
for a single impulse applied at (xo,Zo) = (0,0). Notice the existence of low amplitude outwardly 

propagating waves (leaky modes) and high amplitude ducted surface modes. These trapped waves 
propagate along the current sheet and exhibit a distinctive time signature.
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S ing le Im p u lse

The results for the time signatures due to the application of a single pulse at zq =  zq =  0 
applied at time i =  0 are presented in Figure 4.4. In Figure 4.4a and 4.4c we show the results of 

measuring the z and z-components of velocity respectively, at a fixed location in space. We see 
that the three phases predicted by Roberts et al. (1984) for a coronal loop are also present for 

a current sheet. The periodic phase is very low in amplitude and is represented by a horizontal 
line. The quasi-periodic phase begins abruptly and some well defined oscillations can be observed 

in both components of velocity; finally the oscillations decay. The temporal signature for Vz is 
longer in duration than the one for Va,. However the largest oscillations in Vz occur through the 
coupling of Vx and Vz', these are the most likely to be observed. In Figure 4.4b the periodogram of 
Vx illustrates the periods where power is located. Periods in the range r  = 5-lOa/vAe are obtained 

with a peak at r  =  %.ha/vAe (4.25 seconds). The minimum period i s r %  hajvAe (2.5 seconds) which 
is in broad agreement with the group velocity curve (r  =  27ra/1.166wyie =  bAa/vAe)- In Figure 4.4d 
the periodogram of the leaky wave time signature is shown (z-component). Notice that energy is 

distributed over a broad period range. The maximum power in the leaky waves is seen at r  =  ZafvAe 

(1.5 seconds), whilst significant power is also located between r  =  l .ba/vAe (0.75 seconds) and 

r  =  A.ba/vAe (2.25 seconds). Therefore certain reported short period oscillations (see Sections 1.2.3 
and 1.2.4) may be due to trapped modes, other oscillations to leaky modes.

We now apply our results to neutral sheet oscillations in the E arth’s magnetotail. Bauer 

et al. (1995a,b) and Mihalov et al. (1970) have measured periods of 1-2 minutes and 100 seconds 
respectively. Assuming typical magnetospheric values of vab — 500 km s“  ̂ and a ~  6400 km (radius 
of the Earth) we obtain, for r  in the range 5-lOa/u^e, periods between 1 and 2 minutes. Therefore, 

these observations may be due to magnetoacoustic waves that have been excited by some impulsive 
event and then guided by the wave duct.

M u lt ip le  Im p u lse

As an example of a more complicated situation we consider a multiple impulse (Figure 4.5). 
The time signature of the z-component of velocity (Figure 4.5a) shows the quasi-periodic phase is 
more oscillatory than that of a single pulse (Figure 4.4a) and a well defined wavepacket can be 

seen. The power spectrum (Figure 4.4b) shows that the maximum power is located at r  =  b.ba/vAe 
(2.8 seconds). A smaller peak is also seen at r  =  Z.ba/vAs (1.75 seconds). In Figure 4.5c we see a 
quasi-periodic oscillation in the z-component of velocity similar to some observations (e.g. Correia 

and Kaufmann 1987). The leaky wave (%*) power spectrum (Figure 4.5d) shows that leaky waves 

have lower periods than trapped waves. The maximum power in the periodogram is at r  =  2.ba/vAB 

(1.25 seconds) whilst significant power is also observed at r  =  l .ba/vAe (0.75 seconds), r  =  Z.lba/vAB 
(1.875 seconds) and r  =  l.ba/vAe (3.75 seconds).
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Figure 4.4: Temporal signatures and power spectra resulting from a single impulse applied at 

{xo/a,zo/a) — (0,0). In (a) the time signature of the æ-component of velocity measured at 
{x/a, z /a)  = (0.5, 7) is shown, and in (b) we give the periodogram of v^. Notice that power exists in 

a broad range of periods r  =  b-lOa/vAe (2.5-5 seconds). In (c) and (d) the temporal signature for 

Vz and the periodogram of the leaky waves temporal signature (ü®) are illustrated respectively. The 
impulsive event generates a distinctive wavepacket behaviour in both velocity components. Notice 
that significant power exists for short period leaky wave oscillations.
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Figure 4.5: Temporal signatures for two impulses applied at {xo/a, zo/a) — (2, 0) and (-4, 0) at time 
f z= 0. (a) and (c) show the time signatures of the x and z-components of the velocity. Notice that 

the signatures are more oscillatory than in the case of a single impulse. The periodogram of Va; is 

shown in (b); power is located at r  =  b.Qa/vAe and to a lesser extent at r  =  Z.ba/vAe- In Figure (d) 
the periodogram of the leaky wave (%*) signature is shown; power is mainly located at r  =  2.5a/n^e, 

but there is also significant power at r  — 3.7ba/vAe (periods of 1.25 and 1.875 seconds respectively). 
Therefore, short period oscillations may be due to trapped and leaky waves.
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4.5 C om parison w ith  O bservations

It is interesting to note that similar temporal signatures to our numerical simulations 

(Figures 4.4 and 4.5) have been observed in both the solar corona and in the E arth’s magnetosphere.
For example Correia and Kaufmann (1987) have reported fast pulsations with a similar 

temporal form to that presented in our simulations. Radio observations at 30 and 90 GHz, following 
a solar burst, show a striking resemblance to the numerical simulations of impulsively generated 

waves in current sheets (Section 4.4) and coronal loops (Murawski and Roberts 1993a,b). An extract 
of Correia and Kaufmann’s results is illustrated in Figure 4.6. This comparison between observations 

and theory suggests that an impulsive event (the solar burst) excites magnetoacoustic waves which 
are subsequently guided by either a current sheet or coronal loop. Once excited these waves exhibit 
a similar temporal signature that shown in Figure 4.2.

Furthermore the Pi2 pulsations in the plasma sheet of the E arth’s magnetosphere show 
similar temporal variations to our numerical work. The results of Singer et al. (1985) are shown 

in Figure 4.7. Initially a low amplitude phase is observed which is followed by a large amplitude 

quasi-periodic phase. The oscillations decay after a few cycles. This data is in broad agreement with 
simulations of neutral sheet oscillations.

Finally, the observations of neutral sheet oscillations in the E arth’s magnetosphere of 
Bauer et al. (1995a,b) are illustrated in Figure 4.8. The observations show an irregular period, 

w ith the magnetic pressure perturbation p s  out of phase with the plasma pressure pe and total 

pressure pr  perturbations (in accordance with Figure 3.11). The oscillations last for a few cycles 
before decaying which is in good agreement with our simulations. In addition the observations show 
the three phases predicted by Roberts et al. (1983, 1984).

These examples of oscillations in the solar corona, the plasma sheet and the neutral sheet 

suggest that some of the reported pulsations in both the corona and magnetosphere may be due to 
impulsive events. Once generated the magnetoacoustic waves are guided by the inhomogeneity in 
magnetic field and exhibit a distinctive signature.

4.6  Sum m ary and C onclusion

Impulsively generated waves in neutral sheets have been investigated. For a structured 

current sheet with a uniform density profile a minimum in the group velocity exists only for the 
fundamental kink mode, whereas for the Epstein profile m inima also exist for other modes. The 
presence of a minimum in the group velocity plays a significant role in the theory of impulsively 

generated waves. Roberts, Edwin and Benz (1983, 1984) showed that an impulsive event in a 
coronal loop generates a distinctive temporal signature consisting of three phases; a low amplitude 
and low frequency periodic phase followed by a large amplitude high frequency quasi-periodic phase 
and finally a decay phase. In this chapter we have shown that similar results arise in a structured
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Figure 4.6: Fast pulsations in radio emission in the solar corona from Correia and Kaufmann (1987). 

Notice the similarity between the observations and the simulations of impulsively generated waves 

in current sheets (Figures 4.4 and 4.5).
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Figure 4.7: An example of Pi2 pulsations recorded by Singer et al. (1986). The agreement between 
the results and simulations is good.
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Figure 4.8; An example of neutral sheet oscillations recorded by Bauer et al. (1995a,b).

current sheet. Our numerical results illustrate that if an impulsive event occurs in a current sheet, 
magnetoacoustic waves will be guided by the inhomogeneity in magnetic field. These waves exhibit 
a distinctive temporal signature similar to that produced by coronal loops. Leaky waves possess the 

shortest periods.

An application of Equation (4.1) shows the predicted time scales for impulsively generated 
waves in the solar corona and Earth’s magnetosphere are in good agreement with certain observa­
tions. In addition the predicted temporal signatures are in broad accordance with some observed 

data.
An exam ination of Figures 4.4 and 4.5 show that an impulse of amplitude ^ ,̂0 generates 

motions of only 4 % in the velocity. Some of the initial energy of the impulse leaks into the 
environment whilst the trapped energy is distributed amongst all the various frequencies. In addition 

the impulse in Vx also generates velocity motions in the z-direction, thus reducing the amplitude 
of the oscillations. This may suggest that only very energetic events will result in observable wave 
motions.

In practice we may expect that a flare or reconnection event will not be a single impulse 

applied in the centre of the current sheet. Instead a series of impulses applied at different times and 
locations will be more realistic. However the agreement between the observations and numerical 

results of the time scales and temporal signatures is encouraging.
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C h ap ter  5

A cavity driven by a random  

boundary displacem ent

5.1 Introduction

Wave propagation in inhomogeneous plasmas is important not only in the solar atmosphere 
but also in the Earth’s magnetosphere, which provides another excellent example of a structured 
plasma able to support waves. In Chapter 4 we saw how magnetoacoustic waves in current sheets, 

both in the solar corona and E arth’s magnetosphere, may explain certain of the observed pulsations 
in these regions. In this chapter we turn our attention to the investigation of the propagation of 
Ultra-Low-Frequency (ULF) waves in the magnetosphere, paying particular attention to the coupling 
between the fast and Alfven modes.

We begin by giving an overview of the magnetosphere. The outer atmosphere of the Sun, 
the corona, has a temperature of several million degrees kelvin. At such high temperatures the 
electrons and ions have sufficient energy to escape the Sun’s gravitational attraction. This is called 

the solar wind. The Earth’s magnetosphere is the region defined by the interaction of the solar wind 

with the dipole magnetic field of the Earth. It extends from approximately 100 km above the Earth’s 
surface to about 10 Re (Re =  6400 km) in the sunward direction. In the anti-sunward direction it 

extends out to several hundred Re- Since the velocity of the solar wind is greater than the sound and 
Alfven speeds a bow shock forms, across which the solar wind flow becomes sub-sonic and gives rise 
to a turbulent magnetosheath. The magnetopause is the boundary between the magnetospheric and 
solar wind magnetic fields of the magnetosheath. The magnetotail consists of oppositely directed 
field separated by a neutral sheet, where the magnetic field passes through zero. Surrounding the 

neutral sheet is the hot plasma sheet which is 4 to 6 Re wide. See Mann (1995) for a detailed review 
of the structure of the Earth’s magnetosphere and ULF waves in this region. A schematic sketch of 

the magnetosphere is shown in Figure 5.1.



CHAPTER 5. A  C A V ITY  DRIVEN B Y  A  RANDOM  BOUNDARY DISPLACEM ENT 130

Infftrplonetary Medfum

Solar Wind

MognefopausorI 9  II |l I' V ' i •.

Polor
Cusp Magn»fofaff

(North Lobe;

NeutraluSITia îîüîîniTrsstv»^«n??7-|.VTTo 4 4 « ■ i ̂  « I ■ R ■ ■ ■ • »«■

* Â #*RRRRR#*gL« !■■eiüjuüiiiV^ Point

Neutrol Sheet

MagnetotailBow
Shock

(South Lobe)
Plosmdspher©

Magnetoshaoth •

Figure 5.1: A schematic sketch of the E arth’s magnetosphere taken from the World W ide Web page 
h ttp  : / /  w w w-ssc. igpp. ucla.edu/.
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ULF waves have frequencies ranging from 1 mHz to 1 Hz (Anderson 1994). Pulsations are 
classified as either Pc “Pulse continuous” or Pi “Pulse irregular” . These refer to waves that are 
quasi-sinusoidal lasting for a few cycles, or irregular pulsations which are shorter lived.

In this chapter we investigate the coupling between the fast magnetoacoustic and Alfven 
modes in a magnetospheric cavity driven by a random boundary displacement. A random driver is a 

more realistic case than the monochromatic drivers considered by previous workers, f^or example, the 

buffeting of the magnetospheric cavity by the magnetosheath is unlikely to result in a monochromatic 

driving source.
The aim of this chapter is to study ULF waves in the Earth’s magnetosphere. To undertake 

this investigation we use the magnetospheric box model (see, for example, Southwood 1974). The 

cavity is illustrated in Figure 5.2; its width is L (0 < æ < L) and its height is 2L {—L < z < L). In 
this model we take the magnetic pressure to dominate over the plasma pressure; the cold plasma 
approximation. In addition, the magnetic field is assumed to be straight and uniform, and is situated 

between the Northern and Southern Ionospheres (located at z =  ±L). The x and y-axes represent 

the radial and azimuthal directions respectively. The inhomogeneity in Alfven speed (and density) 

is taken to vary in both the x and z-directions, whilst the magnetopause is taken to lie along the 
X = L field line.

The ionospheric boundaries, located at z =  ±L,  are assumed to be perfectly reflecting, and 
therefore the boundary displacement ^ (z =  ±L)  is zero. Here ^ =  (&,^^, 0) since is zero under 

the cold plasma approximation. We take the normal component of velocity to the magnetic field (̂ a?) 
to be zero at æ/L =  0. This assumes that waves are reflected by a large Alfven speed gradient along 
this line. The governing MHD equations are solved by a numerical scheme developed by Wright and 

Rickard (1995).

We now give some definitions that we use in our work. The Alfven frequency u>a  (r) is 
the natural frequency of an Alfven wave on a field line. For a cavity which is inhomogeneous 

u>A (r) is constant along a field line, but it varies with position throughout the cavity. The fast 
magnetoacoustic mode extends throughout the entire cavity and, unlike the Alfven mode, is not 

confined to an individual field line; see Section 1.4 for the detailed properties of these modes. The 

coupling between the fast and Alfven modes depends upon the wavenumber ky , with weak coupling 
arising in the cases when ky = 0 and fcj, —f oo.

Wright and Rickard (1995) give two criteria for driving an Alfven resonance through a 

random motion. A cavity with an Alfven speed inhomogeneity in one direction was considered for 
linear disturbances under the cold plasma approximation. The driver was found to excite the fast 
eigenmodes which lie within the frequency spectrum of the driver. Therefore, for a fast mode to 
be excited its frequency must lie within this spectrum. Secondly, for the fast mode to drive an 

Alfven resonance the fast mode eigenfrequency must lie within the Alfven continuum. The principal 
result from Wright and Rickard (1995) illustrated that Alfven waves can be resonantly excited even 
when the cavity is driven by a non-monochromatic source. In this chapter we extend their work by
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Figure 5.2: A sketch of the MHD cavity used in our simulations. A uniform magnetic field B =  B qg ,̂ 
permeates the cavity. The driver is situated along the x — L field line. On the three boundaries 

z =  ±X and æ/T =  0 we employ perfectly reflecting boundary conditions for the fast mode {ux = 0 ). 
We take Uy equal to zero at z =  ±1/.

examining randomly driven fast waves in a two-dimensional inhomogeneous cavity.
The format of this chapter is as follows. In Section 5.2 we describe our model and governing 

equations. In Section 5.3 we give an outline of the numerical scheme for solving the ideal MHD 

equations and also the algorithm for obtaining a random driving source. Our results are described 

in Section 5.4. In Section 5.4.1 we calculate the fast mode eigenfrequencies of the cavity and also 
the upper and lower frequencies of the Alfven continuum. Section 5.4.2 shows the temporal form 

of the random driver and its Fourier transform. The response of the cavity to the random driver 

is discussed in Section 5.4.3, and the coupling between the fast and Alfven modes is examined in 
Section 5.4.4. Applications of this work to the seismological study of the magnetosphere are given 

in Section 5.4.5, and finally our work is summarised in Section 5.5.

5.2 G overn ing E quations and Equ ilibrium

The ideal MHD equations governing the small amplitude (linear) velocity (u =  [u, 

and magnetic field (b =  [b ,̂ by^b^]) perturbations in the low-/? approximation are given by

dux 4  I
dt Bo dx

dt Bo
_

dxj

U y ,  0])

(5.1)

(6 .2 )
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W  = +
where the square of the Alfven speed is given by v \  ~  Bq/fiQp, Bq is the magnitude of the equilibrium 

magnetic field and the plasma density is denoted by p. We have taken the magnetic field to be 
uniform; B =  BqBz. Under the cold plasma approximation the fast and Alfven modes are present and 

the slow mode is absent [u^ =  0). When the wavenumber ky is small the fast mode is approximately 

given by Ux, 6® and bz, whereas the Alfven mode is characterised by Uy and by (Wright 1992). The 
Alfven speed profile v a  (æ, z) is assumed to be a separable function: v a  (æ, z) / v a q  = X  {x ) Z  (z). 
Specifically, we use

(5-6)

Z  [z] = 3 —2 cos^7t^ ^  . (5.7)

Here vao is the Alfven speed at {x/L = 0, z / L  = 0) and the cavity width is L. In our work we 
consider the dimensionless frequency of oscillation, defined to be ljL / v a o - The Alfven speed profile 
is plotted in Figure 5.3.

5.3 N um er ical C ode and D river

The basis of the numerical code employed in this chapter is described fully by Wright and 

Rickard (1995). The one-dimensional code was modified to investigate ULF wave propagation in 

a two-dimensional inhomogeneous cavity (Rickard 1996, private communication). The numerical 
scheme is Zalesak’s (1979) leapfrog-trapezoidal algorithm which is second order in both space and 
time. The time step was chosen to be 0.05 of the minimum propagation time across a cell. Energy 

conservation was satisfied to within 1 part in 10®. Given the velocity and magnetic field perturbation 

at any time the next state is found by updating u  and b  at every grid point, except where the driver 
is located along x = L. In our numerical work we impose that =  0 is zero along z /L  =  0 so that 

we are only exciting asymmetric modes. In addition, along the edges of the cavity x / L  = Q and 

z /L  =  ±1, we apply perfectly reflecting boundaries {ux = 0), and Uy is set to zero at z =  ±L.
The algorithm to obtain the random driving source is described in detail by Wright and 

Rickard (1995); here we only give a brief outline. A random set of data for the x displacement of the 

boundary is obtained at discrete times t». Two time intervals are specified A t i  and A/g (> Ati) .  
A random number generator gives a value for the boundary displacement between —1 and 1. The 

time is then determined by tn = t n - i  +  At ,  where the interval A t  is given by either A t i  or A t 2 - 
The probability that At i  is chosen over Afg is taken to be 90 %. If A t 2 is chosen then the next 
two time steps are given by A t \ .  A cubic spline is then fitted to the discrete points to give a
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Figure 5.3: A plot of the Alfven speed profile used in our study. We take the Alfven speed v a  { x , z ) 

to be a separable function written as X  (x) Z  (z). Specifically we take A  (a?) =  1 — (æ/1.3L) and 
A (z) =  3 — 2 cos {'k z / L ) .
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Mode coL/vAd Symmetry
1 2.520 S
2 4.216 S
3 4.395 A
4 5.869 S
5 6.014 s
6 6.132 A

Table 5.1: The eigenfrequencies and the symmetry of about z / L  = 0 for the lowest six fast 
eigenmodes.

continuous expression for the boundary displacement at all times. The z-component of velocity 

is then obtained by differentiating the continuous function of the boundary displacement. For the 

simulations undertaken in our work we take At i  = 1 and Afg =  10. We measure times in terms of 

the Alfven transit time; tA = tvAo/L.
At  tA = 0  we impose that both the boundary displacement and the velocity are zero. 

This removes any transient effects when the boundary motion starts and is achieved by creating a 

symmetrical set of data points about =  0 .

5.4  R esu lts o f  num erical sim ulations

5.4.1 C alculation of A lfven continua and fast eigenfrequencies

We now calculate the frequencies associated with both the Alfven continuum and the fast 
modes which are of importance for our numerical work. The eigenfrequencies when ky Q may 
be estimated by calculating the eigenfrequencies when ky is set to zero. This is the case when ky 
is sufficiently close to zero. This was illustrated by Wright (1992) who finds in the limit of small 
ky the decoupled eigenfrequencies [ky =  0) agree with non-zero ky to within 4 %. Wright (1992) 

concludes that the fast mode oscillates essentially decoupled for small ky . Therefore to calculate the 
eigenfrequencies in our coupled system we take ky <^1 and compute the decoupled frequencies.

We begin by examining the fast magnetoacoustic modes. The lowest six modes of oscillation 
are calculated using the eigenvalue code described in Chapter 2. To obtain these frequencies we set 

ky = 0 and we use the Alfven speed profile (Equations 5.6 and 5.7) with a uniform magnetic field 

B =  Boêz. Table 5.1 gives the dimensionless frequencies and also denotes whether the modes 
are symmetric (S) or asymmetric (A) about z / L  ~  0. Asymmetric and symmetric modes are 
characterised by a node and anti-node in along z / L  — 0, respectively. Note that only one 

asymmetric mode exists (mode 3) in the frequency range 0 < loL / v a q  < 6 .
We now calculate the upper (w^) and lower (w_) frequencies of the Alfven continua and 

also the position of the resonant field lines for the Alfven speed profile used in our study. Consider
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Harmonic u) - L / vao oĵ L / vao Fast mode
1 0.5291 2.2928 -

2 1.5834 6.8613 3, 6 , .. (A)
3 2.4419 10.5814 1, 2, 4, 5, . . .  (S)
4 3.2645 14.1462 3, 6 , .. (A)
5 4.0765 17.6647 2, 4, 5, . .. (S)

Table 5.2: The minimum and maximum frequencies of the first five Alfven continua. The fast 
eigenmodes which lie within the Alfven continuum and share the same symmetry are also given.

the second order ordinary differential equation governing the decoupled (ky = 0 ) Alfven wave

d2 (̂  , W
dz^ v \  (x, z)

(j) = 0 .

Here <j) is the Alfven wave eigenfunction. Writing the Alfven speed as v a  ( x , z ) 

Equation (5.8) becomes

(5.8) 

X { x ) Z ( z ) ,

(5.9)

where we have defined (z) =  Equation (5.9) is solved numerically by applying the
boundary conditions (f) = Q at z = dzL. Equation (5.9) determines the eigenvalues , Qg, . . .  of 
the Alfven mode. The frequencies of the Alfven continuum are then calculated by

" 1  (x) = x^ ( æ )n ? .

In addition, to calculate the position of the resonant field lines we set

u j  -  ÛAi =  (Xri) o f  ,

(5.10)

(5.11)

where w/ is the fast mode eigenfrequency and Xri is the position of the resonant field line.
Table 5.2 gives the frequencies of the first five Alfven continuum modes (Wright 1996, 

private communication). The lower (w-L/u^o) and upper (w+L/u^o) frequencies of the Alfven 
continuum are given. In addition the fast modes from Table 5.1, that have frequencies within each 
continuum range and possess the same symmetry as the Alfven mode are given. We also denote 
whether these modes are symmetric (S) or asymmetric (A).

In our work we suppress symmetric modes by imposing a node in along z /L  =  0. We 

notice from Table 5.2 that the third and sixth fast magnetoacoustic modes (which are asymmetric) 
will couple to both the second and fourth Alfven harmonics. From Equation (5.11) we calculate 
that the second and fourth Alfven harmonics will have frequencies equal to the third fast mode at 

locations z ^2 =  0.467L and z^4 =  0.896L, when driven by the third fast mode with =  4.395.
For the sixth fast mode, at a frequency oiu>j L / vaq =  6.132, we find the second and fourth harmonic 
Alfven modes will be excited at locations z ^2 =  0.138L and z ^4 =  0.737L.
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5.4.2 Tem pora l form  of random  driver

Figure 5.4a shows the random driving velocity Ux {x = L, z = 0.15L) as a function of 
tvAo/L.  In Figure 5.4b we show the Fourier transform of the velocity in Figure 5.4a. The driver 

has a broadband frequency spectrum lying in the range 0 < ojL / vaq < 6 and there is no preferred 
driving frequency. The dashed line in Figure 5.4b denotes the frequency of the only asymmetric 
mode, u)fL/vAo =  4.395, which exists within the frequency range of the driver. It is important to 
note that the driver does not favour this eigenfrequency. From Table 5.2 we expect this fast mode 

to be im portant in our simulations, along with the second and fourth Alfven harmonic resonances.

5.4.3 R esponse of cavity to  random  driver

In this section we investigate how the cavity responds to the random driving motion. The 

cavity is randomly driven as described in Section 5.3. We set kyL =  0.01. Figure 5.5a shows 
the z-component of velocity (wa,) at a fixed point (z /L  =  0.93, z /L  =  0.45) within the cavity as a 

function of time. The velocity is much more coherent than the driving motion (compare with Fig­
ure 5.4a). This is clearly seen by examining the Fourier transform of Ux (Figure 5.5b). The presence 

of a preferred frequency of oscillation within the cavity is now evident. It is interesting to note that 
this frequency appears to correspond exactly with the third fast mode eigenfrequency calculated 
using the code from Chapter 2. Notice that the sixth fast mode frequency, üĵ L / vaq = 6.132, is not 
excited since it lies outside the frequency range of the driver.

Since kyL is small. Figure 5.5a essentially gives the temporal variation of the fast mag­

netoacoustic mode at a fixed location within the cavity. It is evident that the cavity filters the 

random driving source and frequencies that are not eigenfrequencies of the cavity are suppressed. 
The cavity oscillates in a quasi-monochromatic fashion, since it is dominated by power in a very 

narrow frequency range.
The fast eigenmodes in the cavity are excited providing their eigenfrequencies lie within 

the spectrum of the driver. This is in agreement with the results of Wright and Rickard (1995). This 
result may be expected by considering physical analogies. Consider, for example, blowing air across 

an empty bottle or playing a wind instrument. Even though the source of the sound is broadband 
the instrument or bottle extracts characteristic frequencies.

To summarise, we have driven a cavity with a broadband spectrum 0 < wL / vao < 6 . W ithin 
this frequency range we have calculated that one asymmetric frequency exists {ujfL/vAo =  4.395). 
The cavity extracts this eigenfrequency from the driver, suppressing all other frequencies. Having 

seen that the non-monochromatic driver is able to excite a quasi-monochromatic fast mode, we now 
examine how this mode may couple to an Alfven wave.
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Figure 5.4; In (a) the temporal form of the random driver is depicted and in (b) the Fourier transform 

of (a) is shown. The velocity is measured at æ =  L, z — 0.15L. Notice that the driving source is 

a broadband spectrum with frequencies lying in the range 0 < ujL / vaq < 6 . The dashed line denotes 
the position of the only asymmetric mode which exists within this frequency range. Note that the 

driver does not favour this frequency.
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Figure 5.5: In (a) we show the æ-component of velocity (corresponding to the fast mode) at the 
location (æ/L =  0.93, z j L  — 0.45) in the cavity. Notice that the oscillation is more coherent than 

the driving motion (Figure 5.4a). In (b) the Fourier transform of (a) is shown. The dashed line 

shows the frequency of the first asymmetric mode at a dimensionless frequency of =  4.395.
The frequency of the fast mode within the cavity is equal to u>i L / vaq- The cavity therefore acts 
as a filter, suppressing frequencies which are not eigenfrequencies of the system, allowing cavity 

eigenmodes to dominate the solution.
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5.4 .4  Fast and A lfvén m ode coupling

If == 0 the fast and Alfvén modes are decoupled, whereas if ky 0 there is coupling 

between the two modes. The condition for the fast magnetoacoustic mode to drive an Alfvén 

resonance is that the frequency must lie within the Alfvén continuum. From the Alfvén speed profile 

we employ, two resonant field lines are expected to exist within the cavity. These correspond to the 

fast mode eigenfrequency uĵ L / vaq = 4.395, occurring at locations =  0.467L and XrA = 0.896T. 
Here the subscripts 2 and 4 refer to the second and fourth harmonics of the Alfvén mode respectively. 

The sixth fast mode, with a frequency of uĵ L I vaq =  6.132, is not excited since it lies outside the 
driving spectrum. Therefore we do not expect this fast mode to drive an Alfvén resonance.

In Figure 5.6 we plot the Alfvén wave energy Ea  (=  0.5pu^ +  by/2fio) as a function of x / L  

for z f L  — 0.05 at two times. Figures 5.6a and 5.6b illustrate Ea  at times tA ~  I> and tA =  20 
respectively. The dashed lines denote the positions of the two predicted resonant field lines at 

Xr2 and Xr4  (assuming a constant fast mode frequency of ojfLfvAo = 4.395). At low Alfvén times 
(Figure 5.6a) the Alfvén energy density is broad, although it is primarily located around the resonant 

field lines. As time increases the resonances becomes much sharper, occurring along the predicted 

field lines (Figure 5.6b). Therefore the random driving motion can excite a fast eigenmode which 
can then drive an Alfvén resonance, in much the same way as a monochromatic driver. This is 
provided that the fast mode frequency lies within the Alfvén continuum.

This result can be confirmed by examining the Alfvén mode eigenfunctions. In Figure 5.7 

we show Uy calculated from our time dependent simulations (solid line) for the field lines at Xr2 

and %r4 , measured after twenty Alfvén times. In addition we have over plotted the eigenfunction 

calculated by solving the ordinary differential equation (Equation 5.9) along each resonant field line. 

It can clearly be seen that the agreement between the time dependent calculation with the random 

driver and solving the ordinary differential equation for the normal mode is excellent. Therefore, 

even though a random source is used, the Alfvén wave velocity is essentially identical to the Alfvén 
wave eigenmode.

To illustrate this in greater detail we plot in Figure 5.8 the difference between the Alfvén 
wave velocity along each resonant field line, for both a random and constant frequency driving 

source. The numerical code is re-run, but this time using a monochromatic driver with a frequency 

WfL/vAo — 4.395. We then calculate the difference between Uy along each resonant field line for 
the two driving mechanisms after twenty Alfvén times, with kyL =  0.1. This is defined to be equal 
to Auy.  To calculate the difference between the two drivers the amplitude of Uy is normalised to 

unity. Figures 5.8a and 5.8b show Auy 2 and Auj,4 respectively, where the subscripts 2 and 4 denote 
the second and fourth Alfvén harmonic. The difference between the Alfvén velocity generated by 
the two drivers is small. In particular, for the second and fourth Alfvén harmonics the maximum 
differences are 0.0215 and 0.0056 respectively. Therefore a random driving source can generate an 
Alfvén resonance whose eigenfunction is almost identical to one driven by a monochromatic source.



CHAPTER 5. A  C A V ITY  DRIVEN B Y  A RANDOM  BOUNDARY DISPLACEMENT 141

0.014

0 .012

0.010

0 .008

0 .006

0 .004

0.002
0.000

0 . 0 0 . 2 0.4 0 . 6 0 . 8 1 .0
x / L

t j , = 2 0
5

4

3

2

1

O L .
0 . 0 0 . 80 . 2 0.4 0 . 6 1 .0

x / L

Figure 5.6: The Alfvén energy E a (=  O.bpUy +by/2fj,o) at z / L  = 0.05 at times (a) =  5 and

(b) tA = 20, using kyL =  0.01. The dashed lines denote the locations of the calculated resonances 
assuming a monochromatic driver. Notice that as time increases the Alfvén wave energy becomes 
more localised about the resonant field lines. These are located at Xr2 = 0.467L and Xr4  = 0.896L, 

corresponding to the second and fourth harmonics of the Alfvén mode respectively.
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Figure 5.7: The (a) second and (b) fourth harmonics of the Alfvén wave eigenfunction <j). The solid 

line denotes Uy along each resonant field line, calculated from the time dependent code, measured 
after twenty Alfvén times. The eigenfunction calculated by solving the ordinary differential equation 
(Equation 5.8) is shown by a diamond symbol. The agreement between the two cases is excellent.
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Figure 5.8: In (a) we show the difference between the normalised Alfvén wave eigenfunction
generated by the monochromatic driver (with a frequency of ujjLfvAQ =  4.395) and the random 

driver, for the second Alfvén harmonic. Notice that the maximum value of A % 2 is small (i% 0.02) 
compared to the amplitude of the eigenfunction (unity). In (b) we show the difference for the fourth 

harmonic Alfvén mode Auy4 when driven by the constant frequency and random source. Again 
Auy4 is small. In (a) and (b) we have calculated the difference in Uy along each resonant field line 

after twenty Alfvén times with kyL = 0.1. The coupling between the Alfvén and fast modes is 
similar for both driving mechanisms.
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5.5 Se ism o logy o f  th e  m agnetosphere

We now give details about how the work described in this chapter may lead to the seis- 

mological study of the magnetosphere. Using analytical results obtained by Wright (1992) we find 
that the Alfvén energy density ratio between two resonant field lines tends to a constant value for 
increasing time. The energy density ratio of the two resonant field lines described in Section 5.4.4 
is given by Wright (1997, private communication) as

2
E a 2 _  (%r2)

"  A 2 (ZM) I,,, (a:M) %-dz j (̂ r (a:r2) /%)̂  d2T ''a?r2

where the subscripts 2 and 4 denote the second and fourth harmonics respectively. In addition X  

and Z  are the separable functions which determ ine the Alfvén speed profile, given by Equations (5.6) 

and (5.7). The function (pr is the Alfvén wave eigenfunction and is the fast mode displacement.
In Figure 5.9 we plot the energy ratio as a function of the Alfvén transit time for (a) a 

random driver, (b) a monochromatic driver, and (c) an impulsive source. In (c) we read in n® 

from the eigenvalue code used in Chapter 2 as the initial condition. To obtain Ux we configure the 

eigenvalue code described in Chapter 2 using ky — 0 with a uniform field B =  Boég and the Alfvén 

speed profile given by Equations (5.6) and (5.7). No driver is used in part (c). In Figure 5.9 we use 
kyL =  0.1. The three cases show that the energy ratio is independent of the driving source. The 
initial transient stage does exhibit minor differences, but after several Alfvén times all three cases 

show the energy ratio to be approximately equal to 3.5.
This constant value may also be calculated from Equation (5.12). Inserting the various 

quantities into this equation we obtain a value of 8.9. Therefore there is a factor of 2.5 separating 
the numerical results and Equation (5.12). The difference between the numerical and analytical 

investigations has been examined thoroughly. However the source of this discrepancy has not been 
found. To conclude, the method described has the potential of providing im portant diagnostics for 

the magnetosphere.

5.6 Sum m ary o f  R esu lts

We have considered a magnetospheric cavity with a two-dimensional profile in Alfvén speed. 

The cavity has been driven with a non-monochromatic source. Detailed numerical results show that 
the magnetospheric cavity filters the random signal, and excites only the fast magnetoacoustic modes 

whose eigenfrequencies lie within the driving spectrum.
These fast modes may also couple to the Alfvén mode, provided ky ^  0 and their eigenfre­

quencies lie within the Alfvén continuum. We have shown that the Alfvén mode eigenfunction and 

the position of the resonant field lines can be calculated to high accuracy by taking the frequency 

of the driver to be monochromatic.
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Figure 5.9: The energy ratio of the the Alfvén mode in the two resonant field lines a t and #r4 - 
The ratio of the energy of the second harmonic to the fourth harmonic is plotted as a function of 

the Alfvén transit time. In (a) we use kyL — 0.1 with a random driver. In (b) the same value of kyL 
as in (a) is used with a monochromatic driver (constant frequency). In (c) we use obtained from 
the eigenvalue code (Chapter 2) as the initial condition, again setting kyL =  0.1. In all three cases 

the energy ratio approaches the same constant value. The energy ratio is therefore independent of 

the nature of the driving source and depends only on the equilibrium of the cavity.
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We have undertaken a preliminary investigation into the seismology of the magnetosphere. 

The exam ination of the ratio of energy density in the two resonant held lines potentially offers 

important seismic information. This ratio tends to a constant value which depends only on the 
equilibrium and not on the nature of the driving source. An unresolved discrepancy exists between 

the numerical and analytical results. However, we expect the seismology technique to prove an 
important diagnostic tool in future studies.
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C h ap ter  6

T he Structure of  

Three-D im ensional N eutral Points

6.1 Introduction

One of the most puzzling aspects of the Sun is the presence of the hot corona. The corona 
has a temperature of several million degrees kelvin, two orders of magnitude greater than the tem­

perature in the photosphere. Various heating mechanisms have been proposed and comprehensive 

reviews may be found in Ulmschneider and Narain (1990, 1996), Browning (1991) and Laing (1996). 
These mechanisms may be broadly classified into two groups, wave heating and reconnection of the 
magnetic field. In the previous chapters we have concentrated on the guiding of magnetoacoustic 

waves in the solar corona. In this region of the solar atmosphere we have shown that a wide variety 

of magnetoacoustic waves may be supported. The damping of these waves may contribute to the 
heating of the corona. For example the numerical investigation of wave propagation in current sheets 
by Tirry, Cadez and Goossens (1997) has shown that, through the Alfvén resonance, wave damping 

may occur. The dissipation of magnetoacoustic waves in coronal loops has also been suggested as 

a possible source of coronal heating (see, for example, Laing 1996). In this chapter, we turn our 
attention to heating the corona by the process of magnetic reconnection.

Magnetic reconnection involves the topological change of the magnetic field and the sub­
sequent release of energy. Reconnection plays a central role in many phenomena that occur both 
in laboratory and astrophysical plasmas. In particular, on the Sun, we expect reconnection to be 

im portant in coronal heating, solar flares, X-ray bright points and in the formation of prominences. 
Over the last twenty years many aspects of two-dimensional reconnection have been extensively 
studied (see the review by Priest 1997). In two-dimensional reconnection the im portant regions are 
those where the magnetic field locally vanishes (B =  0); these are called neutral points. The X-type 

and 0-type two-dimensional configurations are well known. Recently the more complex nature of
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three-dimensional reconnection has been investigated.
In three dimensions reconnection can occur with or without null points. For example, 

reconnection in quasi-separatrix layers without neutral points has been proposed by Priest and 

Démoulin (1995), However analytical studies by Lau and Finn (1990) and Priest and Titov (1996) 
and also numerical investigations by Galsgaard and Nordlund (1996), have shown the importance of 

neutral points in three-dimensional reconnection. In this chapter we study three-dimensional neutral 

points in detail by considering the local magnetic topology occurring around these important regions. 
This is an important first step in understanding how reconnection may occur in three dimensions.

To find the local magnetic structure about a neutral point we consider the magnetic field 
in the neighbourhood of a point where the field B vanishes (B=0). Since the magnetic field is a 
solution of Maxwell’s equations it is reasonable to assume that B is differentiable, and therefore can 
be expanded in a Taylor series. If, without loss of generality, we take the neutral point to be situated 

at the origin and assume that the magnetic field approaches zero linearly, the magnetic field B near 
a neutral point may be expressed to lowest order by

B =  M .r . (6.1)

Here M  is a matrix with elements M{j =  dBi /dx j  and r  is the position vector {x , y , z y ^ . The 
m atrix M  is studied in detail, firstly in two dimensions (Section 6,2) as a preliminary to the three- 
dimensional work. In Section 6.3 the m atrix M  is reduced to its simplest three-dimensional form, 

and the theory used in calculating the magnetic field configurations is also discussed. Sections 6.4 

and 6.5 discuss the potential and non-potential three-dimensional configurations respectively. In 

Section 6 .6  brief consideration is given to the evolution between different neutral point configurations. 
Section 6.7 discusses recent developments of this work, and finally, in Section 6 .8 , we conclude this 
chapter by summarising our results.

6.2 R ev iew  o f T w o-D im ens iona l N eu tra l P o in ts

In two dimensions the matrix M , which determines the local magnetic field topology sur­
rounding a neutral point, is given by

M flu Oi2 

CÎ21 0,22
(6 .2 )

where aij is a real constant. The solenoidal constraint V • B =  0 gives a n  =  — 0 2 2  and therefore the 
trace of M  (the sum of the diagonal entries) is zero. With r  =  (X, Y )^ the magnetic field may be 
written in the form

B =  (a jiX  -f- aisY, 02 iX  — an Y ) . (6.3)
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The diagonal entries in the matrix are associated with the potential field, so we define a n  =  p. Since 

the current associated with the neutral point is

J  =  — (0,0, U2i — a i2) , (6.4)
Po

we may define

a i 2 = ^ ( q - j z )  and &2 i =  ^  (g +  jz) . (6.5)

For a current-free (potential) neutral point we have a2i =  a i2 =  q/2. Therefore the parameter q is 
also associated with the potential field. The magnitude of the current perpendicular to the plane of 

the null point is given by j z . The matrix M  may then be written in the form

M  = p
. i ( g  +  ;z) - p

(6 .6)

with the magnetic field given by

B =  -f ^  (g -  j z )  y , ^ { q  + j z )  æ ~  py^  , (6.7)

which satisfies the solenoidal constraint V • B =  0. It proves useful to define a threshold current 

j t h r e s h ,  where

j t h r e s h  -  V 4p2 +  ■ (6.8)

The threshold current only depends on the parameters associated with the potential configurations
(p and q).

We now calculate the magnetic fiux function A, satisfying

~  &Ÿ ~  ’ (^ 9)

so that B =  Vj4 X êj;. The fiux function (which is constant along each field line) is given by

^  =  J  [(« - À ) +  i>)X^]  +  p X Y  . (6.10)

Here and By are the magnetic field components and is a unit vector perpendicular to the 

plane of the null point. If we now rotate the XY-axes through an angle 9 to give æy-axes, using the 

relations

X  =  æ cos ̂  — psin  ̂ , (6.11)

Y =  æ sin 0 -f ycos0 (6.12)

in Equation (6.10), we find the flux function becomes

A =  — (^{jthresh j z )  V ~  { j t hr es h  d" j z )  ® ) • (6.13)
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| J |> 0|J | =  0

\ j z \  ^  j ih re sh\ jz \  —  j th re sh

A nti-para llel L ines
repeated eigenvalues 
(both zero), §6.2.2 (ii)

C ollapsed X -type  
N eu tra l P oin t 
real eigenvalues, 
§6.2.2 (i)________

O -type N eu tra l P o in t
complex conjugate 
eigenvalues, §6.2.2 (iii)

N on-P o ten tia l N ulls

M  asymmetric, §6.2.2M  symmetric, 
two real eigenvalues 
X-type neutral point, 
§6.2.1

P o ten tia l N ull

2D N u lls
B =  M  • r, r  =  (x,  y)' ,̂ J  =  (0,0, j z )  fno

Figure 6.1: Diagram showing the different types of two-dimensional nulls and the relative sizes of jz 

(the z-component of current) and j t h r e s h  (the threshold current) at which they occur.

Here we have used trigonometric identities and set tan20 =  —2 p/g .

From Equation (6.13) we see that in two dimensions, two parameters jthresh and j z , govern 

the local magnetic field configuration about the two-dimensional null point. The nature of the 

magnetic field is therefore determined by the eigenvalues of the matrix M , which are given by

^ = ■ (8-14)

Therefore, depending on whether the current jz is greater or less than the threshold current ( j t h r e s h ) ,  

the eigenvalues will be real or imaginary, and the magnetic field configuration will vary accordingly.

In the following sub-sections the magnetic field configuration about a two-dimensional 

null is studied, initially depending on whether it is potential (Section 6.2.1) or non-potential (Sec­

tion 6.2.2). The non-potential case is sub-divided into cases where the current jz is less than 
(Section 6.2.2 (i)), equal to (Section 6.2.2 (ii)), or greater than (Section 6.2.2 (iii)) the threshold 

current. Figure 6.1 shows the format of this section, summarising the important details of the 
matrix M , along with the type of neutral point that arises given the nature of the eigenvalues.

6.2 .1  P oten tia l T w o-D im ensiona l N eutra l Po ints

In the case of a current-free (potential) two-dimensional null the eigenvalues are given by

(6.15)
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Figure 6.2; The possible two-dimensional magnetic fields surrounding a neutral point situated at the 
origin (æ =  y =  0). In (a) we have an X-type potential null {jz =  0), whereas in (b) a non-potential 
{jz 7̂  0) X-type null is shown. In (a) and (b) there are two distinct real eigenvalues of the matrix 

M . In (c) we have anti-parallel field lines since both eigenvalues of the matrix are zero. A null line 
lies along æ =  0. In (d) the eigenvalues are complex conjugates with the magnetic field consisting of 
elliptical field lines.

Therefore we have two real, non-zero eigenvalues which are equal in magnitude but opposite in sign. 
The equation for the flux function (Equation 6.13) consequently becomes

A J t h r e s h (6.16)

The field lines are therefore rectangular hyperbolae (the séparatrices intersect at an angle of 7r / 2 ). 

This is an X-type neutral point as illustrated in Figure 6.2a. This is the only possible configuration 

for a potential two-dimensional neutral point.

6.2.2 N on-P otentia l T w o-D im ensiona l N eutra l Po ints

The non-potential two-dimensional configurations around neutral points are classified with 
respect to the magnitude of the current perpendicular to the plane of the null point {jz) and the 

threshold current { j t h r e s h ) -
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( * )  \ j z  I ^  j t h r e s h

When \ j z  \ <  j t h r e s h  the eigenvalues are real and equal in magnitude, but opposite in sign, 
and are given by

X = (6.17)

From the flux function (Equation 6.13) we see that the field lines are hyperbolae with séparatrices 
that intersect at an angle of

2 t a n - ' ( ' i î î î î ^ - ± i )  . (6 ,18)
\ J t h r e s h  J z  J

The null point formed is therefore a collapsed X-type neutral point as shown in Figure 6.2b. As the 

current approaches zero the hyperbolae tend to rectangular hyperbolae, reducing to the potential 

case {jz 0). As the current increases the angle of the séparatrices increases.

( i i )  \ j z  1 — j t h r e s h

When the perpendicular current equals the threshold current the two eigenvalues are equal, 

and from Equation (6.14) they are zero (A =  0). The flux function A  (æ, y) reduces so that it depends 

only on if j t h r e s h  =  j z , or if j t h r e s h  ~  — j z  \ the magnetic configuration consists of anti-parallel 
field lines with a null line along the y-axis or æ-axis respectively (Figure 6.2c). Notice that this 

configuration is similar to the current sheet equilibrium in Chapters 3 and 4, where we investigated 

the guiding of magnetoacoustic waves in these structures.

( i l l )  \ j z  \ ^  j t h r e s h

If \ j z  \ >  j t h r e s h  the eigenvalues are complex conjugates given by

> ^ = ^ \ \ ! P z -  j ? h r e s h  • ( 6 . 1 9 )

When j t h r e s h  = 0 (p =  Ç =  0) we find from the flux function (Equation 6.13) that the topology 

consists of circular magnetic field lines centred around the origin, whereas if j t h r e s h  ^  0 the field 
lines are elliptical (Figure 6 .2d).

6.3 T heory o f  T hree-D im ens iona l N eu tra l P o in ts

6.3.1 Term ino logy and R ev iew  of M atr ix T heory

Having seen the magnetic field configurations about a two-dimensional null point we now 
consider the possible three-dimensional magnetic structures. Figure 6.3a shows a three-dimensional 

neutral point formed by a field due to four point sources, two positive and two negative (Parnell, 
Priest and Golub 1994). If we look closely at the local structure about this null (Figure 6.3b) we
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fan

sp ine

Figure 6.3: (a) A three-dimensional potential magnetic field configuration showing the global mag­
netic field due to four point sources (shown by asterisks). The diagram is taken from Parnell, Priest 

and Golub (1994). Two neutral points exist in the z = 0 plane. In (b) a schematic enlargement of 
the local region about one neutral point in (a) is depicted, showing the spine curve (thick solid line) 
and fan plane (fainter solid line).

find that there are many field lines heading into the neutral point forming a surface (the fan plane), 
but only two field lines leaving the null point (the spine). The fan plane and the spine are the two 
fundamental components (the “skeleton” ) that make up a neutral point in three dimensions (Priest 

and T itov 1996).

The fan is a surface made up of field lines which leave, or enter, the null point (Priest and 
T itov 1996). This plane is the same as Lau and F inn’s ^  surface (Lau and Finn 1990). The spine 
is made up of two field lines that are directed away from the null if the field lines in the fan are 

directed towards the null and vice-versa (Priest and Titov 1996). These lines are equivalent to Lau 
and F inn’s 7  line. Field lines that lie near the null point but do not pass through it form bundles 
around the spine. These spread out above and below the fan surface.

Mathematically, the linearised magnetic field about a three-dimensional neutral point may 

be described using Equation (6.1) with a matrix of the form

a i l «12 «13
M  = «21 «22 «23 (6 .2 0 )

«31 «32 «33

where a,,- is a real constant. The constraint V • B — 0 implies that the trace of M  must be zero,
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giving

«11 +  «22 +  «33 =  0 . (6.21)

This condition also implies that the eigenvalues A i, Ag and A3 associated with the matrix sum to 

zero. The eigenvectors associated with these eigenvalues are given by X i,X 2 and X3 respectively.

We now give some important results from matrix theory, applying these in our investi­
gation into the three-dimensional magnetic structures surrounding neutral points. The theory is 
comprehensively discussed by Boyce and D iPrima (1969).

We may write the magnetic field near the neutral point in terms of a position vector 

r  =  (æ, y, z)^, where

=  M .r (A:) =  B . (6.22)

The position vector is dependent upon an arbitrary parameter k] r = r{k).
To find the local three-dimensional magnetic topologies surrounding the neutral point, we 

solve the homogeneous linear system of equations (Equation 6.22) for a constant matrix M . The 
nature of the eigenvalues (and corresponding eigenvectors) of the matrix M  determ ine the nature of 
the solution to Equation (6.22). There are three possibilities to consider.

(i) A ll eigenva lues are real and d istinct

We begin by examining the case when all three eigenvalues are real and distinct. Therefore 

in order to solve Equation (6.22) we search for a solution of the form

r  =  xe^* , (6.23)

where A is an eigenvalue and x  is a eigenvector, both of which are to be determined. Substituting 

Equation (6.23) into Equation (6.22) yields

(M -  AI) X =  0 , (6.24)

where I is the 3 x 3  identity matrix. Equation (6.24) determines the eigenvectors x  and eigenvalues 

A of the matrix M . The vector r, determ ined by Equation (6.23) is a solution of Equation (6.22), 
provided A is an eigenvalue and x is an eigenvector of M . The eigenvalues Ai , Ag, and A3 are given 

by the roots of the characteristic equation

det|M  ~  AI| =  0 . (6.25)

When all the eigenvectors x* associated with each eigenvalue A* are real and distinct there exists a 

linearly independent real eigenvector for each eigenvalue. Therefore the equations of the magnetic 

field lines are given by

r  (t)  =  +  Be^'^xa +  Ce^^^xg , (6.26)
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where A, B  and C  are constant along a magnetic field line. Each field line may therefore be written 
in terms of the eigenvalues and eigenvectors of the matrix M.

There is always one eigenvalue of opposite sign to the other two, say Ai, Aa >  0 and A3 <  0 , 

since the sum of the three eigenvalues is zero. If we follow a field line towards the neutral point, 
that is let k —> —00  in Equation (6.26), we find

r(& )-> C e^» ''x3 . (6.27)

All the field lines that head towards the null lie parallel to the eigenvector X3 . Moving forward along 
the field lines from the null {k 0 0 ) we find

r  {k) Ae^'^x i +  Be^"^X2 . (6.28)

Therefore the field lines that leave the null point lie in the plane defined by the eigenvectors x i and 
X2 . Now, comparing this with our geometrical knowledge of a three-dimensional null, we find that 

the eigenvector xg (with eigenvalue A3 ) defines the location of the spine. The fan plane is defined 
by the eigenvectors x i and X2 (with eigenvalues Ai and Ag respectively). In addition, we travelled 
backwards {k —0 0 ) along the field lines when A3 < 0. In this case we find that the magnetic field 
of the spine is directed towards the null, whereas the field lines in the fan emanate radially outwards 

from the null and are associated with positive eigenvalues.

(ii) Tw o of th e  e igenvalues a re  equal

When two of the eigenvalues are equal it may not be possible to find a linearly independent 
eigenvector for each eigenvalue. Therefore, in this case, we need to calculate an additional basis 
vector. This situation is analogous to that of finding solutions of a n th  order linear differential 
equation with constant coefficients. In this case a repeated root of the characteristic equation gives 

rise to solutions of the form e^*, ke^^ and so on. Suppose that A is the repeated eigenvalue of the 
m atrix M  with only one linearly independent eigenvector x i. One solution of Equation (6.22) is 

given by

r  =  xie^*" , (6.29)

where x% satisfies Equation (6.24). The additional basis vector is found to be

r  {k) =  xifce^^ -f Xge^^ . (6.30)

In this case the associated vectors of the matrix M  are determined by (see, for example, Boyce and 
D iPrima 1969)

M x i =  Axi , (6.31)

M x j =  x i 4- Axg , (6.32)

M xs =  —2 Axg . (6.33)
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Therefore upon determ ining the eigenvector x i, the basis vector x |  can be calculated. The equation 

of a field line is given by

r  (k) = {A +  Bk) e^^xi +  +  Ce'-^^^’xg , (6.34)

where A, B  and C  are all constant along each field line. Taking A >  0 and traversing forwards along 

a field line {k — oo) we find that

r  (&) (A +  g&) e^^xi +  Be^^x^ . (6.35)

The field lines that leave the null point lie in planes defined by x% and Xg. If, however, we trace 
backwards along a field line {k —>■ —oo) then

r ( t )  -yCe-^^^X3 , (6.36)

in which case the field lines are parallel to the eigenvector xg. This corresponds to the spine curve. 

We find that the fan plane is defined by the vectors which correspond to the repeated eigenvalues. 

One of these vectors is an eigenvector (x i), whilst the other (xg) is not. The spine lies in the 

direction of xg.

(iii) Tw o o f th e  e igenvalues occu r as a  co n ju g a te  p a ir

Finally we discuss the case when two of the eigenvalues (and therefore eigenvectors) are 

complex. Once again we look for a solution of the form given by Equation (6.23). The complex 
eigenvalues occur as a conjugate pair since the coefficients of the matrix M  are real. In the situation 
where we have one real and two complex eigenvalues, say —2rj and rj ±  ip, the equation of a field 

line is given by

r  (t)  =  1 (A +  *B) e("+*")^xi +  ^  (A -  %B) e("-*")^X2 +  Ce-^"^X3 , (6.37)

where A, B  and C  are all constant along each field line.
The eigenvectors x i and xg are also a complex conjugate pair. To obtain the basis vectors

of the m atrix M  we follow Boyce and D iPrima (1969), and write

x i =  x'l 4- zxg , X2 =  x'l — ix.2 , (6.38)

which gives

x'l =  i  (xi +  X2) , X2 =  - ^  (xi -  X2) . (6.39)

The real basis vectors are given by x^ and x^. Equation (6.37) may then be written in the form 

r  {k) = cos (0  +  uk) x^ — Re'^^ sin (0  +  uk) Xg +  Ce~^^^x .3 , (6.40)
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where R, 0  and C  are constant along each field line. We have defined A +  iB =  Be*®. If we take 

rj > 0, for example, then as A; —>■ oo Equation (6.40) reduces to

r  (A;) - f  Be*̂ * cos (0  -f pk) sin (0  +  pk) Xg . (6.41)

The fan plane is defined by the basis vectors x^ and X g .  An exam ination of Equation (6.40) shows 
that field lines in the fan plane will be spirals. The spine lies in the direction of the eigenvector xg 

since as -> —oo,

r(t)^ C e-2" ^ X 3 . (6.42)

To summarise, for the three cases we have considered the spine lies along the eigenvector 
of the matrix M  that relates to the eigenvalue whose sign is opposite to that of the real parts of the 

remaining eigenvalues. The remaining eigenvalues have vectors associated w ith them which define 

the fan plane. These vectors may, or may not be, eigenvectors of the matrix M . The vectors which 
determ ine the fan plane depend on the nature of the eigenvalues as summarised in Table 6.1.

If the real parts of two of the three eigenvalues are positive, for example Ai, Ag > 0 (As < 0), 
then the neutral point will have field lines that are directed away from the null in the fan. The spine 
heads into the null along the eigenvector X3 . This type of null is defined as a positive neutral point 
However, if the real parts of two of the eigenvalues are negative, say Ax, Ag < 0 (A3 >  0), the fan 
plane will have field lines pointing towards the null, with the spine again lying along the eigenvector 

X3 but this time heading away from the null. This type of neutral point is defined as a negative 
neutral point (Priest and Titov 1996).

Neutral points for which field lines in the fan plane approach or emanate from the null in a 

radial manner are known as radial nulls, using the nomenclature of Priest and Titov (1996). If the 
field lines radiate symmetrically in all directions in the fan plane they are known as proper nulls, 
whereas improper nulls are asymmetric. In the latter case the field lines in the fan approach or leave 

the null aligned preferentially along a line through the null in the fan plane; the major axis of the 

fan. Neutral points with fan plane field lines that approach or leave the neutral point in a spiral are 
known as spiral neutral points.

6.3 .2  R eduction  o f M  to  its sim plest form

In order to examine all the possible configurations of the localised field about the neutral 
point we reduce the matrix M  to contain the least possible number of free parameters. It is im portant 
to remember that the matrix M  determines all the physical characteristics of the magnetic field 
including, for example, its topology and current. When reducing M  we take this into account, 

ensuring all the physical properties of the neutral point remain. The matrix M  always has at least 
one real eigenvalue whose sign is opposite to the real parts of the other two. We therefore choose 
the local orthogonal coordinate system so that the eigenvector corresponding to this eigenvalue is
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Eigenvalues

Three real and distinct 
Two repeated, one distinct

Associated Vectors

The eigenvectors x i , xg and xg 
The three eigenvectors if they exist or 
the vectors x i , Xg and X3 which satisfy 
M x i =  Axi, M x 2 =  Xi +  Ax2 and 
MX3 =  — 2 Ax3
Eigenvectors x i , xg and X3 give basis 
vectors x^ =  (xi +  xg) / 2 , Xg — —i  (xi — xg) / 2  
and X3

Table 6.1: Associated vectors that determine the magnetic structure of three-dimensional neutral 
points.

Two complex conjugate, one real

always aligned in the z-direction, and so consider only cases where the spine is aligned w ith the 

z-direction. In addition, the matrix may be reduced further by rotating the æy-plane in such a way 
that the æ-axis lies in the direction of the resultant current in the æy-plane. Finally, by taking a 

scaling factor from M , the matrix reduces to

0

p

j x

0

0

-  (p + 1)

(6.43)

where p > — 1 and <  jy +4p. The potential part of the configuration is defined by the parameters 

p and q whilst the current is given by

(6.44)

Here jy and j x  are the components of current parallel and perpendicular to the spine respectively.
We shall now define a threshold current j th r e s h  which is dependent purely on p and q (the 

potential field parameters) such that

j th r e s h  =  \ / ( p -  1)^ +  • (6.45)

The three eigenvalues (Ai, Ag and A3 ) associated with the matrix M  may then be written as

P +  ^thresh ~  Jji
A i  =

A g  

A3

^thresh J||

( p + 1 )

(6.46)

(6.47)

(6.48)

The constraints p > — 1 and q^ < jy -f- 4p ensure that the real parts of Ai and Ag always have the 

same sign, whilst A3 is of opposite sign. In a similar way to the two-dimensional case, the relative 
sizes of j th r e s h  and jy determine the nature of the eigenvalues and consequently the local magnetic 
configuration around the null point.
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\ h p 0 (6.49)

0 0 ~  (p -f-1)
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When the perpendicular component of current {jx ) is zero a simple rotation of the matrix 

M  about the spine (z-axis) reduces it to

M  =

Therefore throughout this chapter we may assume g =  0 in studying configurations where j x  =  0. 
Therefore only one potential parameter p is needed to define all the configurations where no compo­

nent of current exists perpendicular to the spine {jx =  0). If a component of perpendicular current 

exists (jj_ /  0) then both potential parameters {p and g) are required. We are excluding the pos­

sibility of all the elements of the trace equalling zero since we have taken a scaling factor from the 

matrix.

6.3 .3  P rev ious W ork on T hree-D im ensiona l N eutra l Po ints

We now briefiy mention some of the previous work undertaken on three-dimensional neutral 
points. Cowley (1973) studied a current-free neutral point of the form

B =  {ax ,/3y ,-{a  -f j3)z) , (6.50)

where a  and /? are of the same sign. Here the eigenvalues are a, f3 and — (a  -{-/?). Cowley referred to 

the case a , /? > 0 as Type B, which is a positive radial null point in our nomenclature. Similarly the 

case a, P < 0 was referred to as Type A and is a negative radial null point. For a — j3 the neutral 
point is proper (symmetric) whereas for a  /? it is improper (asymmetric).

Fukao et al. (1975) studied more general neutral points than Cowley, considering both 

potential and non-potential configurations. They considered a 3 x 3 m atrix containing 6 parameters. 
The authors found that when all three eigenvalues are real the null point is radial. When there 
is one real eigenvalue and two complex conjugate eigenvalues a spiral neutral point arises. They 

also found that when there is no perpendicular current the spine and fan are perpendicular and the 

m atrix M  is symmetric. Two-dimensional neutral points were also found in special circumstances. 
These contained either a line of X-points or 0-points depending on whether the eigenvalues were 
real or imaginary respectively.

In this chapter we extend the previous work undertaken by studying the most general form 

of the matrix M  which defines all the local magnetic field configurations about the null. W ith 
our m atrix all the magnetic field topologies that can arise are studied using a minimum number of 
free parameters. Through our study we find that there are extra configurations to those previously 

reported. In addition, we also explain in detail the effects of the current on the magnetic field.
The structure of this section is illustrated in Figure 6.4. The three-dimensional null point 

configurations are classified with respect to their current and the eigenvalues of the matrix. In
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|j| = 0 | J | > 0

7|| ^  jth re sh ^  j th r e s h

fan plane inclinedfan plane JL spine axisfan plane _L spine axis fan plane inclined

N o n -P o te n t ia l  N u lls

M  asym m etric, §6 .5

C o m p le x  E ig e n v a lu e s  
one real, two com plex  
conjugate, § 6 .5 .3

R e a l E ig e n v a lu e s
three distinct ([jj|| <  jthresh), §6.1 

two equal (|jj|[ =  jthresh), § 6 .5 .2

P o te n t ia l  N u lls

M  symmetric
three real eigenvalues
fan plane J. spine axis, § 6 .4

3D  N ulls
B  =  M - r ,  r =  ( x , y , z ) ^  , J  =  { jx ,0 ,ijj)  /no

Figure 6.4: Diagram showing the various types of three-dimensional neutral points with respect to 

the relative sizes of jy (the component of current parallel to the spine) and j t hr e s h  (the threshold 
current).
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Sections 6.4 and 6.5 we investigate the potential and non-potential magnetic field configurations 
surrounding three-dimensional neutral points.

All the three-dimensional figures are illustrated as follows. The spine is plotted as a solid 
thick line in the z-direction. The fan plane is shown by the square region enclosed by dashed lines. 
The fan field lines are depicted by continuous lines. The bundle of field lines around the spine are 
illustrated by dashed lines and these are only drawn below the fan plane for clarity.

6.4  T hree-D im ens iona l P oten tia l N u lls

The matrix M  representing the linear magnetic field about a potential three-dimensional 
null may be written in the form

'  1 0 0

M  =  O p  0 , (6.51)

0 0 - ( p + 1) _

since we have set both the perpendicular { j ± )  and parallel (jy) components of current to zero. The 
eigenvalues relating to this matrix are

Ai =  1 , A2 =  p , Aa =  - ( p + l ) .  (6.52)

We have the constraint that p > 0 so that the eigenvalue A3 (which corresponds to the eigenvector 

that lies along the z-axis) forms the spine of the neutral point. W ith p > 0 Ai and Ag always have 
the same sign. The eigenvectors x i, xg and X3 are given by

/ 1 \  / 0 \  / o \

x i = Xg = X3 (6.53)1

VO/
As found by Fukao et al. (1975) the fan plane is perpendicular to the spine for a potential magnetic 
field.

We now consider three situations. We examine the case where all eigenvalues are non-zero 
and two are equal (p > 0, j t h r e s h  =  0) in Section 6.4.1. Secondly, in Section 6.4.2, the case where 
one eigenvalue is zero (p =  0) is studied, and finally, in Section 6.4.3, we examine the case where all 

the eigenvalues are non-zero and unequal (p > 0 , j t h r e s h  > 0 ).

6.4.1 p 0, Jthresh  — 0

Assuming p > 0 and j t h r e s h  = 0 means that the only value the parameter p can take is 
unity. The matrix M  reduces to

1 0 0 '

M  =  0 1 0 , (6.54)
0 0 - 2
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Figure 6.5; The three-dimensional potential proper null (p =  1) magnetic field configuration. The 
three-dimensional structure of the neutral point is shown in (a), whilst in (b) the field lines in the 

æp-plane (fan plane) are depicted. In (c) the field configuration in the æz-plane is illustrated. When 
p =  0 the three-dimensional field reduces to the two-dimensional X-point field, with a null line along 

the y-axis as shown in (d).
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and the magnetic field is given by B =  { x ,y ,—2z). We find that two of the eigenvalues are equal. 
However it is still possible to find the three eigenvectors, given by Equation (6.53). The field 

associated with this matrix is a positive proper null (Ai, Ag > 0) as depicted in Figure 6.5. Since 

this is the first three-dimensional configuration illustrated in this chapter we draw the full three- 
dimensional null. This consists of the fan plane, the two spine field lines and also the bundles of 
field lines approaching the null from below (Figure 6.5a). In Figure 6.5b the field lines in the fan 

plane (æy-plane) are illustrated and lastly the field lines in the æz-plane are shown (Figure 6.5c).

6.4,2 p =  0

When p =  0 the matrix M  reduces to

M
1 0 0

0 0 0

0 0 - 1

(6.55)

and one of the eigenvalues is zero. The field reduces to a two-dimensional configuration consisting of 
potential X-points lying in successive æ5r-planes. A null line is formed along the y-axis (Figure 6.5d). 
If a scaling factor had not been taken from the matrix the only extra possible field line configuration 
is the trivial B =  0.

6.4 .3  P > 0, j th re sh  >  0

All three eigenvalues are non-zero and unequal when p > 0 and j t h r e s h  > 0 .  In this 
case improper radial nulls are formed. The field is aligned predominantly in the direction of the 

eigenvector corresponding to the eigenvalue which has the greater magnitude of the two associated 

with the fan plane (xi and xg). The field lines rapidly curve so that they run parallel to the æ-axis 

if 0 <  p < 1 and parallel to the y-axis if p > 1 (see Figures 6 .6a and 6 .6b respectively). This can be 
shown as follows. Considering Equation (6.26) for a field line we find that as fc -> oo,

r  {k) —)• Ae^êx +  Be^^êy . (6.56)

Now if 0 < p < 1 then r  (fc —>■ oo) % Ae^ê%. Therefore the field lines lie in the æy-plane and are 

aligned along the major axis y =  0 (Figure 6 .6 a). However if p >  1 then r { k —̂ oo) «  Be^^êy and 

the major axis of the improper null is the x — 0 line (Figure 6 .6b).

6.5 T hree-D im ens iona l N on -P oten tia l N u lls

Having considered the possible potential magnetic configurations about a three-dimensional 
neutral point, we now investigate the non-potential fields that may arise. The matrix M  is now
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Figure 6 .6 : The improper (asymmetric) potential null three-dimensional magnetic field configura­

tions (p ^  1) surrounding null points, (a) shows the case when p < 1 , whilst in (b) we have p > 1 ; 
the field lines in the fan plane are predominately aligned along the æ-axis and y-axis respectively. 
Specifically, we have used values of p =  0.5 and p =  2 in (a) and (b) respectively.

asymmetric. The current associated with the field is J  =  while the eigenvalues of the

m atrix M  are

Ai,2 -  -  (p 4- 1) ±  Jthresh ~  j\\

As =  -  (P +  1) ,

(6.57)

(6.58)

where p > -1 ,  (p +  1)  ̂ >  Jthresh “  j\\ and Jthresh = ( p -  1)  ̂ +  as previously defined. These 
constraints are necessary to ensure that the eigenvalue Ag always corresponds to the eigenvector 

along the spine (i.e. Ag has opposite sign to the real parts of Ai and A2).

6,5,1 J t h r e s h

First we investigate the case where the magnitude of the parallel component of current 

is less than the threshold current. All three eigenvalues are real and distinct, and in addition all 
three eigenvectors are linearly independent. We now examine the possible field configurations by 
investigating the effects of (i) the parallel component of current, (ii) the perpendicular component 

of current and (iii) both components of current.

(i) jx, =  0 and J\\ ^  0

Initially we consider the case where the perpendicular component of current is zero and 

the parallel component is non-zero. If Jx, =  0 (y =  0) and we take p > “ i | / 4  the eigenvectors are
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Figure 6.7: The three-dimensional non-potential magnetic field configurations where the com­

ponent of current parallel to the spine is less than the threshold current {\ j \ \ \  <  j t h r e s h )  - In 
cases (a) to (c) we take p >  —j | / 4  and the topologies are three-dimensional. In (a) we have 

j'll ^  0, =  0, (b) j|| =  0, j ±  ^  0 and (c) jjj ^  0, 0. Specifically we have taken the values

(a) p =  0.25, ill =  0.5, ix  =  0, (b) p =  2, i|| =  0, j ±  -  3 and (c) p =  2, i|| =  -1 ,  =  2, g =  1.
In (d) the three-dimensional configuration reduces to a two-dimensional field when p =  —i^ /4 ; 

P =  0 , ill =  0 , ix  =  - 1 .
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found to be

Xl,2

( 1 \

h  
0

X3 (6.59)

w ith the corresponding eigenvalues given by Equations (6.57) and (6.58). Hence the fan and spine 
are perpendicular. We find that as k oo the field lines in the plane of the fan become parallel to 
the line

1 - P - \ / j t h r e s h  -  i |  _  - (6.60)

so they form positive skewed improper nulls (Figure 6.7a). The topology of this null is different 
from the potential improper null shown in Figure 6 .6 . The parallel component of current introduces 

a preferential direction for the field lines. Mathematically this may be shown by considering the 
equation for a field line in the plane of the fan

(6.61)

Since p >  —1 and (p +  1)^ > “  j\\ have Ai > A2 . Therefore as fc -> 00  the dominant term
is yle^i^'xi, and so the major axis is defined by the eigenvector x%.

If p =  — jj| /4  the field reduces to a two-dimensional configuration which consists of collapsed 
X-points lying in planes defined by p ~  (j||/2 ) æ =  0.

( i i )  j±  #  0 and j\\ ~  0

We now examine the case when the parallel component of current is zero (jj| =  O) whilst 
the perpendicular component is non-zero {j± ^  0). The eigenvalues for M  become in this case 

1
Ai,2 =  ~ (p +  1 ±  j th r e s h )  , A3 =  -  (p +  1) , (6.62)

where p > —1 and p -f-1 > j th re s h -  The eigenvectors in this case are given by

/ 0 \
Xl,2 =

/  —3p \

“̂3 JL̂ /
3 + 3 p ± j t h r e s h  

2JX
1

X3 (6.63)0

V 1
The  fan plane is therefore not perpendicular to the spine when the perpendicular component of 

current is non-zero. The fan plane is defined by

y j t hr e s h ~ (P ~  I)^ ® (P  +  2 ) P +  ^9 (p -j- 1)^ -  j t h r e s h ^  z — 0 (6.64)

Note that as j±  increases the angle between the fan and spine reduces, so that ultimately (jx 1) 

the spine lies in the fan plane and the configuration reduces to a two-dimensional case. In addition
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from Equation (6.64) we find that the fan rotates about the line in the æp-plane,

jthresh - { p -  1)̂
y = 2 (p +  2) " - " 2 ( J % 2 ) '

Therefore if g =  0 the fan tilts about the æ-axis, but if g ^  0 the fan twists about the line in the 

æp-plane described by Equation (6.65). This is a positive improper null with the field lines in the 
fan orientated predominately along the line

  “ 3p^ 4- 3 -j- jthresh “t" 2 (p 4* 2) jthresh 3 4~ 3p 4' jthresh
X  4-

2j l y , (6.66)

which is associated with the eigenvalue Ai (> A2). The three-dimensional topology is illustrated in 
Figure 6.7b. The magnetic configuration is similar to that of the improper potential case (p 1) as 

shown in Figure 6.5b, but now the fan and spine are not perpendicular.

We note that when p =  {jthresh — 1) the field reduces to a two-dimensional case with 
X-points lying in planes defined by

y/p X — y = 0 . (6.67)

The two-dimensional case is illustrated in Figure 6.7d for the case p =  0.

(iii) jx  ^  0 and ;j| ^  0

Finally in this section we investigate the situation where both components of current are 

non-zero. In this case (when p > —1 and (p-j-1)^ > jthresh ~  i f  ) eigenvalues are defined by 
Equations (6.57) and (6.58) with corresponding eigenvectors

(  — 3p^ + 3 + j r e » h  ~Jn ^ ih r

3{p+l)±^:XI,2

V /

(  °
X3 = 0

1 /

(6 .68)

The fan and the spine are not perpendicular because the perpendicular component of current is 

non-zero. The fan lies in the plane defined by

2 i l  { ^ J t h r e s h  ~  { V ~ ^ Ÿ  +  i||^  ® “  4jx (p +  2) y 4- ^9 (p 4- 1)^ -  jthresh +  i f )  =  9 , (6.69)

and the magnetic field lines are illustrated in Figure 6.7c. The field lines lying in the fan plane form 
a positive skewed null whose major axis is in the direction of the vector x% (A% > A2). The dominant 
term  in the field line equation for the fan is Ae^^^xi.

The magnetic field reduces to a two-dimensional case consisting of inclined collapsed 

X-points when (p 4- 1)^ =  jthresh ~  3\\- These lie in planes defined by

2p« -  ( y 6 |  4- 4p -  ill) y =  0 . (6.70)
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6.5.2 IJ|| I — jthresh

We now examine the possible magnetic field configurations that arise when the magnitude 

of the parallel component of current equals the threshold current. In the case where j j|| | =  j t h re s h  

we find that two of the eigenvalues are equal. Taking p > —1 the eigenvalues are given by 

p +  1
Ai,2 = (6.71)

We again sub-divide this section by investigating the effects of the two components of current 
individually and then together.

(i) ix  =  0 and i;|  ̂0

If P > —1, P 9̂  1 and |i||[ =  j th r e s h  7  ̂ 0 we find that the two equal eigenvalues only have 
one associated eigenvector. To define the plane of the fan we must therefore calculate an additional 

basis vector X2*. This is found by solving

M x 2 =  x i -h AXg (6.72)

where A is the repeated eigenvalue and x i is the eigenvector corresponding to this eigenvalue.
Since the perpendicular current is zero we may assume g =  0. The vectors which define 

the fan plane and spine of the null point are therefore calculated to be (p > —1)

f  o \
X3 =X i  =

/  \
3 \\

1 X n  =

/  3 ^  \  
Jll 
1

\  0 / V 0 /
(6.73)

The fan plane is perpendicular to the spine since j ±  =  0. In the fan plane there are both straight 

and curved field lines. The neutral point is therefore a positive critical spiral null whose fan field 
lines gather around the line directed along the eigenvector x i (Figure 6 .8 a). This can be illustrated 
by considering the equation for a field line in the fan plane,

r  {k) = {A + Bk)  e x i + Be x^ . (6.74)

The dominant terra is Bke^^xi as k oo. This configuration is intermediate between the improper 

null (Figure 6 .6 a) and the spiral null (Figure 6 .9 a). It is important to note that x^ is not an 
eigenvector.

If p =  —1 then the neutral point reduces to a two-dimensional non-potential null with 

anti-parallel field lines (Figure 6 .8d).

(ii) jx  7  ̂0 and j\\ = 0

If the component of the current parallel to the spine is zero {j\\ =  j t h re s h  = 0) then we must 
have p =  1 and g =  0 for the spine to be aligned along the z-axis. The eigenvalues are therefore
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a b

c d

- 2

Figure 6 .8 : The three-dimensional non-potential magnetic field configurations where

(bill =  if/ires/i) • In (a) to (c) three-dimensional configurations arise since p > —1 . In 
(a) ill ^  0, j±  =  0, (b) j|| =  0, i l  ^  0 and (c) j\\ ^  0, i i  ^  0. Specifically we take (a) 

p =  3, ill =  2, i i  =  0, (b) p - 1 ,  ill =  0, i i  =  1 and (c) p =  3, i|| =  2, i i  =  1. In (d) the configu­
ration reduces to two dimensions since p = —1 ; we have taken values of p =  —1 , iy =  2 , i i  =  0 .
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given by 1, 1, —2. Even though two of the eigenvalues are equal it is possible to find three linearly 
independent eigenvectors. These are given by

/  1 \  /  0 \  / o \

x i = X2 3
ij- X3 (6.75)

Therefore, since ij_ 7̂  0, the fan does not lie in the ary-plane but in a plane defined by the equation 

=  0 . (6.76)

The field lines lying in the plane of the fan are radial (Figure 6 .8b).

(iii) j±  ^  0 and j\\ ^  0

When both the parallel and perpendicular components of current are non-zero and p > — 1, 

but ill is still equal to the threshold value, we have a repeated eigenvalue. We once again have to 

look for an additional basis vector, Xg. The vectors are found to be

Xi —

/  3(p +  l ) ( v ' j i \ r e ,h - ( P - l ) ' ' - J | | )  \
2 j J . ( p - l )

3(P+1)

1

-3p=^+4p+ll
J- (V̂ ihrc,h~(.P-'̂ F+3II)

*
1

\

X3

(6.77)

(6.78)

In this example a critical spiral forms (Figure 6 .8c) whose fan lies in the plane defined by 

2i± { ^ i t h r e s h  -  ( p -  1)^ + ill) ® -  4ii (p4-2)y+ (9(p+ 1)^) ^ =  0 . (6.79)

We note briefly that if p =  —1 then planes are formed containing anti-parallel parabolic 

field lines.

6.5 .3 ^ Jthresh

When the parallel component of current is greater in magnitude than the threshold current 
two of the eigenvalues of M  will be a complex conjugate pair, whilst the third eigenvalue is real,

Ai,
p +  1

^thresh A3 =  -  (P +  1) • (6.80)

The eigenvectors relating to the complex eigenvalues will also be a complex conjugate pair. However 

we have seen in Section 6.3 that if the complex eigenvectors are split up into their real and imaginary 
parts the resultant basis vectors will define the plane of the fan.
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a c

Figure 6.9: Non-potential three-dimensional magnetic field configurations where the component of 
current parallel to the spine is greater than the threshold current (| jjj | > jthresh) • In (a) we have illus­

trated the three-dimensional configuration when j|| ^  0, j±  =  0. The values p — 0.5, j\\ =  1, =  0

are used. In (b) the æz-plane is shown, illustrating the spiralling field lines around the spine 
(p =  —0.5, j|| =  —4, =  0). Finally in (c) we show the effects of both components of current with
p — 1, j\\ =  —2 , j x  — 2 ; the fan plane is not perpendicular to the spine.

(i) j±  =  0 and j|| 7 :̂ 0

When the perpendicular current is zero (jj. =  0) the spine is perpendicular to the fan. The 
basis vectors are given by

/ \ ( \ /^ \ \  L h ra sh \ / 0 \
;ii J||
1 I Xg — 0 y X3 = 0

\ 0 ) \ 0 V1 /
(6 .81)

where we have taken g =  0 and p > — 1. The magnetic field lines that lie in the plane of the fan 
are spirals. Some of the spirals are so weakly coiled that the topology looks more like that of an 
improper null (Figure 6.9a). The spirals become much tighter for increasing j\\ (Parnell et al. 1997). 

We get proper spirals if and Xg are perpendicular and improper spirals if they are not. The two 

basis vectors in the fan plane are only perpendicular when p =  1. Therefore, in general, spiral nulls 
will tend to be of the improper type.

If we look a t the equation for a field line.

{k) — cos (0  + vk) x^ — Rçp^ sin (© -f vk) Xg T Ce ’̂̂ ^xa , (6 .82)

then we can see that the field lines are coiled in the x^ and Xg directions, spiralling first around the 
spine and then outwards parallel to the fan plane (Figure 6.9b).

When p = the field reduces to a two-dimensional null with a null line along the z-axis
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and elliptical field lines in successive z = constant planes. These elliptical field lines will become 
circular only if the matrix has zero entries along the trace.

(ii) j±  ^  0 and jy ^  0

We now consider the case with jj, ^  0 and j|| ^  0 since it is not possible to create a spiral 

null w ithout a component of current parallel to the spine. The basis vectors are defined by (p > —1)

3 ( P + 1 )
2jX 
1

2 j .

V

(6.83)

/

X3
/ o \

0 . (6.84)

V 1 /
The fan is not perpendicular to the spine and lies in a plane given by

Jthresh ~  (p ~  +  ill ® (p +  2 ) p +  ^9 ( p  +  1)  ̂— Jthresh +  i f )  ̂  =  0 . (6.85)

The field lines lying in the plane of the fan are coiled as are the field lines around the spine, 

illustrated in Figure 6.9c.
The field reduces to a two-dimensional null when p =  — 1 with elliptical field lines in 

successive planes given by

2 i l  [ ^ Û t h r e s h  -  4 +  i||^  X -  4jj.p 4- ( if  -  J th r e s h )   ̂ =  0 . (6.86)

6.6 E vo lution  o f  th e  M agnetic C onfigurations

In the previous sections we have discussed all the possible configurations that a three- 

dimensional neutral point may take. The cases we have considered have always had the spine located 
along the z-axis. We now relax this assumption. It is interesting to consider how the topologies 

may evolve from one form to another. To do this we consider the variation of the parameter p for a 
potential magnetic field given by

B =  ( r ,p p ,- (p +  l)z )  , (6.87)

where —oo < p <  oo (Figure 6.10). Here we find that for 1 < p < oo we have a positive improper 

radial null with the spine located along the z-axis. The fan is located in the æp-plane, with the 
major axis lying along the p-axis. As p approaches unity the null transforms to a proper radial 
null which then closes down to form an improper null. The major axis is now located along the
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B = (.r,py,- (p + 1) z)

1/2 < p < 01 < p < oo

p = 1 1/2 •2PP

1 < p <  -1 /20 < p < 1 ■oo < p < —2

1 PP

Figure 6.10; The possible topologies of a potential magnetic field surrounding a neutral point due to 

variation of the parameter p. Both two and three-dimensional configurations may exist depending 

upon the value of p.
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ar-axis. As p continues to decrease towards zero the field lines continue to close up until at p =  0 
the field reduces to a two-dimensional configuration. The i/-axis is now a null line with X-points 

forming in successive zz-planes. For — 1 < p < 0 the polarity of the null changes so that a negative 
null point forms. The spine is now aligned along the æ-axis whilst the fan is in the yz-pla.ne. The 
major axis is initially the ^-axis but then becomes the p-axis as p approaches —1. When p =  — 1 

the three-dimensional configuration reduces to a two-dimensional field with X-points in successive 

æp-planes. When —2 < p < —1 an improper null arises with the fan in the a;2;-plane and the major 
axis located along the z-axis. The spine is aligned with the p-axis. Then when p =  —2 a proper null 

is formed, with the fan in the æz-plane and the spine located along the p-axis. For —2 < p <  —00  we 

again have a positive radial null whose fan is in the æz-plane with the spine aligned along the p-axis. 
The major axis of the fan lies along the æ-axis. As p —f —0 0  the field reduces to a two-dimensional 
X-point configuration in successive pz-planes.

A comprehensive investigation into the variation of all four parameters (p, q, j \ \ ,  j t h r e s h )  on 
potential and non-potential topologies has recently been undertaken by Parnell et al. (1997); see 

also Section 6.7.

6 .7  R ecent D evelopm en ts o f  th e Work

The work described in this chapter was expanded upon by Parnell, Smith, Neukirch and 

Priest (1996), who classified three-dimensional neutral points in a more comprehensive manner. In 
this paper it was noted that the eigenvalues obtained from |AI — S| =  0 for the matrix S (where S 
is the symmetrical part of M) may be written in the form

-}- oA  ̂-p 6A c =  0 . (6 .8 8 )

For a divergence-free vector field a =  0. The determ inant of the matrix S is —c, whilst the discrim­
inant is given by 6^/27 -p c^/4. The square root of the discriminant of S is equal to the threshold 

current { j thr e sh )  with the same argument applying for two-dimensional neutral points. A simi­
lar result may be found in Chong, Perry and Cantwell (1990) who gave a general classification of 
three-dimensional flow fields in terms of Equation (6 .8 8 ) for both compressible and non-compressible 
flows.

From this approach the neutral point can be categorised quickly and easily. The type of 

null may be obtained from knowledge of the discriminant and the determ inant of M , and whether 
the m atrix M  is symmetric or not. See Table II in Parnell et al. (1996) for full details. We now 
summarise the main results of their approach.

If the matrix M  is symmetric the null point is potential, whereas an asymmetric matrix 

results in a non-potential null. In addition, if the determ inant of the m atrix M  is non-zero then 
a three-dimensional null arises. Furthermore, a positive (negative) null is obtained for negative
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(positive) determ inant. For the special case when the determ inant is zero the structure is two- 
dimensional. Finally the discriminant of the matrix M  plays a crucial role in determ ining the 

magnetic field topology. When the discriminant is negative the null points are classified as either 
proper or improper radial nulls (for a potential field) or skewed improper nulls (for a non-potential 

field). When the discriminant is equal to zero it is possible for a proper radial null (potential) or 
critical spiral null (non-potential) to arise. Finally for a positive discriminant a spiral null forms 

which is always non-potential.
Parnell et al. (1996) also briefly considered the topologies that may arise in different 

geometries such as cylindrical and spherical. However, no new configurations were found.

A comprehensive investigation into the structure and collapse of three-dimensional neutral 
points was undertaken by Parnell, Neukirch, Smith and Priest (1997). Their work expands the study 
of the structure of three-dimensional neutral points reported in this chapter. In addition the collapse 
of a neutral point is investigated.

The effect of the four parameters, identified in this chapter, that define the magnetic field 

surrounding a null are examined in greater detail. Results show that the perpendicular current (jj.) 
causes the fan plane to be inclined to the spine, and when =  0 the fan and spine are perpendicular. 
The angle of inclination was investigated for different values of the four parameters. As the current 
increases the fan and spine close up. The parallel component of current (jf||) alters the configuration 
of the field in a different way, causing the field lines in the fan plane to bend. The two parameters 

p and q determine the potential structure of the null. In addition these potential parameters can 

reduce the three-dimensional topology to two dimensions as well as changing positive neutral points 
to negative points and vice-versa.

An important result found by Parnell et al. (1997) is the existence of three transitional null 

points. It is possible for a three-dimensional field to reduce to a two-dimensional topology by varying 
the potential parameters. Parnell et al. (1997) find that the two-dimensional null is the intermediate 
configuration between positive and negative three-dimensional nulls. The change from a positive to 
negative null can result in a dramatic change in topology (see Figure 6.10 for a particular example). 

Another transitional null is the critical spiral which separates spiral and improper null points. The 
final transitional neutral point is a radial null, which may separate clockwise and anti-clockwise 
spirals, or improper nulls where the major axis in the fan may change.

Moreover, Parnell et al. (1997) point out that three-dimensional neutral points may collapse 

when a small perturbation is applied. Solving the linearised MHD equations it was found that the 
nature of the collapse was dependent upon the initial perturbation. For example, when a current 

was induced perpendicular to the spine of a potential null the fan plane began to approach the spine. 
For a perturbed current parallel to the spine the field lines close up in the fan plane. This work, 

however, requires that energy can propagate into the system and the field lines are not line tied.
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E igenvalues V ectors E q n  o f  field lines D escrip tion  o f  mill

P o te n tia l

N o n -p o te n tia l

T h re e  rea l d is tin c t 
All Aj, A3

>  0 T h re e  rea l d is tin c t 
All A21 A3

I 0 T w o  equa l 
A, A, -2 A

E igenvectors X i, x i ,  X3

E igenvectors x , , x%, X3

j |l  =  0  => E igenvectors x i ,  X), X3

j | |  ^  0 => V ectors x i ,  X j, X3 

w hich sa tisfy  M x i  =  A xi,
M x j  =  x i  +  A xJ, M x s  =  - 2 Ax3

r  (fc) =  /le-^'*^Xi +  B e^ ^^X 2 R ad ia l null; p ro p e r o r  im proper
-hCe^®*X3  fan  1  spine

r ( k )  =  r ie^ '* 'x i +  Skew ed  im proper radial nu ll
+ C e ^ ^ X 3  y’x  =  0  fan  J. sp ine

jT  /  0  fan  X spine

r ( k )  -  yle^’*Xi +  iJe^’ *X2  R adia l nu ll
+Ce^=*^X3  :^0= >  fa n  /  sp ine

r  (k )  =  ( r i  +  B k )  e ^ ^ x j  C ritic a l sp ira l nu ll
-f J3e^*X2 +  C c '^ ^ ^ x s  =  0  =*. fan 1  sp ine

J j . ÿS 0  => fan /  spine

<  0 T w o  com plex co n ju g a te  x ,  =  (x i  +  X2 ) / 2 ,  X j =  - i  ( x ,  -  X2 )  /2 ,  r  (h ) =  E e’'* cos ( 0  +  v k )  x [  Sp ira l null: p ro p e r o r im p ro p er 
O n e real X3  w here  X i, X2 a n d  X3  a re  eigenvectors - i î e ’'* ^ s in (0  +  i/fc jx j  j j .  =  0  fan  1  sp ine
( t) + w ) , ( i j  -  i v ) , - 2 r /  + C e “ ^’’*xa J j . #  0  => fan  /  sp ine

Table 6.2: A summary of the results presented in this chapter. The nature of the eigenvalues and 
associated vectors, along with the equation of the field lines and a brief description of the null, is 
given for all the possible three-dimensional configurations.

6.8 C onclusion

In this chapter we have analysed the local linear three-dimensional magnetic structure 

surrounding a neutral point. The field configurations depend upon four parameters, namely p and 

g (the potential field parameters), j|| (the parallel component of current) and j±  (the perpendicular 
component of current). The configurations have been classified into cases with no current, current 

parallel to the spine axis, current perpendicular to the spine axis and current both parallel and 

perpendicular to the spine axis. The effect of the four free parameters on the system has been 
examined. A summary of the results is reported in Table 6.2.

For a potential magnetic field one parameter p determines all the possible configurations, 

which are either proper (p =  1) or improper (p 7  ̂ 1) radial nulls. The spine is also perpendicular to 
the fan. It is also possible, for particular values of the potential parameter, for the null to reduce to 
a two-dimensional configuration.

When the current is purely parallel to the spine of the null (j± — 0) then jus t two parameters 
(p and jij|) are required to determ ine all the possible topologies. However if there is a component of 
current perpendicular to the spine (j± ^  0 ) then all four parameters are needed.

To determ ine the structure of the non-potential magnetic configurations one im portant 

parameter is the threshold current { j t hr e sh ) ,  which depends only on the potential field parameters. 
If the absolute value of the spine current (| j|| |) is less than the threshold value the neutral points 
formed are either improper or proper radial nulls. It is also possible to find three linearly independent
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eigenvectors of the matrix M . When |jjji is equal to jthresh then two of the eigenvalues are equal, in 
which case it may not be possible to find three distinct eigenvectors of M  and so an additional basis 
vector is calculated. The neutral point is either a radial proper null or a critical spiral. Situations 

where |jj|| is greater than jthresh give rise to complex eigenvalues. The field lines lying in the fan 
plane are of the spiral type. We also find that if the real parts of two of the eigenvalues are greater 

than zero then the null is positive, with the field lines in the fan leaving the null. If, however, the 

real parts of two of the eigenvalues are less than zero, a negative null arises and the field lines are 
directed towards the neutral point.

It is also possible for the three-dimensional nulls to reduce to two-dimensional nulls lying 

in successive planes containing X-points (|jj[| <  j thresh) or ellipses (|jj|j >  j thresh)- If |i||| =  jthresh  

and the perpendicular component of current is zero it is possible for planes to be formed containing 

anti-parallel field lines for particular values of p. However, if \j\\ | = jthresh and j ±  ^  0 then successive 
planes are formed containing anti-parallel parabolic field lines.
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C h ap ter  7

Conclusion

“All our knowledge is but the knowledge of school children. The real nature of things 
we shall never know, never.” Albert Einstein

7.1 Sum m ary o f  T hesis

This thesis has examined the guiding of magnetoacoustic waves in coronal structures such 

as loops and current sheets. We have investigated how magnetoacoustic waves may be guided by 

inhomogeneities both in the magnetic field and the plasma density. The work contained in this 

thesis is of importance because it attem pts to model the observed oscillatory phenomena in terms 
of structures found in the solar corona, and such a study provides important seismic information 

about the corona. It may also give an insight into the long standing puzzle of coronal heating. The 
main conclusions of our study are as follows.

A comprehensive review of coronal oscillations has been presented in the introductory 
chapter, along with with a detailed summary of coronal loops. The physical characteristics of the 

other regions of the solar atmosphere are also briefly discussed. The basic equations of ideal MHD 
are given, and we concluded this chapter with a discussion on the properties of the Alfvén mode and 
the fast and slow magnetoacoustic modes in a uniform medium.

Chapter 2 was concerned with the guiding of magnetoacoustic waves in curved coronal 

loops. Previous studies have concentrated on dense slabs or cylinders to model coronal loops. Such 
models are popular because they allow us an insight into the physical processes occurring in the 
corona. A review of the slab model proposed by Roberts, Edwin and Benz (1983) was presented. 
We then gave a detailed review of the work undertaken in curved dielectric waveguides. A summary 

of the previous work on leaky magnetoacoutic waves in the solar atmosphere is then described. 
Detailed numerical calculations show that the slab model is, in general, a good approximation to the 
curved loop. The effect of the curvature is to generate wave leakage from the loop. The efficiency 
of wave guiding was investigated for different parameters, namely the loop’s length, width, density
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enhancement and mode of oscillation. The study found that the fast magnetoacoustic mode was 
guided more effectively for high density enhancements, high radii of curvature, and wide loops. 

Moreover, the kink mode was found to be guided better than the sausage mode. Even modes are 
more leaky than odd modes. Calculated periods of oscillation were in good agreement with the 
observations.

Chapter 3 considered the guiding of magnetoacoustic waves in a current sheet. Theoreti­

cally, coronal loops have often been used to explain the ducting of magnetoacoustic waves in the solar 
corona. However, in Chapter 3, we have carried out a comprehensive investigation into the propa­
gation of magnetoacoustic waves in a current sheet. Initially we reviewed the slab model considered 
by Edwin, Roberts and Hughes (1986). A detailed investigation into the type of modes which may 

propagate in a continuously structured current sheet was undertaken. Typical time scales of oscilla­
tion were also examined. A current sheet was found to guide magnetoacoustic waves in a similar way 
to coronal loops. The cases of constant and non-constant plasma density were considered. It was 

found that pure fast and slow magnetoacoustic modes do not exist; modes possessed characteristics 

of both types. Furthermore, body, surface and hybrid modes were found, compared with only body 
and surface modes in the simple slab model. Hybrid modes contained elements of both body and 

surface modes. Calculated periods of oscillation agreed well with the observations of oscillations in 
the solar corona and Earth’s magnetosphere. It was suggested that certain oscillations may be due 
to magnetoacoustic waves trapped within current sheets.

Chapter 4 investigated the time evolution of impulsively generated magnetoacoustic waves 
in current sheets. M inima in the group velocity curves in Chapter 3 were found for certain modes. 
If a wave is impulsively generated it will exhibit a distinctive temporal signature, as described in 

Roberts, Edwin and Benz (1983, 1984). Numerical simulations were performed using a flux corrected 

transport code. Results show that an impulsive event, such as a solar flare, a reconnection site or 
MHD instability, will generate propagating magnetoacoustic waves. The waves are subsequently 
guided by the inhomogeneity in the magnetic field. The temporal signatures obtained are in general 
agreement with observations of both the Sun’s corona and the Earth’s magnetosphere.

To summarise, the guiding of magnetoacoustic waves in current sheets and coronal loops is 
an attractive physical process of wide applicability, with results in general agreement with a diversity 
of observations.

Chapter 5 investigated the effects of randomly driven waves in the E arth’s magnetosphere. 
A magnetospheric cavity was driven by a random boundary displacement containing a broadband 
spectrum. The driving motion was found to excite quasi-monochromatic fast modes whose eigen- 
frequencies lie within the spectrum of the driver. In addition these modes will couple to the Alfvén 
mode provided the wavenumber ky is non-zero and the fast mode eigenfrequency lies in the Alfvén 

continuum. The location of the resonant field lines and the Alfvén mode eigenfunctions may be cal­

culated to high accuracy by assuming a monochromatic driver. The ratio of the Alfvén wave energy 
density in two resonant field lines was found to be constant regardless of the driving mechanism, and
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it therefore depends only on the equilibrium of the cavity. Hopefully in the future this will provide 
im portant seismic information on the Earth’s magnetosphere.

In Chapter 6 we investigated the three-dimensional magnetic topologies surrounding neutral 
points. This work is a preliminary step in the understanding of three-dimensional reconnection. 
Results show that the local linear magnetic field surrounding a neutral point is determ ined by 
a 3 X 3 matrix. Both potential and non-potential magnetic field configurations were classified in a 

systematic manner. Magnetic topologies were classified as either improper ox proper^ skewed or spiral^ 
and positive or negative^ depending on the eigenvalues of the characteristic matrix and the current 

associated with the null. The three-dimensional fields reduced to the well-known two-dimensional 
topologies under certain conditions.

7.2 Future W ork

We now outline some ideas regarding the future development of the work described in this 
thesis. In addition, we give details of further projects which may provide greater insight into the 
propagation of magnetoacoustic waves in the solar corona,

7.2.1 D eve lopm ent of M ode ls D escribed in T hesis

The models that we have constructed are not able to describe coronal conditions fully, and 
therefore future work should aim to relax some of the assumptions we have made.

Specifically, we have neglected gravitational stratification in all our models. Although the 
effects of gravity are likely to be small in the corona (the pressure height is large compared with the 
height of a typical structure) interesting effects may nonetheless arise. The effect of gravity may be 
included in both the curved loop and current sheet model.

Furthermore, in Chapter 2 we ignored the effects of plasma pressure in our work on ducted 

waves in curved coronal loops. Therefore, the effects of finite plasma pressure would provide ad­
ditional understanding into the nature of wave propagation in the solar corona. However, the 
complexity of the problem would increase substantially. Both fast and slow magnetoacoustic waves 
will exist, but they will be coupled. Preliminary work on the propagation of magnetoacoustic waves 
in curved coronal arcades has been undertaken by Oliver, Hood and Priest (1996), and their re­

sults illustrate that strong coupling arises in a curved magnetic field. The numerical code used in 
Chapter 2 could be modified to undertake such an investigation.

In addition, we have considered a discontinuous density profile in our work on curved 
loops. In practice however, we may expect the density profile to be smooth, though sharp. It 

will be interesting to investigate how the efficiency of wave ducting changes with a smooth density 
profile. Our work has also been undertaken in a Cartesian geometry. In future work, the guiding 
of magnetoacoustic waves in a cylindrical geometry could be studied. A comparison of the leakage
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found in the Cartesian and cylindrical cases could then be made. The inclusion of twisted magnetic 

fields is another possibility for future study.
In Chapter 4 we examined impulsively generated waves in a current sheet. It may also be 

worthwhile to consider impulsively generated waves in curved coronal loops. The code implemented 
in Chapter 4 could be modified to investigate this problem. The temporal signatures of the fast, 
slow and Alfvén modes within (trapped modes) and outside (leaky modes) a coronal loop may be 

obtained and compared with the observational data. The effect of parameters such as density, width 

and the length of the loop can be examined.
In our work on current sheets in Chapter 3 we examined two limiting cases, namely the 

slab (top hat) and the Harris sheet model. An interesting exercise would be to construct a magnetic 

field that can vary between these two extremes. A similar task was undertaken by Nakariakov and 
Roberts (1995) for a coronal loop; they considered a density profile which contained the slab and 
Epstein profiles as two limiting cases. The proposed current sheet work would investigate, in greater 

detail, wave guiding in smooth magnetic field profiles.

Our work on current sheets has investigated the types of modes which may propagate, and 
also the time scales of oscillation. To achieve this we have considered solely parallel propagation 
{ky = 0). Relaxing this assumption would provide important information about the damping of 
magnetoacoustic waves and coronal heating. Tirry, Cadez and Goossens (1997) have considered 
wave damping in current sheets through the Alfvén resonance, although only in the weak damping 

limit.
In our work we have not been concerned with the problem of coronal heating. Additional 

work could include dissipative effects (see discussion in Laing 1996). The efficiency of the damping of 
magnetoacoustic waves could be investigated, for example, by changing the magnetic field strength, 

plasma density and the mode of oscillation. In addition, the study of resonant absorption in current 
sheets could offer some interesting results. Resonant absorption occurs when the frequency of the 
magnetoacoustic wave matches the Alfvén frequency along a particular field line. W ithin a neutral 
current sheet a wide range of Alfvén speeds maybe present, ranging from zero to several thousand 

kilometres per second. Therefore a magnetoacoustic wave propagating in a current sheet is likely to 
couple to an Alfvén mode. Furthermore, the process of phase mixing in current sheets could be an 
effective dissipative mechanism because of the wide range of Alfvén speeds present.

7.2.2 Future T heoretical M odelling

An important aspect neglected in our models is the presence of plasma flow. Recently, the 
effects of flow have been considered both in compressible plasmas (Nakariakov and Roberts 1995) 
and incompressible plasmas (Mundie 1997). Results show that for sufficiently high flow speeds 

(twice the Alfvén speed) the Kelvin-Helmholtz instability arises. For typical values in the corona 
the instability threshold is much larger than the observed flow speeds. However, the effect of flow in
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current sheets is potentially an important and interesting area of research. In particular, the Alfvén 
speed within the central regions of the current sheet is low (for a neutral sheet the Alfvén speed in 

the centre is zero). Hence, a relatively low flow may be able to excite instabilities, which in turn 
may excite propagating magnetoacoustic waves. The effects of plasma flow within current sheets 
has applications both in the solar corona and E arth’s magnetosphere.

Future work could also involve the investigation of magnetoacoustic wave interaction be­

tween adjacent coronal loops or current sheets. Much of the theoretical work undertaken so far 
has involved the propagation of magnetoacoustic waves in isolated coronal loops. Recently however, 

very high resolution (sub-arcsecond) images (November and Koutchmy 1996) suggest that as well as 
isolated structures, loops are found in close proximity to each other. It will be interesting to see how 

the presence of one loop (or sheet) influences the wave propagation in a neighbouring loop (or sheet). 

Preliminary work has been undertaken by Berton and Heyvaerts (1987), who considered a periodic 
array of slabs, and Murawski (1993) who numerically explored the “cross-talk” interaction between 
fast magnetoacoustic waves in two slabs. This work could include both analytical and numerical 

investigations, initially in a low-/? plasma. To begin with, for mathematical simplicity, the loops 
could be modelled as a slab of density enhancement. Further work can then investigate the effect of 
the loop curvature and finite plasma beta. A comparison with the observations and the implications 

for coronal heating could be made at each stage of the project.

We note that these suggestions for additional work will increase the complexity of the 

problem. However, in general, we may expect that the results we have obtained in this thesis are 
present even in more complicated equilibria.

7.2.3 U se o f SoHO observations

The comparison of theoretical results obtained in this thesis with SoHO observations, to­
gether with the use of SoHO data in theoretical models, should be an integral part of future research. 
Only by theorists and observers working together and learning from each others research can any 
substantial progress be made in the basic understanding of the nature of magnetoacoustic wave 

propagation in the solar atmosphere. To make progress we need to understand the intrinsic make 

up of coronal structures, for example loops and current sheets. This requires detailed observational 
studies of structures yielding information such as their oscillation characteristics, spatial sizes, densi­
ties, temperatures and magnetic field strengths. There are a number of proposed observing programs 

using the CDS (Coronal Diagnostic Spectrometer) and SUMER (Solar Ultraviolet Measurements of 
Emitted Radiation) instruments on board SoHO which are related to the study of wave propagation 

in the active region corona.
A study of coronal loops using the CDS instrument will be conducted by Harrison (1996, 

private communication). Observations will be taken which will provide crucial information about the 

densities, temperatures and spatial sizes of loops, as well as looking for low frequency oscillations.
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Complementary studies using SUMER are proposed by Lemaire (1994) and Mason (1994). Results 
from such observations could be included in theoretical models to gain important information about 

the physical processes occurring in the corona.
An investigation of coronal streamers using the CDS has been proposed by Harrison (1995). 

One of the many matters to be addressed is the physical nature of the current sheet. Accurate in­
formation regarding the current sheet will be of paramount importance for future research regarding 

wave propagation in such structures.
Im portant information regarding the existence of waves in the solar corona may be provided 

by studies WAVE (McClements et al. 1995) and BROAD (Harrison and Hassler 1995) using the 

CDS, and Hassler (1994) using SUMER.
High temporal observations of the solar corona looking specifically for oscillatory phenom­

ena will be made during the 1999 total eclipse (Phillips 1997, private communication). The SECIS 
(Solar EClipse Imaging System), designed by the Rutherford Appleton Laboratory, provides a tem­
poral resolution of 60 Hz. This ground based instrument will also have high spatial resolution so 

oscillations within coronal structures can be investigated. The observations will involve measuring 
the intensity of both the green coronal line (5374 Â) and the 5500 Â continuum. The continuum 
contains variations in the intensity due to the Earth’s atmosphere. To find the excess power due to 
coronal pulsations the continuum intensity is subtracted from the green coronal line. This exper­

iment has potentially a far superior temporal resolution than instruments onboard SoHO. SECIS 

will hopefully advance our knowledge of oscillations in the corona, and in particular of oscillations 
in loops and current sheets.

The solar corona exhibits oscillations with a diversity of periods. In this thesis we have 

theoretically investigated how magnetoacoustic waves may be trapped within coronal loops and cur­

rent sheets, as an explanation for the observed oscillatory behaviour. Hopefully this has provided 
an increased understanding of wave propagation in structured plasmas, and in particular the solar 
corona. In addition the suggestions for further theoretical studies, as well as the planned higher spa­

tial and temporal observations of the corona from the SECIS instrument, will advance our knowledge 

of this complicated region of the solar atmosphere even further, and may give clues to the elusive 
problem of coronal heating.
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Spatial Sizes of Coronal Loops
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Paper Length Height W idth Observation
(Mm) (Mm) (Mm)

Kleczek (1963) - 50-100 3-8 Green line (5303 Â)
348 8 -1 2

Fisher (1971a) - 43 S.8-8.7 Green line (5303 À)
Fisher (1971b) - 60 - Green line (5303%)
Foukal (1975) - - 3-12 EUV
Neupert et al. (1975) 100 20-40 - EUV
Sheeley et al. (1975) 100 - - EUV
Krieger et al. (1976) “ 100 (50 typical) - X-ray
McIntosh et al. (1976) 57-490 70-560 - X-ray
Howard and Svestka (1977) - 200-260 - X-ray
Levine and W ithbroe (1977) 110 - - EUV
Foukal (1978) 40 “ 10 EUV
Cheng (1980) - - 4.8-6.5 EUV
Kundu and Velasany (1980) - - 16-20 Radio
Kundu et al. (1980) - - 10-30 Radio
Kundu et al. (1980) - 5-11 - EUV
Davis and Krieger (1982) 7-500 - 0.7-30 X-ray
Lang et al. (1982) 40-400 - - Radio
McConnell and Kundu (1983) 70 - _ Radio
Berton and Sakurai (1985) - 120-130 - EUV
Stewart et al. (1986) 2 00 100/290 - EUV
Haisch et al. (1988) 130 40-60 - X-ray
Hanaoka et al. (1988) 50-90 29-80 1.5-4.45 Red line (6374 Â)

- 29-80 5-7 Green line (5303 Â)
Gary et al. (1990) 22 - - Radio
Golub (1991) 1.5-90 - 1.5 X-ray
Acton et al. (1992) 400 350 - X-ray

18 10 4
190 82 27

Klimchuk et al. (1992) 82 -, 7.26-9.1 X-ray
Shimizu et al. (1992) 33 - 7 X-ray
W atanabe et al. (1992) - 210 " X-ray
Koutchmy et al. (1993) - - 0.726-1.452 White Light
Hiei (1994) 1 0 -2 0 0 - - X-ray
Porter and Klimchuk (1995) 4.7-33 - - X-ray
Krucker et al. (1995) - ** 18 ± 7 X-ray

Table A.l: Summary of spatial sizes of coronal loops.
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Paper Density (xlO^cm ^) Temp (xlO^K) Observation
Parkinson (1973) 2 .0 - 10 .0 2 .0 - 6 .0 X-ray
Neupert et al. (1975) 6.7 2 .6 EUV/ X-ray
Levine and W ithbroe (1977) 1.38-42.6 

(FeXV 2.2)
1.4 EUV

McGuire (1977) 3.0 3.0 X-ray
Stewart and Vorpahl (1977) 0.8-2.4 2.0-3.0 X-ray
Svestka et al. (1977) 0.7-1.3 2.1-3.1 X-ray
Foukal (1978) 0.8-2.3 3.0 EUV
Pye et al. (1978) 1 .0 - 6 .0 2.6-3.2 X-ray
Cheng (1980) 2.2-3.6 2 .0 - 2 .2 EUV
Kundu et al. (1980) 2 0 .0 3.0 EUV
Davis and Krieger (1982) 1.0 2.1 X-ray
Dere (1982) 1.2-3.7 2 .0 EUV
Lang et al. (1982) 2.5 2-4 Radio
Gerassimenko et al. (1978) 1.8-2.5 2.2-2.5 X-ray
McConnell and Kundu (1983) 0.5 1.7 Radio
Kundu and Lang (1985) 1 .0 - 10 .0 2.0-4.0 Radio
Stewart et al. (1986) 0.19-0.3 2 .2 EUV
McKenzie (1987) 2.0-7.9 2 .0 X-ray
Webb et al. (1987) 3.4-7.S 1.5-2.5 X-ray
Haisch et al. (1988) 2 .0

5.0
4.5
3.8

X-ray

Hanaoka et al. (1988) 0.4-1.5 2.0-3.0 Green line (5303 À)
1.9-7.2 2.0-3.0 Red line (6374 Â)

Gary et al. (1990) 2.4-2 .8 2 .0 Radio
Shimizu et al. (1992) 4.0 5.3 X-ray
Klimchuk and Gary (1995) 1.5 2.5-5.0 X-ray
Porter and Klimchuk (1995) 1.4 5.7 X-ray
Krucker et al. (1995) 1.5 ± 0 .4 2 .1  ± 0 .1 X-ray

Table B .l: Densities and temperatures of active region loops.
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N um erical Schem e for Chapter 2

We wish to solve the equation

{BVfi) +  -^ B vn  =  0 (C.l)

numerically in generalised coordinates % {x, z) and ^  (æ, z). In Equation (C .l) B  is the magntitude 

of the magnetic field, is the component of velocity normal to the field and w and va are the
frequency and Alfvén speed respectively. This equation governs the velocity perturbations of the

fast magnetoacoustic mode in a potential coronal arcade, with the plasma pressure and gravitational
terms being neglected. For full details of the numerical scheme see Oliver, Hood and Priest (1996).

Here we only give a brief outline of the numerical method.

Firstly we need to rewrite Equation (C.l) into a form which is more convenient to solve 
numerically. The unit vectors of the coordinate system are 

.  _  VA .  B .  _  ^
Sti — - g -  . ®11 — g  ) ej. — ey , (C.2)

where e„ and êy are in the direction normal and parallel to the magnetic field respectively. In 

addition êj_ is in the direction perpendicular to the field and A {x ,z )  is the magnetic flux function 
where B =  VA x êy. In addition we take d /d y  =  0.

Using Equation (C.2) the gradient of a function f  = f  {x, z) is given by

V /  =  i  (VA.V) / ê „  +  ^  (B .V) /ê || , (C.3)

whilst the divergence of a vector F  is

V .F  =  1  (VA.V) (B .v ) /|| -  . (C.4)

The Laplacian V ^ / (= V .V /) is then obtained from Equations (C.3) and (C.4),

V V  =  ^  (VA.V) 5  (V A .V )/ B . l  (V A .V )/

+  g  (B.V) 5  (B .V )/ - 5 , 1  ( B .V ) / .  (C.5)
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Here Bg — 1/B^ (B .V ) B  and Ba = 1/B^ (V A .V )B .  In addition /„  and f\\ are the normal and 
parallel components of the vector F.

In Equation (C .l) we need to evaluate (Bvn) so we now set /  =  Bvn in Equation (C.5). 
We obtain, after some algebra and applying various vector identities,

J_
B

Here Bgs — l /B ^  (B.V)^ B  and Baa — 1/B^  (VA.V)^ B. From Equations (C .l) and (C.6 ) we obtain

V" (Bv„) =  1  [(VA.V)" v„ + (B.V)" B„] +  Bv„ [ 5 . .  +  B „  -  2 (B j +  B^)] . (C.6 )

B» [(VA.V)" v„ + (B.V)" «„] +  Vn [B „  +  B „  -  2 (B^ +  B,")] =  . (0.7)

We now write the terms (VA.V) and (B.V) in a more convenient form for numerical computation. 

Since our generalised coordinates are % and we may write the unit vector in the normal direction 

as ên =  iXni'fpn)- Hence

ên V =  1  (VA.V) =  (X .,</’. ) .  ( ± , ± )  +  , (C.8 )

and similarly

l ( B .V )  =  x . ±  +  ^ . ± .  (C.9)

Here Vo =  1/B  (VA.V) V, V, =  1/B  (B.V) V, =  l / B  (VA.V) % and =  1/B  (B.V) %. Therefore 
the governing wave equation (Equation C .l) becomes

+  +  +  +  +  =  (G.IO)

In Equation (C.IO) the variables o; to ^ are explicitly given by

A =  Vo +  V’s (C .ll)

=  2(VoXo +  V«Xs) (C.12 )

7 =  x : + x ;  (C.13)

<5 =  Voo +  Vss (C.14)

€ ~  Xaa ±  Xss (C.15)

(  =  +  +  (C.16)

where we have defined Voo =  1/H^ (VA.V)^ V, Vss =  1/H^ (B.V)^ V, Xaa = 1/H^ (VA.V)^ % 
and %ss =  1/jB^(B.V)^x- A finite difference approximation of the partial differential equation 
(Equation C.IO) is then undertaken. The computational domain is rectangular with sides parallel 
to the spatial coordinates % and V- In each spatial direction there are and N̂ j, equally spaced 
grid points. At each grid point the first and second derivatives in Equation (C.IO), evaluated at the 

point (x =  z, V =  j) ,  are calculated as follows:
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di}> 2h ip

dx^ h \

+ 0(Â ) , (C.18)

+  > (C.19)

S W  ^  +  ^  o  (C.20)

In Equations (C.17)-(C.20) and /i^ are the uniform grid spacings and Vn’̂  ̂ is the approximation 
to Vn at the point {xiy^j)- The mixed derivative takes the form (Oliver et al. 1996)

&  = f t i  + 4"'+" + + 4'^-“’]

+  O [m ax (h j,/ij) ]  , (C.21)

where + <f) 2  = 1/2 to ensure the errors in the finite difference scheme are as small as possible.
There are {Nŷ  — 2) {N^ — 2) interior points and 2 (jV  ̂+  iV  ̂ — 2) unknowns at the bound­

ary. Boundary conditions are needed to eliminate these unknowns. This is achieved by introducing 
ghost cells outside the computational domain.

The Ny(̂ N̂ jj (= N) grid points are ordered consectively into a vector U where

U =  , (C.22)

where v!̂  ,k  = l ,2 y . . .  ,N  are the approximations to the eigenfunction Vn at the grid point.

The discrete approximation to the partial differential equation (Equation C.IO) is now an 
algebraic eigenvalue problem

A U  =  AU (C.23)

where A =  The solution for is achieved by using an inverse vector iteration, with one 

eigenvector and eigenvalue being calculated at a time. An approximation (Aq) to the exact eigenvalue 
(A) is given. The vector AqU  is subtracted from both sides of Equation (C.23), giving

(A -  Aol) U =  AAU , (G.24)

where A =  Ao +  AA, and A A is the difference between the initial guess and the exact solution. The 
eigenvector U and the difference AA are then computed as the iterative solution to the system

(A -  Aol) Ui =  AAi_iUi_i , (G.25)

where AAj is given by the Rayleigh Quotient

(C.26,
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The vector Uq is simply filled w ith random numbers and AAq is set equal to Ao X 1 0 " The 
solution U i to the linear set of equations (Equation C.24) is computed and the correction AAi is 

then obtained from Equation (C.26). The second iteration then proceeds and the iteration continues 
until a solution converges.
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D erivation of the Governing 

Equation o f Lan (1979)

The governing wave equation for plasma motions in an incompressible current sheet (Equa­
tion 3.2) may be written in the form

In Chapter 3 we have also set (Equation 3.4)

/oo
u ( s , r ) e “ *^*ds . (D.2)

-OO

Differentiating Equation (D.2) with respect to X  we obtain 

and d /d X  of Equation (D.3) gives

S t  =
From Equation (D.l) we need to calculate X dvj;fdX , X"^Vx and X^d'^Vx/dX'^. To evaluate these 
quantities consider

f  X w {s ,r )e~ ^^^d s  . (D.5)
J  — OO

Taking ly (s) -> 0 as |s| -> oo and integrating by parts, the integral in Equation (D.5) becomes
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Now using Equation (D.3) we may write

J  ^  ( " W  e " * ^ ' d g  .

Then, upon setting ty (s ,r)  in Equation (D.6 ) equal to us, we obtain

^  ^  dj us)  ixs.

~ ^ L

Similarly we may write

/ o o

AT̂ ue"*̂ '̂ ®ds 

Using Equation (D.6 ) in Equation (D.9) yields

= - %  /
V  — o o

and then applying Equation (D.6 ) again gives

'OO A2.

X u e-* ^ 'd s  .

/:
Finally to calculate X ^d ^v^ /d X ^  we use Equation (D.4) 

^2d^Vx _  ^2„.„2-iXsX^
=  /- X ^us^e-’-'M s Xus^e~^^^ds .

An application of Equation (D.6 ) in Equation (D.12) gives

A A
a(us^) i Xs ds ,

V _ o o "

and then using Equation (D.6 ) again gives

A
= 1-

X
(us2) .

aA2 as2

Substituting Equations (D.8 ), (D .ll) and (D.12) into Equation (D.l) gives

( * '+  1) I ; ?  =  ^  [(*“ +  1) “ ] -  2 ^ ^  .

which reduces to the governing equation (Equation 3.6) of Lau (1979)

d'^u __ 
d^r A  ds

(D.7)

(D.8 )

(D.9)

( D . I O )

( D . l l )

(D.12)

(D.13)

(D.14)

( D . 1 5 )

(D.16)

where A =  s'̂  +  1
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Edwin et al. (1986) M odel: 

Lim iting phase speed as k z a  1

The surface wave dispersion relation (Equation 3.30) in the short wavelength limit reduces

to

(E.1)

since as 1 both tanhmou and cothmoo tend towards one. At short wavelengths the limiting
phase speed for kink and sausage modes is the same. Here

rriea — k^a ^1 -  ^ > (^-2 )

moa =  k^a j^l -  j  , (E.3)

and UoO = k^a (  l l  . (E.4)y

Substitution of Equations (E.2)-(E.4) into Equation (E.l) gives

2 9 \   ̂ u>
k j v l J

and then squaring both sides of Equation (E.5) and multiplying through by T^u^e/4Cjo yields

,2 „,2

+  ^  {vAe +  Ĉ o) -  =  0 . (E.6 )

Equation (E.6 ) has solution

_  {v\  ̂ +  C^o) ±  ] / ( ^ A e  -  ^ s o f  +

A # -  2 ( 1 - A 2 ) (B.7)
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where A =  'yvAe/2cgo. The squaring of Equation (E.5) introduces a spurious solution which satisfies 
Equation (E.6 ) but not the original dispersion relation. An exam ination of the solution (Equa­

tion E.7) shows that the positive root must be neglected to ensure uj/k^ < Cgo. Multiplying the 
numerator and denominator of the right-hand side of Equation (E.7) by +  4A^u^gC^Q
and disregarding the spurious solution gives,

2c1q/ v\

k^VAeJ 1 + C ŝo/^Ae +  \ / l  +  ^to/^Ae ~

For the case A^ =  7 / 2  this equation reduces to

(E.9)
k z V A e J  1 +  A 2 - f  a /1  +  5 A 4  -  2A ^
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