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Abstract

Ibis thesis seeks to distinguish the main environmental parameters 

controlling the growth of Lohet-ia dortimnna and, by consideration of 

field conditions, describe which of these controls is most important 

in determining the zonation of the species, both horizontal and 

vertical, in Scottish lochs,
A detailed analysis of growth across one season was undertaken 

in a Sutherland lochan, studying populations on sites of different 

nutrient status. Continuous recordings of temperature and light and 
monthly measurements of photosynthesis, soluble carbohydrate content 

and leaf production show continuous growth across the year. However, 
major increases in growth are strongly correlated to light increases, 

and only weakly with temperature. No differences occur between sites, 

so nutrient limitation is not thought to be important in growth.

Germination studies reveal that seeds are absolute requirers 

of light for germination, are red-light promoted and require a cold 'i

stratification period before germination. Seeds germinate in low 

light, under conditions that seedlings subsequently cannot survive in.

Examination of the light regime in Scottish lochs reveals that there 

is sufficient light for germination below the depth limit of zonation.

Thus zonation is not controlled by a light requirement for germination.

Studies of photosynthesis, pigment and carboxylase variations 

with depth in L. dortmanna reveal some ability to respond to shading, 

particularly increasing chlorophyll levels. However, chlorophyll/ 

carboxylase ratios do not change, so indicating the plant is not typical 

of shade-adapting species. It is concluded that light control of 

photosynthetic production is the most important factor in controlling 

growth and zonation.
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Chemicals :

BSA

DNPH
DTT
EDTA

PVP

Other :

CAM

Fr
Kd

Kmin

PAR

R
SCUBA
SLA

Zc
^eu

Abbreviations

Bovine serum albumin 

2,4-Dinitrophenylhydrazine 
Dithiothreitol
Ethylene diamine tetraacetic acid 
Polyvinylpyrrolidone

Crassulacean acid metabolism 
Par red light at 730 nm

Vertical diffuse attenuation coefficient
of light through broad band green and red filters

Least attenuated of the K 's for different parts of the 
visible spectrum
Photosynthetically active radiation (400-700 nm)

Red light at 660 nm
Self contained underwater breathing apparatus
Specific Leaf Area, unit leaf area per unit leaf dry 
weight

Depth of zone colonised by macrophytes 

Euphotic zone, having about 1% subsurface PAR

Note on light quantification:

In this thesis light is quantified in terms of Einsteins (E) 
which are taken to be equivalent to moles of light quanta, i.e.:

-2 -11 |0E m s 1 iLimol m s
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chapter 1. Introduction

.1

The most fundamental questions of aquatic plant ecology and 
physiology are those concerning the zonation of aquatic plants. |
Initially studies of lake vegetation were generally descriptions of |
lakes and their plant communities (e.g. West, 1905). However, 

in later descriptions (e.g. Pearsall, 1920) attempts were made to try 
to explain the observed distributions with reference to the environment 
of the lakes, i.e. their zonation.

Spence (1982) reviewed the current state of knowledge of plant 

zonation in freshwater lakes. He distinguished a number of 
environmental variables that can affect zonation, Z-onation was also 

considered in two directions. Horizontal zonation concerns the 
changes in plant communities-as, for example, one travels around 
the littoral shore of a lake. Vertical zonation is concerned with I;
the changes in plant communities with increasing water depth. |

The environment can be described in terms of a number of variables. 
Sediment characters include particle size, nutrient status and redox 

status. Water characters include nutrient status, colour, light 
attenuation, temperature and turbulence. This list is not exhaustive, 

and these characters are inter-related. They also have compounding 

effects on aquatic plants. It is, for instance, important in studies 
of light limitation of photosynthesis and productivity to account 
for any nutrient limitation. It is worthwhile considering these 
characters in more detail.

Horizontal zonation is generally controlled by sediment 

characters and water turbulence. Sheltered areas of a lake will 
allow the deposition of silt and organic particles. In oligotrophic 
lakes, which form the majority of Scottish lochs (Spence, 1964) , 

such areas can have increased nutrient levels. Vegetation in these



regions is generally of emergent and floating species, with 100% 
cover. In exposed areas the sediment is of hard sand/gravel and, in 

oligotrophic lakes, low in nutrients. There is often little plant 
cover, and that is of small, submerged plants.

Vertical zonation has been attributed predominantly to changes 

in water turbulence and the light regime with increasing water depth.
The latter effect can operate in two ways. First there is a 3reduction in the light available for photosynthesis. Secondly the M

spectral composition of the light changes with depth, the precise ?

changes depending on the dissolved and colloidal substances in the ‘
, :|

water. This can cause alterations in photomorphogenic effects - I
(Spence, 1976). The actual physical descriptions of the light ^

ienvironment of many lakes has been well studied (Spence, 1981) , but
■■3

4the study of these effects on the aquatic plants has been little 

investigated, Spence and Chrystal (1970a and b)
studied the effect of varying light levels in Foixxmogeton j

species by showing that the zonation of these plants is controlled by
3an ability of these species to photosynthesise under low light levels. ,-"i

In contrast, Spence (1982) has also suggested that zonation may be 

controlled in other species by photomorphogenic processes which 
depend on light quality, such as seed germination. These factors will 

be considered in greater detail in later chapters. This study will 

seek to distinguish a number of factors affecting zonation in one 
particular species - Lohetia dortmannaJL.

L, dortmanna is one of a number of species belonging to a group 
of aquatic macrophytes known as the isoetids. Den Hartog and Segal 
(1964), based on Du Reitz (1921, 1930) defined aquatic macrophytes 
according to their growth forms. One of these forms is the isoetids, 
defined as "rhizophytes with a short stem, a rosette of stiff radial 

leaves, and with or without stolons". This type of growth habit is



spread across a taxonomically wide range of plants. In Britain
3the following species are considered as isoetids - Isoetes laoustr'ts L. q

and X. eohinospora/{Isoeta.ceae) f Subularia aquatioatiCruciferae) , I
LA ftsc.V>ert  ̂ q

L-ittoretta un-iflora [{.Vfaat-aqlnaceae) , Eri-ooaulon septangulare u?»VU . %

(Eriocaulaceae) and Lobelia dortmanna (Lobeliaceae) (Haslam et al.,
1975).

The isoetids are characteristic of the oligotrophic lakes of 
North-West Europe (Glapham et al., 1962). In Scotland the majority 
of the lochs and lochans are oligotrophic, particularly in the 
Highlands and Southern Uplands (Spence, 1964), In these lochs at 

least one isoetid species can usually be found. The distribution of 
J, eehlnospora and S, aquatlca is widespread (Spence, 1964; Woodhead,

1951b), though these species are often overlooked (e.g. Ballantyne,
1977). E, septangulare is an historically recent arrival in Britain 

and is confined to parts of the Weèt coast of Scotland, though it is 
spreading (personal communication to Spence). The remaining three %

species are widespread and are common in many oligotrophic Scottish 

lochs (Spence, 1964; Spence and Allen, 1979; Spence et al,, 1979). f
I, lacustrls is often a deep water species, certainly having a greater 

depth penetration than other genera of isoetids (Spence, 1964). It 
is less common to find large littoral populations of J. laoustrls 

than L, dortmanna or L, uni-flora. The two species of isoetids that 

are both relatively accessible in large numbers and of reasonably well 

known distribution are L, dortmanna and L, uni flora. In studying 
zonation and growth strategy this thesis will analyse growth in the 

field. L, dortmanna has a simple growth process, merely adding 

leaves to the rosette. L. uniflora also grows similarly.but, in 

addition, produces stolons and plantlets. This makes growth difficult 
to quantify. Such a factor is important in choosing L, dortmanna as 
a representative isoetid.

.A " } -
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The zonation characteristics of the three commonest isoetids 
are well known. The depth limits of the species vary. J. taoustris 

can penetrate to 4-6 m, depending on the loch, L, uniftova to 3-4 m 
and L. dortmanna to 1.7-2.5 m (Spence, 1964? Pearsall, 1920). These

- 'v|
depth limits are often well defined. A dive in a loch will reveal 
a population of large, healthy-looking plants of L, dortmanna that 
suddenly ends as the depth increases. R(z$rslett (1985) found |

that at the depth limit of I, taoustris there occur a number of 
dead individuals, so making an accurate determination of the limit 

of zonation difficult; This has not been observed for L, dortmanna.
It is this short depth-range and sharp "cut-off" that make L. dortmanna 
ideal for studying the factors affecting vertical zonation.

The horizontal zonation of L, dortmanna is wide-ranging. In 
oligotrophic lochs the plants occur over a wide range of sediment 

types (Spence, 1964? Campbell, 1971), Only in the most exposed 
regions of lochs is this plant lacking. It is also limited in its 
ability to grow in dense vegetation. It is hoped that an analysis of 

the growth strategy of L. dortmanna will provide an indication of 
the factors limiting the distribution of L. dortmanna in its horizontal 

zonation.

This study will attempt to distinguish the most important 
environmental parameters that may control the growth and, hence, 

zonation of L. dortmanna. It is necessary initiall^^consider the
seasonal changes in growth of the plant. This study will follow J

J
growth in the field, while monitoring a number of environmental i
variables. In particular this will seek to establish whether light,

temperature, nutrients or CO2 supply may limit growth. Such a study 1

]will generate a hypothesis concerning growth control that can be
Itested experimentally under controlled growth conditions. i

The study will then go on to consider the reproductive strategy

3
A ATfh. i'"-" '-'Î i — ''■«'■.it'



of L, dortmanna and the environmental control of seed production 

and germination. In particular, the effect of temperature, light 

quantity and quality and anoxia on seed germination and seedling 
growth will be studied and compared to a physical description of 

the field environment. This will seek to generate a hypothesis on 
the control of vertical zonation.

Finally the metabolic physiology of L. dortmanna will be 

considered in greater detail. It will be necessary in this section 
to expand the study to include other macrophytes, particularly 

isoetids, as published data for comparisons ace limited. The photo­
synthetic adaptability of L. dortmanna will be studied, in particular 
the ability of the plant to vary its light and carbon harvesting 
systems with increasing depth. This will be discussed in relation 
to the vertical'zonation of the plant.

In concluding, the study will attempt to define the environmental 
factors that most limit growth in L, dortmanna. This will be used 

to define the growth strategy of the plant and so seek, at least in 
part, to explain the observed zonation, both vertical and horizontal.



1- CHAPTER TWO
'•> THE ENVIRONMENTAL CONTROL OF THE SEASONAL

GROWTH OF LOBELIA DORTMAmA
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Chapter 2. The Environmental Control of the Seasonal 

Growth of Lobeti-a dortmanna

2.1. Introduction

2.2. The Study Lochan

The work on seasonal growth in L, dovtmanna was carried out in 

a small feeder lochan to Loch-na-Thuill, Sutherland (5°00'W 58®24'N). 
Henceforth it is referred to as Lochan-na-Thui11. A map of the lochan

is shown in Fig. 2.1. It is small and the water depth does not descend
below 1.5 m. However, it contains very good populations of L, dovtmanna
over a range of substrate types.

I

?

Only one study (Moeller, 1978) has been carried out to investigate 

the seasonal variations in the growth of L. dovtmanna. However, no 
account was made of any environmental parameters that may, in some 

way, control this growth. This chapter considers a number of growth 
and environmental parameters, seeking to determine which of the latter 
are more important in controlling growth.

Initially an account is made of the study lochan, and of the 
study sites within that lochan. This is done so as to distinguish 

any variations in sediment characters and in plants of L. dovtmanna in 
the lochan so that these can, if necessary, be taken into account in 
the subsequent analysis. Growth and environment were monitored 
throughout one season. A separate consideration of each growth and 

environmental character was carried out, and then the relationships 
between them were investigated. This allowed certain tentative 
conclusions to be drawn about the effects of the environment on growth. 
Finally, an account is given of the experimental growth of plants 

under controlled conditions which is designed to test the preliminary 
findings of the seasonal growth analysis.



Figure 2.1.

A sketch map of Lochan-na-îhuill. It shows the positions 
of the study sites (1-4) and of the permanent thermometer (T). 
It also shows those shores that are silty (small hatching) and 

areas of emergent vegetation (large hatching),
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Following the classification of Spence (1964) a number of plant 
communities can be distinguished in the lochan. The more exposed, 

coarse sediment areas bear the L-ittOTeHa-Lobet'La open sociation.
More sheltered areas and parts' of the deep water sediments are covered 

with the Lohet'ta’-L'ittovel'la sociation. One sheltered bay contains an 
example of the Equ'isetum ftuV'Cat'CZe'-L'ittoreZZa sociation and in the 
deeper water may be found the Nymphaea aZha subsp. aZba sociation.

Most of the lochan, however, consists of the former two 
sociations. These communities have been.noted to be very common in 

the West of Scotland (Spence, 1964; Spence and Allen, 1978; Spence, 
Allen and Fraser, 1979), Schoof-van Pelt (1973) studied the plant 

communities of the lochs of Sutherland and, using the classifications 
of Tuxen (1937), noted impoverished forms of the Isoeto-Lobelietum, 

which would correspond to much of the vegetation in lochan-na-Thuill. 
Similar communities are common in other parts of Britain, e.g. North 

Wales (Woodhead, 1951)^ and Northern anç3. Western Europe, e.g. Poland 
(Dambska, 1965 and 1966) and Finland (Eloranta and Marja-aho, 1982).

2.2.1. The Study Sites

Four sites were chosen around the littoral shores of the lochan 

which it was hoped would cover the full range in variation evident in 
the L, dovtmanna populations and yet were easily accessible. These 
sites, which are located on the map (Fig. 2.1) were:

Site 1, An exposed, eroded area, with a sediment composed almost 
entirely of coarse gravel. Associated with L. dortmanna 

are LtttoreZZa untfZora and RanunouZus fZammuZa,

Site 2. A sheltered, depositional area, with a fine-particled 
sediment. Present with L, dortmanna are L, untfZora,

R, fZamrruZa, Carex rostrata, Potamogeton poZygondfoZius and 
UtriouZarZa minor.
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Site 3. Another exposed area, also with a sediment of coarse gravel.
Associated with L, dortmanna are L. unZftora, R, fZarmuta

and Isoetes lacustrZs,
Site 4, This site is at the same point in the lochan as site 3, but

at 45 cm depth. It has a coarse sediment and is mostly
populated with L, dortmanna, with a little L, unZftora.

1

i
2.2.2. Analysis of the Study Sites

A full analysis of both the plants and their physical environment 
was undertaken at each of the sites in order to observe any differences 
that may be important in understanding a seasonal growth analysis.

All analysés were done in September 1983. Unless otherwise stated S
the analyses were carried out the day the samples were collected in a 

small field laboratory in Durness, 27 kilometers from the lochan.

2.2.3. Physical Analysis

The following measurements were made.
1. Water Alkalinity.

The alkalinity of the lochan water was determined according to 
the methods of Mackereth, Heron and Tailing (1978) using Gran 
Titration. There is some preliminary evidence that alkalinity may 

affect the distribution of isoetids, particularly L. dortmanna and 
L, tacustrZs (Spence, 1964; Spence, Allen and Fraser, 1978).
2. pH.

The pH of the lochan water was measured using a Pye-Unicam pH 
electrode. Like alkalinity, pH may also affect the distribution of 
isoetids (Spence, 1964).

3. Soluble Inorganic Phosphate.

Nutrient levels, and particularly phosphate levels, in both 
water and sediment are important in controlling the growth and 

distribution of a number of aquatic macrophytes (Gerloff and



11

Krombholz, 1965). The soluble inorganic phosphate levels of the 

lochan water were determined using the method of Mackereth, Heron 
and Tailing (1978). At each study site interstitial water samples 
were taken as by Spence, Barclay and Allen (1984) and determined for 
inorganic phosphate as with the lochan water.
4. Sediment Organic Matter Content.

The sediment organic matter levels depend on the amount of silt 
in the sediment. This figure, therefore, bears a crude relationship 

to whether a site is sheltered and depositional or exposed. Samples 
of sediment from each study site were oven-dried at 80“C for 24 hours 

and then ignited in a furnace at 500°C for 8 hours. The difference 
between dry weight and ash weight is taken to be the organic content. 
This was determined in St. Andrews.
5. Plant Density.

The number of plants per m^ was determined using 1 m^ quadrats 

for each site. Care was taken that only the actual area that would 
be used for the seasonal growth analysis was counted.

2.2.4. Plant Analysis

1, Physical Description.

Ten plants were taken randomly from each site and the leaf 
length and length/breadth ratios were measured. The "forma" of the 
plants (see Discussion, section 2.2.5.) was also observed.
2. Chlorophyll Content.

Six plants were taken randomly from each site and the chlorophyll 

content was determined using the Dimethyl-sulphoxide extraction method 
of Hiscox and Israelstrom (1979). Spectrophotometric measurements were 
made at 663 nm for chlorophyll a and 545 nm for chlorophyll b and 
corrected by a 750 nm reading to account for any scattering.

Chlorophyll a and b levels were determined according to the
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following formula: 

concentration (g litre”'̂) =___________________ absorptionpathlength x specific absorption coefficient

The specific absorption coefficient for chlorophyll à is 78 and for 
chlorophyll b is 44. Results are expressed on a fresh weight basis.
3. Root Phosphatase Levels.

To complement the measurement of interstitial phosphate levels 
measurements were made of the root phosphatase levels. Studies on 

microalgae (Fitzgerald and Nelson, 1966) and macrophytes (Campbell, 

1971) show that plants tend to increase the levels of alkaline 
phosphatases when under low phosphate conditions. Two plants were 

taken randomly from each site and studied for alkaline phosphatase 

levels. Campbell (1971) made a preliminary study of alkaline 
phosphatase levels in L. dovtmcLnna, concluding that leaf levels were 
very much lower than root levels, and thus confirming autoradiographic 

studies that phosphate uptake occurs via the roots and not the leaves. 
In this study, therefore, alkaline phosphatase levels were determined 
on the leaves of plants from only two sites, in order to check 
Campbell's (1971) findings, but on the roots from plants from all 
sites.

Determinations were made in St. Andrews. Plants were, therefore, 
dug-up from each site using a trowel and potted, leaving as much of 

the sediment undisturbed as possible. The pots were kept in water 

from the lochan and used within two days. It was hoped that this 
would retain the in-situ phosphate environment.

The whole plant was washed to remove silt and some of the 

epiphytes. After wiping, the leaves were rubbed vigorously with 

GF-C filter-paper until no more "green" appeared on the paper. It 

was assumed that this removed most of the epiphytes. The thick cuticle 
prevents the leaves, themselves, from being damaged.
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The basis of the method depends on the fact that the compound 

p-nitrophenol phosphate is colourless but if the phosphate group is 

hydrolysed yellow p-nitrophenol is liberated. This has an absorption 
maximum at 410 nm. One unit of alkaline phosphatase is defined as 

the amount of enzyme which liberates one micromole of p-nitrophenol 
per hour under the specified conditions.

The phosphatase levels were studied by suspending a piece of 
prepared tissue in 32 ml of Gorham's medium (Table 2.1) minus the 

phosphate component in a 100 ml conical flask. 4 ml of TRIS buffer 
were added (IM TRIS in 0.0IM Magnesium chloride adjusted to pH 8.5 
with acetic acid) followed by 4 ml of p-nitrophenol phosphate solution 
(30 mg in 100 ml distilled water). The assay mixture was incubated 
for li hours at 36°C, After this time 10 ml were removed and added 
to a test-tube containing 0.5 ml of distilled water with 10 mg of 

orthophosphate. This stops the reaction. Ihe absorbance at 410 was 
measured in a 1 cm cell using a SP600 spectrophotometer. The tissue 
was removed, blotted, dried at 90°C overnight in an oven and 

weighed. Controls to account for changes in the assay mixture during 
incubation and for the loss of material from the plants were also 
made. The results are calibrated against a standard solution of 

p-nitrophenol made up in 0.02N sodium hydroxide. Results are 
expressed on a dry weight basis.

2.2,5. Results and Discussion

The results for the site and plant analyses are given in 
Tables 2.2 and 2.3. The results show a number of variations between 
the sites, with site 2, in particular, being exceptional. The lochan 
itself is typical of many brown-water lochs in Western Scotland 

with a low soluble inorganic phosphate level, low pH and low 
alkalinity (Spence, Allen and Fraser, 1978). The interstitial
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Table 2,1.
The Composition of Gorham's Medium (g/litre)

NaNOg 0.495
KgHPO^ 0.039
MgSO^.VHgO 0.075
CaClg.ZHzO 0.036
NagSiOg 0.058

Na^CO} 0.020
Ferric citrate 0.006
Citric acid 0.006
EDTA 0.001

pH 8.5

For phosphatase analysis Gorham's medium is made up without 

the phosphate component.
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C oncenV rcv^ ion

phosphate levels are much higher than the w a t e r , but that in 

site 2 is approximately ten times the level in the other three sites. 

This site is also distinguished by its fine sediment and higher 
sediment organic content.

Plant attributes also vary between the sites. Site 2 is 
distinguished by much larger plants. Gluck (1924) described two 

"forma" of L, dovtmanna. These were a large, submerged form - 
"ramosa", and a small terrestrial form - "terrestris". Terrestrial 
plants observed around the shores of other lochs in the Highlands and 
Western Isles are almost identical to the small plants found in sites 
1, 3 and 4. It is probable that these forms represent differences 
between exposed and sheltered/silty habitats. It is well known that 

aquatic macrophytes exposed to wave action can be smaller, or more 
"compact" (Haslam, 1978; Lobban and Wynne, 1981; Dommasnes, 1978).

Aberg (1943) also found, using plants transplanted in uniform sediment, 
that large plants of D, doTtmanna can be formed due to the reduction 

in light levels caused by the increasing depth of water in a lake.
It is possible that sedimentation in shallow water may shade the apex, 
which is situated close to the sediment surface. In this way it may 

act by shading, so causing the morphogenic effect. It shohld also be 
mentioned that whereas plants in exposed areas only have a rudimentary 
stem or corm, plants from silty areas have a large stem with leaf 
scars and obvious internodes. This ability to change growth form 

due to sedimentation has been previously noted for D. uri'iftora 

(Webster, 19 75; Spence, 1982) but has been found to be lacking in 
J. tacustv'ls (Pearsall, 1921) .

There appears to be some relationship between the root 
phosphatase levels and sediment interstitial inorganic soluble 

phosphate levels. Thus in site 2 there is a much higher phosphate 

level, and a reduction in root phosphatase. This negative relationship
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is well known in microalgae and other, macrophytes (Fitzgerald and 
Nelson, 1966; Fitzgerald, 1969; Campbell, 1971).

The study sites, therefore, show a wide range in physical and 
plant attributes. They are probably representative of the littoral 

shores of lochan-na-Thuill, though they do not include any deep water 
plants. These sites are, therefore, able to be used to investigate 

the effects of inorganic phosphate levels on growth through the 
season in addition to the other environmental parameters that will 
be investigated.

2.3. The Seasonal Analysis of Growth and Environment

Growth is a complex physiological process and so any estimation 

of growth by analysis of one particular aspect may be subject to error 
or over-simplification. Three aspects of production and growth in 

L. dovtmanna were, therefore, studied. These were photosynthetic 
rates, soluble carbohydrate content and leaf production. As about 
50% of the biomass of L, dortmanna is leaf (Luther, 1983), a measure 

of leaf production is a good indicator of growth. The first two 
aspects studied are measures of the basic production process, while 
leaf production is a measure of the final outcome of production- 
growth.

The physical environment was monitored for changes in total 

daily irradiance, temperature and water level fluctuations. All 
growth and physical measurements were made mon#iy from November 1982 
to September 1983 (excluding January 1983) .

2.3.1. Methods

1. Photosynthetic Rate.

Two plants were taken each month from site 2 and transported to 
St. Andrews. Their photosynthetic rate was determined using a 
Beckmann oxygen electrode in the apparatus shown in Figure 2.2.



Figure 2.2.
The apparatus used to measure seasonal changes in photo­

synthetic rate. It shows the lamp (L), a water filter to filter 
excess infra-red (F), the oxygen electrode (E), the constant 
temperature cooling jacket (C) , a igiagnetic stirrer (S) , and chamber 
for the plant (P). The photosynthetic chamber contains filtered 

loch water.
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Determinations were made at a standard irradiance (150 pEmT^s"^) 
and at the ambientitemperature. Until used the plants were kept %

J

I

a t  5°c. n o V  Vt> W  \ ^ e s e  t l e i r e m . n o . W o h S .  |

2. Soluble Carbohydrate Content.
Ten plants were taken each month from sites 1 and 2 and used 

for determining the soluble carbohydrate content. The plants were 
washed and wiped free of epiphytes. The leaves and roots of each 

plant were determined separately. After washing, the leaves or roots 
were weighed, chopped-up and placed in McCartney bottles containing 
10 ml of 80% ethanol. This was done as soon as possible after 
collection in the field laboratory in Durness. The samples were then 
Stored until convenient for analysis. '%

The soluble carbohydrates were extracted by boiling in ethanol.

Each sample was boiled in four changes of 80% ethanol and three 

changes of 60% ethanol. The latter is thought to remove any more 
water-soluble carbohydrates (Crawford and Huxter, 1977). Each 

extraction took 20 minutes, and the extracts were then filtered 
through Whatman No. 4 filter paper. All flasks, filters, etc., were 
finally washed with distilled water to ensure complete collection of 

the carbohydrate. 0.5M sulphuric acid was then added to the extract 
(to make a 0.05M solution) and then boiled for one hour. After 

cooling the extract was neutralised with 0.5M sodium hydroxide. This 
ensures the hydrolysis of non-reducing sugars (Smith, 1969), 
particularly sucrose, to reducing sugars. The final extract was 

again filtered and the volume measured.
2 mis of each sample were used for the soluble carbohydrate 

determination based on the method of Somogi (1952). The principle 

of the analysis is the reduction, by the reducing sugars, of a 

Copper (II) reagent to Copper (I). This is then reacted with an 
arsenomolybdate reagent to form a coloured complex, the intensity
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of which can be read spectrophotometrically. The composition of 
the reagents is given in Table 2.4.

The assay procedure involved adding 1 ml of the copper 
reagent to the 2 mis of extract and boiling for 1 hour. After 

cooling, 2 ml of the arsenomolybdate reagent was added, mixed and 

allowed to stand for 10 minutes. The absorption was read at 510 nm, 

1 cm pathlength, in a Beckman D8-GD spectrophotometer. The results 
were compared with glucose standards and a distilled water blank. 
They are expressed on a fresh weight basis.
3. Leaf Production,

At each of the study sites a permanent line quadrat was set 
up parallel to the water level. Along the line plants were chosen 
and the leaf numbers recorded for each plant each month. As 

L, dovtmanna is slow growing, it was quite possible to observe the 
growth of the same individual leaf repeatedly over 2-3 months, and 

also the slow degeneration of individual leaves. It was, therefore, 
possible to distinguish both production and loss in plants that 

maintained the same leaf number from one month to the next. The 
number of plants studied in each site is shown in Table 2.5.
4. Temperature.

A permanent record of the temperature in the lochan was made 
using a Casella chart recording thermometer. This was sealed and 

placed at 50 cm depth in the position shown in Figure 2.1.
5. Irradiance.

A Kipp and Zonen solarimeter was set up in an open area of 

ground in Durness, 27 kilometers to the north of the lochan. It is 
unlikely that there are any differences in average weather patterns 
between the two sites. The lochan is, however, surrounded by low 
hills so that the total irradiance reaching the water may be less 

than in Durness. This would be a proportionally similar effect
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Table 2.4,
The composition of the copper reagent and arsenomolybdate 

reagent used for soluble carbohydrate analysis.

Copper reagent

Three solutions were made up:

1) 24 g of anhydrous sodium carbonate and 12 g of sodium potassium
tartrate were dissolved in 250 mis of distilled water.

2) 4 g of hydrated copper sulphate were dissolved in 40 ml of
distilled water,

3) 180 g of anhydrous sodium sulphate were dissolved in 300 mis of
hot distilled water. This was boiled for 5 minutes to expel any 

air.
Solutions 1 and 2 were mixed together, before adding solution 3. The

reagent was made up to 1 litre, stoppered and stored in the dark and T
cold.

Arsenomolybdate reagent:- 
Two solutions were made up:
1) 25 g of ammonium molybdate was dissolved in 450 mis of distilled 

water. To this is added, slowly, 21 mis of concentrated 
sulphuric acid.

2) 3 g of sodium hydrogen arsenate was dissolved in 25 mis of 
distilled water,

Thw two solutions were mised and made up to 1 litre. This solution 

must be stored warm (35-40°C) overnight before use, but is otherwise 
stored dark and stoppered.

f
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throughout the year, so any discussion of the relationship between 

irradiance arid growth remains valid,
6. Water Level,

A permanent mark was made on a rock by the side of the lochan 
and each month the level of the water below this mark was measured. 
Fluctuations in water level could, therefore, be observed.

2.3.2. Results and Preliminary Discussion
1. Photosynthetic Rate.

The results are presented in Figure 2.3. It can be seen that
L. dovtmctnna, in this lochan, continues to photosynthesise net

throughout the winter. Direct measurements of photosynthesis across
the winter season in macrophytes are rarely made. In 1976 Boylen and

Sheldon noted that ten species of macrophytes that maintained high
winter population densities were able to photosynthesise under ice
cover. Rates were 10-20% of the summer maxima. In this study
L, doTtmCinna shows winter rates of about 20% of the summer level.
This higher level is probably due to the mild nature of the winters

in North-West Scotland, where ice-cover is intermittent. In severe
winters plants are known to survive freezing in North Wales (Woodhead, 

cv
1951), Grampian (Mathews, 1945) and Germany (Gluck, 1924). Kunii 
(1984) noted that Etodea nuttdt'l'ti- was able to photosynthesise during 

the Japanese winters when temperatures rose above 4°C.

It should be noted that there is a sharp rise in photosynthetic 
rate in May-July, In their studies on L, un'tftova and Isoetes 
maoTOspoTa Boston and Adams (1985.) made measurements of both Cg 

assimilation and CAM across the growing season. They found a 

general, steady rise from February to August, and then a slow decline 
to December.



Figure 2.3.

Seasonal changes in the gross photosynthetic rate of whole 
plants of L, dortmanna. Each point is a mean of two measurements.
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2, Soluble Carbohydrate Content.

The results are presented in Figures 2.4 and 2.5. The leaf 
soluble carbohydrate levels are always greater than the root 

levels, which is probably due to the fact that the leaves are the 

site of production. The level remains high over the winter and 
reaches a peak in early spring, prior to both the peak in photosynthesis 
(see above) and leaf production (see below). The only studies on 
carbohydrates in freshwater aquatic vascular plants have been 

carried out on emergent species. Rc^eff and Bernard (1979) studied 

seasonal variations in the non-structural carbohydrates of Carex 
tacustv'is. These reach a peak in the summer in the shoots, with a 
minimum level in December. The rhizomes show a reverse trend.
Such a transfer of carbohydrates from growing to storage tissue does 
not occur in L. dovtmanna.
3, Leaf Production,

Leaf production was monitored in all four quadrats,:. In order 

to consider its relationship with other growth parameters and 

environmental variables it is necessary to estimate any significant 

differences between the quadrats. This was achieved using the 
Mann-Whitney test (Snedecor and Cochran, 1971), In each test two 

quadrats were compared for significant differences in production 
each month. Thus for nine months there are 54 tests. In all only 
one proved significant (at P =,0.05), and that was between quadrats 
on sites 3 and 4 in June. It is, therefore, thought reasonable 

to treat all the data as a whole, and this is presented in Figure 

2,6, The most important feature of this is the apparent lack of 
the influence of the substrate on leaf production, there being no 
significant differences between sites 1 and 2,

An initial consideration of the production and loss of leaves 
in L, dovtmanna shows two important points. Firstly production



Figure 2.4.

Seasonal changes in the soluble carbohydrate content of 
leaves (L) and roots (R) of L, dovtmanna from site 1. Each point 
is a mean of ten determinations ± standard error.
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Figure 2.5.

Seasonal changes in the soluble carbohydrate content of 

leaves (L) and roots (R) of L. dortmanna from site 2. Each point 
is a mean of ten determinations ± standard error.
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Figure 2.6,

Seasonal changes in gross and net leaf production and leaf 

loss. Each point is a mean of all study sites combined (n=45) ± 
standard error.
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takes place for the whole year, and secondly loss occurs continually 

as well. This is in contrast to the results of Moeller (1978) and 
the observations of Aberg (1943). Moeller found no growth over the 
winter, and Aberg found an abrupt decrease in relative leaf length 
from the last autumnal leaves to the first spring leaves, so 

suggesting a cessation of growth over the winter. These studies were 
carried out, respectively, in New Hampshire and Sweden, which have 
much more severe winters than North-West Sutherland. Other Isoetids 
have also been found to cease growth over the winter. These are 
J. lacustvis (Eriksson et al., 1974; Kansanen and Niem, 1974) and 
L. uri'iftora (Sand^Jensen and Sçzîndergaard, 1978) . Both of these 

results are from Scandinavia. Other submerged macrophytes, e.g. 

Zostera mar'ina (Sand—Jensen and Borum, 1980) , have been shown to grow 
continuously through the winter.

The main rise in leaf production does not take place till late 
spring and early summer. Sand—Jensen and Borum (1984) suggest that 
this may be due to a spring bloom in epiphytes reducing the amount 
of light available for growth, so that as the bloom disappears in 

the early summer, growth can resume. In Lochan-na-Thuill there are 
almost no epiphytes visible, so this is probably unimportant in this 

lochan. However, this can be tested by a consideration of the effects 
of irradiance on growth (see section 2.3.4). It should also be 

remembered that, e.g. in site 2, L, dortmanna can be shaded by other 

macrophytes that have grown in the spring. In this case the early 
summer growth would not appear to be an advantage. The peak in 

production and biomass is in July. This is similar to Moeller's 

(1978) and for other macrophytes, e.g. L, uu'iftora (Sand-Jensen and 
8g(ndergaard, 1979) and Etodea canadens'is (Pokorny et al., 1984).

Moeller (1978) uses an expression for leaf turnover:



t (turnover) = _____number of new leaves produced per year____
number of leaves at the time of maximum biomass

This is also known as the Production/Biomass or P/B ratio, as is 

commonly used in macrophyte studies. Moeller's figure for 

L, doTtmanna is 0,69 and Westlake (1982) in his review quotes this 
as the lowest for a macrophyte, with 3.8 being the highest for 
MyT'io'phyZVum spïcatum, in this study the P/B ratio (all quadrats 
± S.E.) is 0.58 ± 0.03.

This expression, though convenient for comparing many diverse 

species, has certain restrictions. It depends on the timing of leaf 
gains and losses, not on the quantity lost and gained. Therefore, if 
during one year;

Plant A has 5 leaves, gains 5 and then loses 5 P/B = 0.50
Plant B has 5 leaves, gains 1 and then loses 1 for a total of 5 gains

and losses P/B = 0,83 
Plant C has 5 leaves, loses 1 and then gains 1 for a total of 5 losses

and gains P/B = 1.00.

In all of these cases the effect on the plant is the same, yet 

the P/B is very different. Turnover is a consideration of the time 
taken to replace the original biomass. Production is involved, but 
this also contributes to new biomass besides replacing old biomass.

We can, therefore, distinguish a number of indices:

Turnover index for one year t =
n^ Number of leaves lost
n . Initial number of leaves
n

Production index

Growth index

P _P = = Number of leaves produced
"i
n -n.

G = —-2— i. _ a net figure 
i

30 1
%

.1
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Table 2.5 gives the indices for each of the quadrats. It should be 

noted that the two sites which differ most are sites 1 and 3, which 

look ecologically similar and have morphologically similar plants.
The most useful expression of growth, however, is some measure

of relative growth rate. This compares the number of leaves produced :W

each month with the number at the beginning of the month. In this S
study the following expression is used: ^

N = Mean leaf number per plant at the end 
LogN - LogN of the month IR   S------2.

n LogN^ leaf number per plant at the start
of the month

In some instances it 'is usual to use this expression:

is, VLcf-c «St. wecu>w.N:

This takes account of the contribution of biomass produced during a 

period to the contribution of further biomass in that period, i.e. 
it is an "instantaneous" figure. L. dovtmanna produces very few leaves 

each month, and, except in June and July, they take more than one
month to expand and mature. As growth is steady (not proceeding in

discontinuous "spurts") such a figure is irrelevant. Table 2,6 contains 
the values for for each site and for all the sites combined.
4, Environmental Parameters.

The results are presented in Figures 2,7 to 2.9. Water level 
changes were never very great during the year, and at no time were 

any of the shallow-water plants exposed. Temperatures remained mild 
throughout the winter and rose to a maximum of 24°C in the summer. It 

must be remembered that the thermometer was positioned at 50 cm depth.
A site such as site 2 which is shallow (<40 cm) has a dark sediment 
and is sheltered would almost certainly have recorded higher

--‘-I---: -■ 'i- -'i 'J .
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Table 2,5.
The Turnover (t:} , Production (P) and Growth (G) indices for 

each of the study sites and all sites combined,
± Standard Error,

Site n t P G
4i

1 11 0,40 ± 0,14 1,34 ± 0.30 0,94 ± 0,42 J:

2 12 0,77 ± 0,13 1,33 ± 0.12 0,42 ± 0,14
-I3 12 0,56 ± 0,13 0,86 ± 0.09 0.25 ± 0,16
"i

4 15 0,78 ± 0,15 1.34 ± 0.29 0.39 ± 0,17
Total 50 0,63 ± 0,15 1,22 ± 0.20 0.50 ± 0.22

'.“-Si'-:-,
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Figure 2*7.
Seaso�al cha��es i� mea� total daily irradiance for each 

week, starting at the beginning of February 1983, Each point is 

the mean for the week (n=7) with the maximum and minimum.
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Figure 2.8,

Seaso��� cha��es i� mea� daily temperatures for each week, 
starting in the last week of November 1982, Each point is the 
mean^for the week (n=7) with the maximum and minimum. ■Hewvç>«jt:vW*.<'cs

aJr cuvkĵ  \(s
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Figure 2,9.
Seaso��l cha�ges i� the water level of Uocha�-�a-Thuill. 

Each poi�t is a spot reading for that month and is compared to an 
arbitrary zero for November 1982.
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temperatures.

2,3.3. Further Analysis and Discussion - Inter-relation of Growth and 
Environmental Parameters.

1. The Growth Parameters.

A consideration of the seasonal changes in soluble carbohydrate 
content, photosynthesis and leaf production reveal how soluble 
carbohydrate content produces an early spring peak, which is subsequently 

followed by a peak in photosynthesis and leaf production (Figure 2.10 
and 2.11), Figure 2.12 describes the relationship between leaf 

soluble carbohydrate and leaf production. This is a typical reverse-J 

curve, such a relationship being characteristic of a number of 
macroalgae (Dring, 1982). The decline in soluble carbohydrate during 

growth could be due merely to a dilution of a relatively constant 
amount of carbohydrate in a plant as it grows. As the content is 

expressed as a per fresh weight basis, a dilution will register as a 
reduction. However, the relative decline in soluble carbohydrate is 
many times greater than the relative increase in leaf number. It is 
thus probable that growth also uses the carbohydrate present in high 
levels in early spring.

2. The Environmental Parameters.

Figure 2.13 shows the relationship between the mean daily solar 
irradiance each month and the mean temperature for that month. The 
correlation between the two parameters is significant at p = 0.05 

(r=0.711), and a regression line can be fitted (Temp = 1.39 x 2.881). 
However, the points of graph have been plotted as a time sequence.

This reveals more information, as it shows the thermal lag that exists 
in the lochan. The lochan warms up slowly during the spring, and 
retains heat during the autumn. Any consideration of plaht growth 

must, therefore, recognise the fact that the changes in irradiance



Figure 2,10.
Seaso�	
 cha�ges i� soluble leaf carbohydrate content (•) 

for site 2 and mean monthly gross leaf production (A) . This 
illustrates how the peak in soluble carbohydrate precedes that in 
leaf production.
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Figure 2.11,

Seaso��
 cha�ges i� soluble leaf carbohydrate content (•) 
for site 2 and mean monthly gross photosynthetic rate (A) . This 

illustrates how the peak in soluble carbohydrate precedes that in 
photosynthesis.
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Figure 2.12.

This figure shows the relatio��hip between mean monthly leaf 

soluble carbohydrate content (both sites 1 and 2) and gross leaf 
production for all sites.
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Figure 2.13.
The relatio�ship between mean monthly temperature and the 

mean total daily irradiance for that month. The figure 
illustrates the relationship by drawing out the temporal 

sequence.
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a�� temperature are �ot i� phase with each other.
3, Growth a�� the E�����������

Relative growth rate (R̂ ) is positively correlated with both

temperature and irradiance. The correlation coefficients and regression
equations are shown in Table 2.7 and Figures 2,14 and 2.15. It can be
seen that only the correlation between R and irradiance isn
statistically significant. Table 2,7 also contains a linear multiple 
regression analysis of R^ and temperature and irradiance. This seeks 
to determine the relative contribution that the two environmental 
parameters make to R^, recognising that temperature is dependent on 

irradiance, and not the reverse. From this 76.1% of the variation in 
R^ can be explained by changes in irradiance and only 5,2% by changes 
in temperature, Wiv*m-Andersen and Borum (1984) performed a similar 

analysis with Zostera marina. They found that 75% of the variation 
in leaf growth could be explained by changes in irradiance, and 6% 
by changes in temperature. They did not take continual temperature 
recordings, but used "spot" readings while sampling growth. They 
consider this supports the suggestions of Harrison and Mann X1975), Sand- 

Jensen (1975) and Jacobs (1979) that light is more important than 
temperature in controlling growth, and thus refuting the opposite 

assertion of Setchell (1929), This is thought to be reasonable in 
that leaf area index is important in forming production, and this has 
been shown to be controlled by light (Spence and Ckrystal, 1970b),

Solander (1982) studied the production of four species of macrophytes 
on the edge of their ranges in sub-arctic Northern Sweden {Carex 

rostrata,,Equisetmi fluoiatile, Isoetes eohinosporarand Sparganium sp.), 
They find a rough parallel between the variations in summer 
temperature and biomass production for a five-year period. They, 
therefore, consider temperature to be important in controlling growth.
As temperature and light are inter-related and no measurement of



Table 2.7,
The Results of the regression analysis for Rn and 

Irradiance and Temperature,

1, Rn against Temperature 
The Regression Equation is;

Rn = -0,0428 + 0.00759T (°C)
Standard Deviations

Coefficient Standard Deviation of Coefficient
-0.0428 0,05379

0.00759T 0,004933
R^ = 0,163 adjusted for degree of freedom (D of P), 
Analysis of Variance

Due to: D of F Sum of Squares
Regression 1 0.009796
Residual 6 0,024853
Total 7 0,034649

2, Rn against Irradiance 
The Regression Equation is:

Rn = -0,1118 + 0.04881 (KWhrm“ )̂
Standard Deviations

Coefficient Standard Deviation of Coefficient
-0,1118 0,0304

0,04881 0.0095

R^ = 0,782 adjusted for degree of freedom (D of F). 
Analysis of Variance

Due to: D of F Sum of Squares
Regression 1 0,028174

Residual 6 0.006475
Total 7 0.034649

4 3
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Table 2.7 (continued)

3. Temperature against Irradiance 

The Regression Equation is :

T = 1.39 + 2.8771
Standard Deviations

Coefficient Standard Deviation of Coefficient
1.394 3.220
2.877 1.009

R^ = 0.505 adjusted for degree of freedom (D of F). 
Analysis of Variance

Due to; D of F Sum of Squares

Regression 1 97,92

Residual 6 72,29
Total 7 170.21

4, Rn against Temperature and Irradiance 

The Regression Equation is:

Rn = -0.105 + 0,06351 - 0.00511T 
Standard Deviations

Coefficient Standard Deviation of Coefficient
-0,105 0.0285
0,06351 0,0135

-0,00511 0,00356
R^ = 0.815 adjusted for degree of freedom (D of F). 

Analysis of Variance
Due to: D of F Sum of Squares

Regression 2 0.030065

Residual 5 0,004584

Total 7 0.034649



Table 2.7 (continued)

Further analysis of variance, sum of squares explained by each 
variable.

Due to; D of F Sum of Squares

Regression 2 0.030065
Irradiance 1 0.028174
Temperature 1 0.001891

4 5

1

... J



Figure 2.14.
The relatio�ship between the relative growth rate (Rn) 

for each month and the mean total daily irradiance for that 
month.
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Figure 2.15.
The relatio�ship between the relative growth rate (Rn) 

for each month and the mean temperature for that month. The 

figure shows both the temporal sequence and the regression 
line.
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irradiance was made, such a direct relationship may not be caused 
by temperature.

4. Soluble Carbohydrate and the Environment,
The mean leaf soluble carbohydrate content for sites 1 and 2 for 

each month has a small negative correlation for both irradiance 

(r=-0.20) and temperature (r=-0.53) for those months. However, in 
both cases these are not significant. The relationship is probably H
best explained by the reverse -J type relationship of soluble 
carbohydrate with leaf production (section 2,3.2) and the strong "I

positive correlation of the latter with both environmental variables 
(see above).
5, Photosynthesis and Temperature.

Figure 2.16 shows the relationship between mean month^^y 
photosynthetic rate and the temperature at which it was taken. There 
is a strong, significant correlation (r=0.83), It is, of course, 
not possible to correlate photosynthesis and irradiance, as all 
photosynthetic measurements were made oLt saturating irradiance,

2.4. Growth under Controlled Conditions

2.4,1. Introduction

In section 2.3.3 it was calculated that 76,1% of the seasonal 
variation in the relative growth rate (R̂ ) could be explained by 
changes in measured irradiance, whereas only 5,2% of the variation 

could be explained by changes in measured temperature. As temperature 
is also dependent upon irradiance the exact contribution each makes 

to the growth of L, dovtmanna in the field is necessarily complex in 
the data collected. This section separates the two environmental 

variables, by growing plants in controlled conditions such that one 
environmental factor is kept constant and the other is varied. This 
will distinguish experimentally the relative contribution of each to



Figure 2.16.

The relatio�ship between the mean monthly gross photo­

synthetic rate and the temperature at which the measurements were 
made.
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growth.

2.4.2, Methods

Plants were collected in March 1985 from Loch na Craige,
Tayside. In order to ensure uniform substrate conditions, all 
plants were washed free of soil and epiphytes and potted in 5 cm diamei-er 
pots in a 50:50 sand/peat mixture with a small constant amount of 
added fertilizer (composition is in Table 2.8). The plants were ^
allowed to "settle" for two weeks in dim light in a greenhouse before 
being transferred to the growth room. Plants were grown at two 

temperatures (10°C and 20°C) and at three different light levels at '1
each temperature (70, 35 and 17.5 p,Em~^sec“  ̂PAR). The plants were 

grown in large tanks, in which the water was continually stirred and 

aerated. Light was provided by white fluorescent tubes and measured 
using a Macam quantum photometer. All reductions in light were achieved 
by placing a neutral density filter, muslin, over the tank. The number 
of leaves on each plant was counted before and after the experiment, 
which lasted 60 days. Ten plants were used in each treatment. The 
leaves of all the plants were of approximately equal size. The period 

for growth was not long enough to cause any changes in growth form 
that may have been brought about by shading.

2.4.3. Results and Discussion
The results presented in Table 2.9 with the relative growth rate 

(R̂ ) calculated on leaf production as previously (section 2,3.2). The 

study provides four results of the effect of increasing temperature 

from 10 to 20°C and three of the effect of doubling PAR irradiance.
This increase in temperature causes an increase of 1.94 ± 0.29 (± S.E.) 

in R^, and for irradiance, doubling causes an increase of 1.28 ± 0.13 

in R^. It thus seems that this increase in temperature has a greater 
effect on R^. However, under natural conditions the mean monthly
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Table 2.8

The composition of the general fertilizer used for 

study of the growth of Lohetia dortmanna under controlled 
growth conditions.

Nutrient g nutrient/100 g fertilizer

Nitrogen 5.300
Phosphorus total 3.300

soluble 3.000
insoluble 0.300

Potassium 0.300
Boron 0.020
Copper 0.040
Iron 0.250

Manganese 0.115
Magnesium 0.300
Molybdenum 0.001

j
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Table 2.9.
The relative growth rate (Rn) of L. dortmanna 

under controlled conditions.

Irradiance (PAR) Rn 10°C Rn 20°C
10 10

0.213 ± 0.06770 0.379 ± 0.064
35 0.173 ± 0.069 0.266 ± 0.084
17.5 0.113 ± 0.026 0.282 ± 0.050
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temperature extremes are 2.2°C a�� 21.5®C, whereas the highest mea�
mo�thly irradiance is 25,13 times the lowest. This increase in
temperature would increase by 568% and the rise in irradiance

would increase R^ by 33.45%. The relative contribution of

temperature is, therefore, 12.96% and irradiance 72.07%. This would
suggest that temperature may be more important than predicted in

the field analysis of the seasonal growth measurements. It should
be remembered, however, that the theoretical increases in R^ are not
realised in the field. This is probably due in part to adverse

environmental factors, such as wave action, that do not occur under
controlled conditions, and the fact that fertilizer was added in the
experiment, ç»oVcxViors Qvo oô taes V» e P>el<A
corvcli W oos W 'of\s (X V o  coX \s \cü tY C kW \e e T T o t

2.5. General Discussion

The growth of aquatic macrophytes can be affected by many 
environmental parameters. The four most notable are light, 

temperature, nutrient levels and exposure (Spence, 1982). This study 

has concentrated on the first two factors. The study sites in 
Lochan-na-Thuill do represent a range of nutrient levels (at least 

with respect to sediment interstitial soluble phosphate) and 

exposure. Little difference is found in growth between the quadrats. 

Phosphorus is known to be probably the most important limiting nutrient 
in oligotrophic lakes (Goldman and Horne, 1983). Gerloff and 
Krombholz (1966) studied thirteen species of macrophytes and in 

eight out of nine lakes found the phosphorus was more likely to 
limit growth than nitrogen. Moeller (1978) studied seasonal 

variation in tissue nutrient levels in £. dovtmannaf suggesting that 
summer growth and flowering severely depletes both phosphorus and 
nitrogen, but that winter losses of biomass affect phosphorus levels 

more than nitrogen. L. dortmanna possess«smycorrhizae that, in the
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absence of root hairs, probably aid nutrient uptake (Sç^ndergaard 

and Laegaard, 1977 and Farmer, 1985).
The classic growth pattern of microalgae consists of a spring 

bloom in production. This is not continued into the summer, not 

because of lack of light, but of nutrients. Their growth is, 
therefore, not correlated to light conditions. L, dortmanna does 
not show this. As the light increases, so does its growth. This 
suggests that neither nutrients nor carbon supply are limiting.
This would confirm the finding of no greater increase in growth 

rate for site 2, which has a higher inorganic soluble phosphate level 
in the sediment.

The overall importance of light in influencing the seasonal 
growth of L, dortmanna must be stressed. This control is a direct 
consequence of the production of photosynthate. In the next chapter 
the effect of light on a classical photomorphogenic response (seed 

germination) will be considered. In order to flower and produce 
seeds any plant will require adequate levels of photosynthate. In 
this way light, via chlorophyll, is controlling some of the 

fundamental growth processes in L. dortmanna»

%
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Chapter 3. Reproduction, Germination and Zonation

3.1. Introduction

'"1 
54 I

In many aquatic plants growth and vegetative reproduction are 
difficult to distinguish. Most macrophytes reproduce predominantly 
by vegetative means (Sculthorpe, 1967), In many cases this occurs 
by the production of rhizomes or stolons that can be considered as 
part of a continuum of growth of the plant's organs. In other cases j
macrophytes may vegetatively reproduce by means of turions. This has l
been considered to play an ecologically similar role to seeds, t

I
especially in their dormancy and ability to disperse (Bartley and i
Spence, 1985).

Few macrophytes reproduce by seeds. In some instances, e.g. the 
Nymphaceae, plants may exhibit both extensive sedd and vegetative 
reproduction. Aquatic annuals, e.g. Elatine spp. and Suhutav'ta 

aqiWLt'ioa, rely heavily on seed production. However, few perennials 
rely so extensively on this. An exception appears to be Lobet-ia 

dortmanna. This species produces many seeds and shows little 
vegetative reproduction.

Little work has been done on the ecological significance of 
seed germination for aquatic macrophytes. The germination of some 
species' seeds has been studied in the laboratory, but few attempts 
have been made to interpret these results in relation to the natural 
environment. The most important hypothesis that has been made is 

that the requirements for seed germination of a species may control 
the zonation of that species. In particular, Stress (1981) has 

suggested that the lower depth limits of the macroalga Ettetta 
flex'bl'ts may be set by the amount of red light available for red- 
light requiring processes such as spore germination or sporeling 

differentiation. Spence (1982) suggested that L, dortmanna may be
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limited to shallow water because its seeds may have a high light 

requirement for germination.

This chapter seeks to test this hypothesis. It will consider a

the entire reproductive process in L. dortmanna from flower production 
to seedling establishment. The importance of seed production and J
dispersal as a reproductive strategy for the distribution of
L, dortmanna is discussed. Seed germination is controlled by many
environmental influences (Bewley and Black, 1982), In this 

experimental study the following are considered - cold stratification, 
light quantity, light quality, temperature and anoxia. Finally, the 
natural environment is considered in detail in order to predict from 
laboratory findings where in any loch the seeds of L, dortmanna 
could, in theory, germinate. This enables a conclusion to be reached 

as to whether seed germination may, in this species, control zonation.

I
3.2.1. The Seasonal Production of Flowers ’

Flowering in L, dortmanna begins with the initiation of a 
flowering stalk from the apex at the centre of the leaf rosette.
The internodes expand, producing a stem, usually, 25 cm-1 m in length, 
It has small leaves, the flowers being borne in their axils. 

Examination reveals that the stems and leaves both contain chlorophyll 
and have stomata.

The/standard floras (Clapham et al., 1962; Haslam et al., 1975) 

describe the flowering season of L. dortmanna as July and August.
In effect the season is considerably greater than this. The first 

flowering stalks can commonly be seen in May in North-West Scotland.
In 1983, a particularly warm year, open flowers were seen in Lochan- 
na-Thuill in May. The latest open flowers personally observed were 

in mid-October 1982, also in Lochan-na-Thuill. If a plant is damaged

Î
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i
a seco!" floweri!g stalk ca!be produced. The flowers remain open p

Ifor 1-2 weeks and then form a capsule, which is green and, 1
presumably, photosynthetic.

The timing of flowering may vary throughout Scotland. Southern 
latitudes, which are generally warmer, have been seen to have an 
earlier flowering period. In 1983, for example, flowering stalks 

were degenerate in Lochs Dow and Lurg in Fife (3®27'W 56*9'N) in h

I

late September, though flowering was still extensive in Lochan-na- 

Thuill, Sutherland (5°0'W 58°24'N). In 1984 in July it was noticed 

that while most of Scotland had lochs with extensive stands of open p
L, dortmanna flowers, the lochs of Shetland were limited to plants 
that had only just begun the initiation of flowering stems,

3.2.2. The Distribution of Flowering
1. Which plants flower? 
a ) Introduc tion.

A casual glance at a sheltered bay of a Highland lochan in 
August will often reveal a dense bed of flowering plants of 

L. dortmanna. However, closer inspection reveals that only a small 
proportion of ..these plants are actually flowering. During the 

seasonal growth analysis (Chapter 2) it was noted that relatively few 
of the plants studied ever flowered. This section presents a short 

study to determine what proportion of any population may flower and 
give some guide as to the factors that may affect flowering,
b) Methods.

During the flowering period a number of lochs from the 
Highlands, Lowlands, Western and Northern Isles were visited. Sites 

were chosen in these lochs to illustrate ranges in substrate type 
and exposure. At each site 25 cm^ quadrats were randomly cast and 
the leaf number and flowering were counted for every plant in the

1



57

quadrat. In all cases over 100 plants were studied at each site.

In Lochan-na-Ihuill a site at 1 m depth was also examined in 

exactly the same manner using SCUBA. Also in Fetlar, Shetland, a 

particularly fine flowering (terrestrial) population of L'Ltorella 
uwiftora was similarly studied, I

c) Results.

Table 3.1 presents a brief description of the sites studied, 
giving details of sediment characters and co-existing species.
Table 3.2 presents the percentage of flowering plants and the number 
of flowers per individual shoot in relation to the type of site in 

which the population is found. Part of this data presented 
graphically in Figure 3.1. Figure 3.2 shows the actual population 

structure at each of the sites.
d) Discussion.

The most obvious conclusion to be drawn from Figure 3.2 is that 
flowering is not evenly distributed thoughout the population. Larger 

plants are more likely to flower, and the smallest plants do not 

flower. The size at which flowering becomes likely varies between 
populations, generally being around 5-7 leaves. In most populations 
the very largest plants always flower. The same trend is observed 

over all of the sites, regardless of substrate type, and also at 1 m 
deep in the water. Young (1984) noted that the "giant" E, African 

Lobeli-as, L, teteli'i'C and L, hentensts, both have a minimum rosette 
size before they produce an inflorescence. This is a common feature 

in herbaceous species, e.g. Dvpsaous syVoestvis (Werner, 1975),
Frasera spectosa (Inouye and Taylor, 1980) and others (Gross, 1981).
Young (1984) suggests that a minimum size for flowering is due to a 

plant slowly building up the reserves necessary for flowering, 
something that only the larger plants can do. Moeller (1979) noted 

that flowering in L. dortmanna uses up inorganic nutrients.



Table 3.1.

The sediment characters and co-existing species for 

the sites studied in Figure 3.2.

5 8

Site Name and Locality Description

A Lochan-na-Thuill, 
Sutherland

1 m depth. Fine silt with 
L. unt-flora and J. hutbosus.

B SIigachan, Skye Exposed, gravel with 
E, septangutare, R. ftarmula 
and L, un-iflora.

C Loch Marulaig, 
South Uist

Sheltered, silty with 
Nymphaea alba, Rhragm'ites 
Qormuni.s, Eleocharis palustrïs.

D Loch Kearsinish, 
South Uist

Exposed, gravel with
L, uniflora, J, bulbosus and
Carex nigra.

E Loch Druidibeg, 
South Uist

Sheltered. Fine sand and silt 
with L, unlflora, I. laoustrls, 
E, palustrls.

F Loch Druidibeg, 
South Uist

Exposed. Gravel with 
L, unlflora.

G Loch Airigh na Saorach, 
Skye

Sheltered. Sand/silt with 
L, unlflora, R, flammula, 
Potamogeton polygonlfo llus.

H Loch Airigh na Saorach, 
Skye

Exposed, hard gravel with 
R, flammula.

I Loch Dow, Fife Sheltered, gravel/sand with 
L. unlflora and I, laoustrls.

J Unnamed lochan. West 
Mainland, Shetland

Sheltered. Very silty. Pure 
stand.

K Many Crooks, West 
Mainland, Shetland

Exposed, hard gravel with 
L, unlflora and «7. bulbosus.

L Skutes Water, Fetlar, 
Shetland. L, un-iftova 
population

Terrestrial. Pure stand.

M Sandy Water, West 
Mainland, Shetland

Exposed, gravel with L, unlflora 
and J, bulbosus.

L



Figure 3.1.
The #umber of plants with different flower numbers for 

four populations. Two exposed sites, Loch Druidibeg (ft) 

and Loch Kearsinish ( Q ) and two sheltered sites Loch 

Marulaig (C) and Loch Druidibeg (O).



59

CP P

CV

8;uB|d |0 jaquinN

I
Î



Figure 3.2.

The populatio$ structure of 13 populatio$s of 

Jj. dortmanna a$d one of L, un'Cftora, Each shows the percentage 

of plants of each size class (by leaf number) and the part of 
the population which is flowering. The site numbers (A-M) 

correspond to those in Table 3.1.
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L, dortmanna seems, therefore, to behave as a typical herbaceous 
species, as does L» un'iftora (Figure 3.2).

It is, of course, not possible to age the plants in a 
population. Chapter 2 showed that leaf production rates vary 
between plants to that two plants of a comparable size may be of 
very different ages. Figure 3,2 illustrates the effect of exposure 
on the plant sizes in a population. This may either reflect a 

younger population due to higher mortality, or smaller plants adapted 
to exposure. In either case. Table 3.2 shows that exposure has no 
discernible effect on the percentage of the plants that flower. In 
only one case, Lochan-na-Thuill, does shelter increase the number of 
flowering plants. The two sites studied here are sites 1 and 2 of 

Table 2.1. This table shows that site 2 is considerably richer in 
sediment interstitial soluble inorganic phosphate. Moeller (1978) 
showed that tissue phosphorus is depleted in particular during 

flowering, so that this nutrient may be a limiting factor. No studies 
of the nutrient levels in the other lochs were undertaken, however.
Table 3,2 and Figure 3,1 does show, however, that exposure reduces 
the number of flowers on any shoot. Exposed plants cannot produce 
long shoots with many flowers as these are particularly susceptible 
to wave action.
2. Flowering and water depth.

Moeller (1978) found that flowering in L, dortmanna declined 

exponentially with depth to 1.7 m, below which no further plants 
flowered. The previous section showed that flowering was common for 

for plants at 1 m depth in Lochan-na-Thuill. However, this loch
does not descend below 1,25 m. Nearby is Loch Fiacail, which is ]f;

much deeper (unknown depth, but below 5m). In this loch L. dortmanna 
does not grow below 1 . 8 m, when pure stands of I&oet&s 'lacustri,s 
become the only vegetation. Using SCUBA this population was examined

;ï
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Table 3.2.
The extent of flowering of Lobelia dortmanna for a number 

of lochs in Sutherland, Skye and South Uist.

6 3

Loch Plant Density 
m^ % Flowering Flowers Per 

Flowering Shoot

Airigh na Saorach, 
Skye
a) Silty, sheltered 403 19.4 1.81
b) Gravel, exposed 8 8 14.5 1.14
Sligachan lochan, 
Skye
Gravel, exposed 227 4.9 1.36
Druidibeg,
South Uist
a) Silty, sheltered 210.4 24.7 2.49b) Gravel, exposed 190.4 32.7 1.63
Kearsinish, 
South Uist
Gravel, exposed 132.0 33.0 1.23
Marulaig,
South Uist
Silty, sheltered 358.4 25.4 1.90
Loch na Thuill, 
Sutherland
a) Gravel, exposed 60.5 3.0
b) Silty, sheltered 51.0 19.5
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September 1984, 5-10% of the Zr. dortmanna plants were flowering at

the depth limit. The stems were tall and unbranched. Jensen (1977) 
also noted that plants may flower at the depth limit. West (1905) 
observed stems reaching the water surface from 2 m depth. In Loch 
Fiacail stems from plants at the depth limit remain submerged.
Flowering at depth is reduced (Moeller, 1978) and this is probably 

due to the reduction in light and thus photosynthate here.
Photosynthetic adaptation to deep water is considered in greater detail 
in Chapter 4.

Moeller (1978) suggested that the lack of flowering at the depth 
limit may explain his observation that very few seedlings are 

observed at this point. Seedlings were observed at 1,8 m in Loch 
Fiacail, and Jensen (1977) also reported seedlings at the depth limit.

Moeller's suggestion ignores the possibility of seed dispersal from
'ê.elsewhere. In Loch Fiacail the shallow population, producing '"p

thousands of seeds, is only 4 m away. Some of these seeds are likely 
to settle at 1 . 8 m,
3. Submerged flowers.

The presence of submerged flowers has been noted in a number of 
aquatic macrophytes (Hutchinson, 1975). Seed production is by 

autogamy or pseudocleistogamy, i.e. by self-pollination in an air- 

filled bud. Hooker (1847) noted this in Limosetta aquaticaj and 
Ernst-Schwarzenbach (1956) noted both normal and cleistogamous 

flowers in Ottetia ovatifolia, Sculthorpe (1967) lists twelve genera 
that have shown sumberged flowers. In particular the isoetid 
Subularia aquatioa (Thunmark, 1931) produces autogamous submerged 
flowers.

Faegri and Van der Pijl (1979) suggested that the flowers of 

L, dortmanna are formed underwater and are already self-fertilized 

by the time they are opened above the water. I have not been able to
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co&'irm this. Ma&y flowers are initiated above the water surface.

Confusion may result from the presence of underwater flowers.

Moeller (1973) noted plants flowering at 1.7 m and these had I

underwater flowers (personal communication in Spence, 1982), Spence 
(1982) noted them in Lochan-na-Thuill.

During three flowering seasons a close observation was made ^
of submerged flowers. Plants growing below 0,75 m rarely produce 
flowering stems that rise above the water. All of the flowers are 4

formed and set seed under water. The flowers do not open, so seed 
set is probably by cleistogamy. Woodhead (1951a) notes that this 

may be a possibility for L, dortmanna. In addition, shallow water 
plants may have submerged flowers. Although the stems rise above the 
water the lowest flowers may be submerged. This has been observed in 

a number of lochs, including Lochan-na-Thuill where water level 

changes were monitored (Chapter 2), showing that these flowers are 
not aerial ones that have been subsequently submerged.

It is obvious, therefore, that the production of flower buds is 
not due to exposure to the air. It is more likely to be a light 

effect, though there is no evidence for this. The process may be 
analogous to the induction of aerial-type leaves on shoots of 
Hippuris VuZgarisf which has been shown to be due to light changes 

near the water surface rather than exposure (Bodkin, Spence and 
Weeks, 1980).

The production of submerged flowers, which set seed, is naturally 
important to a species like L, <dortmanna that has little vegetative 
reproduction and yet grows down to 2 m in depth. Aerial flowering 

stems from deep plants would be liable to damage. Shorter, submerged 
stems are less easily broken. In shallow water populations aerial 

flowers may allow for cross pollination. Faegri and van der Pijl 

(1979) and Woodhead (1951a) think that insect visitors are unlikely

'L, •. . %.f ..\f. : L.."'.".: % ' i : 4 ~ " T ; ft,-: ft-'- : ' - v  -



though Sculthorpe (1967) suggests it is e(tomophilous. Although 
many "showy" flowers are formed, I have never seen any insect 
visitors.

Conversely to the production of submerged flowers, plants from 
terrestrial populations, e.g. those at Loch Preuchie, Tayside, also 

readily flower and set seed. The stems are, however, rather short 
(15-20 cm) and there are rarely more than three flowers per shoot 
(often only one). Sylven (1903) noted multiple, axillary stalks in 
emersed plants. I have never seen this, except for one plant grown 
in culture.

3.3. Seed Dispersal

3.3.1. Seed Number

The mean number of flowers produced per plant for a number of 

sites is given in Table 3.2. The full range of flower numbers 
stretches from one to seven, though the higher numbers are rare.
Almost every flower forms a capsule with seeds. Occasionally I have 

noted a dead flower and no capsule production. The capsules contain 
widely differing seed numbers. Woodhead (1951a) quotes previous 
studies giving a range of 41-175 seeds/capsule, but he found an 

average of 250 in North Wales. I have noted a range from 76 to 302.

An individual plant could, theoretically, produce over 2000 seeds, 
though the average found is about 350. No attempt was made to count 

the seeds of the underwater capsules, as the capsules degenerate 

easily, making an accurate assessment difficult. A casual observation 
suggests the seed numbers are of a similar order.

3.3.2. The Mode of Dispersal

Seeds have been observed to have been liberated from capsules.
("0in a number of ways. Submerged capsules tend ' slowly^degenerate

66
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a)d the seeds are dispersed in the water currents. Aerial capsules 
become quite dry and the seeds are slowly liberated via pores in the %

capsule. Although small and not wetted the seeds are still quite %

heavy and will drop immediately onto the water surface. In some 

lochs the water level may rise quite quickly in the autumn and inundate 
capsules. In others, rough water may break the stems and again cause 

the capsules to be flooded. The seeds are then liberated as with the
submerged capsules. The old flowering stems may persist for many

Jmonths, in some instances until the initiation of the next flowering stem. %
'•

The seeds float only for a few seconds and then sink (Sculthorpe, *'
1967). In some macrophytes floating seeds are an important means of 1

dispersal. In others the seeds sink but the seedlings are buoyant 
and may float and disperse, e.g. Batdetli-a ranunauZoïdes (Hutchinson,
1975). The seedlings of L. doTtmanna are certainly buoyant, though 
whether they aid dispersal is unknown.

Seeds may be dispersed over short distances by water currents.
In the North-West of Scotland the many small lochans are linked by 
streams that probably facilitate some dispersal. The mechanism of 
long range dispersal is unknown. L. dortmanna has dispersed in 

post-glacial Europe and North America. It is, however, limited to 
one island in the Faeroes and has not reached Iceland (Ostenfeld and 
Grontued, 1924), unlike J. ZaoustT-is, L. unZftora and <5. aquatioa.

The major means of long-distance dispersal in aquatic plants is by
.1birds (Hutchinson, 1975), and it is probably also so for the spores/ "I
.1seeds of the isoetids. This seems to be either less efficient for

L, dortmanna or its seeds have narrower germination requirements. [

3.3.3. Dispersal in the Loch Sediment
1. Introduction.

Once the seeds have settled on the sediment surface wave action

1
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would be likely to cause their burial by the deposition of further

sediment over the seeds. In some areas of a loch deposition may be ;|

slow, and the seeds may sink into the sediment, especially if they 
are more dense than the sediment. In this study seeds were tested 
for "seIf“burial" in undisturbed conditions. As sediment burial will 
affect the environment of the seeds, particularly the light climate, 
any self-burial may be important.
2. Methods,

Fresh seeds were collected from aerial capsules on the shores of 
Loch Fiacail. Sediment was collected using a corer (10 cm diam., 25 cm 

long) from 1.5 m depth in the middle of a bed of L. dorimanna, using 
SCUBA. The sediment was placed in an upright polythene tube (2.5 cm 

diam., 25 cm long), sealed at the base. It was allowed to settle, 
retaining a 5 cm column of water above the surface.

The seeds were stained with safranin in order to make their 
later detection more easy. The seeds (over 300) were floated on the 

surface of the water column. The tube was incubated at 20°C in the 

light for five weeks. It was then frozen at -5°C and cut into 5 mm 
segments. The number of seeds in each segment was counted, upon 
thawing, using a dissecting microscope.
3. Results and Discussion.

The results are presented in Figure 3.3. It can be seen that 

the seeds do not sink below 10 mm in the sediment due to their 
difference in density between sediment and seed, A significant 
proportion, 16,1%, have sunk below 5 mm. The light conditions in 
loch sediments are discussed later. Nicholson and Keddy (1983) noted 
that some lakes have a very shallow seed-bank. Certainly with 
L. dovtmanna burial by wave action would be necessary to explain more 
than a superficial covering of sediment.



Figure 3.3.

The distribution of seeds of L. doTtmanna allowed to 
settle in a core of sediment from Loch Fiacail for one month.
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3,4. Seed Germination

3.4.1. Seed Storage * |
1. Introduction.

The storage conditions of any seeds are important in determining 
the subsequent requirements for germination. Seeds stored hydrated 
are able to respond to stratification and any exposure to light will 
affect phytochrome conversion in the seed. This happens even though 

the seeds may be stored at a temperature below that required for 
germination. Seeds stored dry will not stratify (Bewley and Black,
1982), though they can still respond to light changes (Bartley and 
Frankland, 1984). The best state in which to store seeds for 
experimental purposes is, therefore, dry and dark. However, some 

aquatic plant seeds will not survive drying so this study attempts to 
discover the conditions under which L, doTtmanna seeds can be 
stored.
2. Methods.

Seeds from both aerial and submerged capsules were stored under 

two conditions. In the first, seeds were placed in a tube in a glass 
chamber containing water and nitrogen gas. This was stored dark 

(wrapped in black plastic) at 1-3*C. In the second, seeds were dried 
over silica gel at 15°C for 5 days until the water content dropped to 
about 0.06 g/g. The ,;seeds were then transferred in the dark to a 
small box and frozen at -5°C.

After storage for a month the seed viability was tested by 
treating the seeds with Giberellic Acid (GAg) (1 g/litre). In this, 
and àll:;sübsequent experiments, all treatments consist of four 5 cm 
petri-dishes with three layers of Whatman No, 1 filter paper, each 

dish with 50 seeds. 10 ml of GA3 was added. The petri-dishes were 
placed in the dark at 25°C until no further germination occurred.

t j .  . • ..y. ... id  I  L. . .I .- .
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All transfers and preparations of the treatments were carried 

out in a dark room with a green safe-light box. This minimises even 
the green light in the room.
3. Results and Discussion.

The results of the germination tests are as follows (± S.E.).

% Germination Aerial Frozen dry 96.8 ± 0.9
% Germination Aerial Anaerobic Wet 96.6 ± 0.3
% Germination Submerged Frozen dry 98.5 ± 0.6
% Germination Submerged Anaerobic wet 97.8 ± 0.5

From this it can be seen that submerged flowers produce 

viable seed. The seeds also survive drying to conditions more extreme 
than that at which would be experienced in the field. Muenscher 
(1936a) failed to find this for L. dovtmannaf though Guppy (1897) 

found many aquatic plant species have seeds that survive drying. 
E'Lchovn'Ca (Crocker, 1907) even loses its dormancy by drying. The 

ability to survive drying may be important to seeds in capsules 
exposed to strong sunlight and especially to those an terrestrial 
plants.

As the stored seeds in anaerobic, wet conditions are kept for 

a few months they become infected with fungi. This causes further 
infection of experimental dishes and probably reduces viability. In 
all the subsequent studies, therefore, the seeds used were those 
stored frozen and dry.

3.4.2. Seed Stratification
1. Introduction.

The seeds of many plant species require a period of cold 
stratification before they will germinate (Bewley and Black, 1982). 
This usually ensures that seeds do not germinate in warm autumn

.1
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co*+itio*s whe* they may not grow to an adequate size to survive 

the winter. Guppy (1897) noted that few seeds, therefore, germinate 
in the year that they are shed, and Muenscher (1936a) showed that a 

cold period was necessary in some species, including L. doTtmanna, 
Conversely, Churchill (1983) found, in field tests, that Zosteva 
maipzna will germinate before the onset of winter, and McNaughton 
(1966) showed that three species of Typha do not require cold 
stratification. This section seeks to determine whether the seeds 
of L, dortmanna require a period of cold stratification and, if so, 
of what duration.

2. Methods.
Seeds were placed in the dark in petri-dishes and flooded with 

10 ml of distilled water. The dishes were placed in dark boxes and 

put in cold storage at 1-3°C. At regular intervals four dishes were 
placed in a conviron cabinet with white fluorescent light (continuous 

light, PAR = 90 pEmT^s"^) at 25°C. Germination was allowed to proceed 
until it was complete. Fresh seeds were used in one treatment to test 

for immediate germination upon shedding. Another treatment using 
seeds stored in ice for 1 month was also undertaken.
3. Results and Discussion.

The results are presented in Table 3.3. It can be seen that 
L, dortmanna seeds will not germinate immediately, but require a 
cold period. They survive imbedding in ice, as do a number of other 
aquatic species (Guppy, 1897). The optimum cold period seems to 

be of 1-2 months. It can also be seen that longer periods of 

storage cause a reduction in viability. Some petri-dishes become
infected by fungi and this may explain some of the reduction in 

viability.
Sylven (1903) observed that L, dorimanna ̂ .seeds germinated in 

the late summer and overwintered in the early stages of germination.

J



Table 3.3.

The % germination of seeds of L. dovtmanna at 25®C in continuous 

light (PAR = 90 M,Em~^s” )̂ for fresh seeds, seed stored in ice 
and seeds cold stratified at 1-3°C for varying periods of time. 

Germination allowed to go to completion.

Pre-treatment % germination of 50 seeds 
± S.E. n = 4

Fresh seeds 0 . 0

Ice (1 month) 83.0
1 month cold 96.0 ± 0.8
2 months cold 97.0 ± 0.9
3 months cold 83.0 ± 2.4
4 months cold 56.7 ± 5.1

: - ................ .................
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Field observations reveal that seedlings become visible in August, 
but as they are small they may have germinated some time before this.
As seed production is not well advanced in July, it would suggest 
these seeds are produced in the previous year. The only other British 
isoetid studied adequately in its germination is Isoetes eohinospora,

This species requires a minimum of twelve weeks cold stratification 
(Kott and Britton, 1982).

3.4.3. Light, Temperature and Germination
1. Introduction.

The interaction of light and temperature in seed germination is 
complex. This study attempts to evaluate the effects of light quantity, 
quality and temperature. Aquatic plant seeds vary considerably in 
their response to these factors. Guppy (1897) found that light 
promoted germination in Nuphar tutea, but prevented it in Ir-ùs 

pseudopOTUS, Light is also inhibitory in Nay as mavïna (Forsberg, 1965) 
and N* flexdli-s (Wetzel and McGregor, 1968) . It promotes germination 
in some Toixxmogeton species (Spence et al., 1971) and Typha tat'ifot'ia 
(Sifton, 1959). The requirement for light is a common feature of 3

ruderal / species-, invaders of open spaces.

The requirement of light for germination is often mediated via ï|
phytochrome (Bewley and Black, 1982). This is testable by subjecting 

seeds to red and far-red light, so causing phytochrome conversions.
This has been rarely done in aquatic species. Spence et al. (1971) 

showed red promotion and far-red inhibition in Potamogeton thunberg'Ci 

and P. sahwe'Cnfurth'ii, T, angustata is promoted by red light (Gopal 
and Sharma, 1983) but no tests have been made with far-red light.

The actual quantity of light may be important. Spence (1982) f
suggested that some aquatic species may have a minimum light requirement 

that limits the depth to which they can germinate in a loch, Spence

I
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et &1. (1971) did show that the deeper water P, sohwe'tnfuvth't't 

required about a quarter of light quantity of P, thunberg'C'C,
The effects of temperature on germination in aquatic species 

oine poorly understood. Most species increase the germination rate "-4

with increasing temperature, though Zosteva mavtna has a low optimum 
temperature (Churchill, 1983). A few species may require a 
fluctuating temperature to induce germination, e.g. Neptunta otevaoea f

(Sharma et al., 1984). This may limit species to shallow water where 
diurnal fluctuations in temperature occur, as deep water exhibits a 
strong thermal stability and lacks diurnal variation in temperature 
(Hutchinson, 1975),
2. Methods.

Previously stored and stratified seeds were given the following 
treatments;

1) Some were placed under constant white fluorescent light over 
a range of temperatures from 5°C to 27®C, Constant temperatures were 

maintained either in growth cabinets or by floating petri-dishes on 

water baths,
2) Some petri-dishes were given daily flashes of 5 min red 

light (PAR = 10 jtEm-^s"^) or far-red light (PAR = 5 hEm~^s^^) until 

germination was complete. Another treatment given was red followed by 
far-red or far-red followed by red. Light sources were constructed as 

recommended in Kendrick and Frankland (1983) for seed germination, 
Spectroradiometric scans of the two light sources are presented in 
Figures 3.4 and 3.5. Between exposures the seeds were incubated at 
25®C in dark boxes.

3) Seeds were also placed, at 25°C and constant white fluorescent 
light, in a range of light levels. The reduction in fluence rate was 
achieved using muslin, a neutral density filter.

In all cases after one month GAg (1 g/litre) was added to the

I
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Figure 3.4.

A spectral scan of the red-light source (after Kendrick 

and Frankland, 1983) used in seed germination. The scan was 

taken using a Macam Spectroradiometer SR 3010 from 360 to 

800 nm. It shows a peak in the red region of the spectrum 
(660 nm) and very little far-red light (730 nm) ,
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Figure 3.5.

A spectral scan of the far-red source (after Kendrick 
and Frankland, 1983) used in seed germination. The scan was 

taken using a Macam Spectroradiometer SR 3010 from 360 to 
800 nm. It shows very little red light and a large peak in 

the far-red and infra-red regions of the spectrum.



5 . 0

3

<i> 2.0

JO

0.0
4 0 0  6 0 0  6 0 0

Wavelength (nm)
7 0 0 8 0 0

 ...
77

=1
i

‘■5'&
Î

:



7 8

u,gemi,ated seeds to test viability so that results can be expressed 

accurately as percentage germination of the seeds available for 
germination.
3, Results and Discussion.

The results are presented in Figure 3,6 and Table 3,4. No dark 
germination occurs at any temperature. This is ecologically 
extremely important. Seeds buried too deeply in sediment will not 
germinate and, as they tend to lose their viability over a few months, 
deeply buried seeds will tend to die unless exposed after a relatively 
short time.

Germination will proceed over a range of temperatures, though 

after 1 month none was observed at 10°C or 5®C. It is most rapid at 
27®C and 25°C, being markedly reduced at 20°C. This slow rate of 
germination has also been noticed in the spores of a number of Isoetes 

species (Kott and Britton, 1982). As temperatures rise in Lochan-na- 
Thuill (Chapter 2), 15°C is only reached in mid-May, 20°C in June.
The maximum temperature recorded was 24°C and the mean weekly

temperature was at 20®C or above for only one week. This would suggest
that germination in the field is not very rapid.

Germination takes place at constant temperature. No diurnal
fluctuations are necessary. Obviously the shallow-water distribution 
of L, dovtmanna cannot be explained by a requirement for such 
fluctuations.

The results of the red/far-red treatments are not conclusive.

Red light is definitely better at promoting germination than far-red. 
Its promotive effect can also be reversed by exposure to far-red.
The reversal of far-red by red is clear. One possible mechanism of 
seedling zonation underwater would be for seeds to be far-red 

promoted. As far-red light attenuates more rapidly in a loch than 

red light (Spence, 1976), germination would be greater in shallow

1
j



Figure 3.6.

The time courses of the germi-atio- of seeds of 

L. dovtmctnna under constant white fluorescent light at different 

temperatures (PAR = 90 |iEm“^s~^) .
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Table 3.4.

Germination of seeds of L. dortmanna under different white 

fluorescent light fluence rates and different light qualities. 

Germination allowed to go to completion at 25°C. The spectral 
composition of the red and far-red light sources are given in 
Figures 3.4 and 3.5.

Fluence rate 
PAR jJ,Em“^s~^ % Germination of 50 seeds 

± S.E. n = 4constant

87 1 0 0 ± 0 . 0

34 71 ± 16.0
12 87 ± 7.0
4 1 0 0 ± 0 . 0

0 0 . 0 ± 0 . 0

Light quality % Germination of 50 seeds 
± S.E. n = 4

Red 34.0 ± 6.0
Red/Far-red 14.8 ± 4.5
Far-red 14.0 ± 2.1
Far^red/red 22.5 ± 4.9

1
Ï
H

$

■'V-Î
I



81 i|
3water. Such a germi.atio. respo.se has o./0 been noted in one I
I

terrestrial species - Bvomus st&TÏtïs (Hilton, 1982). As L, dortmanna f

is red-promoted such a mechanism of zonation cannot be operating,
L, dovtmanna, although absolutely requiring light, will 

germinate at the very low light levels for 4 |j.Em"̂ s""̂  PAR) . A lower »?
limit was not determined in these treatments. Clearly this will 

allow the seeds to germinate at low light levels either in deep water 
or buried sediment. At what depths these may occur is considered in 
section 3.5.

3.4.4. The Effect of Light Quantity on Seedling Growth
1, Introduction and Methods,

Although the seeds may germinate at very low light levels, the 
seedlings may subsequently not be able to grow. In this way the 
depth zonation of the plant may be controlled not by an effect on 
germination but on seedling survival.

Seedlings germinated in other experiments were placed in sterile 
conical flasks containing 50 mis of sterilized Gorham's medium (see 
Table 2.1), These flasks were wrapped in muslin to provide three 

different fluence rates. They were placed under a lamp (constant 
light) on an orbital shaker at 20®C. Three flasks, each with about 

20 seedlings were used in each treatment. At the start and after one 

month, the number of seedlings and the number of leaves on each were 
counted. The seedlings were then given fresh sterile flasks and 

medium. The flasks at the two higher fluence rates subsequently 

became infected with algae, but those at the lowest rate were grown 
for a further four months.
2. Results and Discussion.

The results are presented in Table 3,5, The seedings in the 
two highest fluence rates grew and remained healthy (until infected), ^I

I
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Table 3,5.

Growth and survival of seedlings of L, dortmanna at three 
different white fluorescent light fluence rates over five months, 
The seedlings at the two higher fluence rates were lost after 1 
month.

% Increase in leaf number

Fluence rate 
for growth 
iiEm"^s”  ̂PAR

Initial mean 
leaf number

Time (months)
1 3 5

87 2.67 +7.5
34 2.84 +0,3 - —
4 2.58 —0.4 —0,8 —1.2

% Survival of seedlings

Fluence rate 
for growth 
M.Em”^s”  ̂PAR

Initial number 
of seedlings

Time (months)
1 3 5

87 69 10 0

34 44 1 0 0

4 75 89.3 76.0 64.0

J/v:;
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Those i1 the lowest flue123 rate slowly died. Even after five months 

more than a half were still alive. The negative growth rate also 
shows that the largest seedlings were dying faster, though it is 
uncertain why this might be. The seedlings can, therefore, survive 
periods of low light, but dea .th will eventually occur. It must be 
noted that no dark period was given and the imposition of dark 

respiration in the field would probably increase seedling mortality.

It seems, therefore, that seeds will germinate under light 
conditions in which the seedlings cannot subsequently grow. This 

could be either at too great a depth in a loch or too deep in the 
sediment. The seedlings are, however, buoyant, even though they have 
not developed the gas-filled lacunal system of the adult plant. They 'A

root well in sediment, but a seedling that has germinated too deep 
in a loch may become detached and float upwards. This seedling would 
have a chance, albeit slim, of being washed to a site where it might 

take root and grow,

3.4,5, Anoxia and Seed Germination 

1, Introduc tion,
The effects of anaerobic conditions on seed germination can be 

varied. In aquatic species low oxygen tensions have been seen to 
promote germination in a number of species - Netumbe nuoi-fera (o.h.ga,

1926), Euryate ferox 1930), Al-isma triviale (Crocker and
Davis, 1914), Trapa natans (Teresawa, 1927), Peltandra virginioa 
(Edwards, 1933), Typha latifolia (Morinaga, 1926 and Sifton, 1959) 
and Najas marina (Forsberg, 1965:), in Oryza sativa germination

some cultivars are promoted by low oxygen tensions, others are not./
yiIn some terrestrial species, however, anaerobiosis induces a 

secondary dormancy, e.g. Xanthium pennaylvaniown (Esashi et al.,
1978) and Avena fatua (Borthwick et al., 1954),

1
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This study attempts to evaluate the effect of anoxia on the 
dormancy of the seeds of L, dortmanna,
2, Methods.

Petri-dishes of seeds stored and cold stratified, for two months 

were placed in an anaerobic workbench (Forma Scientific Marietta Ohio 
anaerobic system model 1024) for 1-16 days at 24-26®C, Seeds were 
removed over this period and placed in a conviron growth cabinet,
25®C, constant white fluorescent light for three weeks. These conditions 

would normally cause germination if the seeds had been brought 
immediately from cold storage. Each treatment had 4 x 5 0 seeds.

Seeds treated with anoxia and allowed to germinate were either 
treated with GA3 to test viability or given another 1 month cold period 

and again allowed to germinate in the same growth conditions.
3, Results and Discussion.

The results are presented in Table 3.6. Even one day in anoxia 
will induce a secondary dormancy in the seeds, but many remain viable, 
even after 16 days anoxia. This secondary dormancy is broken by one 
month in the cold. It is usual .that a secondary dormancy is broken 

by the same conditions as a primary dormancy (Bewley and Black, 1982),
Seeds in conditions of low oxygen tension in the field will not 
germinate. The actual degree of hypoxia necessary to induce the 

secondary dormancy has not been determined. This mechanism could act 

in conjunction with a light requirement for germination for seeds 
buried deep in sediment. However, once induced a secondary dormancy 

will prevent a seed germinating upon exposure to oxygen and light.
As viability is probably not long it would, therefore, be unlikely 
that such a ̂ eed would survive until the following spring when this -M

dormancy would have been broken by winter stratification.



Table 3,6.

Germination of seeds of L, dortmanna after pre-treatment under 
anoxia and subsequent treatment with GAg (1 g/litre) or 1 month 
cold storage at 1-3°C.

— .......... -.....
No. of days % Germination

anoxia Without GAg With GAg

1 2 . 0 ± 0.5 96.± 0 . 1

2 0 . 0 ± 0.0 91 ± 1.1

5 0 . 0 ± 0 . 0 81 ± 3.7
1 2 0.0 ± 0 . 0 63 ± 5.2
16 0 . 0 ± 0 . 0 51 ± 7,2

2 days followed 
by 1 month cold 73 ± 4.3 -
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3,5.1, I456oduction

attenuation coefficients of red and far-red light (K and K_ ) arer £r
important. The photosynthetic environment is described in terms of 
the least attenuated wavelength r usually broad-band green
(K^), Tailing (1971) described a relationship for waters in the Lake 
District and Lake Victoria;-

3.4.6. Seed Germination - Conclusions

The following points have been determined with respect to -
germination in L, dovtmanna,
1, The seeds require a cold period before germination.

2, In cold storage the seed viability declines over a few months.

3. The seeds are absolutely requirers of light for germination.
4. They will germinate at very low light levels, though the seedlings 

are, subsequently, not able to grow or survive at these light 
levels.

5. There is tentative evidence for phytochrome action (red light

promotion and far-red reversal) in germination.
6 , A period of one day in anoxia will induce a secondary dormancy

that is broken by a further cold period.

It is now necessary to examine the natural environment of lochs
containing L, dovtmanna to see how these conditions may control the
germination, survival and zonation of the species.

3.5, The Natural Environment

This section will attempt to describe the light and oxygen M

status of the loch water and sediment. The light environment of a 
number of lochs containing T), dortmanna is described in Spence (1982).
The reduction in light with depth is described by a series of 

attenuation coefficients. In discussing photomorphogenesis the

I
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zeu % 3.7/K .mi7

Zeu (the euphotic zo7e) is defined as the lower limit of net 

photosynthesis in phytoplankton, usually the depth at which 1% 

subsurface PAR is found.
Using Tailing's equation and the figures for given in Spence 

(1982), it is possible to derive a rough estimate of the depths at 
which 1% PAR can be found in a number of lochs. These approximations 
are given in Table 3,8. It is necessary to describe the light 
environment in terms of PAR as the seed germination has been so 
defined.

The light environment of lake sediments has not been previously 

studied, though the redox status has. Allegeier et al. (1941) found 
that sediments became more anaerobic with depth, though oligotrophic 

lakes were less reducing.
This study will consider the light environment of a number of 

loch sediments and the light environment of the water and the redox 

status of the sediment of Loch Fiacail, from where the seeds were 
collected for the germination studies.

3,5.2, Methods
The light environment in Loch Fiacail was measured using a 

Macam Spectroradiometer SR3010. Scans of the spectrum from 360-800 nm 
were taken at 0,5 m intervals in the water down to 4.5 m. The 

sensors were lowered down the unshaded side of a boat from an outrigger 
projecting 75 cm over the water surface. In order to adjust for 
variations in daylight simultaneous measurements of PAR were made 

for each scan using a Macam quantum photometer placed in the boat. 
Vertical diffuse attenuation coefficients for R, FR and PAR were 

calculated by linear regression from the equation:
K = (Inlg - lnlg)/z

1
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where K is the vertical diffuse attenuation coefficient (in In units
m""̂ ) , Iq is the initial subsurface irradiance, and is the
irradiance at à depth of z .m

The light environment in the sediment was determined by placing 
1 mm thick layers of wetted sediment in a flat, perspex tube over 

the sensor of the Macarii spectroradiometer SR3010. A scan from 

360-800 nm was taken under each sediment when exposed to a mercury- 
vapour lamp light, which provides a more intense source than 

fluorescent light. The percentage transmission in PAR was calculated 
for each sediment sample.

A sediment core from Loch Piacail was obtained using a 5 cm 

diameter corer. The redox potential was measured at a number of 
depths in the sediment using a number of platinum electrodes inserted 

to those depths. The potential is measured with reference to a 
calomel electrode (Figure 3.7) after Mansor (1981).

3.5.3. Results and Discussion
The results are presented in Tables 3.7 and 3.8 and Figure 

3.8, L, dovtmznna rarely grows below 2 m and yet the depth of 1% 

subsurface PAR is considerably below this in all the lochs considered,
In absolute terms subsurface PAR will go well above 1000 |iiEm“ ŝ"'̂ , so 
that a seed at a depth where it receives 1% of this will have enough 

light to germinate. Even allowing for inaccuracies in calculating 

Table 3.7, it is clear that L, dortmanna can germinate in lochs well 3
below the level at which plants are usually found to grow. Hence 

light does not control zonation by limiting germination. It more 

probably limitg seedling growth (section 3.4).
Light attenuates rapidly in the sediment. Seeds below 3-4 mm 

will experience almost total darkness. Self-sedimentation of seeds 
(section 3,3), therefore, does allow seeds to sediment to a point where



Figure 3,7,

The apparatus used to record the redox potentials at a 
series of depths in a core of sediment from Loch Fiacail.
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Table 3.7.

The attenuation coefficients and calculated depth of 1% PAR for 
the waters for a number of British lakes containing L» doTtmanna,

:|

K_ In units m‘
1% PAR depth (m)Lake or Loch

0.35 0.58Windermere 10.6
0.37 10.00.43Uanagan

Esthwaite 0.48 0.52
Clunie 0.46 0.47

0.60 0.54 6.2Lowes
na Thuill 0.55 0.54

1% PAR depthPAR ■pR

Lomond 0.60 0.60 1.00

1.16Fiacail 0.94 2.65 4.0

Spence (1982)
Chambers and Spence (1984)

This study

1

... ;



Table 3.8.
The percentage transmission of PAR by 1 mm depth of sediment 
from a number of lochs containing L, dortmanna»

Loch Description % transmission in PAR

Fiacail,
Sutherland Fine sand 18.2

Dow,
Fife Black silt 0.19

Craiglush, 
Tayside Grey sediment 0.45

Lowes, Sand and 0.18Tayside gravel
Lomond, Gravel and 0.18Strathclyde sand

Dow,
Fife Gravel 0 . 1 1

Restil. Silt and
0 . 2 1Strathclyde gravel

^Borralie, Fine sand.
2 . 2 1Sutherland some silt

^This loch does not contain L, dovtmanna.

91
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Figure 3.8.

The cha89e i8 the redox potential with depth through a 
core of sediment taken from Loch Fiacail.
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5-ÿ‘they will not experience conditions under which they can germinate.

Any burial by wave action etc., which is probably much more important 
than self-sedimentation, will also prevent germination.

In lochs Fiacail and Lomond (Table 3,7) the water attenuates 

red-light less quickly than far-red. As red light promotes 
germination in L. doTtmanna the change in R/FR ratio with water 
depth will not act so as to reduce the percentage germination. The 

zonation of L* dovtmanna cannot, therefore, be explained by changes 
in the R/FR ratio in the water.

The redox profile of Loch Fiacail (Figure 3,8) reveals that 
this particular loch sediment is relatively oxidising compared to 
many other lake sediments (Allegeier et al., 1941), This study 

confirms others, e.g. Allegeier et al, (1941), that shows that the 
top two or three centimeters of sediment is well oxidised, and in 
many lochs the red colour of (oxidised) iron (III) hydroxide is 
associated with this upper layer (Hutchinson, 1975), It is probable, 

therefore, that seeds buried in the top few centimeters will not 
experience conditions that will induce a secondary dormancy. The 

control of germination in the sediment is, therefore, predominantly 
by light,

3.6. Vegetative Reproduction

In aquatic macrophytes vegetative reproduction takes the form 
of rhizomes, runners, tubers and turions (Hutchinson, 1975),

Vegetative reproduction in L, dortmanna uses another means.
Buchenan (1866) describdd that after flowering "side processes" 

were produced, new plants being formed at the base of the flower î
stalk. The process of flowering causes the loss of the apical bud, !
so that further vegetative growth involves the growth of an axillary j

bud. As,the leaves are spirally arranged one bud grows in I

%
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dominance over the others so that it is usual to see only one 

growing at the close of the flowering season. Older plants, however, 
will often show the growth of a second bud, lower down and smaller 
than the first. Eventually the two plants will seem to be two 

individuals, though vestigial remains of a joined corm can be 
sometimes seen,

Aberg (1943) hypothesised that vegetative reproduction can 
only take place after flowering. This, of course, cannot be proven.
However, all I have observed is in keeping with such a suggestion, 

having observed individual plants flower and subsequently undergo 
axillary bud expansion.

Vegetative reproduction generally incorporates some form of
dispersal. The runners of L, uni-flora can rapidly form dense mats J

'iover bare ground. Another isoetid, E, s&ptangulare, also reproduces «g

I
vegetatively by growth of short rhizomes. However, this can form f
dense mats by this method, unlike L, dortmanna^ The other isoetids 

do not show vegetative reproduction, although J. lacustris and 
J. echinospova may exhibit vivipary in deep water (Goebel, 1879),

It seems that vegetative reproduction in L, dortmanna is of 
minor importance compared to seed production. In effect it is a 
means of continuing growth after flowering. Although two plants may 
result from one, over a number of years, there is no dispersal 
over more than a few centimeters,

Sculthorpe (1967) does suggest that L, dortmanna has runners.
This is probably a mistake due to a confusion with L, uniflora,

4.7. Conclusions
L, dortmanna produces many seeds. This aids dispersal, fills 

all the available microsites and increases the chances of surviving 
unfavourable conditions (Cavers, 1983), A casual glance at a loch



95

may give the impression that there is a considerable number of "safe 

sites" (Harper, 1977) for the seeds. Yet in dnly a few sites does 

L. dortmanna from very dense swards.

A "safe site" for plant growth is not defined by the ability 
of the seeds to germinate. Certainly the seeds will not germinate 
when buried too deeply in sediment as they receive no light. It is 
doubtful if a small seedling would reach the surface if too deep in 

silt. However, seeds will germinate in water too deep to support 
seedling growth. It is probable that many seeds are lost this way.

It may be that the effect of the seeds sinking rapidly is to keep 
more in the littoral zone of a loch, preventing seeds floating over 
deep water before sinking. Naturally, this makes long-distance 

dispersal more difficult.
Seed production seems to be quite costly. The inflorescence 

is large compared to the rest of the plant. Young plants do not 
flower and only a small proportion of the larger plants flower in any 

one year, L, dortmanna is, however, almost completely limited to 
sexual reproduction, particularly for dispersal.

In the conditions for seed germination it is seen again that 
light is very important in controlling growth in this species. The 
seeds require light and this may be mediated via phytochrome.

It can be concluded that the depth zonation of L, dortmanna 
is not controlled by seed germination. The seeds will readily 
germinate in light regimes that can be found at depths well below 
any known depth limit for L, dortmanna. Seedlings will not 

subsequently survive. It is also probable that seeds will germinate 

in areas of the littoral not suitable for further growth of the 
plant.

As the control of zonation is not by germination but by an 

effect on growth, it is therefore necessary to examine the ability



of L, dortmanna pla:ts to vary their phsyiology with depth in a 

loch and test whether this can explain the zonation of the plant,

96 3

l--" - ---- .1 A-'iV--ATvA:-' A i



CHAPTER FOUR 
METABOLIC ADAPTATION AND ZONATION

-f
■II

I



97

Chapter 4. Metabolic Adaptation and Zonation

4*1. Introduction

" A

.J

The physiology of the isoetids has been variously studied.

However, most of the work has centered around a consideration of the g
supply of exogenous carbon for photosynthesis. Raven (1970) and 

Wium-Andersen and Andersen (1972) have shown that the carbon dioxide 
concentration in the sediments in the habitats normally colonised 

by isoetids is at least an order of magnitude greater than the water #
above. This is so in lochs with a low pH, which is the usual habitat 
of the isoetids (Spence, 1964). However, most species are capable 
of growing at higher pH (up to pH 9.0) and in lochs of high 
alkalinity (Spence et al., 1979; Seddon, 1965) where such a condition 
may not apply. Roeloffs et al. (1984) also showed that at a very low 
pH, associated with the acidification of lakes, the supply of sediment 
CO2 may be considerably decreased.

Luther (1983) noted that isoetids have a root:shoot ratio of at 

least 0.5. This was considered large for aquatic macrophytes. This is 

consistent with the studies of Steemann-Nielsen (1960), Wium-Andersen 
(1971), S^hdergaard and Sand-Jensen (1979), Richardson et al. (1984) 
and Keeley et al, (1984) who have shown that Lobelia dortmanna,

Littorella uni flora, Isoetes lacustris and Stylites andioola absorb 

CO2 from the sediment via the root system for photosynthesis. Sand- 

Jensen et al. (1982) also showed that these plants show a considerable 
oxygen efflux from the root systems. In L, dortmanna almost 100% of 
the gas exchange was found to occur via the root system. L, uniflora 

and J, laoustris show some gas exchange between the leaves and the 
lake water.

The isoetids have also been noted by their possession of 
submerged CAM, i.e. of dark CO2 fixation and acidification and light
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J

deacidification and photôsynthetic fixation of the CO2 . L, uniftora, 

all submerged Isoetes species and S, andioola have been shown to 

possess such diurnal fluctuations in acidity (Keeley, 1982; Keeley 4

and Morton, 198 2 and Keeley et al., 1984), D. dortmanna, however, 

lacks such a feature (Boston and Adams, 1983; Richardson et al., 1984).
Keeley (1981a, b) considered that such dark CO2 fixation is a %
particular adaptive advantage to isoetids growing in lakes low in 
dissolved inorganic carbon, Boston and Adams (1985) have shown in .d 
study of the relative contribution of daytime and nightime CO2 

fixation in I, maorospora and L, uniflora across the growth seasons 
that night fixation contributes approximately a half of the carbon 

fixed in these species,
A further adaptation of the isoetids to enhance carbon gain was 

shown by Sçzindergaard (1979) . He found that the large lacunae in the 

leaves of L. dortmanna and L, uniflora are efficient at trapping COg 

generated in the surrounding cells by photorespiration, instead of it 
being lost to the surrounding water.

The general morphology of the isoetids has been cited as being 
functionally extremely important in these physiological attributes.
In particular the possession of large lacunae in the leaves and roots 

and a thick cuticle in X, dortmanna and L, uniflora have been 
suggested as being necessary for the diffusion of CO2 and O2 between 
the leaves and the sediment (Sand-Jensen.et al,, 1982). A detailed 

examination has not, however, been undertaken.
The physiology of aquatic macrophytes has been shown to be 4

extremely important in determining zonation. In general these studies 
have concentrated on the effect of changing light regimes on photo­
synthesis. Spence, Campbell and Chrystal (1973) found that the 

specific leaf area (SLA) of five Fotamogeton species increased 

linearly with depth. The degree of increase in SLA depended on the 4

4
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spectral character of the lochs co;<=>;=?@ cha;Aes i; SLA being 
correlated with the attenuation in PAR rather than any effect of 
the R:FR,ratios. The degree to which any species could alter its 
SLA determined the zonation of that species in a loch. For instance,
P. poVygonifolius was least able to increase its SLA and was found to 
be the species distributed in the most shallow water. Spence and

a.Chrystal (1970) also found that deep water Potamogeton exhibited 
a lower dark respiration rate than shallow water leaves of the same 

species. This is an obvious adaptation to reduce the loss of fixed 

carbon in deep water where carbon-fixation in the light is reduced. 
Sand-Jensen (1978) found that the SLA of I, lacustris (from 2 m depth) 

was greater (0,195) than that of L, uni flora (0.240) (from 0.5 m 
depth). Also that I, laoustris was able to photosynthesise at 

slightly higher rates in low light and exhibited much lower leaf and 
root dark respiration rates. Sand-Jensen suggested that this 
adaptation of P. laoustris enabled it to colonise to greater depths 
in a lake that X. uniflora. It is unfortunate, however, that the two 

species were not studied from the same depths where a direct comparison 
could be made.

Kirk (1983) also records further adaptations that aquatic plants 
may exhibit to allow for photosynthesis at depth. Some macrophytes 
exhibit changes in tiieir photosynthetic pigments. Thus the total 
chlorophyll content may rise with depth, the a.:b ratio may decline. 

Other antennal pigments such as caroteneids, apart from chlorophyll b, 

may also increase in concentration. Kirk (1983) states that this 
feature varies amongst macrophytes, and that further studies are 

necessary. S^hdergaard (unpublished data) found plants of L, uniflora 
from 2.3 m depth had nearly twice the chlorophyll content of plants 

from 0.2 m. The chlorophyll a:b ratio also declined and the carotehoid 
content increased.

1
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The photosynthetic consequences of these adaptations are revealed 

as changes in the variation of photosynthetic rate with changes in 
photon fluence rate. Thus high-light adapted plants require a 

higher light intensity to saturate photosynthesis than low-light '4

adapted plants. Both types of plant have similar photosynthetic 
rates per unit chlorophyll in low light, but as low-light adapted 
plants have more chlorophyll per unit biomass they consequently 
have a high photosynthetic rate per unit biomass. This has been well 
demonstrated in a number of phytoplankta (Kirk, 1983).

Shade adaptation is further complicated by the fact that shading 
may cause the number of photosynthetic units to increase while causing 
the amount of carboxylase in a cell to decrease. In other words the 
plant is expanding more energy on the capture of light and less on /
the capture of carbon (Boardman, 1977), Again this has been demonstrated 
in phytoplankta (Kirk, 1983),

An understanding of carboxylases in freshwater aquatic 

macrophytes is, however, very limited. Two carboxylases have to be t|
considered - Ribulose bis-phosphate carboxylase-oxygenase (RuBPcase) 

and Phosph oenol pyruvate carboxylase (PEPcase). These assimilate 

CO2 into C 3 compounds and Cî compounds respectively. Almost all 
angiosperme contain both enzymes but the ratio of the two has important 
physiological and ecological consequences. In macrophytes high 
PEPcase levels have been associated with both the re-fixation of 

photorespiratJoooUy lost CO2 and low CO2 compensation points.
Terrestrial CAM plants also show high PEPcase levels.

This chapter will seek a wider understanding of the distribution 
and ratios of the two enzymes in aquatic macrophytes so that results 
from the isoetids can be set in context. A wide range of species -I

will be considered, though the isoetids will be more closely studied.
As CO2 is absorbed via the root system the roots will also be
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examiBed for the presence of carboxylases, L, dortmanna will also be 

studied for adaptations in its carboxylase;chlorophyll ratio with 
increasing depth. This latter study will be further complemented “f

I
by an examination of the photosynthetic characters of plants from 
two depths,

The isoetids have not been completely examined with respect to 
diurnal acid fluctuations. This chapter will, therefore, extend this 
knowledge and place it in the context of the above enzymatic studies. vi

Finally detailed structural studies will be undertaken on 
X. dortmanna and L, uniftora to elucidate what morphological 
adaptations these plants have to allow for their physiological function.

This study will, therefore, provide a physiological comparison 
between L, dortmanna and other macrophytes, particularly the other 

isoetids. The adaptability of L. dortmanna to increasing aquatic 

shade will also be revealed. It is then hoped that this will provide 
a guide as to the zonation of the plant in freshwater lakes.

4.2. Methods

4.2.1. Photosynthetic measurements

In September 1984 plants of L. dortmanna were collected from 
0.2 m and 1.0 m depth (using SCUBA) from Lochan-na-Thuill. These 

were transported to St. Andrews, and kept in low light at 5®C until 
use. Photosynthesis was measured using the apparatus in Chapter 2 
(section 2.3,1,), Photosynthetic rates were measured at 10°C

fl'ioVon
(the ambient temperature of the lochan) over a range of/fluence rates.
Two plants from each depth were studied. The changes in/fluence 

rate were made by placing different thicknesses of a neutral density 
filter (white perspex) in front of the water jacket (Figure 2.1). 4
After each alteration in fluence rate the recordings from the oxygen 

electrode were allowed to stabilise before any results were taken.

J
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All determinations on any single plant were finished before a point 

where carbon supply was observed to become limiting.
-t

4.2.2. Diurnal Acid Fluctuations
Two studies were made of diurnal acid fluctuations in a range

of isoetids and similar plants. Specimens of the British isoetids
4(excluding Isoetes eehinospova) and Pitulavia globulifera were ^

collected from a number of sites (see Table 4.2). P. gZobutifera 

is, like J. laoustris, a rooted, submerged pteridophyte. They were 
grown in a Gonviron growth cabinet at 25®C under white fluorescent 

light, for 16 hr day each 24 hr day. Plants from a terrestrial 
population of L, uniflora were also included.

In November 1984 plants were collected from Lochan-na-Thuill 
and measured directly for titratable acidity in a nearby field 

laboratory in Durness. Plants were collected at two depths,
L, dortmanna, L, uniflora and J, laoustris from 75 cm and L, dortmanna,
L, uniflora and P. flarmula from 10 cm. |IIn both experiments plants were harvested at dawn and dusk. ]

1The leaves were wiped and ground in 15 ml of cold CO^-free de-ionized 
water. The extract was filtered through muslin and then centrifuged |

to remove remaining plant debris - 10 ml of the supernatant was 4

titrated against 0,01 NaOH (made up with COg-free de-ionized water) #
to pH 6.4 (as in Keeley, 1982). In studies using plants grown in Ithe Gonviron growth cabinet, the extraction procedure was carried

hout in a 5°G cold room. This was not possible for the field studies, |

4.2,3, Garboxylase Determinations

A wide range of aquatic macrophytes were collected from lochs 
or culture tanks from.March to May 1985, Before assaying, all species 
were kept in illuminated, aerated water at 15*G for 24 hours to 

activate the carboxylase enzymes. For a range of isoetids the roots

.. - . rA-r " A ‘ '-J'"!*; C. A. ■■ A'-A-.A'»'r'«AaAi-A'.i-Af.'?-;!:.;*-'-.-..!,..,.-. , .v.,".



103 I

were also examiCed for carboxylases. In order to prevent exposure of 
the roots to light, plants were potted by the lochside with as little 4

disturbance to the sediment around the roots as possible.

Plants of L. dortmanna were collected from a range of depths 
(0.1-1.75 m) in Loch Fiacail using SCUBA. Deep water plants could 
not be collected with intact sediment around the root systems.
However, they were immediately potted in fresh sediment upon being 
brought to the surface.

Healthy tissue was selected, washed and loosely attached 
epiphytes removed by wiping. The tough leaves of the isoetids were 

further rubbed with Whatman GF-C filter paper. About 0.5 g of tissue 
was used for each determination. One extraction was made for each 

species. However, with the plants of L, dortmanna collected in Loch 
Fiacail two determinations of leaf carboxylases were made for each 
depth. The tissue was ground in a chilled glass homogeniser in the 
extraction mixture, previously kept on ice, shown in Table 4,1, A 
sample fionvthe extracted medium was removed for chlorophyll determination 

and the remainder was filtered through a 0,45 pm millipore filter. The 

carboxylase determinations were carried out in scintillation vials kept 
in a shaking water bath at 30°C. Each vial contained an assay mixture 

as in Table 4.1. Before assaying 1 ml of the extraction medium was 
added to 0.05 ml of MgClg solution (4.0662 g/100 ml H%0) and 0.05 ml 

bicarbonate solution (200 pm) to activate the RuBPcase, This was used 
for RuBPcase determinations, whereas the original extract was used for 
PEPcase assays, 0,1 ml of extract was used for each RuBPcase or 
PEPcase assay. Three determinations of each enzyme per sample were 
taken. Results are expressed as a mean of these three determinations.
Each RuBPcase assay reaction took 45 seconds to complete, at which 
point it was killed by a saturated solution of DNPH in 6N HCl.

The PEPcase reaction took three minutes and was killed with 6N HCl.
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Table 4.1.
The composition of the extraction and assay media for carboxylase

determinations.

Extraction medium

Constituents

Tris (6.07 g/100 ml HgO) 
pH 8.0

MgClg (4.0662 g/100 ml HgO)
DTT (0.1542 g/10 ml)
Sodium Isoascorbate (0,0881 g/10 ml)
De~ionised water
EDTA (0.0372 g/100 ml)
PVP
BSA

Assay medium

Constituents (made up as 
above)
Tris
MgClg
EDTA
DTT
De-ionised water
PEP (0.1771 g/10 ml) 
or RuBP (5 mM) 
NaRl^cOg (200 mM)
Enzyme extract
Total assay

Volume added per 6 ml 
in a glass homogenizer (ml)

0.6
0.3
0.6
0.6
3.3
0,6
250 rag\ Added as 
50 mgj solid

Volume added to each 
vial (ml)

0.1
0.05
0.01
0.01
0.35
0.1

0.1

0.1

1.0

(0.05 + 0.5 HgO 
for PEPcase)

«
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BlaDEFG without PEP or RuBP, were takeD for both RuBPcase and PEPcase 

determinations.

After killing, the vials were dried-down overnight. For 

counting the samples were resuspended in 2-5 ml of de-ionized water 

and 5 ml of Phase Combining System (Araersham). Total counts of the 

stock H^^COg solution were made up using 5 pi of the solution made 
up for counting as with the assay samples, but with the addition 

of a drop of NaOH solution to avoid loss of ^^COg.

The samples were counted for 10 minutes (totals for 1 minute). This 

gives a figure of counts per minute. In order to convert this to 

destructions per minute counts are made using a standard solution 

of ^^C toluene (0.985 x 10^ disintegrations/min. at 20°C). This method 
follows that of Salvucci and Bowes (1981, 1982).*f=^*S'^^* pmceedhvit

Chlorophylls were determined as follows. 0.3 ml of the original 
extract was added to 0.3 ml of de-ionised water and to 2.6 ml of 
acetone. This was centrifuged and the absorbtion of the supernatant 

measured at 663 nm and 645 nm using a SP600 spectrophotometer. 
Corrections for general absorption were made using a reading taken 

at 720 nm. Three determinations were made for each extract. The 
estimation following that of Arnon (1949).

4.2.4. Plant Morphology

The structure of the leaves and roots of the different isoetids 
were variously studied. X. dortmanna and L, uniflora were the most 

intensively studied. Plants of both terrestrial and submerged forms 
were collected for both species. The gross morphology was examined

■ - t - 4 A
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by dissection under a dissecting microscope. Sections were also made 
using a freezing microtome, and all studies were made using fresh 

material. The only stain used was Sudan IV in order to observe cuticle 

thickness and the Casparian strip in the endodermis. Measurements were 
made using an eyepiece graticule. Drawings were made using a drawing 
tube.

The general leaf and root morphology of J. laoustris and 
J. hystrix was also examined. J. hystrix was collected from a 

terrestrial location in Southern Spain and stored in 70% ethanol before 
examination.

4.3 Results and Discussion

4,3.1 Photosynthetic Measurements

The effect of fluence rate on the rate of net 0_ exchange from

plants of L, dortmanna from two depths is shown in Figure 4,1. There
is a large difference between the two plant types. The plants from

1 m have a lower light compensation point (LCP) of about 10 [XE s”^
-2 -1and saturate at 90-100 M.E m s . The shallow water plants have a

LCP of about 16 |IE ra  ̂s  ̂ and saturate at over 200 fiE m~^ s~^.
The saturation level of the latter is similar to these found by Sand-
Jensen and Borum (1984). S^hdergaard (unpublished data) found that

plants of L, uniflora from 2,3 m have a LCP of 10-14 |iE m"^ s~^ and
-2 -1from 0.2 m of 17-18 |J.E m s from June to September. Later in the

-2 -1year, both types have LCPs of 5-6 |IE m s

This ability to alter photosynthetic responses to varying
fluence rates is characteristic of many aquatic plants (Kirk, 1983). 
However, the differences in the LCPs are not great and Kirk (1983) 

suggests that such a feature is characteristic of plants not particularly 
able to adapt well to shade. Whether L. dortmanna can reduce its 
LCP further is unknown. X. uniflora (Sondergaard,



Figure 4.1.

Photosynthesis-light curves for two sets of plants of Lobelia 
dortmanna collected in September 1984 from two depths - 1.0m (A) 
and 0,2m (B). Determinations were made using the apparatus in 

Figure 2, Each point is a mean of two determinations made using 
two separate plants. The oxygen release is expressed as a 
relative figure compared to maximum release. Maximum release 
for plants from l*Om was 1,51 mg 0^/g fwt/hr, and for plants 

from 0,2m was 1,92 mg Og/g fwt/hr.
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uHpublished data) can, and this may be due to changes in pigment 

levels (see Introduction). This may explain the ability of L, un'Cflora 
to penetrate to greater depths.

4.3.2. Diurnal acid fluctuations

The results are presented in Tables 4.2 and 4.3. The presence 
of diurnal acid fluctuations in L, dortmanna and R. flarmula is 

confirmed (Keeley, 1982; Keeley and Morton, 1982; Boston and Adams, 
1983). Keeley et al, (1983) found that as populations of X, howell'i'C 
became emergent they lost any diurnal fluctuations in titratable 

acidity. In this study plants from terrestrial populations of 
L, un'tflora have such fluctuations (Table 4,2). Keeley et al. (1984) 

did find such fluctuations in S, andioolaj a terrestrial plant.
Keeley et al, (1983) also found that shallow water plants of 

J, howellll exhibited greater absolute diurnal fluctuations than 
deep water populations. This study shows this to be the case also for 
X, unlflora. As it is unlikely that the carbon supply from the 
sediment is reduced at greater depth in the lochan, the reduction in 
accumulated acidity is probably due to lower enzyme levels in the 

plants. Such an adaptation has also been suggested as a reason for 
reduced respiration rates in deep water plants (Sand-Jensen, 1978).

The other isoetids and P. globullfera lack any diurnal acid 
fluctuations, and so, presumably, lack the CAM pathway. CAM is, 
therefore, only known from three isoetid genera - Littorella,

Isoetes and Stylites, Stylites is closely related to Isoetes and 

some taxonomists would place the two genera together (Foster and 
Gifford, 1974).

The significance of submerged CAM has been heavily debated.
Keeley et al, (1984) considered that the possession of CAM and root 

uptake of CO2 by pteridophytes like Isoetes and Stxjlltes may possibly

' - .4,.
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Table 4.3.

Levels of titxatable acidity (to pH 5.4) just after dawn (08.15h) 

and just before dusk (15.15h) in November 1984 from two depths in 
leaves of submerged species from Loch-na-Thuill, Sutherland. 
Diurnal change in titratable acidity is expressed as the ratio of 
acidity just after dawn to that just before dusk. Means ± S.E. 
n = 2.

I?

Species
Titratable 

P-eq g“
8,15 hr

acidity 
 ̂ fwt

15.15 hr

Diurnal
change

10 cm depth

Lobet-ia doTtmanna 21.8 ± 4.4 2 0 . 6 ± 1 0 . 8 1.1

L'ittovetta un'tfloTa 141.7 ± 26.7 57.4 ± 3.4 2.5
Ranunculus flammla 22.3 ± 7.1 24.0 ± 2.9 0.9

75 cm depth
Lobelia dortmanna 15.4 ± 2.6 9.9 ± 1.1 1.5
LlttoTella uniflora 78.3 ± 13.0 29.5 ± 3.6 2.7
Isoetes lacustrls 107.7 ± 14.5 20.3 ± 10.9 5.3
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represeJt a primitive feature associated with the early colonization 

of land by vascular plants. However, CAM has arisen many times in 
evolution (Osmond, Winter and Ziegler, 1982) and Isoetes and Stylltes 
are thought to be advanced genera (Thomas, 1985). These genera 

represent terrestrial families that have subsequently become aquatic, 

so it is inadvisable to make inferences about the evolution to the 
terrestrial habit from such physiological studies.

4.3.3. Carboxylases - species variation A

The results are presented in Tables 4.4 and 4.5. They show that 
RuBPcase is the principal carboxylating enzyme in all the species 
studied, as has been found previously in a number of freshwater 
macrophytes (Beer and Wetzel, 1982; Salvucci and Bowes, 1981). The 
low RuBPcase/PEPcase quotient of L, unlftora is consistent with its 
possession of submerged CAM, although I, tacustvls has a slightly 

higher quotient. Fontlnatls antlpyretloa, L, dortmanna, P. gtohuHfeva, 
Votamogeton orlspus all lack CAM (Keeley and Morton, 1982; Boston and 

Adams, 1983; and this study), which is consistent with the low levels 
of PEPcase activity found in these species. Two previously little- 

studied species, Junous butbosus var. ftultans and P. pvaetongus show 
low quotients. Both species deserve further study.

In the three amphibious species the aerial or floating leaves 

had higher total levels of carboxylating enzymes than the submerged 
leaves. This is probably due to photosynthesis being limited by rates 

of transport of CO2 underwater (Black et al., 1981) rather than 
lower light levels. The RuBPcase/PEPcase quotient was lower in 
submerged, compared to aerial or floating leaves, which agrees 
with previous work (Salvucci and Bowes, 1981; Salvucci and Bowes, 1982), 

although there is only a small difference in the quotient in 
Hlppuvls vulgaris.
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An alternative approach to the study of the carboxylating 

enzymes of freshwater plants has been the use of carbon isotopes.
This technique rests on the fact the RuBPcase selectively discriminates
between two naturally occurring carbon isotopes, and

favouring ^^C02. PEPcase, on the other hand, does not discriminate.
For freshwater studies two values have to be established. These are 
the ratio for the sample and that of a recognised standard
(a belnemnite limestone), The difference between these two ratios 

is referred to as (Ŝ Ĉ. The is also calculated for the carbon
source of the plant. The difference between the of the source
and that of the plant is known as AÔ^^C, Only with the latter figure 
can meaningful comparisons be made. Plants that fix carbon 
predominantly via RuBPcase have a more negative Aô^^C value than 

those fixing carbon via PEPcase.
Published data suggests that CO2 fixation is primarily via 

RuBPcase for F, antvpyxe'b'iea^ emergent and submerged shoots of 
H, vutgav'ts (Osmond et al,, 1981), P, or^spus (Lazerte and Szalados, 

1982) and L, dovtmanna (Richardson et al,, 1984), This is in 

agreement with the data in Table 4, Aô^^C values fbr J, taoustrïs 

(Richardson et al,, 1984) suggests fixation of CO2 via PEPcase, and 
this is consistent with the submerged CAM previously reported 

(Keeley, 1982) and the RuBPcase/PEPcase quotient found in this study.
It has been shown that PEPcase activity is higher in summer, 

compared to winter grown Hydv'lVta veTti-Gidlata (Ho lad ay et al, 1983) . 
The material collected for this study was obtained in March, It is 
possible that higher PEPcase levels may be found in these species in 

the summer,
Table 4,5 also shows that for four isoetids only one has any 

carboxylase enzymes in its roots. Roots of P. dovtmanna contain 
PEPcase, though the quantity is small compared to leaf levels.
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j'
In ZaoustV'is aKL M. unlftova both exhibit root uptake of CO2 

(Richardson et al,, 1984; Sçz(ndergaard and Sand-Jensen, 1979), but 
no fixation occurs in the roots. E, septangiitave has not been 
studied for root uptake. The roots of J. taaustT'is and L. un-iftova 

do not exhibit diurnal changes in acid fluctuations (Richardson 
et al,, 1984; Boston and Adams, 1983) and this is consistent with 
their lack of carboxylating enzymes. L» dovtmanna roots also have 
no diurnal fluctuations in acidity (Table 4,2), The PEPcase may play 

a role in absorbing CO^ via the root system, both by taking CO2 from i

the sediment during the day and by absorbing CO2 lost by respiration /
at night. The level is, however, low and the physiological significance 
should not be over-stressed.

It should be noted, however, that PEPcase can occur in roots 
in a number of species. The PEPcase is postulated to be a means of 
generating malate instead of ethanol in flood-tolerant species 
(Crawford, 1978). As the roots of Z», dovtmanna are well oxygenated 
(from photosynthetic production in the leaves) the presence of the 
enzyme cannot be explained as a means of tolerating hypoxia,

4.3.4. Carboxylases - Depth Variation in £, dovtmanna

Table 4.6 shows the leaf and root carboxylases for L, dovtmanna 
from a range of depths from 0.1 m to 1.8 m. The low level of root 
PEPcase is consistent at most depths, though lacking in the most
shallow plant. There is no observable trend in either carboxylase or the

RuBPcase/PEPcase quotient. This would suggest that L, dovtmanna is 
not able to vary the proportion of carboxylase compared to its 

chlorophyll content. This is characteristic of plants not able to h
adapt to shade conditions (Kirk, 1983),

Table 4.6 also reveals that the chlorophyll content in the 

leaves increases with depths. The plants at 1.75 m have about 1,6
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'■
J:times the coNOeNPratioN of chlorophyll of plants at 0,1 m. Similar %

increases have been reported in L, un'iftova (Si/ndergaard, unpublished |

data), It thus seems that in L. dovtmanna the total photosynthetic 
apparatus is increased with shading. This is not an adaptation to 

shading common to shade tolerant plants (Kirk, 1983), which increase 
the light capturing part of the photosynthetic apparatus without 
increasing the carbon accumulating part.

4.3,5. Plant Structure

The structural features and dimensions of L, dovtmanna and 
Ln uni-flova are presented in Figures 4,2-4,6 and Table 4.7.

The leaves of D. dovtmanna contain two longitudinally continuous 

lacunae. Surrounding these are highly vacuolated cortical cells, 
which do not contain chloroplasts. Chloroplasts are limited to the 

sub-epidermal layers, particularly concentrated on the upper surface 
of the leaf. This side also contains peripheral vascular bundles 
(Figure 4.3). The roots have a central stele surrounded by a number 
of lacunae. Dissection reveals that these are not continuous with 

the leaf lacunae, except in the oldest leaves. Usually a thin plate 
of tissue (250 (im thick) separates the two lacunal systems. The 
roots develop at the bases of the leaves, each root (two to four per 
leaf) being associated with a particular leaf lacuna.

In contrast, L. untfZova leaves have a series of discontinuous 
longitudinal lacunae. The cortical cells surrounding these contain 

chloroplasts, and peripheral vascular bundles are distributed around 
the whole leaf. The roots hâve a similar structure to those of 
L, dovtmanna. However, they do not arise from the leaf bases, but 

from the stem, which is spongy, being filled with small lacunae.
In the leaves of both species the vascular bundles are well-developed, 
in contrast to the reduced vascular systems of a number of macrophytes

-A .r;;:



Figure 4.2.
Diagrams of dissections of the leaves and roots of Lobeti-a 

dovtmanna (L.d.) and the leaves, stem and roots of L-ittovel-ta 
untftova (L.U.). These show the lacunae (L) in the leaves 
(If), stem (S) and roots (R).
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Figure 4.3.

TraQRverse sectioQs of leaves of LobeZ'ùa dovtmanna (L.d.) and 
L'lt'toTe'lZa un'Lfloipa (l.u.) showing the position of the lacunae (L) , 
cortex (C) and vascular traces (V), both central and peripheral.
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Figure 4.4.
TraSTverse sectioST of; a. Leaves of LvttoveVta uni-ftova 

(L.u.) aSU Lobel'La doTtmanna (L.d.) showing the cortical cells 
(Co), epidermis (E), cuticle (Cu) and vacuole (V); b. Roots 
of the two species showing the lacunae (L) and vascular 
traces (V).
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Figure 4,5.

TraVWverse sectioVs of the ceVXral (C) aVY peripheral (P) 
vascular traces of Lobel'La âortmanna (L.d.) and L'Lttorelta 
un'Lflova (L.u.), showing the well developed vascular system 
with xylem cells (X) and Casparian strips in the endodermis 

(E) .



122

CL

%

a.



Figure 4.6.

Diagrams of traZ[\]^se sectioZ[ of leaves aZd roots of 
L'ittovelta un^flova (L.u.) (terrestrial), Isoetes ZaQUstv'ls 
(I.l.) (submerged) and J. hystv-ix (1 ,1 .) showing the changes 

in the lacunal systems (L) in these species caused by 
emergence.
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(Sculthorpe, 1967).
Terrestrialisatio` causes a reduction of the lacunal system and 

cell sizes in L. uni-ftova, but this is barely noticeable in L, dortmanna 
(Table 4.7). This is consistent with the fact that L, uni-flova 
commonly occurs as a terrestrial plant, but this is much less common 
for L. dortmanna (Haslam et al., 1975; Woodhead, 1951a). This 
reduction is also seen in the differences between the submerged 
J. taoustrts and the terrestrial J. hystrix (Table 4.7).
Terrestrialisation also causes the formation of stomata, though this 

is less pronounced in L, dortmanna. Whether any root uptake of COg 
continues to take place under these conditions is unknown. The stomata :j
of L, untftora and JT. hystrix open onto the lacunae (Scott arid Hill,

1900), and it is unlikely that CO2 limitation would occur, which is
/an assumed reason for root-uptake of CO2 in submerged plants (Wium- -U

Andersen, 1971). Similar changes were found in Isoetes japonïoa (West 

and Takeda, 1915) though on the same leaf. This species has large 
leaves, the apical regions of which are emergent.

L. dortmanna seems better adapted for root-uptake of COg in 
submerged conditions than L. untftora. There is a more intimate
lacunal link between leaf and root, and in L, untflora the discontinuous
lacunae are probably a considerable resistance to CO2 diffusion. Even
with this reasonably open system L, dortmanna may be considered to have

a considerable resistance to CO2 diffusion. However, Richardson et al.
(1984) found that the Aô^^C value for L. dortmanna was typical of C 3 

plants. A high diffusion resistance may effect the degree of isotope ti

fractionation (O'Leary and Osmond, 1980). ^^C will diffuse down a
concentration gradient faster than ^^C. Also it may be assumed that 
the discrimination of RuBPcase may cause a build-up of ^^CO&in the 
lacunae. If either of these factors were to occur to a significant 

extent the Aô^^C value would be altered. However, it is typically C 3

I
■ -I
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ia its character.
The discontinuous lacunae of L, uni-ftora are more efficient 

at trapping CO2 generated by photorespiration (S^ndergaard, 1979).
Gas exchange can occur from the leaves of L, un-tftora to the water 

(Sand-Jensen et al., 1982)=, though not L. dovtmanna. This is almost 
certainly a function of the differences in the thicknesses of the 
lacunae. The thick cuticle of L. dovtmanna (Table 4.7) may prevent the 

loss of CO2 generated in photorespiration which, as it is inefficiently 
trapped by the lacunae, could be rapidly lost to the surrounding water.

A further important distinction between the two species is that 
the cortical cells of L. untftova are much larger than those of 
L. dovtmanna. The former exhibits submerged CAM, the latter does not.
The large cells would be similar to the large cells common in CAM 
plants, the vacuoles of which accumulate malic acid at night (Osmond 
et al., 1982). Similarly the cortical cells of I. tacu&tvis (with K

CAM) are larger than those of I. hystvix (without CAM, Keeley, 1982).
Terrestrial plants of L. im/lftova have cortical cells, reduced in size, 
but not to the extent of 1. hystvix. This will explain its ability "ï-
to retain CAM upon terrestrialisation.

4.3.6. Conclusions

This chapter has sought to discuss how well adapted L. dovtmanna 

is to its environment. The aquatic environment is often poor in CO2 , 
andithe various carbon accumulating mechanisms discussed have been 
suggested ad adaptations to this environment. Richardson et al. (1984) 

suggest that because L. dovtmanna has carbon-accumulating strategies 
its growth is probably carbon-limited. A converse argument would 
suggest that the presence of such strategies may help free the plant 
from carbon-limitation. As can be seen in Chapter 2, seasonal growth 
is highly correlated with changes in irradiance, and so is not carbon-



limited. Table 4.8 illustrates the present state of knowledge of 
carbon accumulating mechanisms in isoetids, L, un'iftora is seen to 
have the widest range of mechanisms and is also the most widdly 
distributed (Haslam et al., 1975; Spence, 1964).

L, dovtmanna has a seasonal growth pattern limited by light 
(Chapter 2), It has its lower depth limit in any loch set not by 
the responsivity of its seeds to light but by the ability of the 
seedlings to survive low light levels (Chapter 3). L. dovtmanna 
is able to vary its physiology with changing light regimes - both with 
its photosynthetic/light curve characteristics and its chlorophyll 

content. It does not, however, seem to adapt to shade conditions by 
varying its carboxylase levels. This species is thus limited in its 
responsivity. It is this that is probably the most important factor 
in determining the zonation of the plant.

:-r : ï.:-.- y
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Table 4.8.

A summary of the present state of knowledge of the various carbon 

accumulation mechanisms and their presence or absence in British 

Isoetid species.

128

Carbon Accumulating Mechanism
Species Submerged

CAM
Root uptake 

of CO2
Photore spiratory 
lacunal CO2 trap

J, lacnistvts Present Present -
I, echtnospora Present — -
L, uni-flora Present Present Present
L, dortmanna Absent Present Present
S, aquatioa Absent — -
E, septangulare Absent - -



CHAPTER FIVE 
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jCHAP-m., FIVE. CONCLVSIOrjP ,

The previous chapters give ab ibcdcatiob of the ebvirobmebtal Â

parameters that most affect growth ib LobeZi-a doTtmanna abd provide a 

background from which we can describe the growth strategy of the plant.

Let us consider how we can define this strategy.

Grime (1979) presents one approach to growth strategies that has 

been followed by many workers. His approach is to define plants according 

to very broad categories, which seek to distinguish the different 

approaches of various plant species to the survival of environmental 

stress, competition and disturbance. This approach to plant strategies 
has been criticised for being generalised, though useful in its separation 
of growth and reproductive strategies (Verhoeven et al., 1982). These 
workers use an alternative approach of defining a strategy using precise 

environmental variables. Both approaches will be considered for 
L. dortmanna.

By considering the observed distribution of L, dortmanna it is 

obvious that it is one of the most successful macrophytes in colonising 

disturbed areas of loch shores (Spence, 1964). Such habitats are 

characteristic of ruderals (Grime, 1979), which are considered ephemeral 
plants, annuals with a high reproductive output. L. dortmanna does not 

fit this description. It is slow growing (Chapter 2) and does not flower 

frequently (Chapter 3) . Similarly of the isoetids LZttoreHa uniftora, 
which also colonises these habitats, is slow growing, but SubuZarta 

aquatica is a characteristic ruderal being an annual biennial with 
frequent seed production (Woodhead, 1951b). The perennial, slow 

growth of L. dortmanna and L. untflora is more characteristic of a 

stress-tolerator (Grime, 1979).
In considering stress tolerance. Grime (1979) is concerned particularly 

with light and nutrient stress. All of the isoetids are characteristic of 
very low nutrient lochs (see Introduction), so are evidently able to
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tolerate this stress. The slow growth rate of L. dortmanna is eft due 

to a limitation by the low nutrients of the loch sediment (Chapter 2),
In aquatic habitats carbon may also be limiting (Black et al. 1981), but 
again this does not seem to be a cause of the slow growth of L, dortmanna 
(Chapter 2). This species does not, however, seem to be as well adapted 
to responding to light stress (shading) as other isoetids, being limited 

to more shallow water than L. un-iftora or Isoetes Zacustr'is (Spence, 1964) .

This study (Chapter 4) has shown that although L, dortmanna can vary its 
pigment composition with depth, it does not alter its carboxylation system 

in a way characteristic of shade-tolerant plant (Kirk, 1983). It is, 
therefore, tolerant of limited light stress only.

If. dortmanna can often be found growing in dense vegetation with 
other macrophytes. However, with increasing eutrophication. I, dortmanna 
tends to disappear from lakes (Jupp et al., 1974; Sand-Jensen and Borum,

1984). This has been found to be due to the epiphyte growth on the leaves 
severely limiting light penetration (Sand-Jensen and Borum, 1984).
Figure 5,1 shows the decline in the distribution of isoetids in Fife and 
Angus, This is based on the information of Young (1936), Ballantyne 
(1977) and Ingram and Noltie (1981). The latter workers consider this 

decline to be due to eutrophication, caused by agricultural run-off.
The last two remaining sites for I, dortmanna and J, taoustr’is in 

Fife are in the Cleish Hills, but in the past year the surrounding 
land has been ploughed. These lochs already contain much epiphytic 
growth, so an agricultural fertilization may cause the complete removal ?|
of these species from Fife, Thus I, dortmanna is not tolerant of 

shading. It seems able to compete with other macrophytes in some respects, 

as it tolerates very low nutrient levels and uses sedimentary CO^ as Æ
its carbon source, so avoiding competition. However, it is unable to 

withstand severe competition for light, particularly by epiphytes. Such 
a cause of species decline has been suggested as a general feature



Figure 5.1,
A map of Fife and Angus in Eastern Scotland showing past 

(open symbols) and present (closed symbols) of LobeZta dortmanna 

(•), Isoetes Zaoustrts (4 )̂ , and SuhuZaria aquat-ica (■) , and 

sites of LlttoreZZa untfZora in Fife (A),
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associated with eutrophication for many species (Phillips et al., 1978),

In following the type of analysis of Verhoeven et al. (1982), the 
distribution of L, dortmanna can be considered with reference to precise 
environmental parameters. Figure 5.2 shows the range of L, dortmanna,
L, untflora. I, laoustr-is and S, aquatica with reference to water 

alkalinity and water inorganic phosphorus level. This Figure is based 
on data from Spence and Allen, 1979; Spence et al,, 1979; Spence et al,,
1984 and Campbell, 1971, covering over seventy lochs and lochans.
This reveals that L, untflora is much broader in its range than other 

isoetids. It is particularly tolerant of mesotrophic lochs and lochs 
of high alkalinity. L, dortmanna is rarely found in mesotrophic lochs 
for reasons described above. However, it is also excluded from marl 
lochs, unlike L. untflora. Neither plant uses bicarbonate as a carbon 

source (Spence and Maberly, 1985), In these lochs the leaves of 

L, untflora become covered in a marl covering and it is possible that 
L» dortmanna may not be able to survive the light reduction caused by 
such a covering. It certainly can survive in lochs with a bœghrer 

alkalinity, but with reduced marling, e.g. the Machair lochs of the 
Western Isles (Spence et al., 1979),

These definitions of growth strategy can, therefore, be used in 
helping to explain the observed zonation of L, dortmanna. Chapter 3 
showed that the vertical zonation of the species cannot be explained by 

postulating a light requirement for germination that is only met in shallow 
water. The seeds can germinate well below the lower limits observed for 

L, dortmanna growth, but subsequent growth of the seedlings is impeded.
This zonation is, therefore, attributable to the inability of the species 

to tolerate the stress of light reduction. It has been shown that this 
may be due to its limited ability to alter its photosynthetic apparatus 

to cope with shading.

. J #



Figure 5,2.
The "ecological amplitudes" of four isoetids after Verhoeven 

et al. (1982), The Figure shows the ranges of the species with 

respect to water alkalinity and water soluble inorganic phosphate 

for about seventy Scottish lochs. The species are: L'tttore'ita

untftora (L,u,), Ldbel'ia doTtmanna (L.d. ), Isoetes lacustrts 
(1 ,1 ,), and Svhularta aquati-ca (s,a,).
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It is, therefore, possible to hypothesise that variations in the 

light attenuation of any lake would determine the lower depth limit of 
L. dortmanna. This can be tested by considering the data of Eloranta 
and Marja-aho (1982), They took transects around a large, oligotrophic 
Finnish lake. Many of these transects contained L, dortmanna. They 
also recorded the Secchi depth for these sites, which are a measure 

of water dlarity. Analysis of their data is presented in Figure 5,3,

It can be seen that increasing water clarity, i.e, decreasing light 
attenuation, allows deeper penetration of L. dortmanna. As a comparison 
the same analysis has been undertaken for I. laoustr-is. This shows a 
similar trend, though in all cases at greater depths. Chambers and Kalff 

(1985) have found a strong correlation between Secchi depth and - 
the maximum depth of macrophyte colonisation. This analysis shows that 

the relationship holds for individual species as well as macrophyte 
populations as a whole. It also confirms the proposition of light 

quantity controlling the limits of vertical zonation in L. dortmanna.

It also seems that light is important in controlling horizontal

zonation, L. dortmanna is limited in its occurrence in dense vegetation, 
particularly being affected by epiphytes. This is attributable to 
light reduction rather than any other competitive effects (see above),

The only other factor of importance noted to control horizontal zonation
is water turbulence, as L. dortmanna is not found in areas of extreme
exposure.

Light is, therefore, seen to be of overriding importance in 
controlling the zonation, both vertical and horizontal, of L, dortmanna. 

This is seen to be due to action via a reduction in photosynthetic 
production rather than any other photomorphogenic effect.

i

: ■■ r '' •. ' 1̂. ii i . i».;-.-I-, ir.



Figure 5,3,

The relatiogship between secchi depth and the maximum depth 

of colonisation for Lohetta dortmanna (A) and Isoetes taoustrts (B), 
Each point is a mean of four colonisation records for each secchi 
depth (eight for the second point in each graph) ± S.E. Data fltr« 
drawn from Eloranta and Marja-aho (1982),
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