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Summary22

1. Modelling spatio-temporal changes in species abundance and attributing those23

changes to potential drivers such as climate, is an important but difficult problem. The24

standard approach for incorporating climatic variables into such models is to include each25

weather variable as a single covariate whose effect is expressed through a low-order26

polynomial or smoother in an additive model. This, however, confounds the spatial and27

temporal effects of the covariates.28

2. We developed a novel approach to distinguish between three types of change in any29

particular weather covariate. We decomposed the weather covariate into three new covariates30

by separating out temporal variation in weather (averaging over space), spatial variation in31

weather (averaging over years) and a space-time anomaly term (residual variation). These32

three covariates were each fitted separately in the models. We illustrate the approach using33

generalized additive models applied to count data for a selection of species from the UK’s34

Breeding Bird Survey, 1994-2013. The weather covariates considered were the mean35

temperatures during the preceding winter and temperatures and rainfall during the preceding36

breeding season. We compare models that include these covariates directly with models37

including decomposed components of the same covariates, considering both linear and38

smooth relationships.39

3. The lowest QAIC values were always associated with a decomposed weather40

covariate model. Different relationships between counts and the three new covariates41

provided strong evidence that the effects of changes in covariate values depended on whether42

changes took place in space, in time, or in the space-time anomaly. These results promote43

caution in predicting species distribution and abundance in future climate, based on44

relationships that are largely determined by environmental variation over space.45
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4. Our methods estimate the effect of temporal changes in weather, whilst accounting for46

spatial effects of long-term climate, improving inference on overall and/or localised effects of47

climate change. With increasing availability of large-scale data sets, need is growing for48

appropriate analytical tools. The proposed decomposition of the weather variables represents49

an important advance by eliminating the confounding issue often inherent in large-scale data50

sets.51

52

Key words: climate change; decomposition of spatial, temporal and anomaly effects;53

generalized additive models; generalized linear models; spatio-temporal modelling; species54

abundance; UKCP09 climate projections.55

56

1. Introduction57

It has been demonstrated for a wide range of taxa that climate change has an effect on58

abundance and distribution of individual species as well as community measures of59

biodiversity (e.g. Talley, Coley & Kursar 2002; Schummer et al. 2010; WallisDeVries,60

Baxter & Van Vliet 2011). In order to detect or predict the impacts of climate change on61

biodiversity, many studies either analyse spatial variation in species’ abundance or62

occurrence as a function of spatial variation in climate (e.g. Beale et al. 2013, Renwick et al.63

2012, Johnston et al. 2013), or temporal variation in abundance in relation to temporal64

changes in weather variables (e.g. Davey et al. 2012, Devictor et al. 2012, Pearce-Higgins et65

al. 2015). However, the potential to improve inference from combined spatio-temporal66

variation in both biological and climate/weather variables has rarely been considered. The67

standard approach currently available for this is to include either a single covariate in a68

generalized linear model, or a single smoothing term in a generalized additive model (GAM)69

(e.g. Araújo et al. 2005). However, this approach confounds the spatial and temporal effects70
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of the covariates. This confounding means, e.g., that a change in temperature in one location71

from 12°C to 13°C would have the same effect as the difference between two locations at one72

point in time: one location at 12°C and one at 13°C.73

We developed a method with more flexibility in attributing patterns in abundance74

which disentangles the temporal and spatial effects of the weather covariates via75

decomposition into three components. The temporal term is the average of observed covariate76

values over space for a given time; the spatial term is the average over time for a given77

location; the space-time anomaly term is the residual variation for a given location and time.78

When using these decomposed covariates, a difference in the original covariate can be79

associated with the temporal, spatial or residual variation component or a combination of the80

components. This method allows the fitted models to differentiate between spatial, temporal81

and spatio-temporal variation in the original weather covariate on abundance, thus alleviating82

the confounding issue.83

To investigate changes in species abundances over space and time, data are required84

from well-designed long-term surveys such as the UK Breeding Bird Survey (BBS). The UK85

BBS is a large-scale biodiversity monitoring programme with a protocol that allows spatio-86

temporal correlation in animal abundances and differences in detectability to be accounted87

for (Yoccoz, Nichols & Boulinier 2001; Risely et al. 2013), both of which can cause serious88

biases in analyses of biodiversity or abundance trends (Buckland et al. 2012). To89

accommodate imperfect detectability in observed counts, sites are surveyed using line-90

transect methods, an example of distance sampling (Buckland et al. 2001). We accounted for91

spatial and temporal autocorrelation in the observed counts using modelling techniques for92

abundance estimation that smooth across space and time (Harrison et al. 2014). Besides93

climate, the spatial distribution and abundance of bird species are affected by other factors94

defining habitat suitability (Gregory & Baillie 1998); hence, we also included land class and95



5

elevation as covariates. To illustrate our methods, we selected three weather covariates for96

our models based on Eglington & Pearce-Higgins (2012): the centred means of temperatures97

during the preceding winter and temperatures and rainfall in the preceding breeding season.98

We describe the decomposition of the weather covariates as well as the modelling99

approach for the BBS data (Section 2) and compare models that include these covariates100

directly with models including decomposed components of the same covariates. We consider101

linear (Section 3.1) and smooth terms (flexible, nonlinear model components, Sections 3.2,102

3.4) for these covariates to assess the need for fitting smooth terms for weather covariates103

rather than linear terms. We further investigate the necessity of a space-time smooth in the104

model after fitting the weather covariates as smooth effects (Section 3.3). The best model is105

used to predict abundances for each species (Section 3.5). Lastly, we discuss the benefits of106

our approach for biological interpretations of the models (Section 4).107

108

2. Methods109

2.1 DATA110

We begin by describing the data for the response variable of the models, the BBS bird counts,111

which determines the spatial and temporal resolution required for the weather data. We then112

describe our newly proposed method of decomposing the weather variables in Section 2.1.2.113

2.1.1 BBS data114

Sampling sites for the BBS are randomly selected 1km squares; the number of sites surveyed115

each year has increased since the survey began, from ~1500 in 1994 to 3350 in 2013. Sites116

were visited twice per year (April to early-May and late-May to June), during which117

volunteers walked two parallel 1km transect lines and assigned each detected bird to one of118

four categories (0-25m from the line, 25-100m, >100m, flying). We only considered data119

from the first two distance intervals for which detection probabilities were adequate (>0.1)120
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for model fitting and estimating average detection probabilities (the proportion of birds121

detected within the surveyed area, Buckland et al. 2001). We minimised the possibility of122

including juvenile birds by using data only from the early visit for most species, and the later123

visit for late breeding birds such as summer migrants (Table 1).124

We analysed the BBS data collected in 1994-2013, excluding 2001 when an outbreak125

of foot-and-mouth disease restricted access to many areas (Risely et al. 2013), and present126

results for five species of birds that are likely to show a range of sensitivities to changes in127

climate, namely goldcrest (Regulus regulus), song thrush (Turdus philomelos), linnet128

(Carduelis cannabina), cuckoo (Cuculus canorus) and willow warbler (Phylloscopus129

trochilus). This choice of species included residents whose populations may have increased130

in response to recent warming (goldcrest, song thrush and linnet, Pearce-Higgins et al. 2015),131

and declining long-distance migrants whose populations may be affected by conditions in the132

UK, during migration or in Africa (cuckoo and willow warbler, Ockendon, Johnston &133

Baillie 2014).134

A complication for spatial modelling is that some species are rare or absent in parts of135

Britain; if we extrapolated our predictions for such species to those areas, the predictions136

might be unstable and not meaningful. Therefore, we created a grid of 100km squares137

throughout Britain and restricted our modelling for each species to those 100km squares for138

which there were a total of over three positive observations of the species during the years of139

the study (Harrison et al. 2014; “propM” from Table 1 gives the proportion of Britain140

included in the models by species).141

142

2.1.2 Weather data and decomposition method143

For the weather data 1993-2013 we used UKCP09 5x5km gridded observation data compiled144

by the Met Office (www.metoffice.gov.uk). To model abundance in a given breeding season,145
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we included three weather variables for the preceding winter and preceding breeding season.146

To reduce correlations between parameter estimates we used their centred values which for a147

given location and time point is equal to the original value minus the mean over all locations148

across Britain and time points for the respective covariate. We indexed the values according149

to the year of the corresponding response variable:150

� � , � = centred monthly means of the daily minimum temperature during the preceding winter151

(Dec-Feb) in year � − 1 (Dec) and � (Jan-Feb) at location � ;152

� � , � = centred monthly means of the daily mean temperature during the preceding breeding153

season (April-July in year � − 1) at location � ;154

� � , � = centred square root of the monthly means of the total rainfall during the preceding155

breeding season (April-July in year � − 1) at location � . We use the square root to reduce the156

effect of very large rainfall values.157

We note that the 5km resolution weather variable values get applied to each 1km158

square within them. We refer to the centred weather covariates as W, B and P (short for159

winter, breeding and precipitation) for brevity and decompose each of them into three160

components: the average over space for a given time (year); the average over time for a given161

spatial location and; the residual variation term. For example, for winter minimum162

temperature we define the first component, the average over space for a given time (temporal163

component), as:164

� � � � � :	� ∙, � =
∑ � � , ��

�
165

where � is the number of 5km grids across Britain. The second component, the average over166

time for a given spatial location (spatial component) is given by:167

� � � � � � :	� � ,∙ =
∑ � � , ��

�
168
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where � gives the number of time points. Finally the third component, the residual variation169

term (or space-time anomaly), which can be thought of as the difference between the original170

value and what is expected given the overall yearly and overall spatial effect, is defined as:171

� � � � � � : � � , �
� = � � , � − � ∙,� − � � ,∙172

For any of the three centred covariates W, B and P, we distinguish between the three173

corresponding decomposed variables using the subscripts time, space or resid, e.g., where174

Wtime denotes the average over space for a given time for the preceding winter temperatures175

(W).176

Figures 1-3 graphically depict the decomposed variables for W, B and P, showing the177

patterns of variation between years averaging over space, between grid cells averaging over178

years, and the residual variation.179

180

2.1.3 Land class and elevation data181

In addition to terms describing the weather variables of interest, it is beneficial to include182

other terms in the model to remove some aspects of broad-scale variation related to other183

factors. Following Harrison et al. (2016), we include elevation and habitat information.184

Habitat information was obtained from the 2007 land cover map compiled by the Centre for185

Ecology and Hydrology (CEH). This gives the percentages of 10 aggregate land classes186

(broadleaf woodland, coniferous woodland, arable, improved grassland, semi-natural187

grassland, mountain/heath/bog, saltwater, freshwater, coastal and built-up areas/gardens) for188

all 1km squares across Britain(https://catalogue.ceh.ac.uk/documents/c3723adb-1a8c-4b57-189

958b-1d610d2c37fe, Morton et al. 2011).190

191

2.2 DATA ANALYSES192

2.2.1 Models for the relationships between weather and species abundance193



9

For each of the five species, we fitted GAMs assuming a quasi-Poisson distribution (Section194

2.2.2) with a log-link function to the count data from each recorded site and year. All models195

contained elevation and land class covariates, plus a selection amongst a space-time smoother196

and the weather covariates which were of particular interest. See below and Table 2 for197

model summaries and explanation of model terms.198

Overall, these models can be expressed as:199

E � � � , � , � � = exp � � � + � � , � � � � � � + ∑ � � , � � � � � , �
�
� � � + � � ( � � � � � , � � � � ℎ� , � ) +ℳ� , � , � � (1),200

where E � � � , � , � � gives the expected count for species � on 1km square � in year � ; � � � � the201

mean elevation; � � � � the percentage of each of the � 	(= 10) land classes; � � is a space-time202

smooth and ℳ� , � , � pertains to the weather covariates and varied between models. The location203

of squares was given by eastings ( � � � � ) and northings ( � � � � ℎ). GAMs were fitted using204

package mgcv (version 1.8-4, Wood 2006) in the statistical software R (R core development205

team 2011).206

For the space-time smooth, � � , we used a tensor product of a thin plate regression207

spline (TPRS) of � � � � and � � � � ℎ and a TPRS of � (Wood 2006, p. 225). Models thus208

incorporate interactions between space and time and the spatial component captures, along209

with any spatial autocorrelation, differences in the character of the land cover across Britain210

(Renwick et al. 2012). The amount of smoothing is described by the effective degrees of211

freedom (EDF). In accordance with our previous analysis of biodiversity trends in breeding212

birds (Harrison et al. 2014) we set an upper limit of five for the EDF of the temporal TPRS,213

with the actual value being determined by in-built cross-validation. By trial and error we214

found 25 to be a suitable upper limit for the EDF of the spatial TPRS. If, however, some of215

the 100km grids had been removed for the species (Section 2.1.1), the maximum EDF for the216

spatial TPRS was scaled according to the proportion of Britain remaining (“propM”, Table217

1). To minimise unwanted edge effects (unrealistic relationships for smooth terms in extreme218
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regions of the covariate) when modelling the cuckoo, for which 96% of counts were zero, we219

divided the upper limits of both EDFs by two.220

We used the model without any weather covariates, i.e. the term from eqn (1)221

pertaining to the weather covariates, ℳ� , � , � equals zero, as a baseline model mSTS. We222

investigated the effects of the weather variables firstly by considering them as linear223

covariates, with the further aim of disentangling their spatial, temporal and residual224

components. Building on mSTS, we fitted seven models with at least one linear effect of the225

weather covariates (Table 2A). In these models, ℳ� , � , � contained linear functions of either226

only a single centred weather covariate (i.e. not decomposed into three components), all three227

centred weather covariates or two centred and one decomposed weather covariate. We228

refrained from decomposing more than one weather covariate in a single model to avoid229

overfitting and complexity of model interpretation.230

As linear effects may not capture the relationship sufficiently, we replaced these with231

smooth functions of the centred and decomposed weather covariates to create seven further232

models, each corresponding to a smooth equivalent of one of the models with linear weather233

terms (Table 2B). Smooth functions allow capturing nonlinear relationships between counts234

and covariates (on the linear predictor scale) using the flexibility of splines.235

We investigated the consequences of removing the space-time smooth from the model236

because the need for this term may be reduced by including covariates that are varying in237

space and time and because the presence of this term may be influencing the estimated form238

of the weather variable effects. Here we used the seven models with the smooth functions for239

the weather covariates and fitted the corresponding models without the space-time smooth for240

comparison, i.e. omitting � � from the model (Table 2C). Model m_ corresponds to mSTS241

without the space-time smooth.242



11

For each species, the overall best model was used to predict abundances throughout243

Britain (excluding areas not part of the analysis for that species) using the 1km squares from244

Section 2.1.3. Here, we used the estimates of average detection probability for each species245

(Section 2.1.1) to scale up from predicted counts to predicted abundance within the 1km246

squares.247

248

2.2.2 Model comparisons249

In all the models we assumed a quasi-Poisson error structure for the � � , � , � (observed counts) to250

allow for over- or underdispersion. Overdispersion is a common feature when simple251

statistical models are fitted to count data due to heterogeneity that the models have failed to252

account for. Underdispersion can occur if birds are territorial and hence self-organising in a253

manner that can lead to less-than-random variation. In the standard Poisson model the254

residual variance equals the mean. For the quasi-Poisson model, we relax this constraint to255

proportionality, thus moving from “variance=mean” to “variance=θ×mean” in which the256

scale parameter θ determining the variance-mean relationship is estimated during the model257

fitting ( � � > 1 corresponding to overdispersion, � � < 1 to underdispersion) We used deviance258

residuals for estimating θ for more reliable variance estimation compared to the default259

Pearson residuals (Harrison et al. 2016). Standard errors for parameters of a quasi-Poisson260

model are adjusted by multiplying the standard errors of the equivalent Poisson model with261

� � � .262

We used QAIC values (Richards 2008) for model comparison. QAIC differs from263

AIC in that the log-likelihood component is divided by � � � which is the � � from the most264

complex of the candidate models. Three models were equally complex – those with the265

space-time smoother and three weather covariates of which one was decomposed. For a given266

species, we used the smallest � � from these three models as � � � for all models (which also267
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happened to be the smallest � � between all candidate models). For cuckoo where � � < 1 for all268

models, we set � � � = 1. We describe differences between QAIC values as δ-QAIC, which 269

represent differences from the model with the smallest QAIC value for each species.270

271

3. Results272

In the following, we compare the linear and smooth functions of the weather variables from273

the different models by illustrating the coefficients and smooth functions for the respective274

covariate. Model definitions and δ-QAIC values are given in Table 2. 275

276

3.1 Including weather covariates as linear effects in the models277

For all species except cuckoo, the best of the models with linear covariates used a278

decomposed covariate, W for goldcrest, song thrush, linnet; P for willow warbler.279

Inspection of the regression coefficients (Figure 4) showed that those for the three280

decomposed covariates corresponding to a single weather variable can be of very different281

magnitude and, most notably for goldcrest mSTS_lWPBd, of different signs. Where one of the282

decomposed covariate values differed substantially from the others, it was always the spatial283

decomposition that stood apart from the temporal and anomaly coefficients.284

285

3.2 Replacing linear terms with smooth effects286

Using smooth instead of linear effects generally led to moderate or substantial improvement287

of model fit (compare e.g. Table 2B row mSTS_sW vs the corresponding entry in Table 2A288

rows mSTS_lW or 2B row mSTS_sWBPd vs 2A row mSTS_lWBPd).289

The smoothers associated with each model for each species are shown in Appendix 1; we290

show a selection of smoothers in Figure 5. For these models with the space-time smoother,291

the influence of any weather variable on any given bird species depended very little on292
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whether the other weather covariates were included in the model or not (e.g. for goldcrest,293

compare the W smoothers for models mSTS_sW and mSTS_sWBP. Furthermore, when any294

one weather variable was decomposed, the estimated effects of the other weather variables295

changed little (e.g. for goldcrest, compare the smoothers for W between the models296

mSTS_sWBP, mSTS_sWBPd and mSTS_sWPBd).297

298

3.3 Dropping the space-time smoother299

Dropping the space-time smooth, either from the models without any weather covariates, or300

the models with smooth weather covariates, led to enormous increases in QAIC (Table 2, m_301

vs mSTS and Table 2C vs the corresponding elements of Table 2B). However, whether the302

space-time smoother was included in the model had little effect on conclusions regarding303

weather covariates apart from a few instances (e.g. willow warbler, B).304

305

3.4 Descriptions of best models, all containing decomposed smoothed terms306

For goldcrest, the best model mSTS_sBPWd suggests abundance was higher in colder307

locations (Wspace) and in warmer winters (Wtime) and when and where there were positive308

anomalies (Wresid) (Figure 5). All three of these smoothers differed markedly in shape from309

the single smoother for W prior to decomposition in model mSTS_sWBP, demonstrating the310

decomposition is able to describe different functional responses when separated.311

For song thrush, the best model mSTS_sWPBd suggests little effect on abundances of312

temperature in the preceding breeding season (Btime) or the anomalies (Bresid) (Figure 5). The313

smoother for Bspace (the spatial covariate) is similar in shape to the smoother for B prior to314

decomposition, but with a more marked effect.315

For linnet, the best model mSTS_sBPWd indicates little effects of Wtime or Wresid but316

lower abundances in locations with cold winters (Wspace) (Figure 5). Thus the mostly positive317
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relationship of the single covariate W is almost entirely due to spatial variation in mean318

winter temperatures (as opposed to variation over time or the anomaly).319

For cuckoo the best model mSTS_sWBPd indicates higher abundance in locations320

which generally have drier breeding seasons (Pspace) and less residual variation in321

precipitation (Presid) while the temporal covariate (Ptime) showed little effect (Figure 5). This322

pattern was only evident when decomposing covariate P.323

For willow warbler, the best model mSTS_sWPBd revealed higher abundances for324

locations with moderate breeding season temperatures (Bspace) and negligible effects of the325

temporal and anomaly components (Btime and Bresid) (Figure 5). The pattern from the326

undecomposed B was similar to the spatial effect and therefore largely represents the spatial327

component of breeding season temperature.328

329

3.4 Abundance predictions330

We used the best model for each species to construct maps of predicted abundances331

throughout Britain for each year 1994-2013 (Appendix 2 shows all years); we present four332

selected years, roughly equally separated: 1994, 2000, 2006 and 2013 (Figure 6). For each333

species, the best model contained a decomposed weather covariate for which the spatial334

component showed the strongest pattern (Figure 5). The relationship between abundance and335

elevation was negative for all species, whereas the relationships between numbers and the ten336

land classes varied between species.337

338

4. Discussion339

There is an increasing recognition of the potential to analyse long-term biodiversity340

monitoring data sets to document the impacts of long-term environmental changes upon341

species’ distributions, abundances and communities. Interest in the consequences of climate342
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change has resulted in a significant increase in the number and types of these studies. These343

often either collate data from multiple locations to identify temporal trends and analyse those344

in relation to climate change (e.g. Davey et al. 2012, Devictor et al. 2012, Pearce-Higgins et345

al. 2015), or model spatial variation in abundance or occurrence as a function of climate to346

describe changes in distribution (e.g. Beale et al. 2013, Renwick et al. 2012, Johnston et al.347

2013). Often sufficient resolution in time and space is not available in a dataset, so spatial348

variation is used implicitly or explicitly as a proxy for temporal variation (e.g. Chen et al.349

2011, Bellard et al. 2012 and Warren et al. 2013), where, e.g. the estimated species response350

between cold and warm locations is used to estimate the species response in cold locations351

that warm under climatic change. We proposed a novel way of including weather variables in352

spatio-temporal models of abundance that involves decomposing each weather variable into a353

spatial component, a temporal component and anomalies. Even after fitting a space-time354

smoother alongside land class and elevation covariates in our models, we found that for all355

five species the best models involved the decomposed covariates. This may have been due to356

the divergence of spatial and temporal responses to the covariates.357

Our methods enabled us to obtain improved understanding of how these effects of358

climate and weather combine to drive spatial and temporal variation in species abundance.359

Model results showed that the direction of relationships between a variable and abundance360

could vary depending on whether temporal or spatial variation was modelled separately361

(Plummer et al. 2015). It also provided more detailed information about how annual362

fluctuations in weather affected the spatial variation in population trends of five exemplar363

bird species in Britain, and therefore may be used to infer additional responses to climate364

change.365

Responses to increasing winter and breeding season temperature in Britain have366

generally been found to be positive, at least amongst resident species (Greenwood & Baillie367
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1991, Pearce-Higgins et al. 2015). These may be operating over multiple time-frames: from368

immediate responses to direct extreme events, impacts of prey availability operating over369

timescales of weeks to years, to long-term impacts of habitat change. Spatial variation in370

climate may affect the long-term equilibrium of species abundances by impacting the average371

habitat, food resources and indirectly the biotic competition. Temporal variation in weather372

may be more likely to have immediate effects, such as changing survival or productivity,373

through physiology, food availability, or breeding conditions (e.g. Robinson, Baillie & Crick374

2007, Pearce-Higgins et al. 2015). Our proposed methods have the potential to assist in375

disentangling these multiple processes in a single analysis, as illustrated by our responses for376

five exemplar bird species, which we consider here in two groups.377

Populations of the resident species, goldcrest, linnet and song thrush, would generally378

be expected to have increased during our study period due to warmer temperatures leading to379

increases in overwinter survival and reproductive success (Eglington & Pearce-Higgins 2012,380

Pearce-Higgins et al. 2015). As expected, positive effects of preceding winter temperature381

(W) were generally apparent for goldcrest and linnet across most of the linear models (Figure382

4). However, in mSTS_lBPWd goldcrest and song thrush both showed large negative effects383

of Wspace, highlighting the potential divergence of spatial and temporal responses to384

temperature. Linnet showed a large positive effect of Wspace suggesting lower abundance in385

locations with colder average winters (Swann et al. 2014).386

For the migratory species considered, cuckoo and willow warbler, models predicted387

strong population declines in the south and increases in the north (Figure 6) which concur388

with previous studies (Ockendon et al. 2012; Morrison et al. 2013). Variation in these389

populations may be partly influenced by conditions on migration (Hewson et al. 2016) or on390

their African wintering grounds (Johnston et al. 2016). However, we found strong spatial391

trends in abundance which suggests there was likely also a strong impact of breeding season392
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environmental variables for these species, including summer temperature, which is393

quadratically associated with spatial variation in willow warbler productivity (Eglington et al.394

2015), and rainfall. Positive effects of temporal variation in breeding season temperature Btime395

and negative effects of spatial variation Bspace – as shown for willow warbler – add weight to396

previous suggestions for poleward shift in distribution and negative impacts of warming on397

the breeding grounds in the south. This may be affecting at least some long-distance migrant398

species, potentially through more lagged effects (e.g. Pearce-Higgins et al. 2015).399

Overall, the spatial terms indicated larger effects than the temporal and residual terms400

in the models for most species and effects. If this was due to the generally wider range of401

values for the spatial term compared to the corresponding temporal or residual terms (see x-402

axes in Fig. 5), we would expect the pattern of, e.g., the smooth for the temporal component403

to resemble the smooth for the spatial component for the equivalent range of values. This was404

not generally the case (see Appendix 1, Figure A1.2). Given that spatial variation in405

environmental variables are here found to be most important, this may suggest limited406

evidence for local adaptation in these populations and environmental covariates. It does407

suggest that spatial variation in environment cannot be reliably used as a proxy for temporal408

variation in environment. This finding promotes further caution in predicting species409

distribution and abundance in future climate, based on relationships that are largely410

determined by environmental variation over space. In some cases the direction or shape of411

effect differed across the decomposed variables, suggesting that different ecological412

processes govern spatial and temporal patterns in abundance.413

The potential user of our methods should consider if the quasi-Poisson is the414

appropriate error structure for fitting models to their data. Alternatives are the Poisson (if data415

are not over/underdispersed) or the negative binomial. The advantage of the Poisson or416

negative binomial over the quasi-Poisson is that they are standard distributions and allow417
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using, e.g., AIC for model selection. For the BBS data, we chose quasi-Poisson as it418

accommodates overdispersion and, in contrast to the negative binomial, the underdispersion419

encountered for cuckoo (and several other species in the BBS data not presented here). It also420

provided a better fit to the data compared to the negative binomial (as evidenced by smaller421

mean-squared errors and lower cross-validation scores; Appendix 3).422

A remaining potential issue for fitting complex models like ours is overfitting, i.e. that423

unnecessarily complex models might appear to be preferred over simpler models regardless424

of whether the additional level of complexity reflects the underlying truth. Where this issue425

appears to be a substantive concern, it should be addressed in the usual way via testing426

existing model selection tools in simulation studies and, where necessary, trialling potential427

new model selection tools.428

Given the multi-dimensional nature of climate change, developing tools for429

incorporating multiple climatic factors will ultimately be required to more fully model the430

overall impact of climate change on species’ populations. The general increase in well-431

designed species recording schemes will provide a greater range of response variables; the432

expansion of land-based and aerial earth observation has potential to provide covariate data433

with fine temporal and spatial resolution. Hence, it is reasonable to expect these methods to434

become increasingly applicable in future. Our methods can be extended in many ways, e.g.435

by introducing some spatial averaging into the covariates since it is unlikely that only the436

values at a location affect the species there. Hence, whilst the methods introduced in this437

paper are a substantial advance, there is further development to be undertaken to extract438

further information from spatio-temporal species-environment data sets.439

440
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Table 1. For the analysed species, “L” indicates species for which late visit records were559

used; “propM” gives the proportion of Britain included in the models; “prop0” gives the560

proportion of zero counts in the data; “p.hat” gives the estimated detection probabilities and561

� � � � and � � � give the estimated quasi-Poisson dispersion parameters for the baseline model562

(mSTS, Table 2) and the most complex model used for calculating QAIC, respectively.563

ID species name visit propM prop0 p.hat � � � � � � �

1 goldcrest 0.99 0.80 0.27 1.45 1.43

2 song thrush 0.99 0.48 0.50 2.01 1.99

3 linnet 0.97 0.73 0.31 3.58 3.54

4 cuckoo L 0.94 0.96 0.76 0.31 1.00

5 willow warbler L 1.00 0.67 0.44 2.48 2.46

564
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Table 2. Summaries and δ-QAIC values of the models fitted to the counts of five species of breeding birds. Models are compared in three 565

sections given in bold. Models beginning with ‘mSTS’ contain the space-time smooth, models beginning with ‘m_’ do not; ‘l’ refers to linear566

effects of the weather covariates, e.g. ‘lWBPd’ contains the linear effects of W and B and of the decomposed covariate P, i.e. Ptime, Pspace, Presid;567

‘l’ is replaced with ‘s’ for models containing smooth functions of the weather covariates. All models contain the land class and elevation568

covariates from eqn (1) (Section 2.2.1). The δ-QAIC values were obtained by subtracting the minimum QAIC value across all models for a 569

species from each model’s QAIC value. Smallest δ-QAIC for each section are in bold font. 570

571
572

Model Weather covariates Space-time
smooth

Goldcrest Song
thrush

Linnet Cuckoo Willow
warbler

Baseline model

mSTS none Yes 652 304 529 44 409

A: Weather included as linear covariates

mSTS_lW linear W Yes 642 300 491 44 394

mSTS_lB linear B Yes 645 298 395 45 411

mSTS_lP linear P Yes 653 295 437 36 411

mSTS_lWBP linear W, B, P Yes 608 293 364 38 388

mSTS_lWBPd linear W, B, Pspace, Ptime, Presid Yes 574 290 336 41 363

mSTS_lWPBd linear W, P, Bspace, Btime, Bresid Yes 403 264 320 41 384

mSTS_lwBPWd linear B, P, Wspace, Wtime, Wresid Yes 206 224 199 39 374

B: Weather included as smooth effects

mSTS_sW smooth of W Yes 621 248 467 42 374

mSTS_sB smooth of B Yes 626 182 361 41 214

mSTS_sP smooth of P Yes 652 293 412 32 357

mSTS_sWBP smooths of W, B, P Yes 569 160 299 30 174
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mSTS_sWBPd smooths of W, B, Pspace, Ptime, Presid Yes 429 118 119 0 45

mSTS_sWPBd smooths of W, P, Bspace, Btime, Bresid Yes 218 0 110 22 0

mSTS_sBPWd smooths of B, P, Wspace, Wtime, Wresid Yes 0 28 0 30 49

C: Models without the space-time smooth

m_ none No 3621 2189 2583 672 8763

m_sW smooth of W No 3448 2116 2502 650 8456

m_sB smooth of B No 3603 1924 2322 596 4681

m_sP smooth of P No 3592 2139 2433 546 8013

m_sWBP smooths of W, B, P No 3405 1795 2094 496 4375

m_sWBPd smooths of W, B, Pspace, Ptime, Presid No 3095 1622 1871 339 3526

m_sWPBd smooths of W, P, Bspace, Btime, Bresid No 3170 1656 1859 311 3330

m_sBPWd smooths of B, P, Wspace, Wtime, Wresid No 2974 1742 1825 441 4135

573
574
575

576
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Figure 1. Weather variable W (centred monthly means of the daily minimum temperature577

during the preceding winter) decomposed into the temporal (top left), spatial (right) and578

residual variation components (bottom left panel). What is shown e.g. for 1994 entails the579

temperatures from December 1993 and January-February 1994.580

581

Figure 2. Weather variable B (centred monthly means of the daily mean temperature during582

the preceding breeding season) decomposed into the temporal (top left), spatial (right) and583

residual variation components (bottom left panel). What is shown e.g. for 1994 entails the584

temperatures April-July in 1993.585

586

Figure 3. Weather variable P (centred square root of the monthly means of the total rainfall587

during the preceding breeding season) decomposed into the temporal (top left), spatial (right)588

and residual variation components (bottom left panel). What is shown e.g. for 1994 entails589

the rainfall from April-July in 1993.590

591

Figure 4. Regression coefficients (and 95% confidence intervals) corresponding to linear592

effects of the weather covariates after standardisation (multiplying with the standard593

deviation of the covariate), presented as one panel for each species, with model names594

defined in Table 2. Dotted lines separate different models, dots give the estimates and595

horizontal lines represent the uncertainty of the estimates (the endpoints being the596

estimate±(SEx1.96)). Coefficients for W or its decomposed version (time top, space middle597

and anomaly bottom) are represented in green, for B in blue and for P in red. In the figure,598

estimates and interval endpoints are multiplied by the standard deviation of the respective599

covariate to allow the relative effects of the covariates to be assessed.600
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Figure 5. Comparison of smooths between centred and decomposed weather variables. For601

each species, the smooths for the decomposed covariates from the best fitting model are602

compared with the smooth of the corresponding centred covariate from model mSTS_sWBP.603

604

Figure 6. Log-abundance estimates for the five bird species predicted for four selected years605

using the best fitting model. Predictions were made only for areas included in the analysis606

(see Section 2.1.1 and Table 1).607

608
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609

Figure 1. Weather variable W (centred monthly means of the daily minimum temperature610

during the preceding winter) decomposed into the temporal (top left), spatial (right) and611

residual variation components (bottom left panel). What is shown e.g. for 1994 entails the612

temperatures from December 1993 and January-February 1994.613

614

615
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616

Figure 2. Weather variable B (centred monthly means of the daily mean temperature during617

the preceding breeding season) decomposed into the temporal (top left), spatial (right) and618

residual variation components (bottom left panel). What is shown e.g. for 1994 entails the619

temperatures April-July in 1993.620

621

622
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623

Figure 3. Weather variable P (centred square root of the monthly means of the total rainfall624

during the preceding breeding season) decomposed into the temporal (top left), spatial (right)625

and residual variation components (bottom left panel). What is shown e.g. for 1994 entails626

the rainfall from April-July in 1993.627

628

629
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630

Figure 4. Regression coefficients (and 95% confidence intervals) corresponding to linear631

effects of the weather covariates after standardisation (multiplying with the standard632

deviation of the covariate), presented as one panel for each species, with model names633

defined in Table 2. Dotted lines separate different models, dots give the estimates and634
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horizontal lines represent the uncertainty of the estimates (the endpoints being the635

estimate±(SEx1.96)). Coefficients for W or its decomposed version (time top, space middle636

and anomaly bottom) are represented in green, for B in blue and for P in red. In the figure,637

estimates and interval endpoints are multiplied by the standard deviation of the respective638

covariate to allow the relative effects of the covariates to be assessed.639

640
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641

Figure 5. Comparison of smooths between centred and decomposed weather variables. For642

each species, the smooths for the decomposed covariates from the best fitting model are643

compared with the smooth of the corresponding centred covariate from model mSTS_sWBP.644

645

646

647
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Figure 6. Log-abundance estimates for the five bird species predicted for four selected years649

using the best fitting model. Predictions were made only for areas included in the analysis650

(see Section 2.1.1 and Table 1).651
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