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Abstract

This study contributes to the existing literature on tourism market segmenta-

tion by providing a new matching-clustering procedure that allows patterns of

behaviours to be identified using repeated cross-sectional surveys. By extract-

ing equivalent samples over time, the matching method allows inter-temporal

cluster analyses to be performed so that a deeper insight into a phenomenon

can be obtained beyond the traditional aggregate level of understanding. The

paper provides a step-by-step description of the matching-clustering procedure

that can be easily replicated, both within and outside the tourism field, when

repeated cross-sectional data are available. From a practical and managerial

perspective, the proposed procedure helps destination managers and municipal-

ities to describe and verify the efficacy of policy and strategies adopted over

years without the necessity to rely on longitudinal surveys, which are often

difficult to conduct.
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1. Introduction

In the recent tourism literature, the necessity to perform accurate analyses

to obtain information on temporal, spatial or cultural changes regarding a par-

ticular phenomenon has been highlighted (Cang et al., 2017; Amaro et al., 2016;

Song et al., 2012, 2011), especially in consideration of the increased multicultur-5

alism that characterises the worldwide tourism markets (Jin et al., 2017). In this

paper, a new matching-clustering procedure is suggested to obtain information

on the evolution of tourists’ behaviour when repeated cross-sectional data are

available. The increasing availability of large repeated cross-sectional and longi-

tudinal surveys, at both national and international levels, has given researchers10

the possibility to study how different tourism-related phenomena evolve either

within or between countries. While in longitudinal surveys the same sample of

units (individuals, households, firms, cities, etc.) is tracked over time, in the

repeated cross-sectional surveys different units are involved each time. There-

fore, longitudinal surveys are designed to track individual behaviour gathering15

information on the evolution of a phenomenon while repeated cross-sectional

surveys allows comparing years by using aggregate data (Wooldridge, 2012).

When repeated cross-sectional surveys are used to obtain temporal comparisons

at an individual level the results can be biased producing wrong policy and

managerial conclusions. On the other hand, repeated cross-sectional surveys20

are frequently designed to capture feelings, emotions, motivation, and tourism

behaviour (see for instance the Eurobarometer survey on “Preferences of Eu-

ropeans towards tourism” or the World Tourism Barometer collected by the

UNWTO), making it a necessity to develop an adequate procedure to compare

this kind of individual information over time.25

The idea behind the matching-clustering procedure suggested in this paper

is that more detailed information on the evolution of a particular phenomenon

can be gathered at cluster-level when units, observed by repeated cross-sectional

surveys, are comparable across time. Figure 1 schematically describes the sug-

gested 7-steps procedure and the “What-How-Why” questions (i.e. the aims,30
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the methods, and the reasons) behind the adoption of each particular step and

technique. The first and the last steps, i.e. the “Matching” and the “Compar-

ing partitions”, are the main innovations of this study. In fact, these two steps

are not usually included in any traditional cluster analysis since they serve the

particular aim of performing and describing comparisons when the same set of35

segmentation variables is collected on different samples of units.

The core five steps, going from the “Data recoding” to the “Labelling & pro-

filing” phase, are the ones that generally characterise any clustering analysis

(Everitt et al., 2011). Consequently, the aims (“What”) of these five steps are

commonly known in the literature of market segmentation. However, the tech-40

niques (“How”) that can be adopted to accomplish each of these steps are not

unique since the choice depends on both data and research aim (“Why”).

[Insert Figure 1.]

The matching-clustering procedure illustrated in this paper combines (1)

the matching method with (2) fuzzy numbers and (3) fuzzy clustering algo-45

rithm to overcome three problems, respectively: (1) the comparison between

cross-sectional samples, (2) the imprecision embedded in ordinal data, and (3)

the uncertainty in the assignment of each unit to clusters. Therefore, this pa-

per specifically focuses on the situation in which (1) repeated cross-sectional

surveys are available, (2) segmentation variables are measured by means of or-50

dinal scale, such as Likert-type scale, and (3) the hidden market structure is

unclear, making it unreasonable to assign each unit solely to one cluster. Read-

ers should note that the focus of this paper is on the procedure itself, not on

the techniques (“How”) suggested. In fact, each technique can be replaced by

any other suitable technique better able to address the “What” questions ac-55

cording to either the research aims or the nature of the segmentation variables;

however, the matching-clustering procedure should remain the same if repeated

cross-sectional surveys are used.

The next section provides a review of the relevant literature describing these

three problems while the third section provides a more technical discussion of60
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each step of the suggested procedure. The fourth section describes the empirical

data used to illustrate the matching-clustering procedure, while the findings are

discussed in the fifth section. The final section provides conclusions, highlighting

both limitations and further directions.

2. Literature review65

2.1. Statistical matching

In order to carry out meaningful temporal comparisons, it is necessary to

perform quantitative analyses on harmonised samples, i.e. samples made up

from the same group of units (individuals, households, companies, cities, etc.)

observed over time, or paired samples, i.e. samples of units that are similar70

according to a set of controlling factors defined a priori. Harmonised samples

result from either longitudinal or panel surveys. Even if the same group of units

is studied across time, researchers have to interpret carefully changes observed at

the micro-level (Brandt, 2018). In fact, results can be compromised, for instance,

by a socio-demographic or economic change: an individual could change civil75

status, becoming separated or getting married, or employment status, becoming

employee or retired; household composition can change on the arrival of new

babies or the death of a family member; a company can become bigger changing

its legal status. The main clustering approaches suggested in the literature to

aggregate units characterised by similar behaviour across time are the (1) model-80

(2) feature- and (3) observation-based approaches (for more details, see Disegna

et al., 2017; Caiado et al., 2015)

When repeated cross-sectional surveys are used to see how a key relation-

ship has changed over time, a common procedure is to create a pooled dataset

aggregating cross-sectional data from different years. Although extensive econo-85

metric techniques have been developed for the analysis of pooled cross sectional

data (Wooldridge, 2012), in tourism market segmentation the cluster analysis is

usually performed on the pooled dataset losing the information on the evolution

of the phenomenon (see for instance Ferrer-Rosell & Coenders, 2018). Another
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common approach adopted in tourism literature, is to compare directly clusters90

over time, even if samples made by different units are used (see for instance

Cang et al., 2017). However, as stated at the beginning of this section, compari-

son should be made on either harmonised or paired samples. In fact, comparing

clusters that have been obtained on different samples can lead to misleading and

imprecise conclusions, since it is impossible to know whether the changes finally95

observed in the phenomenon are due to actual changes in the phenomenon or if

they are due to structural differences in the samples.

In this study the adoption of a statistical matching procedure is suggested to

overcome this limitation and identify paired samples in repeated cross-sectional

surveys. As discussed in D’Orazio et al. (2006), statistical matching procedures100

aim to match two or more datasets in order to create a more informative inte-

grated dataset. Statistical matching procedures can be adopted when (1) a set

of variables is commonly observed, (2) different units, belonging to the same

population, are observed in different datasets and (3) any couple of datasets are

conditionally independent given a set of common variables used for the match-105

ing. Since datasets obtained through repeated cross-sectional surveys satisfy all

these conditions, it is reasonable to adopt a statistical matching procedure. In

this case, the final aim is not, as usual, the creation of an integrated dataset

but the identification of a perfectly matched pair of units belonging to different

datasets collected over years. When similar sub-samples are identified, a cluster110

analysis can be performed on each sub-sample and the results can be compared

based on the variables used in the matching procedure and any other variables

against which the sub-samples are statistically independent. In this way, the

comparison will highlight changes in the phenomenon under observation and

not changes in the samples used to obtain the clusters.115

2.2. Data recoding

Feelings, emotions, motivation, and consumer behaviour are complex psycho-

logical processes vaguely captured through quantitative imprecise measurements

(Hung & Yang, 2005; D’Urso, 2007). In both academia and industry, ordinal
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scales, such as Likert-type scales, are commonly used to capture human feel-120

ings since they are user-friendly, easy-to-develop and easy-to-administer (Coppi

et al., 2012; Benítez et al., 2007; Li et al., 2013). However, the drawbacks of this

kind of measurements are widely debated in the recent literature (Kampen &

Swyngedouw, 2000; D’Urso et al., 2016). In particular, it is important to under-

line that (1) subjective feelings and judgements, vague by definition, are cap-125

tured by means of linguistic expressions (Benítez et al., 2007; Coppi & D’Urso,

2002), that are (2) subjectively interpreted by respondents who attribute specific

meanings to each expression that depend on their personal background (Davidov

et al., 2014). Respondents are forced to convert their feelings and opinions into

specific linguistic expressions, usually coded into natural numbers, and these130

conversions can be inaccurate, causing loss of information (Benítez et al., 2007;

D’Urso, 2007). Furthermore, these values seem inadequate to collect subjective

evaluations since respondents might either attribute different meanings to the

numbers or have difficulties in understanding the differences in the categories

used in the Likert-type scale (see, for instance, D’Urso et al., 2013a; Benítez135

et al., 2007; Coppi & D’Urso, 2002). For instance, analysing European Social

Survey (ESS) data, Piurko et al. (2011) demonstrated that the 11-point Likert-

type scale (from 0 to 10) may be differently interpreted, assuming a variety of

meaning according to the different political orientation of the European coun-

tries (i.e. liberal, traditional and post-communist). Respondents “have been140

socialized in diverse economic and cultural backgrounds, speak different lan-

guages, and might understand certain ideas or concepts in varying ways or in

a culturally specific manner” (Davidov et al., 2014, p. 56) and “even if an item

is similarly understood, the scale measuring the item may be used differently

across populations”.145

Partially to overcome these drawbacks and to be able to more precisely cap-

ture human feelings/thinking, the simple visual analogue scale or the fuzzy rat-

ing scale should be adopted instead of the traditional Likert-type scales (Gil &

González-Rodríguez, 2012; De la Rosa de Sàa et al., 2015). The visual analogue

scale requires respondents to express their opinion indicating their positions150
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along a continuous line between two end-points. On the other hand, the fuzzy

rating scale is a modification of the traditional Likert-type scale that allows

respondents to indicate both a preferred point on a scale and latitudes of ac-

ceptance on either side. Nowadays, these methods have not been extensively

adopted in tourism and marketing research mainly because: (1) the mathemat-155

ical and statistical methods/tools necessary to analyse the responses are quite

complex; (2) adequate software is required to decode the visual analogue scale

and fuzzy rating scale answers collected; and (3) many academic researches are

based on secondary data in which the traditional ordinal scales are typically

used (Dolnicar, 2002; Grün & Dolnicar, 2016).160

When a priori correction mechanisms cannot be adopted, fuzzy sets the-

ory, firstly introduced by Zadeh (1965), can be a posteriori embraced to limit

the imprecision and vagueness inherent to both Likert-type variables and hu-

man thinking (Wang et al., 2014; Zhang & Lipkin, 2013; Pérez-Gladish et al.,

2010; Chang & Wang, 2006; Hung & Yang, 2005; Mikhailov, 2003). In par-165

ticular, Likert-type variables can be recoded into fuzzy variables, before any

further analysis, by associating a range of possible values to each individual

score/expression. As demonstrated by Hu et al. (2010), this kind of recoding

not only allows reduction of the imprecision entailed in ordinal scales, but it

also allows improvement of the results in terms of reliance and effectiveness of170

further analysis.

2.3. Selection of the clustering algorithm

Among a posteriori segmentation approaches, cluster analysis remains the

most popular method and the most frequently used in the literature (Dolnicar,

2002; Jain, 2010) even if it has been criticised for its overestimation of the valid-175

ity of the segmentation results (Dolnicar, 2002; Dolnicar & Lazarevski, 2009).

Clustering algorithms are unsupervised methods, aiming to assign objects in

clusters. There are different ways to fulfil this aim, but the most commonly

used assignments are known as hard (or crisp) and fuzzy. The hard clustering

algorithms are mainly used to classify objects into particular clusters while the180

7



fuzzy clustering algorithms aim to extract and describe the hidden relationships

amongst objects (Bai et al., 2014; Everitt et al., 2011). More specifically, hard

clustering algorithms group objects into a specific number of mutually exclusive

clusters, while fuzzy clustering algorithms (1) allow objects to belong simul-

taneously to several clusters, and (2) identify the strength of membership of185

each object to each cluster. As suggested by Steenkamp & Wedel (1991), and

confirmed more recently by Zhang & Lipkin (2013), fuzzy clustering methods

generally satisfy managerial needs of segmentation, providing a more realistic

multidimensional description of the market place in which consumers are not

forced to belong solely to one cluster.190

Especially when personal judgements are used for market segmentation, forc-

ing respondents to belong solely to one cluster (hard clustering) is not reasonable

since people would not normally have such polar attitudes to products, expe-

riences or destinations (Kotler, 1988; Chaturvedi et al., 1997; Chiang, 2011; Li

et al., 2013). Consumers whose profiles mainly match with one cluster do not195

necessarily have to be assigned 100% to that cluster (Chaturvedi et al., 1997).

Consumers who can be assigned to more than one cluster should not be solely

assigned to one of them in an arbitrary way (Li et al., 2013). When consumers

are arbitrarily allocated to one cluster only, the final market representation is

not realistic but merely a selected picture of the reality (Chiang, 2011). The200

fuzzy clustering approach returns instead a measure of the uncertainty, i.e., the

membership degree, that describes how close a unit is to each cluster. Therefore,

the final partial classification defined by the membership degrees is more attrac-

tive than the hard classification since it allows us to identify unclear boundaries

between clusters that more realistically represent the hidden markets’ struc-205

tures. Observing the individual vector of membership degrees, it is possible to

rate the cluster(s) that better describes each unit, providing another place of

information that traditional clustering methods cannot uncover.

Fuzzy clustering algorithms are also preferable to crisp clustering algorithms

for philosophical, economic, managerial, and marketing reasons (see D’Urso210

et al., 2018, 2016; Wang et al., 2015; Goneos-Malka et al., 2014; Georgescu,
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2010, 2007; De Wilde, 2004) as well as for their technical and methodologi-

cal advantages (Hwang et al., 2007; D’Urso, 2015). Moreover, fuzzy clustering

methods are computationally more efficient since dramatic changes in the value

of cluster membership are less likely to occur in estimation procedures (McBrat-215

ney & Moore, 1985). Finally, it has been demonstrated that these methods are

less affected by the local minimum problem (Heiser & Groenen, 1997; Klawonn

et al., 2015). This final property is of particular interest since it implies that

fuzzy clustering algorithms avoid the creation of undesired final clusters.

3. Methodology220

3.1. Propensity score matching

The matching (or integration) of two or more datasets can be pursued either

with a micro- or macro-approach. While the macro approach can be used when

not all variables of interest are simultaneously observed in the datasets, the

micro-approach is adopted when all the variables are available for every data225

source (D’Orazio et al., 2006). When repeated cross-sectional data are involved

in the analysis, as in this study, the micro-approach is generally the most ap-

propriate. Among the micro-approaches, the propensity score (PS) matching

is the most popular method that allows the reduction of the multidimension-

ality of the matching problem to a single dimension, i.e., the propensity score230

(Rosenbaum & Rubin, 1983). In other words, individual units can be compared

on the basis of their propensity scores, rather than matching on all values of

the set of relevant variables. The propensity score is the estimated conditional

probability of a unit belonging to one dataset given a set of relevant variables

jointly observed. The set of joint variables is usually based on a priori knowl-235

edge on the relationships among covariates within and between data sources

(Brookhart et al., 2006). When the aim is to compare clustering results across

time, we suggest the consideration of all characteristics that can confound the

description of the evolution of the phenomenon under observation and that,

consequently, need to be fixed. When the set of relevant variables is defined,240
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an additional indicator variable, which identifies to which dataset each unit be-

longs, is included in the datasets. Afterwards, the datasets are combined and

usually estimated using a binary or multinomial (either logit or probit) regres-

sion model, depending on the number of datasets involved in the matching.

While in the binary case the logit and probit models allow the acquisition of245

similar results, in the multiple datasets case the multinomial probit model is

preferable (Caliendo & Kopeinig, 2008). To compare propensity scores, finally

matching pair of units, different matching algorithms can be implemented (for

a review see Stuart, 2010; Caliendo & Kopeinig, 2008). The most common and

simplest matching algorithm is the nearest neighbour (NN) matching (Caliendo250

& Kopeinig, 2008). The NN algorithm matches the units on the basis of their

similarities, i.e. two units are paired if their propensity scores are the closest.

Several variants have been suggested in the literature (Caliendo & Kopeinig,

2008). In this paper we suggest the use of the one-to-one NN matching algo-

rithm without replacement in which each unit is paired only with another unit255

and no replacement is allowed.

As suggested by Rosenbaum & Rubin (1985), significant differences among

samples are expected when the relevant PS variables are considered before the

adoption of the matching procedure while, after matching, any significant dif-

ference between samples should be removed. The most common procedure to260

assess matching quality involves the computation of the well-known t-test, to

assess difference in means (Rosenbaum & Rubin, 1985) and Chi-square test (or

Fisher’s exact test for small samples), to assess differences in proportions when

categorical variables are involved.

3.2. Fuzzy numbers265

In order to convey mathematically linguistic and/or imprecise expressions,

the adoption of fuzzy data is highly advised (Benítez et al., 2007; Coppi et al.,

2012; D’Urso, 2007). A general class of fuzzy data is the LR (left and right) fuzzy

data (Dubois & Prade, 1988; Zimmermann, 2011). Let us assume that x̃ik is the

k-th LR fuzzy variable (k = 1, . . . ,K) observed on the i-th unit (i = 1, . . . , N).270
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Usually x̃ik is denoted as x̃ik = (m1ik,m2ik, lik, rik)LR, where m1ik and m2ik

(with m2ik > m1ik) are respectively the left and right centres and the interval

[m1ik,m2ik] is usually called the “core” of the fuzzy number; lik and rik represent

the left and right spreads, i.e. the vagueness of the observation. The membership

function of x̃ik is represented in Appendix, Eq. (1). When the membership275

function is made by linear functions and only one centre is defined, the triangular

fuzzy number is established. In this study, the triangular fuzzy number is used

to recode Likert-type variables into fuzzy variables thanks to (1) its popularity

in practical applications and (2) its effectiveness in expressing decision problems

characterised by imprecise and subjective information (Dağdeviren & Yüksel,280

2008).

3.3. Fuzzy distance

When fuzzy variables are used as segmentation variables, the traditional

Euclidean distance between pairs of units cannot be used in the clustering algo-

rithm. Instead, a suitable distance for fuzzy data has to be adopted. In this pa-285

per, the squared fuzzy distance suggested by Coppi et al. (2012) (see Appendix,

Eq. (2)) has been used. This distance is a weighted sum of squared Euclidean

distances between the centres and squared Euclidean distances between the left

and right spread, respectively. The weights are suitable non-negative values that

can be fixed either subjectively or objectively, under the normalisation (sum at290

one) and coherence conditions (the weight of the centres has to be no smaller

than the weight of the spreads). In this study, the weights have been objectively

fixed via optimisation procedure to extract this information directly from the

data (Coppi et al., 2012).

3.4. Fuzzy clustering for fuzzy data295

Within the fuzzy clustering literature, the fuzzy C-means clustering algo-

rithm and the fuzzy C-medoids are the most popular methods (Bezdek, 1981;

Hung & Yang, 2005; Klawonn et al., 2015). In general, the main difference

between fuzzy C-means clustering algorithms and fuzzy C-medoids clustering
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algorithms is that prototypes of each cluster are “virtual” and “real” units, re-300

spectively. In other words, the units that describe final clusters (prototypes)

obtained using the fuzzy C-means clustering algorithm are weighted means com-

puted over all units belonging to the same cluster, given for each segmentation

variable, and using the level of membership as weight (see Everitt et al., 2011;

Coppi et al., 2012). On the other hand, the units that describes final clusters305

obtained using the fuzzy C-medoids clustering algorithm are actually observed

units.

The fuzzy clustering algorithm for fuzzy data suggested in the literature are:

the fuzzy C-means for fuzzy data (FCM-FD) (Coppi et al., 2012), the fuzzy

C-medoids for fuzzy data (FCMdC-FD) (D’Urso et al., 2018), the bagged fuzzy310

C-means for fuzzy data (BFCMC-FD) (D’Urso et al., 2015), and the bagged

fuzzy C-medoids clustering methods for fuzzy data (BFCMdC-FD) (D’Urso

et al., 2013b). Being a combination of fuzzy numbers and fuzzy clustering

algorithm, the above-mentioned clustering algorithms inherit the benefits con-

nected with both the fuzzy formalisation of imprecise information and the fuzzy315

assignment of units. In this study, the FCM-FD clustering algorithm has been

adopted since, after the matching method, it is meaningless to compare final

clusters using “real” units (i.e. using a fuzzy C-medoids clustering algorithm).

Furthermore, the FCM-FD clustering algorithm has been adopted instead of

the BFCMC-FD clustering algorithm for its simplicity. The FCM-FD objective320

function that has to be minimised is reported in Appendix, Eq. (3).

3.5. Fuzzy partition validity

To check replication and robustness of the final partition, the stability of the

initial random values chosen to run the algorithm over several iterations should

be checked (D’Urso, 2015).325

In general, internal validity measures provide useful guidelines in the iden-

tification of the best final partition (Handl et al., 2005; D’Urso et al., 2015).

Suitable measures for the fuzzy clustering algorithm have been suggested by Xie

& Beni (1991) and Campello & Hruschka (2006). Among them, the Xie and
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Beni (henceforth XB) index (Xie & Beni, 1991) is a popular measure whose330

aim is to quantify the ratio between compactness (i.e. total variance within the

clusters) and separation of clusters. See Appendix, Eq. (4) for the computation

of the XB index when the FCM-FD clustering algorithm is adopted. A small

XB value indicates that all clusters are overall compact and separate from each

other. Thus the best fuzzy C-partition is the one with the smallest XB.335

3.6. Labelling and profiling: rank and weighted data

The final partition obtained by means of the FCM-FD is characterised by

C fuzzy prototypes. Each fuzzy prototype is a vector of fuzzy numbers, each

of which represents the cluster-weighted means of one segmentation variable.

Therefore, being able to rank the fuzzy numbers that make up each prototype340

allow both labelling and description of the main features of each cluster. Several

methods for ordering fuzzy numbers have been suggested in the literature and,

following Brunelli & Mezei (2013), they can be broadly divided into two kinds:

(1) methods that transform each fuzzy number into a crisp real number; (2)

methods that compare all pairs of fuzzy numbers generating pairwise orderings345

on the basis of which the final rank is determined. In this study, the method

suggested by Abbasbandy & Hajjari (2009) is adopted for its simplicity (see

Appendix, Eq. (5)). This method belongs to the first kind of ranking methods

and it is based on the definition of the “magnitude” of fuzzy numbers: the larger

the “magnitude” of a fuzzy number, the larger the fuzzy number.350

Furthermore, the results of any fuzzy clustering algorithm can be sum-

marised by a (N ×C) matrix U containing the level of membership of each i-th

unit to each c-th cluster. The higher the membership degree, the higher the

strength of the association between the observed pair unit-cluster. Therefore,

the U matrix can be used to weight the original crisp segmentation variables355

and further describe the final clusters.

The U matrix can also be used in the profiling phase (D’Urso et al., 2016,

2013a) where external variables (i.e. variables not involved in the cluster algo-

rithm) are normally used to characterise the clusters (Everitt et al., 2011; Hair
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et al., 2010). When fuzzy clustering algorithms are performed, a “defuzzifica-360

tion” procedure is usually adopted to obtain final crisp partitions that are easy

to interpret. This procedure consists of assigning each unit to the cluster with

which the unit is linked via the highest level of membership (or with a level of

membership higher than a specified cut-off point). As discussed in D’Urso et al.

(2016), the “defuzzification” is in contrast with the very essence of the fuzzy365

theory and fuzzy clustering and it implies a loss of information. In fact, the

key idea of the fuzzy clustering algorithm is to allow units to belong to more

than one cluster simultaneously describing individual membership distributions

by means of a vector of degrees of membership. Using the “defuzzification”, this

information is lost and the result of the fuzzy clustering algorithm give the same370

kind of information as any crisp clustering algorithm. To avoid this problem,

the external variables are weighted using the U matrix and suitable tests for dif-

ferences in means and proportions can be computed to describe the final cluster

partition.

3.7. Comparing partitions through fuzzy distance375

When the best partitions are obtained for each of the datasets, the compu-

tation of pairwise distances is necessary to assess differences between clusters,

within and between years. Therefore, one can be interested in the computation

of both intra- and inter-temporal distances between clusters. As an example,

figure 2 schematically represents the idea of these distances by observing two380

periods (t1, t2), two variables (k1, k2), and three final clusters in each period.

Any distance measure can be adopted for this purpose. Since in this research

clusters are represented by fuzzy prototypes, a fuzzy distance has to be adopted

Coppi et al. (2012).

[Insert Figure 2.]385

4. Application: tourist satisfaction

In the following, each step of the matching-clustering procedure will be illus-

trated using empirical data. Data have been analysed from the Banca d’Italia,
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“International Tourism in Italy” survey, in 2000-01 and 2010-11 among foreign

tourists visiting any municipality located in South-Tyrol region (Northern Italy).390

The “International Tourism in Italy” survey is a repeated cross-sectional sur-

vey that collects socio-economic and demographic information on tourists, trip

characteristics (including travel expenditure), and tourist satisfaction with dif-

ferent aspects of the destination. The inbound-outbound frontier survey is the

technique adopted for the collection of the data. In this study, some individ-395

ual characteristics (gender, age, employment status and country of origin) and

travel purpose have been used as relevant variables for the calculation of the

PS, while tourist satisfaction with 10 different aspects, which overall describe

the destination, have been used as segmentation variables of the FCM-FD al-

gorithm. Finally, PS variables and two more travel characteristics (i.e. travel400

expenditures for goods and services made in the country visited and duration

of the trip), that we believe are important factors in explaining differences in

tourism satisfaction levels, have been used to profile the final clusters.

4.1. Statistical matching

The original samples comprise 1,582 and 997 international tourists inter-405

viewed in 2000-01 and 2010-11, respectively. After the NN matching, two final

samples of 806 international tourists, one in each period, were identified and

further analysed. Table 1 in the Appendix allows the evaluation of the quality

of the matching procedure: before the implementation of the NN matching,

the samples collected in the two periods were significantly different given each410

relevant variable, while they were not significantly different after the implemen-

tation of the matching method. Furthermore, the majority (57.4%) of the paired

tourists perfectly matched, while 41% of the paired tourists differ only for one

variable, mainly for gender (98%), and the remaining 1.6% of the paired tourists

differ for two characteristics (mainly the pair gender-age 54%).415

4.2. Data recoding

Satisfaction has been measured by a 10-point Likert-type scale (1=Very un-

satisfied and 10=Very satisfied). Figures 3(a) and 3(b) provide the list of rated

15



aspects, showing the percentage distributions per period. As we can observe,

the proportion of tourists who overall were less satisfied with the destination,420

i.e. tourists who gave a rating of under 6 for any of the destination’s aspects

considered, is low in both observed periods and it is mainly concentrated on one

aspect, “Prices”. Over the years, the proportion of Very satisfied tourists (the

dark red part of each bar) is significantly decreased with different aspects of the

destination (in specifically “Friendliness”, “Art”, “Landscape”, “Accommodation”425

“Food and beverages”, and “Overall”) while tourists became significantly more

satisfied only with “Safety” (two-sample tests for equality of proportions have

been performed, level of significance 5%). The aspects that lost the most in

terms of Very satisfied tourists, and that consequently deserve more managerial

and strategic attention in the long-run, are “Landscape” (-19%) and “Food and430

beverages” (-13%).

[Insert Figure 3(a) and 3(b).]

As mentioned in the previous Section, the triangular fuzzy number has been

used in this study to recode the linguistic expression of the Likert-type scale.

The fuzzy recoding is displayed in Figure 4 showing that, for instance, the value435

1 (Very unsatisfied) corresponds to a fuzzy number (1, 0, 1.5), while the value

5 (i.e. mild dissatisfaction) corresponds to the fuzzy number (5, 0.5, 0.5). In

this study we chose to assign unequal degrees of vagueness, i.e. right and left

spreads, to each linguistic expression of the Likert-type scale to capture partially

the different degrees of uncertainty associated by respondents to each linguistic440

expression. In particular, we assigned the highest degree of vagueness to the

extreme linguistic terms, i.e. 1 (Very unsatisfied) and 10 (Very satisfied), and

a decreased degree of vagueness approaching the central values, i.e. 5 and 6.

In fact, we believe respondents perceived quite clearly the difference between

the values 5 and 6 since it is common practice to attribute a negative (positive)445

evaluation to each value below 5 (above 6). Therefore, these values are generally

a little vague for respondents. On the other hand, it is generally more difficult

to capture the difference between 1 and 2, or between 9 and 10, thus these values
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should incorporate a higher degree of uncertainty.

[Insert Figure 4.]450

4.3. Clusters’ results and cross-sectional comparison

For this illustration, the weights of the dissimilarity measure in Eq. 2 have

been objectively obtained via optimisation procedure and they are both equal

to 0.5. The order of fuzziness p is 1.75. According to the XB index, in 2000-

01 (2010-11) tourists are better classified into two (three) clusters. The initial455

random values after 50 iterations are stable in each analysis, indicating that the

final cluster partitions are robust.

Figures 5(a)-6(c) represent (1) the weighted percentage distribution of the

segmentation variables (graph on the left) and (2) the fuzzy prototypes (graph

on the right) for each final cluster. These results clearly show that in 2000-01460

tourists are simply split into “high” (cluster 1) and “low” (cluster 2) satisfied

tourists. Therefore, the two clusters can be labelled for simplicity as “Enthusi-

asts” and “Unfulfilled”, respectively. In 2010-11 the differences between cluster 1

(the “Enthusiasts”) and 3 (the “Unfulfilled”) are stronger than in the previous pe-

riod and a “Moderate satisfied” group of tourists (cluster 2) emerged in-between465

the “Enthusiasts” and the “Unfulfilled”. To appreciate and describe further the

differences in satisfaction levels within clusters, the 10 aspects have been ranked

in ascending order (from the most to the least satisfactory) according to their

“magnitude” computed as in Eq. 5. As shown in Table 1, the most appreciable

difference between the two final clusters obtained in 2000-01 regards the rank-470

ing of “Friendliness” and “Art” aspects. The “Enthusiasts” rated “Friendliness”

(“Art”) in a higher (lower) position than the “Unfulfilled”, indicating a higher

(lower) satisfaction with this aspect when compared to the other aspects char-

acterising the destination. In 2010-11 the within cluster rankings show that the

“Enthusiasts” are much more (less) satisfied with the “Accommodation” (“Friend-475

liness”) than other tourists are. Furthermore, the “Unfulfilled” rated the “Over-

all” satisfaction destination in the 4th position while the other tourists ranked
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this aspect lower in the ranking (6th and 7th position). Comparing the results

obtained in the two periods we can state that “Landscape” is always the most

preferable aspect of the South Tyrol region while “Prices”, “Products sold”, and480

“Information” are always the worst aspects on which the destination has to pay

more attention. Over time, the “Enthusiasts” became more satisfied with the

“Accommodation” but less satisfied with the “Friendliness” of inhabitants and

“Overall” with the destination. Comparing with the past, in 2010-11 tourists

feel generally safer in the destination but, unfortunately, “Food and beverages”485

satisfy them less.

[Insert Figure 5(a)-6(c).]

To describe and investigate further the evolution of tourist satisfaction, the

intra- and inter-temporal distances between fuzzy prototypes are computed and

reported in Table 2. Within the period, we can observe that the two clus-490

ters identified in 2000-01 are quite distinguishable. In 2010-11 the clusters are

more separated than in 2000-01 (they are characterised by higher distance val-

ues), meaning that the differences between clusters become more and more

pronounced over time. Furthermore, in 2010-11 clusters 2 and 3 are the most

similar followed by the pair of clusters 1-2. Focusing on the inter-temporal495

distances (i.e. distances between periods), we can observe that both clusters

identified in 2000-01 are similar to the “Moderate satisfied” tourists identified in

2010-11. Moreover, the old “Enthusiasts” (“Unfulfilled”) are more similar to the

new “Enthusiasts” (“Unfulfilled”) than to the new “Unfulfilled” (“Enthusiasts”).

In the profiling phase, travel expenditures and duration of the trip can be500

used, together with the PS variables, to characterise the final clusters. Since

the samples are not significantly different against these variables (t-test for dif-

ferences in means have been performed, level of significance 5%), any significant

cross-sectional difference detected in one of these variables can be mainly as-

cribed to a change in tourism behaviour. The weighted percentage distributions505

and weighted means, respectively for categorical and quantitative variables, are

reported in Table 3. As we can observe, in 2000-01 the two clusters signifi-
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cantly differ only for the average amount of money spent (as a whole and per

night) for the trip, revealing that the higher the satisfaction with the desti-

nation, the higher the expenditure. In 2010-11, the “Unfulfilled” are mainly510

Austrian tourists visiting South Tyrol for business or other personal reasons.

Consequently, they stayed on average longer and spent less in the destination

than other tourists. The “Enthusiasts” are mainly German tourists travelling

for holiday purposes in an Italian region that offers them an astonishing land-

scape together with a perfect Italian-German mixture of cultures, traditions,515

foods, and languages. The result is a group of tourists very satisfied with the

destination but which spends (in terms of both money and time) on average

less than the “Moderate satisfied” who mainly come from other European and

non-European countries.

5. Conclusions520

The increased availability of data and the necessity to study dynamic changes,

have led to the introduction of novel, more accurate and precise methods of

analyses. The aim of this paper is to suggest a new matching-clustering pro-

cedure to study the change over time in tourists’ behaviour levels when re-

peated cross-sectional data are available. In tourism, cross-sectional surveys are525

widespread to collect information on individual behaviours, perceptions, feel-

ings, and emotions. Since the sample of units interviewed each time is different,

these kind of surveys would only allow us to obtain information on aggregate

evolutions. In fact, any direct individual comparisons can be misleading, result-

ing in wrong policy and managerial conclusions. To overcome this limitation,530

the new matching-clustering procedure suggests the identification of paired sam-

ples by means of a matching method before conducting a clustering analysis and

comparing the final results. The variables to be used in the NN matching have

to be subjectively selected according to the availability of data (i.e. the set of

equivalent variables collected over time) and the research questions (i.e. which535

variables should be used in the profiling phase).
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The importance of both equivalent instrument measurements and accurate

analyses of data collected by means of ordinal scales, such as Likert-type scales,

have been discussed. Fuzzy numbers have been suggested to recode Likert-type

scales and the main advantages have been highlighted. In this study we assumed540

that each respondent is characterised by the same uncertainty/vagueness func-

tion. To be more accurate, the membership function of the fuzzy number should

be personalised at the respondent level to capture (1) the individual uncertainty

and vagueness regarding the subjective opinions and judgements collected and

(2) the uncertainty entitled in the subjective interpretation of the linguistic ex-545

pression of the Likert-type scale. Unfortunately, with large anonymous datasets

it is not possible to make this kind of personalisation, but further studies should

be directed to overcome this aspect and produce more realistic and accurate re-

sults. Furthermore, it is important to underline that the form of the membership

function of the fuzzy number, denoted as elicitation, is subjective and, in gen-550

eral, it is determined by experts in the problem area (Coppi et al., 2006). The

membership function is context-sensitive meaning that it has to capture ap-

proximately the feelings/opinions of the person represented. In this respect, the

elicitation of a membership function requires a deep psychological understand-

ing (Coppi et al., 2006). For more details on the elicitation of the membership555

function, as well as on the analysis of robustness of the results obtained from a

fuzzy data analysis, see De la Rosa de Sàa et al. (2015).

Moreover, the fuzzy clustering algorithm has been suggested in this paper,

even if any clustering algorithm can potentially be adopted. In general, this

kind of algorithm is able to manage the uncertainty that arises in assigning the560

units to the clusters, allowing each unit to belong simultaneously to more than

one cluster accordingly to a vector of membership degrees. As a result, the final

partitions more realistically interpret the hidden relations that characterised a

market allowing for more efficient understanding of managerial, marketing, and

political strategies. The combination of fuzzy numbers and fuzzy clustering565

allow us to cope more precisely with different sources of uncertainty which arise

in particular arising when human perceptions and judgments are investigated.
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From a practical and managerial perspective, this 7-steps procedure will help

destination managers and municipalities to describe and verify more accurately

the efficacy of policies and strategies conducted over years. To illustrate the570

suggested procedure, the evolution of satisfaction with different aspects that

characterised the South-Tyrol region (Northern Italy) has been analysed. Data

collected by Banca d’Italia in 2000-01 and 2010-11 by means of a repeated cross-

sectional survey have been used. Being able to perform accurate analyses on

tourist satisfaction with a destination is of particular relevance since more sat-575

isfied tourists are more willing to revisit and to recommend the destination to

relatives and friends the destination (Prayag et al., 2017). From the comparison

of tourists’ satisfaction levels between the two periods, a general decrease in

the proportion of “Very satisfied” tourists emerged, in particular with regard to

key aspects of the destination like “Landscape” and “Food and beverages”. This580

is an important and worrying result on which the government and the munic-

ipalities have to devote more resources and efforts. Furthermore, the findings

show that in 2000-01 the two identified clusters significantly differ only for the

average travel expenditure (as a whole and per night), revealing that the higher

the satisfaction with the destination, the higher the expenditure. This result is585

only partially confirmed in 2010-11, since the most satisfied tourists are mainly

from Germany and they spend less than other European (excluding Austria)

and non-European tourists. The reason for this result can be ascribed to the

fact that German tourists are generally very satisfied with South-Tyrol. In this

destination, they feel like at home thanks to the similarity in language, tradi-590

tions, cultures and foods. To obtain a more detailed profiling of the clusters,

and therefore obtain more practical and managerial information about the clus-

ters, the fractional multinomial logit model (Papke & Wooldridge, 1996), in

which the vector of membership degrees is set as dependent variable, can be

used (Khoo-Lattimore et al., 2018).595

Since the majority of tourist satisfaction studies focus on one-off surveys,

preventing the possibility of monitoring the evolution of tourist satisfaction

(Song et al., 2011), this analysis is of particular interest in demonstrating how
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evolutions in tourist satisfaction with a destination over time can be studied.

Analysing tourist satisfaction with a destination in one year helps destination600

managers and municipalities to identify weak/strong aspects and define short-

run strategies, while being able to extend the analyses to a period of time allows

for the evaluation and definition of long-run policy and managerial strategies.
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Figure 1: Steps of the suggested matching-clustering procedure.
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Figure 5: Cluster description 2000-01: weighted distribution of segmentation variables (on the

left) and radar plots of fuzzy prototypes (on the right). In the radar plot, the black solid line

represents the centres of the fuzzy prototypes, while the dashed lines represent the lower and

upper values of the fuzzy prototypes.
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Figure 6: Cluster description 2010-11: weighted distribution of the segmentation variables (on

the left) and radar plot of the fuzzy prototypes (on the right). In the radar plot, the black

solid line represents the centres of the fuzzy prototypes, while the dashed lines represent the

lower and upper values of the fuzzy prototypes.
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Tables

Table 1: Magnitude of the fuzzy numbers that make up each prototype and ranking order

(largest fuzzy number is ranked 1).
Segmentation variables 2000-01 2010-11

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

Magnitude Rank Magnitude Rank Magnitude Rank Magnitude Rank Magnitude Rank

Friendliness 9.096 3 8.339 5 9.221 8 8.607 3 7.995 2

Art 8.961 5 8.381 3 9.311 4 8.482 4 7.711 5

Landscape 9.531 1 8.972 1 9.596 1 8.969 1 8.099 1

Accommodation 8.821 6 7.768 7 9.345 3 8.378 7 7.685 7

Food and beverages 9.132 2 8.433 2 9.277 5 8.436 5 7.711 6

Prices 6.685 10 6.080 10 7.952 10 6.811 10 6.045 10

Products sold 8.273 9 7.627 9 8.806 9 7.951 9 7.470 9

Information 8.510 8 7.650 8 9.237 6 8.286 8 7.623 8

Safety 8.664 7 7.846 6 9.391 2 8.637 2 7.795 3

Overall 9.090 4 8.340 4 9.231 7 8.408 6 7.725 4

Table 2: Intra- and inter-temporal distances between fuzzy prototypes.
Fuzzy prototypes

2000-01 2010-11

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

Fuzzy prototypes

2000-01
Cluster 1 0

Cluster 2 6.763 0

2010-11

Cluster 1 4.038 18.858 0

Cluster 2 3.198 2.277 9.865 0

Cluster 3 15.551 2.760 29.678 5.830 0

810
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Table 3: Cluster profile.

2000-01 2010-11

CL1 CL2 p-value CL1 CL2 CL3 p-value

Cluster size (%) 52.86 47.14 30.04 35.01 34.95

PS variables (%)

Male 64.38 68.35 65.06 69.52 71.10

Age

Less than 35 years old 20.59 22.97 19.65 21.70 22.78

35-44 years old 25.95 28.54 28.35 27.25 25.72

45-64 years old 41.45 37.74 41.59 39.09 37.98

More than 64 years old 12.01 10.75 10.40 11.96 13.51

Employment status

Self-employed 13.43 13.36 13.75 13.52 12.62

Employee 68.03 68.48 68.04 69.31 66.98

Retired 13.48 12.52 11.95 11.84 14.43

Other 5.06 5.64 6.25 5.33 5.97

Country of origin ∗∗∗

Austria 13.05 13.53 8.95 9.10 21.88

Germany 61.98 59.47 67.25 63.74 52.29

Other EU countries 20.09 21.42 20.49 21.07 20.92

Outside EU 4.88 5.58 3.30 6.09 4.90

Main purpose of travel ∗∗∗

Holiday 82.94 80.44 88.49 82.59 74.80

Business 9.68 12.05 6.51 10.39 14.52

Other personal motivations 7.39 7.51 5.00 7.02 10.68

Other variables (average)

Total expenditure 527.70 400.20 ∗∗∗ 388.10 499.00 529.90

Expenditure per night 77.20 63.88 ∗∗∗ 49.23 54.51 44.72 ∗∗∗

Nr. nights 5.72 5.35 2.69 2.99 3.70 ∗∗∗

Notes: Weighted percentage distributions and weighted means are reported. Significance of the χ2 test of independence

and z-test, respectively for qualitative and quantitative variables, is reported. All test results are not significant unless

indicated otherwise: ***Significant at p ≤ 0.01, **Significant at p ≤ 0.05, *Significant at p ≤ 0.1.
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Appendix

Fuzzy numbers

The membership function of the k−th LR fuzzy variable, µx̃ik
(aik), is defined

as:

µx̃ik
(aik) =


L
(
m1ik−aik

lik

)
aik ≤ m1ik (lik > 0)

1 m1ik ≤ aik ≤ m2ik

R
(
aik−m2ik

rik

)
aik ≥ m2ik (rik > 0)

(1)

where both L and R are decreasing “shape” functions defined in [0, 1]. When

both L and R are linear functions, the trapezoidal fuzzy number is defined. A

trapezoidal fuzzy number characterised by m1ik = m2ik, i.e. only one centre is815

defined, is called triangular fuzzy number.

Fuzzy distance

The squared fuzzy distance suggested by Coppi et al. (2012) between the

i-th and j-th units, with i 6= j, is computed as follows:

d2F (x̃i, x̃j) = w2
M

(
‖mi −mj‖2

)
+ w2

S

(
‖li − lj‖2 + ‖ri − rj‖2

)
(2)

where x̃i denotes the fuzzy vector of segmentation variables observed for the820

i-th unit; mi is the vector of the centres; li and ri are the vectors of the left

and right spreads, respectively; ‖mi −mj‖2 is the squared Euclidean distances

between the centres; ‖li−lj‖2 and ‖ri−rj‖2 are the squared Euclidean distances

between the left and right spread, respectively; wM and wS are suitable non-

negative weights for the centre and the spread components.825

Fuzzy clustering for fuzzy data

The FCM-FD objective function that has to be minimised is as follows:


min :

N∑
i=1

C∑
c=1

upicd
2
F (x̃i, h̃c)

s.t.
∑C
c=1 uic = 1, uic ≥ 0

(3)
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where p > 1 is a weighting exponent that controls the fuzziness of the obtained

partition; uic indicates the level of membership, i.e. closeness, of the i-th fuzzy

unit to the c-th (c = 1, . . . , C) cluster; d2F (x̃i, h̃c) is the fuzzy distance, computed830

as in Eq. (2), between the i-th fuzzy unit (x̃i) and the fuzzy prototype that

describes the c-th cluster (h̃c).

The iterative optimal solutions of (3) are:

uic =

[
w2
M

(
‖m1 − hMc ‖2

)
+ w2

S

(
‖li − hLc ‖2 + ‖ri − hRc ‖2

)]− 1
p−1

C∑
c′=1

[
w2
M

(
‖mi − hMc′ ‖2+

)
+ w2

S

(
‖li − hLc′‖2 + ‖ri − hRc′‖2

)]− 1
p−1

,

hMc =

N∑
i=1

upicmi

N∑
i=1

upic

, hLc =

N∑
i=1

upicli

N∑
i=1

upic

, hRc =

N∑
i=1

upicri

N∑
i=1

upic

,

wM =

N∑
i=1

C∑
c=1

upic
(
‖li − hLc ‖2 + ‖ri − hRc ‖2

)
N∑
i=1

C∑
c=1

upic (‖mi − hMc ‖2 + ‖li − hLc ‖2 + ‖ri − hRc ‖2)

(wS = 1− wM )

where hMc , h
L
c and hRc represent respectively the centre and the left and right

spreads of the c-th fuzzy prototype.

Fuzzy partition validity835

In the case of FCM-FD, the XB index is computed as follow:

XB =

N∑
i=1

C∑
c=1

upicd
2
F (x̃i, h̃c)

min
c 6=c′

d2F (h̃c, h̃c′)
(4)

Labelling and profiling: rank and weighted data

The “magnitude” (M(x̃)) is a crisp real number computable using both centre

(m) and spreads values (l and r) of the triangular fuzzy number (x̃) as follows:

M(x̃) =
1

2

∫ 1

0

[2m+ (l − r)z − l + r]f(z)dz (5)
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Table 1: Assessing matching quality.

Before PSM After PSM

2000-01 2010-11 p−value 2000-01 2010-11 p−value

Sample size 1582 997 806 806

PS variables (%)

Male 64.79 68.91 ∗∗ 66.25 68.73 0.288

Age ∗∗∗ 0.985

Less than 35 years old 30.10 21.16 21.71 21.46

35-44 years old 24.21 28.59 27.17 27.05

45-64 years old 38.59 36.41 39.70 39.45

More than 64 years old 7.10 13.84 11.71 12.03

Employment status ∗∗∗ 0.977

Self-employed 21.18 11.57 13.40 13.28

Employee 53.92 69.92 68.24 68.11

Retired 14.35 12.47 13.03 12.78

Other 10.56 6.04 5.33 5.83

Country of origin ∗∗∗ 0.988

Austria 9.42 21.06 13.28 13.52

Germany 68.77 50.85 60.79 60.79

Other EU countries 15.49 21.46 20.72 20.84

Outside EU 6.32 6.62 5.21 4.84

Main purpose of travel ∗∗∗ 0.981

Holiday 79.84 76.03 81.76 81.64

Business 12.07 10.53 10.79 10.67

Other personal motivations 8.09 13.44 7.44 7.69

Notes: Significance of the χ2 test of independence and z-test, respectively for qualitative and quantitative variables,

is reported. All test results are not significant unless indicated otherwise: ***Significant at p ≤ 0.01, **Significant at

p ≤ 0.05, *Significant at p ≤ 0.1.
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