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Abstract. Parallel I/O access patterns act as fingerprints of a parallel
program. In order to extract meaningful information from these patterns,
they have to be represented appropriately. Due to the fact that string
objects can be easily compared using Kernel Methods, a conversion to a
weighted string representation is proposed in this paper, together with
a novel string kernel function called Kast Spectrum Kernel. The simi-
larity matrices, obtained after applying the mentioned kernel over a set
of examples from a real application, were analyzed using Kernel Prin-
cipal Component Analysis (Kernel PCA) and Hierarchical Clustering.
The evaluation showed that 2 out of 4 I/O access pattern groups were
completely identified, while the other 2 conformed a single cluster due
to the intrinsic similarity of their members. The proposed strategy can
be promisingly applied to other similarity problems involving tree-like
structured data.

Keywords: Kernel functions, Kast spectrum kernel, I/O access pattern
comparison, Kernel PCA

1 Introduction

I/O access patterns act as fingerprints of an application. The identification and
analysis of these patterns is important in High Performance Computing because
it helps, not only to understand the impact factors on the underlying Parallel
File System, but also to design better ways of organizing I/O operations. In order
to understand the correlation of a collection of patterns, two requirements have
to be met: a) a proper representation able to abstract the relevant features of
each pattern and b) an appropriate strategy to find similarities or dissimilarities
between the data in this new representation. To tackle a) this paper proposes a
two-stage string conversion technique for access patterns. The first stage trans-
forms the data and reflects the containment relationships of the pattern in a
tree-like data structure. The second stage flattens the resulting tree and simpli-
fies the representation in a weighted string. In order to tackle b) these weighted
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strings are compared with a novel string kernel function called Kast Spectrum
Kernel.

2 Background

2.1 Parallel File Systems

Generalities Parallel File Systems [1] are minded for accessing files in a simul-
taneous, concurrent and efficient way. The contents of a file are usually scattered
among different I/O subsystems in order to take advantage of the highest local
performance of each subsystem. These systems should provide, among other ca-
pabilities, persistence, consistence, performance, and manageability. Other de-
sired features might include: scalability, fault-tolerance and availability. Different
approaches can be used to analyze the performance of a Parallel File System.
Checking the patterns of the I/O traces is among the most commonly used ones.

I/O Access Patterns I/O access patterns depict the behavior of disk access
over a period of time. They can be used to determine the overall performance
of an I/O system. It is possible to characterize them by the following proper-
ties: access granularity, randomness, concurrency, load balance, access type and
predictability. Liu et al. [2] mentioned three additional features seen on super-
computing I/O patterns: burstiness, periodicity and repeatability.

2.2 Kernel Methods for Similarity Search

As stated in [3], a typical machine learning systems consists of two subsystems:
the feature extraction and clustering/classifier subsystems. On the one hand,
the feature extraction subsystem performs the process of conversion of raw data
to a meaningful representation. On the other hand, the clustering/classifier sub-
system makes reference to the strategy used to distill information from the new
representation. There is group of algorithms, among the constellation of ma-
chine learning techniques, that have been successfully applied in structured data
problems: they are called Kernel Methods. Kernel Methods are well documented
in the book of Shawe-Taylor and Cristianini [4]. This group of algorithms are
strong enough to detect stable patterns robustly and efficiently from a finite data
sample; basically, the idea is to embed the original data into a space where linear
relations manifest as patterns. These methods have been successfully applied in
problems with structured data types like trees and strings [5]. Kernel methods
follow the mentioned two-stages strategy: first, a mapping is made by the Kernel
Function, which depends on the specific data type and domain knowledge. Sec-
ond, a general purpose and robust kernel learning algorithm is applied to find
the linear relationships in the induced feature space. The stage of construction
of the kernel function can be characterized as follows:

– Original data items are embedded into a vector space called feature space.
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– The images of data in the feature space have linear relations.
– The learning algorithm does not need to know the coordinates of the feature

space data; the pairwise inner products are enough.
– These inner products can be calculated in an efficient way using a kernel

function.

The inner products between the training examples conform the kernel matrix.
The learning algorithms are independent from the kernel function and need
only the kernel matrix to extract meaningful information from the data. In this
work we used two algorithms: Hierarchical Clustering [6] and Kernel Principal
Component Analysis (Kernel PCA) [7].

String Kernels Usually, data is delivered as a collection of attribute-value tu-
ples; the widely used Polynomial and Gaussian Kernels Functions are ideal for
this kind of representation. But for the case of structured data like trees and
strings, the design of kernel functions becomes more complex. Despite this com-
plexity, some solutions have been proposed, for example, Convolution Kernels
[8–10]. Strings kernels are explained in a comprehensive way in [11]. They ba-
sically check for the number of shared substrings among a collection of strings.
These substrings must comply with certain weighting factors, which produces
different kernel functions; The bag-of-characters kernel only takes into account
single-character matching. The bag-of-words kernel searches for shared words
among strings. The k-spectrum kernel[12] only counts sub-strings of length k.
The k-blended spectrum kernel[4] only counts sub-strings which length are less
or equal to a given number k.

3 Methodology

3.1 Creating Strings from I/O Access Patterns

The I/O access pattern files are plain text files where each line corresponds to an
operation. Some of these operations are negligible and hence ignored (e.g. fileno,
nmap and fscanf). Some other operations keep information of the number
of bytes involved on it. The proposed string representation can either use or
ignore such byte information (ignoring is made by assuming all byte values are
zero), which means that two different type of strings can be generated from a
single I/O access pattern. Operations in the I/O access pattern are registered
chronologically; with several file handles acting at the same time it is not always
possible that all the operations belonging to the same file handle could have
been written contiguously. For that reason the patterns are first converted into
trees. Trees are ideal data structures for representing containment relationships
between objects.

From I/O Access Patterns to Trees The trees that we use in this paper
will have the following levels: The ROOT level, the HANDLE level, the BLOCK
level and the operation level (See Figure 1):
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– At the highest level, an imaginary root node groups all the operations of a
single I/O access pattern file. Such node is represented as ROOT.

– At the second level, imaginary nodes group all the operations belonging to
the same file handle. Such nodes are represented as HANDLE.

– At the third level, imaginary nodes group all the operations found between
an open operation and its corresponding close operation. Such nodes are
represented as BLOCK.

– At the deepest level, operations are given nodes, except for open and close,
because the BLOCK node already plays the role of a delimiter.

(a) Access pattern (b) Re-
sulting
tree

Fig. 1. Conversion of a plain text I/O access pattern into a tree

In order to save space, a set of consecutive operation nodes on the same block
can be expressed as a single node when they present some simple patterns. A
similar approach was applied by Kluge [13]. The resulting node will have an
additional field that stores of the number of repetitions. This compression step
is based on the following transformations, which are performed in the given
order:

– Consecutive operations with the same name and the same number of bytes
are simplified to a single operation with the same information. E.g. a read
operation inside a loop reading a file n bytes per iteration.

4/14
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– Consecutive operations with the same name but different number of bytes
are simplified to a single operation with the same name. The new byte value
is a combination of both previous byte numbers. E.g. initializing in a loop an
array of C structures compound of a 2-bytes integer and a 4-bytes integer will
need a read operation extracting two bytes first and another read extracting
four bytes afterwards.

– Consecutive operations with different name but same number of bytes are
simplified to a single operations with the same number of bytes. The new
operation name is a combination of both previous names. E.g., a series of
interlaced read and write operations with the same number of bytes might
indicate a tacit copy operation.

– Consecutive operations with different name and different number of bytes
but with one operation having 0 as number of bytes are simplified to a single
operation with the non-zero value as the number of bytes. The new operation
name is a combination of both previous names. E.g. inside a loop an lseek
operation moves the pointer in the file descriptor and a write operation
records the information there.

The previous steps are repeated once again to capture higher level patterns.
Some of the operations (e.g. read, write) have a memory address associated to
them. If this values would be taken into account, the compression step would be
more precise to capture related operations e.g a copy operation. However, the
degree of compression would be reduced. The main interest of this research is to
use patterns for determining in an efficient way how similar a collection of I/O
traces are, not to break down the pattern and try to understand the underlying
structure of it. For this reason, the memory addresses are ignored completely.

From Trees to Strings Once the tree is compacted, the string representation
can be built. The process is straightforward (See Figure 3.1). The tree is tra-
versed in pre-order and each node properties are extracted; each node of the tree
corresponds to a token in the string. A token is compound by a literal part and
a weight value. For leaf nodes the literal part is formed with the name of the
operation and the number of bytes enclosed by [ ] while their weight corresponds
to the number of repetitions. ROOT, HANDLE and BLOCK nodes are trans-
lated as [ROOT], [HANDLE] and [BLOCK] respectively; their weight is always
1. To preserve information about the tree structure, we introduced a new token
that does not correspond to any node but give a notion of distance between
nodes. The rational of this design corresponds to the future application of this
representation in more complex structures like Abstract Syntax Trees (ASTs).
The [LEVEL UP] token represents the change to an upper level when doing the
pre-order traversal. Its weight is simply the amount of levels jumped until the
next new node is found. Notice that there is no need for a token to indicate
a change to a lower level, due to the fact that in the pre-order traversal the
number of levels jumped from a parent to a child is always 1, which is implicitly
expressed when two tokens are written one after the other.

5/14
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(a) Compacted tree (b) Extracted tokens

Fig. 2. Creation of a string of tokens from a tree

3.2 Comparing Strings: the Kernel Function

The basic idea is to create a comparison measure for strings conformed by
weighted tokens. In theory, the number of different tokens is infinite. In practice,
the number of different tokens can be limited to the I/O operations on a program
and the number of bytes related to each operation; still, the number is high. In
order to define a proper similarity measure, it is necessary to define first some
important concepts:

– A weighted string is a set of consecutive weighted tokens (from here on out
referred simply as strings and tokens).

– A substring is a string that is fully contained by another string.
– The weight of a string is the summation of the weights of its tokens.

It is easy to infer here that the number of possible strings is also infinite. In an
hypothetical feature space, where every string is characterized by the presence or
absence of each possible token with each possible weight, the number of features
is still infinite. However, in practice, for a single string, most of the features of
this hypothetical space are zero-valued. This is a fact that eases the creation of
a feasible kernel function. In this work the Kast Spectrum Kernel is proposed. In
this kernel, some conditions have to be met to build the new embedding space:

– The algorithm precises a minimum weight value as parameter (from here
on out referred simply as cut weight). Strings with a weight value that is
smaller than the cut weight are ignored.

– The aim is to find the substrings shared by two strings which weight is
greater than or equal to the cut weight.

6/14
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– The weight of a target substring might be different in each string.
– A target substring might appear more than once in one of the strings.
– A target substring must not be a substring of another matching substring

in at least on of the original strings.

For each target substring complying with the previous conditions, a new em-
bedding feature is created. Its value is the summation of the weights of all the
substring appearances in a string. This way, a new embedding space with a fi-
nite and small number of features can be built. The number of features for both
strings is equal to the number of substrings that comply to the above mentioned
conditions. It is possible now to calculate a similarity measure using the inner
product between the new feature vectors; this is the so-called kernel value. The
following is an example that illustrates the proposed kernel function: Let A and
B be strings as shown in Figure 3.2. The function weightw≥n(A) returns the
summation of the weights of all the tokens of A which weight is greater than or
equal to n. The function kw≥n(A,B) returns the evaluation of the Kast Spectrum
Kernel between A and B. The function k̄w≥n(A,B) is the normalized version of
the former kernel. For n = 4 the respective weights are:

weightw≥4(A) = 64 (1)

weightw≥4(B) = 52 (2)

The target in this example are all substrings with weight greater than or equal
to 4 (cut weight). According to the kernel definition, three shared substrings are
obtained: S1, S2 and S3 (See Figures 3.2, 3.2 and 3.2). The respective weights
of each feature in A are calculated with:

weightw≥4(S1)A = 19 (3)

weightw≥4(S2)A = 7 + 6 = 13 (4)

weightw≥4(S3)A = 6 + 9 = 15 (5)

The embedding feature vector for A is:

fw≥4(A) = {19, 13, 15} (6)

The respective weights of each feature in B are calculated with:

weightw≥4(S1)B = 17 + 18 = 35 (7)

weightw≥4(S2)B = 6 + 5 = 11 (8)

weightw≥4(S3)B = 8 + 6 = 14 (9)

The embedding feature vector for B is:

fw≥4(B) = {35, 11, 14} (10)

7/14



8 Raul Torres, Julian Kunkel, Manuel F. Dolz and Thomas Ludwig

The inner product of these two vectors gives us the kernel value

kw≥4(A,B) =< fw≥4(A), fw≥4(B) >= 1018 (11)

A normalization step will use the weights of each string:

k̄w≥4(A,B) =
kw≥4(A,B)√

kw≥4(A,A) ∗ kw≥4(B,B)
=

kw≥4(A,B)

weightw≥4(A) ∗ weightw≥4(B)

(12)

k̄w≥4(A,B) =
1018

64 ∗ 52
=

1018

3328
= 0.3059 (13)

Fig. 3. S1 is the largest substring found on both examples

Fig. 4. S2 appears once as an independent case

Fig. 5. S3 appears twice as an independent case

4 Evaluation

4.1 Experiment Configuration

The I/O access patterns were taken from two different parallel I/O benchmarks
([14] and [15]). The patterns were generated from 4 different I/O forms of ac-
cessing the storage: (A) were those using Flash I/O, (B) were the ones using
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Random POSIX I/O, (C) were those using Normal I/O and (D) the ones using
Random Access I/O. For each pattern 4 additional synthetic copies were created.
Such copies introduced small mutations on the pattern; the idea behind these
mutations was the need to create access patterns that were, in theory, closer
to a determined example than the rest of the category members. So, from 22
examples we ended up with 110, distributed as follows: (A) 50 examples, (B) 20
examples, (C) 20 examples and (D) 20 examples. Each access pattern was con-
verted to the two proposed string representations: the one that took into account
the byte information of the operations and the one that totally ignored it. The
proposed Kast Spectrum Kernel function was applied to them, as well as the
Blended Spectrum Kernel proposed in the literature. The selected cut weight
values were the following: {21, 22, ..., 2n} : n = 10. If the matrices presented
negative eigenvalues, they were replaced by zero and the matrices rebuilt. All
the similarity matrices were analyzed with both Kernel PCA and Hierarchical
Clustering, the latest using the simple linkage method.

4.2 Kast Spectrum Kernel

The application of the proposed kernel function (Kast Spectrum Kernel) over
strings that preserved the byte information from the I/O operations, achieved
the best results when a small cut weight was used. The fact that small cut weights
were sufficient to achieve a meaningful clustering, eased the parametrization of
the comparison process. It was remarkable that both learning algorithms clearly
separated the same 3 clusters (See Figures 4.2 and 4.2). While Flash I/O (A) and
Random POSIX I/O (B) were separated independently, Normal I/O and Ran-
dom Access I/O (C-D) were placed on the same group. This corresponded to the
structure of each category: (A) examples contained contiguous write operations
with different byte values that were not present in the other categories. (B)
examples contained lseek operations not seen elsewhere. (C) and (D) shared
roughly the same pattern. Also, it is important to notice that there were not
misplaced examples on any of the groups.

In the case of the strings that ignored the byte information, such clear sep-
aration of clusters was not so easily achieved. For small cut weights only two
clusters were identified: Random POSIX I/O (B) was the only group indepen-
dently separated, while Flash I/O, Normal I/O and Random Access I/O (A-
C-D) conformed a second group. In order to obtain the same three clustering
groups identified using the other string category, the weight value had to be
increased, which made the parametrization more difficult. Notice that, regard-
less of the string representation, the smaller the cut weight the most expensive
the computation became, because the algorithm always started searching from
the substrings with the highest weight. According to the clustering analysis re-
sults one can infer that the usage of high cut weights is recommended to focus
only on finding general categories and lower cut weights to discriminate better
among examples. However, a small cut weight is always preferred, as it eases the
parametrization.

9/14
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Fig. 6. Kernel PCA for Kast Spectrum Kernel using byte information (cut weight =
2)

Fig. 7. Hierarchical clustering for Kast Spectrum Kernel using byte information (cut
weight = 2)

10/14
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4.3 Blended Spectrum Kernel

Given the particular form of the string representation we propose, where a group
of subsequent tokens can encode more meaningful information than a single one,
we discarded the bag-of-characters and the bag-of-words kernels. Experimental
evaluation showed also that the k-Spectrum kernel was not successful at finding
an acceptable clustering, a task where the Blended Spectrum Kernel had a bet-
ter performance. However, for strings containing byte information the obtained
clusters were not as diverse as those achieved with our solution (See Figures
4.3 and 4.3). In this case only Flash I/O (A) examples were independently sepa-
rated, while Random POSIX I/O, Normal I/O and Random Access I/O (B-C-D)
conformed a single group.

Fig. 8. Kernel PCA for Blended Spectrum Kernel using byte information (cut weight
= 2)

For the case of strings lacking the byte information, both clustering analysis
results were not satisfactory.

5 Related Work

Kluge [13] proposed an intermediate representation of I/O events from High Per-
formance Computing (HPC) applications as a Directed Acyclic Graph (DAG).
In this DAG vertices are used to represent events while edges are used to depict
the chronological order of the events. Kluge also proposed a redundancy elim-
ination step where adjacent synchronization vertices can be merged in a single

11/14
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Fig. 9. Hierarchical clustering for Blended Spectrum Kernel using byte information
(cut weight = 2)

one. Madhyastha et al. [16] applied two supervised learning algorithms to classify
Parallel I/O access patterns: a feed forward neural network and a hidden Markov
models based approach. Both strategies require training with previously labeled
examples. Behzad et al. [17] proposed and I/O auto tuning framework that ex-
tracts the patterns from an application and searches for a match on a database
of previously known pattern models. If there is a match, the associated model is
adopted on the fly during the execution of the application. A different abstrac-
tion approach was made by Liu et al. [2]. They used the I/O bursts registered on
noisy server-side logs of an application as a signature to find similarities between
I/O samples. The final signature is a 2D grid called CLIQUE [18] that relates
a correlation coefficient with time. Because the signature extraction was made
over log files there was zero overhead in the application performance. Koller
and Rangaswami [19] used disk static similarity and workload static similarity
at the block level to analyze the performance of concurrent applications of the
same file system. Unfortunately, we couldn’t find suitable studies on I/O pattern
similarity with kernel methods for comparing our results.

6 Conclusions and Future Work

In this paper we showed how the I/O traces of a parallel program can be used to
extract patterns and represent them as a string of tokens. The resulting strings
were compared using a novel kernel function proposed by the authors. The Kast
Spectrum Kernel emits a similarity matrix between examples that can be later
analyzed by a proper algorithm. This kernel was applied to a set of examples
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taken from a real parallel application, where 4 distinct patterns were present;
Kernel PCA and Hierarchical Clustering showed a consistent formation of 3
groups according to the pattern with no misplaced examples. The best results
were obtained when the string representation took into account the byte infor-
mation of the operations and the cut weight was small. It was observed that
the cut weight determined the granularity of the search, while the usage of the
byte information permitted the separation between examples of the same clus-
ter. These findings clearly show that both the proposed string representation and
the comparison method are suitable to compare I/O access patterns of a parallel
application. However, due to the fact that the proposed string representation is
independent from the domain, it can also be used to compare I/O access of a
sequential program. Future efforts of this project will focus on the comparison of
the intermediate representation delivered by the LLVM Compiler Infrastructure
using the string representation and kernel method here proposed.
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8. Gärtner, T., Lloyd J. W., and Flach, P. A.: Kernels for structured data. In ILP’02
Proceedings of the 12th international conference on Inductive logic programming.
pp. 66–83, Sidney (2002)
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