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Data-Driven Dynamic Modeling of Coupled
Thermal and Electric Outputs of Microturbines

Xiandong Xu, Member, IEEE, Kang Li, Senior Member, IEEE Hongjie Jia, Member, IEEE, Xiaodan Yu,

Jing Deng, and Yunfei Mu Member, IEEE,

Abstract—Microturbines are among the most successfully com-
mercialized distributed energy resources, especially when they
are used for combined heat and power generation. However,
the interrelated thermal and electrical system dynamic behaviors
have not been fully investigated. This is technically challenging
due to the complex thermo-fluid-mechanical energy conversion
processes, which introduce multiple time-scale dynamics and
strong nonlinearity into the analysis. To tackle this problem,

this paper proposes a simplified model which can predict the
coupled thermal and electric output dynamics of microtur-
bines. Considering the time-scale difference of various dynamic
processes occuring within microturbines, the electromechanical
subsystem is treated as a fast quasi-linear process, while the
thermo-mechanical subsystem is treated as a slow process with
high nonlinearity. A three-stage subspace identification method is
utilized to capture the dominant dynamics and predict the electric
power output. For the thermo-mechanical process, a radial
basis function model trained by the particle swarm optimization
method is employed to handle the strong nonlinear characteris-
tics. Experimental tests on a Capstone C30 microturbine show
that the proposed modeling method can well capture the system
dynamics, and produce a good prediction of the coupled thermal
and electric outputs in various operating modes.

Index Terms—Microturbine, combined heat and power, dy-
namic behavior, modeling, system identification.

NOMENCLATURE

Abbreviations

CHP Combined heat and power.

MT Microturbine.

DN Distribution network.

DERs Distributed energy resources.

NARMAX Nonlinear autoregressive moving average with

exogenous inputs models.

NARX Nonlinear autoregressive exogenous.

PSO Particle swarm optimization.

RBF Radial basis function.

N4SID Subspace state space system identification.

PDEs Partial differential equations.

AIC Akaike information criterion.
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MSE Mean squared error.

MAPE Mean absolute percentage error.

Notation

xt, yt State and algebraic variables of the thermo-

mechanical system.

xe, ye State and algebraic variables of the electro-

mechanical system.

ft Thermo-mechanical system model.

fe Electro-mechanical system model.

g Algebraic links between ft and fe.

p Position variables.

fes, fef Slow and fast subsystems of the electro-

mechanical system.

xes, xef Slow and fast variables of xs.

x̂es(k) State vector at time k
u(k), ŷe(k) Input and output vectors at time k.

ω(k), υ(k) Vectors of Gaussian distributed, zero mean,

white noise sequences.

A,B,C,D System model matrixes.

ŷt RBF network output.

y Actual output.

x Input vector.

λi Output layer weight of the ith hidden node.

σi,ci Center and width vectors of Gaussian func-

tion of the ith hidden node.

J Estimated residual of the fitted model.

d Total number of estimated parameters.

Ne, Nt Data record length of the electro-mechanical

and thermo-mechanical subsystems.

ωupper Upper bound of the MT rotational speed.

Pout Electro-mechanical model output.

I. INTRODUCTION

A new trend in the smart grid related studies is to integrate

multiple energy systems, especially at the microgrid level [1].

As one of the most successful commercial applications of

microgrids, combined heat and power (CHP) has drawn a

lot of interest in recent years due to its high efficiency and

low emission characteristics [2]. As the key component of the

CHP, microturbines (MT) can generate heat and electricity

simultaneously and thus have a significant impact on the

operation of both local energy services and the distribution

network (DN) [3]. In addition, MTs are widely used to smooth

other distributed energy resources (DERs) output fluctuations

and meet other requirements of the DN, due to their advantage
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of higher reliability, faster response, and so on. In order to

better manage the MT and CHP at both the microgrid and the

DN levels, an essential step is to develop an appropriate model

that can capture the relationship between the manipulated input

variables and the power and heat outputs.

However, in practice, MTs exhibit complex thermo-fluid-

mechanical energy conversion processes with strong nonlin-

earity [4]. Heat and power outputs of MTs depend on both

control actions and internal characteristics. For example, if a

MT is operated in parallel with the utility, and set to follow the

heat load, thermal system variation will affect the power output

and the DN operation simultaneously. Moreover, different time

scales and complex coupling of thermal and electric processes

make it more difficult to consider the two subsystem dynamics

in a unified model. To capture interrelations between the two

subsystems, establishing comprehensive yet simple enough

models becomes a crucial but challenging part of MT studies.

In the literature, MT modeling methods can be grouped

into two categories. One commonly used method is based on

mechanism analysis of various subsystems, including thermo-

mechanical subsystems [5], electric converters [6], the corre-

lation between the electric and thermo-mechanical subsystems

[7], the fuel control system [8], etc. The main limitations

of these methods include: 1) the models are often developed

near the rated operating points; 2) some internal parameters

are confidential, and thus hardly accessible; 3) operating

saturations caused by low pressure gas networks are not well

considered.

Data-driven identification offers an alternative approach to

model systems with strong nonlinearity and unknown parame-

ters. It has been employed in various engineering applications,

such as power plant emission prediction [9], communication

systems [10], polymer extrusion processes [11], etc. For mod-

eling MTs, different types of black-box models, such as non-

linear autoregressive moving average with exogenous inputs

models (NARMAX) [12], nonlinear autoregressive exogenous

(NARX) [13], neural network models [14], [15], and adaptive

network-based fuzzy inference systems [16], have been used

to capture gas turbine dynamics. Those models have been

proved effective in capturing the relationship between fuel

consumption and mechanical power output for a specific MT.

However, MTs may be owned by different third-parties, thus

the required operational data may not be fully available for

utilities. System operators may not be able to build identifi-

cation models from available data for assessing the dynamic

impacts of MTs on utilities and customers. Therefore, a priori

knowledge is needed to incorporate the interactions between

thermo-mechanical and electro-mechanical subsystems within

the CHP.

In this paper, a data-driven MT modeling method is pro-

posed combined with singular perturbation theories. The main

contributions are summarized as follows: 1) the feasibility

of building a simplified MT model is analyzed based on its

time-scale characteristics; 2) the electro-mechanical subsystem

is modeled by a three-stage subspace identification method

to predict the MT power output under different operating

conditions; 3) the thermo-mechanical subsystem is modeled

by a particle swarm optimization (PSO) assisted radial basis

function (RBF) by correlating the power output with the heat

output. Experimental results confirm that, with the proposed

method, a simplified model is able to represent the complex

energy conversion process in MTs and to produce accurate

predictions of the coupled power and heat outputs.

II. MECHANISM OF MT OPERATION

A microgrid with multiple energy systems is presented in

Fig. 1(a). It consists of a MT, a solar panel, energy storage

systems, an air-conditioner, and various types of loads. As

highlighted in the dotted greed cycle, electric, gas, and heat

systems become interrelated due to the existence of the MT.

From the view point of the utility, the microgrid can be

operated in two modes. In the islanded mode, without the

support of the electrical grid, heat and power energy balances

are closely related to MT outputs. In the grid-tied mode,

the microgrid can exchange power with an external network,

which indicates that the MT output adjustment (both heat and

power) can affect the DN operation. The natural gas network,

as the energy source of the MT, can also affect the microgrid

operation. Therefore, it is necessary to model the MT in order

to identify interactions among various systems and to assist

the microgrid management.

A. MT Model

In practice, MTs present diverse structures. This paper

focuses on a single-shaft MT that is widely used to meet local

energy demands. As illustrated in Fig. 1(b), the MT consists

Microturbine
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Utility for Gas

Utility for Electricity
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Electric Storage

Heat Storage

Integrated 

Control

Natural Gas Flow

Heat Flow
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(a) An example of microgrid configuration
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(b) An overview of single-shaft MT configuration

Fig. 1. Configurations of a microgrid and the embeded MT
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of a gas turbine, a permanent magnet synchronous generator,

and electronic converters. The general form of the model can

be expressed as





ẋt = ft(
∂xt

∂p
,xt,yt,u,xe,ye)

ẋe = fe(xt,yt,u,xe,ye)

0 = g(xt,yt,u,xe,ye)

(1)

where ft and fe represent thermo-mechanical and electro-

mechanical subsystem models, respectively, and g links these

two models algebraically. xt represents thermo-mechanical

subsystem state variables, such as the engine speed, the fuel

flow pressure, the component temperature, etc. p represents

position variables. yt stands for thermo-mechanical subsystem

algebraic variables which includes the exhaust gas tempera-

ture, the flow, etc. xe represents electro-mechanical subsystem

state variables, including the generator angle, converter control

system states, etc. ye represents electro-mechanical subsystem

algebraic variables, including the generator power output, and

the voltage, etc. u represents the control signal of the MT.

The electro-mechanical subsystem of the MT is closely

related to the DN analysis. Due to significant differences in

their response characteristics, thermo-mechanical subsystem

variables xt can be considered constant when analyzing the

electro-mechanical process. It has also been found that some

state variables dominate the MT dynamics [17]. Based on the

singular perturbation theory, the MT can be further described

as a cascaded system below:




ẋes = fes(xt,yt,u,xe,ye)

ǫẋef = fef (xt,yt,u,xe,ye)

0 = g(xt,yt,u,xe,ye)

(2)

where ǫ is a small non-negative scalar. xes and xef represent

slow and fast variables of xe. fes and fef represent slow and

fast subsystems of the electro-mechanical system.
By setting ǫ = 0, the fast dynamics of xe can be further

described by the algebraic equation fef for long-term studies.

Inspired by the two-time-scale theory in the hybrid energy

system [8] and electric power systems [18], the dominant

model (considered as the slow subsystem here) of the MT’s

electro-mechanical subsystem can be modeled as follows:




ẋes = fes(xt,yt,u,xe,ye)

0 = fef (xt,yt,u,xe,ye)

0 = g(xt,yt,u,xe,ye)

(3)

B. Heat and Output Control

To maximize the energy efficiency, the MT is usually

used to produce combined heat and power. According to the

objectives, two types of control methods are often used in the

MT management, namely heat tracking and electricity tracking

[19], as illustrated in Fig. 2.

In the electricity tracking mode, the control system is

designed to follow various electrical system requirements. For

example, if the MT is used as a slack bus in the DN operation,

the reference signal will be set to the rated frequency. Further-

more, the MT can be set to follow electric load variations. In
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Fig. 2. MT electricity and heat output control

both scenarios, the electricity control signals are converted to

the MT load signals and transmitted to the MT. To handle the

heat load mismatch, the dynamics of the thermo-mechanical

subsystem needs to be modeled.

In the heat tracking mode, the MT output is set to follow the

heat demand. The surplus/deficit electricity is balanced by the

utility, which implies that the heat load could affect the DN

directly in addition to the electric load variation. Compared

with the electric system, the response of the thermal system

to control signals is much slower, and therefore requires a

long-term dynamic model of MTs.

Considering different operating mechanisms and response

characteristics, the heat and power output could be described

by cascaded models in the two operating modes. In the

following, the MT will be modeled in a unified framework.

III. INTEGRATED MODELING METHOD

In this paper, an integrated modeling method is proposed as

shown in Fig. 3. The MT can be described by a cascaded

model as aforementioned. Thermo-mechanical and electro-

mechanical subsystems are considered as two single-input

single-output systems. The power output is considered as

the interconnection between the two subsystems. The electro-

mechanical subsystem is modeled by using a subspace iden-

tification method in order to represent key dynamics of the

model, while the thermo-mechanical subsystem is described by

the RBF model which has broad approximation capabilities.

The detailed procedure to build the MT model is presented

below.

Input and output data collection. Load signals are acquired

from control systems in the two operating modes. Different

control objectives of the MT should be identified in order to

obtain input and output signals. The power and heat outputs are

collected as outputs of the MT. According to various customer

requirements, electric load signals and power outputs, which

play a key role in the DN operation, are selected as inputs

and outputs of the electro-mechanical subsystem. The power
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Fig. 3. Framework of the integrated modeling method

output, which incorporates both load and disturbance signals

of the system, is selected as the input of the thermo-mechanical

subsystem model instead of the load signal.

Electro-mechanical subsystem modeling: To ensure the op-

erating efficiency, MTs are usually operated within a certain

range1 of the engine speed in normal operating conditions.

It has been shown that the electro-mechanical subsystem of

MTs exhibits a good linearity in the operating range [17].

This allows the MT model (3) to be built in the studied range

using the linear state space model (4), which can estimate both

system outputs and state variables. Considering the existence

of measurement noise in the field data, the subspace state space

system identification (N4SID) [20] is employed to identify

unknown parameters in (4).
{
x̂es(k + 1) = Ax̂es(k) +Bu(k) + ω(k)

ŷe(k) = Cx̂es(k) +Du(k) + υ(k)
(4)

where A, B, C , and D represent the system model matrixes,

x̂es(k), u(k) and ŷe(k) represent state, input and output

vector at time k, ω(k) and υ(k) are vectors of Gaussian

distributed, zero mean, white noise sequences, k = 1, 2, ..., Ne,

Ne is the length of the electro-mechanical system data record.

Thermo-mechanical subsystem modeling: The thermo-

mechanical subsystem includes the combustion process, the

heat transfer process, the heat exchanger, etc. The whole

process is described by partial differential equations (PDEs)

with strong nonlinearity. It has been shown that the solution

could be represented by superposition and composition of

continuous functions of single variables [21]. In the section

below, we will use the RBF neural model to describe such

underlying functions due to their simple topological structure

and universal approximation ability. A general representation

of the RBF network with m hidden nodes can be written as

[22]

ŷt(j) =
m∑

i=1

λiφi(x(j), σi, ci) = ΦΛ (5)

1The range can be obtained by monitoring the operational data of MTs.

where ŷt = [ŷt(1), ŷt(2), ..., ŷt(Nt)]
T represents the RBF

network output vector, Nt is the number of thermo-mechanical

subsystem data samples, x(j) represents the input vector

to the network including input and output variables at time

j, λi represents the linear output weight of the ith hidden

node, Λ = [λ1, λ2, ..., λm]T . φi(x(j), σi, ci) represents the

RBF of the ith hidden node at time j, Φ = [φ1, φ2, ..., φm].
In this paper, the Gaussian function is employed as the

basis function because of its good approximation capability,

c = [c1, c2, ..., cm]T and σ = [σ1, σ2, ..., σm]T represent the

center and width vectors of the Gaussian function.

Let yt = [yt(1), yt(2), ..., yt(Nt)]
T be the actual output

vector, then the network training aims to optimize c, σ, and

Λ to minimize the sum squared error

Q(σ, c,Λ) =

Nt∑

j=1

[yt(j)− ŷt(j)]
2 → min (6)

The corresponding least square estimation of the linear

output weight Λ can be given by Λ̂ = (ΦTΦ)−1ΦT y [22].

From a practical viewpoint, both the N4SID and RBF

models have computational problems which need to be solved.

• In the N4SID model, the system order must be prop-

erly selected to comprise the computational burden and

the model accuracy. Moreover, nonlinear characteristics

should be incorporated in order to deal with the internal

state and output saturations in the electro-mechanical

subsystem. To handle these issues, a three-stage modeling

method will be presented in order to describe the electro-

mechanical subsystem dynamic behaviors.

• In the RBF model, the widths and centers of the Gaussian

functions need to be selected in order to guarantee

good approximation performance. Also, considering the

correlations and noise between regressors, the informa-

tion matrix ΦTΦ is usually ill-conditioned, which may

affect the accuracy of the model coefficient calculation.

Therefore, it is crucial to select the most relevant and

significant terms from the candidate model set, to ensure

the the accuracy, as well as the computational cost of

the surrogate model. To achieve this goal, a PSO-assisted

RBF network will be applied in the thermo-mechanical

subsystem modeling, for predicting the heat output re-

lated to the power output.

IV. COMPUTATIONAL PROCEDURE

The computational procedure for implementing the inte-

grated modeling approach is presented below. The flowchart of

the electro-mechanical subsystem modeling is shown in Fig. 4,

and the flowchart of the thermo-mechanical subsystem model-

ing is described in Fig. 5. Details regarding the implementation

of the approach are given in the following subsections.

A. Electro-mechanical Subsystem Modeling

As illustrated in Fig. 4, a three-stage subspace identifi-

cation method is proposed to model the electro-mechanical

subsystem. A priori knowledge of MT dynamics is utilized

to determine the system order, and to incorporate system
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state saturation nonlinearity. The detailed modeling process

is presented below.

Stage I: System Order Estimation.

Step 1: Estimate the system order based on mechanism

analysis and historic information.

Step 2: Acquire data by monitoring the system operation

and/or specifically designed physical experiments.

Stage II: System Identification.

Step 3: Collect a sequence of input U0, U1, ..., U2i−1

and output Y0, Y1, ..., Y2i−1 data vectors defined in the

previous section (load signals and actual electric power

outputs).

Step 4: Check if the system order nx is specified in the

preprocessed data. If specified, the N4SID is utilized to

identify the system with nx as the number of relatively

large singular values (for details, see Appendix A). If not,

based on the information theory, a heuristic way will be

utilized to seek the model that has a good fit to the actual

data, but has few parameters. In this paper, the Akaike

Information Criterion (AIC), which takes into account the

number of parameters and the sample size, is employed

to select an appropriate order for the state space model

[20]. The AIC can be calculated by

AIC = ln(J(1 + 2
d

Ne
)) (7)

where d is the total number of estimated parameters, J is

AIC satisfied

Electro-mechanical 

subsystem data acquisition

Fundamental mechanism analysis 

Subspace 

identification

Y

Increase 

system order

From preprocessed data

N

Stage I: 
System Order
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System 

Identification

Stage III: 

Saturation

Consideration

Check if 

saturation exists

Output upper bound estimation

Y

N

Model output

A, B, C, D and K

Subspace 

identification

System model 

generation

System order 

available?

Fig. 4. Flowchart of the electro-mechanical system identification process.
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Fig. 5. Flowchart of the thermo-mechanical subsystem modeling process.

the estimated residual of the fitted model, calculated by

J =
∑Ne

t=1[ye(t)− ŷe(t)]
2.

Step 5: Calculate A, B, C , D as a system model

estimation.

Stage III: Saturation Consideration.

Step 6: Check if a saturation exists in the obtained data.

In the MT, the gas pressure is regulated by adjusting

compressor and valve positions to maintain the fuel intake

at a certain level. At a low fuel pressure level, the

MT power output will be constrained when the engine

speed reaches its upper bound. To capture the MT output

constraints, the saturation region of the engine speed is

monitored to adjust the model developed in Stage II.

Step 7: By comparing the estimated states with the nor-

malized observed states, the engine speed upper bound

ωupper can be estimated. To ensure system operation

security, a conservative upper bound is often used. Then

the model output Pout can be estimated as follow:

Pout =

{
ŷe(k), x̂es(k + 1) ≤ ωupper

Pupper
out , x̂es(k + 1) > ωupper (8)

Step 8: Model output: Design another group of sample

data to test the performance of the obtained model. If the

error is within the limit, then output the results.

B. Thermo-mechanical Subsystem Modeling

To deal with the issues of the RBF model mentioned in the

previous section, the PSO is employed to determine the width

and the center in each RBF node selection process [23]. The

fast recursive algorithm in [24] is utilized to select a small set

of RBF nodes and handle the ill-condition in a traditional least

square estimation method. Then the RBF network structure is

adjusted according to the net contribution of each hidden node.

The flowchart of the method is presented in Fig. 5. A brief

introduction of the modeling method is presented as follows.

Step 1: Input and output selection: Acquire and preprocess

experimental data. The electric output Pout, which is coupled
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with the heat output, can reflect the impact of disturbances

on the MT output. Therefore, Pout is selected as the RBF

model input. Exhaust gas temperature Tex which can be easily

monitored is chosen as the RBF model output to reflect the

slow dynamics of the MT heat output.

Step 2: PSO and RBF model initialization: Initialize the

PSO items, including the size of the swarm, the maximum

number of PSO iterations, the position range of the particles,

the velocity range of the particles, and the weight for the

velocity updating. Assign the particle solution to σ and c and

construct the corresponding candidate RBF basis vector as the

initial model for the next step.

Step 3: Forward model selection and regression: With the

initialized model, a residual matrix from the fast recursive

algorithm is adopted in the RBF. Hereby, the mean square

error (MSE) is employed as an estimator of the deviations

between the model output and the actual data. By integrating

with the PSO, σ and c are iteratively trained to minimize

the MSE. The selection process terminates until a criterion is

satisfied such as the AIC or a maximum number of centers

have been added. The MSE of the model (5) is defined as

MSE =
1

Nt

Nt∑

j=1

(yt(j)− ŷt(j))
2 (9)

Step 4: Backward network performance enhancement: In

this step, various hidden nodes are moved to the last position

in the full regression matrix of the RBF model. The nonlinear

parameters of the hidden nodes are then adjusted by using a

similar way as for the fast recursive algorithm. During the iter-

ation process, abundant hidden nodes should be pruned while

necessary nodes may be added into the network in some cases.

When the performance of the obtained model is acceptable,

the whole RBF neural model refinement procedure is then

terminated; otherwise, start a new performance enhancement

loop.

Step 5: Model parameter identification: With the obtained

terms in Step 4, the output layer weight vector of the RBF can

be calculated using a back substitution (see [24] for details).

Step 6: Model validation and output: If the pre-defined

criterion is not satisfied, adjust the PSO parameter and then

go to Step 2; otherwise, stop.

V. CASE STUDIES

In smart grid applications, the MT is usually accessed to

microgrids in order to meet heat and power demands of cus-

tomers. It also plays a key role in smoothing the fluctuations

of renewable outputs, such as wind and solar power, and

in assisting energy management and control of microgrids.

Therefore, the case studies are conducted in the microgrid

testbed with a Capstone C30 MT located at the Smart Grid

Laboratory of Tianjin University [25]. The microgrid consists

of multiple DERs, and it supplies energy to loads in forms

of heat and power. As shown in Fig. 6, the MT obtains fuel

from a local gas network that also supplies gas to the dining

room near the lab. Similar to the negative effect of a low

pressure gas network on the gas-fired power plant [26], it has

been observed that the gas consumption of the dining room can

Dining Room

Microgrid 

Testbed

External Gas Network

Natural Gas Pipeline

Microturbine 

Experimental Platform
Microgrid 

Testbed

Fig. 6. MT experimental platform and the natural gas supply network of its
surrounding areas.

affect the MT output in the lab, particularly during meal times

when the gas load level in the whole network is high, which

may cause output adjustment failures in microgrids. This effect

makes the lab an ideal place for investigating the impact of

the natural gas network on the smart grid operation through

MTs. Incorporating this effect, the proposed modeling method

is applied to modeling the MT and identifying the relationship

between its heat and power outputs. The rated power of the

MT is 30 kW. Detailed parameters can be found in [27]. It

is accessed to a 380 V low voltage distribution network and

a 5 kPa natural gas network. Measurements are recorded at a

rate of 4 samples per second. The operating data is collected

through remote monitoring software and the user interface port

of the MT. Datasets of the load signal, the power output, and

the exhaust gas temperature from physical experiments are

used to assess the ability of the integrated modeling method,

to characterize the coupled heat and power output behaviors

of the MT.

A. Implementation of Model Identification

As mentioned earlier, the MT power output Pout is usually

set above a certain value in order to ensure the operating

efficiency. Thus, a load signal ranging above 5 kW is chosen to

cover the normal operating range. The reactive power output of

the MT is set to zero in the whole process. Three model order

selection methods are compared to illustrate the effectiveness

of the proposed method as follows.

Dominant order selection: It has been suggested that MTs

behave as a 2nd order system [17][28], which indicates that

some state variables dominate the MT dynamics. Thus, a 2nd

order model is built using N4SID.

AIC based order selection: The AIC, which is a part of the

modeling method, is also utilized to select the system order.

As shown in Fig. 7, the minimum AIC is obtained at system
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order 7 and the AIC has almost no change when the system

order is larger than 7. Thus, the final model order is set to 7.

System order

0 5 10 15 20

A
IC

5

6

7

8

9

10

11

Fig. 7. The AIC of different system orders.

High order system: Due to the existence of the thermal

energy conversion process, the MT model can be described

by PDEs which is an infinite dimension system. Generally

speaking, a high order model could approximate the PDEs

process better. Thus, a high order system (80th model for

example) is simulated for comparison purposes.
To incorporate various impact factors, such as the pressure

level difference of the gas supply network, two groups of data

are acquired by monitoring the MT operation over different

periods of time. The first group is employed for model

identification in the normal range, and the second is used for

model saturation correction.
1) Model Identification: In the first group, the MT is oper-

ated in a normal operating range. The model is firstly obtained

using the proposed three-stage method. The relative outputs

of the models with different orders are shown in Fig. 8(a).

As previously informed, a higher order model provides more

accurate information, thus, the AIC model (dotted blue line)

potentially can provide better results than the lower order

dominant model (dashed green line). Both models show certain

mismatches in small scales. The high order model shows better

performance for short-term prediction of fluctuation behaviors

(see the dashed dotted red line). It can be found that all three

models produce a good approximation of the experimental

data, although minor mismatches exist. For comparison, the

power output in the case of the PSO-assisted RBF network

is also utilized to describe the input and output behaviors of

the MT electro-mechanical subsystem. Due to the nonlinear

approximation capability, the RBF network can estimate the

power output better in small scales, as shown in Fig. 8(a).

However, it cannot give MT internal state estimation, which is

required for the electric power system dynamic analysis. Since

the developed model is used for analyzing dynamic impacts

of MTs on microgrids and the DN, the models obtained from

the N4SID will be chosen in most scenarios.
To be consistent with electro-mechanical subsystem tests,

thermo-mechanical subsystem data is collected for the same

time periods with the above test. Here, exhaust gas temperature

Tex is used as an index to reflect the heat output. For compar-

ison purposes, both the proposed PSO assisted RBF network

and the N4SID method are adopted to model Tex. Considering

the thermal system has infinite dimensions, the N4SID models

(a) Electro-mechanical subsystem
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Fig. 8. Normal case identification results

with low order cannot approximate Tex satisfactorily (see

Fig. 8(b). It can also be found that although the high order

model leads to improved accuracy, Tex still cannot be properly

predicted. When the proposed PSO assisted RBF network is

used, Tex can be estimated accurately, as shown in Fig. 8(b),

which demonstrates the effectiveness of the proposed method

in the thermo-mechanical subsystem modeling.

To quantify the accuracy of different models, two indices

are used to illustrate both the absolute error and the relative

error. The first index is the MSE defined in (9). The second

index is the Mean Absolute Percentage Error (MAPE), which

is defined as [29]

MAPE =
100%

n

n∑

i=1

f(i)− a(i)

a(i)
(10)

where f(i) and a(i) denote the forecast and actual values for

the ith data. n is the length of the recorded data.

The MSE and MAPE of the model outputs are presented in

Table I to illustrate both the absolute error and the relative

error. As presented in Table I, both the MSE and MAPE

decrease significantly when a large system order is selected

for the state space model, which is consistent with previous

discussions. However, higher order models imply greater com-

putational costs, and are thus not suitable for modeling when
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there is a requirement for the calculation speed. The PSO-

assisted RBF model can provide better results than the N4SID

on both eletro-mechanical and thermo-mechanical subsystems.

But it should be noticed that the accuracy difference between

the N4SID and the RBF network on the electro-mechanical

subsystem identification, is not as obvious as the thermo-

mechanical subsystem. The N4SID model is of similar accu-

racy to the RBF network in modeling the electro-mechanical

subsystem, and it provides the internal state estimation as

mentioned above. Therefore, the dominant model and the AIC

model with lower orders, are more suitable for the electro-

mechanical subsystem modeling, while the PSO assisted RBF

network is better at thermo-mechanical subsystem modeling.

TABLE I
THE MSE OF THE NORMAL CASE IDENTIFICATION TEST

Model name
Power output Exhaust gas temperature

MSE MAPE MSE MAPE
Dominant model (order: 2) 0.170 1.553 264.855 2.126
AIC based model (order: 7) 0.157 1.317 265.229 2.136

High order model (order: 80) 0.115 1.119 29.530 0.631
PSO-Assisted RBF model 0.073 0.730 1.459 0.090

2) Saturation Consideration: In this test, another group of

data is added for training in order to incorporate the MT

state saturation. As highlighted in the previous section, the

MT output may saturate in some scenarios due to the low

gas pressure or generator speed constraints. To estimate the

saturation, state variables obtained from the N4SID are utilized

to estimate the MT engine speed. As shown in Fig. 9, the MT

speed and power outputs within the range of 5 kW and 20

kW can be approximated accurately. Yet, some mismatches

exist between the linear model predicted output and the actual

output when the power output is above 20 kW, as shown in the

green line and black line of Fig. 9(b). In addition, it can be seen

that the output saturation is consistent with the engine speed

variation. Therefore, the MT power output under saturation can

be captured with the predefined speed constraint according to

(8), as illustrated in Fig. 9(a). It can be seen from Fig. 9(b)

that although some mismatches exist in the output prediction,

the results are generally acceptable and thus useful in practice.

The performance of the thermo-mechanical subsystem

model is also checked using the same period of saturation

training data. It can be observed from Fig. 9(c) that the exhaust

gas temperature is predicted well in the whole training sample

data range. Even for the time that saturations and low load

levels occur, it can still produce a close enough prediction,

which indicates that the obtained model is able to capture

the nonlinear characteristics of the MT even beyond a certain

amount of the designed operating range.

B. Model Verification

In order to demonstrate the robustness of the proposed mod-

eling method, another case with low load operating scenarios

is investigated. Both the increase and decrease of the power

output are studied. As shown in Fig. 10, the model outputs

are close to the measured results in most scenarios. It can

also be observed that the two subsystem models have different

capabilities in handling the low load conditions, due to linear
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Fig. 9. Saturation case identification results.

and nonlinear characteristics of the two models in essence.

On one hand, the electro-mechanical subsystem model output

deviates from the experiment data when the power output is

lower than 5 kW (see the right area of the dashed brown line).

The outputs of the model with and without saturations are

close to each other, since no saturations occurred in this case.

On the other hand, the thermo-mechanical subsystem model

can still obtain a good result although a minor mismatch can

be found in the low load area.

Note that the proposed model can not only predict the

behaviors of the MT heat and electric outputs in normal

states, but also take into account the saturation status. Thus,

it allows the simulation of long-term operation of MTs in

smart applications with low computational complexity, which

can be used to analyze the relationship between the smart

grid and other energy systems. By quantifying the inter-

relations between the thermal system and the heat system

in both normal and saturation states, the proposed model

could assist coordinating the thermal and electrical systems

of the microgrid. For example, when a MT is used to smooth

the fluctuated renewable generation output, the relative heat

output can be estimated, which can then be used in the heat

system management. The proposed model can also help avoid
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Fig. 10. Comparison of experiment data and model outputs.

scheduling failures of the smart grid caused by natural gas

network constraints during the MT output adjustment process.

It is worth mentioning that characteristics of MTs are not the

same when the external environment changes. Thus, further

mechanism analysis and more training data, such as inlet

pressure, exhaust gas flow volume, etc. are required to ensure

the model accuracy in practice. Better results may be obtained

if these can be incorporated into the modeling process. In

future work, MTs from other manufacturers will be utilized as

well to further test the performance of the proposed method.

Additionally, since the PSO is employed to facilitate the

RBF model construction, the computational time is inevitably

significantly increased and not ensured due to the stochastic

nature of the algorithm. Thus, the proposed method is rec-

ommended only when the running time is not important. For

online applications, other deterministic initialization schemes

can be utilized.

VI. CONCLUSION

In this paper, an integrated modeling method is proposed for

MT heat and electric output predictions in different operating

modes. To achieve this, the feasibility to decouple thermo-

mechanical and electro-mechanical processes is firstly ana-

lyzed. Then a three-stage subspace identification method is

presented to model the electro-mechanical subsystem output

characteristics and key states of a MT, incorporating the oper-

ating saturation estimation. Further, a PSO assisted RBF model

is employed to describe the thermo-mechanical subsystem

behavior. Experimental results confirm the effectiveness and

accuracy of the obtained models in a variety of scenarios using

a Capstone C30 MT installed in a microgrid testbed.

The results demonstrate that the obtained electro-mechanical

subsystem model at lower orders can predict the power output

well, which agrees with previously reported theoretical and

experimental findings. Also, the saturation caused by natural

gas network pressure constraints can be captured by the

obtained model. Additionally, the proposed thermo-mechanical

system model can represent the actual thermal dynamic pro-

cess with good accuracy over a wide operating range. Based

on the developed model, an integrated energy management

system for microgrids is currently under investigation. This

will facilitate the study of the energy system integration in

the smart grid. Although the modeling method developed in

this paper is designed for microturbines, it can also be used to

analyze the interactions and interdependencies between energy

infrastructures with different types of coupling units.

APPENDIX

NUMERICAL ALGORITHM FOR SUBSPACE STATE SPACE

SYSTEM IDENTIFICATION

The N4SID is implemented through the following steps:

Step 1: Construct the Hankel matrices using Up and Uf as

the past and future inputs matrix, Yp and Yf as the past and

future outputs matrix and define Wp , [Up Yp]
T
∈ ℜ(1+l)i×j

Step 2: Left and right multiply Yf/U
⊥
f with N4SID matrices

W1 and W2 such that

O = W1(Yf/U
⊥
f )W2 = I(Yf/U

⊥
f )(Wp/U

⊥
f )†Wp (11)

where † represents Moore-Penrose pseudoinverse, U †
f is the

complimentary space of Uf , and / stands for space subtraction.

Step 3: Perform singular value decomposition on (12). Use

the number of relative large singular values or specified order

as system order estimation.

O =
[
U1 U2

] [S1 0
0 S2

] [
V T
1

V T
2

]
(12)

Step 4: Obtain the extended observability matrix and esti-

mated state matrix Xi:

Γ̂ = W−1
1 U1S

1/2
1 , Xi = S

1/2
1 V T

1 W−1
2 (13)

Step 5: Estimate the system matrix based on the extended

observability matrix:

A = (Γ̂)†Γ̂, C = Γ̂(1 : l, :) (14)

where l is the number of outputs; Γ̂ represent Γ̂ without the

last l rows; Γ̂ represents Γ̂ without the first l rows.

Step 6: Calculate matrices B and D by solving the following

over-determined equations in a least-square sense:
[
X̂i+1

Ui

]
=

[
S1 0
0 S2

] [
X̂i

Ui

]
+ ǫ (15)

where ǫ represents the residual matrix. X̂i and X̂i+1 are the

estimated state sequences.
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