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STRONG F -REGULARITY AND GENERATING MORPHISMS OF

LOCAL COHOMOLOGY MODULES

MORDECHAI KATZMAN AND CLETO B. MIRANDA-NETO

Abstract. We establish a criterion for the strong F -regularity of a (non-Gorenstein)
Cohen-Macaulay reduced complete local ring of dimension at least 2, containing a perfect
field of prime characteristic p. We also describe an explicit generating morphism (in the
sense of Lyubeznik) for the top local cohomology module with support in certain ideals
arising from an n × (n − 1) matrix X of indeterminates. For p ≥ 5, these results led us
to derive a simple, new proof of the well-known fact that the generic determinantal ring
defined by the maximal minors of X is strongly F -regular.

1. Introduction

In this paper we deal with the property of strong F -regularity as well as the detection of an
explicit generating morphism (in the sense of Lyubeznik [25]) for certain local cohomology
modules. As the main application of our results, we recover, in a quite simple way, the fact
that the determinantal ring A defined by the maximal minors of an n × (n − 1) generic
matrix over a perfect field of prime characteristic p ≥ 5 is strongly F -regular, a result that
was proved, in more generality, first by Hochster and Huneke [17] and later by Bruns and
Conca [3] via completely different methods.

It is worth mentioning that Conca and Herzog [6], also Glassbrenner and Smith [13],
proved that certain types of ladder determinantal rings are strongly F -regular (hence F -
rational and F -pure as well). Moreover, the F -purity of Hankel determinantal rings has
been verified in [7].

The central result of the present paper, Theorem 4.6, provides an effective test for the
strong F -regularity of a (non-Gorenstein) Cohen-Macaulay reduced complete local domain
A of dimension at least 2, containing a perfect field of positive characteristic. As we point
out in Remark 4.8, it affords a structural similarity with the characterization given in [12].
We apply the theorem in the case where A is the determinantal ring defined by the minors
of order 2 of a 3× 3 generic symmetric matrix over a field of characteristic 2 or 3 (Example
4.9). In Example 4.10 we illustrate that our result may fail if we relax the main hypothesis.
Furthermore, we show in Example 4.11 that the converse of our theorem is not true.

Another main result (Proposition 5.4) gives an explicit generating morphism for the local
cohomology module

H2
In−1(X)(k[[X]])
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where X is an n× (n− 1) matrix of indeterminates over a field k of positive characteristic,
for any n ≥ 2. As it turned out, we prove in Remark 5.5 that an adaptation of the proof
also yields a generating morphism for the module

H3
In−1(X)+In−2(X′)(k[[X]])

whenever n ≥ 3, where X ′ is the submatrix formed by the first n− 2 rows of X. Needless
to say, the study of local cohomology supported at determinantal ideals has been a major
topic of research under various viewpoints (see for example [26], [29], [30] and [34]). Our
result is interesting in its own in view of Lyubeznik’s theory [25], and moreover it will serve
as a crucial ingredient in the main application furnished in this paper, regarding the strong
F -regularity of certain rings. More precisely, from Theorem 4.6 and Remark 5.5 we derive,
in Corollary 5.6, a new and quite simple proof of the well-known fact mentioned in the
first paragraph: the generic determinantal ring k[[X]]/In−1(X) is strongly F -regular if the
ground field k is perfect and of characteristic ≥ 5.

We close the paper with a few observations and questions on the extension of our methods
to the case of arbitrary (not necessarily maximal) minors as well as to other types of
determinantal rings, such as those defined by minors of a generic symmetric matrix. While
the structure result given in Proposition 5.4 and the related fact observed in Remark 5.5 are
no longer valid in these situations, it would be interesting to explore adapting our methods
with a view to tackling these new cases.

2. Preliminaries: notions and methods in prime characteristic

In this section we provide a brief review on the main concepts and methods in positive
characteristic that we will use in this paper. Unless explicitly stated otherwise, by the term
ring we shall mean, in the entire paper, Noetherian commutative unital ring.

Let A be a ring of prime characteristic p. For an integer e ≥ 0, let f e : A→ A be the eth
Frobenius endomorphism of A, i.e., the function f e(a) = aq for a ∈ A and q = pe.

Given an ideal a ⊂ A, we denote by a[q] the ideal generated by the qth powers of all
elements of a. Clearly, if a = (x1, . . . , xn) then

a
[q] = (xq1, . . . , x

q
n).

Definition 2.1. The tight closure of an ideal a ⊆ A is the ideal a∗ consisting of x ∈ A such
that cxq ∈ a[q] for some c ∈ A not in a minimal prime of A, and all large q = pe.

It turns out that a∗ is an ideal satisfying a ⊆ a∗ = (a∗)∗, and a is said to be tightly closed
if a = a∗. For details on this closure operation we refer to [15] and [18].

Given an A-module M , we can give it a new A-module structure via f e. To this end, let
F e
∗M stand for the additive Abelian group M , with elements denoted by F e

∗ a, a ∈M , and
endow F e

∗M with the A-module structure given by aF e
∗m = F e

∗ a
pem.

Definition 2.2. (cf. [17] and [16, Section 5]) The ring A is said to be

(a) strongly F -regular, if for each non-zero c ∈ A, the A-linear map A → F e
∗A sending

1 to F e
∗ c splits for all large e;

(b) weakly F -regular, if every ideal in A is tightly closed;
(c) F -rational, if every parameter ideal in every localization of A is tightly closed;
(d) F -pure, if for all A-modules M , the map f ⊗A 1 : A⊗AM → F 1

∗A⊗M is injective.

It is well-known that (a) ⇒ (b) ⇒ (c), (b) ⇒ (d) (cf. [11]), and (c) implies that A is a
Cohen-Macaulay normal domain (cf. [16]).
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Given any A-linear map g : M → F e
∗M , we have an additive map g̃ : M → M obtained

by identifying F e
∗M with M . We point out that g̃ is not A-linear; instead, it satisfies

g̃(am) = ap
e

g̃(m) for all a ∈ A and m ∈ M . We call additive maps with this property
eth Frobenius maps. Conversely, a Frobenius map h : M → M defines an A-linear map
M → F e

∗M given by m 7→ F e
∗h(m).

To keep track of Frobenius maps we introduce the following skew-polynomial rings. Let
A[Θ; f e] be the free A-module

⊕
i≥0AΘ

i and give A[Θ; f e] the structure of a ring by defining

the (non-commutative) product (aΘi)(bΘj) = abp
ei

Θi+j (see [24, Chapter 1] for a more
general version of this construction). Now an eth Frobenius map g̃ on an A-module M
corresponds to an A[Θ; f e]-module structure on M where the action of Θ on M is given by
Θm = g̃(m) for all m ∈M .

A crucial set of tools in the prime characteristic toolkit are the Frobenius functors which
we now define. For any A-module M and e ≥ 1, we can extend scalars and obtain the
F e
∗A-module F e

∗A⊗AM . If we now identify the rings A and F e
∗A, we obtain the A-module

A⊗R M where for a, b ∈ A and m ∈ M , a(b ⊗m) = ab ⊗m and ap
e

b ⊗m = b⊗ am, and
we denote this module by F e

A(M). Clearly, homomorphisms M → N induce A-linear maps
F e
A(M) → F e

A(M) and thus we obtain the eth Frobenius functors F e
A(−). When the ring A

is regular, a classical result due to Kunz (cf. [23]), which we shall use tacitly in this paper,
states that the functor F e

A(−) is exact. A useful consequence is that in this case, if a ⊂ A

is an ideal, then the A-modules A/a and A/a[p] possess the same set of associated primes
(cf. [19, Proposition 21.11]).

An eth Frobenius map g :M →M gives rise to an A-linear map g : F e
R(M) →M defined

by g(r ⊗m) = rg(m); this is well defined since for all a, b ∈ A and m ∈M

g(ap
e

b⊗m) = ap
e

bg(m) = bg(am) = g(b⊗ am).

In the special case when M is an Artinian module over a complete regular ring, this gives
a way to define a “Matlis-dual which keeps track of Frobenius” functor, which we describe
next.

Henceforth in this paper we adopt the following notation.

Notation 2.3. Let (R,m) be a d-dimensional complete regular local ring of prime charac-
teristic p and let A be its quotient by an ideal I ⊂ R. We will denote E = ER(R/m) and
EA = EA(A/mA) = annE I the injective hulls of the residue fields of R and A, respectively.
The Matlis dual functor HomR(−, E) will be denoted (−)∨.

A crucial ingredient for the construction that follows is the fact that for both Artinian
and Noetherian modules R-modules M , there is a natural identification of F e

R(M)∨ with
F e
R(M

∨) ([25, Lemma 4.1]) and henceforth we identify these tacitly. A map of Artinian
R[Θ; f e]-modules ρ :M → N yields a commutative diagram

F e
R(M)

F e

R
(ρ)

//

1⊗Θ
��

F e
R(N)

1⊗Θ
��

M
ρ

// N
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and an application of the Matlis dual gives the commutative diagram

N∨
ρ∨

//

1⊗Θ∨

��

M∨

1⊗Θ∨

��

F e
R(N)∨

F e

R
(ρ∨)

// F e
R(M)∨

Define Ce to be the category of Artinian R[Θ; f e]-modules and De the category of R-linear
maps N → F e

R(N) for Noetherian R-modules N , where morphisms in De are commutative
diagrams

(1) N
ϕ

//

ξ
��

M

ζ
��

F e
R(N)

F e

R
(ϕ)

// F e
R(M)

The construction above yields a contravariant functor ∆e : Ce → De, and this functor is
exact [2, Chapter 10]. Furthermore, an application of the Matlis dual to (1) yields

(2) F e
R(M

∨)
F e

R
(ϕ∨)

//

ζ∨

��

F e
R(N

∨)

ξ∨

��

M∨
ϕ∨

// N∨

.

which can be used to equip M∨ and N∨ with R[Θ; f e]-module structures given by Θm =
ζ∨(1 ⊗m) and Θn = ξ∨(1 ⊗ n), respectively. With these structures, ϕ∨ is R[Θ; f e]-linear.
This construction yields an exact contravariant functor Ψe : De → Ce. Now, after the
identification of the double Matlis dual (−)∨∨ with the identity functor on Artinian and
Noetherian R-modules, the compositions Ψe ◦∆e and ∆e ◦Ψe yield the identity functors on
Ce and De, respectively (cf. [20] for details). In this sense, we can think of ∆e as the Matlis
dual that keeps track of a given Frobenius map.

In this paper we will focus our attention on a specific family of Artinian modules with
Frobenius maps, namely, the local cohomology modules HdimR

m (R) ∼= E and H•
m(A), their

submodules and homomorphic images. Recall that for any ideal J in a commutative ring S
of prime characteristic, the Frobenius map f : S → S induces a Frobenius map H i

J(S) →
H i

J(S) ([19, Chapter 21]), and when J is a maximal ideal, these local cohomology modules
are Artinian.

Finally, we recall some of the constructions introduced in Lyubeznik [25]. An R-module
M together with an isomorphism θ : M → FR(M) is an F -module with structural isomor-
phism θ. If M is an R-module and φ : M → FR(M) is R-linear, we obtain the following
F -module as a direct limit

M = lim
−→

(M
φ−→ FR(M)

FR(φ)−−−−→ F 2
R(M)

F 2

R
(φ)−−−−→ · · · )

We call such an F -module a F -finite F -module with generating morphism φ (if φ is injective,
we call φ a root of M).

IfM is Artinian as an R[Θ; f ]-module, there is a natural R-linear map αM : FR(M) →M ,
given by αm(r ⊗m) = rΘm with Matlis dual map α∨

M : M∨ → FR(M)∨ ∼= FR(M
∨). We
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can now define Lyubeznik functor as

HR,A(M) = lim
−→

(M∨ αM−−→ FR(M
∨)

FR(αM )−−−−−→ F 2
R(M

∨)
F 2

R
(αM )−−−−−→ · · · )

which is an exact, contravariant functor from the category of Artinian R[Θ; f ]-modules to
the category of F -finite F -modules.

3. Generating morphisms of local cohomology modules

In this section we will further assume that the ring A = R/I is reduced, Cohen-Macaulay
of dimension d ≥ 1, and will write h = height I. Our objective is to describe some generating
morphisms for Hh

I (R), the only non-vanishing local cohomology module with support at I
(cf. [28, Proposition III.4.1]).

First we recall a basic fact:

Lemma 3.1. ([4, Proposition 3.3.18]) Let B be a Cohen-Macaulay ring having a canonical
module ωB. If B is generically Gorenstein then ωB can be identified with an ideal K ⊂ B.
For any such identification, either K has height 1 (in which case B/K is Gorenstein) or
K = B.

Since our ring A is Cohen-Macaulay and reduced (hence, generically Gorenstein), Lemma
3.1 implies that the canonical module ω = ωA of A can be identified with an ideal Ω/I ⊂ A,
for a suitable ideal Ω ⊃ I which has height h+ 1 if Ω 6= R.

We also invoke the following observation:

Lemma 3.2. ([27, Example 3.7]) If (B, n) is a complete Cohen-Macaulay local ring of
dimension b ≥ 1 containing a field of positive characteristic, then the B-module of all
Frobenius maps on Hb

n(B) is free of rank 1, generated by the natural map induced by the
Frobenius endomorphism of B.

Next we furnish a result that will be extremely useful in the sequel, in particular for our
Theorem 4.6 (where we furnish a criterion of strong F -regularity). Further details, even in
more generality, can be found in [1, Subsection 3.4.2], [21, Subsection 5.3] and [25, Section
4], but we supply a proof herein for the reader’s convenience.

Proposition 3.3. Assume that d ≥ 1.

(i) We can identify Hd
m(A) = annE(I)/ annE(Ω);

(ii) The R-module of all Frobenius maps on Hd
m(A) is isomorphic to

((I [p] : I) ∩ (Ω[p] : Ω))/I [p]

(iii) Under the isomorphism in (ii), the natural Frobenius map on annE(I)/ annE(Ω)
is given (up to a unit) by uT , where T is the natural Frobenius map on E, u ∈
(I [p] : I) ∩ (Ω[p] : Ω), and the image of u in ((I [p] : I) ∩ (Ω[p] : Ω))/I [p] generates this
module.

Proof. The inclusion ω ⊂ A is compatible with the Frobenius endomorphism f : A → A,
and the natural short exact sequence

0 −→ ω −→ A −→ A/ω −→ 0

induces an exact sequence of A[Θ; f ]-modules

Hd−1
m (A) −→ Hd−1

m (A/ω) −→ Hd
m(ω) −→ Hd

m(A) −→ Hd
m(A/ω).
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Since A is Cohen-Macaulay, Hd−1
m (A) = 0, and also Hd

m(A/ω) = 0 as dim(A/ω) < d (or
trivially if ω = A). Moreover, we can identify Hd

m(ω) = EA = annE(I). Since A/ω ∼= R/Ω
is Gorenstein (cf. [4, Proposition 3.3.11(b)]), we get that Hd−1

m (A/ω) is the injective hull
of the residue field of A/ω, hence the annihilator of Hd−1

m (A/ω) is ω = Ω/I, and we may
write Hd−1

m (A/ω) = annE(Ω). It follows a short exact sequence

(3) 0 −→ annE(Ω) −→ annE(I) −→ Hd
m(A) −→ 0

where the injection is an inclusion. This gives (i).

An application of the functor ∆1 described in Section 2 to the short exact sequence of
R[Θ; f ]-modules (3) yields a short exact sequence in D1

(4) 0 // Ω/I //

u
��

R/I //

u
��

R/Ω //

u
��

0

0 // Ω[p]/I [p] // R/I [p] // R/Ω[p] // 0

where the vertical maps are multiplication by some u ∈ R. In order for these maps to be
well-defined, we must have u ∈ (I [p] : I) ∩ (Ω[p] : Ω). Since Ω/I must contain a non-zero-

divisor, the left-most vertical map is zero if and only if u ∈ I [p]. Conversely, given any
u ∈ R that makes (4) commute, an application of the functor Ψ1 will endow the modules
in (3) with an R[Θ; f ]-module structure making the maps there R[Θ; f ]-linear.

As for (iii), Lemma 3.2 shows that the natural Frobenius map on Hd
m(A) generates the

module of all Frobenius maps on Hd
m(A). �

Remark 3.4. From the proof above and the well-known description of Hh
I (R) as the F -

module HR,A(H
d
m(A)), it follows that if u ∈ R is such that its image modulo I [p] generates

the cyclic module ((I [p] : I) ∩ (Ω[p] : Ω))/I [p], then the (well-defined) multiplication map

Ω/I
·u−→ Ω[p]/I [p]

is isomorphic to a generating morphism of Hh
I (R).

4. A general criterion of strong F -regularity

As in the previous section, we let A = R/I be a Cohen-Macaulay reduced ring of dimen-
sion d ≥ 1 (if d = 0 then A is simply a field), where (R,m) is a formal power series ring over
a field k of characteristic p > 0, which, moreover, we shall tacitly assume to be a perfect
field, and we let Ω/I be a canonical ideal of A.

In accordance with standard terminology, we say that a radical ideal J ⊃ I defines the
singular locus of A if Sing(A) = V (J), i.e., for a prime ideal p ⊃ I, the local ring Ap/I is

regular if and only if p + J . In order to identify such an ideal in general, we may simply
resort to the classical method by means of (formal) derivatives, namely, if J stands for the
Jacobian matrix of some (in fact, any) set of generators of I, then we can take

J =
√
Ih(J ) + I

where h is the height of I and Ih(J ) is the ideal generated by the subdeterminants of J
of order h.

We consider, in addition, three more definitions (details on the first two notions can be
found, under different terminology, in [20]).

Definition 4.1. Fix some v ∈ R. An ideal L ⊂ R is said to be v-compatible if vL ⊂ L[p].
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Note that L is v-compatible if and only if annE(L) is invariant under vT , where T : E → E
is the natural Frobenius map. In this case, the map

R/L
·v−→ R/L[p]

is well-defined. For instance, if u ∈ R stands for an element whose image in R/I [p] generates

the cyclic module ((I [p] : I) ∩ (Ω[p] : Ω))/I [p] (see Proposition 3.3) then, clearly, I and Ω –
as well as (0) and R – are u-compatible ideals.

Definition 4.2. Fix some v ∈ R. Given an ideal L ⊂ R, the ⋆v-closure of L, denoted L⋆v ,
is the smallest v-compatible ideal that contains L. When there is no ambiguity as to the
element v, we simplify L⋆v to L⋆.

A useful fact about this closure is that L⋆ = R if and only if Lv * m[p].

Definition 4.3. Let (B, n) be a local ring of dimension b and prime characteristic p, and
let F : Hb

n(B) → Hb
n(B) be the natural Frobenius action. A submodule N ⊂ Hb

n(B) is said
to be F -stable if F (N) ⊂ N .

Next we recall a couple of key ingredients that we will employ in the proof of Theorem
4.6.

Lemma 4.4. (De Stefani–Núñez-Betancourt [8]) Let B be an excellent local ring of posi-
tive characteristic and satisfying S2 (e.g., if B is Cohen-Macaulay). Suppose that B has a
canonical ideal K such that B/K is F -rational. Then, B is strongly F -regular.

Lemma 4.5. (Smith [33]) Let (B, n) be an excellent Cohen-Macaulay local ring of dimension
b and positive characteristic. Then, the ring B is F -rational if and only if Hb

n(B) has no
proper non-trivial F -stable submodule.

The theorem below gives a sufficient condition for the strong F -regularity of our d-
dimensional ring A = R/I with canonical ideal Ω/I (we maintain the setup and notation
as in the beggining of the section).

Theorem 4.6. Suppose that Ω 6= R and d ≥ 2. Let J ⊂ R define the singular locus of
R/Ω. If

J (Ω[p] : Ω) * m
[p]

then A is strongly F -regular.

Proof. Define B = A/ω ≃ R/Ω. By Lemma 3.1, the ring B is Gorenstein of dimension
b = d − 1 ≥ 1. According to Proposition 3.3, there is an element v ∈ R whose image in
R/Ω[p] generates (Ω[p] : Ω)/Ω[p] as a cyclic module and such that vT is the natural Frobenius
map on Hb

m(B).
Assume that

J (Ω[p] : Ω) * m
[p].

By Lemma 4.4, it suffices to prove that the (non-zero) ring B is F -rational. We can identify

Hb
m(B) = annE(Ω)

so that a proper non-trivial F -stable submodule N ⊂ Hb
m(B) can be written as N =

annE(K) for some v-compatible ideal K such that Ω ( K ( R. What we shall prove is
that there is no such K (hence no such N). This, together with Lemma 4.5, will imply the
F -rationality of B.
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We will prove, more precisely, that the smallest v-compatible ideal that strictly contains
Ω is R. To see this, the first step is to invoke the fact described by means of a general algo-
rithm in [22], which guarantees that the smallest radical v-compatible ideal which properly

contains Ω is equal to
√
L⋆ (⋆-closure taken with respect to Ω), where L := J ∩ J ′ and

J ′ = annR

(
Ω[p] : Ω

Ω[p] + vR

)
.

But, by the very nature of v, we have Ω[p] : Ω = Ω[p] + vR, which yields J ′ = R and hence
L = J . Note that the hypothesis J(Ω[p] : Ω) * m[p] is equivalent to

Jv * m
[p]

which in turn means that J⋆ = R, i.e.,
√
L⋆ = R. We will show that every v-compatible

ideal is radical, and this will finish the proof.
The condition Jv * m[p] forces v /∈ m[p], which implies the injectivity of the Frobenius

map vT : E → E. To see this, set

K = {σ ∈ E | (vT )(σ) = 0}

which is the largest submodule of E killed by vT . Moreover, the inclusion K ⊂ E is
compatible with the Frobenius action. It follows that

K = annE(I1(v))

where I1(v) is the smallest ideal whose Frobenius power contains v. But v /∈ m[p], so that
I(v) = R and therefore K = 0, as needed.

Finally, by [31, Corollary 3.7] (see also [9, Theorem 3.6]), the injectivity of vT implies
that all v-compatible ideals are radical. �

Corollary 4.7. Assume that Ω 6= R = k[[x1, . . . , xn]], and that R/Ω is locally regular on
the punctured spectrum (i.e., Rp/Ωp is regular for every p 6= m). If d ≥ 2 and

Ω[p] : Ω * (m[p], (x1 · · · xn)p−1)

then A is strongly F -regular.

Proof. In this situation we have J = m, and, moreover, as x1, . . . , xn is a regular sequence,
(m[p], (x1 · · · xn)p−1) = m[p] : m. Now the result follows from Theorem 4.6. �

Remark 4.8. Fedder’s criterion of F -purity (cf. [10, Theorem 1.12]) states that the ring
A = R/I is F -pure if and only if I [p] : I * m[p]. Since strong F -regularity is known to imply
F -purity (see Section 2), Theorem 4.6 yields in particular that A is F -pure. Moreover,
we point out the similarity between our result and the following characterization given by
Glassbrenner in [12, Theorem 2.3]: A is strongly F -regular if and only if

g (I [p
e] : I) * m

[pe]

for every A-regular element g ∈ R and all e≫ 0. Notice that our Theorem 4.6 requires the
existence of some g ∈ J satisfying gv /∈ m[p] (with v as in the proof), while on the other
hand it only provides sufficiency – not necessity in general, as we will illustrate in Example
4.11.
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Example 4.9. Set A = R/I = k[[x, y, z, w, s, t]]/I2(φ), where k has characteristic p = 2 or
p = 3, and φ is the generic symmetric matrix

φ =




x w t
w y s
t s z


 .

The ring A is a 3-dimensional Cohen-Macaulay normal domain with canonical ideal Ω/I =
(Q+ I)/I, where Q can be taken as the ideal generated by the variables from the first row
of φ (cf. [14]), so that

Ω = Q + I = (x, w, t, yz − s2).

It is easy to see that the ring R/Ω is locally regular on the punctured spectrum. Further-
more, as in this case Ω is a complete intersection, we can express v simply as the (p− 1)th
power of the product of the generators of Ω. Explicitly,

v =





xyzwt + xwts2, p = 2

x2y2z2w2t2 + x2yzw2t2s2 + x2w2t2s4, p = 3.

Since xyzwt (resp. x2y2z2w2t2) lies outside the monomial ideal m[2] (resp. m[3]), we get

v /∈





(m[2], xyzwts), p = 2

(m[3], (xyzwts)2), p = 3.

By Corollary 4.7, A is strongly F -regular.

Next, we illustrate that our main hypothesis, J(Ω[p] : Ω) * m[p], cannot be relaxed; in

particular, it cannot be weakened to the condition Ω[p] : Ω * m[p].

Example 4.10. Consider the 2-dimensional Cohen-Macaulay reduced ring A = R/I =
k[[x, y, z, w, s]]/I2(ψ), with k of characteristic 2, and

ψ =

(
x y y s
w w z x

)
.

A canonical ideal for A is Ω/I where Ω = (x,w, s, yz). Therefore v = xyzws, and

J (Ω[2] : Ω) = m (Ω[2], v) ⊂ m
[2].

According to [20, Section 9], the ring A is not F -rational, hence it cannot be strongly

F -regular. Notice, however, that since v /∈ m[2] we have

Ω[2] : Ω * m
[2].

Finally, we show that the converse of Theorem 4.6 is not true.

Example 4.11. Let B = S/L = k[x, y, z, w]/I2(ϕ) where k has characteristic p = 3 and ϕ
is the matrix

ϕ =

(
x2 y w
z x2 y − w

)
.

The ring B is a 2-dimensional (non-Gorenstein) Cohen-Macaulay normal domain, which,
according to [32, Proposition 4.3], is F -regular in the sense that all of its localizations are
weakly F -regular.

Now notice that B is graded with the grading inherited from the polynomial ring S
given by deg(x) = 1, deg(y) = deg(z) = deg(w) = 2. But F -regular F -finite positively
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graded rings are known to be strongly F -regular ([32, Theorem 2.2(5)]). It follows that B

is strongly F -regular and hence so is its completion A = B̂ = R/LR = k[[x, y, z, w]]/I2(ϕ)
(see, e.g., [27, Proof of Theorem 4.1, page 3163]). We claim, however, that

Ω[3] : Ω ⊆ m
[3]

which will readily illustrate that the converse of our result fails. Indeed, in this case a
canonical ideal of A is Ω/LR, where Ω = (x4, y, w) ⊂ R (a complete intersection). Hence
Ω[3] : Ω = (Ω[3], v), where

v = x8y2w2 ∈ m
[3].

5. Generic determinantal rings defined by maximal minors

We begin this section with a quick recap about determinantal rings defined by (maximal)
minors of a matrix of indeterminates over a field. Complete details on the subject can be
found in Bruns-Vetter [5] (cf. also Bruns-Herzog [4, Section 7.3]).

We fix a formal power series ring R = k[[X]] over a field k, where X = (xij)n×(n−1) is a
matrix of indeterminates, for some n ≥ 2. Let

I = In−1(X)

be the ideal of R generated by the maximal minors of X, i.e., its subdeterminants of order
n− 1. It is convenient to write generators explicitly,

I = (G1, . . . , Gn)

where Gi is the minor which does not involve the ith row. By [5, Theorem 2.1] the ideal I
is a perfect prime ideal of height 2 (indeed, reordering the Gi’s and adjusting their signs if
necessary, X itself turns out to be a Hilbert-Burch matrix for I) and, whenever i 6= j, the
set {Gi, Gj} is a maximal R-sequence contained in I.

We also consider the ideal P ⊂ R defined by

P =

{
R, if n = 2
In−2(X

′), if n ≥ 3

where X ′ is the submatrix consisting of the first n − 2 rows of X if n ≥ 3, and in this
case P is prime of height 2 as well. Note that (Gn, Gn−1) ⊂ P , and more precisely, there
is a primary decomposition (Gn, Gn−1) = I ∩ P . Furthermore, the canonical ideal of the
(normal) Cohen-Macaulay domain A = R/I is Ω/I, where

Ω = P + I

which is also a prime ideal (of height 3). It is well-known that A is non-Gorenstein if and
only if n ≥ 3 (cf. [5, Corollary 2.21]).

5.1. Explicit generating morphism. We maintain the preceding setup and notations,
and, as in Sections 3 and 4, we fix the hypothesis char(k) = p > 0 (but in this part we
do not need to assume that k is perfect). Our objective here is to exhibit a generating
morphism for the top local cohomology module

H2
I (R) = H2

In−1(X)(k[[X]]),

which is of interest in view of Lyubeznik’s theory [25]. Since the “multiplication by u” map

Ω/I
·u−→ Ω[p]/I [p]

is isomorphic to a generating morphism of H2
I (R) (cf. Remark 3.4), we are reduced to

describing u explicitly.
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Before revealing the formula for u, let us write down the calculations if n = 2 and n = 3
(stated below as examples). In particular, we will automatically get the base case of the
induction used in the proof of Proposition 5.4.

Example 5.1. The case n = 2 is easy, and, as mentioned before, is the only situation where
A is Gorenstein. We have R = k[[x, y]], I = m and Ω = R, so that I [p] : I = (xp, yp, (xy)p−1)
and hence

u = (xy)p−1 = (G2G1)
p−1.

Example 5.2. We elaborate Fedder’s computation in [10, Proposition 4.7] and study the
case n = 3, the first (non-Gorenstein) non-trivial interesting case. Here we have

X =




x w
y s
z t




so that I = (G1, G2, G3) = (yt − zs, xt − zw, xs − yw) ⊂ R = k[[X]]. Moreover P =

(x,w), and hence Ω = (G1, x, w). Since P and Ω are complete intersections, P [p] : P =

(xp, wp, (xw)p−1) and Ω[p] : Ω = (Ω[p], (G1xw)
p−1). Thus

Ω[p] : Ω = (Gp
1, x

p, wp, (G1xw)
p−1) ⊂ (Gp

1) + (P [p] : P ).

Now, pick an arbitrary f ∈ (I [p] : I)∩(Ω[p] : Ω). In particular f ∈ Ω[p] : Ω, and, by the above
inclusion, we can write

f = aGp
1 + e

with a ∈ R and e ∈ P [p] : P . For simplicity, set K = (G3, G2). Since K ⊂ P , we have eK ⊂
P [p]. Moreover, since K ⊂ I and f ∈ I [p] : I, we get fK ⊂ I [p]. Thus (f − aGp

1)K ⊂ I [p] or,

equivalently, eK ⊂ I [p], and hence eK ⊂ I [p] ∩ P [p]. But we know that K = I ∩ P , which
by the exactness of Frobenius gives

K [p] = I [p] ∩ P [p].

Therefore e ∈ K [p] : K = (K [p], (G3G2)
p−1). It follows that there exist b, c, d ∈ R such that

e = bGp
2 + cGp

3 + d(G3G2)
p−1. As f = aGp

1 + e, we finally obtain

f = aGp
1 + bGp

2 + cGp
3 + d(G3G2)

p−1 ∈ I [p] + (u), u = (G3G2)
p−1.

This proves the inclusion (I [p] : I) ∩ (Ω[p] : Ω) ⊂ I [p] + (u).

Now let us verify that, if again we set u = (G3G2)
p−1, then I [p]+(u) ⊂ (I [p] : I)∩(Ω[p] : Ω),

which then will be an equality. Since clearly I [p] ⊂ Ω[p], we only need to show that uI ⊂ I [p]

and uΩ ⊂ Ω[p]. Let us prove first that uI ⊂ I [p]. By the exactness of Frobenius we get

Ass(R/I [p]) = Ass(R/I)

which is simply {I} since I is prime, and hence it suffices to prove that u = u/1 ∈ II
[p] : II .

Since RI is a 2-dimensional regular local ring, its maximal ideal II is a complete intersection
of height 2, and we can write II = (G3, G2)I ⊂ RI , which gives

II
[p] : II = (I [p], (G3G2)

p−1)I = (I [p], u)I

and therefore u ∈ II
[p] : II .

Let us now check that uΩ ⊂ Ω[p]. As uI ⊂ I [p] and clearly Ω[p] = (P + I)[p] = P [p] + I [p],
it suffices to show that uP ⊂ P [p], which, since P is prime, amounts to show that u ∈
P

[p]
P : PP . We may localize the primary decomposition (G3, G2) = I ∩ P at P and obtain

PP = (G3, G2)P ⊂ RP , hence P
[p]
P : PP = (P [p], u)P , as needed.
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Thus we have shown that, in case n = 3, the cyclic module ((I [p] : I) ∩ (Ω[p] : Ω))/I [p] is
generated by the image of the polynomial

u = (G3G2)
p−1.

Remark 5.3. We point out that, if n = 3, Fedder [10, Proposition 4.7] explicitly computed

the colon ideal I [p] : I as being equal to I [p]+ I2p−2. Here we have not used this fact for our
description of the intersection (I [p] : I) ∩ (Ω[p] : Ω), and we note that

(G3G2)
p−1 ∈ (I2)p−1 = I2p−2.

On the other hand, Fedder’s computation is no longer valid in higher dimension; for instance
if p = 3 and n = 4, then it can be verified that

I [3] : I 6= I [3] + I4

while Proposition 5.4 below computes (I [p] : I) ∩ (Ω[p] : Ω) for any n, so that the behavior
illustrated in the examples above is not a coincidence, as we are going to show, in generality,
in Proposition 5.4.

For convenience, in the present setting we write

C (X) = ((I [p] : I) ∩ (Ω[p] : Ω))/I [p]

where X is the given n × (n − 1) generic matrix, and as before u denotes a representative
for a generator of this cyclic module.

Proposition 5.4. For an arbitrary n, we can take u = (GnGn−1)
p−1.

Proof. We proceed by induction on n. The case n = 3 is the content of Example 5.2. We
set f = (GnGn−1)

p−1 and we will prove that we may take u = f for arbitrary n.
Let Y = (yij) be a generic matrix of new indeterminates yij’s over k, with 2 ≤ i ≤ n,

2 ≤ j ≤ n − 1, and denote by S the ring obtained by adjoining to the polynomial ring
k[Y ] = k[{yij}] all the variables that appear in the first row and first column of the original
matrix X. Now let us invert the variable x = x11, that is, we pass to the rings of fractions
Sx and k[X]x, where k[X] = k[{xij}n×(n−1)]. It is well-known (cf. [4, Lemma 7.3.3]) that
the substitution

yij 7→ xij − x1j xi1
x

, 2 ≤ i ≤ n, 2 ≤ j ≤ n− 1

yields a ring isomorphism ϕ : Sx → k[X]x such that ϕ(It−1(Y )x) = It(X)x for every t ≥ 1.
In particular,

Ix = ϕ(In−2(Y )x).

In analogy with the notation C (X), let C (Y ) stand for the corresponding cyclic module
derived from the generic matrix Y . Write generators

Q = In−2(Y ) = (H2, . . . ,Hn) ⊂ S.

By induction, the class v +Q[p] of the element

v = (HnHn−1)
p−1

is a generator of C (Y ), and ϕ(v) has the form f/xα ∈ k[X]x, for some α ≥ 0. Clearly
ϕ(v) ≡ (f/1) mod (Ix), and since moreover C (X)x ≃ C (Y )x (in virtue of the isomorphism

ϕ), the residue class f/1 + I
[p]
x must generate C (X)x. Therefore, for an arbitrary g ∈ k[X]

such that g + I [p] generates C (X), we get

(f/1) ≡ (g/1) mod (I [p]x )
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or what amounts to the same

xβ(f − g) ∈ I [p]

for some β ≥ 0. Since Ass(R/I [p]) = {I} and x /∈ I, we necessarily have f − g ∈ I [p], i.e.,
the image of f generates C (X) and hence we can take u = f , as asserted. �

Remark 5.5. For n ≥ 3, we claim that Proposition 5.4 remains valid if we pass from
A = R/I to the Gorenstein domain

A/ω ≃ R/Ω = R/(I + P ) = k[[X]]/(In−1(X) + In−2(X
′)).

More precisely, if now we denote by u′ ∈ R a representative of a generator of the cyclic
R/Ω[p]-module (Ω[p] : Ω)/Ω[p], then we can still take

u′ = (GnGn−1)
p−1

so that the map R/Ω → R/Ω[p] given by multiplication by this polynomial is isomorphic to
a generating morphism of the local cohomology module H3

Ω(R) (cf. Remark 3.4).
Our claim can be proved by induction in a very similar way, with a suitable adaptation.

Let us momentarily assume the validity of the base case n = 3, and suppose that n ≥ 4.
Let ϕ : Sx → k[X]x be the isomorphism described in the proof of Proposition 5.4. Since
the submatrix X ′ (formed by the first n− 2 rows of X) is a generic matrix as well, we may
consider the generic submatrix Y ′ of Y for i = 2, . . . , n − 2, j = 2, . . . , n − 1, and we can
correspondingly define a ring S′ as well as an isomorphism

ϕ′ : S′
x −→ k[X ′]x

which is simply the restriction of ϕ to the subring S′
x ⊂ Sx. Since In−2(X

′)x ⊂ k[X ′]x is
the image of In−3(Y

′)x ⊂ S′
x via ϕ′, it follows that the ideal

Px = In−2(X
′)x ⊂ k[X]x

is the extension of the ideal ϕ′(In−3(Y
′)x) to the ring k[X]x, which in turn coincides with

ϕ(In−3(Y
′)Sx). Thus we have

Ωx = Ix + Px = ϕ(In−2(Y )x) + ϕ′(In−3(Y
′)x)k[X]x = ϕ(In−2(Y )x + In−3(Y

′)Sx).

Writing generators

Q′ = In−3(Y
′) + In−2(Y ) = (h2, . . . , hn−1,H2, . . . ,Hn) ⊂ S

we get, by induction, that if we set

v′ = (HnHn−1)
p−1

then the residue class v′ + Q′[p] generates the cyclic module (Q′[p] : Q′)/Q′[p], and by con-
struction it satisfies ϕ(v′) = (GnGn−1)

p−1/xγ for some γ ≥ 0. Since

Ωx ≃ Q′
x

via ϕ, and since Ω is prime, the rest of the proof is exactly as in the proof of the proposition.
It remains to check the case n = 3. We use the same notation as in Example 5.2,

where we verified that Ω[p] : Ω = (Ω[p], (G1xw)
p−1) and (I [p] : I) ∩ (Ω[p] : Ω) = (I [p], u) for

u = (G3G2)
p−1. Denote u′ = (G1xw)

p−1, so that Ω[p] : Ω = (Ω[p], u′). Since u ∈ (I [p], u) ⊂
Ω[p] : Ω, we get an inclusion (Ω[p], u) ⊂ (Ω[p], u′) which turns out to be necessarily an equality
since the elements u, u′, regarded as homogeneous polynomials of the standard graded ring
k[X], have the same degree. Therefore, the class u′+Ω[p] = u+Ω[p] generates (Ω[p] : Ω)/Ω[p].
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5.2. Strong F -regularity. As a consequence of Theorem 4.6 and Remark 5.5, we will
establish a simple proof of the fact that the ring defined by the maximal minors of an
n× (n− 1) matrix X = (xij) of indeterminates over a perfect field k of characteristic p ≥ 5,
for any n ≥ 2, is strongly F -regular. As mentioned in the Introduction, this is well-known
and has been proven in more generality, but the method we have employed in this paper
is completely different from the ones available in the literature and we expect that some
variation of it may shed a new light on further developments, mainly with a view to the
possibility of investigating other classes of determinantal rings.

Corollary 5.6. (p ≥ 5) The generic determinantal ring A = R/I = k[[X]]/In−1(X) is
strongly F -regular.

Proof. This statement is obvious if n = 2 as in this case we simply have A ≃ k. Thus we
may assume that n ≥ 3, hence dimA = n(n− 1) − 2 ≥ 2. Let Ω and J be the ideals as in
the statement of Theorem 4.6 and let u′ be as in Remark 5.5. In order to prove the result
by means of Theorem 4.6, we need to find some ∆ ∈ J such that

∆u′ /∈ m
[p]

where the image of u′ in R/Ω[p] generates (Ω[p] : Ω)/Ω[p] as a cyclic module, and Ω = I+P =
In−1(X) + In−2(X

′).
We treat first the case n = 3, and we follow the same notation of Example 5.2. We have

Ω = (G1, x, w) = (yt − zs, x,w), so that J = m. According to the fact proved in Remark
5.5, we can take u′ = (G3G2)

p−1. Since

G3G2 = (xs− yw)(xt− zw) = −xzws + . . .

we get, by expansion,
u′ = (−1)p−1(xzws)p−1 + . . .

Taking for example ∆ = y, we obtain that ∆u′ /∈ m[p] and hence A is strongly F -regular in
this case.

Now suppose that n ≥ 4. Let gj denote the determinant of X ′ with its jth column
deleted, for j = 1, . . . , n− 1.

Then P = (g1, . . . , gn−1), and note that, for each j,

∂gj
∂xij

= 0, ∀ i ∈ {1, . . . , n− 2}.

Since Gn, Gn−1 ∈ P , we have (minimal) generators

Ω = (G1, . . . , Gn−2, g1, . . . , gn−1)

whose Jacobian matrix we denote by J . We will find an appropriate element ∆ in the
ideal I3(J ) ⊂ J generated by the minors of order 3 of J (recall that Ω has height 3).
First, we define the auxiliary monomial

M =

{
1, n = 4
x34 · · · xn−2,n−1, n ≥ 5.

It is easy to see that {
g1 = x12x23M + . . .
g2 = x11x23M + . . .

and expansion along the first column of the (n− 2)× (n− 2) matrix whose determinant is
g3 yields

g3 = −x21(x12x34 · · · xn−2,n−1 + . . .) + . . . = −x21x12M + . . .
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Now we take the minor ∆ ∈ I3(J ) given by

∆ = det




∂g1/∂x11 ∂g1/∂x21 ∂g1/∂x23
∂g2/∂x11 ∂g2/∂x21 ∂g2/∂x23
∂g3/∂x11 ∂g3/∂x21 ∂g3/∂x23


 = det




0 0 ∂g1/∂x23
∂g2/∂x11 ∂g2/∂x21 ∂g2/∂x23
∂g3/∂x11 ∂g3/∂x21 0




that is,

∆ =
∂g1
∂x23

∂g2
∂x11

∂g3
∂x21

− ∂g1
∂x23

∂g2
∂x21

∂g3
∂x11

.

But
∂g1
∂x23

∂g2
∂x11

∂g3
∂x21

= (x12M)(x23M)(−x12M) + . . .

and consequently

∆ = −x212x23M3 + . . .

Finally, we claim that ∆u′ /∈ m[p]. To prove this, recall that we can take u′ = (GnGn−1)
p−1

(cf. Remark 5.5). Denote by Xi the square submatrix of X obtained by deletion of its ith
row. Looking at Gn = det(Xn) by taking expansion along the first row of Xn yields

Gn = . . . + (−1)nx1,n−1δ1,n−1

where the minor δ1,n−1, obtained after deletion of the first row and last column of Xn, can
be written as

δ1,n−1 = x21 · · · xn−1,n−2 + . . .

so that

Gn = (−1)nx1,n−1(x21 · · · xn−1,n−2) + . . .

Also, note that

Gn−1 = det(Xn−1) = x11 · · · xn−2,n−2xn,n−1 + . . .

Hence

GnGn−1 = (−1)nx1,n−1(x21 · · · xn−1,n−2)(x11 · · · xn−2,n−2xn,n−1) + . . .

and therefore

u′ = [(−1)nx1,n−1 (x21 · · · xn−1,n−2) (x11 · · · xn−2,n−2xn,n−1)]
p−1 + . . .

Now, considering the product ∆u′ and noticing, by an elementary inspection, that the
monomial

x212x23M
3 [x1,n−1 (x21 · · · xn−1,n−2) (x11 · · · xn−2,n−2xn,n−1)]

p−1

avoids m[p] if the characteristic satisfies p ≥ 5, we obtain ∆u′ /∈ m[p] for p ≥ 5, as needed.
�

Remark 5.7. Together with some of the well-known facts mentioned in Section 2, the
corollary above yields that every ideal of k[[X]]/In−1(X) is tightly closed and, moreover,
that this ring is F -pure. Furthermore notice that, for n = 3 (resp. n = 4), our proof works
for every p ≥ 2 (resp. p ≥ 3). For arbitrary n, a natural question is whether our argument
can be adapted (e.g., by choosing ∆ more efficiently) so as to cover also the remaining cases
p = 2 and p = 3.
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5.3. Further remarks. We conclude the paper with a couple of remarks.

Remark 5.8. It is natural to ask whether the structural result established in Remark 5.5
(which was crucial to the proof of Corollary 5.6) can be extended in an analogous manner
to the situation of non-maximal minors, i.e., in the case where

Ω = It(X) + It−1(X
′), 2 ≤ t ≤ n− 2.

Unfortunately, the answer is negative at least if n = 4, t = 2 and p = 3, for which we have
verified that u′ has degree 18 as an element of the standard graded polynomial ring k[X],
and hence it cannot be expressed as (Q1 · · ·Qr)

2 for quadratic homogeneous polynomials
Q1, . . . , Qr ∈ I.

On the other hand, regardless of the ability to understand the entire shape of u′, we claim
that in this case the ring A = R/I is strongly F -regular. In fact, a computation shows that

u′ = (x11x12x13x22x23x31x33x41x42)
2 + . . .

and moreover that x43 ∈ J , and hence clearly

x43u
′ /∈ m

[3]

which, by Theorem 4.6, proves the claim.

Remark 5.9. We can also raise the problem as to whether our method for finding u′,
given in Remark 5.5, extends to other classes of determinantal singularities, especially the
one formed by generic symmetric determinantal rings. We have checked, however, that the
formula for u′ as the (p − 1)th power of a suitable product of minors does not hold in this
situation. For instance, if I is the ideal of minors of order 2 of a 3 × 3 symmetric matrix
of indeterminates over a field of characteristic p = 2, then, as we have seen in Example
4.9, the element u′ has degree 5 and consequently it cannot be expressed as a product of
quadratic polynomials, and, analogously, if p = 3 then u′ has degree 10 and hence it cannot
be written as the second power of such a product. Of course, even for arbitrary p, the shape
of u′ in the 3×3 case can be easily detected as Ω is a complete intersection in this situation.
However, the problem becomes rather subtle in the case of an n × n generic symmetric
matrix with n ≥ 4, as the structure of an adequate u′ remains quite mysterious and we do
not even know whether it can be taken reducible.

Furthermore, inspired by Corollary 5.6, it seems relevant to complement the problem
above with the following question:

Question 5.10. Are generic symmetric determinantal rings strongly F -regular?

As far as we know, this is an open problem. The answer is affirmative for 3 × 3 generic
symmetric matrices and p = 2 or p = 3, as shown in Example 4.9. There is computational
evidence that this is also true in the 4× 4 case, at least in low characteristic as well.

Naturally, besides the symmetric case, it would be also of interest to investigate u′ as
well as the strong F -regularity property for other important classes of rings, such as those
defined by Pfaffians of generic alternating matrices.
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