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ABSTRACT

We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric

magnetic plasma configurations. We derive the general equation describing the attenuation

of the Alfvén wave amplitude. Then we applied the general theory to a particular case with

the exponentially divergent magnetic field lines. The condition that the configuration is non-

reflective determines the variation of the plasma density along the magnetic field lines. The

density profiles exponentially decreasing with the height are not among non-reflective density

profiles. However, we managed to find non-reflective profiles that fairly well approximate

exponentially decreasing density. We calculate the variation of the total wave energy flux with

the height for various values of shear viscosity. We found that to have a substantial amount

of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven

orders of magnitude in comparison with the value given by the classical plasma theory. An

important result that we obtained is that the efficiency of the wave damping strongly depends

on the density variation with the height. The stronger the density decrease, the weaker the

wave damping is. On the basis of this result, we suggested a physical explanation of the

phenomenon of the enhanced wave damping in equilibrium configurations with exponentially

diverging magnetic field lines.

Key words: MHD – plasmas – waves – Sun: corona – Sun: oscillations.

1 IN T RO D U C T I O N

The solar coronal heating is an outstanding problem in solar physics.

For a few decades, Alfvén waves remain a popular mechanism for

heating the coronal plasma. Alfvén waves can efficiently transport

the energy from the lower part of the solar atmosphere to the corona.

It was shown in a recent paper by Soler et al. (2017) that torsional

Alfvén waves with periods of the order of second are almost com-

pletely damp in the chromosphere; waves with periods of a few

minutes are strongly reflected mainly from the transitional region;

however, a large part of the energy of waves with the periods of

the order of minute is transmitted in the corona. Another impor-

tant result obtained by Soler et al. (2017) is that the magnetic tube

expansion facilitates the Alfvén energy transmission in the corona.

However, for typical coronal conditions, Alfvén waves can propa-

gate through the corona practically without damping because they

do not perturb the plasma density.

⋆ E-mail: npetruhin@hse.ru (NSP); M.S.Ruderman@sheffield.ac.uk (MSR)

Heyvaerts & Priest (1983) suggested Alfvén wave phase mixing

as a mechanism that can enormously enhance the Alfvén wave

damping in weakly dissipative plasmas. Phase mixing causes large

gradients in the direction perpendicular to the wave propagation

direction to build up. As a result, the damping length is proportional

to Re1/3 rather than Re as it is in a homogeneous plasma, where Re

is either the viscous or resistive Reynolds number. The possibility

of efficient Alfvén wave damping in weakly dissipative plasmas

made phase mixing a popular mechanism for coronal heating. For

a review of the recent progress in the theory of coronal heating by

waves, see a review by Arregui (2015).

In spite that phase mixing strongly enhances the Alfvén wave

damping, still it is not enough to cause substantial damping in the

lower solar corona. This prompted researchers to search for addi-

tional mechanisms to further enhance the wave damping. Malara,

Primavera & Veltri (1996) showed that Alfvén wave phase mix-

ing can generate compressible perturbations. These perturbations

are subjected to non-linear steepening that leads to the appear-

ance of shocks. This mechanism was also studied by Nakariakov,

Roberts & Murawski (1997), Botha et al. (2000), Tsiklauri, Arber &
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Nakariakov (2001, 2002), Tsiklauri & Nakariakov (2002) and Tsik-

lauri, Nakariakov & Rowlands (2003).

The efficiency of Alfvén wave damping due to phase mix-

ing also strongly depends on the geometry of equilibrium.

Ruderman, Nakariakov & Roberts (1998) studied the Alfvén wave

phase mixing in two-dimensional magnetic plasma configurations

under the assumption that the curvature of the magnetic field lines

and the characteristic scale of the Alfvén speed variation along

the magnetic field lines are both much larger than the wavelength.

The solution was obtained using the Wentzel–Kramers–Brillouin

(WKB) method. In particular, Ruderman et al. (1998) showed

that strong divergence of the magnetic field lines can substan-

tially enhance the efficiency of the Alfvén wave damping due to

phase mixing. While the damping length in an equilibrium with

the straight magnetic field lines and the Alfvén speed only vary-

ing in the direction orthogonal to the magnetic field direction are

proportional to Re1/3, in an equilibrium with the exponentially di-

vergent magnetic field lines they are proportional to ln (Re). This

result was confirmed by Smith, Tsiklauri & Ruderman (2007) who

studied the problem of the Alfvén wave damping due to phase

mixing in an equilibrium with the exponentially divergent mag-

netic field lines both analytically and numerically. The interest to

studying wave propagation in magnetic plasma configurations with

strongly divergent magnetic field lines was boosted by the obser-

vation that in the chromosphere and lower corona the cross-section

area of open magnetic tubes can increase by a few hundred times

(Tsuneta et al. 2008).

If we consider Alfvén wave propagation, for example, in plumes

in coronal holes, then for waves with periods of the order of one

minute the wavelengths can be comparable with the characteristic

scale of variation of background quantities. In that case, the WKB

approximation cannot be used and, in general, the study of phase

mixing is only possible numerically. However, there is one excep-

tion. Analytical study is still possible when the waves propagate in

so-called non-reflective equilibria. In these equilibria, Alfvén waves

propagate without reflection.

Non-reflective wave propagation was investigated in vari-

ous branches of sciences. It was studied in plasma physics

(Ginzburg 1970), oceanography (Brekhovskikh 1980; Di-

denkulova, Pelinovsky & Soomere 2008; Grimshaw, Pelinovsky &

Talipova 2010), acoustics (Ibragimov & Rudenko 2004) and atmo-

spheric science (Petrukhin, Pelinovsky & Batsyna 2011). Recently,

the theory of non-reflective wave propagation has been applied

to solar physics. Petrukhin, Pelinovsky & Batsyna (2012) studied

non-reflective vertical propagation of acoustic waves in the solar

atmosphere. Ruderman et al. (2013) and Petrukhin, Ruderman &

Pelinovsky (2015) studied non-reflective propagation of kink waves

along thin magnetic flux tubes.

Recently, Ruderman & Petrukhin (2017) studied Alfvén wave

phase mixing in non-reflective planar magnetic plasma equilib-

ria. In this paper, we aim to extend their analysis to axisym-

metric equilibria. The paper is organized as follows. In the next

section, we formulate the problem and present the governing equa-

tion describing the Alfvén wave propagation. In Section 3, we

introduce curvilinear coordinates. In Section 4, we present the

general theory of non-reflective Alfvén wave propagation in ax-

isymmetric magnetic plasma equilibria. In Section 5, we consider

viscous damping of phase-mixed Alfvén waves. In Section 6, we

apply the general theory to the Alfvén wave damping in mag-

netic plasma equilibria with exponentially divergent magnetic field

lines. Section 7 contains the summary of obtained results and our

conclusions.

2 PRO B L E M F O R M U L AT I O N

We consider the Alfvén wave propagation in axisymmetric equilib-

ria where all equilibrium quantities depend on r and z in cylindrical

coordinates r, θ , z with the z-axis vertical. The θ -component of the

equilibrium magnetic field is zero. The plasma beta in the solar

corona is very low, which implies that the equilibrium magnetic

field must be force-free. A force-free axisymmetric magnetic field

without azimuthal component is always potential. Hence, the equi-

librium magnetic field B = (Br , 0, Bz) can be expressed in terms

of magnetic potential φ. It can also be expressed in terms of the

magnetic flux function ψ . As a result, we have

Br

B0

=
∂φ

∂r
= −

H

r

∂ψ

∂z
,

Bz

B0

=
∂φ

∂z
=

H

r

∂ψ

∂r
, (1)

where B0 is a constant equal to the characteristic value of the mag-

netic field and H is the characteristic spatial scale of equilibrium

quantity variation. Since ψ is defined with the accuracy up to an

additive constant, we impose the condition that ψ = 0 at r = 0. Be-

low we use φ and ψ as new curvilinear coordinates in the θ = const

plane. It follows from equation (1) that ∇φ · ∇ψ = 0. This means

that the curvilinear coordinate system (φ, ψ) is orthogonal. The φ

coordinate lines coincide with the magnetic field lines, while the

ψ coordinate lines are orthogonal to the magnetic field lines. We

consider the plasma density ρ as a free function. If this function

is given, then the plasma pressure and temperature are determined

by the projection of the equilibrium equation on the magnetic field

direction and the ideal gas law.

Below we study Alfvén waves where only the θ -components of

the velocity and magnetic field, ν and b, are non-zero, while all other

quantities remain unperturbed. To describe these waves, we use the

θ -components of the momentum and induction equation. The only

dissipative process that we take into account is shear viscosity, while

we neglect resistivity. Some authors (e.g. Heyvaerts & Priest 1983)

took both shear viscosity and resistivity into account. As a result,

they obtained that the term describing dissipation in the equation

governing the Alfvén wave propagation is multiplied by the sum of

the kinematic viscosity and magnetic diffusion. In the corona, these

quantities are of the same order. This implies that neglecting one

of them can only reduce the efficiency of wave damping by a fac-

tor of the order of unity. On the other hand, neglecting resistivity

simplifies the analysis because it enables the magnetic field pertur-

bation to be easily eliminated from the governing equations. The

linearized governing equations are

ρ
∂v

∂t
=

1

μ0r
B · ∇(rb) +

1

r

∂

∂r

(
ρνr

∂v

∂r

)
+

∂

∂z

(
ρν

∂v

∂z

)
, (2)

∂b

∂t
= r B · ∇

( v

r

)
, (3)

where μ0 is the magnetic permeability of free space and ν the

kinematic viscosity. We now introduce the angular velocity u = ν/r.

The last two terms on the right-hand side of equation (2) can be

transformed to

1

r

∂(ρνr2)

∂r

∂u

∂r
+

1

r

∂(ρνru)

∂r
+ r

∂(ρν)

∂z

∂u

∂z
+ ρνr

(
∂

2u

∂r2
+

∂
2u

∂z2

)
.

(4)

Below we consider the Alfvén wave propagation in weakly dissipa-

tive plasmas. The viscosity is only important when there are large

gradients. We will see that, because of phase mixing, such gradients

of perturbed quantities are formed. We denote the spatial scale of

the velocity variation when these large gradients are developed as
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ldis. On the other hand, the gradients of equilibrium quantities do

not change and the spatial scale of their variation remains equal to

leq ≫ ldis. As a result, the first three terms in equation (4) are of

the order of ρνru/leqldis, while the fourth term is of the order of

ρνru/l2
dis. We see that the ratio of the first three terms in equation

(4) to the last term is of the order of ldis/leq ≪ 1. This estimate

enables to neglect the first three terms in comparison with the last

one and use the approximation

1

r

∂

∂r

(
ρνr

∂v

∂r

)
+

∂

∂z

(
ρν

∂v

∂z

)
≈ ρνr

(
∂

2u

∂r2
+

∂
2u

∂z2

)
. (5)

Then, using equation (2) to eliminating b, we obtain the equation

for u,

ρ
∂

2u

∂t2
=

B · ∇(r2
B · ∇u)

μ0r2
+ ρν

(
∂

3u

∂t∂r2
+

∂
3u

∂t∂z2

)
. (6)

This equation is used below to study the Alfvén wave damping due

to phase mixing.

3 IN T RO D U C I N G C U RV I L I N E A R

C O O R D I NAT E S

We now make the variable substitution and use φ and ψ as the

independent variables. Then we have the following expressions for

the partial derivatives with respect to r and z:

∂

∂r
=

Br

B0

∂

∂φ
+

rBz

HB0

∂

∂ψ
,

∂

∂z
=

Bz

B0

∂

∂φ
−

rBr

HB0

∂

∂ψ
. (7)

It follows from this equation that

B · ∇f =
B2

B0

∂f

∂φ
, (8)

where f is any function. Below we will see that the large gradients

only appear in the ψ-direction, which is the direction perpendicular

to the magnetic field lines. The derivative with respect to ψ is

inversely proportional to ldis, while the derivative with respect to φ is

inversely proportional to the wavelength. Under a viable assumption

that the wavelength is much larger than ldis, the second derivative

with respect to ψ strongly dominates all other derivatives and we

can use the approximate expression

∂
2u

∂r2
+

∂
2u

∂z2
≈

r2B2

H 2B2
0

∂
2u

∂ψ2
. (9)

Using this approximation and equations (7) and (8), we transform

equation (6) to

∂
2u

∂t2
−

V 2
A

r2

∂

∂φ

(
r2B2

B2
0

∂u

∂φ

)
=

νr2B2

H 2B2
0

∂
3u

∂t∂ψ2
, (10)

where

V 2
A =

B2

μ0ρ
(11)

is the Alfvén speed.

4 N O N - R E F L E C T I V E P RO PAG AT I O N O F

AL FV É N WAV E S

In this section, we describe how equation (10) can be reduced to

an equation with constant coefficients when ν = 0. The reduc-

tion of the wave equation with the variable phase speed to the

Klein–Gordon equation with constant coefficients is described in

many papers (see e.g. Ruderman et al. 2013).

We search for the solution to equation (10) in the form

u(t, φ, ψ) = A(φ, ψ)�(t, h(φ,ψ), ψ), (12)

where A(φ, ψ), h(φ, ψ) and �(t, h(φ, ψ), ψ) are the functions to

be determined. Substituting this expression in equation (10), we

obtain

∂
2�

∂t2
− V 2

A

B2

B2
0

(
∂h

∂φ

)2
∂

2�

∂h2

− V 2
A

[
r2B2

AB2
0

∂A

∂φ

∂h

∂φ
+

1

A

∂

∂φ

(
r2AB2

B2
0

∂h

∂φ

)]
∂�

∂h

−
V 2

A�

r2A

[
∂

∂φ

(
r2B2

B2
0

∂A

∂φ

)]
=

νr2B2

H 2B2
0

∂	

∂t
, (13)

where

	 =
1

A

∂
2(A�)

∂ψ2
+

2

A

∂h

∂ψ

∂

∂ψ

(
A

∂�

∂h

)

+
∂

2h

∂ψ2

∂�

∂h
+

(
∂h

∂ψ

)2
∂

2�

∂h2
. (14)

Now we impose the condition that the coefficient at the second

derivative of � with respect to h on the left-hand side of this equation

is equal to V 2
0 , and the coefficient at the first derivative is zero, where

V0 = B0(μ0ρ0)−1/2 is the characteristic value of the Alfvén speed

and ρ0 is the density at the coordinate origin (r = z = 0):

B2V 2
A

B2
0 V 2

0

(
∂h

∂φ

)2

= 1, (15)

r2B2 ∂A

∂φ

∂h

∂φ
+

∂

∂φ

(
r2AB2 ∂h

∂φ

)
= 0. (16)

Below we consider waves propagating in the positive φ-direction.

Then it follows from equation (15) that

h = B0V0

∫ φ

φ1

dφ′

BVA

, (17)

where φ1 is a function of ψ that, at present, we do not specify. Using

equation (17) to integrate equation (16), we obtain

A = A0(ψ)(H/r)(ρ0/ρ)1/4, (18)

where A0(ψ) is an arbitrary function satisfying the condition that

there is a non-zero limit of A0(ψ)r−1 as ψ → 0. Now equation (13)

reduces to

∂
2�

∂t2
− V 2

0

∂
2�

∂h2
=

V 2
A�

r2A

∂

∂φ

(
r2B2

B2
0

∂A

∂φ

)
+

νr2B2

H 2B2
0

∂	

∂t
. (19)

If we take ν = 0, then this equation reduces to the Klein–Gordon

equation. In general, this Klein–Gordon equation has one variable

coefficient. This causes reflection of a wave driven at a surface

φ = φ1(ψ) and propagating in the positive φ-direction. It only

can propagate without reflection if the coefficient at � in equation

(19) is constant. However, we must keep in mind that ψ is present

in equation (19) as a parameter, so this constant can depend on ψ .

Hence, we impose the condition that the coefficient at � in equation

(19) only depends on ψ ,

V 2
A

r2A

∂

∂φ

(
r2B2

B2
0

∂A

∂φ

)
= σ (ψ), (20)

where σ (ψ) is an arbitrary function.
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When ν = 0 and A satisfies equation (20), equation (19) is

a Klein–Gordon equation with constant coefficients (where ψ is

present as a parameter). It admits a solution � = �0exp (ikh − iωt),

where �0 is a constant, and k and ω are related by

ω2 + σ (ψ) = V 2
0 k2. (21)

We see that waves with arbitrary frequency can propagate along a

particular magnetic field line when σ > 0, while only waves with

ω > ωcut can propagate when σ < 0, where the cutoff frequency

ωcut is defined by

ω2
cut = −σ (ψ). (22)

Finally, when σ = 0, we obtain ω2 = V 2
0 k2 and, again, waves with

arbitrary frequencies can propagate.

5 A L FVÉ N WAV E DA M P I N G D U E TO P H A S E

M I X I N G

We now study the damping of Alfvén waves due to phase mixing.

In this section, we closely follow Ruderman & Petrukhin (2017).

Hence, we only briefly outline the analysis omitting the details. We

impose the boundary condition

u = u0(t, ψ) at φ = φ1(ψ). (23)

Then we take u and � proportional to exp ( − iωt). As a result,

equation (19) is transformed to

V 2
0

∂
2�

∂h2
+ λ2� =

iωνr2B2	

H 2B2
0

, (24)

where

λ2 = ω2 + σ (ψ). (25)

Below we assume that λ2 > 0. Using equations (12), (17) and (18),

we obtain from equation (23)

� = A−1
0 (ψ)r1/2ρ1/4u0(t, ψ) ≡ �0(t, ψ) at h = 0. (26)

We also assume that the characteristic distance of damping due

to phase mixing is much greater than the characteristic distance of

variation of � with respect to h. In accordance with this assumption,

we introduce the ‘slow’ variable h1 = ǫh, where ǫ ≪ 1.

To characterize the viscosity magnitude, we introduce the

Reynolds number Re = HV0/ν (we recall that H is the characteristic

spatial scale of variation of equilibrium quantities). We assume that

the characteristic wavelength is also H. Below we also assume that

the viscosity is weak, Re ≫ 1, and introduce the scaled kinematic

viscosity ν̄ = Re ν. The relation between ǫ and Re will be defined

later. Then equation (24) is rewritten as

ǫ2 ∂
2�

∂h2
1

+
λ2

V 2
0

� =
iων̄r2B2	̃

H 2V 2
0 B2

0 Re
, (27)

where 	̃ is given by equation (14) with h1 substituted for h. Now

we use the standard WKB method and look for the solution to this

equation in the form

� = Q(h1, ψ) exp[iǫ−1�(h1, ψ)] (28)

(see e.g. Bender & Orszag 1999). Substituting this expression in

equation (27) and using the expression for 	̃, we obtain

ǫ2 ∂
2Q

∂h2
1

+ 2iǫ
∂Q

∂h1

∂�

∂h1

+ iǫQ
∂

2�

∂h2
1

− Q

(
∂�

∂h1

)2

+
λ2

V 2
0

Q

= −
iǫ−2ων̄r2B2Q

H 2V 2
0 B2

0 Re

[ (
∂h1

∂ψ

)2 (
∂�

∂h1

)2

+ O(ǫ)

]
. (29)

First, we assume that the right-hand side is much smaller than

the two largest terms on the left-hand side of this equation, which

are the last and next-to-last terms. Then we collect the terms of the

order of unity in equation (29) to obtain

(
∂�

∂h1

)2

=
λ2

V 2
0

. (30)

This approximation is usually called the approximation of geomet-

rical optics (e.g. Bender & Orszag 1999). It determines the shape

of rays along which the waves propagate. Only considering waves

propagating in the positive φ-direction, we obtain from equation

(30)

� =
h1λ(ψ)

V0

, (31)

where we arbitrarily take � = 0 at h1 = 0. In the next-order approx-

imation, we collect terms of the order of ǫ. This approximation is

usually called the approximation of physical optics. It determines

the spatial evolution of the wave amplitude. The right-hand side

of equation (29) describes the viscous wave damping due to phase

mixing. Hence, we define the relation between Re and ǫ in such

a way that the right-hand side of equation (29) contributes in the

approximation of physical optics. In accordance with this, we take

Re = ǫ−3. Then we obtain

2
∂Q

∂h1

∂�

∂h1

+ Q
∂

2�

∂h2
1

= −
ων̄r2B2Q

H 2V 2
0 B2

0 Re

(
∂h1

∂ψ

)2 (
∂�

∂h1

)2

. (32)

Using equation (31) and returning to the original variables, we

transform equation (32) to

∂Q

∂h
= −

ωνλr2B2

2H 2B2
0V 3

0

(
∂h

∂ψ

)2

. (33)

With the aid of equation (17), we transform this equation to

∂Q

∂φ
= −ϒ(φ,ψ)Q, ϒ(φ,ψ) =

ωνλr2B

2H 2B0V
2

0 VA

(
∂h

∂ψ

)2

. (34)

Obviously, we can assume that Q is real. Equation (34) determines

the spatial evolution of the Alfvén wave amplitude. We will also

use the expressions for the velocity and magnetic field perturbation.

Using equations (12), (18) and (28), we obtain in the leading-order

approximation with respect to ǫ

u = QA0(ψ)
H

r

(
ρ0

ρ

)1/4

exp[i(hλ/V0 − ωt)]. (35)

To obtain the expression for b, we use equation (3). It is straightfor-

ward to see that the expression for b contains two terms. The first

term comes from differentiating Q, and it is proportional to ν. The

second term comes from differentiating the exponent in equation

(35), and it does not contain ν. It is easy to show that the ratio of

the first term to the second one is of the order of ǫ. Hence, in the

leading-order approximation with respect to ǫ, we obtain

b = −μ
1/2
0 HQA0(ψ)

λ

ω
(ρρ0)1/4 exp[i(hλ/V0 − ωt)]. (36)
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6 A L FVÉ N WAV E P H A S E M I X I N G IN

EQUILIBRIA WITH EXPONENTIALLY

D I V E R G E N T M AG N E T I C FI E L D L I N E S

6.1 Equilibrium state

Ruderman & Petrukhin (2017) studied the Alfvén wave damping

due to phase mixing in various planar equilibria. The most inter-

esting result that they obtained is that this damping is much more

efficient in an equilibrium with exponentially divergent magnetic

field lines than that in an equilibrium with straight magnetic field

lines. In this paper, we only consider an equilibrium with exponen-

tially divergent magnetic field lines. Substituting B = ∇φ in the

equation ∇ · B = 0, we obtain ∇2φ = 0. We search for the solution

to this equation in the form φ = e−z/HF(r). Then we obtain

1

r

d

dr

(
r

dF

dr

)
+

F

H 2
= 0. (37)

The solution to this equation is F(r) = −HJ0(r/H), where J0 is the

Bessel function of the first kind and zero order, and we arbitrarily

choose the proportionality coefficient equal to −H. Hence, φ is

given by

φ = −He−z/H J0(r/H ). (38)

Now, using equation (1), the relation J ′
0(z) = −J1(z) (Abramowitz

& Stegun 1964) and taking into account that ψ/r must be regular

at r = 0, we obtain

ψ = re−z/H J1(r/H ), (39)

where J1 is the Bessel function of the first kind and first order. Using

equation (1), we obtain

Br = B0e−z/H J1(r/H ), Bz = B0e−z/H J0(r/H ). (40)

It follows from equations (38)–(40) that

B2 = B2
0

(
φ2

H 2
+

ψ2

r2

)
. (41)

We see that, in contrast to the planar case, we cannot explicitly ex-

press B2 in terms of φ and ψ . The dependence of r on the curvilinear

coordinates is determined by the equation

rJ1(r/H )

HJ0(r/H )
= −

ψ

φ
. (42)

The magnetic field lines in a plane θ = const are defined by the

equation ψ = const. Using equation (39) and the approximate re-

lation J1(x) ≈ x/2 valid for x ≪ 1 (Abramowitz & Stegun 1964),

we obtain that, for r ≪ H, the equation of a magnetic field line is

r =
√

2Hψ ez/2H . We see that the distance between two neighbour-

ing magnetic field lines increases exponentially with z. The sketch

of the equilibrium is shown in Fig. 1.

We consider the wave propagation in a magnetic tube that is

narrow at its base. It is bounded by the magnetic surface determined

by ψ = ψb, ψb ≪ H. The equation of this magnetic surface is

z = H ln

(
r

ψb

J1(r/H )

)
. (43)

Then the dependence of the magnetic tube radius R on the height z

is given by the solution to this equation considered as an equation

for r. The tube radius R0 at the base (z = 0) is determined by the

equation

ψb = R0J1(R0/H ). (44)

Figure 1. Equilibrium with divergent magnetic field lines. The curvilinear

coordinates are shown in the plane θ = const. The vertical curves are the

magnetic field lines defined by the equation ψ = const. The horizontal

curves are defined by the equation φ = const. The thick vertical curve is

the boundary of the region where the wave propagation is considered. It is

defined by the equation ψ = ψb. The thick horizontal line is defined by the

equation φ = φ1. It is assumed that the wave is driven at this line. The dotted

line shows the level z = 0.

Figure 2. Dependence on the magnetic tube radius on z. The solid, dashed

and dash–dotted lines correspond to the tube radius at its base equal to

0.02H, 0.05H and 0.1H, respectively.

Then we can rewrite equation (43) as

RJ1(R/H ) = ez/H R0J1(R0/H ). (45)

The dependence of R on z for various values of the tube radius at

its base, R0, is shown in Fig. 2.
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Using the relation (Abramowitz & Stegun 1964)

xJ ′
1(x) + J1 = xJ0(x), (46)

we obtain that the boundary magnetic field line reaches its maximum

height at r = Hj1, where j1 is the first zero of J0(x). This maximum

height is given by

zm = H ln

(
Hj1

ψb

J1(j1)

)
. (47)

It follows from equation (38) that φ = 0 at r = Hj1. When r increases

beyond Hj1, the boundary field line goes down. Below we consider

the wave propagation in a domain bounded from below by the line

φ = φ1. We now define φ1 by the condition that it intersects the

magnetic tube axis at z = 0. It follows from this condition that

φ1 = −H. Using the condition that the tube radius at the base is

much smaller than H, we obtain from equations (38) and (39) that

the line φ = φ1 intersects the tube boundary at the point with the

coordinates

r ≈
√

2Hψb, z ≈ −
ψb

2
. (48)

We also restrict the domain where we study the wave propagation by

the line φ = φ2 = const that intersects the boundary field line below

z = zm. Hence, finally this domain is defined by the inequalities φ1

≤ φ ≤ φ2 < 0 and 0 ≤ ψ ≤ ψb. It is shaded in Fig. 1. Then the

maximum radius of this domain is Rm defined by the equation

RmJ1(Rm/H )

HJ0(Rm/H )
= −

ψb

φ2

. (49)

We emphasize that we do not assume that Rm ≪ H.

The function r(φ, ψ) monotonically increases from rm(ψ) to

rM(ψ) when φ increases from φ1 to φ2, while ψ is fixed. In ac-

cordance with equation (42), the functions rm(ψ) and rM(ψ) are

defined by

rmJ1(rm/H )

J0(rm/H )
= ψ,

rMJ1(rM/H )

HJ0(rM/H )
= −

ψ

φ2

, (50)

where we put φ1 ≈ −H. Taking into account that rm(ψ) ≪ H, we

obtain rm(ψ) ≈
√

2Hψ .

We now obtain ρ as an explicit function of r and ψ . Using

equation (18), we transform equation (20) to

r2B2 ∂

∂φ

(
r2B2 ∂G

∂φ

)
=

B4
0 H 4σ (ψ)

V 2
0 G3

, (51)

where G = A/A0. We multiply both sides of this equation by ∂G/∂φ

and integrate the obtained equation. This results in

r2B2G
∂G

∂φ
= ±

B2
0 H 2

V0

√
G2τ (ψ) − σ (ψ), (52)

where τ (ψ) is an arbitrary function. Since the derivative on the left-

hand side of this equation is calculated at constant ψ , it defines the

dependence of G on φ on a particular magnetic field fine. We now

use the variable r instead of φ and rewrite equation (52) as

r2B2G
∂G

∂r
= ±

B2
0 H 2

V0

∂φ

∂r

√
G2τ (ψ) − σ (ψ), (53)

where both partial derivatives in this equation are calculated at

ψ = const. It follows from equations (38) and (39) that

φ = −
HψJ0(r/H )

rJ1(r/H )
. (54)

Figure 3. Area (shaded) in rψ plane defined by the inequalities (58). The

upper boundary shown by the dotted line is defined by the equation ψ = ψb.

The solid and dashed curves are defined by the condition that ψ is equal

to the right and left boundary in the second inequality in equation (58),

respectively.

With the aid of this result, equation (46) and the

relation J ′
0(x) = −J1(x), we obtain

∂φ

∂r
=

ψ
[
J 2

0 (r/H ) + J 2
1 (r/H )

]

rJ 2
1 (r/H )

. (55)

Using equations (38), (39) and (41) yields

r2B2 = ψ2B2
0

J 2
0 (r/H ) + J 2

1 (r/H )

J 2
1 (r/H )

. (56)

Substituting equations (55) and (56) in equation (53), we transform

it to

G
∂G

∂r
= ±

H 2

rψV0

√
G2τ (ψ) − σ (ψ). (57)

This equation enables us to determine G as a function of r and ψ .

After that, using equations (17) and (18), we can also determine ρ

and h as functions of r and ψ . This observation inspires us to use r

and ψ as independent variables in what follows. Since ψ is defined

as a function of r and z by equation (39), the expressions that we

will obtain will also define G, ρ and h as functions of r and z. The

area in the rψ plane where we consider the wave propagation is

determined by the inequalities

ψ ≤ ψb, −
rφ2J1(r/H )

HJ0(r/H )
≤ ψ ≤

rJ1(r/H )

J0(r/H )
. (58)

This area is shown in Fig. 3.

Using equations (18), (55) and (56), we transform equation (17)

to

h =
H 2

ψ

∫ r

rm

dr ′

r ′G2
, (59)

where the integral is calculated at ψ = const.

Now we consider four particular cases.
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(i) τ (ψ) = σ (ψ) = 0. In this case, we obtain from equations (18),

(57) and (59)

G = 1/C1(ψ), ρ = ρ0C
4
1 (ψ)(H/r)4, h =

H 2

ψ
C2

1 (ψ) ln
r

rm(ψ)
,

(60)

where C1(ψ) is an arbitrary function. When z → 0 and r ≪ H, it

follows from equation (39) that r ≈
√

2Hψ . Then the condition

ρ → ρ0 as z → 0 and r → 0 implies that

C1(ψ)

√
H

2ψ
→ 1 as ψ → 0. (61)

(ii) τ (ψ) = 0, σ (ψ) �= 0. Then

G2 = ±
2H 2

ψV0

√
−σ (ψ) ln

r

C2(ψ)
,

ρ = −
ρ0ψ

2V 2
0

4r4σ (ψ)

(
ln

r

C2(ψ)

)−2

,

h = ±
V0

2
√

−σ (ψ)
ln

∣∣∣∣
ln[r/C2(ψ)]

ln[rm(ψ)/C2(ψ)]

∣∣∣∣ , (62)

where C2(ψ) is an arbitrary positive function. Obviously, these

expressions are only valid when σ (ψ) < 0. The condition ρ → ρ0

as z → 0 and r → 0 implies that

σ (ψ)

(
ln

2Hψ

C2
2 (ψ)

)2

→ 1 as ψ → 0. (63)

(iii) σ (ψ) = 0 and τ (ψ) �= 0. It follows from equations (18) and

(57) that

G = ±
H 2

√
τ (ψ)

ψV0

ln
r

C3(ψ)
,

ρ =
ρ0ψ

4V 4
0

r4H 4τ 2(ψ)

(
ln

r

C3(ψ)

)−4

,

h =
ψV 2

0

H 2τ (ψ)

[(
ln

rm(ψ)

C3(ψ)

)−1

−
(

ln
r

C3(ψ)

)−1
]

, (64)

where C3(ψ) is an arbitrary positive function. These expressions

are only valid when τ (ψ) > 0. The condition ρ → ρ0 as z → 0 and

r → 0 implies that

τ (ψ)

ψ

(
ln

2Hψ

C2
3 (ψ)

)2

→
2V 2

0

H 3
as ψ → 0. (65)

(iv) σ (ψ) �= 0 and τ (ψ) �= 0. This is the most general case. Using

equations (18) and (57), we obtain

G2 =
σ (ψ)

τ (ψ)
+

H 4τ (ψ)

ψ2V 2
0

(
ln

r

C4(ψ)

)2

,

ρ =
ρ0H

4

r4

[
σ (ψ)

τ (ψ)
+

H 4τ (ψ)

ψ2V 2
0

(
ln

r

C4(ψ)

)2
]−2

, (66)

where C4(ψ) is an arbitrary positive function. The expression for h

depends on the signs of σ (ψ) and τ (ψ). The condition ρ → ρ0 as

z → 0 and r → 0 implies that

ψ

[
σ (ψ)

τ (ψ)
+

H 4τ (ψ)

4ψ2V 2
0

(
ln

2Hψ

C2
4 (ψ)

)2
]

→
H

2
as ψ → 0. (67)

When σ (ψ) > 0 and τ (ψ) > 0, we obtain

h =
V0√
σ (ψ)

[
arctan

(
H 2τ (ψ)

ψV0

√
σ (ψ)

ln
r

C4(ψ)

)
,

− arctan

(
H 2τ (ψ)

ψV0

√
σ (ψ)

ln
rm(ψ)

C4(ψ)

)]
. (68)

When σ (ψ) < 0, the expression for h is

h =
V0

2
√

|σ (ψ)|
ln

∣∣∣∣
ψV0

√
|σ (ψ)| − H 2τ (ψ) ln[r/C4(ψ)]

ψV0

√
|σ (ψ)| + H 2τ (ψ) ln[r/C4(ψ)]

×
ψV0

√
|σ (ψ)| + H 2τ (ψ) ln[rm(ψ)/C4(ψ)]

ψV0

√
|σ (ψ)| − H 2τ (ψ) ln[rm(ψ)/C4(ψ)]

∣∣∣∣ . (69)

This expression is only valid when the argument of logarithm is

finite and not equal to zero for r ∈ [rm(ψ), rM(ψ)].

We cannot have σ (ψ) > 0 and τ (ψ) < 0 because in that case we

would have G2 < 0. Since ψ is expressed in terms of r and z by

equation (39), equations (60)–(66) determine ρ as a function of r

and z.

6.2 Wave damping

We start from transforming equation (34) to the variables r and ψ .

We use the relation

∂h

∂ψ

∣∣∣∣∣
φ

=
∂h

∂ψ

∣∣∣∣∣
r

+
∂h

∂r

∂r

∂ψ
, (70)

where the subscripts φ and r indicate that the derivatives are taken

at constant φ and constant r, respectively. Differentiating equation

(54) and using equation (46) and the relation J ′
0(x) = −J1(x) yields

∂r

∂ψ
=

HJ0(r/H )J1(r/H )

ψ
[
J 2

0 (r/H ) + J 2
1 (r/H )

] . (71)

Now, using equations (18), (55) and (71), we transform equation

(34) to

∂Q

∂r
= −Ŵ(r, ψ)Q, (72)

where

Ŵ(r, ψ) =
ωνλ

[
J 2

0 (r/H ) + J 2
1 (r/H )

]

2V 3
0 rG2ψ

×
(

ψ

J1(r/H )

∂h

∂ψ
+

HJ0(r/H )

J 2
0 (r/H ) + J 2

1 (r/H )

∂h

∂r

)2

, (73)

and ∂h/∂ψ is calculated at constant r.

To characterize the efficiency of the wave damping, we calculate

the variation with the height of the wave energy flux averaged over

the wave period, �, through surfaces φ = const. A surface φ = const

is uniquely defined by the coordinate of the point of its intersection

with the z-axis. Hence, � is a function of z. Multiplying equation

(2) by ν, equation (3) by b/μ0 and adding the results, we obtain

∂

∂t

(
ρv2

2
+

b2

2μ0

)
=

1

μ0

∇ · (Bvb)

+
v

r

∂

∂r

(
ρνr

∂v

∂r

)
+ v

∂

∂z

(
ρν

∂v

∂z

)
. (74)

The expression in the parentheses on the left-hand side of this

equation is the wave energy density, while −Bvb/μ0 is the density

of the wave energy flux. We obtain exactly the same expression for

the density of the wave energy flux if we calculate the Pointing flux

and only keep the quadratic terms. When ν = 0, equation (74) is the
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energy conservation equation. If we take the average of equation

(74) over the wave period, then we obtain that the average density

of the wave energy flux is conserved as it should be. The density

of the energy flux is directed along the equilibrium magnetic field.

Equations (35) and (36) give the complex expressions for u and b.

To obtain the physical quantities, we need to take the real parts of

these expressions. Then, using equations (35) and (36), we obtain

that the magnitude of the average over the period density of the

wave energy flux is

−
B

μ0

〈vb〉 = ρ0V0H
2Q2A2

0

λB

2ωB0

, (75)

where the angle brackets indicate the averaging over the period.

Let � be the surface defined by the condition φ = −He−z0/H . This

surface crosses the z-axis at z = z0. It follows from equations (38)

and (42) that the equation of � is

ψ = e−z0/H rJ1(r/H )

J0(r/H )
. (76)

Using equation (39), we obtain that in cylindrical coordinates the

equation of � is

z = z0 + H ln[J0(r/H )]. (77)

The wave energy flux through � is equal to the wave energy flux

density integrated over the part of � that is inside the magnetic tube

bounded by the surface ψ = ψb. The elementary part of � is

d� =

√

1 +
(

∂z

∂r

)2

r dr dθ =

√

1 +
J 2

1 (r/H )

J 2
0 (r/H )

r dr dθ. (78)

Using equations (41) and (42) yields

B2

B2
0

=
ψ2

r2

(
1 +

J 2
0 (r/H )

J 2
1 (r/H )

)
. (79)

With the aid of this result and equation (71), we obtain from equa-

tions (78) (B/B0)d� = H dψ dθ . Then, taking into account that the

energy flux at � is everywhere in the direction normal to this sur-

face, we obtain with the aid of equation (75) that the average energy

flux through the surface � is

�(z) = −
1

μ0

∫

�

B〈vb〉 d� =
πρ0V0H

3

ω

×
∫ ψb

0

√
ω2 + σ (ψ)A2

0(ψ)Q2(r(ψ, z), ψ) dψ, (80)

where r(ψ , z) is defined by equation (76), and we dropped the

subscript 0 at z because z0 is an arbitrary point from the interval (0,

H ln |H/φ2|). When ν = 0, it follows from equation (72) that Q is

independent of r, which implies that � is independent of z, as it

should be. The account of viscosity causes the decrease of � with

the height.

6.3 Particular case: σ (ψ) > 0 and τ (ψ) > 0

6.3.1 Analytical investigation

We now consider the case where σ (ψ) > 0 and τ (ψ) > 0, so G,

ρ and h are defined by equations (66) and (68). We recall that r

monotonically increases from rm(ψ) ≈
√

2Hψ to rM(ψ) with the

distance along a particular magnetic field line (ψ = const). We

take C4(ψ) ≥ rM(ψ), so that ln [r/C4(ψ)] ≤ 0 in equation (66) in

the whole domain of variation of r and ψ shown in Fig. 3. We also

impose a viable condition that ρ monotonically decreases along any

magnetic field lines, which implies that it must be a monotonically

decreasing function of r at fixed ψ . It is straightforward to obtain

that this condition reduces to
(

ln
r

C4(ψ)

)2

+ ln
r

C4(ψ)
+

ψ2V 2
0 σ (ψ)

H 4τ 2(ψ)
≥ 0. (81)

We impose the condition

σ (ψ) ≥
H 4τ 2(ψ)

4ψ2V 2
0

, (82)

which guarantees that the inequality (81) is satisfied for any value

of r. Now we put

C4(ψ) = κrM(ψ), σ (ψ) =
χ2H 4τ 2(ψ)

ψ2V 2
0

, (83)

where κ and χ are constants satisfying κ ≥ 1 and χ ≥ 1
2
. Then

equations (66) and (68) reduce to

G2 =
H 4τ (ψ)

ψ2V 2
0

[
χ2 + W 2(r, ψ)

]
,

ρ =
ρ0ψ

4V 4
0

r4H 4τ 2(ψ)
[
χ2 + W 2(r, ψ)

]2
,

h =
ψV 2

0

χH 2τ (ψ)

[
arctan

Wm(ψ)

χ
− arctan

W (r, ψ)

χ

]
, (84)

where

W (r, ψ) = − ln
r

κrM(ψ)
, Wm(ψ) = − ln

rm(ψ)

κrM(ψ)
. (85)

Equation (67) reduces to

τ (ψ)

ψ

[
χ2 +

1

4

(
ln

|φ2|
κ2H

)2
]

→
V 2

0

2H 3
as ψ → 0. (86)

It is expedient to evaluate the variation of the Alfvén speed along

the symmetry axis. It follows from equation (40) that at the sym-

metry axis B = B0e−z/H. Using equations (39) and (50) yields

r =
√

2Hψ ez/2H and rM = H
√

−2ψ/φ2 when ψ ≪ |φ2|. With

the aid of these results, we obtain

W =
1

2
ln

κ2H

|φ2|
−

z

2H
. (87)

Then, using this equation and equation (86), we finally arrive at

ρ

ρ0

=
(

4χ2 + [ln(κ2H/|φ2|)]2

4χ2 + [ln(κ2H/|φ2|) − z/H ]2

)2

e−2z/H

VA

V0

=
4χ2 + [ln(κ2H/|φ2|) − z/H ]2

4χ2 + [ln(κ2H/|φ2|)]2
.

(88)

It follows from equation (38) that the maximum value of z on the

symmetry axis is Hln |H/φ2|. Then the minimum value of the Alfvén

speed at the symmetry axis, VAm, is given by

VAm

V0

=
4(χ2 + ln2 κ)

4χ2 + [ln(κ2H/|φ2|)]2
. (89)

Since the expression for �0 in equation (26) contains an arbitrary

function A(ψ), we can choose the dependence of �0 on ψ arbitrarily.

We take �0 = e−iωt. Then it follows from equation (28) that Q = 1

at h = 0. The condition h = 0 is equivalent to r = rm(ψ) ≈
√

2Hψ .

Hence, Q is defined by the solution to equation (72) satisfying the

boundary condition

Q = 1 at r =
√

2Hψ. (90)
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To calculate �(z), we also need to define the function A0(ψ). To do

this, we impose the boundary condition

u = u0

(
1 −

r2

R2
0

)
e−iωt at z = 0 (91)

(we recall that R0 is the tube radius at z = 0). It follows from

equation (39) that the condition z = 0 is equivalent to ψ = rJ1(r/H),

or r ≈
√

2Hψ ≈ rm(ψ). Then it follows from equations (84) and

(85) that at z = 0

ρ ≈ ρ1(ψ) ≡
ρ0ψ

2V 4
0

4H 6τ 2(ψ)

[
χ2 +

(
ln

rm(ψ)

κrM(ψ)

)2
]−2

, h ≈ 0. (92)

Now it follows from equation (35) that

u =
HA0(ψ)
√

2Hψ

(
ρ0

ρ1(ψ)

)1/4

e−iωt at z = 0. (93)

Comparing equations (91) and (93) and using the relation r2 ≈ 2Hψ

yields

A0(ψ) =
u0ψV0

H 2

√
τ (ψ)

[
χ2 + W 2

m(ψ)
]

(
1 −

2Hψ

R2
0

)
. (94)

Using this result, we reduce equation (80) to

�(z) =
πρ0u

2
0V

2
0

H

∫ ψb

0

Q2(r(ψ, z), ψ)

(
1 −

2Hψ

R2
0

)2

×

√
1

τ 2(ψ)
+

χ2H 4

ω2ψ2V 2
0

ψ2 dψ

χ2 + W 2
m(ψ)

. (95)

We also need the expression for Ŵ. Differentiating the second iden-

tity in equation (50), and using equation (47) and the identity

J ′
0(x) = −J1(x) yields

drM

dψ
= −

H 2Y (ψ)

rMφ2

, Y (ψ) =
J 2

0 (rM/H )

J 2
0 (rM/H ) + J 2

1 (rM/H )
. (96)

Differentiating the expression for h given by equation (84) with

respect to r, we obtain

∂h

∂r
=

ψV 2
0

rH 2τ (ψ)
[
χ2 + W 2(r, ψ)

] . (97)

Differentiating the expression for h with respect to ψ yields

∂h

∂ψ
=

V 2
0

χH 2τ (ψ)

[
arctan

Wm(ψ)

χ
− arctan

W (r, ψ)

χ

]

×
(

1 −
ψ

τ (ψ)

dτ

dψ

)
+

ψV 2
0 Y (ψ)

φ 2τ (ψ)r2
M(ψ)

[
χ2 + W 2(r, ψ)

]

−
V 2

0

H 2τ (ψ)
[
χ2 + W 2

m(ψ)
]

(
ψH 2Y (ψ)

φ2r
2
M(ψ)

+
1

2

)
. (98)

Then Ŵ is defined by equations (73), (84) and (96)–(98).

6.3.2 Numerical results

The dependence of the wave energy flux � on z was calculated

numerically. Below we take the density at the tube base given by

ρ =
ρ0

ζ

⎧
⎪⎨
⎪⎩

1 + (ζ − 1)

(
1 −

r2

R2
0

)2

, r ≤ R0,

1, r ≥ R0,

(99)

where ζ is the ratio of the density at the tube axis to the density

outside the tube. Using equation (39), we obtain the approximate

expression

r =
√

2Hψ ez/2H (100)

valid for r ≪ H. Since ψ ≤ ψb ≪ H, this condition is satisfied for

r ≤ R0. In particular, at the tube base r =
√

2Hψ . Then we can

rewrite equation (99) as

ρ

ρ0

= q(ψ) ≡
1

ζ

⎧
⎪⎨
⎪⎩

1 + (ζ − 1)

(
1 −

ψ

ψb

)2

,r ≤ ψb,

1, r ≥ ψb.

(101)

On the other hand, it follows from equation (84) that at the tube

base

ρ =
ρ0ψ

2V 4
0

4H 6τ 2(ψ)
[
χ2 + W 2

m(ψ)
]2

, ψ ≤ ψb. (102)

The expression for ρ beyond the tube boundary is obtained by

substituting ψb for ψ in this expression. Comparing equations (101)

and (102), we obtain that the expression for τ (ψ) valid for ψ ≤ ψb

is given by

τ (ψ) =
ψV 2

0

√
ζ

2H 3[χ2 + W 2
m(ψ)]

[
1 + (ζ − 1)

(
1 −

ψ

ψb

)2
]−1/2

. (103)

It is straightforward to see that this expression agrees with equation

(86).

It is a very popular assumption that the corona is isothermal. In

that case, the plasma density is given by

ρ = ρ0e−z/Hρ , (104)

where Hρ is the density scaleheight. Unfortunately, the equilibria

with an isothermal plasma and exponentially divergent magnetic

field lines are not non-reflective. We try to approximate the density

given by equation (104) by that given by equation (88) at the tube

axis. We take the maximum height at the symmetry axis equal to

6H. Since this maximum height is Hln |H/φ2|, this implies that

ln |H/φ2| = 6. Then the expression for the density at the tube axis

given by equation (88) reduces to

ρ

ρ0

=
(

χ2 + (ς + 3)2

χ2 + (ς + 3 − z/2H )2

)2

e−2z/H , (105)

where ς = ln κ . First condition that we impose is that the values

of ρ given by equations (104) and (105) coincide at z = 6H. This

results in the equation

χ2 + (ς + 3)2

χ2 + ς2
= exp

[
3

(
2 −

H

Hρ

)]
≡ E. (106)

This is the equation determining χ as a function of ς . Since the left-

hand side of this equation is larger than unity, a necessary condition

that it has a solution is Hρ ≥ H/2, Hρ = H/2 corresponding to

χ → ∞. It follows from equation (106) that

χ2 =
(ς + 3)2 − Eς2

E − 1
. (107)

Substituting this result in equation (105) yields

ρ

ρ0

=
9E2(2ς + 3)2e−2z/H

{[3E − (E − 1)z/2H ](2ς + 3 − z/2H ) + 3z/2H }2
. (108)

The condition χ ≥ 1/2 imposes a restriction on ς ,

4(E − 1)ς2 − 24ς + E − 37 ≤ 0. (109)
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This inequality only can be satisfied if the discriminant of the left-

hand side considered as a quadratic polynomial of ς is non-negative.

This condition is written as

E2 − 38E + 1 ≤ 0. (110)

This condition is equivalent to E ≤ 19 + 6
√

10 ≈ 37.97, which, in

turn, implies that

Hρ ≤
3H

6 − ln(19 + 6
√

10)
≈ 1.27H.

Hence, eventually we obtain that Hρ must satisfy

0.5H ≤ Hρ ≤ 1.27H. (111)

Then it follows from equation (109) that

max

(
0,

6 − S

2(E − 1)

)
≤ ς ≤

6 + S

2(E − 1)
, (112)

where

S =
√

38E − E2 − 1, (113)

and we took into account that ς ≥ 0. We note that 1
2
(6 − S)/(E −

1) ≤ 0 when 0.83H ≤ Hρ ≤ 1.14H, while 1
2
(6 − S)/(E − 1) > 0

otherwise.

In the expression for ρ given by equation (108), we still have one

free parameter ς . We choose this parameter to make the density

dependence on z given by equation (108) as close to that given

by equation (104) as possible. The mean square deviation of the

densities given by equations (104) and (108) is proportional to the

square root of the following integral:

I (ς ) = 2H

×
∫ 3

0

(
e−2zH/Hρ −

9E2(2ς + 3)2e−4z

{[3E − (E − 1)z](2ς + 3 − z) + 3z}2

)2

dz.

(114)

To derive this expression, we used equation (107), made the substi-

tution z′ = z/2H and then dropped the prime. We choose the value

of ς that minimizes I(ς ).

In Fig. 4, the two dependences of ρ on z, one given by equation

(104) and the other by equation (108), are shown for various values

of Hρ/H. We see that the accuracy of the approximation of the ex-

ponentially decreasing density profile by the density profile defined

by equation (108) increases when Hρ/H decreases. Note that the

two expressions coincide for Hρ/H = 1
2
.

We calculated the dependence of � = �(z)/�(0) on z/H. This

function depends on four dimensionless parameter: R0/H, Hρ/H,

ωH/V0 and the Reynolds number Re = HV0/ν. In all our calcu-

lations, we took R0/H = 0.1 and Hρ/H = 1.25, which is slightly

below the maximum possible value Hρ/H = 1.27. Keeping in mind

the application to coronal plumes, we take the electron number den-

sity at the centre of the plume equal to 1015 m−3. We also take the

density contrast between the plume centre and far from ζ = 5. If we

also take B = 10 G, then we obtain for the Alfvén it equal to speed

in the plume centre V0 ≈ 700 km s−1. Taking H varying from 30

to 60 Mm and the wave period varying from 30 to 60 s, we obtain

that the minimum and maximum values of ωH/V0 are 10π/7 and

40π/7, respectively.

If we take the plasma temperature equal to 106 K, then the clas-

sical plasma theory gives for the ion collisional time τ i = 1 s and

1010 m2 s−1 for the first coefficient in the expression for the full

Braginskii viscosity tensor (Spitzer 1962; Braginskii 1965). How-

ever, the presence of magnetic field makes the viscosity in the solar

Figure 4. Dependence of density ρ on z at the tube axis (r = 0). The

solid curves show the dependence defined by equation (104), and the

dashed by equation (108). The top, middle and bottom curves correspond to

Hρ/H = 1.25, 1 and 0.7.

corona strongly anisotropic. The first term in the Braginskii ex-

pression for the viscosity tensor describes the volume viscosity that

does not affect Alfvén waves. The Alfvén wave damping is caused

by shear viscosity. The shear viscosity is smaller than the volume

viscosity by factor (τ iωi)
−2, where ωi is the ion gyrofrequency.

For B = 10 G, we obtain ωi ≈ 105 s−1. As a result, we obtain

ν ≈ 1 m2 s−1. But this estimate must be taken with caution. It is

quite possible that turbulence can greatly enhance shear viscosity.

Therefore, it seems reasonable to consider ν as a free parameter. We

considered four values of ν, 105, 106, 3 × 106 and 107 m2 s−1. The

corresponding values of Re are 2.1 × 107, 2.1 × 106, 7 × 106 and

2.1 × 106 when H = 30 Mm, and 4.2 × 107, 4.2 × 106, 1.4 × 107

and 4.2 × 106 when H = 60 Mm. The dependence of � on z is

shown in Fig. 5.

First of all, Fig. 5 reveals that the damping rate strongly de-

pends on the value of ν, which, of course, is an expected result.

The solid curves showing the dependence of � on z/H are almost

horizontal, which implies that the damping is practically negligible

when ν = 105 m2 s−1. The wave damping is only substantial when

ν = 107 m2 s−1, which is by seven orders of magnitude larger than

the value given by the classical plasma theory. Comparing the upper

and lower panels in Fig. 5, we see that the damping of waves with the

period of 30 s is much stronger than that of waves with the period of

60 s, which is again an expected result. Finally, comparing the left-

and right-hand panels in Fig. 5 shows that the reduction in the wave

energy flux at the height 6H is slightly higher for H = 60 Mm than

for H = 30 Mm. However, we must keep in mind that 6H = 180 Mm

when H = 30 Mm, while 6H = 360 Mm when H = 60 Mm.

It is expedient to compare these results with the damping of phase-

mixed Alfvén waves in a magnetic plasma configuration with the

straight magnetic field lines. We consider an axisymmetric equilib-

rium with constant magnetic field and the density approximating

the exponential decay. The dependence of the wave density flux

on height is calculated in Appendix A. Using equation (A15), we

calculated the ratio of the density flux at z = 6H and z = 0, �(6H),

for a few values of H and the wave period T. In this calculation,

we took V0 = 700 m s−1, ν = 107 m2 s−1 and Hρ/H = 1.25. The
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Figure 5. Dependence of � on z for Hρ/H = 1.25. The left-hand panels correspond to H = 30 Mm, and the right to H = 60 Mm. The upper panels

correspond to the wave period equal to 30 s, and the lower to the wave period equal to 60 s. The solid, dashed, dotted and dash–dotted curves correspond to

ν = 105, 106, 3 × 106 and 107 m2 s−1, respectively.

Table 1. Results.

H = 30 Mm H = 60 Mm

T = 30 s 0.993 0.987

T = 60 s 0.998 0.996

results are given in Table 1. We see that the wave damping at the

height 6H in the equilibrium with the straight magnetic field lines

is practically negligible. This result clearly shows that the exponen-

tial divergence of the magnetic field lines results in the enhanced

damping of phase-mixed Alfvén waves.

We also studied the dependence of � calculated at z = 6H on

Hρ/H. In this study, we took ν = 107 m2 s−1. The results are shown

in Fig. 6. As we have already seen, Hρ/H can vary from 0.5 to 1.27.

However, we slightly reduced the upper boundary and considered

0.5 ≤ Hρ/H ≤ 1.25. We see that the efficiency of wave damping

quickly increases with the increase of Hρ/H. This result enables

us to clarify the physical reason of the enhanced wave damping

in equilibria with exponentially divergent magnetic field lines. In

such an equilibrium, the magnetic field magnitude decreases as

e−z/H. Then the Alfvén speed decreases as exp [ − z/(H − Hρ/2)].

Since the wave frequency is fixed, the decrease in the Alfvén speed

Figure 6. Dependence of � calculated at z = 6H on Hρ/H. This dependence

is calculated for ν = 107 m2 s−1. The solid curve corresponds to H = 30 Mm

and the wave period 60 s, the dotted curve to H = 60 Mm and the wave

period 60 s, the dashed curve to H = 30 Mm and the wave period 30 s, and

the dash–dotted curve to H = 60 Mm and the wave period 30 s.
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causes the decrease in the wavelength and increases the time needed

for the wave to reach a definite height. This increases the efficiency

of the wave damping. The larger Hρ/H, the stronger the decrease in

the Alfvén speed is, and then the more efficient the wave damping

is. Now it is clear why the wave damping obtained in this paper is

slightly less efficient than that obtained by Ruderman & Petrukhin

(2017). The reason is that Ruderman & Petrukhin (2017) considered

an equilibrium with the constant density, while here we considered

the density decaying with the height.

7 SU M M A RY A N D C O N C L U S I O N S

In this paper, we studied the damping of phase-mixed Alfvén waves

in axisymmetric non-reflective magnetic plasma configurations. We

derived the general expression describing the damping of phase-

mixed Alfvén waves when they propagate along the magnetic field

lines. Then we applied the general theory to a particular case of

equilibrium with exponentially divergent magnetic field lines. The

condition that the equilibrium is non-reflective determines the den-

sity dependence on spatial coordinates. Exponentially decreasing

with the height density is, in general, not among the set of density

profiles determined by the non-reflective condition. However, we

obtained the density profiles that fairly well approximate the ex-

ponentially decaying density. We calculated the dependence on the

height of the total average over the period wave density flux prop-

agating in a magnetic tube. We considered waves with the periods

of 30 and 60 s, and the magnetic scaleheight H equal to 30 and

60 Mm. We obtained that a substantial wave damping at the height

6H is only possible if the shear viscosity ν is enhanced by seven

orders of magnitude in comparison with the value given by the

classical plasma theory and taken to be ν = 107 m2 s−1. With this

value of shear viscosity, depending on the wave period and H, from

7 per cent to 45 per cent of the wave energy is dissipated until the

wave reaches the height 6H.

As we can expect, the dissipation efficiency strongly depends on

the wave period. When H = 30 Mm, 27 per cent of the wave en-

ergy dissipates when the wave period is 30 s, while only 7 per cent

of the wave energy dissipates when the wave period is 60 s. For

H = 60 Mm, these numbers are 45 per cent and 14.5 per cent, re-

spectively. An important result that we obtained is that the wave

damping in magnetic plasma configurations with exponentially di-

vergent magnetic field lines strongly depends on the density varia-

tion with the height. The stronger the density decrease, the weaker

the wave damping is. This result enabled us to give the physical ex-

planation of the phenomenon of the enhanced wave damping caused

by the exponential divergence of the magnetic field lines. Due to this

divergence, the magnetic field magnitude exponentially decreases

with the height. If the density does not change with the height

or decreases slower than the magnetic field magnitude, then the

Alfvén speed exponentially decreases with the height. As a result,

Alfvén waves propagating upwards have more time for damping

than in the case when they propagate in an equilibrium with the

constant or increasing with the height Alfvén speed.

Of course, it is difficult to expect that the real magnetic plasma

configurations in the solar atmosphere are non-reflective. However,

we hope that at least some of these configurations are close to non-

reflective in the sense that the wave reflection in such configurations

is very weak. The properties of wave propagation and damping in

such configurations are very close to those in non-reflective con-

figurations. In our future study, we will investigate what configu-

rations with the exponentially expanding magnetic field lines and

the density exponentially decreasing with the height are close to

non-reflective.

AC K N OW L E D G E M E N T S

The authors gratefully acknowledge financial support from the

Russian Fund for Fundamental Research (RFFR) grant RFBR

(16-02-00167). MSR acknowledges the support from the STFC

grant.

R E F E R E N C E S

Abramowitz M., Stegun I. A., 1964, Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables, 10th edn. Dover Press,

New York

Arregui I., 2015, Phil. Trans. R. Soc. A, 373, 20140261

Bender C. M., Orszag S. A., 1999, Advanced Mathematical Methods for

Scientists and Engineers. Springer-Verlag, Berlin

Botha G. J. J., Arber T. D., Nakariakov V. M., Keenan F. P., 2000, A&A,

368, 1186

Braginskii S. J., 1965, in Leontovich M. A., ed., Reviews of Plasma Physics,

Vol. 1, Consultants Bureau, New York, p. 205

Brekhovskikh L. M., 1980, Waves in Layered Media. Academic Press, New

York

Didenkulova I., Pelinovsky E., Soomere T., 2008, Est. J. Eng., 14, 220

Ginzburg V. L., 1970, Propagation of Electromagnetic Waves in Plasma.

Pergamon Press, Oxford

Grimshaw R., Pelinovsky E., Talipova T., 2010, J. Phys. Oceanogr., 40, 802

Heyvaerts J., Priest E. R., 1983, A&A, 117, 220

Ibragimov N. H., Rudenko O. V., 2004, Acta Phys., 50, 406

Malara F., Primavera L., Veltri P., 1996, ApJ, 459, 347

Nakariakov V. M., Roberts B., Murawski K., 1997, Sol. Phys., 175, 93

Petrukhin N. S., Pelinovsky E. N., Batsyna E. K., 2011, JETP Lett., 93, 564

Petrukhin N. S., Pelinovsky E. N., Batsyna E. K., 2012, Astron. Lett., 38,

388

Petrukhin N. S., Ruderman M. S., Pelinovsky E. N., 2015, Sol. Phys., 290,

1323

Ruderman M. S., Petrukhin N. S., 2017, A&A, 600, A122

Ruderman M. S., Nakariakov V. M., Roberts B., 1998, A&A, 338, 1118

Ruderman M. S., Petrukhin N. S., Pelinovsky E., Talipova T., 2013, Sol.

Phys., 286, 417

Smith P. G., Tsiklauri D., Ruderman M. S., 2007, A&A, 475, 1111

Soler R., Terradas J., Oliver R., Ballester J. L., 2017, ApJ, 840, 20

Spitzer R., 1962, Physics of Fully Ionized Gases. Interscience, New York

Tsiklauri D., Nakariakov V. M., 2002, A&A, 393, 321

Tsiklauri D., Arber T. D., Nakariakov V. M., 2001, A&A, 379, 1098

Tsiklauri D., Arber T. D., Nakariakov V. M., 2002, A&A, 395, 285

Tsiklauri D., Nakariakov V. M., Rowlands G., 2003, A&A, 400, 1051

Tsuneta S. et al., 2008, ApJ, 688, 1374

APPENDI X A : DAMPI NG OF PHASE-MI XED

ALFV ÉN WAVES IN EQU I LI BRI UM WI TH

S T R A I G H T M AG N E T I C FI E L D L I N E S

We consider the axisymmetric equilibrium with the straight mag-

netic field lines. The magnetic field magnitude is constant and equal

to B0. In this case, it follows from equation (1) that

φ = z, ψ =
r2

2H
. (A1)

Hence, in what follows, we write z instead of φ. Equation (20)

reduces to

X3 ∂
2X

∂z2
=

σ (ψ)

V 2
0

, (A2)
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where X = (ρ0/ρ)1/4. We look for the solution to this equation in

the from

X = σ̃ 1/4(ψ)
√

a1(z/H )2 + a2, (A3)

where σ̃ (ψ) = V 2
0 σ (ψ)/H 2, and a1 and a2 are the quantities to

be determined. Substituting this expression in equation (A2), we

obtain that X satisfies equation (A2) if these quantities are related

by a1a2 = 1. Hence,

ρ =
ρ0

σ̃ (ψ)

[
a1

( z

H

)2

+
1

a1

]−2

, (A4)

where a1 is arbitrary constant. Now we assume that ρ at z = 0 is

given by equation (101). As a result, we obtain

σ̃ (ψ) = a2
1q

−1(ψ). (A5)

In addition, we impose the condition that

ρ(ψ, 6H ) = ρ0q(ψ) exp(−6H/Hρ). (A6)

Then equations (A4) and (A5) reduce to

ρ =
ρ0q(ψ)

[(sz/6H )2 + 1]2
, (A7)

σ (ψ) =
s2V 2

0

36H 2q(ψ)
, (A8)

where

s =
√

exp (3H/Hρ) − 1. (A9)

In Fig. A1, the graphs of ρ(z) and VA(z) at ψ = 0 with the density

determined by equations (104) and (A7) are shown.

We see that equation (A7) fairly well approximates the expo-

nentially decreasing density. Substituting equation (A7) in equation

(17) and taking φ1 = 0 yields

h =
6H

√
q(ψ)

s
arctan

sz

6H
. (A10)

Using this result, we obtain from equation (34)

ϒ =
36νωλHψ(ζ − 1)2(1 − ψ/ψb)2

s2ζ 2ψ2
b V 3

0

√
q(ψ)[s2(z/6H )2 + 1]

(
arctan

sz

6H

)2

. (A11)

Q(z) is defined by equation (34) with z substituted for φ, and the

boundary condition Q = 1 at z = 0. The solution to this boundary

value problem is

Q = exp

(
−

72νωλHψ(ζ − 1)2

s2ζ 2ψ2
b V 3

0

√
q(ψ)

(
1 −

ψ

ψb

)2(
arctan

sz

6H

)3

)
.

(A12)

We assume that u is defined by equation (91) at z = 0. On the

other hand, it follows from equations (35) and (A7) that

u = A0(ψ)

(
H 2

4ψ2q(ψ)

)1/4

e−iωt at z = 0. (A13)

Comparing equations (91) and (A13) and taking into account that

Figure A1. Dependence of ρ (upper panel) and VA (lower panel) on z at

r = 0 with the density defined by equation (104) (solid line) and by equation

(A7) (dashed line) for Hρ/H = 1.25.

R2
0 = 2Hψb, we obtain

A0(ψ) = u0

(
1 −

ψ

ψb

) (
4ψ2q(ψ)

H 2

)1/4

. (A14)

The magnitude of the average over the period density of the wave

energy flux is given by equation (75) with B0 substituted for B.

The total energy flux through the surface z = const is equal to the

integral of this flux over the circle of radius R0 =
√

2Hψb. It reads

�(z) =
2πρ0u

2
0V0H

2

ω

∫ ψb

0

Q2ψλ
√

q(ψ)

(
1 −

ψ

ψb

)2

dψ. (A15)

Using this expression, we can calculate the relative energy flux

�(z) = �(z)/�(0).
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