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We calculate the low-lying spectrum of the 16O nucleus using an α-cluster model which includes the important

tetrahedral and square configurations. Our approach is motivated by the dynamics of α-particle scattering in the

Skyrme model. We are able to replicate the large energy splitting that is observed between states of identical spin

but opposite parities. We also provide a novel interpretation of the first excited state of 16O and make predictions

for the energies of 6− states that have yet to be observed experimentally.
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The energy spectrum of the oxygen-16 nucleus has posed a

challenge to nuclear physicists for decades. Wheeler suggested

in the 1930s that one can model the nucleus as four α particles

with the ground state described as the particles in a tetrahedral

arrangement [1]. This picture of the 0+ ground state has been

verified in many different models such as the shell [2,3],

lattice ab initio [4], and antisymmetrized molecular dynamics

(AMD) [5] models, giving credence to the old cluster idea.

Despite the general agreement about the structure of the

ground state, there is no consensus on the structure of the

excited states of the nucleus. For example, the first excited

state, which has spin-parity 0+, has been described as a

four-particle–four-hole state [6], a breathing mode of the

tetrahedron [7,8], or correlated with a bent rhomb [9,10] or

square [4] arrangement of α particles. The first suggestion

has been put in doubt by more extensive studies [11], while

the other three do not necessarily contradict each other; each

model is simply too narrow in scope. The lattice spacing of

the ab initio calculation [4] is too large to see the effect of

the bent rhomb or breathing mode in detail. The algebraic

model [8] only considers configurations near the tetrahedron

and so does not include the square configuration. To resolve the

disagreement about the 0+ state one must study a model which

includes large-amplitude vibrations around the tetrahedron and

allows rhomb-like and square configurations. In addition, this

will remove a degeneracy of states seen in many models but

not in the experimental spectrum.

The Skyrme model [12] is an effective field theory of

hadrons arising as an approximate low-energy limit of QCD. It

is a nonlinear theory of pions, whose small mass spontaneously

breaks the chiral symmetry of the model. Nuclei are identified

with solitons of the theory: the α particle is described

by a classical soliton with cubic symmetry. This allows a

spherically symmetric quantum ground state with spin-parity

0+, matching conventional models [13]. It also reproduces α

clustering in larger nuclei [14,15] such as 16O. In particular

it contains the tetrahedral and square configurations seen in

conventional cluster models of 16O.
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The reason for using the Skyrme model is that it provides

dynamics for the clusters. We can use this to construct a

configuration space that we call the vibrational manifold.

There is a dynamical mode, shown in Fig. 1, connecting

the tetrahedral and square configurations, via bent rhomb

configurations. Two pairs of α particles approach each other

and form a tetrahedron, which flattens out into a square, before

reopening into the dual tetrahedron and then breaking into two

pairs of α particles again, having picked up a 90◦ twist. There

are three of these modes passing through each tetrahedron,

corresponding to the three pairs of opposing edges. If one

starts at the tetrahedron and excites each of these modes equally

then they will cancel out. Therefore there is degeneracy and

these three modes only generate a two-dimensional space of

configurations which forms our vibrational manifold.

This manifold is an extension of the linear E-vibrational

space of the tetrahedron. It captures the low-energy path

connecting the two tetrahedra via the square configuration as

in Fig. 1. The presence of this path enables a significant energy

difference to be created between quantum states with opposite

parities, which would not be possible by only considering

vibrations around the tetrahedron locally.

The degrees of freedom in this vibrational manifold are the

positions of the α particles, which lie on a surface. To account

for the asymptotics seen in Fig. 1, this surface must stretch out

to infinity in six directions as in Fig. 2. Each configuration has

D2 symmetry and hence if one α particle is at x = (x,y,z),

the others are at (x, − y, − z), (−x,y, − z), and (−x, − y,z).

This means we may focus on one quarter of the surface, which

we denote by M.

Having constructed the vibrational manifold we can now

quantize the system using an extension of the scheme laid out

in [17], but for the first time we include a two-dimensional

manifold of configurations. The total configuration space is

M × SO(3), which allows rotations of each configuration too.

The quantum Hamiltonian is

Ĥ = −
h̄2

2
� + V (x), (1)

where V (x) is the static energy of the configuration onMwith

an α particle at x, and the kinetic operator is proportional to
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FIG. 1. Scattering mode of four α particles in the Skyrme model. Each time step shows a surface of constant energy density which is

colored according to the field value as in [16].

the Laplace-Beltrami operator

� = det(g)−
1
2 ∂i(det(g)

1
2 gij∂j ), (2)

where g is the metric on M × SO(3). The metric is block

diagonal, because of the D2 symmetry of the configurations,

and hence the problem splits into vibrational and rotational

parts. The total wave function is separable and can be written

as

|�〉 =
∑

L3

φL3
(x)|JL3〉, (3)

where φ is the vibrational wave function and |JL3〉 are the

rigid-body angular momentum states with spin J and body-

fixed angular momentum projection L3. In addition, the linear

combination of states occurring in |�〉 must be D2 invariant.

Vibrational problem. The rescaled Schrödinger equation for

the vibrational wave function is

−�vib φ + V (x)φ = (E − EJ )φ, (4)

where E is the total energy of |�〉 and EJ is its rotational

energy. EJ involves the moments of inertia of the configura-

tions, which depend on the vibrational coordinates x. However,

for now, we consider them to be constant to simplify the

calculation of the vibrational energy. We shall reinsert this

dependence later in the paper.

To solve Eq. (4) we must first model the metric on our

space M. To do this we approximate M as one quarter of the

six-punctured sphere with constant negative curvature. This

captures several important physical features of the system:

FIG. 2. α particles are restricted to lie on a surface with six

punctures. Regions with the same coloring are related by D2

symmetry. The scattering mode in Fig. 1 is represented by the thick

black line.

that the particles can separate into pairs asymptotically and

that the surface in Fig. 2 does indeed have negative curvature.

The metric of this manifold is simple once we map M onto

a subdomain F of the complex upper half plane. For details,

see [18]. The appropriate subdomain for this problem is shown

in Fig. 3. Defining ζ = η + iǫ as the complex coordinate

on the upper half plane, the metric is then proportional to

ǫ−2(dη2 + dǫ2). This gives rise to the kinetic operator

−�vib = −ǫ2

(

∂2

∂η2
+

∂2

∂ǫ2

)

. (5)

The six-punctured sphere has cubic symmetry O and hence

M has O/D2
∼= S3 symmetry, where S3 is the permutation

group of the x, y, and z axes. S3 can act onM orF , permuting

the colored regions seen in Fig. 3. In addition, parity acts on

M as

x = (x,y,z) → (−x, − y, − z) ≡ (x, − y,z), (6)

where we have used the D2 symmetry in the equivalence. This

corresponds to η → −η on F . Hence the vibrational wave

functions fall into representations of S3 and parity.

Our choice of potential V is motivated by cluster models

which find that the tetrahedral configuration has the lowest

energy [10]. Going toward the square or asymptotic configura-

tions leads to a rise in potential energy. In addition, we would

like a potential for which Eq. (4) is soluble. A convenient

candidate is

V (η,ǫ) = ǫ2

[

ω2

(

η −
1

2

)2

+ μ2

]

, (7)

∼
=

FIG. 3. Relation between M (left) and F (right). Tetrahedral

configurations are at the points where three colored regions meet,

while the square configurations are at points where four colored

regions meet. The scattering mode in Fig. 1 is represented by the

thick black lines.

031303-2



RAPID COMMUNICATIONS

DYNAMICAL α-CLUSTER MODEL OF 16O PHYSICAL REVIEW C 95, 031303(R) (2017)

FIG. 4. Vibrational wave functions which lie in the trivial

representation. From left to right: ground state, first excited state,

and lowest-lying state with negative parity.

where ω and μ are constant parameters and the ǫ2 factor means

that solutions of Eq. (4) are separable in η and ǫ.

This potential ansatz is a good approximation for the

low-energy configurations but it diverges asymptotically for

the separated pairs (ǫ → ∞). Bound states are concentrated

around the tetrahedral and square configurations and so this

divergence has a negligible effect on them. To study scattering

states, a different potential that flattens out asymptotically

would be required. Formula (7) only applies in the top

right region of F and the potential elsewhere can be found

by defining V to take the same value at points related by

S3.

Rovibrational states. The vibrational wave functions must

be combined with spin states in order to form rovibrational

states. The combinations that are permitted depend on the

representation that the vibrational wave function falls into.

There are two one-dimensional irreducible representations of

S3, known as the trivial and sign representations.

The two lowest-energy vibrational wave functions in the

trivial representation are displayed in Fig. 4 (left and middle).

When combined with the |0,0〉 spin state, we identify these

solutions with the two lowest 0+ states in the experimental

spectrum of 16O. The ground state is loosely concentrated

around the two tetrahedral configurations in agreement with

other models. The excited state has approximately equal

concentrations at the three square and the two tetrahedral

configurations. Hence we deduce that a global analysis, includ-

ing both tetrahedral and square configurations, is essential to

explain the structure of the excited 0+ state. These vibrational

wave functions may also be combined with certain states of

higher spin: those that have tetrahedral symmetry and positive

parity. Overall, these wave functions give rise to a rotational

band with spins 0+,4+,6+, . . ..

If a configuration has a reflection symmetry and the wave

function is nonzero there, one may calculate the intrinsic

parity for a given spin state. For example, the tetrahedron

has positive intrinsic parity for spins 0 and 4 but negative

intrinsic parity for spin 3. This leads to constraints on the

vibrational wave functions, one of which is that the spin 0

wave functions must take the same value at the tetrahedron and

its dual. This is automatic for positive-parity states as we can

see in Fig. 4, noting that the parity operator for the vibrational

wave functions corresponds to η → −η. Negative-parity wave

functions are also permitted if they vanish at all configurations

with a reflection symmetry. This is true of the rightmost wave

FIG. 5. Vibrational wave functions which lie in the sign repre-

sentation. From left to right: lowest-energy state, first excited state,

and lowest-lying state with positive parity.

function of Fig. 4 and hence one may combine it with a |0,0〉
spin state to give an overall 0− state.

Vibrational wave functions in the sign representation of S3

with negative (positive) parity are not too different from those

in the trivial representation with positive (negative) parity. The

sign representation wave functions are displayed in Fig. 5 and

the similarities with those in Fig. 4 are manifest. The two

wave functions on the left give rise to 3−,6−, . . . states while

the rightmost wave function gives rise to 3+,6+, . . . states of

rather high energy.

The third and final irreducible representation of S3 is the

two-dimensional standard representation. Here the vibrational

wave functions for a given eigenvalue have degeneracy two and

we denote the orthogonal pair as φ1 and φ2. The lowest-energy

positive- and negative-parity vibrational wave functions of

this type are displayed in Fig. 6. The positive-parity states

are concentrated around the square configurations and hence

give rise to approximate rotational bands of the square. The

negative-parity states have higher energy than the positive-

parity states since they are more constrained, having to vanish

at the square configurations. As with the other representations,

there are further vibrationally excited states which we have

calculated though not displayed. These vibrational wave

functions are then combined with a two-dimensional basis

of spin states.

FIG. 6. Lowest-energy vibrational wave functions which lie in

the standard representation. Clockwise from top left: φ1 with positive

parity, φ2 with positive parity, φ2 with negative parity, and φ1 with

negative parity.
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FIG. 7. Energy spectrum of our model up to 12.7 MeV compared with all the low-lying experimentally observed states [19]. States are

colored according to the type of vibrational wave function from which they arise. The partially dotted lines represent the trivial irrep (black),

sign irrep (green), and standard irrep (blue) of S3. Full vertical lines represent states identified with the F vibration (red) and A vibration

(yellow). The 1− state at 9.6 MeV is unexplained in our model.

For spin 2 the total wave function is

|�〉 =
φ1√

2
(|2,2〉 + |2, − 2〉) + φ2|2,0〉. (8)

The vibrational wave functions φ1 and φ2 transform in the

same way as the spin states they are paired with. Hence the

total wave function is invariant under S3 transformations and

parity. We can construct similar states for spin-parity J P =
4±,5±,6±, . . ..

Energy spectrum. In constructing the extended E-

vibrational wave functions in Eq. (4) we neglected dependence

of the moments of inertia on the vibrational coordinates.

To calculate the rotational energy of our states we use an

approximate inertia tensor that interpolates between the known

values for the tetrahedral, square, and asymptotic Skyrme

model configurations shown in Fig. 1. This gives rise to a

kinetic operator whose expectation value we then find. This

is equivalent to using first-order perturbation theory, which is

justified because the energy gaps between vibrational states in

the same representation are large.

While most of our analysis has focused on extending the E

vibration of the tetrahedron, two other types of vibration also

need to be considered. The breathing A vibration describes the

four α particles moving radially while preserving tetrahedral

symmetry. It gives rise to excited 0+,3−,4+, . . . states. The F

vibration contains the mode where one α particle travels away

from the other three, preserving C3 symmetry. This allows for

excited states of spin 1−,2+,3±,4±, . . ..

The 16O ground state is fixed at 0 MeV, with the excited

0+ and lowest 4+ state being used to scale the vibrational

and rotational energy units, respectively. The two remaining

parameters (ω and μ) are chosen to give a good fit for the rest

of the states. The first 15 states of the experimental spectrum

are shown in Fig. 7 and after extracting those states coming

from the A and F vibrations, we provide a good fit for most

of the remaining states.

In particular, the lowest-lying 2+ and 2− states have the cor-

rect ordering, with a predicted energy gap of 1.8 MeV which is

close to the experimentally observed gap of 1.96 MeV. This gap

is caused by the vibrational wave functions having significantly

different energies, due to their opposite parities. Our global

analysis, including the tetrahedral and square configurations,

is essential to describe this gap. The lowest 0+, 3−, and 4+

states still form a rotational band, despite the fact that the 3−

state has a different vibrational wave function [compare Fig. 5

with Fig. 4 (left)]. For our choice of parameters in the potential,

these vibrational wave functions have similar energies.

The calculated energy of the 0− state in Fig. 4 is 16.35 MeV

which is significantly larger than the lowest experimentally ob-

served 0− state which has energy 11.0 MeV. In our calculation

we have used the potential (7) which diverges asymptotically;

however, the configuration energy should flatten out as we

approach the two separated pairs of α particles (ǫ → ∞).

Taking this into account would reduce the vibrational energy

of all states but have a larger effect on highly excited states

such as the 0−.

We find a 6+ state in the trivial S3 representation at

21.7 MeV which agrees with an experimentally observed state

at 21.6 MeV. In addition, we predict two 6− states: one at

22.2 MeV from the sign representation and one at 27.1 MeV

from the standard representation. Negative-parity spin-6 states

of 16O have not yet been observed.

We do not provide an extended model of the F vibration

as we have done with the E vibration, since previous studies

have shown that a local, harmonic analysis describes the data

well [7,8]. Hence, we simply highlight the states arising from

this vibration in Fig. 7 without calculating their energies. The

A vibration splits the nucleus into four individual α particles

and hence its frequency must be large. We identify the state at

12.0 MeV as its first excitation.

Conclusion. We have considered an α-cluster model for
16O with novel dynamics motivated by the Skyrme model.

Our work allows for α-particle configurations with tetrahedral

and square symmetry within a two-parameter family of con-

figurations, going beyond the rigid-body analysis considered

previously [10], and also the harmonic analysis of the E

vibration in [8]. The quantum Hamiltonian has a 0+ ground

state focused around the tetrahedral configuration in agreement

with other models, but we provide a novel explanation for the

excited 0+ state as a superposition of the tetrahedral and square
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configurations. Our model allows a 0− state which vanishes

at the tetrahedral and square configurations, although these

constraints give it a rather high energy. We also explain the

energy gap between the low-lying 2+ and 2− states as being

mainly due to their considerably different vibrational wave

functions.
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