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A B S T R A C T

Background: Preference-based measures of health, such as the three-
level EuroQol five-dimensional questionnaire (EQ-5D-3L), are required
to calculate quality-adjusted life-years for use in cost-effectiveness
analysis, but are often not recorded in clinical studies. In these cases,
mapping can be used to estimate preference-based measures. Objec-
tives: To model the relationship between the EQ-5D-3L and the
Functional Assessment of Cancer Therapy—Breast Cancer (FACT-B)
instrument, comparing indirect and direct mapping methods, and the
use of FACT-B summary score versus FACT-B subscale scores. Meth-
ods: We used data from three clinical studies for advanced breast
cancer providing 11,958 observations with full information on FACT-B
and the EQ-5D-3L. We compared direct mapping using adjusted
limited dependent variable mixture models (ALDVMMs) with indirect
mapping using seemingly unrelated ordered probit models. The EQ-
5D-3L was estimated as a function of FACT-B and other patient-
related covariates. Results: The use of FACT-B subscale scores was
better than using the total FACT-B score. A good fit to the observed

data was observed across the entire range of disease severity in all
models. ALDVMMs outperformed the indirect mapping. The breast
cancer–specific scale had a strong influence in predicting the pain/
discomfort and self-care dimensions of the EQ-5D-3L. Conclusions:
This article adds to the growing literature that demonstrates the
performance of the ALDVMM method for mapping. Regardless of
which model is used, the subscales of FACT-B should be included as
independent variables wherever possible. The breast cancer–specific
subscale of FACT-B is important in predicting the EQ-5D-3L. This
suggests that generic cancer measures should not be used for utility
mapping in patients with breast cancer.
Keywords: mixture models, utility mapping, EQ-5D-3L, ALDVMM, FACT-B.

Copyright & 2018, ISPOR–The Professional Society for Health Econom-
ics and Outcomes Research. Published by Elsevier Inc. This is an open
access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Outcomes recorded in clinical studies often do not include
preference-based measures (PBMs) such as the three-level Euro-
Qol five-dimensional questionnaire (EQ-5D-3L). Nevertheless,
PBMs are required for use in cost-effectiveness analysis when
quality-adjusted life-years need to be calculated. Health utility
mapping is used to estimate a PBM using other outcomes that
have been collected in clinical trials, including clinical outcome
measures. In cancer studies there is often a focus on survival
time and on disease-specific quality-of-life measures. This article
aims to develop a mapping algorithm that estimates EQ-5D-3L
scores in patients with breast cancer.

The EQ-5D-3L is one of the most widely used PBMs, compris-
ing five dimensions (mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression) with three levels per dimen-
sion (no/moderate/extreme problems).

The Functional Assessment of Cancer Therapy—Breast (FACT-B)
[1] is a self-reported instrument that measures health-related
quality of life of patients with breast cancer. It comprises five

subscales including physical well-being, social well-being, emo-
tional well-being, functional well-being, and a breast cancer–spe-
cific (BCS) subscale. Each subscale has seven items, with the
exception of the emotional well-being subscale, which has six
items, and the BCS subscale, which has nine items. Items are rated
from 0 (not at all) to 4 (very much) and a total score is derived. The
total FACT-B score ranges from 0 to 123, and is calculated by adding
the scores from each of these subscales. Lower scores indicate
better health.

The only previous mapping study using FACT-B, according to
the Health Economics Research Centre Database of Mapping
Studies [2], mapped to the five-level EQ-5D using data from
Singapore and applied only simple linear regression methods.
There is a large literature that shows that the theoretical
assumptions of linear regression methods are not met when
mapping to the EQ-5D-3L and that they produce biased results
[3,4]. Response mapping has been shown to outperform standard
statistical techniques such as linear regression, generalized linear
models, and fractional logistic models [5]. Mixture models, how-
ever, have previously been shown to outperform both linear
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regression and response mapping in a range of settings [4,6,7].
Mapping models that use the individual subscale scores of an
instrument to map to a PBM are expected to have a model fit
superior to those that use only the total instrument score;
condensing outcome data into a summary measure discards
important information but may be more practically relevant to
those wishing to use the mapping results in economic models
that rely on data that include the summary score only.

In this article we map from the FACT-B instrument to the EQ-
5D-3L, using bespoke adjusted limited dependent variable mix-
ture models (ALDVMMs) [8] and compare results to response
mapping using seeming unrelated (SUR) ordered probit models.
We also compare both techniques using the total FACT-B score
and the separate subscale scores of the FACT-B.

Methods

Data

Three phase III clinical studies measured both the EQ-5D-3L and
FACT-B and were available for analysis.

The Treatment Across multiple liNes wIth Avastin (TANIA)
trial recruited patients with HER2-negative locally recurrent/
metastatic breast cancer whose disease had progressed on or
after first-line bevacizumab combined with chemotherapy. They
were randomized to receive standard second-line chemotherapy
either alone or in combination with bevacizumab [9]. In total, 494
patients were randomized. FACT-B was administered at baseline,
every 8 or 9 weeks (depending on treatment schedule) during
second-line therapy, and at the time of second progression. The
EQ-5D-3L was administered at baseline, during second-line treat-
ment at weeks 8 and 16 (4-week cycles) or at weeks 9 and 18
(3-week cycles), and at second-line disease progression (up to �3
years).

The MARIANNE study is an international, randomized, multi-
center, three-arm study involving 1095 people with HER2-positive
advanced breast cancer. Patients were assigned 1:1:1 to control
(trastuzumab plus taxane), T-DM1 plus placebo, and T-DM1 plus
pertuzumab at standard doses.

The Batman study was an open-label, single-arm, multicenter
UK study of the safety and tolerability of bevacizumab when
combined with taxane monotherapy as first-line therapy of 50
patients with triple-negative metastatic breast cancer.

Data were pooled to maximize sample size and reduce
uncertainty.

Statistical Analysis

The EQ-5D-3L has a distinctive distribution. Here, we used the UK
tariff but its characteristics are common to many other countries.
It is bounded below at �0.594 and above at 1. It includes a
multimodal distribution as well as a mass of observations at 1,
representing full health. There is a gap between full health
and the next feasible health state (0.883). These properties are
difficult to estimate using standard statistical techniques. We
used two statistical methods in an attempt to overcome this
problem.

First, we applied response mapping by using SUR ordered
probit models using the “cmd” command in Stata (StataCorp,
College Station, TX) for estimating conditional mixed process
models with multilevel random effects and coefficients. This
method estimates responses to each of the five EQ-5D-3L dimen-
sions, jointly using ordered probit models allowing the error
terms to be correlated. We then calculated the expected EQ-5D-
3L scores on the basis of the probabilities of each of the possible
243 health states as a separate second step.

Second, we used ALDVMMs using the publicly available Stata
command “aldvmm” [8]. These bespoke models were specifically
designed for mapping to the EQ-5D-3L. These include a discrete
element using multinomial logit models for the probability of
component (or latent class) membership, including a component
representing full health. Using multiple components in a mixture
model allows us to capture the multimodal properties of the
distribution. The EQ-5D-3L does not show (trastuzumab emtan-
sine) a normal distribution and so it is important to be able to
accurately estimate the unusual distribution. By limiting the
dependent variable, the ALDVMM prevents prediction outside
the feasible range: it cannot predict below �0.594 or above 1. It
also takes into account the unfeasible gap between full health
and the next feasible health state. Independent variables can
influence component membership and/or each of the compo-
nents in the mixture model part. This model has been used with
success in previous mapping studies [4,6,7,10–12].

The FACT-B score is made up of a set of subscores: physical,
social, emotional, and functional well-being and a BCS subscale.
All cancer-specific FACT-B scores include the first four of these
subscores as well as a cancer-specific subscale. We mapped from
the FACT-B instrument to the EQ-5D-3L using two sets of
covariates. First, we used the total FACT-B score, the age of the
patient, and age-squared. Second, we used the individual sub-
scores of the FACT-B, the age of the patient, and age-squared.
Models were estimated without age included, but age was found
to improve the fit of the models. We did not include sex because
there were very few male patients in the data set. We used the
UK value sets for the EQ-5D-3L [13].

To compare results across models we considered different
measures of model fit in line with the International Society for
Pharmacoeconomics and Outcomes Research Good Practice
Guide on Mapping [14]. To determine the preferred number of
components in the mixture models, we considered model fit
using mean absolute error (MAE), root mean square error (RMSE),
and Akaike and Bayesian information criteria (AIC and BIC,
respectively) as well as considered visual representations of
model fit. We plotted the mean of the predicted values of
FACT-B with the mean of the observed values, for the entire
range of disease severity. We also simulated data from the
models and plotted the cumulative distribution functions (CDFs),
comparing simulated with observed data across the spectrum
of disease severity. These CDFs are an important means of
assessing model fit relevant to those settings that may use the
mapping for analysis at the patient level, for example, in a trial-
based cost-effectiveness analysis or a patient-level decision
model [14].

Results

The combined data contained 11,952 complete cases (1,002 in the
TANIA study, 10,687 in the MARIANNE study, and 263 in the
Batman study), that is, valid EQ-5D-3L values and valid FACT-B
scores, including subscores. Six observations from male patients
in the MARIANNE study were excluded. Table 1 presents the
summary statistics for this sample. The average age was 52.61 �

11.5 years. Patients spanned the full spectrum of disease meas-
ured by the EQ-5D-3L and FACT-B. Figure 1 shows the distribution
of the EQ-5D-3L reported in the sample. The distribution is
multimodal, has a spike of observations at full health, and
displays the gap between full health and the next feasible state.
There are 3295 observations (27.6% of the sample) at full health
and 172 (1.4% of the sample) with values worse than death (o0).
Figure 1 also shows the FACT-B distribution, which spans the
entire feasible range (0–123) and is positively skewed.
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SUR Ordered Probit Models

We estimated two response mappings to the EQ-5D-3L using SUR
ordered probit models: the first using the total FACT-B score and
the second using the FACT-B subscale scores. Table 2 presents
the model fit statistics. Of these models, the mean error, MAE,
and RMSE are smaller in the model that includes the subscales of
FACT-B. AIC and BIC are also lower in the subscale model, and
the proportions predicted at full health and in a state worse than
death are also closer to the observed data when using the
subscales. Figure 2 displays mean predicted versus mean
observed values for response mapping using the total FACT-B
score and the FACT-B subscale scores. Using the subscale model
improves fit at higher values of FACT-B when patients are in
poorer health. Figure 2 also shows the CDFs for the SUR response
mappings using the total FACT-B score and the FACT-B subscale
scores. The figure shows that the model that includes the
individual subscale scores of FACT-B has a better fit than the
model that includes only the FACT-B summary score.

Adjusted Limited Dependent Variable Mixture Model

We estimated ALDVMMs with one to four components and using
FACT-B subscale scores versus total FACT-B score both within the
components and as determinants of component membership.
We attempted to estimate models using five components, but

there were problems with convergence. Table 2 presents the fit
statistics.

Of the models estimated that include the total FACT-B score,
the model with four components is preferred when looking at the
AIC and BIC. Nevertheless, the three-component model has lower
error measures. Both the three- and four-component models are
more accurate than models with fewer components in simulating
the proportion of patients at full health and in a state worse than
death. Figure 3 shows mean predicted versus mean observed
values in the three- and four-component ALDVMMs. The three-
component model appears to predict the observed data better
than the four-component model at most of the FACT-B scores.
Nevertheless, the three-component model predicts less well
individuals scoring extremely poor values on the FACT-B scale.
Figure 4, which displays the CDFs for the mixture models that use
three and four components, shows that simulated data from the
mixture models fit the observed data closely for both models that
use the total FACT-B score. Given that, the evidence suggests that
both the three- and four-component models that use the total
FACT-B score fit the data very closely. Because there is little
visible difference in model fit for the two models (Figs. 3 and 4) as
well as the model fit statistics, we prefer the simpler three-
component model with fewer parameters.

From Table 2 it can be seen that of the models estimated that
include the FACT-B subscale scores in place of the total FACT-B

Table 1 – Descriptive statistics.

Variable (n ¼ 11,952) Mean � SD Minimum Maximum

EQ-5D-3L index score 0.762 � 0.227 �0.594 1

Mobility 1.243 � 0.438 1 3

Self-care 1.120 � 0.340 1 3

Usual activities 1.370 � 0.529 1 3

Pain/discomfort 1.611 � 0.545 1 3

Anxiety/depression 1.492 � 0.556 1 3

FACT-B 40.204 � 20.269 0 123

Physical well-being 5.434 � 4.829 0 33

Social/family well-being 6.394 � 5.290 0 28

Emotional well-being 6.407 � 4.522 0 24

Functional well-being 9.663 � 6.073 0 28

BCS 12.306 � 6.234 0 38

Age (y)/10 5.261 � 1.150 2.2 8.7

BCS, breast cancer–specific; EQ-5D-3L, three-level EuroQol five-dimensional questionnaire; FACT-B, Functional Assessment of Cancer Therapy

—Breast Cancer.
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Fig. 1 – EQ-5D-3L and FACT-B distributions. EQ-5D-3L, three-level EuroQol five-dimensional questionnaire; FACT-B, Functional
Assessment of Cancer Therapy—Breast Cancer.
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Table 2 – Model fit for response mappings and ALDVMMs.

FACT-B
total/
subscales

Number of
components

Log
likelihood

AIC BIC Mean
error

Mean
absolute
error

RMSE Proportion of
predicted

observations at
full health (%)

Proportion of
predicted

observations
below 0 (%)

Response mapping

Total

scores

– �29,869.95 59,809.91 60,068.53 0.0117 0.1341 0.1824 21.7 2.8

Subscales – �27,530.01 55,170.02 55,576.43 0.0092 0.1216 0.1682 29.6 1.89

ALDVMMs

Total

FACT-B

1 �735.2737 1,480.547 1,517.493 0.0018 0.1330 0.1829 34.3 0.2

2 1,217.156 �2,406.312 �2,302.863 0.0006 0.1324 0.1815 25.2 1.6

3 1,395.884 �2,745.768 �2,575.818 �0.000007 0.1318 0.1815 27.4 1.5

4 1,724.382 �3,384.763 �3,148.310 0.0001 0.1332 0.1818 27.4 1.5

Subscales 1 435.7411 �853.4822 �786.9798 �0.0002 0.1207 0.1656 33.9 0.1

2 2,476.873 �4,901.747 �4,709.629 0.0005 0.1199 0.1654 25.9 1.6

3 2,867.129 �5,648.258 �5,330.524 �0.0004 0.1155 0.1631 27.6 1.4

4 3,075.795 �6,031.590 �5,588.240 �0.00009 0.1158 0.1633 27.0 1.5

Note. Proportion of observations at full health ¼ 27.6%, proportion in a state worse than death ¼ 1.4%. Note that AIC and BIC are not

comparable between response mapping and ALDVMMs.

AIC, Akaike information criterion; ALDVMM, adjusted limited dependent variable mixture model; BIC, Bayesian information criterion; FACT-B,

Functional Assessment of Cancer Therapy—Breast Cancer; RMSE, root mean square error.
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Fig. 2 – (A) Mean predicted vs. mean observed values using response mapping with total FACT-B score and subscale scores.
(B) Cumulative distribution functions using response mapping with total FACT-B score and subscale scores. CI, confidence
interval; FACT-B, Functional Assessment of Cancer Therapy—Breast Cancer.
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score, the model with three components is preferred when
looking at the AIC and BIC as well as the mean error. Never-
theless, the four-component model has lower MAE and RMSE.
The three-component subscale model produces the most accu-
rate simulation of the data in terms of the proportion predicted at
full health and in a state worse than death. Figure 3 shows little
difference between the model fits of the three- and four-
component models when using the subscale scores. Figure 4
shows that simulated data from both the three- and four-
component mixture models using subscale scores fit the
observed data closely. We again consider the three-component
model as the preferred model to avoid adding unnecessary
parameters.

The results show that including individual FACT-B subscales
as independent variables improves model fit compared with
using the total FACT-B score. MAE and RMSE as well as AIC and
BIC are consistently smaller in the models that include individual
subscales. Figure 3 displays the mean predicted versus mean
observed values for the mixture models. It shows that models
including the individual subscale scores of FACT-B are preferred
to those that use the total FACT-B score. Figure 4 shows that all
ALDVMMs produce simulated data that fit the observed data very
closely.

Model fit statistics in Table 2 suggest that, in all cases,
ALDVMMs outperform response mapping using SUR ordered
probit models. Similarly, Figures 3 and 4 show that the ALDVMMs
provide a significant improvement in model fit to the response

mappings when compared with Figure 2. In particular, Figure 4
shows that the ALDVMMs produce simulated data that better
represent the observed data particularly at the low and high
extremes of the EQ-5D-3L. The mixture models are better
equipped to deal with the EQ-5D-3L distribution than is the
response mapping. More specifically, the ALDVMMs are generally
better able to fit the EQ-5D-3L distribution in patients with poor
health states.

There is little difference between the model fit statistics of the
ALDVMM when using total FACT-B score compared with the
response mapping using individual FACT-B subscale scores (see
Table 2). This is supported by the figures that show no obvious
superiority of the response mapping using FACT-B subscale
scores compared with using the ALDVMM with total FACT-B
score. The ALDVMM improves model fit, particularly in the main
part of the distribution compared with response mapping,
regardless of whether the total FACT-B score or individual
subscale scores are used.

In each of the subscale models estimated, the BCS subscale
was found to have a strong and statistically significant influence.
The response mapping showed that this subscale has a strong
influence in predicting the pain/discomfort and self-care dimen-
sions of the EQ-5D-3L. The ALDVMM results show that besides
having some significant influence on the within-component
estimates of the EQ-5D-3L, the BCS subscale of the FACT-B has
a substantial influence on the component membership in these
models.
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Fig. 3 – Mean predicted vs. mean observed values using three- and four-component ALDVMMs with total FACT-B score and
subscale scores. ALDVMM, adjusted limited dependent variable mixture model; CI, confidence interval; FACT-B, Functional
Assessment of Cancer Therapy—Breast Cancer.
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The ALDVMMs estimated in this study can be easily imple-
mented via Excel files and Stata’s .ster files, which are provided in
the Supplemental Materials found at https://doi.org/10.1016/j.jval.
2018.06.006.

Discussion

Little is known about the relationship between FACT-B and PBMs
for use in the economic evaluation of technologies in breast
cancer. The only such study identified in the HERC Database of
Mapping Studies [2] is based on data from patients in Singapore
and it used simplistic mapping methods [15]. The study found
that linear regression outperformed other simple mapping mod-
els based on narrow assessment of summary fit. The lack of
previous mapping studies in this disease area emphasizes the
need for more research in utility mapping in patients with breast
cancer.

This article provides reliable estimates for the calculation of
the EQ-5D-3L as a function of FACT-B in patients with breast
cancer. We provide estimates that can be used when analysts
have access only to total FACT-B scores or when they have access
to subscale responses. The mapping algorithms produced in this
study should not be used to map from FACT-B to any other PBM,
including the EQ-5D-5L.

Our results show that although response mapping has been
previously shown to be superior to direct utility mapping using,
for example, linear regression and generalized linear models [5],
the bespoke ALDVMM offers a better fit than response mapping

using SUR ordered probit models in this setting. This adds to the
growing literature on the performance of mixture models for
mapping and is consistent with those that find they outperform
response mapping [4].

We find that models that use the subscales of FACT-B as
independent variables perform the best. Nevertheless, subscale
scores are not always reported in summary reports of clinical
studies. Often, the total FACT-B score will be all that is available
and therefore the corresponding summary score models are
important for analysts populating cost-effectiveness models.
We find that when using the ALDVMM to map the total FACT-B
score to the EQ-5D-3L, model fit is similar to the response
mapping, which includes each of the subscales.

For the reasons discussed here, we suggest that the three-
component ALDVMM that uses the individual subscales is the
preferred model with the best overall fit to the data and should be
used when individual subscale scores are available. When indi-
vidual subscale scores are not available, the three-component
ALDVMM using the total FACT-B score should be used.

Consistent with other mapping studies, we found age to be
important and statistically significant in predicting the EQ-5D-3L.
This is particularly important when mapping algorithms are used
in cost-effectiveness analysis. Sex, which is usually included in
mapping studies, is not included here because the samples were
all female.

Our findings show that the BCS subscale of FACT-B signifi-
cantly predicts the EQ-5D-3L. This suggests that it is important to
include the BCS questions, either in the form of the FACT-B
subscale or within the total FACT-B score. Other FACT measures
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Fig. 4 – Cumulative distribution functions using three- and four-component ALDVMMs with FACT-B subscale scores.
ALDVMM, adjusted limited dependent variable mixture model; FACT-B, Functional Assessment of Cancer Therapy—Breast
Cancer.

V A L U E I N H E A L T H ] ( 2 0 1 8 ) ] ] ] – ] ] ]6

https://doi.org/10.1016/j.jval.2018.06.006
https://doi.org/10.1016/j.jval.2018.06.006
https://doi.org/10.1016/j.jval.2018.06.006


or instruments that do not contain any BCS questions should not
be used to map to PBMs in patients with breast cancer. For
example, a general cancer instrument, FACT-G, has previously
been used to map to the EQ-5D-3L in a range of patients with
cancer [15–18]. Our results show that more specific cancer instru-
ments will produce more accurate results.

This study has limitations. The data used contain repeated
observations on the same patients over time. To account for this
we used clustered standard errors; nevertheless, this was not
found to significantly change the results. Although the data used
in this study span the full range of the FACT-B and the EQ-5D-3L
scores, there are a few observations at the higher end of the
FACT-B score. This could be an artefact of the clinical study
populations, but may be typical of the breast cancer population.
It is important that analysts consider the relevant population for
the specific health technology in question when using these
results in cost-effectiveness analysis.

Conclusions

The ALDVMM has been shown to outperform linear regression,
response mapping, and other statistical models in a range of
disease settings. Further research into different types of mixture
models, for example, a beta-based mixture model [19], could help
to further develop mapping methods in patients with breast
cancer.
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